1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 /* 198 * Tracking user of a slab. 199 */ 200 #define TRACK_ADDRS_COUNT 16 201 struct track { 202 unsigned long addr; /* Called from address */ 203 #ifdef CONFIG_STACKTRACE 204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 205 #endif 206 int cpu; /* Was running on cpu */ 207 int pid; /* Pid context */ 208 unsigned long when; /* When did the operation occur */ 209 }; 210 211 enum track_item { TRACK_ALLOC, TRACK_FREE }; 212 213 #ifdef CONFIG_SYSFS 214 static int sysfs_slab_add(struct kmem_cache *); 215 static int sysfs_slab_alias(struct kmem_cache *, const char *); 216 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 217 static void sysfs_slab_remove(struct kmem_cache *s); 218 #else 219 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 220 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 221 { return 0; } 222 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 223 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 224 #endif 225 226 static inline void stat(const struct kmem_cache *s, enum stat_item si) 227 { 228 #ifdef CONFIG_SLUB_STATS 229 /* 230 * The rmw is racy on a preemptible kernel but this is acceptable, so 231 * avoid this_cpu_add()'s irq-disable overhead. 232 */ 233 raw_cpu_inc(s->cpu_slab->stat[si]); 234 #endif 235 } 236 237 /******************************************************************** 238 * Core slab cache functions 239 *******************************************************************/ 240 241 static inline void *get_freepointer(struct kmem_cache *s, void *object) 242 { 243 return *(void **)(object + s->offset); 244 } 245 246 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 247 { 248 prefetch(object + s->offset); 249 } 250 251 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 252 { 253 void *p; 254 255 if (!debug_pagealloc_enabled()) 256 return get_freepointer(s, object); 257 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 259 return p; 260 } 261 262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 263 { 264 *(void **)(object + s->offset) = fp; 265 } 266 267 /* Loop over all objects in a slab */ 268 #define for_each_object(__p, __s, __addr, __objects) \ 269 for (__p = fixup_red_left(__s, __addr); \ 270 __p < (__addr) + (__objects) * (__s)->size; \ 271 __p += (__s)->size) 272 273 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 275 __idx <= __objects; \ 276 __p += (__s)->size, __idx++) 277 278 /* Determine object index from a given position */ 279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 280 { 281 return (p - addr) / s->size; 282 } 283 284 static inline int order_objects(int order, unsigned long size, int reserved) 285 { 286 return ((PAGE_SIZE << order) - reserved) / size; 287 } 288 289 static inline struct kmem_cache_order_objects oo_make(int order, 290 unsigned long size, int reserved) 291 { 292 struct kmem_cache_order_objects x = { 293 (order << OO_SHIFT) + order_objects(order, size, reserved) 294 }; 295 296 return x; 297 } 298 299 static inline int oo_order(struct kmem_cache_order_objects x) 300 { 301 return x.x >> OO_SHIFT; 302 } 303 304 static inline int oo_objects(struct kmem_cache_order_objects x) 305 { 306 return x.x & OO_MASK; 307 } 308 309 /* 310 * Per slab locking using the pagelock 311 */ 312 static __always_inline void slab_lock(struct page *page) 313 { 314 VM_BUG_ON_PAGE(PageTail(page), page); 315 bit_spin_lock(PG_locked, &page->flags); 316 } 317 318 static __always_inline void slab_unlock(struct page *page) 319 { 320 VM_BUG_ON_PAGE(PageTail(page), page); 321 __bit_spin_unlock(PG_locked, &page->flags); 322 } 323 324 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 325 { 326 struct page tmp; 327 tmp.counters = counters_new; 328 /* 329 * page->counters can cover frozen/inuse/objects as well 330 * as page->_refcount. If we assign to ->counters directly 331 * we run the risk of losing updates to page->_refcount, so 332 * be careful and only assign to the fields we need. 333 */ 334 page->frozen = tmp.frozen; 335 page->inuse = tmp.inuse; 336 page->objects = tmp.objects; 337 } 338 339 /* Interrupts must be disabled (for the fallback code to work right) */ 340 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 341 void *freelist_old, unsigned long counters_old, 342 void *freelist_new, unsigned long counters_new, 343 const char *n) 344 { 345 VM_BUG_ON(!irqs_disabled()); 346 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 348 if (s->flags & __CMPXCHG_DOUBLE) { 349 if (cmpxchg_double(&page->freelist, &page->counters, 350 freelist_old, counters_old, 351 freelist_new, counters_new)) 352 return true; 353 } else 354 #endif 355 { 356 slab_lock(page); 357 if (page->freelist == freelist_old && 358 page->counters == counters_old) { 359 page->freelist = freelist_new; 360 set_page_slub_counters(page, counters_new); 361 slab_unlock(page); 362 return true; 363 } 364 slab_unlock(page); 365 } 366 367 cpu_relax(); 368 stat(s, CMPXCHG_DOUBLE_FAIL); 369 370 #ifdef SLUB_DEBUG_CMPXCHG 371 pr_info("%s %s: cmpxchg double redo ", n, s->name); 372 #endif 373 374 return false; 375 } 376 377 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 378 void *freelist_old, unsigned long counters_old, 379 void *freelist_new, unsigned long counters_new, 380 const char *n) 381 { 382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 384 if (s->flags & __CMPXCHG_DOUBLE) { 385 if (cmpxchg_double(&page->freelist, &page->counters, 386 freelist_old, counters_old, 387 freelist_new, counters_new)) 388 return true; 389 } else 390 #endif 391 { 392 unsigned long flags; 393 394 local_irq_save(flags); 395 slab_lock(page); 396 if (page->freelist == freelist_old && 397 page->counters == counters_old) { 398 page->freelist = freelist_new; 399 set_page_slub_counters(page, counters_new); 400 slab_unlock(page); 401 local_irq_restore(flags); 402 return true; 403 } 404 slab_unlock(page); 405 local_irq_restore(flags); 406 } 407 408 cpu_relax(); 409 stat(s, CMPXCHG_DOUBLE_FAIL); 410 411 #ifdef SLUB_DEBUG_CMPXCHG 412 pr_info("%s %s: cmpxchg double redo ", n, s->name); 413 #endif 414 415 return false; 416 } 417 418 #ifdef CONFIG_SLUB_DEBUG 419 /* 420 * Determine a map of object in use on a page. 421 * 422 * Node listlock must be held to guarantee that the page does 423 * not vanish from under us. 424 */ 425 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 426 { 427 void *p; 428 void *addr = page_address(page); 429 430 for (p = page->freelist; p; p = get_freepointer(s, p)) 431 set_bit(slab_index(p, s, addr), map); 432 } 433 434 static inline int size_from_object(struct kmem_cache *s) 435 { 436 if (s->flags & SLAB_RED_ZONE) 437 return s->size - s->red_left_pad; 438 439 return s->size; 440 } 441 442 static inline void *restore_red_left(struct kmem_cache *s, void *p) 443 { 444 if (s->flags & SLAB_RED_ZONE) 445 p -= s->red_left_pad; 446 447 return p; 448 } 449 450 /* 451 * Debug settings: 452 */ 453 #if defined(CONFIG_SLUB_DEBUG_ON) 454 static int slub_debug = DEBUG_DEFAULT_FLAGS; 455 #else 456 static int slub_debug; 457 #endif 458 459 static char *slub_debug_slabs; 460 static int disable_higher_order_debug; 461 462 /* 463 * slub is about to manipulate internal object metadata. This memory lies 464 * outside the range of the allocated object, so accessing it would normally 465 * be reported by kasan as a bounds error. metadata_access_enable() is used 466 * to tell kasan that these accesses are OK. 467 */ 468 static inline void metadata_access_enable(void) 469 { 470 kasan_disable_current(); 471 } 472 473 static inline void metadata_access_disable(void) 474 { 475 kasan_enable_current(); 476 } 477 478 /* 479 * Object debugging 480 */ 481 482 /* Verify that a pointer has an address that is valid within a slab page */ 483 static inline int check_valid_pointer(struct kmem_cache *s, 484 struct page *page, void *object) 485 { 486 void *base; 487 488 if (!object) 489 return 1; 490 491 base = page_address(page); 492 object = restore_red_left(s, object); 493 if (object < base || object >= base + page->objects * s->size || 494 (object - base) % s->size) { 495 return 0; 496 } 497 498 return 1; 499 } 500 501 static void print_section(char *level, char *text, u8 *addr, 502 unsigned int length) 503 { 504 metadata_access_enable(); 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 506 length, 1); 507 metadata_access_disable(); 508 } 509 510 static struct track *get_track(struct kmem_cache *s, void *object, 511 enum track_item alloc) 512 { 513 struct track *p; 514 515 if (s->offset) 516 p = object + s->offset + sizeof(void *); 517 else 518 p = object + s->inuse; 519 520 return p + alloc; 521 } 522 523 static void set_track(struct kmem_cache *s, void *object, 524 enum track_item alloc, unsigned long addr) 525 { 526 struct track *p = get_track(s, object, alloc); 527 528 if (addr) { 529 #ifdef CONFIG_STACKTRACE 530 struct stack_trace trace; 531 int i; 532 533 trace.nr_entries = 0; 534 trace.max_entries = TRACK_ADDRS_COUNT; 535 trace.entries = p->addrs; 536 trace.skip = 3; 537 metadata_access_enable(); 538 save_stack_trace(&trace); 539 metadata_access_disable(); 540 541 /* See rant in lockdep.c */ 542 if (trace.nr_entries != 0 && 543 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 544 trace.nr_entries--; 545 546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 547 p->addrs[i] = 0; 548 #endif 549 p->addr = addr; 550 p->cpu = smp_processor_id(); 551 p->pid = current->pid; 552 p->when = jiffies; 553 } else 554 memset(p, 0, sizeof(struct track)); 555 } 556 557 static void init_tracking(struct kmem_cache *s, void *object) 558 { 559 if (!(s->flags & SLAB_STORE_USER)) 560 return; 561 562 set_track(s, object, TRACK_FREE, 0UL); 563 set_track(s, object, TRACK_ALLOC, 0UL); 564 } 565 566 static void print_track(const char *s, struct track *t) 567 { 568 if (!t->addr) 569 return; 570 571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 573 #ifdef CONFIG_STACKTRACE 574 { 575 int i; 576 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 577 if (t->addrs[i]) 578 pr_err("\t%pS\n", (void *)t->addrs[i]); 579 else 580 break; 581 } 582 #endif 583 } 584 585 static void print_tracking(struct kmem_cache *s, void *object) 586 { 587 if (!(s->flags & SLAB_STORE_USER)) 588 return; 589 590 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 591 print_track("Freed", get_track(s, object, TRACK_FREE)); 592 } 593 594 static void print_page_info(struct page *page) 595 { 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 597 page, page->objects, page->inuse, page->freelist, page->flags); 598 599 } 600 601 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 602 { 603 struct va_format vaf; 604 va_list args; 605 606 va_start(args, fmt); 607 vaf.fmt = fmt; 608 vaf.va = &args; 609 pr_err("=============================================================================\n"); 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 611 pr_err("-----------------------------------------------------------------------------\n\n"); 612 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 614 va_end(args); 615 } 616 617 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 618 { 619 struct va_format vaf; 620 va_list args; 621 622 va_start(args, fmt); 623 vaf.fmt = fmt; 624 vaf.va = &args; 625 pr_err("FIX %s: %pV\n", s->name, &vaf); 626 va_end(args); 627 } 628 629 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 630 { 631 unsigned int off; /* Offset of last byte */ 632 u8 *addr = page_address(page); 633 634 print_tracking(s, p); 635 636 print_page_info(page); 637 638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 639 p, p - addr, get_freepointer(s, p)); 640 641 if (s->flags & SLAB_RED_ZONE) 642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 643 s->red_left_pad); 644 else if (p > addr + 16) 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 646 647 print_section(KERN_ERR, "Object ", p, 648 min_t(unsigned long, s->object_size, PAGE_SIZE)); 649 if (s->flags & SLAB_RED_ZONE) 650 print_section(KERN_ERR, "Redzone ", p + s->object_size, 651 s->inuse - s->object_size); 652 653 if (s->offset) 654 off = s->offset + sizeof(void *); 655 else 656 off = s->inuse; 657 658 if (s->flags & SLAB_STORE_USER) 659 off += 2 * sizeof(struct track); 660 661 off += kasan_metadata_size(s); 662 663 if (off != size_from_object(s)) 664 /* Beginning of the filler is the free pointer */ 665 print_section(KERN_ERR, "Padding ", p + off, 666 size_from_object(s) - off); 667 668 dump_stack(); 669 } 670 671 void object_err(struct kmem_cache *s, struct page *page, 672 u8 *object, char *reason) 673 { 674 slab_bug(s, "%s", reason); 675 print_trailer(s, page, object); 676 } 677 678 static void slab_err(struct kmem_cache *s, struct page *page, 679 const char *fmt, ...) 680 { 681 va_list args; 682 char buf[100]; 683 684 va_start(args, fmt); 685 vsnprintf(buf, sizeof(buf), fmt, args); 686 va_end(args); 687 slab_bug(s, "%s", buf); 688 print_page_info(page); 689 dump_stack(); 690 } 691 692 static void init_object(struct kmem_cache *s, void *object, u8 val) 693 { 694 u8 *p = object; 695 696 if (s->flags & SLAB_RED_ZONE) 697 memset(p - s->red_left_pad, val, s->red_left_pad); 698 699 if (s->flags & __OBJECT_POISON) { 700 memset(p, POISON_FREE, s->object_size - 1); 701 p[s->object_size - 1] = POISON_END; 702 } 703 704 if (s->flags & SLAB_RED_ZONE) 705 memset(p + s->object_size, val, s->inuse - s->object_size); 706 } 707 708 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 709 void *from, void *to) 710 { 711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 712 memset(from, data, to - from); 713 } 714 715 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 716 u8 *object, char *what, 717 u8 *start, unsigned int value, unsigned int bytes) 718 { 719 u8 *fault; 720 u8 *end; 721 722 metadata_access_enable(); 723 fault = memchr_inv(start, value, bytes); 724 metadata_access_disable(); 725 if (!fault) 726 return 1; 727 728 end = start + bytes; 729 while (end > fault && end[-1] == value) 730 end--; 731 732 slab_bug(s, "%s overwritten", what); 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 734 fault, end - 1, fault[0], value); 735 print_trailer(s, page, object); 736 737 restore_bytes(s, what, value, fault, end); 738 return 0; 739 } 740 741 /* 742 * Object layout: 743 * 744 * object address 745 * Bytes of the object to be managed. 746 * If the freepointer may overlay the object then the free 747 * pointer is the first word of the object. 748 * 749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 750 * 0xa5 (POISON_END) 751 * 752 * object + s->object_size 753 * Padding to reach word boundary. This is also used for Redzoning. 754 * Padding is extended by another word if Redzoning is enabled and 755 * object_size == inuse. 756 * 757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 758 * 0xcc (RED_ACTIVE) for objects in use. 759 * 760 * object + s->inuse 761 * Meta data starts here. 762 * 763 * A. Free pointer (if we cannot overwrite object on free) 764 * B. Tracking data for SLAB_STORE_USER 765 * C. Padding to reach required alignment boundary or at mininum 766 * one word if debugging is on to be able to detect writes 767 * before the word boundary. 768 * 769 * Padding is done using 0x5a (POISON_INUSE) 770 * 771 * object + s->size 772 * Nothing is used beyond s->size. 773 * 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly 775 * ignored. And therefore no slab options that rely on these boundaries 776 * may be used with merged slabcaches. 777 */ 778 779 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 780 { 781 unsigned long off = s->inuse; /* The end of info */ 782 783 if (s->offset) 784 /* Freepointer is placed after the object. */ 785 off += sizeof(void *); 786 787 if (s->flags & SLAB_STORE_USER) 788 /* We also have user information there */ 789 off += 2 * sizeof(struct track); 790 791 off += kasan_metadata_size(s); 792 793 if (size_from_object(s) == off) 794 return 1; 795 796 return check_bytes_and_report(s, page, p, "Object padding", 797 p + off, POISON_INUSE, size_from_object(s) - off); 798 } 799 800 /* Check the pad bytes at the end of a slab page */ 801 static int slab_pad_check(struct kmem_cache *s, struct page *page) 802 { 803 u8 *start; 804 u8 *fault; 805 u8 *end; 806 int length; 807 int remainder; 808 809 if (!(s->flags & SLAB_POISON)) 810 return 1; 811 812 start = page_address(page); 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 814 end = start + length; 815 remainder = length % s->size; 816 if (!remainder) 817 return 1; 818 819 metadata_access_enable(); 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 821 metadata_access_disable(); 822 if (!fault) 823 return 1; 824 while (end > fault && end[-1] == POISON_INUSE) 825 end--; 826 827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 829 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 831 return 0; 832 } 833 834 static int check_object(struct kmem_cache *s, struct page *page, 835 void *object, u8 val) 836 { 837 u8 *p = object; 838 u8 *endobject = object + s->object_size; 839 840 if (s->flags & SLAB_RED_ZONE) { 841 if (!check_bytes_and_report(s, page, object, "Redzone", 842 object - s->red_left_pad, val, s->red_left_pad)) 843 return 0; 844 845 if (!check_bytes_and_report(s, page, object, "Redzone", 846 endobject, val, s->inuse - s->object_size)) 847 return 0; 848 } else { 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 850 check_bytes_and_report(s, page, p, "Alignment padding", 851 endobject, POISON_INUSE, 852 s->inuse - s->object_size); 853 } 854 } 855 856 if (s->flags & SLAB_POISON) { 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 858 (!check_bytes_and_report(s, page, p, "Poison", p, 859 POISON_FREE, s->object_size - 1) || 860 !check_bytes_and_report(s, page, p, "Poison", 861 p + s->object_size - 1, POISON_END, 1))) 862 return 0; 863 /* 864 * check_pad_bytes cleans up on its own. 865 */ 866 check_pad_bytes(s, page, p); 867 } 868 869 if (!s->offset && val == SLUB_RED_ACTIVE) 870 /* 871 * Object and freepointer overlap. Cannot check 872 * freepointer while object is allocated. 873 */ 874 return 1; 875 876 /* Check free pointer validity */ 877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 878 object_err(s, page, p, "Freepointer corrupt"); 879 /* 880 * No choice but to zap it and thus lose the remainder 881 * of the free objects in this slab. May cause 882 * another error because the object count is now wrong. 883 */ 884 set_freepointer(s, p, NULL); 885 return 0; 886 } 887 return 1; 888 } 889 890 static int check_slab(struct kmem_cache *s, struct page *page) 891 { 892 int maxobj; 893 894 VM_BUG_ON(!irqs_disabled()); 895 896 if (!PageSlab(page)) { 897 slab_err(s, page, "Not a valid slab page"); 898 return 0; 899 } 900 901 maxobj = order_objects(compound_order(page), s->size, s->reserved); 902 if (page->objects > maxobj) { 903 slab_err(s, page, "objects %u > max %u", 904 page->objects, maxobj); 905 return 0; 906 } 907 if (page->inuse > page->objects) { 908 slab_err(s, page, "inuse %u > max %u", 909 page->inuse, page->objects); 910 return 0; 911 } 912 /* Slab_pad_check fixes things up after itself */ 913 slab_pad_check(s, page); 914 return 1; 915 } 916 917 /* 918 * Determine if a certain object on a page is on the freelist. Must hold the 919 * slab lock to guarantee that the chains are in a consistent state. 920 */ 921 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 922 { 923 int nr = 0; 924 void *fp; 925 void *object = NULL; 926 int max_objects; 927 928 fp = page->freelist; 929 while (fp && nr <= page->objects) { 930 if (fp == search) 931 return 1; 932 if (!check_valid_pointer(s, page, fp)) { 933 if (object) { 934 object_err(s, page, object, 935 "Freechain corrupt"); 936 set_freepointer(s, object, NULL); 937 } else { 938 slab_err(s, page, "Freepointer corrupt"); 939 page->freelist = NULL; 940 page->inuse = page->objects; 941 slab_fix(s, "Freelist cleared"); 942 return 0; 943 } 944 break; 945 } 946 object = fp; 947 fp = get_freepointer(s, object); 948 nr++; 949 } 950 951 max_objects = order_objects(compound_order(page), s->size, s->reserved); 952 if (max_objects > MAX_OBJS_PER_PAGE) 953 max_objects = MAX_OBJS_PER_PAGE; 954 955 if (page->objects != max_objects) { 956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 957 page->objects, max_objects); 958 page->objects = max_objects; 959 slab_fix(s, "Number of objects adjusted."); 960 } 961 if (page->inuse != page->objects - nr) { 962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 963 page->inuse, page->objects - nr); 964 page->inuse = page->objects - nr; 965 slab_fix(s, "Object count adjusted."); 966 } 967 return search == NULL; 968 } 969 970 static void trace(struct kmem_cache *s, struct page *page, void *object, 971 int alloc) 972 { 973 if (s->flags & SLAB_TRACE) { 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 975 s->name, 976 alloc ? "alloc" : "free", 977 object, page->inuse, 978 page->freelist); 979 980 if (!alloc) 981 print_section(KERN_INFO, "Object ", (void *)object, 982 s->object_size); 983 984 dump_stack(); 985 } 986 } 987 988 /* 989 * Tracking of fully allocated slabs for debugging purposes. 990 */ 991 static void add_full(struct kmem_cache *s, 992 struct kmem_cache_node *n, struct page *page) 993 { 994 if (!(s->flags & SLAB_STORE_USER)) 995 return; 996 997 lockdep_assert_held(&n->list_lock); 998 list_add(&page->lru, &n->full); 999 } 1000 1001 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1002 { 1003 if (!(s->flags & SLAB_STORE_USER)) 1004 return; 1005 1006 lockdep_assert_held(&n->list_lock); 1007 list_del(&page->lru); 1008 } 1009 1010 /* Tracking of the number of slabs for debugging purposes */ 1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1012 { 1013 struct kmem_cache_node *n = get_node(s, node); 1014 1015 return atomic_long_read(&n->nr_slabs); 1016 } 1017 1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1019 { 1020 return atomic_long_read(&n->nr_slabs); 1021 } 1022 1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 /* 1028 * May be called early in order to allocate a slab for the 1029 * kmem_cache_node structure. Solve the chicken-egg 1030 * dilemma by deferring the increment of the count during 1031 * bootstrap (see early_kmem_cache_node_alloc). 1032 */ 1033 if (likely(n)) { 1034 atomic_long_inc(&n->nr_slabs); 1035 atomic_long_add(objects, &n->total_objects); 1036 } 1037 } 1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1039 { 1040 struct kmem_cache_node *n = get_node(s, node); 1041 1042 atomic_long_dec(&n->nr_slabs); 1043 atomic_long_sub(objects, &n->total_objects); 1044 } 1045 1046 /* Object debug checks for alloc/free paths */ 1047 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1048 void *object) 1049 { 1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1051 return; 1052 1053 init_object(s, object, SLUB_RED_INACTIVE); 1054 init_tracking(s, object); 1055 } 1056 1057 static inline int alloc_consistency_checks(struct kmem_cache *s, 1058 struct page *page, 1059 void *object, unsigned long addr) 1060 { 1061 if (!check_slab(s, page)) 1062 return 0; 1063 1064 if (!check_valid_pointer(s, page, object)) { 1065 object_err(s, page, object, "Freelist Pointer check fails"); 1066 return 0; 1067 } 1068 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1070 return 0; 1071 1072 return 1; 1073 } 1074 1075 static noinline int alloc_debug_processing(struct kmem_cache *s, 1076 struct page *page, 1077 void *object, unsigned long addr) 1078 { 1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1080 if (!alloc_consistency_checks(s, page, object, addr)) 1081 goto bad; 1082 } 1083 1084 /* Success perform special debug activities for allocs */ 1085 if (s->flags & SLAB_STORE_USER) 1086 set_track(s, object, TRACK_ALLOC, addr); 1087 trace(s, page, object, 1); 1088 init_object(s, object, SLUB_RED_ACTIVE); 1089 return 1; 1090 1091 bad: 1092 if (PageSlab(page)) { 1093 /* 1094 * If this is a slab page then lets do the best we can 1095 * to avoid issues in the future. Marking all objects 1096 * as used avoids touching the remaining objects. 1097 */ 1098 slab_fix(s, "Marking all objects used"); 1099 page->inuse = page->objects; 1100 page->freelist = NULL; 1101 } 1102 return 0; 1103 } 1104 1105 static inline int free_consistency_checks(struct kmem_cache *s, 1106 struct page *page, void *object, unsigned long addr) 1107 { 1108 if (!check_valid_pointer(s, page, object)) { 1109 slab_err(s, page, "Invalid object pointer 0x%p", object); 1110 return 0; 1111 } 1112 1113 if (on_freelist(s, page, object)) { 1114 object_err(s, page, object, "Object already free"); 1115 return 0; 1116 } 1117 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1119 return 0; 1120 1121 if (unlikely(s != page->slab_cache)) { 1122 if (!PageSlab(page)) { 1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1124 object); 1125 } else if (!page->slab_cache) { 1126 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1127 object); 1128 dump_stack(); 1129 } else 1130 object_err(s, page, object, 1131 "page slab pointer corrupt."); 1132 return 0; 1133 } 1134 return 1; 1135 } 1136 1137 /* Supports checking bulk free of a constructed freelist */ 1138 static noinline int free_debug_processing( 1139 struct kmem_cache *s, struct page *page, 1140 void *head, void *tail, int bulk_cnt, 1141 unsigned long addr) 1142 { 1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1144 void *object = head; 1145 int cnt = 0; 1146 unsigned long uninitialized_var(flags); 1147 int ret = 0; 1148 1149 spin_lock_irqsave(&n->list_lock, flags); 1150 slab_lock(page); 1151 1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1153 if (!check_slab(s, page)) 1154 goto out; 1155 } 1156 1157 next_object: 1158 cnt++; 1159 1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1161 if (!free_consistency_checks(s, page, object, addr)) 1162 goto out; 1163 } 1164 1165 if (s->flags & SLAB_STORE_USER) 1166 set_track(s, object, TRACK_FREE, addr); 1167 trace(s, page, object, 0); 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1169 init_object(s, object, SLUB_RED_INACTIVE); 1170 1171 /* Reached end of constructed freelist yet? */ 1172 if (object != tail) { 1173 object = get_freepointer(s, object); 1174 goto next_object; 1175 } 1176 ret = 1; 1177 1178 out: 1179 if (cnt != bulk_cnt) 1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1181 bulk_cnt, cnt); 1182 1183 slab_unlock(page); 1184 spin_unlock_irqrestore(&n->list_lock, flags); 1185 if (!ret) 1186 slab_fix(s, "Object at 0x%p not freed", object); 1187 return ret; 1188 } 1189 1190 static int __init setup_slub_debug(char *str) 1191 { 1192 slub_debug = DEBUG_DEFAULT_FLAGS; 1193 if (*str++ != '=' || !*str) 1194 /* 1195 * No options specified. Switch on full debugging. 1196 */ 1197 goto out; 1198 1199 if (*str == ',') 1200 /* 1201 * No options but restriction on slabs. This means full 1202 * debugging for slabs matching a pattern. 1203 */ 1204 goto check_slabs; 1205 1206 slub_debug = 0; 1207 if (*str == '-') 1208 /* 1209 * Switch off all debugging measures. 1210 */ 1211 goto out; 1212 1213 /* 1214 * Determine which debug features should be switched on 1215 */ 1216 for (; *str && *str != ','; str++) { 1217 switch (tolower(*str)) { 1218 case 'f': 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1220 break; 1221 case 'z': 1222 slub_debug |= SLAB_RED_ZONE; 1223 break; 1224 case 'p': 1225 slub_debug |= SLAB_POISON; 1226 break; 1227 case 'u': 1228 slub_debug |= SLAB_STORE_USER; 1229 break; 1230 case 't': 1231 slub_debug |= SLAB_TRACE; 1232 break; 1233 case 'a': 1234 slub_debug |= SLAB_FAILSLAB; 1235 break; 1236 case 'o': 1237 /* 1238 * Avoid enabling debugging on caches if its minimum 1239 * order would increase as a result. 1240 */ 1241 disable_higher_order_debug = 1; 1242 break; 1243 default: 1244 pr_err("slub_debug option '%c' unknown. skipped\n", 1245 *str); 1246 } 1247 } 1248 1249 check_slabs: 1250 if (*str == ',') 1251 slub_debug_slabs = str + 1; 1252 out: 1253 return 1; 1254 } 1255 1256 __setup("slub_debug", setup_slub_debug); 1257 1258 unsigned long kmem_cache_flags(unsigned long object_size, 1259 unsigned long flags, const char *name, 1260 void (*ctor)(void *)) 1261 { 1262 /* 1263 * Enable debugging if selected on the kernel commandline. 1264 */ 1265 if (slub_debug && (!slub_debug_slabs || (name && 1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1267 flags |= slub_debug; 1268 1269 return flags; 1270 } 1271 #else /* !CONFIG_SLUB_DEBUG */ 1272 static inline void setup_object_debug(struct kmem_cache *s, 1273 struct page *page, void *object) {} 1274 1275 static inline int alloc_debug_processing(struct kmem_cache *s, 1276 struct page *page, void *object, unsigned long addr) { return 0; } 1277 1278 static inline int free_debug_processing( 1279 struct kmem_cache *s, struct page *page, 1280 void *head, void *tail, int bulk_cnt, 1281 unsigned long addr) { return 0; } 1282 1283 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1284 { return 1; } 1285 static inline int check_object(struct kmem_cache *s, struct page *page, 1286 void *object, u8 val) { return 1; } 1287 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1288 struct page *page) {} 1289 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1290 struct page *page) {} 1291 unsigned long kmem_cache_flags(unsigned long object_size, 1292 unsigned long flags, const char *name, 1293 void (*ctor)(void *)) 1294 { 1295 return flags; 1296 } 1297 #define slub_debug 0 1298 1299 #define disable_higher_order_debug 0 1300 1301 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1302 { return 0; } 1303 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1304 { return 0; } 1305 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1306 int objects) {} 1307 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1308 int objects) {} 1309 1310 #endif /* CONFIG_SLUB_DEBUG */ 1311 1312 /* 1313 * Hooks for other subsystems that check memory allocations. In a typical 1314 * production configuration these hooks all should produce no code at all. 1315 */ 1316 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1317 { 1318 kmemleak_alloc(ptr, size, 1, flags); 1319 kasan_kmalloc_large(ptr, size, flags); 1320 } 1321 1322 static inline void kfree_hook(const void *x) 1323 { 1324 kmemleak_free(x); 1325 kasan_kfree_large(x); 1326 } 1327 1328 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1329 { 1330 void *freeptr; 1331 1332 kmemleak_free_recursive(x, s->flags); 1333 1334 /* 1335 * Trouble is that we may no longer disable interrupts in the fast path 1336 * So in order to make the debug calls that expect irqs to be 1337 * disabled we need to disable interrupts temporarily. 1338 */ 1339 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1340 { 1341 unsigned long flags; 1342 1343 local_irq_save(flags); 1344 kmemcheck_slab_free(s, x, s->object_size); 1345 debug_check_no_locks_freed(x, s->object_size); 1346 local_irq_restore(flags); 1347 } 1348 #endif 1349 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1350 debug_check_no_obj_freed(x, s->object_size); 1351 1352 freeptr = get_freepointer(s, x); 1353 /* 1354 * kasan_slab_free() may put x into memory quarantine, delaying its 1355 * reuse. In this case the object's freelist pointer is changed. 1356 */ 1357 kasan_slab_free(s, x); 1358 return freeptr; 1359 } 1360 1361 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1362 void *head, void *tail) 1363 { 1364 /* 1365 * Compiler cannot detect this function can be removed if slab_free_hook() 1366 * evaluates to nothing. Thus, catch all relevant config debug options here. 1367 */ 1368 #if defined(CONFIG_KMEMCHECK) || \ 1369 defined(CONFIG_LOCKDEP) || \ 1370 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1372 defined(CONFIG_KASAN) 1373 1374 void *object = head; 1375 void *tail_obj = tail ? : head; 1376 void *freeptr; 1377 1378 do { 1379 freeptr = slab_free_hook(s, object); 1380 } while ((object != tail_obj) && (object = freeptr)); 1381 #endif 1382 } 1383 1384 static void setup_object(struct kmem_cache *s, struct page *page, 1385 void *object) 1386 { 1387 setup_object_debug(s, page, object); 1388 kasan_init_slab_obj(s, object); 1389 if (unlikely(s->ctor)) { 1390 kasan_unpoison_object_data(s, object); 1391 s->ctor(object); 1392 kasan_poison_object_data(s, object); 1393 } 1394 } 1395 1396 /* 1397 * Slab allocation and freeing 1398 */ 1399 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1400 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1401 { 1402 struct page *page; 1403 int order = oo_order(oo); 1404 1405 flags |= __GFP_NOTRACK; 1406 1407 if (node == NUMA_NO_NODE) 1408 page = alloc_pages(flags, order); 1409 else 1410 page = __alloc_pages_node(node, flags, order); 1411 1412 if (page && memcg_charge_slab(page, flags, order, s)) { 1413 __free_pages(page, order); 1414 page = NULL; 1415 } 1416 1417 return page; 1418 } 1419 1420 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1421 /* Pre-initialize the random sequence cache */ 1422 static int init_cache_random_seq(struct kmem_cache *s) 1423 { 1424 int err; 1425 unsigned long i, count = oo_objects(s->oo); 1426 1427 /* Bailout if already initialised */ 1428 if (s->random_seq) 1429 return 0; 1430 1431 err = cache_random_seq_create(s, count, GFP_KERNEL); 1432 if (err) { 1433 pr_err("SLUB: Unable to initialize free list for %s\n", 1434 s->name); 1435 return err; 1436 } 1437 1438 /* Transform to an offset on the set of pages */ 1439 if (s->random_seq) { 1440 for (i = 0; i < count; i++) 1441 s->random_seq[i] *= s->size; 1442 } 1443 return 0; 1444 } 1445 1446 /* Initialize each random sequence freelist per cache */ 1447 static void __init init_freelist_randomization(void) 1448 { 1449 struct kmem_cache *s; 1450 1451 mutex_lock(&slab_mutex); 1452 1453 list_for_each_entry(s, &slab_caches, list) 1454 init_cache_random_seq(s); 1455 1456 mutex_unlock(&slab_mutex); 1457 } 1458 1459 /* Get the next entry on the pre-computed freelist randomized */ 1460 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1461 unsigned long *pos, void *start, 1462 unsigned long page_limit, 1463 unsigned long freelist_count) 1464 { 1465 unsigned int idx; 1466 1467 /* 1468 * If the target page allocation failed, the number of objects on the 1469 * page might be smaller than the usual size defined by the cache. 1470 */ 1471 do { 1472 idx = s->random_seq[*pos]; 1473 *pos += 1; 1474 if (*pos >= freelist_count) 1475 *pos = 0; 1476 } while (unlikely(idx >= page_limit)); 1477 1478 return (char *)start + idx; 1479 } 1480 1481 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1482 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1483 { 1484 void *start; 1485 void *cur; 1486 void *next; 1487 unsigned long idx, pos, page_limit, freelist_count; 1488 1489 if (page->objects < 2 || !s->random_seq) 1490 return false; 1491 1492 freelist_count = oo_objects(s->oo); 1493 pos = get_random_int() % freelist_count; 1494 1495 page_limit = page->objects * s->size; 1496 start = fixup_red_left(s, page_address(page)); 1497 1498 /* First entry is used as the base of the freelist */ 1499 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1500 freelist_count); 1501 page->freelist = cur; 1502 1503 for (idx = 1; idx < page->objects; idx++) { 1504 setup_object(s, page, cur); 1505 next = next_freelist_entry(s, page, &pos, start, page_limit, 1506 freelist_count); 1507 set_freepointer(s, cur, next); 1508 cur = next; 1509 } 1510 setup_object(s, page, cur); 1511 set_freepointer(s, cur, NULL); 1512 1513 return true; 1514 } 1515 #else 1516 static inline int init_cache_random_seq(struct kmem_cache *s) 1517 { 1518 return 0; 1519 } 1520 static inline void init_freelist_randomization(void) { } 1521 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1522 { 1523 return false; 1524 } 1525 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1526 1527 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1528 { 1529 struct page *page; 1530 struct kmem_cache_order_objects oo = s->oo; 1531 gfp_t alloc_gfp; 1532 void *start, *p; 1533 int idx, order; 1534 bool shuffle; 1535 1536 flags &= gfp_allowed_mask; 1537 1538 if (gfpflags_allow_blocking(flags)) 1539 local_irq_enable(); 1540 1541 flags |= s->allocflags; 1542 1543 /* 1544 * Let the initial higher-order allocation fail under memory pressure 1545 * so we fall-back to the minimum order allocation. 1546 */ 1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1550 1551 page = alloc_slab_page(s, alloc_gfp, node, oo); 1552 if (unlikely(!page)) { 1553 oo = s->min; 1554 alloc_gfp = flags; 1555 /* 1556 * Allocation may have failed due to fragmentation. 1557 * Try a lower order alloc if possible 1558 */ 1559 page = alloc_slab_page(s, alloc_gfp, node, oo); 1560 if (unlikely(!page)) 1561 goto out; 1562 stat(s, ORDER_FALLBACK); 1563 } 1564 1565 if (kmemcheck_enabled && 1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1567 int pages = 1 << oo_order(oo); 1568 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1570 1571 /* 1572 * Objects from caches that have a constructor don't get 1573 * cleared when they're allocated, so we need to do it here. 1574 */ 1575 if (s->ctor) 1576 kmemcheck_mark_uninitialized_pages(page, pages); 1577 else 1578 kmemcheck_mark_unallocated_pages(page, pages); 1579 } 1580 1581 page->objects = oo_objects(oo); 1582 1583 order = compound_order(page); 1584 page->slab_cache = s; 1585 __SetPageSlab(page); 1586 if (page_is_pfmemalloc(page)) 1587 SetPageSlabPfmemalloc(page); 1588 1589 start = page_address(page); 1590 1591 if (unlikely(s->flags & SLAB_POISON)) 1592 memset(start, POISON_INUSE, PAGE_SIZE << order); 1593 1594 kasan_poison_slab(page); 1595 1596 shuffle = shuffle_freelist(s, page); 1597 1598 if (!shuffle) { 1599 for_each_object_idx(p, idx, s, start, page->objects) { 1600 setup_object(s, page, p); 1601 if (likely(idx < page->objects)) 1602 set_freepointer(s, p, p + s->size); 1603 else 1604 set_freepointer(s, p, NULL); 1605 } 1606 page->freelist = fixup_red_left(s, start); 1607 } 1608 1609 page->inuse = page->objects; 1610 page->frozen = 1; 1611 1612 out: 1613 if (gfpflags_allow_blocking(flags)) 1614 local_irq_disable(); 1615 if (!page) 1616 return NULL; 1617 1618 mod_lruvec_page_state(page, 1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1621 1 << oo_order(oo)); 1622 1623 inc_slabs_node(s, page_to_nid(page), page->objects); 1624 1625 return page; 1626 } 1627 1628 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1629 { 1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1632 flags &= ~GFP_SLAB_BUG_MASK; 1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1634 invalid_mask, &invalid_mask, flags, &flags); 1635 dump_stack(); 1636 } 1637 1638 return allocate_slab(s, 1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1640 } 1641 1642 static void __free_slab(struct kmem_cache *s, struct page *page) 1643 { 1644 int order = compound_order(page); 1645 int pages = 1 << order; 1646 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1648 void *p; 1649 1650 slab_pad_check(s, page); 1651 for_each_object(p, s, page_address(page), 1652 page->objects) 1653 check_object(s, page, p, SLUB_RED_INACTIVE); 1654 } 1655 1656 kmemcheck_free_shadow(page, compound_order(page)); 1657 1658 mod_lruvec_page_state(page, 1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1661 -pages); 1662 1663 __ClearPageSlabPfmemalloc(page); 1664 __ClearPageSlab(page); 1665 1666 page_mapcount_reset(page); 1667 if (current->reclaim_state) 1668 current->reclaim_state->reclaimed_slab += pages; 1669 memcg_uncharge_slab(page, order, s); 1670 __free_pages(page, order); 1671 } 1672 1673 #define need_reserve_slab_rcu \ 1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1675 1676 static void rcu_free_slab(struct rcu_head *h) 1677 { 1678 struct page *page; 1679 1680 if (need_reserve_slab_rcu) 1681 page = virt_to_head_page(h); 1682 else 1683 page = container_of((struct list_head *)h, struct page, lru); 1684 1685 __free_slab(page->slab_cache, page); 1686 } 1687 1688 static void free_slab(struct kmem_cache *s, struct page *page) 1689 { 1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1691 struct rcu_head *head; 1692 1693 if (need_reserve_slab_rcu) { 1694 int order = compound_order(page); 1695 int offset = (PAGE_SIZE << order) - s->reserved; 1696 1697 VM_BUG_ON(s->reserved != sizeof(*head)); 1698 head = page_address(page) + offset; 1699 } else { 1700 head = &page->rcu_head; 1701 } 1702 1703 call_rcu(head, rcu_free_slab); 1704 } else 1705 __free_slab(s, page); 1706 } 1707 1708 static void discard_slab(struct kmem_cache *s, struct page *page) 1709 { 1710 dec_slabs_node(s, page_to_nid(page), page->objects); 1711 free_slab(s, page); 1712 } 1713 1714 /* 1715 * Management of partially allocated slabs. 1716 */ 1717 static inline void 1718 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1719 { 1720 n->nr_partial++; 1721 if (tail == DEACTIVATE_TO_TAIL) 1722 list_add_tail(&page->lru, &n->partial); 1723 else 1724 list_add(&page->lru, &n->partial); 1725 } 1726 1727 static inline void add_partial(struct kmem_cache_node *n, 1728 struct page *page, int tail) 1729 { 1730 lockdep_assert_held(&n->list_lock); 1731 __add_partial(n, page, tail); 1732 } 1733 1734 static inline void remove_partial(struct kmem_cache_node *n, 1735 struct page *page) 1736 { 1737 lockdep_assert_held(&n->list_lock); 1738 list_del(&page->lru); 1739 n->nr_partial--; 1740 } 1741 1742 /* 1743 * Remove slab from the partial list, freeze it and 1744 * return the pointer to the freelist. 1745 * 1746 * Returns a list of objects or NULL if it fails. 1747 */ 1748 static inline void *acquire_slab(struct kmem_cache *s, 1749 struct kmem_cache_node *n, struct page *page, 1750 int mode, int *objects) 1751 { 1752 void *freelist; 1753 unsigned long counters; 1754 struct page new; 1755 1756 lockdep_assert_held(&n->list_lock); 1757 1758 /* 1759 * Zap the freelist and set the frozen bit. 1760 * The old freelist is the list of objects for the 1761 * per cpu allocation list. 1762 */ 1763 freelist = page->freelist; 1764 counters = page->counters; 1765 new.counters = counters; 1766 *objects = new.objects - new.inuse; 1767 if (mode) { 1768 new.inuse = page->objects; 1769 new.freelist = NULL; 1770 } else { 1771 new.freelist = freelist; 1772 } 1773 1774 VM_BUG_ON(new.frozen); 1775 new.frozen = 1; 1776 1777 if (!__cmpxchg_double_slab(s, page, 1778 freelist, counters, 1779 new.freelist, new.counters, 1780 "acquire_slab")) 1781 return NULL; 1782 1783 remove_partial(n, page); 1784 WARN_ON(!freelist); 1785 return freelist; 1786 } 1787 1788 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1789 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1790 1791 /* 1792 * Try to allocate a partial slab from a specific node. 1793 */ 1794 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1795 struct kmem_cache_cpu *c, gfp_t flags) 1796 { 1797 struct page *page, *page2; 1798 void *object = NULL; 1799 int available = 0; 1800 int objects; 1801 1802 /* 1803 * Racy check. If we mistakenly see no partial slabs then we 1804 * just allocate an empty slab. If we mistakenly try to get a 1805 * partial slab and there is none available then get_partials() 1806 * will return NULL. 1807 */ 1808 if (!n || !n->nr_partial) 1809 return NULL; 1810 1811 spin_lock(&n->list_lock); 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1813 void *t; 1814 1815 if (!pfmemalloc_match(page, flags)) 1816 continue; 1817 1818 t = acquire_slab(s, n, page, object == NULL, &objects); 1819 if (!t) 1820 break; 1821 1822 available += objects; 1823 if (!object) { 1824 c->page = page; 1825 stat(s, ALLOC_FROM_PARTIAL); 1826 object = t; 1827 } else { 1828 put_cpu_partial(s, page, 0); 1829 stat(s, CPU_PARTIAL_NODE); 1830 } 1831 if (!kmem_cache_has_cpu_partial(s) 1832 || available > slub_cpu_partial(s) / 2) 1833 break; 1834 1835 } 1836 spin_unlock(&n->list_lock); 1837 return object; 1838 } 1839 1840 /* 1841 * Get a page from somewhere. Search in increasing NUMA distances. 1842 */ 1843 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1844 struct kmem_cache_cpu *c) 1845 { 1846 #ifdef CONFIG_NUMA 1847 struct zonelist *zonelist; 1848 struct zoneref *z; 1849 struct zone *zone; 1850 enum zone_type high_zoneidx = gfp_zone(flags); 1851 void *object; 1852 unsigned int cpuset_mems_cookie; 1853 1854 /* 1855 * The defrag ratio allows a configuration of the tradeoffs between 1856 * inter node defragmentation and node local allocations. A lower 1857 * defrag_ratio increases the tendency to do local allocations 1858 * instead of attempting to obtain partial slabs from other nodes. 1859 * 1860 * If the defrag_ratio is set to 0 then kmalloc() always 1861 * returns node local objects. If the ratio is higher then kmalloc() 1862 * may return off node objects because partial slabs are obtained 1863 * from other nodes and filled up. 1864 * 1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1866 * (which makes defrag_ratio = 1000) then every (well almost) 1867 * allocation will first attempt to defrag slab caches on other nodes. 1868 * This means scanning over all nodes to look for partial slabs which 1869 * may be expensive if we do it every time we are trying to find a slab 1870 * with available objects. 1871 */ 1872 if (!s->remote_node_defrag_ratio || 1873 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1874 return NULL; 1875 1876 do { 1877 cpuset_mems_cookie = read_mems_allowed_begin(); 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1880 struct kmem_cache_node *n; 1881 1882 n = get_node(s, zone_to_nid(zone)); 1883 1884 if (n && cpuset_zone_allowed(zone, flags) && 1885 n->nr_partial > s->min_partial) { 1886 object = get_partial_node(s, n, c, flags); 1887 if (object) { 1888 /* 1889 * Don't check read_mems_allowed_retry() 1890 * here - if mems_allowed was updated in 1891 * parallel, that was a harmless race 1892 * between allocation and the cpuset 1893 * update 1894 */ 1895 return object; 1896 } 1897 } 1898 } 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1900 #endif 1901 return NULL; 1902 } 1903 1904 /* 1905 * Get a partial page, lock it and return it. 1906 */ 1907 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1908 struct kmem_cache_cpu *c) 1909 { 1910 void *object; 1911 int searchnode = node; 1912 1913 if (node == NUMA_NO_NODE) 1914 searchnode = numa_mem_id(); 1915 else if (!node_present_pages(node)) 1916 searchnode = node_to_mem_node(node); 1917 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1919 if (object || node != NUMA_NO_NODE) 1920 return object; 1921 1922 return get_any_partial(s, flags, c); 1923 } 1924 1925 #ifdef CONFIG_PREEMPT 1926 /* 1927 * Calculate the next globally unique transaction for disambiguiation 1928 * during cmpxchg. The transactions start with the cpu number and are then 1929 * incremented by CONFIG_NR_CPUS. 1930 */ 1931 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1932 #else 1933 /* 1934 * No preemption supported therefore also no need to check for 1935 * different cpus. 1936 */ 1937 #define TID_STEP 1 1938 #endif 1939 1940 static inline unsigned long next_tid(unsigned long tid) 1941 { 1942 return tid + TID_STEP; 1943 } 1944 1945 static inline unsigned int tid_to_cpu(unsigned long tid) 1946 { 1947 return tid % TID_STEP; 1948 } 1949 1950 static inline unsigned long tid_to_event(unsigned long tid) 1951 { 1952 return tid / TID_STEP; 1953 } 1954 1955 static inline unsigned int init_tid(int cpu) 1956 { 1957 return cpu; 1958 } 1959 1960 static inline void note_cmpxchg_failure(const char *n, 1961 const struct kmem_cache *s, unsigned long tid) 1962 { 1963 #ifdef SLUB_DEBUG_CMPXCHG 1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1965 1966 pr_info("%s %s: cmpxchg redo ", n, s->name); 1967 1968 #ifdef CONFIG_PREEMPT 1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1970 pr_warn("due to cpu change %d -> %d\n", 1971 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1972 else 1973 #endif 1974 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1976 tid_to_event(tid), tid_to_event(actual_tid)); 1977 else 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1979 actual_tid, tid, next_tid(tid)); 1980 #endif 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1982 } 1983 1984 static void init_kmem_cache_cpus(struct kmem_cache *s) 1985 { 1986 int cpu; 1987 1988 for_each_possible_cpu(cpu) 1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1990 } 1991 1992 /* 1993 * Remove the cpu slab 1994 */ 1995 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1996 void *freelist, struct kmem_cache_cpu *c) 1997 { 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2000 int lock = 0; 2001 enum slab_modes l = M_NONE, m = M_NONE; 2002 void *nextfree; 2003 int tail = DEACTIVATE_TO_HEAD; 2004 struct page new; 2005 struct page old; 2006 2007 if (page->freelist) { 2008 stat(s, DEACTIVATE_REMOTE_FREES); 2009 tail = DEACTIVATE_TO_TAIL; 2010 } 2011 2012 /* 2013 * Stage one: Free all available per cpu objects back 2014 * to the page freelist while it is still frozen. Leave the 2015 * last one. 2016 * 2017 * There is no need to take the list->lock because the page 2018 * is still frozen. 2019 */ 2020 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2021 void *prior; 2022 unsigned long counters; 2023 2024 do { 2025 prior = page->freelist; 2026 counters = page->counters; 2027 set_freepointer(s, freelist, prior); 2028 new.counters = counters; 2029 new.inuse--; 2030 VM_BUG_ON(!new.frozen); 2031 2032 } while (!__cmpxchg_double_slab(s, page, 2033 prior, counters, 2034 freelist, new.counters, 2035 "drain percpu freelist")); 2036 2037 freelist = nextfree; 2038 } 2039 2040 /* 2041 * Stage two: Ensure that the page is unfrozen while the 2042 * list presence reflects the actual number of objects 2043 * during unfreeze. 2044 * 2045 * We setup the list membership and then perform a cmpxchg 2046 * with the count. If there is a mismatch then the page 2047 * is not unfrozen but the page is on the wrong list. 2048 * 2049 * Then we restart the process which may have to remove 2050 * the page from the list that we just put it on again 2051 * because the number of objects in the slab may have 2052 * changed. 2053 */ 2054 redo: 2055 2056 old.freelist = page->freelist; 2057 old.counters = page->counters; 2058 VM_BUG_ON(!old.frozen); 2059 2060 /* Determine target state of the slab */ 2061 new.counters = old.counters; 2062 if (freelist) { 2063 new.inuse--; 2064 set_freepointer(s, freelist, old.freelist); 2065 new.freelist = freelist; 2066 } else 2067 new.freelist = old.freelist; 2068 2069 new.frozen = 0; 2070 2071 if (!new.inuse && n->nr_partial >= s->min_partial) 2072 m = M_FREE; 2073 else if (new.freelist) { 2074 m = M_PARTIAL; 2075 if (!lock) { 2076 lock = 1; 2077 /* 2078 * Taking the spinlock removes the possiblity 2079 * that acquire_slab() will see a slab page that 2080 * is frozen 2081 */ 2082 spin_lock(&n->list_lock); 2083 } 2084 } else { 2085 m = M_FULL; 2086 if (kmem_cache_debug(s) && !lock) { 2087 lock = 1; 2088 /* 2089 * This also ensures that the scanning of full 2090 * slabs from diagnostic functions will not see 2091 * any frozen slabs. 2092 */ 2093 spin_lock(&n->list_lock); 2094 } 2095 } 2096 2097 if (l != m) { 2098 2099 if (l == M_PARTIAL) 2100 2101 remove_partial(n, page); 2102 2103 else if (l == M_FULL) 2104 2105 remove_full(s, n, page); 2106 2107 if (m == M_PARTIAL) { 2108 2109 add_partial(n, page, tail); 2110 stat(s, tail); 2111 2112 } else if (m == M_FULL) { 2113 2114 stat(s, DEACTIVATE_FULL); 2115 add_full(s, n, page); 2116 2117 } 2118 } 2119 2120 l = m; 2121 if (!__cmpxchg_double_slab(s, page, 2122 old.freelist, old.counters, 2123 new.freelist, new.counters, 2124 "unfreezing slab")) 2125 goto redo; 2126 2127 if (lock) 2128 spin_unlock(&n->list_lock); 2129 2130 if (m == M_FREE) { 2131 stat(s, DEACTIVATE_EMPTY); 2132 discard_slab(s, page); 2133 stat(s, FREE_SLAB); 2134 } 2135 2136 c->page = NULL; 2137 c->freelist = NULL; 2138 } 2139 2140 /* 2141 * Unfreeze all the cpu partial slabs. 2142 * 2143 * This function must be called with interrupts disabled 2144 * for the cpu using c (or some other guarantee must be there 2145 * to guarantee no concurrent accesses). 2146 */ 2147 static void unfreeze_partials(struct kmem_cache *s, 2148 struct kmem_cache_cpu *c) 2149 { 2150 #ifdef CONFIG_SLUB_CPU_PARTIAL 2151 struct kmem_cache_node *n = NULL, *n2 = NULL; 2152 struct page *page, *discard_page = NULL; 2153 2154 while ((page = c->partial)) { 2155 struct page new; 2156 struct page old; 2157 2158 c->partial = page->next; 2159 2160 n2 = get_node(s, page_to_nid(page)); 2161 if (n != n2) { 2162 if (n) 2163 spin_unlock(&n->list_lock); 2164 2165 n = n2; 2166 spin_lock(&n->list_lock); 2167 } 2168 2169 do { 2170 2171 old.freelist = page->freelist; 2172 old.counters = page->counters; 2173 VM_BUG_ON(!old.frozen); 2174 2175 new.counters = old.counters; 2176 new.freelist = old.freelist; 2177 2178 new.frozen = 0; 2179 2180 } while (!__cmpxchg_double_slab(s, page, 2181 old.freelist, old.counters, 2182 new.freelist, new.counters, 2183 "unfreezing slab")); 2184 2185 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2186 page->next = discard_page; 2187 discard_page = page; 2188 } else { 2189 add_partial(n, page, DEACTIVATE_TO_TAIL); 2190 stat(s, FREE_ADD_PARTIAL); 2191 } 2192 } 2193 2194 if (n) 2195 spin_unlock(&n->list_lock); 2196 2197 while (discard_page) { 2198 page = discard_page; 2199 discard_page = discard_page->next; 2200 2201 stat(s, DEACTIVATE_EMPTY); 2202 discard_slab(s, page); 2203 stat(s, FREE_SLAB); 2204 } 2205 #endif 2206 } 2207 2208 /* 2209 * Put a page that was just frozen (in __slab_free) into a partial page 2210 * slot if available. This is done without interrupts disabled and without 2211 * preemption disabled. The cmpxchg is racy and may put the partial page 2212 * onto a random cpus partial slot. 2213 * 2214 * If we did not find a slot then simply move all the partials to the 2215 * per node partial list. 2216 */ 2217 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2218 { 2219 #ifdef CONFIG_SLUB_CPU_PARTIAL 2220 struct page *oldpage; 2221 int pages; 2222 int pobjects; 2223 2224 preempt_disable(); 2225 do { 2226 pages = 0; 2227 pobjects = 0; 2228 oldpage = this_cpu_read(s->cpu_slab->partial); 2229 2230 if (oldpage) { 2231 pobjects = oldpage->pobjects; 2232 pages = oldpage->pages; 2233 if (drain && pobjects > s->cpu_partial) { 2234 unsigned long flags; 2235 /* 2236 * partial array is full. Move the existing 2237 * set to the per node partial list. 2238 */ 2239 local_irq_save(flags); 2240 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2241 local_irq_restore(flags); 2242 oldpage = NULL; 2243 pobjects = 0; 2244 pages = 0; 2245 stat(s, CPU_PARTIAL_DRAIN); 2246 } 2247 } 2248 2249 pages++; 2250 pobjects += page->objects - page->inuse; 2251 2252 page->pages = pages; 2253 page->pobjects = pobjects; 2254 page->next = oldpage; 2255 2256 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2257 != oldpage); 2258 if (unlikely(!s->cpu_partial)) { 2259 unsigned long flags; 2260 2261 local_irq_save(flags); 2262 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2263 local_irq_restore(flags); 2264 } 2265 preempt_enable(); 2266 #endif 2267 } 2268 2269 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2270 { 2271 stat(s, CPUSLAB_FLUSH); 2272 deactivate_slab(s, c->page, c->freelist, c); 2273 2274 c->tid = next_tid(c->tid); 2275 } 2276 2277 /* 2278 * Flush cpu slab. 2279 * 2280 * Called from IPI handler with interrupts disabled. 2281 */ 2282 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2283 { 2284 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2285 2286 if (likely(c)) { 2287 if (c->page) 2288 flush_slab(s, c); 2289 2290 unfreeze_partials(s, c); 2291 } 2292 } 2293 2294 static void flush_cpu_slab(void *d) 2295 { 2296 struct kmem_cache *s = d; 2297 2298 __flush_cpu_slab(s, smp_processor_id()); 2299 } 2300 2301 static bool has_cpu_slab(int cpu, void *info) 2302 { 2303 struct kmem_cache *s = info; 2304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2305 2306 return c->page || slub_percpu_partial(c); 2307 } 2308 2309 static void flush_all(struct kmem_cache *s) 2310 { 2311 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2312 } 2313 2314 /* 2315 * Use the cpu notifier to insure that the cpu slabs are flushed when 2316 * necessary. 2317 */ 2318 static int slub_cpu_dead(unsigned int cpu) 2319 { 2320 struct kmem_cache *s; 2321 unsigned long flags; 2322 2323 mutex_lock(&slab_mutex); 2324 list_for_each_entry(s, &slab_caches, list) { 2325 local_irq_save(flags); 2326 __flush_cpu_slab(s, cpu); 2327 local_irq_restore(flags); 2328 } 2329 mutex_unlock(&slab_mutex); 2330 return 0; 2331 } 2332 2333 /* 2334 * Check if the objects in a per cpu structure fit numa 2335 * locality expectations. 2336 */ 2337 static inline int node_match(struct page *page, int node) 2338 { 2339 #ifdef CONFIG_NUMA 2340 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2341 return 0; 2342 #endif 2343 return 1; 2344 } 2345 2346 #ifdef CONFIG_SLUB_DEBUG 2347 static int count_free(struct page *page) 2348 { 2349 return page->objects - page->inuse; 2350 } 2351 2352 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2353 { 2354 return atomic_long_read(&n->total_objects); 2355 } 2356 #endif /* CONFIG_SLUB_DEBUG */ 2357 2358 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2359 static unsigned long count_partial(struct kmem_cache_node *n, 2360 int (*get_count)(struct page *)) 2361 { 2362 unsigned long flags; 2363 unsigned long x = 0; 2364 struct page *page; 2365 2366 spin_lock_irqsave(&n->list_lock, flags); 2367 list_for_each_entry(page, &n->partial, lru) 2368 x += get_count(page); 2369 spin_unlock_irqrestore(&n->list_lock, flags); 2370 return x; 2371 } 2372 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2373 2374 static noinline void 2375 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2376 { 2377 #ifdef CONFIG_SLUB_DEBUG 2378 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2379 DEFAULT_RATELIMIT_BURST); 2380 int node; 2381 struct kmem_cache_node *n; 2382 2383 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2384 return; 2385 2386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2387 nid, gfpflags, &gfpflags); 2388 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2389 s->name, s->object_size, s->size, oo_order(s->oo), 2390 oo_order(s->min)); 2391 2392 if (oo_order(s->min) > get_order(s->object_size)) 2393 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2394 s->name); 2395 2396 for_each_kmem_cache_node(s, node, n) { 2397 unsigned long nr_slabs; 2398 unsigned long nr_objs; 2399 unsigned long nr_free; 2400 2401 nr_free = count_partial(n, count_free); 2402 nr_slabs = node_nr_slabs(n); 2403 nr_objs = node_nr_objs(n); 2404 2405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2406 node, nr_slabs, nr_objs, nr_free); 2407 } 2408 #endif 2409 } 2410 2411 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2412 int node, struct kmem_cache_cpu **pc) 2413 { 2414 void *freelist; 2415 struct kmem_cache_cpu *c = *pc; 2416 struct page *page; 2417 2418 freelist = get_partial(s, flags, node, c); 2419 2420 if (freelist) 2421 return freelist; 2422 2423 page = new_slab(s, flags, node); 2424 if (page) { 2425 c = raw_cpu_ptr(s->cpu_slab); 2426 if (c->page) 2427 flush_slab(s, c); 2428 2429 /* 2430 * No other reference to the page yet so we can 2431 * muck around with it freely without cmpxchg 2432 */ 2433 freelist = page->freelist; 2434 page->freelist = NULL; 2435 2436 stat(s, ALLOC_SLAB); 2437 c->page = page; 2438 *pc = c; 2439 } else 2440 freelist = NULL; 2441 2442 return freelist; 2443 } 2444 2445 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2446 { 2447 if (unlikely(PageSlabPfmemalloc(page))) 2448 return gfp_pfmemalloc_allowed(gfpflags); 2449 2450 return true; 2451 } 2452 2453 /* 2454 * Check the page->freelist of a page and either transfer the freelist to the 2455 * per cpu freelist or deactivate the page. 2456 * 2457 * The page is still frozen if the return value is not NULL. 2458 * 2459 * If this function returns NULL then the page has been unfrozen. 2460 * 2461 * This function must be called with interrupt disabled. 2462 */ 2463 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2464 { 2465 struct page new; 2466 unsigned long counters; 2467 void *freelist; 2468 2469 do { 2470 freelist = page->freelist; 2471 counters = page->counters; 2472 2473 new.counters = counters; 2474 VM_BUG_ON(!new.frozen); 2475 2476 new.inuse = page->objects; 2477 new.frozen = freelist != NULL; 2478 2479 } while (!__cmpxchg_double_slab(s, page, 2480 freelist, counters, 2481 NULL, new.counters, 2482 "get_freelist")); 2483 2484 return freelist; 2485 } 2486 2487 /* 2488 * Slow path. The lockless freelist is empty or we need to perform 2489 * debugging duties. 2490 * 2491 * Processing is still very fast if new objects have been freed to the 2492 * regular freelist. In that case we simply take over the regular freelist 2493 * as the lockless freelist and zap the regular freelist. 2494 * 2495 * If that is not working then we fall back to the partial lists. We take the 2496 * first element of the freelist as the object to allocate now and move the 2497 * rest of the freelist to the lockless freelist. 2498 * 2499 * And if we were unable to get a new slab from the partial slab lists then 2500 * we need to allocate a new slab. This is the slowest path since it involves 2501 * a call to the page allocator and the setup of a new slab. 2502 * 2503 * Version of __slab_alloc to use when we know that interrupts are 2504 * already disabled (which is the case for bulk allocation). 2505 */ 2506 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2507 unsigned long addr, struct kmem_cache_cpu *c) 2508 { 2509 void *freelist; 2510 struct page *page; 2511 2512 page = c->page; 2513 if (!page) 2514 goto new_slab; 2515 redo: 2516 2517 if (unlikely(!node_match(page, node))) { 2518 int searchnode = node; 2519 2520 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2521 searchnode = node_to_mem_node(node); 2522 2523 if (unlikely(!node_match(page, searchnode))) { 2524 stat(s, ALLOC_NODE_MISMATCH); 2525 deactivate_slab(s, page, c->freelist, c); 2526 goto new_slab; 2527 } 2528 } 2529 2530 /* 2531 * By rights, we should be searching for a slab page that was 2532 * PFMEMALLOC but right now, we are losing the pfmemalloc 2533 * information when the page leaves the per-cpu allocator 2534 */ 2535 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2536 deactivate_slab(s, page, c->freelist, c); 2537 goto new_slab; 2538 } 2539 2540 /* must check again c->freelist in case of cpu migration or IRQ */ 2541 freelist = c->freelist; 2542 if (freelist) 2543 goto load_freelist; 2544 2545 freelist = get_freelist(s, page); 2546 2547 if (!freelist) { 2548 c->page = NULL; 2549 stat(s, DEACTIVATE_BYPASS); 2550 goto new_slab; 2551 } 2552 2553 stat(s, ALLOC_REFILL); 2554 2555 load_freelist: 2556 /* 2557 * freelist is pointing to the list of objects to be used. 2558 * page is pointing to the page from which the objects are obtained. 2559 * That page must be frozen for per cpu allocations to work. 2560 */ 2561 VM_BUG_ON(!c->page->frozen); 2562 c->freelist = get_freepointer(s, freelist); 2563 c->tid = next_tid(c->tid); 2564 return freelist; 2565 2566 new_slab: 2567 2568 if (slub_percpu_partial(c)) { 2569 page = c->page = slub_percpu_partial(c); 2570 slub_set_percpu_partial(c, page); 2571 stat(s, CPU_PARTIAL_ALLOC); 2572 goto redo; 2573 } 2574 2575 freelist = new_slab_objects(s, gfpflags, node, &c); 2576 2577 if (unlikely(!freelist)) { 2578 slab_out_of_memory(s, gfpflags, node); 2579 return NULL; 2580 } 2581 2582 page = c->page; 2583 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2584 goto load_freelist; 2585 2586 /* Only entered in the debug case */ 2587 if (kmem_cache_debug(s) && 2588 !alloc_debug_processing(s, page, freelist, addr)) 2589 goto new_slab; /* Slab failed checks. Next slab needed */ 2590 2591 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2592 return freelist; 2593 } 2594 2595 /* 2596 * Another one that disabled interrupt and compensates for possible 2597 * cpu changes by refetching the per cpu area pointer. 2598 */ 2599 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2600 unsigned long addr, struct kmem_cache_cpu *c) 2601 { 2602 void *p; 2603 unsigned long flags; 2604 2605 local_irq_save(flags); 2606 #ifdef CONFIG_PREEMPT 2607 /* 2608 * We may have been preempted and rescheduled on a different 2609 * cpu before disabling interrupts. Need to reload cpu area 2610 * pointer. 2611 */ 2612 c = this_cpu_ptr(s->cpu_slab); 2613 #endif 2614 2615 p = ___slab_alloc(s, gfpflags, node, addr, c); 2616 local_irq_restore(flags); 2617 return p; 2618 } 2619 2620 /* 2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2622 * have the fastpath folded into their functions. So no function call 2623 * overhead for requests that can be satisfied on the fastpath. 2624 * 2625 * The fastpath works by first checking if the lockless freelist can be used. 2626 * If not then __slab_alloc is called for slow processing. 2627 * 2628 * Otherwise we can simply pick the next object from the lockless free list. 2629 */ 2630 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2631 gfp_t gfpflags, int node, unsigned long addr) 2632 { 2633 void *object; 2634 struct kmem_cache_cpu *c; 2635 struct page *page; 2636 unsigned long tid; 2637 2638 s = slab_pre_alloc_hook(s, gfpflags); 2639 if (!s) 2640 return NULL; 2641 redo: 2642 /* 2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2644 * enabled. We may switch back and forth between cpus while 2645 * reading from one cpu area. That does not matter as long 2646 * as we end up on the original cpu again when doing the cmpxchg. 2647 * 2648 * We should guarantee that tid and kmem_cache are retrieved on 2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2650 * to check if it is matched or not. 2651 */ 2652 do { 2653 tid = this_cpu_read(s->cpu_slab->tid); 2654 c = raw_cpu_ptr(s->cpu_slab); 2655 } while (IS_ENABLED(CONFIG_PREEMPT) && 2656 unlikely(tid != READ_ONCE(c->tid))); 2657 2658 /* 2659 * Irqless object alloc/free algorithm used here depends on sequence 2660 * of fetching cpu_slab's data. tid should be fetched before anything 2661 * on c to guarantee that object and page associated with previous tid 2662 * won't be used with current tid. If we fetch tid first, object and 2663 * page could be one associated with next tid and our alloc/free 2664 * request will be failed. In this case, we will retry. So, no problem. 2665 */ 2666 barrier(); 2667 2668 /* 2669 * The transaction ids are globally unique per cpu and per operation on 2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2671 * occurs on the right processor and that there was no operation on the 2672 * linked list in between. 2673 */ 2674 2675 object = c->freelist; 2676 page = c->page; 2677 if (unlikely(!object || !node_match(page, node))) { 2678 object = __slab_alloc(s, gfpflags, node, addr, c); 2679 stat(s, ALLOC_SLOWPATH); 2680 } else { 2681 void *next_object = get_freepointer_safe(s, object); 2682 2683 /* 2684 * The cmpxchg will only match if there was no additional 2685 * operation and if we are on the right processor. 2686 * 2687 * The cmpxchg does the following atomically (without lock 2688 * semantics!) 2689 * 1. Relocate first pointer to the current per cpu area. 2690 * 2. Verify that tid and freelist have not been changed 2691 * 3. If they were not changed replace tid and freelist 2692 * 2693 * Since this is without lock semantics the protection is only 2694 * against code executing on this cpu *not* from access by 2695 * other cpus. 2696 */ 2697 if (unlikely(!this_cpu_cmpxchg_double( 2698 s->cpu_slab->freelist, s->cpu_slab->tid, 2699 object, tid, 2700 next_object, next_tid(tid)))) { 2701 2702 note_cmpxchg_failure("slab_alloc", s, tid); 2703 goto redo; 2704 } 2705 prefetch_freepointer(s, next_object); 2706 stat(s, ALLOC_FASTPATH); 2707 } 2708 2709 if (unlikely(gfpflags & __GFP_ZERO) && object) 2710 memset(object, 0, s->object_size); 2711 2712 slab_post_alloc_hook(s, gfpflags, 1, &object); 2713 2714 return object; 2715 } 2716 2717 static __always_inline void *slab_alloc(struct kmem_cache *s, 2718 gfp_t gfpflags, unsigned long addr) 2719 { 2720 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2721 } 2722 2723 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2724 { 2725 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2726 2727 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2728 s->size, gfpflags); 2729 2730 return ret; 2731 } 2732 EXPORT_SYMBOL(kmem_cache_alloc); 2733 2734 #ifdef CONFIG_TRACING 2735 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2736 { 2737 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2738 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2739 kasan_kmalloc(s, ret, size, gfpflags); 2740 return ret; 2741 } 2742 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2743 #endif 2744 2745 #ifdef CONFIG_NUMA 2746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2747 { 2748 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2749 2750 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2751 s->object_size, s->size, gfpflags, node); 2752 2753 return ret; 2754 } 2755 EXPORT_SYMBOL(kmem_cache_alloc_node); 2756 2757 #ifdef CONFIG_TRACING 2758 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2759 gfp_t gfpflags, 2760 int node, size_t size) 2761 { 2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2763 2764 trace_kmalloc_node(_RET_IP_, ret, 2765 size, s->size, gfpflags, node); 2766 2767 kasan_kmalloc(s, ret, size, gfpflags); 2768 return ret; 2769 } 2770 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2771 #endif 2772 #endif 2773 2774 /* 2775 * Slow path handling. This may still be called frequently since objects 2776 * have a longer lifetime than the cpu slabs in most processing loads. 2777 * 2778 * So we still attempt to reduce cache line usage. Just take the slab 2779 * lock and free the item. If there is no additional partial page 2780 * handling required then we can return immediately. 2781 */ 2782 static void __slab_free(struct kmem_cache *s, struct page *page, 2783 void *head, void *tail, int cnt, 2784 unsigned long addr) 2785 2786 { 2787 void *prior; 2788 int was_frozen; 2789 struct page new; 2790 unsigned long counters; 2791 struct kmem_cache_node *n = NULL; 2792 unsigned long uninitialized_var(flags); 2793 2794 stat(s, FREE_SLOWPATH); 2795 2796 if (kmem_cache_debug(s) && 2797 !free_debug_processing(s, page, head, tail, cnt, addr)) 2798 return; 2799 2800 do { 2801 if (unlikely(n)) { 2802 spin_unlock_irqrestore(&n->list_lock, flags); 2803 n = NULL; 2804 } 2805 prior = page->freelist; 2806 counters = page->counters; 2807 set_freepointer(s, tail, prior); 2808 new.counters = counters; 2809 was_frozen = new.frozen; 2810 new.inuse -= cnt; 2811 if ((!new.inuse || !prior) && !was_frozen) { 2812 2813 if (kmem_cache_has_cpu_partial(s) && !prior) { 2814 2815 /* 2816 * Slab was on no list before and will be 2817 * partially empty 2818 * We can defer the list move and instead 2819 * freeze it. 2820 */ 2821 new.frozen = 1; 2822 2823 } else { /* Needs to be taken off a list */ 2824 2825 n = get_node(s, page_to_nid(page)); 2826 /* 2827 * Speculatively acquire the list_lock. 2828 * If the cmpxchg does not succeed then we may 2829 * drop the list_lock without any processing. 2830 * 2831 * Otherwise the list_lock will synchronize with 2832 * other processors updating the list of slabs. 2833 */ 2834 spin_lock_irqsave(&n->list_lock, flags); 2835 2836 } 2837 } 2838 2839 } while (!cmpxchg_double_slab(s, page, 2840 prior, counters, 2841 head, new.counters, 2842 "__slab_free")); 2843 2844 if (likely(!n)) { 2845 2846 /* 2847 * If we just froze the page then put it onto the 2848 * per cpu partial list. 2849 */ 2850 if (new.frozen && !was_frozen) { 2851 put_cpu_partial(s, page, 1); 2852 stat(s, CPU_PARTIAL_FREE); 2853 } 2854 /* 2855 * The list lock was not taken therefore no list 2856 * activity can be necessary. 2857 */ 2858 if (was_frozen) 2859 stat(s, FREE_FROZEN); 2860 return; 2861 } 2862 2863 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2864 goto slab_empty; 2865 2866 /* 2867 * Objects left in the slab. If it was not on the partial list before 2868 * then add it. 2869 */ 2870 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2871 if (kmem_cache_debug(s)) 2872 remove_full(s, n, page); 2873 add_partial(n, page, DEACTIVATE_TO_TAIL); 2874 stat(s, FREE_ADD_PARTIAL); 2875 } 2876 spin_unlock_irqrestore(&n->list_lock, flags); 2877 return; 2878 2879 slab_empty: 2880 if (prior) { 2881 /* 2882 * Slab on the partial list. 2883 */ 2884 remove_partial(n, page); 2885 stat(s, FREE_REMOVE_PARTIAL); 2886 } else { 2887 /* Slab must be on the full list */ 2888 remove_full(s, n, page); 2889 } 2890 2891 spin_unlock_irqrestore(&n->list_lock, flags); 2892 stat(s, FREE_SLAB); 2893 discard_slab(s, page); 2894 } 2895 2896 /* 2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2898 * can perform fastpath freeing without additional function calls. 2899 * 2900 * The fastpath is only possible if we are freeing to the current cpu slab 2901 * of this processor. This typically the case if we have just allocated 2902 * the item before. 2903 * 2904 * If fastpath is not possible then fall back to __slab_free where we deal 2905 * with all sorts of special processing. 2906 * 2907 * Bulk free of a freelist with several objects (all pointing to the 2908 * same page) possible by specifying head and tail ptr, plus objects 2909 * count (cnt). Bulk free indicated by tail pointer being set. 2910 */ 2911 static __always_inline void do_slab_free(struct kmem_cache *s, 2912 struct page *page, void *head, void *tail, 2913 int cnt, unsigned long addr) 2914 { 2915 void *tail_obj = tail ? : head; 2916 struct kmem_cache_cpu *c; 2917 unsigned long tid; 2918 redo: 2919 /* 2920 * Determine the currently cpus per cpu slab. 2921 * The cpu may change afterward. However that does not matter since 2922 * data is retrieved via this pointer. If we are on the same cpu 2923 * during the cmpxchg then the free will succeed. 2924 */ 2925 do { 2926 tid = this_cpu_read(s->cpu_slab->tid); 2927 c = raw_cpu_ptr(s->cpu_slab); 2928 } while (IS_ENABLED(CONFIG_PREEMPT) && 2929 unlikely(tid != READ_ONCE(c->tid))); 2930 2931 /* Same with comment on barrier() in slab_alloc_node() */ 2932 barrier(); 2933 2934 if (likely(page == c->page)) { 2935 set_freepointer(s, tail_obj, c->freelist); 2936 2937 if (unlikely(!this_cpu_cmpxchg_double( 2938 s->cpu_slab->freelist, s->cpu_slab->tid, 2939 c->freelist, tid, 2940 head, next_tid(tid)))) { 2941 2942 note_cmpxchg_failure("slab_free", s, tid); 2943 goto redo; 2944 } 2945 stat(s, FREE_FASTPATH); 2946 } else 2947 __slab_free(s, page, head, tail_obj, cnt, addr); 2948 2949 } 2950 2951 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2952 void *head, void *tail, int cnt, 2953 unsigned long addr) 2954 { 2955 slab_free_freelist_hook(s, head, tail); 2956 /* 2957 * slab_free_freelist_hook() could have put the items into quarantine. 2958 * If so, no need to free them. 2959 */ 2960 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) 2961 return; 2962 do_slab_free(s, page, head, tail, cnt, addr); 2963 } 2964 2965 #ifdef CONFIG_KASAN 2966 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2967 { 2968 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2969 } 2970 #endif 2971 2972 void kmem_cache_free(struct kmem_cache *s, void *x) 2973 { 2974 s = cache_from_obj(s, x); 2975 if (!s) 2976 return; 2977 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2978 trace_kmem_cache_free(_RET_IP_, x); 2979 } 2980 EXPORT_SYMBOL(kmem_cache_free); 2981 2982 struct detached_freelist { 2983 struct page *page; 2984 void *tail; 2985 void *freelist; 2986 int cnt; 2987 struct kmem_cache *s; 2988 }; 2989 2990 /* 2991 * This function progressively scans the array with free objects (with 2992 * a limited look ahead) and extract objects belonging to the same 2993 * page. It builds a detached freelist directly within the given 2994 * page/objects. This can happen without any need for 2995 * synchronization, because the objects are owned by running process. 2996 * The freelist is build up as a single linked list in the objects. 2997 * The idea is, that this detached freelist can then be bulk 2998 * transferred to the real freelist(s), but only requiring a single 2999 * synchronization primitive. Look ahead in the array is limited due 3000 * to performance reasons. 3001 */ 3002 static inline 3003 int build_detached_freelist(struct kmem_cache *s, size_t size, 3004 void **p, struct detached_freelist *df) 3005 { 3006 size_t first_skipped_index = 0; 3007 int lookahead = 3; 3008 void *object; 3009 struct page *page; 3010 3011 /* Always re-init detached_freelist */ 3012 df->page = NULL; 3013 3014 do { 3015 object = p[--size]; 3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3017 } while (!object && size); 3018 3019 if (!object) 3020 return 0; 3021 3022 page = virt_to_head_page(object); 3023 if (!s) { 3024 /* Handle kalloc'ed objects */ 3025 if (unlikely(!PageSlab(page))) { 3026 BUG_ON(!PageCompound(page)); 3027 kfree_hook(object); 3028 __free_pages(page, compound_order(page)); 3029 p[size] = NULL; /* mark object processed */ 3030 return size; 3031 } 3032 /* Derive kmem_cache from object */ 3033 df->s = page->slab_cache; 3034 } else { 3035 df->s = cache_from_obj(s, object); /* Support for memcg */ 3036 } 3037 3038 /* Start new detached freelist */ 3039 df->page = page; 3040 set_freepointer(df->s, object, NULL); 3041 df->tail = object; 3042 df->freelist = object; 3043 p[size] = NULL; /* mark object processed */ 3044 df->cnt = 1; 3045 3046 while (size) { 3047 object = p[--size]; 3048 if (!object) 3049 continue; /* Skip processed objects */ 3050 3051 /* df->page is always set at this point */ 3052 if (df->page == virt_to_head_page(object)) { 3053 /* Opportunity build freelist */ 3054 set_freepointer(df->s, object, df->freelist); 3055 df->freelist = object; 3056 df->cnt++; 3057 p[size] = NULL; /* mark object processed */ 3058 3059 continue; 3060 } 3061 3062 /* Limit look ahead search */ 3063 if (!--lookahead) 3064 break; 3065 3066 if (!first_skipped_index) 3067 first_skipped_index = size + 1; 3068 } 3069 3070 return first_skipped_index; 3071 } 3072 3073 /* Note that interrupts must be enabled when calling this function. */ 3074 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3075 { 3076 if (WARN_ON(!size)) 3077 return; 3078 3079 do { 3080 struct detached_freelist df; 3081 3082 size = build_detached_freelist(s, size, p, &df); 3083 if (!df.page) 3084 continue; 3085 3086 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3087 } while (likely(size)); 3088 } 3089 EXPORT_SYMBOL(kmem_cache_free_bulk); 3090 3091 /* Note that interrupts must be enabled when calling this function. */ 3092 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3093 void **p) 3094 { 3095 struct kmem_cache_cpu *c; 3096 int i; 3097 3098 /* memcg and kmem_cache debug support */ 3099 s = slab_pre_alloc_hook(s, flags); 3100 if (unlikely(!s)) 3101 return false; 3102 /* 3103 * Drain objects in the per cpu slab, while disabling local 3104 * IRQs, which protects against PREEMPT and interrupts 3105 * handlers invoking normal fastpath. 3106 */ 3107 local_irq_disable(); 3108 c = this_cpu_ptr(s->cpu_slab); 3109 3110 for (i = 0; i < size; i++) { 3111 void *object = c->freelist; 3112 3113 if (unlikely(!object)) { 3114 /* 3115 * Invoking slow path likely have side-effect 3116 * of re-populating per CPU c->freelist 3117 */ 3118 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3119 _RET_IP_, c); 3120 if (unlikely(!p[i])) 3121 goto error; 3122 3123 c = this_cpu_ptr(s->cpu_slab); 3124 continue; /* goto for-loop */ 3125 } 3126 c->freelist = get_freepointer(s, object); 3127 p[i] = object; 3128 } 3129 c->tid = next_tid(c->tid); 3130 local_irq_enable(); 3131 3132 /* Clear memory outside IRQ disabled fastpath loop */ 3133 if (unlikely(flags & __GFP_ZERO)) { 3134 int j; 3135 3136 for (j = 0; j < i; j++) 3137 memset(p[j], 0, s->object_size); 3138 } 3139 3140 /* memcg and kmem_cache debug support */ 3141 slab_post_alloc_hook(s, flags, size, p); 3142 return i; 3143 error: 3144 local_irq_enable(); 3145 slab_post_alloc_hook(s, flags, i, p); 3146 __kmem_cache_free_bulk(s, i, p); 3147 return 0; 3148 } 3149 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3150 3151 3152 /* 3153 * Object placement in a slab is made very easy because we always start at 3154 * offset 0. If we tune the size of the object to the alignment then we can 3155 * get the required alignment by putting one properly sized object after 3156 * another. 3157 * 3158 * Notice that the allocation order determines the sizes of the per cpu 3159 * caches. Each processor has always one slab available for allocations. 3160 * Increasing the allocation order reduces the number of times that slabs 3161 * must be moved on and off the partial lists and is therefore a factor in 3162 * locking overhead. 3163 */ 3164 3165 /* 3166 * Mininum / Maximum order of slab pages. This influences locking overhead 3167 * and slab fragmentation. A higher order reduces the number of partial slabs 3168 * and increases the number of allocations possible without having to 3169 * take the list_lock. 3170 */ 3171 static int slub_min_order; 3172 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3173 static int slub_min_objects; 3174 3175 /* 3176 * Calculate the order of allocation given an slab object size. 3177 * 3178 * The order of allocation has significant impact on performance and other 3179 * system components. Generally order 0 allocations should be preferred since 3180 * order 0 does not cause fragmentation in the page allocator. Larger objects 3181 * be problematic to put into order 0 slabs because there may be too much 3182 * unused space left. We go to a higher order if more than 1/16th of the slab 3183 * would be wasted. 3184 * 3185 * In order to reach satisfactory performance we must ensure that a minimum 3186 * number of objects is in one slab. Otherwise we may generate too much 3187 * activity on the partial lists which requires taking the list_lock. This is 3188 * less a concern for large slabs though which are rarely used. 3189 * 3190 * slub_max_order specifies the order where we begin to stop considering the 3191 * number of objects in a slab as critical. If we reach slub_max_order then 3192 * we try to keep the page order as low as possible. So we accept more waste 3193 * of space in favor of a small page order. 3194 * 3195 * Higher order allocations also allow the placement of more objects in a 3196 * slab and thereby reduce object handling overhead. If the user has 3197 * requested a higher mininum order then we start with that one instead of 3198 * the smallest order which will fit the object. 3199 */ 3200 static inline int slab_order(int size, int min_objects, 3201 int max_order, int fract_leftover, int reserved) 3202 { 3203 int order; 3204 int rem; 3205 int min_order = slub_min_order; 3206 3207 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3208 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3209 3210 for (order = max(min_order, get_order(min_objects * size + reserved)); 3211 order <= max_order; order++) { 3212 3213 unsigned long slab_size = PAGE_SIZE << order; 3214 3215 rem = (slab_size - reserved) % size; 3216 3217 if (rem <= slab_size / fract_leftover) 3218 break; 3219 } 3220 3221 return order; 3222 } 3223 3224 static inline int calculate_order(int size, int reserved) 3225 { 3226 int order; 3227 int min_objects; 3228 int fraction; 3229 int max_objects; 3230 3231 /* 3232 * Attempt to find best configuration for a slab. This 3233 * works by first attempting to generate a layout with 3234 * the best configuration and backing off gradually. 3235 * 3236 * First we increase the acceptable waste in a slab. Then 3237 * we reduce the minimum objects required in a slab. 3238 */ 3239 min_objects = slub_min_objects; 3240 if (!min_objects) 3241 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3242 max_objects = order_objects(slub_max_order, size, reserved); 3243 min_objects = min(min_objects, max_objects); 3244 3245 while (min_objects > 1) { 3246 fraction = 16; 3247 while (fraction >= 4) { 3248 order = slab_order(size, min_objects, 3249 slub_max_order, fraction, reserved); 3250 if (order <= slub_max_order) 3251 return order; 3252 fraction /= 2; 3253 } 3254 min_objects--; 3255 } 3256 3257 /* 3258 * We were unable to place multiple objects in a slab. Now 3259 * lets see if we can place a single object there. 3260 */ 3261 order = slab_order(size, 1, slub_max_order, 1, reserved); 3262 if (order <= slub_max_order) 3263 return order; 3264 3265 /* 3266 * Doh this slab cannot be placed using slub_max_order. 3267 */ 3268 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3269 if (order < MAX_ORDER) 3270 return order; 3271 return -ENOSYS; 3272 } 3273 3274 static void 3275 init_kmem_cache_node(struct kmem_cache_node *n) 3276 { 3277 n->nr_partial = 0; 3278 spin_lock_init(&n->list_lock); 3279 INIT_LIST_HEAD(&n->partial); 3280 #ifdef CONFIG_SLUB_DEBUG 3281 atomic_long_set(&n->nr_slabs, 0); 3282 atomic_long_set(&n->total_objects, 0); 3283 INIT_LIST_HEAD(&n->full); 3284 #endif 3285 } 3286 3287 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3288 { 3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3290 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3291 3292 /* 3293 * Must align to double word boundary for the double cmpxchg 3294 * instructions to work; see __pcpu_double_call_return_bool(). 3295 */ 3296 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3297 2 * sizeof(void *)); 3298 3299 if (!s->cpu_slab) 3300 return 0; 3301 3302 init_kmem_cache_cpus(s); 3303 3304 return 1; 3305 } 3306 3307 static struct kmem_cache *kmem_cache_node; 3308 3309 /* 3310 * No kmalloc_node yet so do it by hand. We know that this is the first 3311 * slab on the node for this slabcache. There are no concurrent accesses 3312 * possible. 3313 * 3314 * Note that this function only works on the kmem_cache_node 3315 * when allocating for the kmem_cache_node. This is used for bootstrapping 3316 * memory on a fresh node that has no slab structures yet. 3317 */ 3318 static void early_kmem_cache_node_alloc(int node) 3319 { 3320 struct page *page; 3321 struct kmem_cache_node *n; 3322 3323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3324 3325 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3326 3327 BUG_ON(!page); 3328 if (page_to_nid(page) != node) { 3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3331 } 3332 3333 n = page->freelist; 3334 BUG_ON(!n); 3335 page->freelist = get_freepointer(kmem_cache_node, n); 3336 page->inuse = 1; 3337 page->frozen = 0; 3338 kmem_cache_node->node[node] = n; 3339 #ifdef CONFIG_SLUB_DEBUG 3340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3341 init_tracking(kmem_cache_node, n); 3342 #endif 3343 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3344 GFP_KERNEL); 3345 init_kmem_cache_node(n); 3346 inc_slabs_node(kmem_cache_node, node, page->objects); 3347 3348 /* 3349 * No locks need to be taken here as it has just been 3350 * initialized and there is no concurrent access. 3351 */ 3352 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3353 } 3354 3355 static void free_kmem_cache_nodes(struct kmem_cache *s) 3356 { 3357 int node; 3358 struct kmem_cache_node *n; 3359 3360 for_each_kmem_cache_node(s, node, n) { 3361 kmem_cache_free(kmem_cache_node, n); 3362 s->node[node] = NULL; 3363 } 3364 } 3365 3366 void __kmem_cache_release(struct kmem_cache *s) 3367 { 3368 cache_random_seq_destroy(s); 3369 free_percpu(s->cpu_slab); 3370 free_kmem_cache_nodes(s); 3371 } 3372 3373 static int init_kmem_cache_nodes(struct kmem_cache *s) 3374 { 3375 int node; 3376 3377 for_each_node_state(node, N_NORMAL_MEMORY) { 3378 struct kmem_cache_node *n; 3379 3380 if (slab_state == DOWN) { 3381 early_kmem_cache_node_alloc(node); 3382 continue; 3383 } 3384 n = kmem_cache_alloc_node(kmem_cache_node, 3385 GFP_KERNEL, node); 3386 3387 if (!n) { 3388 free_kmem_cache_nodes(s); 3389 return 0; 3390 } 3391 3392 s->node[node] = n; 3393 init_kmem_cache_node(n); 3394 } 3395 return 1; 3396 } 3397 3398 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3399 { 3400 if (min < MIN_PARTIAL) 3401 min = MIN_PARTIAL; 3402 else if (min > MAX_PARTIAL) 3403 min = MAX_PARTIAL; 3404 s->min_partial = min; 3405 } 3406 3407 static void set_cpu_partial(struct kmem_cache *s) 3408 { 3409 #ifdef CONFIG_SLUB_CPU_PARTIAL 3410 /* 3411 * cpu_partial determined the maximum number of objects kept in the 3412 * per cpu partial lists of a processor. 3413 * 3414 * Per cpu partial lists mainly contain slabs that just have one 3415 * object freed. If they are used for allocation then they can be 3416 * filled up again with minimal effort. The slab will never hit the 3417 * per node partial lists and therefore no locking will be required. 3418 * 3419 * This setting also determines 3420 * 3421 * A) The number of objects from per cpu partial slabs dumped to the 3422 * per node list when we reach the limit. 3423 * B) The number of objects in cpu partial slabs to extract from the 3424 * per node list when we run out of per cpu objects. We only fetch 3425 * 50% to keep some capacity around for frees. 3426 */ 3427 if (!kmem_cache_has_cpu_partial(s)) 3428 s->cpu_partial = 0; 3429 else if (s->size >= PAGE_SIZE) 3430 s->cpu_partial = 2; 3431 else if (s->size >= 1024) 3432 s->cpu_partial = 6; 3433 else if (s->size >= 256) 3434 s->cpu_partial = 13; 3435 else 3436 s->cpu_partial = 30; 3437 #endif 3438 } 3439 3440 /* 3441 * calculate_sizes() determines the order and the distribution of data within 3442 * a slab object. 3443 */ 3444 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3445 { 3446 unsigned long flags = s->flags; 3447 size_t size = s->object_size; 3448 int order; 3449 3450 /* 3451 * Round up object size to the next word boundary. We can only 3452 * place the free pointer at word boundaries and this determines 3453 * the possible location of the free pointer. 3454 */ 3455 size = ALIGN(size, sizeof(void *)); 3456 3457 #ifdef CONFIG_SLUB_DEBUG 3458 /* 3459 * Determine if we can poison the object itself. If the user of 3460 * the slab may touch the object after free or before allocation 3461 * then we should never poison the object itself. 3462 */ 3463 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3464 !s->ctor) 3465 s->flags |= __OBJECT_POISON; 3466 else 3467 s->flags &= ~__OBJECT_POISON; 3468 3469 3470 /* 3471 * If we are Redzoning then check if there is some space between the 3472 * end of the object and the free pointer. If not then add an 3473 * additional word to have some bytes to store Redzone information. 3474 */ 3475 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3476 size += sizeof(void *); 3477 #endif 3478 3479 /* 3480 * With that we have determined the number of bytes in actual use 3481 * by the object. This is the potential offset to the free pointer. 3482 */ 3483 s->inuse = size; 3484 3485 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3486 s->ctor)) { 3487 /* 3488 * Relocate free pointer after the object if it is not 3489 * permitted to overwrite the first word of the object on 3490 * kmem_cache_free. 3491 * 3492 * This is the case if we do RCU, have a constructor or 3493 * destructor or are poisoning the objects. 3494 */ 3495 s->offset = size; 3496 size += sizeof(void *); 3497 } 3498 3499 #ifdef CONFIG_SLUB_DEBUG 3500 if (flags & SLAB_STORE_USER) 3501 /* 3502 * Need to store information about allocs and frees after 3503 * the object. 3504 */ 3505 size += 2 * sizeof(struct track); 3506 #endif 3507 3508 kasan_cache_create(s, &size, &s->flags); 3509 #ifdef CONFIG_SLUB_DEBUG 3510 if (flags & SLAB_RED_ZONE) { 3511 /* 3512 * Add some empty padding so that we can catch 3513 * overwrites from earlier objects rather than let 3514 * tracking information or the free pointer be 3515 * corrupted if a user writes before the start 3516 * of the object. 3517 */ 3518 size += sizeof(void *); 3519 3520 s->red_left_pad = sizeof(void *); 3521 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3522 size += s->red_left_pad; 3523 } 3524 #endif 3525 3526 /* 3527 * SLUB stores one object immediately after another beginning from 3528 * offset 0. In order to align the objects we have to simply size 3529 * each object to conform to the alignment. 3530 */ 3531 size = ALIGN(size, s->align); 3532 s->size = size; 3533 if (forced_order >= 0) 3534 order = forced_order; 3535 else 3536 order = calculate_order(size, s->reserved); 3537 3538 if (order < 0) 3539 return 0; 3540 3541 s->allocflags = 0; 3542 if (order) 3543 s->allocflags |= __GFP_COMP; 3544 3545 if (s->flags & SLAB_CACHE_DMA) 3546 s->allocflags |= GFP_DMA; 3547 3548 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3549 s->allocflags |= __GFP_RECLAIMABLE; 3550 3551 /* 3552 * Determine the number of objects per slab 3553 */ 3554 s->oo = oo_make(order, size, s->reserved); 3555 s->min = oo_make(get_order(size), size, s->reserved); 3556 if (oo_objects(s->oo) > oo_objects(s->max)) 3557 s->max = s->oo; 3558 3559 return !!oo_objects(s->oo); 3560 } 3561 3562 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3563 { 3564 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3565 s->reserved = 0; 3566 3567 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3568 s->reserved = sizeof(struct rcu_head); 3569 3570 if (!calculate_sizes(s, -1)) 3571 goto error; 3572 if (disable_higher_order_debug) { 3573 /* 3574 * Disable debugging flags that store metadata if the min slab 3575 * order increased. 3576 */ 3577 if (get_order(s->size) > get_order(s->object_size)) { 3578 s->flags &= ~DEBUG_METADATA_FLAGS; 3579 s->offset = 0; 3580 if (!calculate_sizes(s, -1)) 3581 goto error; 3582 } 3583 } 3584 3585 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3586 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3587 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3588 /* Enable fast mode */ 3589 s->flags |= __CMPXCHG_DOUBLE; 3590 #endif 3591 3592 /* 3593 * The larger the object size is, the more pages we want on the partial 3594 * list to avoid pounding the page allocator excessively. 3595 */ 3596 set_min_partial(s, ilog2(s->size) / 2); 3597 3598 set_cpu_partial(s); 3599 3600 #ifdef CONFIG_NUMA 3601 s->remote_node_defrag_ratio = 1000; 3602 #endif 3603 3604 /* Initialize the pre-computed randomized freelist if slab is up */ 3605 if (slab_state >= UP) { 3606 if (init_cache_random_seq(s)) 3607 goto error; 3608 } 3609 3610 if (!init_kmem_cache_nodes(s)) 3611 goto error; 3612 3613 if (alloc_kmem_cache_cpus(s)) 3614 return 0; 3615 3616 free_kmem_cache_nodes(s); 3617 error: 3618 if (flags & SLAB_PANIC) 3619 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3620 s->name, (unsigned long)s->size, s->size, 3621 oo_order(s->oo), s->offset, flags); 3622 return -EINVAL; 3623 } 3624 3625 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3626 const char *text) 3627 { 3628 #ifdef CONFIG_SLUB_DEBUG 3629 void *addr = page_address(page); 3630 void *p; 3631 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3632 sizeof(long), GFP_ATOMIC); 3633 if (!map) 3634 return; 3635 slab_err(s, page, text, s->name); 3636 slab_lock(page); 3637 3638 get_map(s, page, map); 3639 for_each_object(p, s, addr, page->objects) { 3640 3641 if (!test_bit(slab_index(p, s, addr), map)) { 3642 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3643 print_tracking(s, p); 3644 } 3645 } 3646 slab_unlock(page); 3647 kfree(map); 3648 #endif 3649 } 3650 3651 /* 3652 * Attempt to free all partial slabs on a node. 3653 * This is called from __kmem_cache_shutdown(). We must take list_lock 3654 * because sysfs file might still access partial list after the shutdowning. 3655 */ 3656 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3657 { 3658 LIST_HEAD(discard); 3659 struct page *page, *h; 3660 3661 BUG_ON(irqs_disabled()); 3662 spin_lock_irq(&n->list_lock); 3663 list_for_each_entry_safe(page, h, &n->partial, lru) { 3664 if (!page->inuse) { 3665 remove_partial(n, page); 3666 list_add(&page->lru, &discard); 3667 } else { 3668 list_slab_objects(s, page, 3669 "Objects remaining in %s on __kmem_cache_shutdown()"); 3670 } 3671 } 3672 spin_unlock_irq(&n->list_lock); 3673 3674 list_for_each_entry_safe(page, h, &discard, lru) 3675 discard_slab(s, page); 3676 } 3677 3678 /* 3679 * Release all resources used by a slab cache. 3680 */ 3681 int __kmem_cache_shutdown(struct kmem_cache *s) 3682 { 3683 int node; 3684 struct kmem_cache_node *n; 3685 3686 flush_all(s); 3687 /* Attempt to free all objects */ 3688 for_each_kmem_cache_node(s, node, n) { 3689 free_partial(s, n); 3690 if (n->nr_partial || slabs_node(s, node)) 3691 return 1; 3692 } 3693 sysfs_slab_remove(s); 3694 return 0; 3695 } 3696 3697 /******************************************************************** 3698 * Kmalloc subsystem 3699 *******************************************************************/ 3700 3701 static int __init setup_slub_min_order(char *str) 3702 { 3703 get_option(&str, &slub_min_order); 3704 3705 return 1; 3706 } 3707 3708 __setup("slub_min_order=", setup_slub_min_order); 3709 3710 static int __init setup_slub_max_order(char *str) 3711 { 3712 get_option(&str, &slub_max_order); 3713 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3714 3715 return 1; 3716 } 3717 3718 __setup("slub_max_order=", setup_slub_max_order); 3719 3720 static int __init setup_slub_min_objects(char *str) 3721 { 3722 get_option(&str, &slub_min_objects); 3723 3724 return 1; 3725 } 3726 3727 __setup("slub_min_objects=", setup_slub_min_objects); 3728 3729 void *__kmalloc(size_t size, gfp_t flags) 3730 { 3731 struct kmem_cache *s; 3732 void *ret; 3733 3734 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3735 return kmalloc_large(size, flags); 3736 3737 s = kmalloc_slab(size, flags); 3738 3739 if (unlikely(ZERO_OR_NULL_PTR(s))) 3740 return s; 3741 3742 ret = slab_alloc(s, flags, _RET_IP_); 3743 3744 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3745 3746 kasan_kmalloc(s, ret, size, flags); 3747 3748 return ret; 3749 } 3750 EXPORT_SYMBOL(__kmalloc); 3751 3752 #ifdef CONFIG_NUMA 3753 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3754 { 3755 struct page *page; 3756 void *ptr = NULL; 3757 3758 flags |= __GFP_COMP | __GFP_NOTRACK; 3759 page = alloc_pages_node(node, flags, get_order(size)); 3760 if (page) 3761 ptr = page_address(page); 3762 3763 kmalloc_large_node_hook(ptr, size, flags); 3764 return ptr; 3765 } 3766 3767 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3768 { 3769 struct kmem_cache *s; 3770 void *ret; 3771 3772 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3773 ret = kmalloc_large_node(size, flags, node); 3774 3775 trace_kmalloc_node(_RET_IP_, ret, 3776 size, PAGE_SIZE << get_order(size), 3777 flags, node); 3778 3779 return ret; 3780 } 3781 3782 s = kmalloc_slab(size, flags); 3783 3784 if (unlikely(ZERO_OR_NULL_PTR(s))) 3785 return s; 3786 3787 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3788 3789 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3790 3791 kasan_kmalloc(s, ret, size, flags); 3792 3793 return ret; 3794 } 3795 EXPORT_SYMBOL(__kmalloc_node); 3796 #endif 3797 3798 #ifdef CONFIG_HARDENED_USERCOPY 3799 /* 3800 * Rejects objects that are incorrectly sized. 3801 * 3802 * Returns NULL if check passes, otherwise const char * to name of cache 3803 * to indicate an error. 3804 */ 3805 const char *__check_heap_object(const void *ptr, unsigned long n, 3806 struct page *page) 3807 { 3808 struct kmem_cache *s; 3809 unsigned long offset; 3810 size_t object_size; 3811 3812 /* Find object and usable object size. */ 3813 s = page->slab_cache; 3814 object_size = slab_ksize(s); 3815 3816 /* Reject impossible pointers. */ 3817 if (ptr < page_address(page)) 3818 return s->name; 3819 3820 /* Find offset within object. */ 3821 offset = (ptr - page_address(page)) % s->size; 3822 3823 /* Adjust for redzone and reject if within the redzone. */ 3824 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3825 if (offset < s->red_left_pad) 3826 return s->name; 3827 offset -= s->red_left_pad; 3828 } 3829 3830 /* Allow address range falling entirely within object size. */ 3831 if (offset <= object_size && n <= object_size - offset) 3832 return NULL; 3833 3834 return s->name; 3835 } 3836 #endif /* CONFIG_HARDENED_USERCOPY */ 3837 3838 static size_t __ksize(const void *object) 3839 { 3840 struct page *page; 3841 3842 if (unlikely(object == ZERO_SIZE_PTR)) 3843 return 0; 3844 3845 page = virt_to_head_page(object); 3846 3847 if (unlikely(!PageSlab(page))) { 3848 WARN_ON(!PageCompound(page)); 3849 return PAGE_SIZE << compound_order(page); 3850 } 3851 3852 return slab_ksize(page->slab_cache); 3853 } 3854 3855 size_t ksize(const void *object) 3856 { 3857 size_t size = __ksize(object); 3858 /* We assume that ksize callers could use whole allocated area, 3859 * so we need to unpoison this area. 3860 */ 3861 kasan_unpoison_shadow(object, size); 3862 return size; 3863 } 3864 EXPORT_SYMBOL(ksize); 3865 3866 void kfree(const void *x) 3867 { 3868 struct page *page; 3869 void *object = (void *)x; 3870 3871 trace_kfree(_RET_IP_, x); 3872 3873 if (unlikely(ZERO_OR_NULL_PTR(x))) 3874 return; 3875 3876 page = virt_to_head_page(x); 3877 if (unlikely(!PageSlab(page))) { 3878 BUG_ON(!PageCompound(page)); 3879 kfree_hook(x); 3880 __free_pages(page, compound_order(page)); 3881 return; 3882 } 3883 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3884 } 3885 EXPORT_SYMBOL(kfree); 3886 3887 #define SHRINK_PROMOTE_MAX 32 3888 3889 /* 3890 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3891 * up most to the head of the partial lists. New allocations will then 3892 * fill those up and thus they can be removed from the partial lists. 3893 * 3894 * The slabs with the least items are placed last. This results in them 3895 * being allocated from last increasing the chance that the last objects 3896 * are freed in them. 3897 */ 3898 int __kmem_cache_shrink(struct kmem_cache *s) 3899 { 3900 int node; 3901 int i; 3902 struct kmem_cache_node *n; 3903 struct page *page; 3904 struct page *t; 3905 struct list_head discard; 3906 struct list_head promote[SHRINK_PROMOTE_MAX]; 3907 unsigned long flags; 3908 int ret = 0; 3909 3910 flush_all(s); 3911 for_each_kmem_cache_node(s, node, n) { 3912 INIT_LIST_HEAD(&discard); 3913 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3914 INIT_LIST_HEAD(promote + i); 3915 3916 spin_lock_irqsave(&n->list_lock, flags); 3917 3918 /* 3919 * Build lists of slabs to discard or promote. 3920 * 3921 * Note that concurrent frees may occur while we hold the 3922 * list_lock. page->inuse here is the upper limit. 3923 */ 3924 list_for_each_entry_safe(page, t, &n->partial, lru) { 3925 int free = page->objects - page->inuse; 3926 3927 /* Do not reread page->inuse */ 3928 barrier(); 3929 3930 /* We do not keep full slabs on the list */ 3931 BUG_ON(free <= 0); 3932 3933 if (free == page->objects) { 3934 list_move(&page->lru, &discard); 3935 n->nr_partial--; 3936 } else if (free <= SHRINK_PROMOTE_MAX) 3937 list_move(&page->lru, promote + free - 1); 3938 } 3939 3940 /* 3941 * Promote the slabs filled up most to the head of the 3942 * partial list. 3943 */ 3944 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3945 list_splice(promote + i, &n->partial); 3946 3947 spin_unlock_irqrestore(&n->list_lock, flags); 3948 3949 /* Release empty slabs */ 3950 list_for_each_entry_safe(page, t, &discard, lru) 3951 discard_slab(s, page); 3952 3953 if (slabs_node(s, node)) 3954 ret = 1; 3955 } 3956 3957 return ret; 3958 } 3959 3960 #ifdef CONFIG_MEMCG 3961 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3962 { 3963 /* 3964 * Called with all the locks held after a sched RCU grace period. 3965 * Even if @s becomes empty after shrinking, we can't know that @s 3966 * doesn't have allocations already in-flight and thus can't 3967 * destroy @s until the associated memcg is released. 3968 * 3969 * However, let's remove the sysfs files for empty caches here. 3970 * Each cache has a lot of interface files which aren't 3971 * particularly useful for empty draining caches; otherwise, we can 3972 * easily end up with millions of unnecessary sysfs files on 3973 * systems which have a lot of memory and transient cgroups. 3974 */ 3975 if (!__kmem_cache_shrink(s)) 3976 sysfs_slab_remove(s); 3977 } 3978 3979 void __kmemcg_cache_deactivate(struct kmem_cache *s) 3980 { 3981 /* 3982 * Disable empty slabs caching. Used to avoid pinning offline 3983 * memory cgroups by kmem pages that can be freed. 3984 */ 3985 slub_set_cpu_partial(s, 0); 3986 s->min_partial = 0; 3987 3988 /* 3989 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 3990 * we have to make sure the change is visible before shrinking. 3991 */ 3992 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 3993 } 3994 #endif 3995 3996 static int slab_mem_going_offline_callback(void *arg) 3997 { 3998 struct kmem_cache *s; 3999 4000 mutex_lock(&slab_mutex); 4001 list_for_each_entry(s, &slab_caches, list) 4002 __kmem_cache_shrink(s); 4003 mutex_unlock(&slab_mutex); 4004 4005 return 0; 4006 } 4007 4008 static void slab_mem_offline_callback(void *arg) 4009 { 4010 struct kmem_cache_node *n; 4011 struct kmem_cache *s; 4012 struct memory_notify *marg = arg; 4013 int offline_node; 4014 4015 offline_node = marg->status_change_nid_normal; 4016 4017 /* 4018 * If the node still has available memory. we need kmem_cache_node 4019 * for it yet. 4020 */ 4021 if (offline_node < 0) 4022 return; 4023 4024 mutex_lock(&slab_mutex); 4025 list_for_each_entry(s, &slab_caches, list) { 4026 n = get_node(s, offline_node); 4027 if (n) { 4028 /* 4029 * if n->nr_slabs > 0, slabs still exist on the node 4030 * that is going down. We were unable to free them, 4031 * and offline_pages() function shouldn't call this 4032 * callback. So, we must fail. 4033 */ 4034 BUG_ON(slabs_node(s, offline_node)); 4035 4036 s->node[offline_node] = NULL; 4037 kmem_cache_free(kmem_cache_node, n); 4038 } 4039 } 4040 mutex_unlock(&slab_mutex); 4041 } 4042 4043 static int slab_mem_going_online_callback(void *arg) 4044 { 4045 struct kmem_cache_node *n; 4046 struct kmem_cache *s; 4047 struct memory_notify *marg = arg; 4048 int nid = marg->status_change_nid_normal; 4049 int ret = 0; 4050 4051 /* 4052 * If the node's memory is already available, then kmem_cache_node is 4053 * already created. Nothing to do. 4054 */ 4055 if (nid < 0) 4056 return 0; 4057 4058 /* 4059 * We are bringing a node online. No memory is available yet. We must 4060 * allocate a kmem_cache_node structure in order to bring the node 4061 * online. 4062 */ 4063 mutex_lock(&slab_mutex); 4064 list_for_each_entry(s, &slab_caches, list) { 4065 /* 4066 * XXX: kmem_cache_alloc_node will fallback to other nodes 4067 * since memory is not yet available from the node that 4068 * is brought up. 4069 */ 4070 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4071 if (!n) { 4072 ret = -ENOMEM; 4073 goto out; 4074 } 4075 init_kmem_cache_node(n); 4076 s->node[nid] = n; 4077 } 4078 out: 4079 mutex_unlock(&slab_mutex); 4080 return ret; 4081 } 4082 4083 static int slab_memory_callback(struct notifier_block *self, 4084 unsigned long action, void *arg) 4085 { 4086 int ret = 0; 4087 4088 switch (action) { 4089 case MEM_GOING_ONLINE: 4090 ret = slab_mem_going_online_callback(arg); 4091 break; 4092 case MEM_GOING_OFFLINE: 4093 ret = slab_mem_going_offline_callback(arg); 4094 break; 4095 case MEM_OFFLINE: 4096 case MEM_CANCEL_ONLINE: 4097 slab_mem_offline_callback(arg); 4098 break; 4099 case MEM_ONLINE: 4100 case MEM_CANCEL_OFFLINE: 4101 break; 4102 } 4103 if (ret) 4104 ret = notifier_from_errno(ret); 4105 else 4106 ret = NOTIFY_OK; 4107 return ret; 4108 } 4109 4110 static struct notifier_block slab_memory_callback_nb = { 4111 .notifier_call = slab_memory_callback, 4112 .priority = SLAB_CALLBACK_PRI, 4113 }; 4114 4115 /******************************************************************** 4116 * Basic setup of slabs 4117 *******************************************************************/ 4118 4119 /* 4120 * Used for early kmem_cache structures that were allocated using 4121 * the page allocator. Allocate them properly then fix up the pointers 4122 * that may be pointing to the wrong kmem_cache structure. 4123 */ 4124 4125 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4126 { 4127 int node; 4128 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4129 struct kmem_cache_node *n; 4130 4131 memcpy(s, static_cache, kmem_cache->object_size); 4132 4133 /* 4134 * This runs very early, and only the boot processor is supposed to be 4135 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4136 * IPIs around. 4137 */ 4138 __flush_cpu_slab(s, smp_processor_id()); 4139 for_each_kmem_cache_node(s, node, n) { 4140 struct page *p; 4141 4142 list_for_each_entry(p, &n->partial, lru) 4143 p->slab_cache = s; 4144 4145 #ifdef CONFIG_SLUB_DEBUG 4146 list_for_each_entry(p, &n->full, lru) 4147 p->slab_cache = s; 4148 #endif 4149 } 4150 slab_init_memcg_params(s); 4151 list_add(&s->list, &slab_caches); 4152 memcg_link_cache(s); 4153 return s; 4154 } 4155 4156 void __init kmem_cache_init(void) 4157 { 4158 static __initdata struct kmem_cache boot_kmem_cache, 4159 boot_kmem_cache_node; 4160 4161 if (debug_guardpage_minorder()) 4162 slub_max_order = 0; 4163 4164 kmem_cache_node = &boot_kmem_cache_node; 4165 kmem_cache = &boot_kmem_cache; 4166 4167 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4168 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4169 4170 register_hotmemory_notifier(&slab_memory_callback_nb); 4171 4172 /* Able to allocate the per node structures */ 4173 slab_state = PARTIAL; 4174 4175 create_boot_cache(kmem_cache, "kmem_cache", 4176 offsetof(struct kmem_cache, node) + 4177 nr_node_ids * sizeof(struct kmem_cache_node *), 4178 SLAB_HWCACHE_ALIGN); 4179 4180 kmem_cache = bootstrap(&boot_kmem_cache); 4181 4182 /* 4183 * Allocate kmem_cache_node properly from the kmem_cache slab. 4184 * kmem_cache_node is separately allocated so no need to 4185 * update any list pointers. 4186 */ 4187 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4188 4189 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4190 setup_kmalloc_cache_index_table(); 4191 create_kmalloc_caches(0); 4192 4193 /* Setup random freelists for each cache */ 4194 init_freelist_randomization(); 4195 4196 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4197 slub_cpu_dead); 4198 4199 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 4200 cache_line_size(), 4201 slub_min_order, slub_max_order, slub_min_objects, 4202 nr_cpu_ids, nr_node_ids); 4203 } 4204 4205 void __init kmem_cache_init_late(void) 4206 { 4207 } 4208 4209 struct kmem_cache * 4210 __kmem_cache_alias(const char *name, size_t size, size_t align, 4211 unsigned long flags, void (*ctor)(void *)) 4212 { 4213 struct kmem_cache *s, *c; 4214 4215 s = find_mergeable(size, align, flags, name, ctor); 4216 if (s) { 4217 s->refcount++; 4218 4219 /* 4220 * Adjust the object sizes so that we clear 4221 * the complete object on kzalloc. 4222 */ 4223 s->object_size = max(s->object_size, (int)size); 4224 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4225 4226 for_each_memcg_cache(c, s) { 4227 c->object_size = s->object_size; 4228 c->inuse = max_t(int, c->inuse, 4229 ALIGN(size, sizeof(void *))); 4230 } 4231 4232 if (sysfs_slab_alias(s, name)) { 4233 s->refcount--; 4234 s = NULL; 4235 } 4236 } 4237 4238 return s; 4239 } 4240 4241 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4242 { 4243 int err; 4244 4245 err = kmem_cache_open(s, flags); 4246 if (err) 4247 return err; 4248 4249 /* Mutex is not taken during early boot */ 4250 if (slab_state <= UP) 4251 return 0; 4252 4253 memcg_propagate_slab_attrs(s); 4254 err = sysfs_slab_add(s); 4255 if (err) 4256 __kmem_cache_release(s); 4257 4258 return err; 4259 } 4260 4261 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4262 { 4263 struct kmem_cache *s; 4264 void *ret; 4265 4266 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4267 return kmalloc_large(size, gfpflags); 4268 4269 s = kmalloc_slab(size, gfpflags); 4270 4271 if (unlikely(ZERO_OR_NULL_PTR(s))) 4272 return s; 4273 4274 ret = slab_alloc(s, gfpflags, caller); 4275 4276 /* Honor the call site pointer we received. */ 4277 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4278 4279 return ret; 4280 } 4281 4282 #ifdef CONFIG_NUMA 4283 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4284 int node, unsigned long caller) 4285 { 4286 struct kmem_cache *s; 4287 void *ret; 4288 4289 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4290 ret = kmalloc_large_node(size, gfpflags, node); 4291 4292 trace_kmalloc_node(caller, ret, 4293 size, PAGE_SIZE << get_order(size), 4294 gfpflags, node); 4295 4296 return ret; 4297 } 4298 4299 s = kmalloc_slab(size, gfpflags); 4300 4301 if (unlikely(ZERO_OR_NULL_PTR(s))) 4302 return s; 4303 4304 ret = slab_alloc_node(s, gfpflags, node, caller); 4305 4306 /* Honor the call site pointer we received. */ 4307 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4308 4309 return ret; 4310 } 4311 #endif 4312 4313 #ifdef CONFIG_SYSFS 4314 static int count_inuse(struct page *page) 4315 { 4316 return page->inuse; 4317 } 4318 4319 static int count_total(struct page *page) 4320 { 4321 return page->objects; 4322 } 4323 #endif 4324 4325 #ifdef CONFIG_SLUB_DEBUG 4326 static int validate_slab(struct kmem_cache *s, struct page *page, 4327 unsigned long *map) 4328 { 4329 void *p; 4330 void *addr = page_address(page); 4331 4332 if (!check_slab(s, page) || 4333 !on_freelist(s, page, NULL)) 4334 return 0; 4335 4336 /* Now we know that a valid freelist exists */ 4337 bitmap_zero(map, page->objects); 4338 4339 get_map(s, page, map); 4340 for_each_object(p, s, addr, page->objects) { 4341 if (test_bit(slab_index(p, s, addr), map)) 4342 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4343 return 0; 4344 } 4345 4346 for_each_object(p, s, addr, page->objects) 4347 if (!test_bit(slab_index(p, s, addr), map)) 4348 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4349 return 0; 4350 return 1; 4351 } 4352 4353 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4354 unsigned long *map) 4355 { 4356 slab_lock(page); 4357 validate_slab(s, page, map); 4358 slab_unlock(page); 4359 } 4360 4361 static int validate_slab_node(struct kmem_cache *s, 4362 struct kmem_cache_node *n, unsigned long *map) 4363 { 4364 unsigned long count = 0; 4365 struct page *page; 4366 unsigned long flags; 4367 4368 spin_lock_irqsave(&n->list_lock, flags); 4369 4370 list_for_each_entry(page, &n->partial, lru) { 4371 validate_slab_slab(s, page, map); 4372 count++; 4373 } 4374 if (count != n->nr_partial) 4375 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4376 s->name, count, n->nr_partial); 4377 4378 if (!(s->flags & SLAB_STORE_USER)) 4379 goto out; 4380 4381 list_for_each_entry(page, &n->full, lru) { 4382 validate_slab_slab(s, page, map); 4383 count++; 4384 } 4385 if (count != atomic_long_read(&n->nr_slabs)) 4386 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4387 s->name, count, atomic_long_read(&n->nr_slabs)); 4388 4389 out: 4390 spin_unlock_irqrestore(&n->list_lock, flags); 4391 return count; 4392 } 4393 4394 static long validate_slab_cache(struct kmem_cache *s) 4395 { 4396 int node; 4397 unsigned long count = 0; 4398 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4399 sizeof(unsigned long), GFP_KERNEL); 4400 struct kmem_cache_node *n; 4401 4402 if (!map) 4403 return -ENOMEM; 4404 4405 flush_all(s); 4406 for_each_kmem_cache_node(s, node, n) 4407 count += validate_slab_node(s, n, map); 4408 kfree(map); 4409 return count; 4410 } 4411 /* 4412 * Generate lists of code addresses where slabcache objects are allocated 4413 * and freed. 4414 */ 4415 4416 struct location { 4417 unsigned long count; 4418 unsigned long addr; 4419 long long sum_time; 4420 long min_time; 4421 long max_time; 4422 long min_pid; 4423 long max_pid; 4424 DECLARE_BITMAP(cpus, NR_CPUS); 4425 nodemask_t nodes; 4426 }; 4427 4428 struct loc_track { 4429 unsigned long max; 4430 unsigned long count; 4431 struct location *loc; 4432 }; 4433 4434 static void free_loc_track(struct loc_track *t) 4435 { 4436 if (t->max) 4437 free_pages((unsigned long)t->loc, 4438 get_order(sizeof(struct location) * t->max)); 4439 } 4440 4441 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4442 { 4443 struct location *l; 4444 int order; 4445 4446 order = get_order(sizeof(struct location) * max); 4447 4448 l = (void *)__get_free_pages(flags, order); 4449 if (!l) 4450 return 0; 4451 4452 if (t->count) { 4453 memcpy(l, t->loc, sizeof(struct location) * t->count); 4454 free_loc_track(t); 4455 } 4456 t->max = max; 4457 t->loc = l; 4458 return 1; 4459 } 4460 4461 static int add_location(struct loc_track *t, struct kmem_cache *s, 4462 const struct track *track) 4463 { 4464 long start, end, pos; 4465 struct location *l; 4466 unsigned long caddr; 4467 unsigned long age = jiffies - track->when; 4468 4469 start = -1; 4470 end = t->count; 4471 4472 for ( ; ; ) { 4473 pos = start + (end - start + 1) / 2; 4474 4475 /* 4476 * There is nothing at "end". If we end up there 4477 * we need to add something to before end. 4478 */ 4479 if (pos == end) 4480 break; 4481 4482 caddr = t->loc[pos].addr; 4483 if (track->addr == caddr) { 4484 4485 l = &t->loc[pos]; 4486 l->count++; 4487 if (track->when) { 4488 l->sum_time += age; 4489 if (age < l->min_time) 4490 l->min_time = age; 4491 if (age > l->max_time) 4492 l->max_time = age; 4493 4494 if (track->pid < l->min_pid) 4495 l->min_pid = track->pid; 4496 if (track->pid > l->max_pid) 4497 l->max_pid = track->pid; 4498 4499 cpumask_set_cpu(track->cpu, 4500 to_cpumask(l->cpus)); 4501 } 4502 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4503 return 1; 4504 } 4505 4506 if (track->addr < caddr) 4507 end = pos; 4508 else 4509 start = pos; 4510 } 4511 4512 /* 4513 * Not found. Insert new tracking element. 4514 */ 4515 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4516 return 0; 4517 4518 l = t->loc + pos; 4519 if (pos < t->count) 4520 memmove(l + 1, l, 4521 (t->count - pos) * sizeof(struct location)); 4522 t->count++; 4523 l->count = 1; 4524 l->addr = track->addr; 4525 l->sum_time = age; 4526 l->min_time = age; 4527 l->max_time = age; 4528 l->min_pid = track->pid; 4529 l->max_pid = track->pid; 4530 cpumask_clear(to_cpumask(l->cpus)); 4531 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4532 nodes_clear(l->nodes); 4533 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4534 return 1; 4535 } 4536 4537 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4538 struct page *page, enum track_item alloc, 4539 unsigned long *map) 4540 { 4541 void *addr = page_address(page); 4542 void *p; 4543 4544 bitmap_zero(map, page->objects); 4545 get_map(s, page, map); 4546 4547 for_each_object(p, s, addr, page->objects) 4548 if (!test_bit(slab_index(p, s, addr), map)) 4549 add_location(t, s, get_track(s, p, alloc)); 4550 } 4551 4552 static int list_locations(struct kmem_cache *s, char *buf, 4553 enum track_item alloc) 4554 { 4555 int len = 0; 4556 unsigned long i; 4557 struct loc_track t = { 0, 0, NULL }; 4558 int node; 4559 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4560 sizeof(unsigned long), GFP_KERNEL); 4561 struct kmem_cache_node *n; 4562 4563 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4564 GFP_TEMPORARY)) { 4565 kfree(map); 4566 return sprintf(buf, "Out of memory\n"); 4567 } 4568 /* Push back cpu slabs */ 4569 flush_all(s); 4570 4571 for_each_kmem_cache_node(s, node, n) { 4572 unsigned long flags; 4573 struct page *page; 4574 4575 if (!atomic_long_read(&n->nr_slabs)) 4576 continue; 4577 4578 spin_lock_irqsave(&n->list_lock, flags); 4579 list_for_each_entry(page, &n->partial, lru) 4580 process_slab(&t, s, page, alloc, map); 4581 list_for_each_entry(page, &n->full, lru) 4582 process_slab(&t, s, page, alloc, map); 4583 spin_unlock_irqrestore(&n->list_lock, flags); 4584 } 4585 4586 for (i = 0; i < t.count; i++) { 4587 struct location *l = &t.loc[i]; 4588 4589 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4590 break; 4591 len += sprintf(buf + len, "%7ld ", l->count); 4592 4593 if (l->addr) 4594 len += sprintf(buf + len, "%pS", (void *)l->addr); 4595 else 4596 len += sprintf(buf + len, "<not-available>"); 4597 4598 if (l->sum_time != l->min_time) { 4599 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4600 l->min_time, 4601 (long)div_u64(l->sum_time, l->count), 4602 l->max_time); 4603 } else 4604 len += sprintf(buf + len, " age=%ld", 4605 l->min_time); 4606 4607 if (l->min_pid != l->max_pid) 4608 len += sprintf(buf + len, " pid=%ld-%ld", 4609 l->min_pid, l->max_pid); 4610 else 4611 len += sprintf(buf + len, " pid=%ld", 4612 l->min_pid); 4613 4614 if (num_online_cpus() > 1 && 4615 !cpumask_empty(to_cpumask(l->cpus)) && 4616 len < PAGE_SIZE - 60) 4617 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4618 " cpus=%*pbl", 4619 cpumask_pr_args(to_cpumask(l->cpus))); 4620 4621 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4622 len < PAGE_SIZE - 60) 4623 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4624 " nodes=%*pbl", 4625 nodemask_pr_args(&l->nodes)); 4626 4627 len += sprintf(buf + len, "\n"); 4628 } 4629 4630 free_loc_track(&t); 4631 kfree(map); 4632 if (!t.count) 4633 len += sprintf(buf, "No data\n"); 4634 return len; 4635 } 4636 #endif 4637 4638 #ifdef SLUB_RESILIENCY_TEST 4639 static void __init resiliency_test(void) 4640 { 4641 u8 *p; 4642 4643 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4644 4645 pr_err("SLUB resiliency testing\n"); 4646 pr_err("-----------------------\n"); 4647 pr_err("A. Corruption after allocation\n"); 4648 4649 p = kzalloc(16, GFP_KERNEL); 4650 p[16] = 0x12; 4651 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4652 p + 16); 4653 4654 validate_slab_cache(kmalloc_caches[4]); 4655 4656 /* Hmmm... The next two are dangerous */ 4657 p = kzalloc(32, GFP_KERNEL); 4658 p[32 + sizeof(void *)] = 0x34; 4659 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4660 p); 4661 pr_err("If allocated object is overwritten then not detectable\n\n"); 4662 4663 validate_slab_cache(kmalloc_caches[5]); 4664 p = kzalloc(64, GFP_KERNEL); 4665 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4666 *p = 0x56; 4667 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4668 p); 4669 pr_err("If allocated object is overwritten then not detectable\n\n"); 4670 validate_slab_cache(kmalloc_caches[6]); 4671 4672 pr_err("\nB. Corruption after free\n"); 4673 p = kzalloc(128, GFP_KERNEL); 4674 kfree(p); 4675 *p = 0x78; 4676 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4677 validate_slab_cache(kmalloc_caches[7]); 4678 4679 p = kzalloc(256, GFP_KERNEL); 4680 kfree(p); 4681 p[50] = 0x9a; 4682 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4683 validate_slab_cache(kmalloc_caches[8]); 4684 4685 p = kzalloc(512, GFP_KERNEL); 4686 kfree(p); 4687 p[512] = 0xab; 4688 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4689 validate_slab_cache(kmalloc_caches[9]); 4690 } 4691 #else 4692 #ifdef CONFIG_SYSFS 4693 static void resiliency_test(void) {}; 4694 #endif 4695 #endif 4696 4697 #ifdef CONFIG_SYSFS 4698 enum slab_stat_type { 4699 SL_ALL, /* All slabs */ 4700 SL_PARTIAL, /* Only partially allocated slabs */ 4701 SL_CPU, /* Only slabs used for cpu caches */ 4702 SL_OBJECTS, /* Determine allocated objects not slabs */ 4703 SL_TOTAL /* Determine object capacity not slabs */ 4704 }; 4705 4706 #define SO_ALL (1 << SL_ALL) 4707 #define SO_PARTIAL (1 << SL_PARTIAL) 4708 #define SO_CPU (1 << SL_CPU) 4709 #define SO_OBJECTS (1 << SL_OBJECTS) 4710 #define SO_TOTAL (1 << SL_TOTAL) 4711 4712 #ifdef CONFIG_MEMCG 4713 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4714 4715 static int __init setup_slub_memcg_sysfs(char *str) 4716 { 4717 int v; 4718 4719 if (get_option(&str, &v) > 0) 4720 memcg_sysfs_enabled = v; 4721 4722 return 1; 4723 } 4724 4725 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4726 #endif 4727 4728 static ssize_t show_slab_objects(struct kmem_cache *s, 4729 char *buf, unsigned long flags) 4730 { 4731 unsigned long total = 0; 4732 int node; 4733 int x; 4734 unsigned long *nodes; 4735 4736 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4737 if (!nodes) 4738 return -ENOMEM; 4739 4740 if (flags & SO_CPU) { 4741 int cpu; 4742 4743 for_each_possible_cpu(cpu) { 4744 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4745 cpu); 4746 int node; 4747 struct page *page; 4748 4749 page = READ_ONCE(c->page); 4750 if (!page) 4751 continue; 4752 4753 node = page_to_nid(page); 4754 if (flags & SO_TOTAL) 4755 x = page->objects; 4756 else if (flags & SO_OBJECTS) 4757 x = page->inuse; 4758 else 4759 x = 1; 4760 4761 total += x; 4762 nodes[node] += x; 4763 4764 page = slub_percpu_partial_read_once(c); 4765 if (page) { 4766 node = page_to_nid(page); 4767 if (flags & SO_TOTAL) 4768 WARN_ON_ONCE(1); 4769 else if (flags & SO_OBJECTS) 4770 WARN_ON_ONCE(1); 4771 else 4772 x = page->pages; 4773 total += x; 4774 nodes[node] += x; 4775 } 4776 } 4777 } 4778 4779 get_online_mems(); 4780 #ifdef CONFIG_SLUB_DEBUG 4781 if (flags & SO_ALL) { 4782 struct kmem_cache_node *n; 4783 4784 for_each_kmem_cache_node(s, node, n) { 4785 4786 if (flags & SO_TOTAL) 4787 x = atomic_long_read(&n->total_objects); 4788 else if (flags & SO_OBJECTS) 4789 x = atomic_long_read(&n->total_objects) - 4790 count_partial(n, count_free); 4791 else 4792 x = atomic_long_read(&n->nr_slabs); 4793 total += x; 4794 nodes[node] += x; 4795 } 4796 4797 } else 4798 #endif 4799 if (flags & SO_PARTIAL) { 4800 struct kmem_cache_node *n; 4801 4802 for_each_kmem_cache_node(s, node, n) { 4803 if (flags & SO_TOTAL) 4804 x = count_partial(n, count_total); 4805 else if (flags & SO_OBJECTS) 4806 x = count_partial(n, count_inuse); 4807 else 4808 x = n->nr_partial; 4809 total += x; 4810 nodes[node] += x; 4811 } 4812 } 4813 x = sprintf(buf, "%lu", total); 4814 #ifdef CONFIG_NUMA 4815 for (node = 0; node < nr_node_ids; node++) 4816 if (nodes[node]) 4817 x += sprintf(buf + x, " N%d=%lu", 4818 node, nodes[node]); 4819 #endif 4820 put_online_mems(); 4821 kfree(nodes); 4822 return x + sprintf(buf + x, "\n"); 4823 } 4824 4825 #ifdef CONFIG_SLUB_DEBUG 4826 static int any_slab_objects(struct kmem_cache *s) 4827 { 4828 int node; 4829 struct kmem_cache_node *n; 4830 4831 for_each_kmem_cache_node(s, node, n) 4832 if (atomic_long_read(&n->total_objects)) 4833 return 1; 4834 4835 return 0; 4836 } 4837 #endif 4838 4839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4840 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4841 4842 struct slab_attribute { 4843 struct attribute attr; 4844 ssize_t (*show)(struct kmem_cache *s, char *buf); 4845 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4846 }; 4847 4848 #define SLAB_ATTR_RO(_name) \ 4849 static struct slab_attribute _name##_attr = \ 4850 __ATTR(_name, 0400, _name##_show, NULL) 4851 4852 #define SLAB_ATTR(_name) \ 4853 static struct slab_attribute _name##_attr = \ 4854 __ATTR(_name, 0600, _name##_show, _name##_store) 4855 4856 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4857 { 4858 return sprintf(buf, "%d\n", s->size); 4859 } 4860 SLAB_ATTR_RO(slab_size); 4861 4862 static ssize_t align_show(struct kmem_cache *s, char *buf) 4863 { 4864 return sprintf(buf, "%d\n", s->align); 4865 } 4866 SLAB_ATTR_RO(align); 4867 4868 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4869 { 4870 return sprintf(buf, "%d\n", s->object_size); 4871 } 4872 SLAB_ATTR_RO(object_size); 4873 4874 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4875 { 4876 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4877 } 4878 SLAB_ATTR_RO(objs_per_slab); 4879 4880 static ssize_t order_store(struct kmem_cache *s, 4881 const char *buf, size_t length) 4882 { 4883 unsigned long order; 4884 int err; 4885 4886 err = kstrtoul(buf, 10, &order); 4887 if (err) 4888 return err; 4889 4890 if (order > slub_max_order || order < slub_min_order) 4891 return -EINVAL; 4892 4893 calculate_sizes(s, order); 4894 return length; 4895 } 4896 4897 static ssize_t order_show(struct kmem_cache *s, char *buf) 4898 { 4899 return sprintf(buf, "%d\n", oo_order(s->oo)); 4900 } 4901 SLAB_ATTR(order); 4902 4903 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4904 { 4905 return sprintf(buf, "%lu\n", s->min_partial); 4906 } 4907 4908 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4909 size_t length) 4910 { 4911 unsigned long min; 4912 int err; 4913 4914 err = kstrtoul(buf, 10, &min); 4915 if (err) 4916 return err; 4917 4918 set_min_partial(s, min); 4919 return length; 4920 } 4921 SLAB_ATTR(min_partial); 4922 4923 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4924 { 4925 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4926 } 4927 4928 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4929 size_t length) 4930 { 4931 unsigned long objects; 4932 int err; 4933 4934 err = kstrtoul(buf, 10, &objects); 4935 if (err) 4936 return err; 4937 if (objects && !kmem_cache_has_cpu_partial(s)) 4938 return -EINVAL; 4939 4940 slub_set_cpu_partial(s, objects); 4941 flush_all(s); 4942 return length; 4943 } 4944 SLAB_ATTR(cpu_partial); 4945 4946 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4947 { 4948 if (!s->ctor) 4949 return 0; 4950 return sprintf(buf, "%pS\n", s->ctor); 4951 } 4952 SLAB_ATTR_RO(ctor); 4953 4954 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4955 { 4956 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4957 } 4958 SLAB_ATTR_RO(aliases); 4959 4960 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4961 { 4962 return show_slab_objects(s, buf, SO_PARTIAL); 4963 } 4964 SLAB_ATTR_RO(partial); 4965 4966 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4967 { 4968 return show_slab_objects(s, buf, SO_CPU); 4969 } 4970 SLAB_ATTR_RO(cpu_slabs); 4971 4972 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4973 { 4974 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4975 } 4976 SLAB_ATTR_RO(objects); 4977 4978 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4979 { 4980 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4981 } 4982 SLAB_ATTR_RO(objects_partial); 4983 4984 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4985 { 4986 int objects = 0; 4987 int pages = 0; 4988 int cpu; 4989 int len; 4990 4991 for_each_online_cpu(cpu) { 4992 struct page *page; 4993 4994 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 4995 4996 if (page) { 4997 pages += page->pages; 4998 objects += page->pobjects; 4999 } 5000 } 5001 5002 len = sprintf(buf, "%d(%d)", objects, pages); 5003 5004 #ifdef CONFIG_SMP 5005 for_each_online_cpu(cpu) { 5006 struct page *page; 5007 5008 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5009 5010 if (page && len < PAGE_SIZE - 20) 5011 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5012 page->pobjects, page->pages); 5013 } 5014 #endif 5015 return len + sprintf(buf + len, "\n"); 5016 } 5017 SLAB_ATTR_RO(slabs_cpu_partial); 5018 5019 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5020 { 5021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5022 } 5023 5024 static ssize_t reclaim_account_store(struct kmem_cache *s, 5025 const char *buf, size_t length) 5026 { 5027 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5028 if (buf[0] == '1') 5029 s->flags |= SLAB_RECLAIM_ACCOUNT; 5030 return length; 5031 } 5032 SLAB_ATTR(reclaim_account); 5033 5034 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5035 { 5036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5037 } 5038 SLAB_ATTR_RO(hwcache_align); 5039 5040 #ifdef CONFIG_ZONE_DMA 5041 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5042 { 5043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5044 } 5045 SLAB_ATTR_RO(cache_dma); 5046 #endif 5047 5048 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5049 { 5050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5051 } 5052 SLAB_ATTR_RO(destroy_by_rcu); 5053 5054 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5055 { 5056 return sprintf(buf, "%d\n", s->reserved); 5057 } 5058 SLAB_ATTR_RO(reserved); 5059 5060 #ifdef CONFIG_SLUB_DEBUG 5061 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5062 { 5063 return show_slab_objects(s, buf, SO_ALL); 5064 } 5065 SLAB_ATTR_RO(slabs); 5066 5067 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5068 { 5069 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5070 } 5071 SLAB_ATTR_RO(total_objects); 5072 5073 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5074 { 5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5076 } 5077 5078 static ssize_t sanity_checks_store(struct kmem_cache *s, 5079 const char *buf, size_t length) 5080 { 5081 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5082 if (buf[0] == '1') { 5083 s->flags &= ~__CMPXCHG_DOUBLE; 5084 s->flags |= SLAB_CONSISTENCY_CHECKS; 5085 } 5086 return length; 5087 } 5088 SLAB_ATTR(sanity_checks); 5089 5090 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5091 { 5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5093 } 5094 5095 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5096 size_t length) 5097 { 5098 /* 5099 * Tracing a merged cache is going to give confusing results 5100 * as well as cause other issues like converting a mergeable 5101 * cache into an umergeable one. 5102 */ 5103 if (s->refcount > 1) 5104 return -EINVAL; 5105 5106 s->flags &= ~SLAB_TRACE; 5107 if (buf[0] == '1') { 5108 s->flags &= ~__CMPXCHG_DOUBLE; 5109 s->flags |= SLAB_TRACE; 5110 } 5111 return length; 5112 } 5113 SLAB_ATTR(trace); 5114 5115 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5116 { 5117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5118 } 5119 5120 static ssize_t red_zone_store(struct kmem_cache *s, 5121 const char *buf, size_t length) 5122 { 5123 if (any_slab_objects(s)) 5124 return -EBUSY; 5125 5126 s->flags &= ~SLAB_RED_ZONE; 5127 if (buf[0] == '1') { 5128 s->flags |= SLAB_RED_ZONE; 5129 } 5130 calculate_sizes(s, -1); 5131 return length; 5132 } 5133 SLAB_ATTR(red_zone); 5134 5135 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5136 { 5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5138 } 5139 5140 static ssize_t poison_store(struct kmem_cache *s, 5141 const char *buf, size_t length) 5142 { 5143 if (any_slab_objects(s)) 5144 return -EBUSY; 5145 5146 s->flags &= ~SLAB_POISON; 5147 if (buf[0] == '1') { 5148 s->flags |= SLAB_POISON; 5149 } 5150 calculate_sizes(s, -1); 5151 return length; 5152 } 5153 SLAB_ATTR(poison); 5154 5155 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5156 { 5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5158 } 5159 5160 static ssize_t store_user_store(struct kmem_cache *s, 5161 const char *buf, size_t length) 5162 { 5163 if (any_slab_objects(s)) 5164 return -EBUSY; 5165 5166 s->flags &= ~SLAB_STORE_USER; 5167 if (buf[0] == '1') { 5168 s->flags &= ~__CMPXCHG_DOUBLE; 5169 s->flags |= SLAB_STORE_USER; 5170 } 5171 calculate_sizes(s, -1); 5172 return length; 5173 } 5174 SLAB_ATTR(store_user); 5175 5176 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5177 { 5178 return 0; 5179 } 5180 5181 static ssize_t validate_store(struct kmem_cache *s, 5182 const char *buf, size_t length) 5183 { 5184 int ret = -EINVAL; 5185 5186 if (buf[0] == '1') { 5187 ret = validate_slab_cache(s); 5188 if (ret >= 0) 5189 ret = length; 5190 } 5191 return ret; 5192 } 5193 SLAB_ATTR(validate); 5194 5195 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5196 { 5197 if (!(s->flags & SLAB_STORE_USER)) 5198 return -ENOSYS; 5199 return list_locations(s, buf, TRACK_ALLOC); 5200 } 5201 SLAB_ATTR_RO(alloc_calls); 5202 5203 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5204 { 5205 if (!(s->flags & SLAB_STORE_USER)) 5206 return -ENOSYS; 5207 return list_locations(s, buf, TRACK_FREE); 5208 } 5209 SLAB_ATTR_RO(free_calls); 5210 #endif /* CONFIG_SLUB_DEBUG */ 5211 5212 #ifdef CONFIG_FAILSLAB 5213 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5214 { 5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5216 } 5217 5218 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5219 size_t length) 5220 { 5221 if (s->refcount > 1) 5222 return -EINVAL; 5223 5224 s->flags &= ~SLAB_FAILSLAB; 5225 if (buf[0] == '1') 5226 s->flags |= SLAB_FAILSLAB; 5227 return length; 5228 } 5229 SLAB_ATTR(failslab); 5230 #endif 5231 5232 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5233 { 5234 return 0; 5235 } 5236 5237 static ssize_t shrink_store(struct kmem_cache *s, 5238 const char *buf, size_t length) 5239 { 5240 if (buf[0] == '1') 5241 kmem_cache_shrink(s); 5242 else 5243 return -EINVAL; 5244 return length; 5245 } 5246 SLAB_ATTR(shrink); 5247 5248 #ifdef CONFIG_NUMA 5249 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5250 { 5251 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5252 } 5253 5254 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5255 const char *buf, size_t length) 5256 { 5257 unsigned long ratio; 5258 int err; 5259 5260 err = kstrtoul(buf, 10, &ratio); 5261 if (err) 5262 return err; 5263 5264 if (ratio <= 100) 5265 s->remote_node_defrag_ratio = ratio * 10; 5266 5267 return length; 5268 } 5269 SLAB_ATTR(remote_node_defrag_ratio); 5270 #endif 5271 5272 #ifdef CONFIG_SLUB_STATS 5273 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5274 { 5275 unsigned long sum = 0; 5276 int cpu; 5277 int len; 5278 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5279 5280 if (!data) 5281 return -ENOMEM; 5282 5283 for_each_online_cpu(cpu) { 5284 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5285 5286 data[cpu] = x; 5287 sum += x; 5288 } 5289 5290 len = sprintf(buf, "%lu", sum); 5291 5292 #ifdef CONFIG_SMP 5293 for_each_online_cpu(cpu) { 5294 if (data[cpu] && len < PAGE_SIZE - 20) 5295 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5296 } 5297 #endif 5298 kfree(data); 5299 return len + sprintf(buf + len, "\n"); 5300 } 5301 5302 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5303 { 5304 int cpu; 5305 5306 for_each_online_cpu(cpu) 5307 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5308 } 5309 5310 #define STAT_ATTR(si, text) \ 5311 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5312 { \ 5313 return show_stat(s, buf, si); \ 5314 } \ 5315 static ssize_t text##_store(struct kmem_cache *s, \ 5316 const char *buf, size_t length) \ 5317 { \ 5318 if (buf[0] != '0') \ 5319 return -EINVAL; \ 5320 clear_stat(s, si); \ 5321 return length; \ 5322 } \ 5323 SLAB_ATTR(text); \ 5324 5325 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5326 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5327 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5328 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5329 STAT_ATTR(FREE_FROZEN, free_frozen); 5330 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5331 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5332 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5333 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5334 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5335 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5336 STAT_ATTR(FREE_SLAB, free_slab); 5337 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5338 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5339 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5340 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5341 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5342 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5343 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5344 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5345 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5346 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5347 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5348 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5349 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5350 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5351 #endif 5352 5353 static struct attribute *slab_attrs[] = { 5354 &slab_size_attr.attr, 5355 &object_size_attr.attr, 5356 &objs_per_slab_attr.attr, 5357 &order_attr.attr, 5358 &min_partial_attr.attr, 5359 &cpu_partial_attr.attr, 5360 &objects_attr.attr, 5361 &objects_partial_attr.attr, 5362 &partial_attr.attr, 5363 &cpu_slabs_attr.attr, 5364 &ctor_attr.attr, 5365 &aliases_attr.attr, 5366 &align_attr.attr, 5367 &hwcache_align_attr.attr, 5368 &reclaim_account_attr.attr, 5369 &destroy_by_rcu_attr.attr, 5370 &shrink_attr.attr, 5371 &reserved_attr.attr, 5372 &slabs_cpu_partial_attr.attr, 5373 #ifdef CONFIG_SLUB_DEBUG 5374 &total_objects_attr.attr, 5375 &slabs_attr.attr, 5376 &sanity_checks_attr.attr, 5377 &trace_attr.attr, 5378 &red_zone_attr.attr, 5379 &poison_attr.attr, 5380 &store_user_attr.attr, 5381 &validate_attr.attr, 5382 &alloc_calls_attr.attr, 5383 &free_calls_attr.attr, 5384 #endif 5385 #ifdef CONFIG_ZONE_DMA 5386 &cache_dma_attr.attr, 5387 #endif 5388 #ifdef CONFIG_NUMA 5389 &remote_node_defrag_ratio_attr.attr, 5390 #endif 5391 #ifdef CONFIG_SLUB_STATS 5392 &alloc_fastpath_attr.attr, 5393 &alloc_slowpath_attr.attr, 5394 &free_fastpath_attr.attr, 5395 &free_slowpath_attr.attr, 5396 &free_frozen_attr.attr, 5397 &free_add_partial_attr.attr, 5398 &free_remove_partial_attr.attr, 5399 &alloc_from_partial_attr.attr, 5400 &alloc_slab_attr.attr, 5401 &alloc_refill_attr.attr, 5402 &alloc_node_mismatch_attr.attr, 5403 &free_slab_attr.attr, 5404 &cpuslab_flush_attr.attr, 5405 &deactivate_full_attr.attr, 5406 &deactivate_empty_attr.attr, 5407 &deactivate_to_head_attr.attr, 5408 &deactivate_to_tail_attr.attr, 5409 &deactivate_remote_frees_attr.attr, 5410 &deactivate_bypass_attr.attr, 5411 &order_fallback_attr.attr, 5412 &cmpxchg_double_fail_attr.attr, 5413 &cmpxchg_double_cpu_fail_attr.attr, 5414 &cpu_partial_alloc_attr.attr, 5415 &cpu_partial_free_attr.attr, 5416 &cpu_partial_node_attr.attr, 5417 &cpu_partial_drain_attr.attr, 5418 #endif 5419 #ifdef CONFIG_FAILSLAB 5420 &failslab_attr.attr, 5421 #endif 5422 5423 NULL 5424 }; 5425 5426 static struct attribute_group slab_attr_group = { 5427 .attrs = slab_attrs, 5428 }; 5429 5430 static ssize_t slab_attr_show(struct kobject *kobj, 5431 struct attribute *attr, 5432 char *buf) 5433 { 5434 struct slab_attribute *attribute; 5435 struct kmem_cache *s; 5436 int err; 5437 5438 attribute = to_slab_attr(attr); 5439 s = to_slab(kobj); 5440 5441 if (!attribute->show) 5442 return -EIO; 5443 5444 err = attribute->show(s, buf); 5445 5446 return err; 5447 } 5448 5449 static ssize_t slab_attr_store(struct kobject *kobj, 5450 struct attribute *attr, 5451 const char *buf, size_t len) 5452 { 5453 struct slab_attribute *attribute; 5454 struct kmem_cache *s; 5455 int err; 5456 5457 attribute = to_slab_attr(attr); 5458 s = to_slab(kobj); 5459 5460 if (!attribute->store) 5461 return -EIO; 5462 5463 err = attribute->store(s, buf, len); 5464 #ifdef CONFIG_MEMCG 5465 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5466 struct kmem_cache *c; 5467 5468 mutex_lock(&slab_mutex); 5469 if (s->max_attr_size < len) 5470 s->max_attr_size = len; 5471 5472 /* 5473 * This is a best effort propagation, so this function's return 5474 * value will be determined by the parent cache only. This is 5475 * basically because not all attributes will have a well 5476 * defined semantics for rollbacks - most of the actions will 5477 * have permanent effects. 5478 * 5479 * Returning the error value of any of the children that fail 5480 * is not 100 % defined, in the sense that users seeing the 5481 * error code won't be able to know anything about the state of 5482 * the cache. 5483 * 5484 * Only returning the error code for the parent cache at least 5485 * has well defined semantics. The cache being written to 5486 * directly either failed or succeeded, in which case we loop 5487 * through the descendants with best-effort propagation. 5488 */ 5489 for_each_memcg_cache(c, s) 5490 attribute->store(c, buf, len); 5491 mutex_unlock(&slab_mutex); 5492 } 5493 #endif 5494 return err; 5495 } 5496 5497 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5498 { 5499 #ifdef CONFIG_MEMCG 5500 int i; 5501 char *buffer = NULL; 5502 struct kmem_cache *root_cache; 5503 5504 if (is_root_cache(s)) 5505 return; 5506 5507 root_cache = s->memcg_params.root_cache; 5508 5509 /* 5510 * This mean this cache had no attribute written. Therefore, no point 5511 * in copying default values around 5512 */ 5513 if (!root_cache->max_attr_size) 5514 return; 5515 5516 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5517 char mbuf[64]; 5518 char *buf; 5519 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5520 ssize_t len; 5521 5522 if (!attr || !attr->store || !attr->show) 5523 continue; 5524 5525 /* 5526 * It is really bad that we have to allocate here, so we will 5527 * do it only as a fallback. If we actually allocate, though, 5528 * we can just use the allocated buffer until the end. 5529 * 5530 * Most of the slub attributes will tend to be very small in 5531 * size, but sysfs allows buffers up to a page, so they can 5532 * theoretically happen. 5533 */ 5534 if (buffer) 5535 buf = buffer; 5536 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5537 buf = mbuf; 5538 else { 5539 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5540 if (WARN_ON(!buffer)) 5541 continue; 5542 buf = buffer; 5543 } 5544 5545 len = attr->show(root_cache, buf); 5546 if (len > 0) 5547 attr->store(s, buf, len); 5548 } 5549 5550 if (buffer) 5551 free_page((unsigned long)buffer); 5552 #endif 5553 } 5554 5555 static void kmem_cache_release(struct kobject *k) 5556 { 5557 slab_kmem_cache_release(to_slab(k)); 5558 } 5559 5560 static const struct sysfs_ops slab_sysfs_ops = { 5561 .show = slab_attr_show, 5562 .store = slab_attr_store, 5563 }; 5564 5565 static struct kobj_type slab_ktype = { 5566 .sysfs_ops = &slab_sysfs_ops, 5567 .release = kmem_cache_release, 5568 }; 5569 5570 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5571 { 5572 struct kobj_type *ktype = get_ktype(kobj); 5573 5574 if (ktype == &slab_ktype) 5575 return 1; 5576 return 0; 5577 } 5578 5579 static const struct kset_uevent_ops slab_uevent_ops = { 5580 .filter = uevent_filter, 5581 }; 5582 5583 static struct kset *slab_kset; 5584 5585 static inline struct kset *cache_kset(struct kmem_cache *s) 5586 { 5587 #ifdef CONFIG_MEMCG 5588 if (!is_root_cache(s)) 5589 return s->memcg_params.root_cache->memcg_kset; 5590 #endif 5591 return slab_kset; 5592 } 5593 5594 #define ID_STR_LENGTH 64 5595 5596 /* Create a unique string id for a slab cache: 5597 * 5598 * Format :[flags-]size 5599 */ 5600 static char *create_unique_id(struct kmem_cache *s) 5601 { 5602 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5603 char *p = name; 5604 5605 BUG_ON(!name); 5606 5607 *p++ = ':'; 5608 /* 5609 * First flags affecting slabcache operations. We will only 5610 * get here for aliasable slabs so we do not need to support 5611 * too many flags. The flags here must cover all flags that 5612 * are matched during merging to guarantee that the id is 5613 * unique. 5614 */ 5615 if (s->flags & SLAB_CACHE_DMA) 5616 *p++ = 'd'; 5617 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5618 *p++ = 'a'; 5619 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5620 *p++ = 'F'; 5621 if (!(s->flags & SLAB_NOTRACK)) 5622 *p++ = 't'; 5623 if (s->flags & SLAB_ACCOUNT) 5624 *p++ = 'A'; 5625 if (p != name + 1) 5626 *p++ = '-'; 5627 p += sprintf(p, "%07d", s->size); 5628 5629 BUG_ON(p > name + ID_STR_LENGTH - 1); 5630 return name; 5631 } 5632 5633 static void sysfs_slab_remove_workfn(struct work_struct *work) 5634 { 5635 struct kmem_cache *s = 5636 container_of(work, struct kmem_cache, kobj_remove_work); 5637 5638 if (!s->kobj.state_in_sysfs) 5639 /* 5640 * For a memcg cache, this may be called during 5641 * deactivation and again on shutdown. Remove only once. 5642 * A cache is never shut down before deactivation is 5643 * complete, so no need to worry about synchronization. 5644 */ 5645 return; 5646 5647 #ifdef CONFIG_MEMCG 5648 kset_unregister(s->memcg_kset); 5649 #endif 5650 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5651 kobject_del(&s->kobj); 5652 kobject_put(&s->kobj); 5653 } 5654 5655 static int sysfs_slab_add(struct kmem_cache *s) 5656 { 5657 int err; 5658 const char *name; 5659 struct kset *kset = cache_kset(s); 5660 int unmergeable = slab_unmergeable(s); 5661 5662 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5663 5664 if (!kset) { 5665 kobject_init(&s->kobj, &slab_ktype); 5666 return 0; 5667 } 5668 5669 if (unmergeable) { 5670 /* 5671 * Slabcache can never be merged so we can use the name proper. 5672 * This is typically the case for debug situations. In that 5673 * case we can catch duplicate names easily. 5674 */ 5675 sysfs_remove_link(&slab_kset->kobj, s->name); 5676 name = s->name; 5677 } else { 5678 /* 5679 * Create a unique name for the slab as a target 5680 * for the symlinks. 5681 */ 5682 name = create_unique_id(s); 5683 } 5684 5685 s->kobj.kset = kset; 5686 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5687 if (err) 5688 goto out; 5689 5690 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5691 if (err) 5692 goto out_del_kobj; 5693 5694 #ifdef CONFIG_MEMCG 5695 if (is_root_cache(s) && memcg_sysfs_enabled) { 5696 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5697 if (!s->memcg_kset) { 5698 err = -ENOMEM; 5699 goto out_del_kobj; 5700 } 5701 } 5702 #endif 5703 5704 kobject_uevent(&s->kobj, KOBJ_ADD); 5705 if (!unmergeable) { 5706 /* Setup first alias */ 5707 sysfs_slab_alias(s, s->name); 5708 } 5709 out: 5710 if (!unmergeable) 5711 kfree(name); 5712 return err; 5713 out_del_kobj: 5714 kobject_del(&s->kobj); 5715 goto out; 5716 } 5717 5718 static void sysfs_slab_remove(struct kmem_cache *s) 5719 { 5720 if (slab_state < FULL) 5721 /* 5722 * Sysfs has not been setup yet so no need to remove the 5723 * cache from sysfs. 5724 */ 5725 return; 5726 5727 kobject_get(&s->kobj); 5728 schedule_work(&s->kobj_remove_work); 5729 } 5730 5731 void sysfs_slab_release(struct kmem_cache *s) 5732 { 5733 if (slab_state >= FULL) 5734 kobject_put(&s->kobj); 5735 } 5736 5737 /* 5738 * Need to buffer aliases during bootup until sysfs becomes 5739 * available lest we lose that information. 5740 */ 5741 struct saved_alias { 5742 struct kmem_cache *s; 5743 const char *name; 5744 struct saved_alias *next; 5745 }; 5746 5747 static struct saved_alias *alias_list; 5748 5749 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5750 { 5751 struct saved_alias *al; 5752 5753 if (slab_state == FULL) { 5754 /* 5755 * If we have a leftover link then remove it. 5756 */ 5757 sysfs_remove_link(&slab_kset->kobj, name); 5758 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5759 } 5760 5761 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5762 if (!al) 5763 return -ENOMEM; 5764 5765 al->s = s; 5766 al->name = name; 5767 al->next = alias_list; 5768 alias_list = al; 5769 return 0; 5770 } 5771 5772 static int __init slab_sysfs_init(void) 5773 { 5774 struct kmem_cache *s; 5775 int err; 5776 5777 mutex_lock(&slab_mutex); 5778 5779 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5780 if (!slab_kset) { 5781 mutex_unlock(&slab_mutex); 5782 pr_err("Cannot register slab subsystem.\n"); 5783 return -ENOSYS; 5784 } 5785 5786 slab_state = FULL; 5787 5788 list_for_each_entry(s, &slab_caches, list) { 5789 err = sysfs_slab_add(s); 5790 if (err) 5791 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5792 s->name); 5793 } 5794 5795 while (alias_list) { 5796 struct saved_alias *al = alias_list; 5797 5798 alias_list = alias_list->next; 5799 err = sysfs_slab_alias(al->s, al->name); 5800 if (err) 5801 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5802 al->name); 5803 kfree(al); 5804 } 5805 5806 mutex_unlock(&slab_mutex); 5807 resiliency_test(); 5808 return 0; 5809 } 5810 5811 __initcall(slab_sysfs_init); 5812 #endif /* CONFIG_SYSFS */ 5813 5814 /* 5815 * The /proc/slabinfo ABI 5816 */ 5817 #ifdef CONFIG_SLABINFO 5818 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5819 { 5820 unsigned long nr_slabs = 0; 5821 unsigned long nr_objs = 0; 5822 unsigned long nr_free = 0; 5823 int node; 5824 struct kmem_cache_node *n; 5825 5826 for_each_kmem_cache_node(s, node, n) { 5827 nr_slabs += node_nr_slabs(n); 5828 nr_objs += node_nr_objs(n); 5829 nr_free += count_partial(n, count_free); 5830 } 5831 5832 sinfo->active_objs = nr_objs - nr_free; 5833 sinfo->num_objs = nr_objs; 5834 sinfo->active_slabs = nr_slabs; 5835 sinfo->num_slabs = nr_slabs; 5836 sinfo->objects_per_slab = oo_objects(s->oo); 5837 sinfo->cache_order = oo_order(s->oo); 5838 } 5839 5840 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5841 { 5842 } 5843 5844 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5845 size_t count, loff_t *ppos) 5846 { 5847 return -EIO; 5848 } 5849 #endif /* CONFIG_SLABINFO */ 5850