1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/seq_file.h> 18 #include <linux/cpu.h> 19 #include <linux/cpuset.h> 20 #include <linux/mempolicy.h> 21 #include <linux/ctype.h> 22 #include <linux/kallsyms.h> 23 24 /* 25 * Lock order: 26 * 1. slab_lock(page) 27 * 2. slab->list_lock 28 * 29 * The slab_lock protects operations on the object of a particular 30 * slab and its metadata in the page struct. If the slab lock 31 * has been taken then no allocations nor frees can be performed 32 * on the objects in the slab nor can the slab be added or removed 33 * from the partial or full lists since this would mean modifying 34 * the page_struct of the slab. 35 * 36 * The list_lock protects the partial and full list on each node and 37 * the partial slab counter. If taken then no new slabs may be added or 38 * removed from the lists nor make the number of partial slabs be modified. 39 * (Note that the total number of slabs is an atomic value that may be 40 * modified without taking the list lock). 41 * 42 * The list_lock is a centralized lock and thus we avoid taking it as 43 * much as possible. As long as SLUB does not have to handle partial 44 * slabs, operations can continue without any centralized lock. F.e. 45 * allocating a long series of objects that fill up slabs does not require 46 * the list lock. 47 * 48 * The lock order is sometimes inverted when we are trying to get a slab 49 * off a list. We take the list_lock and then look for a page on the list 50 * to use. While we do that objects in the slabs may be freed. We can 51 * only operate on the slab if we have also taken the slab_lock. So we use 52 * a slab_trylock() on the slab. If trylock was successful then no frees 53 * can occur anymore and we can use the slab for allocations etc. If the 54 * slab_trylock() does not succeed then frees are in progress in the slab and 55 * we must stay away from it for a while since we may cause a bouncing 56 * cacheline if we try to acquire the lock. So go onto the next slab. 57 * If all pages are busy then we may allocate a new slab instead of reusing 58 * a partial slab. A new slab has noone operating on it and thus there is 59 * no danger of cacheline contention. 60 * 61 * Interrupts are disabled during allocation and deallocation in order to 62 * make the slab allocator safe to use in the context of an irq. In addition 63 * interrupts are disabled to ensure that the processor does not change 64 * while handling per_cpu slabs, due to kernel preemption. 65 * 66 * SLUB assigns one slab for allocation to each processor. 67 * Allocations only occur from these slabs called cpu slabs. 68 * 69 * Slabs with free elements are kept on a partial list and during regular 70 * operations no list for full slabs is used. If an object in a full slab is 71 * freed then the slab will show up again on the partial lists. 72 * We track full slabs for debugging purposes though because otherwise we 73 * cannot scan all objects. 74 * 75 * Slabs are freed when they become empty. Teardown and setup is 76 * minimal so we rely on the page allocators per cpu caches for 77 * fast frees and allocs. 78 * 79 * Overloading of page flags that are otherwise used for LRU management. 80 * 81 * PageActive The slab is frozen and exempt from list processing. 82 * This means that the slab is dedicated to a purpose 83 * such as satisfying allocations for a specific 84 * processor. Objects may be freed in the slab while 85 * it is frozen but slab_free will then skip the usual 86 * list operations. It is up to the processor holding 87 * the slab to integrate the slab into the slab lists 88 * when the slab is no longer needed. 89 * 90 * One use of this flag is to mark slabs that are 91 * used for allocations. Then such a slab becomes a cpu 92 * slab. The cpu slab may be equipped with an additional 93 * lockless_freelist that allows lockless access to 94 * free objects in addition to the regular freelist 95 * that requires the slab lock. 96 * 97 * PageError Slab requires special handling due to debug 98 * options set. This moves slab handling out of 99 * the fast path and disables lockless freelists. 100 */ 101 102 #define FROZEN (1 << PG_active) 103 104 #ifdef CONFIG_SLUB_DEBUG 105 #define SLABDEBUG (1 << PG_error) 106 #else 107 #define SLABDEBUG 0 108 #endif 109 110 static inline int SlabFrozen(struct page *page) 111 { 112 return page->flags & FROZEN; 113 } 114 115 static inline void SetSlabFrozen(struct page *page) 116 { 117 page->flags |= FROZEN; 118 } 119 120 static inline void ClearSlabFrozen(struct page *page) 121 { 122 page->flags &= ~FROZEN; 123 } 124 125 static inline int SlabDebug(struct page *page) 126 { 127 return page->flags & SLABDEBUG; 128 } 129 130 static inline void SetSlabDebug(struct page *page) 131 { 132 page->flags |= SLABDEBUG; 133 } 134 135 static inline void ClearSlabDebug(struct page *page) 136 { 137 page->flags &= ~SLABDEBUG; 138 } 139 140 /* 141 * Issues still to be resolved: 142 * 143 * - The per cpu array is updated for each new slab and and is a remote 144 * cacheline for most nodes. This could become a bouncing cacheline given 145 * enough frequent updates. There are 16 pointers in a cacheline, so at 146 * max 16 cpus could compete for the cacheline which may be okay. 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 #if PAGE_SHIFT <= 12 157 158 /* 159 * Small page size. Make sure that we do not fragment memory 160 */ 161 #define DEFAULT_MAX_ORDER 1 162 #define DEFAULT_MIN_OBJECTS 4 163 164 #else 165 166 /* 167 * Large page machines are customarily able to handle larger 168 * page orders. 169 */ 170 #define DEFAULT_MAX_ORDER 2 171 #define DEFAULT_MIN_OBJECTS 8 172 173 #endif 174 175 /* 176 * Mininum number of partial slabs. These will be left on the partial 177 * lists even if they are empty. kmem_cache_shrink may reclaim them. 178 */ 179 #define MIN_PARTIAL 2 180 181 /* 182 * Maximum number of desirable partial slabs. 183 * The existence of more partial slabs makes kmem_cache_shrink 184 * sort the partial list by the number of objects in the. 185 */ 186 #define MAX_PARTIAL 10 187 188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 189 SLAB_POISON | SLAB_STORE_USER) 190 191 /* 192 * Set of flags that will prevent slab merging 193 */ 194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 195 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 196 197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 198 SLAB_CACHE_DMA) 199 200 #ifndef ARCH_KMALLOC_MINALIGN 201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 202 #endif 203 204 #ifndef ARCH_SLAB_MINALIGN 205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 206 #endif 207 208 /* 209 * The page->inuse field is 16 bit thus we have this limitation 210 */ 211 #define MAX_OBJECTS_PER_SLAB 65535 212 213 /* Internal SLUB flags */ 214 #define __OBJECT_POISON 0x80000000 /* Poison object */ 215 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 216 217 /* Not all arches define cache_line_size */ 218 #ifndef cache_line_size 219 #define cache_line_size() L1_CACHE_BYTES 220 #endif 221 222 static int kmem_size = sizeof(struct kmem_cache); 223 224 #ifdef CONFIG_SMP 225 static struct notifier_block slab_notifier; 226 #endif 227 228 static enum { 229 DOWN, /* No slab functionality available */ 230 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 231 UP, /* Everything works but does not show up in sysfs */ 232 SYSFS /* Sysfs up */ 233 } slab_state = DOWN; 234 235 /* A list of all slab caches on the system */ 236 static DECLARE_RWSEM(slub_lock); 237 static LIST_HEAD(slab_caches); 238 239 /* 240 * Tracking user of a slab. 241 */ 242 struct track { 243 void *addr; /* Called from address */ 244 int cpu; /* Was running on cpu */ 245 int pid; /* Pid context */ 246 unsigned long when; /* When did the operation occur */ 247 }; 248 249 enum track_item { TRACK_ALLOC, TRACK_FREE }; 250 251 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 252 static int sysfs_slab_add(struct kmem_cache *); 253 static int sysfs_slab_alias(struct kmem_cache *, const char *); 254 static void sysfs_slab_remove(struct kmem_cache *); 255 #else 256 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 257 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 258 { return 0; } 259 static inline void sysfs_slab_remove(struct kmem_cache *s) {} 260 #endif 261 262 /******************************************************************** 263 * Core slab cache functions 264 *******************************************************************/ 265 266 int slab_is_available(void) 267 { 268 return slab_state >= UP; 269 } 270 271 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 272 { 273 #ifdef CONFIG_NUMA 274 return s->node[node]; 275 #else 276 return &s->local_node; 277 #endif 278 } 279 280 static inline int check_valid_pointer(struct kmem_cache *s, 281 struct page *page, const void *object) 282 { 283 void *base; 284 285 if (!object) 286 return 1; 287 288 base = page_address(page); 289 if (object < base || object >= base + s->objects * s->size || 290 (object - base) % s->size) { 291 return 0; 292 } 293 294 return 1; 295 } 296 297 /* 298 * Slow version of get and set free pointer. 299 * 300 * This version requires touching the cache lines of kmem_cache which 301 * we avoid to do in the fast alloc free paths. There we obtain the offset 302 * from the page struct. 303 */ 304 static inline void *get_freepointer(struct kmem_cache *s, void *object) 305 { 306 return *(void **)(object + s->offset); 307 } 308 309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 310 { 311 *(void **)(object + s->offset) = fp; 312 } 313 314 /* Loop over all objects in a slab */ 315 #define for_each_object(__p, __s, __addr) \ 316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ 317 __p += (__s)->size) 318 319 /* Scan freelist */ 320 #define for_each_free_object(__p, __s, __free) \ 321 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 322 323 /* Determine object index from a given position */ 324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 325 { 326 return (p - addr) / s->size; 327 } 328 329 #ifdef CONFIG_SLUB_DEBUG 330 /* 331 * Debug settings: 332 */ 333 #ifdef CONFIG_SLUB_DEBUG_ON 334 static int slub_debug = DEBUG_DEFAULT_FLAGS; 335 #else 336 static int slub_debug; 337 #endif 338 339 static char *slub_debug_slabs; 340 341 /* 342 * Object debugging 343 */ 344 static void print_section(char *text, u8 *addr, unsigned int length) 345 { 346 int i, offset; 347 int newline = 1; 348 char ascii[17]; 349 350 ascii[16] = 0; 351 352 for (i = 0; i < length; i++) { 353 if (newline) { 354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 355 newline = 0; 356 } 357 printk(" %02x", addr[i]); 358 offset = i % 16; 359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 360 if (offset == 15) { 361 printk(" %s\n",ascii); 362 newline = 1; 363 } 364 } 365 if (!newline) { 366 i %= 16; 367 while (i < 16) { 368 printk(" "); 369 ascii[i] = ' '; 370 i++; 371 } 372 printk(" %s\n", ascii); 373 } 374 } 375 376 static struct track *get_track(struct kmem_cache *s, void *object, 377 enum track_item alloc) 378 { 379 struct track *p; 380 381 if (s->offset) 382 p = object + s->offset + sizeof(void *); 383 else 384 p = object + s->inuse; 385 386 return p + alloc; 387 } 388 389 static void set_track(struct kmem_cache *s, void *object, 390 enum track_item alloc, void *addr) 391 { 392 struct track *p; 393 394 if (s->offset) 395 p = object + s->offset + sizeof(void *); 396 else 397 p = object + s->inuse; 398 399 p += alloc; 400 if (addr) { 401 p->addr = addr; 402 p->cpu = smp_processor_id(); 403 p->pid = current ? current->pid : -1; 404 p->when = jiffies; 405 } else 406 memset(p, 0, sizeof(struct track)); 407 } 408 409 static void init_tracking(struct kmem_cache *s, void *object) 410 { 411 if (!(s->flags & SLAB_STORE_USER)) 412 return; 413 414 set_track(s, object, TRACK_FREE, NULL); 415 set_track(s, object, TRACK_ALLOC, NULL); 416 } 417 418 static void print_track(const char *s, struct track *t) 419 { 420 if (!t->addr) 421 return; 422 423 printk(KERN_ERR "INFO: %s in ", s); 424 __print_symbol("%s", (unsigned long)t->addr); 425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); 426 } 427 428 static void print_tracking(struct kmem_cache *s, void *object) 429 { 430 if (!(s->flags & SLAB_STORE_USER)) 431 return; 432 433 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 434 print_track("Freed", get_track(s, object, TRACK_FREE)); 435 } 436 437 static void print_page_info(struct page *page) 438 { 439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", 440 page, page->inuse, page->freelist, page->flags); 441 442 } 443 444 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 445 { 446 va_list args; 447 char buf[100]; 448 449 va_start(args, fmt); 450 vsnprintf(buf, sizeof(buf), fmt, args); 451 va_end(args); 452 printk(KERN_ERR "========================================" 453 "=====================================\n"); 454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 455 printk(KERN_ERR "----------------------------------------" 456 "-------------------------------------\n\n"); 457 } 458 459 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 460 { 461 va_list args; 462 char buf[100]; 463 464 va_start(args, fmt); 465 vsnprintf(buf, sizeof(buf), fmt, args); 466 va_end(args); 467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 468 } 469 470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 471 { 472 unsigned int off; /* Offset of last byte */ 473 u8 *addr = page_address(page); 474 475 print_tracking(s, p); 476 477 print_page_info(page); 478 479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 480 p, p - addr, get_freepointer(s, p)); 481 482 if (p > addr + 16) 483 print_section("Bytes b4", p - 16, 16); 484 485 print_section("Object", p, min(s->objsize, 128)); 486 487 if (s->flags & SLAB_RED_ZONE) 488 print_section("Redzone", p + s->objsize, 489 s->inuse - s->objsize); 490 491 if (s->offset) 492 off = s->offset + sizeof(void *); 493 else 494 off = s->inuse; 495 496 if (s->flags & SLAB_STORE_USER) 497 off += 2 * sizeof(struct track); 498 499 if (off != s->size) 500 /* Beginning of the filler is the free pointer */ 501 print_section("Padding", p + off, s->size - off); 502 503 dump_stack(); 504 } 505 506 static void object_err(struct kmem_cache *s, struct page *page, 507 u8 *object, char *reason) 508 { 509 slab_bug(s, reason); 510 print_trailer(s, page, object); 511 } 512 513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 514 { 515 va_list args; 516 char buf[100]; 517 518 va_start(args, fmt); 519 vsnprintf(buf, sizeof(buf), fmt, args); 520 va_end(args); 521 slab_bug(s, fmt); 522 print_page_info(page); 523 dump_stack(); 524 } 525 526 static void init_object(struct kmem_cache *s, void *object, int active) 527 { 528 u8 *p = object; 529 530 if (s->flags & __OBJECT_POISON) { 531 memset(p, POISON_FREE, s->objsize - 1); 532 p[s->objsize -1] = POISON_END; 533 } 534 535 if (s->flags & SLAB_RED_ZONE) 536 memset(p + s->objsize, 537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 538 s->inuse - s->objsize); 539 } 540 541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 542 { 543 while (bytes) { 544 if (*start != (u8)value) 545 return start; 546 start++; 547 bytes--; 548 } 549 return NULL; 550 } 551 552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 553 void *from, void *to) 554 { 555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 556 memset(from, data, to - from); 557 } 558 559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 560 u8 *object, char *what, 561 u8* start, unsigned int value, unsigned int bytes) 562 { 563 u8 *fault; 564 u8 *end; 565 566 fault = check_bytes(start, value, bytes); 567 if (!fault) 568 return 1; 569 570 end = start + bytes; 571 while (end > fault && end[-1] == value) 572 end--; 573 574 slab_bug(s, "%s overwritten", what); 575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 576 fault, end - 1, fault[0], value); 577 print_trailer(s, page, object); 578 579 restore_bytes(s, what, value, fault, end); 580 return 0; 581 } 582 583 /* 584 * Object layout: 585 * 586 * object address 587 * Bytes of the object to be managed. 588 * If the freepointer may overlay the object then the free 589 * pointer is the first word of the object. 590 * 591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 592 * 0xa5 (POISON_END) 593 * 594 * object + s->objsize 595 * Padding to reach word boundary. This is also used for Redzoning. 596 * Padding is extended by another word if Redzoning is enabled and 597 * objsize == inuse. 598 * 599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 600 * 0xcc (RED_ACTIVE) for objects in use. 601 * 602 * object + s->inuse 603 * Meta data starts here. 604 * 605 * A. Free pointer (if we cannot overwrite object on free) 606 * B. Tracking data for SLAB_STORE_USER 607 * C. Padding to reach required alignment boundary or at mininum 608 * one word if debuggin is on to be able to detect writes 609 * before the word boundary. 610 * 611 * Padding is done using 0x5a (POISON_INUSE) 612 * 613 * object + s->size 614 * Nothing is used beyond s->size. 615 * 616 * If slabcaches are merged then the objsize and inuse boundaries are mostly 617 * ignored. And therefore no slab options that rely on these boundaries 618 * may be used with merged slabcaches. 619 */ 620 621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 622 { 623 unsigned long off = s->inuse; /* The end of info */ 624 625 if (s->offset) 626 /* Freepointer is placed after the object. */ 627 off += sizeof(void *); 628 629 if (s->flags & SLAB_STORE_USER) 630 /* We also have user information there */ 631 off += 2 * sizeof(struct track); 632 633 if (s->size == off) 634 return 1; 635 636 return check_bytes_and_report(s, page, p, "Object padding", 637 p + off, POISON_INUSE, s->size - off); 638 } 639 640 static int slab_pad_check(struct kmem_cache *s, struct page *page) 641 { 642 u8 *start; 643 u8 *fault; 644 u8 *end; 645 int length; 646 int remainder; 647 648 if (!(s->flags & SLAB_POISON)) 649 return 1; 650 651 start = page_address(page); 652 end = start + (PAGE_SIZE << s->order); 653 length = s->objects * s->size; 654 remainder = end - (start + length); 655 if (!remainder) 656 return 1; 657 658 fault = check_bytes(start + length, POISON_INUSE, remainder); 659 if (!fault) 660 return 1; 661 while (end > fault && end[-1] == POISON_INUSE) 662 end--; 663 664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 665 print_section("Padding", start, length); 666 667 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 668 return 0; 669 } 670 671 static int check_object(struct kmem_cache *s, struct page *page, 672 void *object, int active) 673 { 674 u8 *p = object; 675 u8 *endobject = object + s->objsize; 676 677 if (s->flags & SLAB_RED_ZONE) { 678 unsigned int red = 679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 680 681 if (!check_bytes_and_report(s, page, object, "Redzone", 682 endobject, red, s->inuse - s->objsize)) 683 return 0; 684 } else { 685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) 686 check_bytes_and_report(s, page, p, "Alignment padding", endobject, 687 POISON_INUSE, s->inuse - s->objsize); 688 } 689 690 if (s->flags & SLAB_POISON) { 691 if (!active && (s->flags & __OBJECT_POISON) && 692 (!check_bytes_and_report(s, page, p, "Poison", p, 693 POISON_FREE, s->objsize - 1) || 694 !check_bytes_and_report(s, page, p, "Poison", 695 p + s->objsize -1, POISON_END, 1))) 696 return 0; 697 /* 698 * check_pad_bytes cleans up on its own. 699 */ 700 check_pad_bytes(s, page, p); 701 } 702 703 if (!s->offset && active) 704 /* 705 * Object and freepointer overlap. Cannot check 706 * freepointer while object is allocated. 707 */ 708 return 1; 709 710 /* Check free pointer validity */ 711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 712 object_err(s, page, p, "Freepointer corrupt"); 713 /* 714 * No choice but to zap it and thus loose the remainder 715 * of the free objects in this slab. May cause 716 * another error because the object count is now wrong. 717 */ 718 set_freepointer(s, p, NULL); 719 return 0; 720 } 721 return 1; 722 } 723 724 static int check_slab(struct kmem_cache *s, struct page *page) 725 { 726 VM_BUG_ON(!irqs_disabled()); 727 728 if (!PageSlab(page)) { 729 slab_err(s, page, "Not a valid slab page"); 730 return 0; 731 } 732 if (page->offset * sizeof(void *) != s->offset) { 733 slab_err(s, page, "Corrupted offset %lu", 734 (unsigned long)(page->offset * sizeof(void *))); 735 return 0; 736 } 737 if (page->inuse > s->objects) { 738 slab_err(s, page, "inuse %u > max %u", 739 s->name, page->inuse, s->objects); 740 return 0; 741 } 742 /* Slab_pad_check fixes things up after itself */ 743 slab_pad_check(s, page); 744 return 1; 745 } 746 747 /* 748 * Determine if a certain object on a page is on the freelist. Must hold the 749 * slab lock to guarantee that the chains are in a consistent state. 750 */ 751 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 752 { 753 int nr = 0; 754 void *fp = page->freelist; 755 void *object = NULL; 756 757 while (fp && nr <= s->objects) { 758 if (fp == search) 759 return 1; 760 if (!check_valid_pointer(s, page, fp)) { 761 if (object) { 762 object_err(s, page, object, 763 "Freechain corrupt"); 764 set_freepointer(s, object, NULL); 765 break; 766 } else { 767 slab_err(s, page, "Freepointer corrupt"); 768 page->freelist = NULL; 769 page->inuse = s->objects; 770 slab_fix(s, "Freelist cleared"); 771 return 0; 772 } 773 break; 774 } 775 object = fp; 776 fp = get_freepointer(s, object); 777 nr++; 778 } 779 780 if (page->inuse != s->objects - nr) { 781 slab_err(s, page, "Wrong object count. Counter is %d but " 782 "counted were %d", page->inuse, s->objects - nr); 783 page->inuse = s->objects - nr; 784 slab_fix(s, "Object count adjusted."); 785 } 786 return search == NULL; 787 } 788 789 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) 790 { 791 if (s->flags & SLAB_TRACE) { 792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 793 s->name, 794 alloc ? "alloc" : "free", 795 object, page->inuse, 796 page->freelist); 797 798 if (!alloc) 799 print_section("Object", (void *)object, s->objsize); 800 801 dump_stack(); 802 } 803 } 804 805 /* 806 * Tracking of fully allocated slabs for debugging purposes. 807 */ 808 static void add_full(struct kmem_cache_node *n, struct page *page) 809 { 810 spin_lock(&n->list_lock); 811 list_add(&page->lru, &n->full); 812 spin_unlock(&n->list_lock); 813 } 814 815 static void remove_full(struct kmem_cache *s, struct page *page) 816 { 817 struct kmem_cache_node *n; 818 819 if (!(s->flags & SLAB_STORE_USER)) 820 return; 821 822 n = get_node(s, page_to_nid(page)); 823 824 spin_lock(&n->list_lock); 825 list_del(&page->lru); 826 spin_unlock(&n->list_lock); 827 } 828 829 static void setup_object_debug(struct kmem_cache *s, struct page *page, 830 void *object) 831 { 832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 833 return; 834 835 init_object(s, object, 0); 836 init_tracking(s, object); 837 } 838 839 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 840 void *object, void *addr) 841 { 842 if (!check_slab(s, page)) 843 goto bad; 844 845 if (object && !on_freelist(s, page, object)) { 846 object_err(s, page, object, "Object already allocated"); 847 goto bad; 848 } 849 850 if (!check_valid_pointer(s, page, object)) { 851 object_err(s, page, object, "Freelist Pointer check fails"); 852 goto bad; 853 } 854 855 if (object && !check_object(s, page, object, 0)) 856 goto bad; 857 858 /* Success perform special debug activities for allocs */ 859 if (s->flags & SLAB_STORE_USER) 860 set_track(s, object, TRACK_ALLOC, addr); 861 trace(s, page, object, 1); 862 init_object(s, object, 1); 863 return 1; 864 865 bad: 866 if (PageSlab(page)) { 867 /* 868 * If this is a slab page then lets do the best we can 869 * to avoid issues in the future. Marking all objects 870 * as used avoids touching the remaining objects. 871 */ 872 slab_fix(s, "Marking all objects used"); 873 page->inuse = s->objects; 874 page->freelist = NULL; 875 /* Fix up fields that may be corrupted */ 876 page->offset = s->offset / sizeof(void *); 877 } 878 return 0; 879 } 880 881 static int free_debug_processing(struct kmem_cache *s, struct page *page, 882 void *object, void *addr) 883 { 884 if (!check_slab(s, page)) 885 goto fail; 886 887 if (!check_valid_pointer(s, page, object)) { 888 slab_err(s, page, "Invalid object pointer 0x%p", object); 889 goto fail; 890 } 891 892 if (on_freelist(s, page, object)) { 893 object_err(s, page, object, "Object already free"); 894 goto fail; 895 } 896 897 if (!check_object(s, page, object, 1)) 898 return 0; 899 900 if (unlikely(s != page->slab)) { 901 if (!PageSlab(page)) 902 slab_err(s, page, "Attempt to free object(0x%p) " 903 "outside of slab", object); 904 else 905 if (!page->slab) { 906 printk(KERN_ERR 907 "SLUB <none>: no slab for object 0x%p.\n", 908 object); 909 dump_stack(); 910 } 911 else 912 object_err(s, page, object, 913 "page slab pointer corrupt."); 914 goto fail; 915 } 916 917 /* Special debug activities for freeing objects */ 918 if (!SlabFrozen(page) && !page->freelist) 919 remove_full(s, page); 920 if (s->flags & SLAB_STORE_USER) 921 set_track(s, object, TRACK_FREE, addr); 922 trace(s, page, object, 0); 923 init_object(s, object, 0); 924 return 1; 925 926 fail: 927 slab_fix(s, "Object at 0x%p not freed", object); 928 return 0; 929 } 930 931 static int __init setup_slub_debug(char *str) 932 { 933 slub_debug = DEBUG_DEFAULT_FLAGS; 934 if (*str++ != '=' || !*str) 935 /* 936 * No options specified. Switch on full debugging. 937 */ 938 goto out; 939 940 if (*str == ',') 941 /* 942 * No options but restriction on slabs. This means full 943 * debugging for slabs matching a pattern. 944 */ 945 goto check_slabs; 946 947 slub_debug = 0; 948 if (*str == '-') 949 /* 950 * Switch off all debugging measures. 951 */ 952 goto out; 953 954 /* 955 * Determine which debug features should be switched on 956 */ 957 for ( ;*str && *str != ','; str++) { 958 switch (tolower(*str)) { 959 case 'f': 960 slub_debug |= SLAB_DEBUG_FREE; 961 break; 962 case 'z': 963 slub_debug |= SLAB_RED_ZONE; 964 break; 965 case 'p': 966 slub_debug |= SLAB_POISON; 967 break; 968 case 'u': 969 slub_debug |= SLAB_STORE_USER; 970 break; 971 case 't': 972 slub_debug |= SLAB_TRACE; 973 break; 974 default: 975 printk(KERN_ERR "slub_debug option '%c' " 976 "unknown. skipped\n",*str); 977 } 978 } 979 980 check_slabs: 981 if (*str == ',') 982 slub_debug_slabs = str + 1; 983 out: 984 return 1; 985 } 986 987 __setup("slub_debug", setup_slub_debug); 988 989 static unsigned long kmem_cache_flags(unsigned long objsize, 990 unsigned long flags, const char *name, 991 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 992 { 993 /* 994 * The page->offset field is only 16 bit wide. This is an offset 995 * in units of words from the beginning of an object. If the slab 996 * size is bigger then we cannot move the free pointer behind the 997 * object anymore. 998 * 999 * On 32 bit platforms the limit is 256k. On 64bit platforms 1000 * the limit is 512k. 1001 * 1002 * Debugging or ctor may create a need to move the free 1003 * pointer. Fail if this happens. 1004 */ 1005 if (objsize >= 65535 * sizeof(void *)) { 1006 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | 1007 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); 1008 BUG_ON(ctor); 1009 } else { 1010 /* 1011 * Enable debugging if selected on the kernel commandline. 1012 */ 1013 if (slub_debug && (!slub_debug_slabs || 1014 strncmp(slub_debug_slabs, name, 1015 strlen(slub_debug_slabs)) == 0)) 1016 flags |= slub_debug; 1017 } 1018 1019 return flags; 1020 } 1021 #else 1022 static inline void setup_object_debug(struct kmem_cache *s, 1023 struct page *page, void *object) {} 1024 1025 static inline int alloc_debug_processing(struct kmem_cache *s, 1026 struct page *page, void *object, void *addr) { return 0; } 1027 1028 static inline int free_debug_processing(struct kmem_cache *s, 1029 struct page *page, void *object, void *addr) { return 0; } 1030 1031 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1032 { return 1; } 1033 static inline int check_object(struct kmem_cache *s, struct page *page, 1034 void *object, int active) { return 1; } 1035 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1036 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1037 unsigned long flags, const char *name, 1038 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 1039 { 1040 return flags; 1041 } 1042 #define slub_debug 0 1043 #endif 1044 /* 1045 * Slab allocation and freeing 1046 */ 1047 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1048 { 1049 struct page * page; 1050 int pages = 1 << s->order; 1051 1052 if (s->order) 1053 flags |= __GFP_COMP; 1054 1055 if (s->flags & SLAB_CACHE_DMA) 1056 flags |= SLUB_DMA; 1057 1058 if (node == -1) 1059 page = alloc_pages(flags, s->order); 1060 else 1061 page = alloc_pages_node(node, flags, s->order); 1062 1063 if (!page) 1064 return NULL; 1065 1066 mod_zone_page_state(page_zone(page), 1067 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1068 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1069 pages); 1070 1071 return page; 1072 } 1073 1074 static void setup_object(struct kmem_cache *s, struct page *page, 1075 void *object) 1076 { 1077 setup_object_debug(s, page, object); 1078 if (unlikely(s->ctor)) 1079 s->ctor(object, s, 0); 1080 } 1081 1082 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1083 { 1084 struct page *page; 1085 struct kmem_cache_node *n; 1086 void *start; 1087 void *end; 1088 void *last; 1089 void *p; 1090 1091 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK)); 1092 1093 if (flags & __GFP_WAIT) 1094 local_irq_enable(); 1095 1096 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node); 1097 if (!page) 1098 goto out; 1099 1100 n = get_node(s, page_to_nid(page)); 1101 if (n) 1102 atomic_long_inc(&n->nr_slabs); 1103 page->offset = s->offset / sizeof(void *); 1104 page->slab = s; 1105 page->flags |= 1 << PG_slab; 1106 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1107 SLAB_STORE_USER | SLAB_TRACE)) 1108 SetSlabDebug(page); 1109 1110 start = page_address(page); 1111 end = start + s->objects * s->size; 1112 1113 if (unlikely(s->flags & SLAB_POISON)) 1114 memset(start, POISON_INUSE, PAGE_SIZE << s->order); 1115 1116 last = start; 1117 for_each_object(p, s, start) { 1118 setup_object(s, page, last); 1119 set_freepointer(s, last, p); 1120 last = p; 1121 } 1122 setup_object(s, page, last); 1123 set_freepointer(s, last, NULL); 1124 1125 page->freelist = start; 1126 page->lockless_freelist = NULL; 1127 page->inuse = 0; 1128 out: 1129 if (flags & __GFP_WAIT) 1130 local_irq_disable(); 1131 return page; 1132 } 1133 1134 static void __free_slab(struct kmem_cache *s, struct page *page) 1135 { 1136 int pages = 1 << s->order; 1137 1138 if (unlikely(SlabDebug(page))) { 1139 void *p; 1140 1141 slab_pad_check(s, page); 1142 for_each_object(p, s, page_address(page)) 1143 check_object(s, page, p, 0); 1144 ClearSlabDebug(page); 1145 } 1146 1147 mod_zone_page_state(page_zone(page), 1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1150 - pages); 1151 1152 page->mapping = NULL; 1153 __free_pages(page, s->order); 1154 } 1155 1156 static void rcu_free_slab(struct rcu_head *h) 1157 { 1158 struct page *page; 1159 1160 page = container_of((struct list_head *)h, struct page, lru); 1161 __free_slab(page->slab, page); 1162 } 1163 1164 static void free_slab(struct kmem_cache *s, struct page *page) 1165 { 1166 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1167 /* 1168 * RCU free overloads the RCU head over the LRU 1169 */ 1170 struct rcu_head *head = (void *)&page->lru; 1171 1172 call_rcu(head, rcu_free_slab); 1173 } else 1174 __free_slab(s, page); 1175 } 1176 1177 static void discard_slab(struct kmem_cache *s, struct page *page) 1178 { 1179 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1180 1181 atomic_long_dec(&n->nr_slabs); 1182 reset_page_mapcount(page); 1183 __ClearPageSlab(page); 1184 free_slab(s, page); 1185 } 1186 1187 /* 1188 * Per slab locking using the pagelock 1189 */ 1190 static __always_inline void slab_lock(struct page *page) 1191 { 1192 bit_spin_lock(PG_locked, &page->flags); 1193 } 1194 1195 static __always_inline void slab_unlock(struct page *page) 1196 { 1197 bit_spin_unlock(PG_locked, &page->flags); 1198 } 1199 1200 static __always_inline int slab_trylock(struct page *page) 1201 { 1202 int rc = 1; 1203 1204 rc = bit_spin_trylock(PG_locked, &page->flags); 1205 return rc; 1206 } 1207 1208 /* 1209 * Management of partially allocated slabs 1210 */ 1211 static void add_partial_tail(struct kmem_cache_node *n, struct page *page) 1212 { 1213 spin_lock(&n->list_lock); 1214 n->nr_partial++; 1215 list_add_tail(&page->lru, &n->partial); 1216 spin_unlock(&n->list_lock); 1217 } 1218 1219 static void add_partial(struct kmem_cache_node *n, struct page *page) 1220 { 1221 spin_lock(&n->list_lock); 1222 n->nr_partial++; 1223 list_add(&page->lru, &n->partial); 1224 spin_unlock(&n->list_lock); 1225 } 1226 1227 static void remove_partial(struct kmem_cache *s, 1228 struct page *page) 1229 { 1230 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1231 1232 spin_lock(&n->list_lock); 1233 list_del(&page->lru); 1234 n->nr_partial--; 1235 spin_unlock(&n->list_lock); 1236 } 1237 1238 /* 1239 * Lock slab and remove from the partial list. 1240 * 1241 * Must hold list_lock. 1242 */ 1243 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) 1244 { 1245 if (slab_trylock(page)) { 1246 list_del(&page->lru); 1247 n->nr_partial--; 1248 SetSlabFrozen(page); 1249 return 1; 1250 } 1251 return 0; 1252 } 1253 1254 /* 1255 * Try to allocate a partial slab from a specific node. 1256 */ 1257 static struct page *get_partial_node(struct kmem_cache_node *n) 1258 { 1259 struct page *page; 1260 1261 /* 1262 * Racy check. If we mistakenly see no partial slabs then we 1263 * just allocate an empty slab. If we mistakenly try to get a 1264 * partial slab and there is none available then get_partials() 1265 * will return NULL. 1266 */ 1267 if (!n || !n->nr_partial) 1268 return NULL; 1269 1270 spin_lock(&n->list_lock); 1271 list_for_each_entry(page, &n->partial, lru) 1272 if (lock_and_freeze_slab(n, page)) 1273 goto out; 1274 page = NULL; 1275 out: 1276 spin_unlock(&n->list_lock); 1277 return page; 1278 } 1279 1280 /* 1281 * Get a page from somewhere. Search in increasing NUMA distances. 1282 */ 1283 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1284 { 1285 #ifdef CONFIG_NUMA 1286 struct zonelist *zonelist; 1287 struct zone **z; 1288 struct page *page; 1289 1290 /* 1291 * The defrag ratio allows a configuration of the tradeoffs between 1292 * inter node defragmentation and node local allocations. A lower 1293 * defrag_ratio increases the tendency to do local allocations 1294 * instead of attempting to obtain partial slabs from other nodes. 1295 * 1296 * If the defrag_ratio is set to 0 then kmalloc() always 1297 * returns node local objects. If the ratio is higher then kmalloc() 1298 * may return off node objects because partial slabs are obtained 1299 * from other nodes and filled up. 1300 * 1301 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes 1302 * defrag_ratio = 1000) then every (well almost) allocation will 1303 * first attempt to defrag slab caches on other nodes. This means 1304 * scanning over all nodes to look for partial slabs which may be 1305 * expensive if we do it every time we are trying to find a slab 1306 * with available objects. 1307 */ 1308 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) 1309 return NULL; 1310 1311 zonelist = &NODE_DATA(slab_node(current->mempolicy)) 1312 ->node_zonelists[gfp_zone(flags)]; 1313 for (z = zonelist->zones; *z; z++) { 1314 struct kmem_cache_node *n; 1315 1316 n = get_node(s, zone_to_nid(*z)); 1317 1318 if (n && cpuset_zone_allowed_hardwall(*z, flags) && 1319 n->nr_partial > MIN_PARTIAL) { 1320 page = get_partial_node(n); 1321 if (page) 1322 return page; 1323 } 1324 } 1325 #endif 1326 return NULL; 1327 } 1328 1329 /* 1330 * Get a partial page, lock it and return it. 1331 */ 1332 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1333 { 1334 struct page *page; 1335 int searchnode = (node == -1) ? numa_node_id() : node; 1336 1337 page = get_partial_node(get_node(s, searchnode)); 1338 if (page || (flags & __GFP_THISNODE)) 1339 return page; 1340 1341 return get_any_partial(s, flags); 1342 } 1343 1344 /* 1345 * Move a page back to the lists. 1346 * 1347 * Must be called with the slab lock held. 1348 * 1349 * On exit the slab lock will have been dropped. 1350 */ 1351 static void unfreeze_slab(struct kmem_cache *s, struct page *page) 1352 { 1353 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1354 1355 ClearSlabFrozen(page); 1356 if (page->inuse) { 1357 1358 if (page->freelist) 1359 add_partial(n, page); 1360 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) 1361 add_full(n, page); 1362 slab_unlock(page); 1363 1364 } else { 1365 if (n->nr_partial < MIN_PARTIAL) { 1366 /* 1367 * Adding an empty slab to the partial slabs in order 1368 * to avoid page allocator overhead. This slab needs 1369 * to come after the other slabs with objects in 1370 * order to fill them up. That way the size of the 1371 * partial list stays small. kmem_cache_shrink can 1372 * reclaim empty slabs from the partial list. 1373 */ 1374 add_partial_tail(n, page); 1375 slab_unlock(page); 1376 } else { 1377 slab_unlock(page); 1378 discard_slab(s, page); 1379 } 1380 } 1381 } 1382 1383 /* 1384 * Remove the cpu slab 1385 */ 1386 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu) 1387 { 1388 /* 1389 * Merge cpu freelist into freelist. Typically we get here 1390 * because both freelists are empty. So this is unlikely 1391 * to occur. 1392 */ 1393 while (unlikely(page->lockless_freelist)) { 1394 void **object; 1395 1396 /* Retrieve object from cpu_freelist */ 1397 object = page->lockless_freelist; 1398 page->lockless_freelist = page->lockless_freelist[page->offset]; 1399 1400 /* And put onto the regular freelist */ 1401 object[page->offset] = page->freelist; 1402 page->freelist = object; 1403 page->inuse--; 1404 } 1405 s->cpu_slab[cpu] = NULL; 1406 unfreeze_slab(s, page); 1407 } 1408 1409 static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu) 1410 { 1411 slab_lock(page); 1412 deactivate_slab(s, page, cpu); 1413 } 1414 1415 /* 1416 * Flush cpu slab. 1417 * Called from IPI handler with interrupts disabled. 1418 */ 1419 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1420 { 1421 struct page *page = s->cpu_slab[cpu]; 1422 1423 if (likely(page)) 1424 flush_slab(s, page, cpu); 1425 } 1426 1427 static void flush_cpu_slab(void *d) 1428 { 1429 struct kmem_cache *s = d; 1430 int cpu = smp_processor_id(); 1431 1432 __flush_cpu_slab(s, cpu); 1433 } 1434 1435 static void flush_all(struct kmem_cache *s) 1436 { 1437 #ifdef CONFIG_SMP 1438 on_each_cpu(flush_cpu_slab, s, 1, 1); 1439 #else 1440 unsigned long flags; 1441 1442 local_irq_save(flags); 1443 flush_cpu_slab(s); 1444 local_irq_restore(flags); 1445 #endif 1446 } 1447 1448 /* 1449 * Slow path. The lockless freelist is empty or we need to perform 1450 * debugging duties. 1451 * 1452 * Interrupts are disabled. 1453 * 1454 * Processing is still very fast if new objects have been freed to the 1455 * regular freelist. In that case we simply take over the regular freelist 1456 * as the lockless freelist and zap the regular freelist. 1457 * 1458 * If that is not working then we fall back to the partial lists. We take the 1459 * first element of the freelist as the object to allocate now and move the 1460 * rest of the freelist to the lockless freelist. 1461 * 1462 * And if we were unable to get a new slab from the partial slab lists then 1463 * we need to allocate a new slab. This is slowest path since we may sleep. 1464 */ 1465 static void *__slab_alloc(struct kmem_cache *s, 1466 gfp_t gfpflags, int node, void *addr, struct page *page) 1467 { 1468 void **object; 1469 int cpu = smp_processor_id(); 1470 1471 if (!page) 1472 goto new_slab; 1473 1474 slab_lock(page); 1475 if (unlikely(node != -1 && page_to_nid(page) != node)) 1476 goto another_slab; 1477 load_freelist: 1478 object = page->freelist; 1479 if (unlikely(!object)) 1480 goto another_slab; 1481 if (unlikely(SlabDebug(page))) 1482 goto debug; 1483 1484 object = page->freelist; 1485 page->lockless_freelist = object[page->offset]; 1486 page->inuse = s->objects; 1487 page->freelist = NULL; 1488 slab_unlock(page); 1489 return object; 1490 1491 another_slab: 1492 deactivate_slab(s, page, cpu); 1493 1494 new_slab: 1495 page = get_partial(s, gfpflags, node); 1496 if (page) { 1497 s->cpu_slab[cpu] = page; 1498 goto load_freelist; 1499 } 1500 1501 page = new_slab(s, gfpflags, node); 1502 if (page) { 1503 cpu = smp_processor_id(); 1504 if (s->cpu_slab[cpu]) { 1505 /* 1506 * Someone else populated the cpu_slab while we 1507 * enabled interrupts, or we have gotten scheduled 1508 * on another cpu. The page may not be on the 1509 * requested node even if __GFP_THISNODE was 1510 * specified. So we need to recheck. 1511 */ 1512 if (node == -1 || 1513 page_to_nid(s->cpu_slab[cpu]) == node) { 1514 /* 1515 * Current cpuslab is acceptable and we 1516 * want the current one since its cache hot 1517 */ 1518 discard_slab(s, page); 1519 page = s->cpu_slab[cpu]; 1520 slab_lock(page); 1521 goto load_freelist; 1522 } 1523 /* New slab does not fit our expectations */ 1524 flush_slab(s, s->cpu_slab[cpu], cpu); 1525 } 1526 slab_lock(page); 1527 SetSlabFrozen(page); 1528 s->cpu_slab[cpu] = page; 1529 goto load_freelist; 1530 } 1531 return NULL; 1532 debug: 1533 object = page->freelist; 1534 if (!alloc_debug_processing(s, page, object, addr)) 1535 goto another_slab; 1536 1537 page->inuse++; 1538 page->freelist = object[page->offset]; 1539 slab_unlock(page); 1540 return object; 1541 } 1542 1543 /* 1544 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1545 * have the fastpath folded into their functions. So no function call 1546 * overhead for requests that can be satisfied on the fastpath. 1547 * 1548 * The fastpath works by first checking if the lockless freelist can be used. 1549 * If not then __slab_alloc is called for slow processing. 1550 * 1551 * Otherwise we can simply pick the next object from the lockless free list. 1552 */ 1553 static void __always_inline *slab_alloc(struct kmem_cache *s, 1554 gfp_t gfpflags, int node, void *addr) 1555 { 1556 struct page *page; 1557 void **object; 1558 unsigned long flags; 1559 1560 local_irq_save(flags); 1561 page = s->cpu_slab[smp_processor_id()]; 1562 if (unlikely(!page || !page->lockless_freelist || 1563 (node != -1 && page_to_nid(page) != node))) 1564 1565 object = __slab_alloc(s, gfpflags, node, addr, page); 1566 1567 else { 1568 object = page->lockless_freelist; 1569 page->lockless_freelist = object[page->offset]; 1570 } 1571 local_irq_restore(flags); 1572 1573 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1574 memset(object, 0, s->objsize); 1575 1576 return object; 1577 } 1578 1579 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1580 { 1581 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1582 } 1583 EXPORT_SYMBOL(kmem_cache_alloc); 1584 1585 #ifdef CONFIG_NUMA 1586 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1587 { 1588 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1589 } 1590 EXPORT_SYMBOL(kmem_cache_alloc_node); 1591 #endif 1592 1593 /* 1594 * Slow patch handling. This may still be called frequently since objects 1595 * have a longer lifetime than the cpu slabs in most processing loads. 1596 * 1597 * So we still attempt to reduce cache line usage. Just take the slab 1598 * lock and free the item. If there is no additional partial page 1599 * handling required then we can return immediately. 1600 */ 1601 static void __slab_free(struct kmem_cache *s, struct page *page, 1602 void *x, void *addr) 1603 { 1604 void *prior; 1605 void **object = (void *)x; 1606 1607 slab_lock(page); 1608 1609 if (unlikely(SlabDebug(page))) 1610 goto debug; 1611 checks_ok: 1612 prior = object[page->offset] = page->freelist; 1613 page->freelist = object; 1614 page->inuse--; 1615 1616 if (unlikely(SlabFrozen(page))) 1617 goto out_unlock; 1618 1619 if (unlikely(!page->inuse)) 1620 goto slab_empty; 1621 1622 /* 1623 * Objects left in the slab. If it 1624 * was not on the partial list before 1625 * then add it. 1626 */ 1627 if (unlikely(!prior)) 1628 add_partial(get_node(s, page_to_nid(page)), page); 1629 1630 out_unlock: 1631 slab_unlock(page); 1632 return; 1633 1634 slab_empty: 1635 if (prior) 1636 /* 1637 * Slab still on the partial list. 1638 */ 1639 remove_partial(s, page); 1640 1641 slab_unlock(page); 1642 discard_slab(s, page); 1643 return; 1644 1645 debug: 1646 if (!free_debug_processing(s, page, x, addr)) 1647 goto out_unlock; 1648 goto checks_ok; 1649 } 1650 1651 /* 1652 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1653 * can perform fastpath freeing without additional function calls. 1654 * 1655 * The fastpath is only possible if we are freeing to the current cpu slab 1656 * of this processor. This typically the case if we have just allocated 1657 * the item before. 1658 * 1659 * If fastpath is not possible then fall back to __slab_free where we deal 1660 * with all sorts of special processing. 1661 */ 1662 static void __always_inline slab_free(struct kmem_cache *s, 1663 struct page *page, void *x, void *addr) 1664 { 1665 void **object = (void *)x; 1666 unsigned long flags; 1667 1668 local_irq_save(flags); 1669 debug_check_no_locks_freed(object, s->objsize); 1670 if (likely(page == s->cpu_slab[smp_processor_id()] && 1671 !SlabDebug(page))) { 1672 object[page->offset] = page->lockless_freelist; 1673 page->lockless_freelist = object; 1674 } else 1675 __slab_free(s, page, x, addr); 1676 1677 local_irq_restore(flags); 1678 } 1679 1680 void kmem_cache_free(struct kmem_cache *s, void *x) 1681 { 1682 struct page *page; 1683 1684 page = virt_to_head_page(x); 1685 1686 slab_free(s, page, x, __builtin_return_address(0)); 1687 } 1688 EXPORT_SYMBOL(kmem_cache_free); 1689 1690 /* Figure out on which slab object the object resides */ 1691 static struct page *get_object_page(const void *x) 1692 { 1693 struct page *page = virt_to_head_page(x); 1694 1695 if (!PageSlab(page)) 1696 return NULL; 1697 1698 return page; 1699 } 1700 1701 /* 1702 * Object placement in a slab is made very easy because we always start at 1703 * offset 0. If we tune the size of the object to the alignment then we can 1704 * get the required alignment by putting one properly sized object after 1705 * another. 1706 * 1707 * Notice that the allocation order determines the sizes of the per cpu 1708 * caches. Each processor has always one slab available for allocations. 1709 * Increasing the allocation order reduces the number of times that slabs 1710 * must be moved on and off the partial lists and is therefore a factor in 1711 * locking overhead. 1712 */ 1713 1714 /* 1715 * Mininum / Maximum order of slab pages. This influences locking overhead 1716 * and slab fragmentation. A higher order reduces the number of partial slabs 1717 * and increases the number of allocations possible without having to 1718 * take the list_lock. 1719 */ 1720 static int slub_min_order; 1721 static int slub_max_order = DEFAULT_MAX_ORDER; 1722 static int slub_min_objects = DEFAULT_MIN_OBJECTS; 1723 1724 /* 1725 * Merge control. If this is set then no merging of slab caches will occur. 1726 * (Could be removed. This was introduced to pacify the merge skeptics.) 1727 */ 1728 static int slub_nomerge; 1729 1730 /* 1731 * Calculate the order of allocation given an slab object size. 1732 * 1733 * The order of allocation has significant impact on performance and other 1734 * system components. Generally order 0 allocations should be preferred since 1735 * order 0 does not cause fragmentation in the page allocator. Larger objects 1736 * be problematic to put into order 0 slabs because there may be too much 1737 * unused space left. We go to a higher order if more than 1/8th of the slab 1738 * would be wasted. 1739 * 1740 * In order to reach satisfactory performance we must ensure that a minimum 1741 * number of objects is in one slab. Otherwise we may generate too much 1742 * activity on the partial lists which requires taking the list_lock. This is 1743 * less a concern for large slabs though which are rarely used. 1744 * 1745 * slub_max_order specifies the order where we begin to stop considering the 1746 * number of objects in a slab as critical. If we reach slub_max_order then 1747 * we try to keep the page order as low as possible. So we accept more waste 1748 * of space in favor of a small page order. 1749 * 1750 * Higher order allocations also allow the placement of more objects in a 1751 * slab and thereby reduce object handling overhead. If the user has 1752 * requested a higher mininum order then we start with that one instead of 1753 * the smallest order which will fit the object. 1754 */ 1755 static inline int slab_order(int size, int min_objects, 1756 int max_order, int fract_leftover) 1757 { 1758 int order; 1759 int rem; 1760 int min_order = slub_min_order; 1761 1762 /* 1763 * If we would create too many object per slab then reduce 1764 * the slab order even if it goes below slub_min_order. 1765 */ 1766 while (min_order > 0 && 1767 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size) 1768 min_order--; 1769 1770 for (order = max(min_order, 1771 fls(min_objects * size - 1) - PAGE_SHIFT); 1772 order <= max_order; order++) { 1773 1774 unsigned long slab_size = PAGE_SIZE << order; 1775 1776 if (slab_size < min_objects * size) 1777 continue; 1778 1779 rem = slab_size % size; 1780 1781 if (rem <= slab_size / fract_leftover) 1782 break; 1783 1784 /* If the next size is too high then exit now */ 1785 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size) 1786 break; 1787 } 1788 1789 return order; 1790 } 1791 1792 static inline int calculate_order(int size) 1793 { 1794 int order; 1795 int min_objects; 1796 int fraction; 1797 1798 /* 1799 * Attempt to find best configuration for a slab. This 1800 * works by first attempting to generate a layout with 1801 * the best configuration and backing off gradually. 1802 * 1803 * First we reduce the acceptable waste in a slab. Then 1804 * we reduce the minimum objects required in a slab. 1805 */ 1806 min_objects = slub_min_objects; 1807 while (min_objects > 1) { 1808 fraction = 8; 1809 while (fraction >= 4) { 1810 order = slab_order(size, min_objects, 1811 slub_max_order, fraction); 1812 if (order <= slub_max_order) 1813 return order; 1814 fraction /= 2; 1815 } 1816 min_objects /= 2; 1817 } 1818 1819 /* 1820 * We were unable to place multiple objects in a slab. Now 1821 * lets see if we can place a single object there. 1822 */ 1823 order = slab_order(size, 1, slub_max_order, 1); 1824 if (order <= slub_max_order) 1825 return order; 1826 1827 /* 1828 * Doh this slab cannot be placed using slub_max_order. 1829 */ 1830 order = slab_order(size, 1, MAX_ORDER, 1); 1831 if (order <= MAX_ORDER) 1832 return order; 1833 return -ENOSYS; 1834 } 1835 1836 /* 1837 * Figure out what the alignment of the objects will be. 1838 */ 1839 static unsigned long calculate_alignment(unsigned long flags, 1840 unsigned long align, unsigned long size) 1841 { 1842 /* 1843 * If the user wants hardware cache aligned objects then 1844 * follow that suggestion if the object is sufficiently 1845 * large. 1846 * 1847 * The hardware cache alignment cannot override the 1848 * specified alignment though. If that is greater 1849 * then use it. 1850 */ 1851 if ((flags & SLAB_HWCACHE_ALIGN) && 1852 size > cache_line_size() / 2) 1853 return max_t(unsigned long, align, cache_line_size()); 1854 1855 if (align < ARCH_SLAB_MINALIGN) 1856 return ARCH_SLAB_MINALIGN; 1857 1858 return ALIGN(align, sizeof(void *)); 1859 } 1860 1861 static void init_kmem_cache_node(struct kmem_cache_node *n) 1862 { 1863 n->nr_partial = 0; 1864 atomic_long_set(&n->nr_slabs, 0); 1865 spin_lock_init(&n->list_lock); 1866 INIT_LIST_HEAD(&n->partial); 1867 #ifdef CONFIG_SLUB_DEBUG 1868 INIT_LIST_HEAD(&n->full); 1869 #endif 1870 } 1871 1872 #ifdef CONFIG_NUMA 1873 /* 1874 * No kmalloc_node yet so do it by hand. We know that this is the first 1875 * slab on the node for this slabcache. There are no concurrent accesses 1876 * possible. 1877 * 1878 * Note that this function only works on the kmalloc_node_cache 1879 * when allocating for the kmalloc_node_cache. 1880 */ 1881 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags, 1882 int node) 1883 { 1884 struct page *page; 1885 struct kmem_cache_node *n; 1886 1887 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 1888 1889 page = new_slab(kmalloc_caches, gfpflags, node); 1890 1891 BUG_ON(!page); 1892 if (page_to_nid(page) != node) { 1893 printk(KERN_ERR "SLUB: Unable to allocate memory from " 1894 "node %d\n", node); 1895 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 1896 "in order to be able to continue\n"); 1897 } 1898 1899 n = page->freelist; 1900 BUG_ON(!n); 1901 page->freelist = get_freepointer(kmalloc_caches, n); 1902 page->inuse++; 1903 kmalloc_caches->node[node] = n; 1904 #ifdef CONFIG_SLUB_DEBUG 1905 init_object(kmalloc_caches, n, 1); 1906 init_tracking(kmalloc_caches, n); 1907 #endif 1908 init_kmem_cache_node(n); 1909 atomic_long_inc(&n->nr_slabs); 1910 add_partial(n, page); 1911 1912 /* 1913 * new_slab() disables interupts. If we do not reenable interrupts here 1914 * then bootup would continue with interrupts disabled. 1915 */ 1916 local_irq_enable(); 1917 return n; 1918 } 1919 1920 static void free_kmem_cache_nodes(struct kmem_cache *s) 1921 { 1922 int node; 1923 1924 for_each_online_node(node) { 1925 struct kmem_cache_node *n = s->node[node]; 1926 if (n && n != &s->local_node) 1927 kmem_cache_free(kmalloc_caches, n); 1928 s->node[node] = NULL; 1929 } 1930 } 1931 1932 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 1933 { 1934 int node; 1935 int local_node; 1936 1937 if (slab_state >= UP) 1938 local_node = page_to_nid(virt_to_page(s)); 1939 else 1940 local_node = 0; 1941 1942 for_each_online_node(node) { 1943 struct kmem_cache_node *n; 1944 1945 if (local_node == node) 1946 n = &s->local_node; 1947 else { 1948 if (slab_state == DOWN) { 1949 n = early_kmem_cache_node_alloc(gfpflags, 1950 node); 1951 continue; 1952 } 1953 n = kmem_cache_alloc_node(kmalloc_caches, 1954 gfpflags, node); 1955 1956 if (!n) { 1957 free_kmem_cache_nodes(s); 1958 return 0; 1959 } 1960 1961 } 1962 s->node[node] = n; 1963 init_kmem_cache_node(n); 1964 } 1965 return 1; 1966 } 1967 #else 1968 static void free_kmem_cache_nodes(struct kmem_cache *s) 1969 { 1970 } 1971 1972 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 1973 { 1974 init_kmem_cache_node(&s->local_node); 1975 return 1; 1976 } 1977 #endif 1978 1979 /* 1980 * calculate_sizes() determines the order and the distribution of data within 1981 * a slab object. 1982 */ 1983 static int calculate_sizes(struct kmem_cache *s) 1984 { 1985 unsigned long flags = s->flags; 1986 unsigned long size = s->objsize; 1987 unsigned long align = s->align; 1988 1989 /* 1990 * Determine if we can poison the object itself. If the user of 1991 * the slab may touch the object after free or before allocation 1992 * then we should never poison the object itself. 1993 */ 1994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 1995 !s->ctor) 1996 s->flags |= __OBJECT_POISON; 1997 else 1998 s->flags &= ~__OBJECT_POISON; 1999 2000 /* 2001 * Round up object size to the next word boundary. We can only 2002 * place the free pointer at word boundaries and this determines 2003 * the possible location of the free pointer. 2004 */ 2005 size = ALIGN(size, sizeof(void *)); 2006 2007 #ifdef CONFIG_SLUB_DEBUG 2008 /* 2009 * If we are Redzoning then check if there is some space between the 2010 * end of the object and the free pointer. If not then add an 2011 * additional word to have some bytes to store Redzone information. 2012 */ 2013 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2014 size += sizeof(void *); 2015 #endif 2016 2017 /* 2018 * With that we have determined the number of bytes in actual use 2019 * by the object. This is the potential offset to the free pointer. 2020 */ 2021 s->inuse = size; 2022 2023 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2024 s->ctor)) { 2025 /* 2026 * Relocate free pointer after the object if it is not 2027 * permitted to overwrite the first word of the object on 2028 * kmem_cache_free. 2029 * 2030 * This is the case if we do RCU, have a constructor or 2031 * destructor or are poisoning the objects. 2032 */ 2033 s->offset = size; 2034 size += sizeof(void *); 2035 } 2036 2037 #ifdef CONFIG_SLUB_DEBUG 2038 if (flags & SLAB_STORE_USER) 2039 /* 2040 * Need to store information about allocs and frees after 2041 * the object. 2042 */ 2043 size += 2 * sizeof(struct track); 2044 2045 if (flags & SLAB_RED_ZONE) 2046 /* 2047 * Add some empty padding so that we can catch 2048 * overwrites from earlier objects rather than let 2049 * tracking information or the free pointer be 2050 * corrupted if an user writes before the start 2051 * of the object. 2052 */ 2053 size += sizeof(void *); 2054 #endif 2055 2056 /* 2057 * Determine the alignment based on various parameters that the 2058 * user specified and the dynamic determination of cache line size 2059 * on bootup. 2060 */ 2061 align = calculate_alignment(flags, align, s->objsize); 2062 2063 /* 2064 * SLUB stores one object immediately after another beginning from 2065 * offset 0. In order to align the objects we have to simply size 2066 * each object to conform to the alignment. 2067 */ 2068 size = ALIGN(size, align); 2069 s->size = size; 2070 2071 s->order = calculate_order(size); 2072 if (s->order < 0) 2073 return 0; 2074 2075 /* 2076 * Determine the number of objects per slab 2077 */ 2078 s->objects = (PAGE_SIZE << s->order) / size; 2079 2080 /* 2081 * Verify that the number of objects is within permitted limits. 2082 * The page->inuse field is only 16 bit wide! So we cannot have 2083 * more than 64k objects per slab. 2084 */ 2085 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB) 2086 return 0; 2087 return 1; 2088 2089 } 2090 2091 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2092 const char *name, size_t size, 2093 size_t align, unsigned long flags, 2094 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2095 { 2096 memset(s, 0, kmem_size); 2097 s->name = name; 2098 s->ctor = ctor; 2099 s->objsize = size; 2100 s->align = align; 2101 s->flags = kmem_cache_flags(size, flags, name, ctor); 2102 2103 if (!calculate_sizes(s)) 2104 goto error; 2105 2106 s->refcount = 1; 2107 #ifdef CONFIG_NUMA 2108 s->defrag_ratio = 100; 2109 #endif 2110 2111 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2112 return 1; 2113 error: 2114 if (flags & SLAB_PANIC) 2115 panic("Cannot create slab %s size=%lu realsize=%u " 2116 "order=%u offset=%u flags=%lx\n", 2117 s->name, (unsigned long)size, s->size, s->order, 2118 s->offset, flags); 2119 return 0; 2120 } 2121 2122 /* 2123 * Check if a given pointer is valid 2124 */ 2125 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2126 { 2127 struct page * page; 2128 2129 page = get_object_page(object); 2130 2131 if (!page || s != page->slab) 2132 /* No slab or wrong slab */ 2133 return 0; 2134 2135 if (!check_valid_pointer(s, page, object)) 2136 return 0; 2137 2138 /* 2139 * We could also check if the object is on the slabs freelist. 2140 * But this would be too expensive and it seems that the main 2141 * purpose of kmem_ptr_valid is to check if the object belongs 2142 * to a certain slab. 2143 */ 2144 return 1; 2145 } 2146 EXPORT_SYMBOL(kmem_ptr_validate); 2147 2148 /* 2149 * Determine the size of a slab object 2150 */ 2151 unsigned int kmem_cache_size(struct kmem_cache *s) 2152 { 2153 return s->objsize; 2154 } 2155 EXPORT_SYMBOL(kmem_cache_size); 2156 2157 const char *kmem_cache_name(struct kmem_cache *s) 2158 { 2159 return s->name; 2160 } 2161 EXPORT_SYMBOL(kmem_cache_name); 2162 2163 /* 2164 * Attempt to free all slabs on a node. Return the number of slabs we 2165 * were unable to free. 2166 */ 2167 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, 2168 struct list_head *list) 2169 { 2170 int slabs_inuse = 0; 2171 unsigned long flags; 2172 struct page *page, *h; 2173 2174 spin_lock_irqsave(&n->list_lock, flags); 2175 list_for_each_entry_safe(page, h, list, lru) 2176 if (!page->inuse) { 2177 list_del(&page->lru); 2178 discard_slab(s, page); 2179 } else 2180 slabs_inuse++; 2181 spin_unlock_irqrestore(&n->list_lock, flags); 2182 return slabs_inuse; 2183 } 2184 2185 /* 2186 * Release all resources used by a slab cache. 2187 */ 2188 static inline int kmem_cache_close(struct kmem_cache *s) 2189 { 2190 int node; 2191 2192 flush_all(s); 2193 2194 /* Attempt to free all objects */ 2195 for_each_online_node(node) { 2196 struct kmem_cache_node *n = get_node(s, node); 2197 2198 n->nr_partial -= free_list(s, n, &n->partial); 2199 if (atomic_long_read(&n->nr_slabs)) 2200 return 1; 2201 } 2202 free_kmem_cache_nodes(s); 2203 return 0; 2204 } 2205 2206 /* 2207 * Close a cache and release the kmem_cache structure 2208 * (must be used for caches created using kmem_cache_create) 2209 */ 2210 void kmem_cache_destroy(struct kmem_cache *s) 2211 { 2212 down_write(&slub_lock); 2213 s->refcount--; 2214 if (!s->refcount) { 2215 list_del(&s->list); 2216 up_write(&slub_lock); 2217 if (kmem_cache_close(s)) 2218 WARN_ON(1); 2219 sysfs_slab_remove(s); 2220 kfree(s); 2221 } else 2222 up_write(&slub_lock); 2223 } 2224 EXPORT_SYMBOL(kmem_cache_destroy); 2225 2226 /******************************************************************** 2227 * Kmalloc subsystem 2228 *******************************************************************/ 2229 2230 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned; 2231 EXPORT_SYMBOL(kmalloc_caches); 2232 2233 #ifdef CONFIG_ZONE_DMA 2234 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1]; 2235 #endif 2236 2237 static int __init setup_slub_min_order(char *str) 2238 { 2239 get_option (&str, &slub_min_order); 2240 2241 return 1; 2242 } 2243 2244 __setup("slub_min_order=", setup_slub_min_order); 2245 2246 static int __init setup_slub_max_order(char *str) 2247 { 2248 get_option (&str, &slub_max_order); 2249 2250 return 1; 2251 } 2252 2253 __setup("slub_max_order=", setup_slub_max_order); 2254 2255 static int __init setup_slub_min_objects(char *str) 2256 { 2257 get_option (&str, &slub_min_objects); 2258 2259 return 1; 2260 } 2261 2262 __setup("slub_min_objects=", setup_slub_min_objects); 2263 2264 static int __init setup_slub_nomerge(char *str) 2265 { 2266 slub_nomerge = 1; 2267 return 1; 2268 } 2269 2270 __setup("slub_nomerge", setup_slub_nomerge); 2271 2272 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2273 const char *name, int size, gfp_t gfp_flags) 2274 { 2275 unsigned int flags = 0; 2276 2277 if (gfp_flags & SLUB_DMA) 2278 flags = SLAB_CACHE_DMA; 2279 2280 down_write(&slub_lock); 2281 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2282 flags, NULL)) 2283 goto panic; 2284 2285 list_add(&s->list, &slab_caches); 2286 up_write(&slub_lock); 2287 if (sysfs_slab_add(s)) 2288 goto panic; 2289 return s; 2290 2291 panic: 2292 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2293 } 2294 2295 #ifdef CONFIG_ZONE_DMA 2296 2297 static void sysfs_add_func(struct work_struct *w) 2298 { 2299 struct kmem_cache *s; 2300 2301 down_write(&slub_lock); 2302 list_for_each_entry(s, &slab_caches, list) { 2303 if (s->flags & __SYSFS_ADD_DEFERRED) { 2304 s->flags &= ~__SYSFS_ADD_DEFERRED; 2305 sysfs_slab_add(s); 2306 } 2307 } 2308 up_write(&slub_lock); 2309 } 2310 2311 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2312 2313 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2314 { 2315 struct kmem_cache *s; 2316 char *text; 2317 size_t realsize; 2318 2319 s = kmalloc_caches_dma[index]; 2320 if (s) 2321 return s; 2322 2323 /* Dynamically create dma cache */ 2324 if (flags & __GFP_WAIT) 2325 down_write(&slub_lock); 2326 else { 2327 if (!down_write_trylock(&slub_lock)) 2328 goto out; 2329 } 2330 2331 if (kmalloc_caches_dma[index]) 2332 goto unlock_out; 2333 2334 realsize = kmalloc_caches[index].objsize; 2335 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize), 2336 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2337 2338 if (!s || !text || !kmem_cache_open(s, flags, text, 2339 realsize, ARCH_KMALLOC_MINALIGN, 2340 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2341 kfree(s); 2342 kfree(text); 2343 goto unlock_out; 2344 } 2345 2346 list_add(&s->list, &slab_caches); 2347 kmalloc_caches_dma[index] = s; 2348 2349 schedule_work(&sysfs_add_work); 2350 2351 unlock_out: 2352 up_write(&slub_lock); 2353 out: 2354 return kmalloc_caches_dma[index]; 2355 } 2356 #endif 2357 2358 /* 2359 * Conversion table for small slabs sizes / 8 to the index in the 2360 * kmalloc array. This is necessary for slabs < 192 since we have non power 2361 * of two cache sizes there. The size of larger slabs can be determined using 2362 * fls. 2363 */ 2364 static s8 size_index[24] = { 2365 3, /* 8 */ 2366 4, /* 16 */ 2367 5, /* 24 */ 2368 5, /* 32 */ 2369 6, /* 40 */ 2370 6, /* 48 */ 2371 6, /* 56 */ 2372 6, /* 64 */ 2373 1, /* 72 */ 2374 1, /* 80 */ 2375 1, /* 88 */ 2376 1, /* 96 */ 2377 7, /* 104 */ 2378 7, /* 112 */ 2379 7, /* 120 */ 2380 7, /* 128 */ 2381 2, /* 136 */ 2382 2, /* 144 */ 2383 2, /* 152 */ 2384 2, /* 160 */ 2385 2, /* 168 */ 2386 2, /* 176 */ 2387 2, /* 184 */ 2388 2 /* 192 */ 2389 }; 2390 2391 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2392 { 2393 int index; 2394 2395 if (size <= 192) { 2396 if (!size) 2397 return ZERO_SIZE_PTR; 2398 2399 index = size_index[(size - 1) / 8]; 2400 } else { 2401 if (size > KMALLOC_MAX_SIZE) 2402 return NULL; 2403 2404 index = fls(size - 1); 2405 } 2406 2407 #ifdef CONFIG_ZONE_DMA 2408 if (unlikely((flags & SLUB_DMA))) 2409 return dma_kmalloc_cache(index, flags); 2410 2411 #endif 2412 return &kmalloc_caches[index]; 2413 } 2414 2415 void *__kmalloc(size_t size, gfp_t flags) 2416 { 2417 struct kmem_cache *s = get_slab(size, flags); 2418 2419 if (ZERO_OR_NULL_PTR(s)) 2420 return s; 2421 2422 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2423 } 2424 EXPORT_SYMBOL(__kmalloc); 2425 2426 #ifdef CONFIG_NUMA 2427 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2428 { 2429 struct kmem_cache *s = get_slab(size, flags); 2430 2431 if (ZERO_OR_NULL_PTR(s)) 2432 return s; 2433 2434 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2435 } 2436 EXPORT_SYMBOL(__kmalloc_node); 2437 #endif 2438 2439 size_t ksize(const void *object) 2440 { 2441 struct page *page; 2442 struct kmem_cache *s; 2443 2444 if (ZERO_OR_NULL_PTR(object)) 2445 return 0; 2446 2447 page = get_object_page(object); 2448 BUG_ON(!page); 2449 s = page->slab; 2450 BUG_ON(!s); 2451 2452 /* 2453 * Debugging requires use of the padding between object 2454 * and whatever may come after it. 2455 */ 2456 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2457 return s->objsize; 2458 2459 /* 2460 * If we have the need to store the freelist pointer 2461 * back there or track user information then we can 2462 * only use the space before that information. 2463 */ 2464 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2465 return s->inuse; 2466 2467 /* 2468 * Else we can use all the padding etc for the allocation 2469 */ 2470 return s->size; 2471 } 2472 EXPORT_SYMBOL(ksize); 2473 2474 void kfree(const void *x) 2475 { 2476 struct kmem_cache *s; 2477 struct page *page; 2478 2479 /* 2480 * This has to be an unsigned comparison. According to Linus 2481 * some gcc version treat a pointer as a signed entity. Then 2482 * this comparison would be true for all "negative" pointers 2483 * (which would cover the whole upper half of the address space). 2484 */ 2485 if (ZERO_OR_NULL_PTR(x)) 2486 return; 2487 2488 page = virt_to_head_page(x); 2489 s = page->slab; 2490 2491 slab_free(s, page, (void *)x, __builtin_return_address(0)); 2492 } 2493 EXPORT_SYMBOL(kfree); 2494 2495 /* 2496 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2497 * the remaining slabs by the number of items in use. The slabs with the 2498 * most items in use come first. New allocations will then fill those up 2499 * and thus they can be removed from the partial lists. 2500 * 2501 * The slabs with the least items are placed last. This results in them 2502 * being allocated from last increasing the chance that the last objects 2503 * are freed in them. 2504 */ 2505 int kmem_cache_shrink(struct kmem_cache *s) 2506 { 2507 int node; 2508 int i; 2509 struct kmem_cache_node *n; 2510 struct page *page; 2511 struct page *t; 2512 struct list_head *slabs_by_inuse = 2513 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); 2514 unsigned long flags; 2515 2516 if (!slabs_by_inuse) 2517 return -ENOMEM; 2518 2519 flush_all(s); 2520 for_each_online_node(node) { 2521 n = get_node(s, node); 2522 2523 if (!n->nr_partial) 2524 continue; 2525 2526 for (i = 0; i < s->objects; i++) 2527 INIT_LIST_HEAD(slabs_by_inuse + i); 2528 2529 spin_lock_irqsave(&n->list_lock, flags); 2530 2531 /* 2532 * Build lists indexed by the items in use in each slab. 2533 * 2534 * Note that concurrent frees may occur while we hold the 2535 * list_lock. page->inuse here is the upper limit. 2536 */ 2537 list_for_each_entry_safe(page, t, &n->partial, lru) { 2538 if (!page->inuse && slab_trylock(page)) { 2539 /* 2540 * Must hold slab lock here because slab_free 2541 * may have freed the last object and be 2542 * waiting to release the slab. 2543 */ 2544 list_del(&page->lru); 2545 n->nr_partial--; 2546 slab_unlock(page); 2547 discard_slab(s, page); 2548 } else { 2549 list_move(&page->lru, 2550 slabs_by_inuse + page->inuse); 2551 } 2552 } 2553 2554 /* 2555 * Rebuild the partial list with the slabs filled up most 2556 * first and the least used slabs at the end. 2557 */ 2558 for (i = s->objects - 1; i >= 0; i--) 2559 list_splice(slabs_by_inuse + i, n->partial.prev); 2560 2561 spin_unlock_irqrestore(&n->list_lock, flags); 2562 } 2563 2564 kfree(slabs_by_inuse); 2565 return 0; 2566 } 2567 EXPORT_SYMBOL(kmem_cache_shrink); 2568 2569 /******************************************************************** 2570 * Basic setup of slabs 2571 *******************************************************************/ 2572 2573 void __init kmem_cache_init(void) 2574 { 2575 int i; 2576 int caches = 0; 2577 2578 #ifdef CONFIG_NUMA 2579 /* 2580 * Must first have the slab cache available for the allocations of the 2581 * struct kmem_cache_node's. There is special bootstrap code in 2582 * kmem_cache_open for slab_state == DOWN. 2583 */ 2584 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2585 sizeof(struct kmem_cache_node), GFP_KERNEL); 2586 kmalloc_caches[0].refcount = -1; 2587 caches++; 2588 #endif 2589 2590 /* Able to allocate the per node structures */ 2591 slab_state = PARTIAL; 2592 2593 /* Caches that are not of the two-to-the-power-of size */ 2594 if (KMALLOC_MIN_SIZE <= 64) { 2595 create_kmalloc_cache(&kmalloc_caches[1], 2596 "kmalloc-96", 96, GFP_KERNEL); 2597 caches++; 2598 } 2599 if (KMALLOC_MIN_SIZE <= 128) { 2600 create_kmalloc_cache(&kmalloc_caches[2], 2601 "kmalloc-192", 192, GFP_KERNEL); 2602 caches++; 2603 } 2604 2605 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 2606 create_kmalloc_cache(&kmalloc_caches[i], 2607 "kmalloc", 1 << i, GFP_KERNEL); 2608 caches++; 2609 } 2610 2611 2612 /* 2613 * Patch up the size_index table if we have strange large alignment 2614 * requirements for the kmalloc array. This is only the case for 2615 * mips it seems. The standard arches will not generate any code here. 2616 * 2617 * Largest permitted alignment is 256 bytes due to the way we 2618 * handle the index determination for the smaller caches. 2619 * 2620 * Make sure that nothing crazy happens if someone starts tinkering 2621 * around with ARCH_KMALLOC_MINALIGN 2622 */ 2623 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 2624 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 2625 2626 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 2627 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 2628 2629 slab_state = UP; 2630 2631 /* Provide the correct kmalloc names now that the caches are up */ 2632 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 2633 kmalloc_caches[i]. name = 2634 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 2635 2636 #ifdef CONFIG_SMP 2637 register_cpu_notifier(&slab_notifier); 2638 #endif 2639 2640 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 2641 nr_cpu_ids * sizeof(struct page *); 2642 2643 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 2644 " CPUs=%d, Nodes=%d\n", 2645 caches, cache_line_size(), 2646 slub_min_order, slub_max_order, slub_min_objects, 2647 nr_cpu_ids, nr_node_ids); 2648 } 2649 2650 /* 2651 * Find a mergeable slab cache 2652 */ 2653 static int slab_unmergeable(struct kmem_cache *s) 2654 { 2655 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 2656 return 1; 2657 2658 if (s->ctor) 2659 return 1; 2660 2661 /* 2662 * We may have set a slab to be unmergeable during bootstrap. 2663 */ 2664 if (s->refcount < 0) 2665 return 1; 2666 2667 return 0; 2668 } 2669 2670 static struct kmem_cache *find_mergeable(size_t size, 2671 size_t align, unsigned long flags, const char *name, 2672 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2673 { 2674 struct kmem_cache *s; 2675 2676 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 2677 return NULL; 2678 2679 if (ctor) 2680 return NULL; 2681 2682 size = ALIGN(size, sizeof(void *)); 2683 align = calculate_alignment(flags, align, size); 2684 size = ALIGN(size, align); 2685 flags = kmem_cache_flags(size, flags, name, NULL); 2686 2687 list_for_each_entry(s, &slab_caches, list) { 2688 if (slab_unmergeable(s)) 2689 continue; 2690 2691 if (size > s->size) 2692 continue; 2693 2694 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 2695 continue; 2696 /* 2697 * Check if alignment is compatible. 2698 * Courtesy of Adrian Drzewiecki 2699 */ 2700 if ((s->size & ~(align -1)) != s->size) 2701 continue; 2702 2703 if (s->size - size >= sizeof(void *)) 2704 continue; 2705 2706 return s; 2707 } 2708 return NULL; 2709 } 2710 2711 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 2712 size_t align, unsigned long flags, 2713 void (*ctor)(void *, struct kmem_cache *, unsigned long)) 2714 { 2715 struct kmem_cache *s; 2716 2717 down_write(&slub_lock); 2718 s = find_mergeable(size, align, flags, name, ctor); 2719 if (s) { 2720 s->refcount++; 2721 /* 2722 * Adjust the object sizes so that we clear 2723 * the complete object on kzalloc. 2724 */ 2725 s->objsize = max(s->objsize, (int)size); 2726 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 2727 up_write(&slub_lock); 2728 if (sysfs_slab_alias(s, name)) 2729 goto err; 2730 return s; 2731 } 2732 s = kmalloc(kmem_size, GFP_KERNEL); 2733 if (s) { 2734 if (kmem_cache_open(s, GFP_KERNEL, name, 2735 size, align, flags, ctor)) { 2736 list_add(&s->list, &slab_caches); 2737 up_write(&slub_lock); 2738 if (sysfs_slab_add(s)) 2739 goto err; 2740 return s; 2741 } 2742 kfree(s); 2743 } 2744 up_write(&slub_lock); 2745 2746 err: 2747 if (flags & SLAB_PANIC) 2748 panic("Cannot create slabcache %s\n", name); 2749 else 2750 s = NULL; 2751 return s; 2752 } 2753 EXPORT_SYMBOL(kmem_cache_create); 2754 2755 #ifdef CONFIG_SMP 2756 /* 2757 * Use the cpu notifier to insure that the cpu slabs are flushed when 2758 * necessary. 2759 */ 2760 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 2761 unsigned long action, void *hcpu) 2762 { 2763 long cpu = (long)hcpu; 2764 struct kmem_cache *s; 2765 unsigned long flags; 2766 2767 switch (action) { 2768 case CPU_UP_CANCELED: 2769 case CPU_UP_CANCELED_FROZEN: 2770 case CPU_DEAD: 2771 case CPU_DEAD_FROZEN: 2772 down_read(&slub_lock); 2773 list_for_each_entry(s, &slab_caches, list) { 2774 local_irq_save(flags); 2775 __flush_cpu_slab(s, cpu); 2776 local_irq_restore(flags); 2777 } 2778 up_read(&slub_lock); 2779 break; 2780 default: 2781 break; 2782 } 2783 return NOTIFY_OK; 2784 } 2785 2786 static struct notifier_block __cpuinitdata slab_notifier = 2787 { &slab_cpuup_callback, NULL, 0 }; 2788 2789 #endif 2790 2791 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 2792 { 2793 struct kmem_cache *s = get_slab(size, gfpflags); 2794 2795 if (ZERO_OR_NULL_PTR(s)) 2796 return s; 2797 2798 return slab_alloc(s, gfpflags, -1, caller); 2799 } 2800 2801 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 2802 int node, void *caller) 2803 { 2804 struct kmem_cache *s = get_slab(size, gfpflags); 2805 2806 if (ZERO_OR_NULL_PTR(s)) 2807 return s; 2808 2809 return slab_alloc(s, gfpflags, node, caller); 2810 } 2811 2812 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) 2813 static int validate_slab(struct kmem_cache *s, struct page *page, 2814 unsigned long *map) 2815 { 2816 void *p; 2817 void *addr = page_address(page); 2818 2819 if (!check_slab(s, page) || 2820 !on_freelist(s, page, NULL)) 2821 return 0; 2822 2823 /* Now we know that a valid freelist exists */ 2824 bitmap_zero(map, s->objects); 2825 2826 for_each_free_object(p, s, page->freelist) { 2827 set_bit(slab_index(p, s, addr), map); 2828 if (!check_object(s, page, p, 0)) 2829 return 0; 2830 } 2831 2832 for_each_object(p, s, addr) 2833 if (!test_bit(slab_index(p, s, addr), map)) 2834 if (!check_object(s, page, p, 1)) 2835 return 0; 2836 return 1; 2837 } 2838 2839 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 2840 unsigned long *map) 2841 { 2842 if (slab_trylock(page)) { 2843 validate_slab(s, page, map); 2844 slab_unlock(page); 2845 } else 2846 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 2847 s->name, page); 2848 2849 if (s->flags & DEBUG_DEFAULT_FLAGS) { 2850 if (!SlabDebug(page)) 2851 printk(KERN_ERR "SLUB %s: SlabDebug not set " 2852 "on slab 0x%p\n", s->name, page); 2853 } else { 2854 if (SlabDebug(page)) 2855 printk(KERN_ERR "SLUB %s: SlabDebug set on " 2856 "slab 0x%p\n", s->name, page); 2857 } 2858 } 2859 2860 static int validate_slab_node(struct kmem_cache *s, 2861 struct kmem_cache_node *n, unsigned long *map) 2862 { 2863 unsigned long count = 0; 2864 struct page *page; 2865 unsigned long flags; 2866 2867 spin_lock_irqsave(&n->list_lock, flags); 2868 2869 list_for_each_entry(page, &n->partial, lru) { 2870 validate_slab_slab(s, page, map); 2871 count++; 2872 } 2873 if (count != n->nr_partial) 2874 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 2875 "counter=%ld\n", s->name, count, n->nr_partial); 2876 2877 if (!(s->flags & SLAB_STORE_USER)) 2878 goto out; 2879 2880 list_for_each_entry(page, &n->full, lru) { 2881 validate_slab_slab(s, page, map); 2882 count++; 2883 } 2884 if (count != atomic_long_read(&n->nr_slabs)) 2885 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 2886 "counter=%ld\n", s->name, count, 2887 atomic_long_read(&n->nr_slabs)); 2888 2889 out: 2890 spin_unlock_irqrestore(&n->list_lock, flags); 2891 return count; 2892 } 2893 2894 static long validate_slab_cache(struct kmem_cache *s) 2895 { 2896 int node; 2897 unsigned long count = 0; 2898 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * 2899 sizeof(unsigned long), GFP_KERNEL); 2900 2901 if (!map) 2902 return -ENOMEM; 2903 2904 flush_all(s); 2905 for_each_online_node(node) { 2906 struct kmem_cache_node *n = get_node(s, node); 2907 2908 count += validate_slab_node(s, n, map); 2909 } 2910 kfree(map); 2911 return count; 2912 } 2913 2914 #ifdef SLUB_RESILIENCY_TEST 2915 static void resiliency_test(void) 2916 { 2917 u8 *p; 2918 2919 printk(KERN_ERR "SLUB resiliency testing\n"); 2920 printk(KERN_ERR "-----------------------\n"); 2921 printk(KERN_ERR "A. Corruption after allocation\n"); 2922 2923 p = kzalloc(16, GFP_KERNEL); 2924 p[16] = 0x12; 2925 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 2926 " 0x12->0x%p\n\n", p + 16); 2927 2928 validate_slab_cache(kmalloc_caches + 4); 2929 2930 /* Hmmm... The next two are dangerous */ 2931 p = kzalloc(32, GFP_KERNEL); 2932 p[32 + sizeof(void *)] = 0x34; 2933 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 2934 " 0x34 -> -0x%p\n", p); 2935 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 2936 2937 validate_slab_cache(kmalloc_caches + 5); 2938 p = kzalloc(64, GFP_KERNEL); 2939 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 2940 *p = 0x56; 2941 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 2942 p); 2943 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); 2944 validate_slab_cache(kmalloc_caches + 6); 2945 2946 printk(KERN_ERR "\nB. Corruption after free\n"); 2947 p = kzalloc(128, GFP_KERNEL); 2948 kfree(p); 2949 *p = 0x78; 2950 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 2951 validate_slab_cache(kmalloc_caches + 7); 2952 2953 p = kzalloc(256, GFP_KERNEL); 2954 kfree(p); 2955 p[50] = 0x9a; 2956 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 2957 validate_slab_cache(kmalloc_caches + 8); 2958 2959 p = kzalloc(512, GFP_KERNEL); 2960 kfree(p); 2961 p[512] = 0xab; 2962 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 2963 validate_slab_cache(kmalloc_caches + 9); 2964 } 2965 #else 2966 static void resiliency_test(void) {}; 2967 #endif 2968 2969 /* 2970 * Generate lists of code addresses where slabcache objects are allocated 2971 * and freed. 2972 */ 2973 2974 struct location { 2975 unsigned long count; 2976 void *addr; 2977 long long sum_time; 2978 long min_time; 2979 long max_time; 2980 long min_pid; 2981 long max_pid; 2982 cpumask_t cpus; 2983 nodemask_t nodes; 2984 }; 2985 2986 struct loc_track { 2987 unsigned long max; 2988 unsigned long count; 2989 struct location *loc; 2990 }; 2991 2992 static void free_loc_track(struct loc_track *t) 2993 { 2994 if (t->max) 2995 free_pages((unsigned long)t->loc, 2996 get_order(sizeof(struct location) * t->max)); 2997 } 2998 2999 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3000 { 3001 struct location *l; 3002 int order; 3003 3004 order = get_order(sizeof(struct location) * max); 3005 3006 l = (void *)__get_free_pages(flags, order); 3007 if (!l) 3008 return 0; 3009 3010 if (t->count) { 3011 memcpy(l, t->loc, sizeof(struct location) * t->count); 3012 free_loc_track(t); 3013 } 3014 t->max = max; 3015 t->loc = l; 3016 return 1; 3017 } 3018 3019 static int add_location(struct loc_track *t, struct kmem_cache *s, 3020 const struct track *track) 3021 { 3022 long start, end, pos; 3023 struct location *l; 3024 void *caddr; 3025 unsigned long age = jiffies - track->when; 3026 3027 start = -1; 3028 end = t->count; 3029 3030 for ( ; ; ) { 3031 pos = start + (end - start + 1) / 2; 3032 3033 /* 3034 * There is nothing at "end". If we end up there 3035 * we need to add something to before end. 3036 */ 3037 if (pos == end) 3038 break; 3039 3040 caddr = t->loc[pos].addr; 3041 if (track->addr == caddr) { 3042 3043 l = &t->loc[pos]; 3044 l->count++; 3045 if (track->when) { 3046 l->sum_time += age; 3047 if (age < l->min_time) 3048 l->min_time = age; 3049 if (age > l->max_time) 3050 l->max_time = age; 3051 3052 if (track->pid < l->min_pid) 3053 l->min_pid = track->pid; 3054 if (track->pid > l->max_pid) 3055 l->max_pid = track->pid; 3056 3057 cpu_set(track->cpu, l->cpus); 3058 } 3059 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3060 return 1; 3061 } 3062 3063 if (track->addr < caddr) 3064 end = pos; 3065 else 3066 start = pos; 3067 } 3068 3069 /* 3070 * Not found. Insert new tracking element. 3071 */ 3072 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3073 return 0; 3074 3075 l = t->loc + pos; 3076 if (pos < t->count) 3077 memmove(l + 1, l, 3078 (t->count - pos) * sizeof(struct location)); 3079 t->count++; 3080 l->count = 1; 3081 l->addr = track->addr; 3082 l->sum_time = age; 3083 l->min_time = age; 3084 l->max_time = age; 3085 l->min_pid = track->pid; 3086 l->max_pid = track->pid; 3087 cpus_clear(l->cpus); 3088 cpu_set(track->cpu, l->cpus); 3089 nodes_clear(l->nodes); 3090 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3091 return 1; 3092 } 3093 3094 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3095 struct page *page, enum track_item alloc) 3096 { 3097 void *addr = page_address(page); 3098 DECLARE_BITMAP(map, s->objects); 3099 void *p; 3100 3101 bitmap_zero(map, s->objects); 3102 for_each_free_object(p, s, page->freelist) 3103 set_bit(slab_index(p, s, addr), map); 3104 3105 for_each_object(p, s, addr) 3106 if (!test_bit(slab_index(p, s, addr), map)) 3107 add_location(t, s, get_track(s, p, alloc)); 3108 } 3109 3110 static int list_locations(struct kmem_cache *s, char *buf, 3111 enum track_item alloc) 3112 { 3113 int n = 0; 3114 unsigned long i; 3115 struct loc_track t = { 0, 0, NULL }; 3116 int node; 3117 3118 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3119 GFP_KERNEL)) 3120 return sprintf(buf, "Out of memory\n"); 3121 3122 /* Push back cpu slabs */ 3123 flush_all(s); 3124 3125 for_each_online_node(node) { 3126 struct kmem_cache_node *n = get_node(s, node); 3127 unsigned long flags; 3128 struct page *page; 3129 3130 if (!atomic_long_read(&n->nr_slabs)) 3131 continue; 3132 3133 spin_lock_irqsave(&n->list_lock, flags); 3134 list_for_each_entry(page, &n->partial, lru) 3135 process_slab(&t, s, page, alloc); 3136 list_for_each_entry(page, &n->full, lru) 3137 process_slab(&t, s, page, alloc); 3138 spin_unlock_irqrestore(&n->list_lock, flags); 3139 } 3140 3141 for (i = 0; i < t.count; i++) { 3142 struct location *l = &t.loc[i]; 3143 3144 if (n > PAGE_SIZE - 100) 3145 break; 3146 n += sprintf(buf + n, "%7ld ", l->count); 3147 3148 if (l->addr) 3149 n += sprint_symbol(buf + n, (unsigned long)l->addr); 3150 else 3151 n += sprintf(buf + n, "<not-available>"); 3152 3153 if (l->sum_time != l->min_time) { 3154 unsigned long remainder; 3155 3156 n += sprintf(buf + n, " age=%ld/%ld/%ld", 3157 l->min_time, 3158 div_long_long_rem(l->sum_time, l->count, &remainder), 3159 l->max_time); 3160 } else 3161 n += sprintf(buf + n, " age=%ld", 3162 l->min_time); 3163 3164 if (l->min_pid != l->max_pid) 3165 n += sprintf(buf + n, " pid=%ld-%ld", 3166 l->min_pid, l->max_pid); 3167 else 3168 n += sprintf(buf + n, " pid=%ld", 3169 l->min_pid); 3170 3171 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3172 n < PAGE_SIZE - 60) { 3173 n += sprintf(buf + n, " cpus="); 3174 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3175 l->cpus); 3176 } 3177 3178 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3179 n < PAGE_SIZE - 60) { 3180 n += sprintf(buf + n, " nodes="); 3181 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, 3182 l->nodes); 3183 } 3184 3185 n += sprintf(buf + n, "\n"); 3186 } 3187 3188 free_loc_track(&t); 3189 if (!t.count) 3190 n += sprintf(buf, "No data\n"); 3191 return n; 3192 } 3193 3194 static unsigned long count_partial(struct kmem_cache_node *n) 3195 { 3196 unsigned long flags; 3197 unsigned long x = 0; 3198 struct page *page; 3199 3200 spin_lock_irqsave(&n->list_lock, flags); 3201 list_for_each_entry(page, &n->partial, lru) 3202 x += page->inuse; 3203 spin_unlock_irqrestore(&n->list_lock, flags); 3204 return x; 3205 } 3206 3207 enum slab_stat_type { 3208 SL_FULL, 3209 SL_PARTIAL, 3210 SL_CPU, 3211 SL_OBJECTS 3212 }; 3213 3214 #define SO_FULL (1 << SL_FULL) 3215 #define SO_PARTIAL (1 << SL_PARTIAL) 3216 #define SO_CPU (1 << SL_CPU) 3217 #define SO_OBJECTS (1 << SL_OBJECTS) 3218 3219 static unsigned long slab_objects(struct kmem_cache *s, 3220 char *buf, unsigned long flags) 3221 { 3222 unsigned long total = 0; 3223 int cpu; 3224 int node; 3225 int x; 3226 unsigned long *nodes; 3227 unsigned long *per_cpu; 3228 3229 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3230 per_cpu = nodes + nr_node_ids; 3231 3232 for_each_possible_cpu(cpu) { 3233 struct page *page = s->cpu_slab[cpu]; 3234 int node; 3235 3236 if (page) { 3237 node = page_to_nid(page); 3238 if (flags & SO_CPU) { 3239 int x = 0; 3240 3241 if (flags & SO_OBJECTS) 3242 x = page->inuse; 3243 else 3244 x = 1; 3245 total += x; 3246 nodes[node] += x; 3247 } 3248 per_cpu[node]++; 3249 } 3250 } 3251 3252 for_each_online_node(node) { 3253 struct kmem_cache_node *n = get_node(s, node); 3254 3255 if (flags & SO_PARTIAL) { 3256 if (flags & SO_OBJECTS) 3257 x = count_partial(n); 3258 else 3259 x = n->nr_partial; 3260 total += x; 3261 nodes[node] += x; 3262 } 3263 3264 if (flags & SO_FULL) { 3265 int full_slabs = atomic_long_read(&n->nr_slabs) 3266 - per_cpu[node] 3267 - n->nr_partial; 3268 3269 if (flags & SO_OBJECTS) 3270 x = full_slabs * s->objects; 3271 else 3272 x = full_slabs; 3273 total += x; 3274 nodes[node] += x; 3275 } 3276 } 3277 3278 x = sprintf(buf, "%lu", total); 3279 #ifdef CONFIG_NUMA 3280 for_each_online_node(node) 3281 if (nodes[node]) 3282 x += sprintf(buf + x, " N%d=%lu", 3283 node, nodes[node]); 3284 #endif 3285 kfree(nodes); 3286 return x + sprintf(buf + x, "\n"); 3287 } 3288 3289 static int any_slab_objects(struct kmem_cache *s) 3290 { 3291 int node; 3292 int cpu; 3293 3294 for_each_possible_cpu(cpu) 3295 if (s->cpu_slab[cpu]) 3296 return 1; 3297 3298 for_each_node(node) { 3299 struct kmem_cache_node *n = get_node(s, node); 3300 3301 if (n->nr_partial || atomic_long_read(&n->nr_slabs)) 3302 return 1; 3303 } 3304 return 0; 3305 } 3306 3307 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3308 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3309 3310 struct slab_attribute { 3311 struct attribute attr; 3312 ssize_t (*show)(struct kmem_cache *s, char *buf); 3313 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3314 }; 3315 3316 #define SLAB_ATTR_RO(_name) \ 3317 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3318 3319 #define SLAB_ATTR(_name) \ 3320 static struct slab_attribute _name##_attr = \ 3321 __ATTR(_name, 0644, _name##_show, _name##_store) 3322 3323 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3324 { 3325 return sprintf(buf, "%d\n", s->size); 3326 } 3327 SLAB_ATTR_RO(slab_size); 3328 3329 static ssize_t align_show(struct kmem_cache *s, char *buf) 3330 { 3331 return sprintf(buf, "%d\n", s->align); 3332 } 3333 SLAB_ATTR_RO(align); 3334 3335 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3336 { 3337 return sprintf(buf, "%d\n", s->objsize); 3338 } 3339 SLAB_ATTR_RO(object_size); 3340 3341 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3342 { 3343 return sprintf(buf, "%d\n", s->objects); 3344 } 3345 SLAB_ATTR_RO(objs_per_slab); 3346 3347 static ssize_t order_show(struct kmem_cache *s, char *buf) 3348 { 3349 return sprintf(buf, "%d\n", s->order); 3350 } 3351 SLAB_ATTR_RO(order); 3352 3353 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3354 { 3355 if (s->ctor) { 3356 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3357 3358 return n + sprintf(buf + n, "\n"); 3359 } 3360 return 0; 3361 } 3362 SLAB_ATTR_RO(ctor); 3363 3364 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3365 { 3366 return sprintf(buf, "%d\n", s->refcount - 1); 3367 } 3368 SLAB_ATTR_RO(aliases); 3369 3370 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3371 { 3372 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); 3373 } 3374 SLAB_ATTR_RO(slabs); 3375 3376 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3377 { 3378 return slab_objects(s, buf, SO_PARTIAL); 3379 } 3380 SLAB_ATTR_RO(partial); 3381 3382 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3383 { 3384 return slab_objects(s, buf, SO_CPU); 3385 } 3386 SLAB_ATTR_RO(cpu_slabs); 3387 3388 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3389 { 3390 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); 3391 } 3392 SLAB_ATTR_RO(objects); 3393 3394 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3395 { 3396 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3397 } 3398 3399 static ssize_t sanity_checks_store(struct kmem_cache *s, 3400 const char *buf, size_t length) 3401 { 3402 s->flags &= ~SLAB_DEBUG_FREE; 3403 if (buf[0] == '1') 3404 s->flags |= SLAB_DEBUG_FREE; 3405 return length; 3406 } 3407 SLAB_ATTR(sanity_checks); 3408 3409 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3410 { 3411 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3412 } 3413 3414 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3415 size_t length) 3416 { 3417 s->flags &= ~SLAB_TRACE; 3418 if (buf[0] == '1') 3419 s->flags |= SLAB_TRACE; 3420 return length; 3421 } 3422 SLAB_ATTR(trace); 3423 3424 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3425 { 3426 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3427 } 3428 3429 static ssize_t reclaim_account_store(struct kmem_cache *s, 3430 const char *buf, size_t length) 3431 { 3432 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3433 if (buf[0] == '1') 3434 s->flags |= SLAB_RECLAIM_ACCOUNT; 3435 return length; 3436 } 3437 SLAB_ATTR(reclaim_account); 3438 3439 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3440 { 3441 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3442 } 3443 SLAB_ATTR_RO(hwcache_align); 3444 3445 #ifdef CONFIG_ZONE_DMA 3446 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3447 { 3448 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3449 } 3450 SLAB_ATTR_RO(cache_dma); 3451 #endif 3452 3453 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3454 { 3455 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3456 } 3457 SLAB_ATTR_RO(destroy_by_rcu); 3458 3459 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3460 { 3461 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3462 } 3463 3464 static ssize_t red_zone_store(struct kmem_cache *s, 3465 const char *buf, size_t length) 3466 { 3467 if (any_slab_objects(s)) 3468 return -EBUSY; 3469 3470 s->flags &= ~SLAB_RED_ZONE; 3471 if (buf[0] == '1') 3472 s->flags |= SLAB_RED_ZONE; 3473 calculate_sizes(s); 3474 return length; 3475 } 3476 SLAB_ATTR(red_zone); 3477 3478 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3479 { 3480 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3481 } 3482 3483 static ssize_t poison_store(struct kmem_cache *s, 3484 const char *buf, size_t length) 3485 { 3486 if (any_slab_objects(s)) 3487 return -EBUSY; 3488 3489 s->flags &= ~SLAB_POISON; 3490 if (buf[0] == '1') 3491 s->flags |= SLAB_POISON; 3492 calculate_sizes(s); 3493 return length; 3494 } 3495 SLAB_ATTR(poison); 3496 3497 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3498 { 3499 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3500 } 3501 3502 static ssize_t store_user_store(struct kmem_cache *s, 3503 const char *buf, size_t length) 3504 { 3505 if (any_slab_objects(s)) 3506 return -EBUSY; 3507 3508 s->flags &= ~SLAB_STORE_USER; 3509 if (buf[0] == '1') 3510 s->flags |= SLAB_STORE_USER; 3511 calculate_sizes(s); 3512 return length; 3513 } 3514 SLAB_ATTR(store_user); 3515 3516 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3517 { 3518 return 0; 3519 } 3520 3521 static ssize_t validate_store(struct kmem_cache *s, 3522 const char *buf, size_t length) 3523 { 3524 int ret = -EINVAL; 3525 3526 if (buf[0] == '1') { 3527 ret = validate_slab_cache(s); 3528 if (ret >= 0) 3529 ret = length; 3530 } 3531 return ret; 3532 } 3533 SLAB_ATTR(validate); 3534 3535 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 3536 { 3537 return 0; 3538 } 3539 3540 static ssize_t shrink_store(struct kmem_cache *s, 3541 const char *buf, size_t length) 3542 { 3543 if (buf[0] == '1') { 3544 int rc = kmem_cache_shrink(s); 3545 3546 if (rc) 3547 return rc; 3548 } else 3549 return -EINVAL; 3550 return length; 3551 } 3552 SLAB_ATTR(shrink); 3553 3554 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 3555 { 3556 if (!(s->flags & SLAB_STORE_USER)) 3557 return -ENOSYS; 3558 return list_locations(s, buf, TRACK_ALLOC); 3559 } 3560 SLAB_ATTR_RO(alloc_calls); 3561 3562 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 3563 { 3564 if (!(s->flags & SLAB_STORE_USER)) 3565 return -ENOSYS; 3566 return list_locations(s, buf, TRACK_FREE); 3567 } 3568 SLAB_ATTR_RO(free_calls); 3569 3570 #ifdef CONFIG_NUMA 3571 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) 3572 { 3573 return sprintf(buf, "%d\n", s->defrag_ratio / 10); 3574 } 3575 3576 static ssize_t defrag_ratio_store(struct kmem_cache *s, 3577 const char *buf, size_t length) 3578 { 3579 int n = simple_strtoul(buf, NULL, 10); 3580 3581 if (n < 100) 3582 s->defrag_ratio = n * 10; 3583 return length; 3584 } 3585 SLAB_ATTR(defrag_ratio); 3586 #endif 3587 3588 static struct attribute * slab_attrs[] = { 3589 &slab_size_attr.attr, 3590 &object_size_attr.attr, 3591 &objs_per_slab_attr.attr, 3592 &order_attr.attr, 3593 &objects_attr.attr, 3594 &slabs_attr.attr, 3595 &partial_attr.attr, 3596 &cpu_slabs_attr.attr, 3597 &ctor_attr.attr, 3598 &aliases_attr.attr, 3599 &align_attr.attr, 3600 &sanity_checks_attr.attr, 3601 &trace_attr.attr, 3602 &hwcache_align_attr.attr, 3603 &reclaim_account_attr.attr, 3604 &destroy_by_rcu_attr.attr, 3605 &red_zone_attr.attr, 3606 &poison_attr.attr, 3607 &store_user_attr.attr, 3608 &validate_attr.attr, 3609 &shrink_attr.attr, 3610 &alloc_calls_attr.attr, 3611 &free_calls_attr.attr, 3612 #ifdef CONFIG_ZONE_DMA 3613 &cache_dma_attr.attr, 3614 #endif 3615 #ifdef CONFIG_NUMA 3616 &defrag_ratio_attr.attr, 3617 #endif 3618 NULL 3619 }; 3620 3621 static struct attribute_group slab_attr_group = { 3622 .attrs = slab_attrs, 3623 }; 3624 3625 static ssize_t slab_attr_show(struct kobject *kobj, 3626 struct attribute *attr, 3627 char *buf) 3628 { 3629 struct slab_attribute *attribute; 3630 struct kmem_cache *s; 3631 int err; 3632 3633 attribute = to_slab_attr(attr); 3634 s = to_slab(kobj); 3635 3636 if (!attribute->show) 3637 return -EIO; 3638 3639 err = attribute->show(s, buf); 3640 3641 return err; 3642 } 3643 3644 static ssize_t slab_attr_store(struct kobject *kobj, 3645 struct attribute *attr, 3646 const char *buf, size_t len) 3647 { 3648 struct slab_attribute *attribute; 3649 struct kmem_cache *s; 3650 int err; 3651 3652 attribute = to_slab_attr(attr); 3653 s = to_slab(kobj); 3654 3655 if (!attribute->store) 3656 return -EIO; 3657 3658 err = attribute->store(s, buf, len); 3659 3660 return err; 3661 } 3662 3663 static struct sysfs_ops slab_sysfs_ops = { 3664 .show = slab_attr_show, 3665 .store = slab_attr_store, 3666 }; 3667 3668 static struct kobj_type slab_ktype = { 3669 .sysfs_ops = &slab_sysfs_ops, 3670 }; 3671 3672 static int uevent_filter(struct kset *kset, struct kobject *kobj) 3673 { 3674 struct kobj_type *ktype = get_ktype(kobj); 3675 3676 if (ktype == &slab_ktype) 3677 return 1; 3678 return 0; 3679 } 3680 3681 static struct kset_uevent_ops slab_uevent_ops = { 3682 .filter = uevent_filter, 3683 }; 3684 3685 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops); 3686 3687 #define ID_STR_LENGTH 64 3688 3689 /* Create a unique string id for a slab cache: 3690 * format 3691 * :[flags-]size:[memory address of kmemcache] 3692 */ 3693 static char *create_unique_id(struct kmem_cache *s) 3694 { 3695 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 3696 char *p = name; 3697 3698 BUG_ON(!name); 3699 3700 *p++ = ':'; 3701 /* 3702 * First flags affecting slabcache operations. We will only 3703 * get here for aliasable slabs so we do not need to support 3704 * too many flags. The flags here must cover all flags that 3705 * are matched during merging to guarantee that the id is 3706 * unique. 3707 */ 3708 if (s->flags & SLAB_CACHE_DMA) 3709 *p++ = 'd'; 3710 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3711 *p++ = 'a'; 3712 if (s->flags & SLAB_DEBUG_FREE) 3713 *p++ = 'F'; 3714 if (p != name + 1) 3715 *p++ = '-'; 3716 p += sprintf(p, "%07d", s->size); 3717 BUG_ON(p > name + ID_STR_LENGTH - 1); 3718 return name; 3719 } 3720 3721 static int sysfs_slab_add(struct kmem_cache *s) 3722 { 3723 int err; 3724 const char *name; 3725 int unmergeable; 3726 3727 if (slab_state < SYSFS) 3728 /* Defer until later */ 3729 return 0; 3730 3731 unmergeable = slab_unmergeable(s); 3732 if (unmergeable) { 3733 /* 3734 * Slabcache can never be merged so we can use the name proper. 3735 * This is typically the case for debug situations. In that 3736 * case we can catch duplicate names easily. 3737 */ 3738 sysfs_remove_link(&slab_subsys.kobj, s->name); 3739 name = s->name; 3740 } else { 3741 /* 3742 * Create a unique name for the slab as a target 3743 * for the symlinks. 3744 */ 3745 name = create_unique_id(s); 3746 } 3747 3748 kobj_set_kset_s(s, slab_subsys); 3749 kobject_set_name(&s->kobj, name); 3750 kobject_init(&s->kobj); 3751 err = kobject_add(&s->kobj); 3752 if (err) 3753 return err; 3754 3755 err = sysfs_create_group(&s->kobj, &slab_attr_group); 3756 if (err) 3757 return err; 3758 kobject_uevent(&s->kobj, KOBJ_ADD); 3759 if (!unmergeable) { 3760 /* Setup first alias */ 3761 sysfs_slab_alias(s, s->name); 3762 kfree(name); 3763 } 3764 return 0; 3765 } 3766 3767 static void sysfs_slab_remove(struct kmem_cache *s) 3768 { 3769 kobject_uevent(&s->kobj, KOBJ_REMOVE); 3770 kobject_del(&s->kobj); 3771 } 3772 3773 /* 3774 * Need to buffer aliases during bootup until sysfs becomes 3775 * available lest we loose that information. 3776 */ 3777 struct saved_alias { 3778 struct kmem_cache *s; 3779 const char *name; 3780 struct saved_alias *next; 3781 }; 3782 3783 static struct saved_alias *alias_list; 3784 3785 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 3786 { 3787 struct saved_alias *al; 3788 3789 if (slab_state == SYSFS) { 3790 /* 3791 * If we have a leftover link then remove it. 3792 */ 3793 sysfs_remove_link(&slab_subsys.kobj, name); 3794 return sysfs_create_link(&slab_subsys.kobj, 3795 &s->kobj, name); 3796 } 3797 3798 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 3799 if (!al) 3800 return -ENOMEM; 3801 3802 al->s = s; 3803 al->name = name; 3804 al->next = alias_list; 3805 alias_list = al; 3806 return 0; 3807 } 3808 3809 static int __init slab_sysfs_init(void) 3810 { 3811 struct kmem_cache *s; 3812 int err; 3813 3814 err = subsystem_register(&slab_subsys); 3815 if (err) { 3816 printk(KERN_ERR "Cannot register slab subsystem.\n"); 3817 return -ENOSYS; 3818 } 3819 3820 slab_state = SYSFS; 3821 3822 list_for_each_entry(s, &slab_caches, list) { 3823 err = sysfs_slab_add(s); 3824 if (err) 3825 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 3826 " to sysfs\n", s->name); 3827 } 3828 3829 while (alias_list) { 3830 struct saved_alias *al = alias_list; 3831 3832 alias_list = alias_list->next; 3833 err = sysfs_slab_alias(al->s, al->name); 3834 if (err) 3835 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 3836 " %s to sysfs\n", s->name); 3837 kfree(al); 3838 } 3839 3840 resiliency_test(); 3841 return 0; 3842 } 3843 3844 __initcall(slab_sysfs_init); 3845 #endif 3846