xref: /linux/mm/slub.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 
24 /*
25  * Lock order:
26  *   1. slab_lock(page)
27  *   2. slab->list_lock
28  *
29  *   The slab_lock protects operations on the object of a particular
30  *   slab and its metadata in the page struct. If the slab lock
31  *   has been taken then no allocations nor frees can be performed
32  *   on the objects in the slab nor can the slab be added or removed
33  *   from the partial or full lists since this would mean modifying
34  *   the page_struct of the slab.
35  *
36  *   The list_lock protects the partial and full list on each node and
37  *   the partial slab counter. If taken then no new slabs may be added or
38  *   removed from the lists nor make the number of partial slabs be modified.
39  *   (Note that the total number of slabs is an atomic value that may be
40  *   modified without taking the list lock).
41  *
42  *   The list_lock is a centralized lock and thus we avoid taking it as
43  *   much as possible. As long as SLUB does not have to handle partial
44  *   slabs, operations can continue without any centralized lock. F.e.
45  *   allocating a long series of objects that fill up slabs does not require
46  *   the list lock.
47  *
48  *   The lock order is sometimes inverted when we are trying to get a slab
49  *   off a list. We take the list_lock and then look for a page on the list
50  *   to use. While we do that objects in the slabs may be freed. We can
51  *   only operate on the slab if we have also taken the slab_lock. So we use
52  *   a slab_trylock() on the slab. If trylock was successful then no frees
53  *   can occur anymore and we can use the slab for allocations etc. If the
54  *   slab_trylock() does not succeed then frees are in progress in the slab and
55  *   we must stay away from it for a while since we may cause a bouncing
56  *   cacheline if we try to acquire the lock. So go onto the next slab.
57  *   If all pages are busy then we may allocate a new slab instead of reusing
58  *   a partial slab. A new slab has noone operating on it and thus there is
59  *   no danger of cacheline contention.
60  *
61  *   Interrupts are disabled during allocation and deallocation in order to
62  *   make the slab allocator safe to use in the context of an irq. In addition
63  *   interrupts are disabled to ensure that the processor does not change
64  *   while handling per_cpu slabs, due to kernel preemption.
65  *
66  * SLUB assigns one slab for allocation to each processor.
67  * Allocations only occur from these slabs called cpu slabs.
68  *
69  * Slabs with free elements are kept on a partial list and during regular
70  * operations no list for full slabs is used. If an object in a full slab is
71  * freed then the slab will show up again on the partial lists.
72  * We track full slabs for debugging purposes though because otherwise we
73  * cannot scan all objects.
74  *
75  * Slabs are freed when they become empty. Teardown and setup is
76  * minimal so we rely on the page allocators per cpu caches for
77  * fast frees and allocs.
78  *
79  * Overloading of page flags that are otherwise used for LRU management.
80  *
81  * PageActive 		The slab is frozen and exempt from list processing.
82  * 			This means that the slab is dedicated to a purpose
83  * 			such as satisfying allocations for a specific
84  * 			processor. Objects may be freed in the slab while
85  * 			it is frozen but slab_free will then skip the usual
86  * 			list operations. It is up to the processor holding
87  * 			the slab to integrate the slab into the slab lists
88  * 			when the slab is no longer needed.
89  *
90  * 			One use of this flag is to mark slabs that are
91  * 			used for allocations. Then such a slab becomes a cpu
92  * 			slab. The cpu slab may be equipped with an additional
93  * 			lockless_freelist that allows lockless access to
94  * 			free objects in addition to the regular freelist
95  * 			that requires the slab lock.
96  *
97  * PageError		Slab requires special handling due to debug
98  * 			options set. This moves	slab handling out of
99  * 			the fast path and disables lockless freelists.
100  */
101 
102 #define FROZEN (1 << PG_active)
103 
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109 
110 static inline int SlabFrozen(struct page *page)
111 {
112 	return page->flags & FROZEN;
113 }
114 
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 	page->flags |= FROZEN;
118 }
119 
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 	page->flags &= ~FROZEN;
123 }
124 
125 static inline int SlabDebug(struct page *page)
126 {
127 	return page->flags & SLABDEBUG;
128 }
129 
130 static inline void SetSlabDebug(struct page *page)
131 {
132 	page->flags |= SLABDEBUG;
133 }
134 
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 	page->flags &= ~SLABDEBUG;
138 }
139 
140 /*
141  * Issues still to be resolved:
142  *
143  * - The per cpu array is updated for each new slab and and is a remote
144  *   cacheline for most nodes. This could become a bouncing cacheline given
145  *   enough frequent updates. There are 16 pointers in a cacheline, so at
146  *   max 16 cpus could compete for the cacheline which may be okay.
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 #if PAGE_SHIFT <= 12
157 
158 /*
159  * Small page size. Make sure that we do not fragment memory
160  */
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
163 
164 #else
165 
166 /*
167  * Large page machines are customarily able to handle larger
168  * page orders.
169  */
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
172 
173 #endif
174 
175 /*
176  * Mininum number of partial slabs. These will be left on the partial
177  * lists even if they are empty. kmem_cache_shrink may reclaim them.
178  */
179 #define MIN_PARTIAL 2
180 
181 /*
182  * Maximum number of desirable partial slabs.
183  * The existence of more partial slabs makes kmem_cache_shrink
184  * sort the partial list by the number of objects in the.
185  */
186 #define MAX_PARTIAL 10
187 
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 				SLAB_POISON | SLAB_STORE_USER)
190 
191 /*
192  * Set of flags that will prevent slab merging
193  */
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196 
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 		SLAB_CACHE_DMA)
199 
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
203 
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
207 
208 /*
209  * The page->inuse field is 16 bit thus we have this limitation
210  */
211 #define MAX_OBJECTS_PER_SLAB 65535
212 
213 /* Internal SLUB flags */
214 #define __OBJECT_POISON		0x80000000 /* Poison object */
215 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
216 
217 /* Not all arches define cache_line_size */
218 #ifndef cache_line_size
219 #define cache_line_size()	L1_CACHE_BYTES
220 #endif
221 
222 static int kmem_size = sizeof(struct kmem_cache);
223 
224 #ifdef CONFIG_SMP
225 static struct notifier_block slab_notifier;
226 #endif
227 
228 static enum {
229 	DOWN,		/* No slab functionality available */
230 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
231 	UP,		/* Everything works but does not show up in sysfs */
232 	SYSFS		/* Sysfs up */
233 } slab_state = DOWN;
234 
235 /* A list of all slab caches on the system */
236 static DECLARE_RWSEM(slub_lock);
237 static LIST_HEAD(slab_caches);
238 
239 /*
240  * Tracking user of a slab.
241  */
242 struct track {
243 	void *addr;		/* Called from address */
244 	int cpu;		/* Was running on cpu */
245 	int pid;		/* Pid context */
246 	unsigned long when;	/* When did the operation occur */
247 };
248 
249 enum track_item { TRACK_ALLOC, TRACK_FREE };
250 
251 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
252 static int sysfs_slab_add(struct kmem_cache *);
253 static int sysfs_slab_alias(struct kmem_cache *, const char *);
254 static void sysfs_slab_remove(struct kmem_cache *);
255 #else
256 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
257 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
258 							{ return 0; }
259 static inline void sysfs_slab_remove(struct kmem_cache *s) {}
260 #endif
261 
262 /********************************************************************
263  * 			Core slab cache functions
264  *******************************************************************/
265 
266 int slab_is_available(void)
267 {
268 	return slab_state >= UP;
269 }
270 
271 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
272 {
273 #ifdef CONFIG_NUMA
274 	return s->node[node];
275 #else
276 	return &s->local_node;
277 #endif
278 }
279 
280 static inline int check_valid_pointer(struct kmem_cache *s,
281 				struct page *page, const void *object)
282 {
283 	void *base;
284 
285 	if (!object)
286 		return 1;
287 
288 	base = page_address(page);
289 	if (object < base || object >= base + s->objects * s->size ||
290 		(object - base) % s->size) {
291 		return 0;
292 	}
293 
294 	return 1;
295 }
296 
297 /*
298  * Slow version of get and set free pointer.
299  *
300  * This version requires touching the cache lines of kmem_cache which
301  * we avoid to do in the fast alloc free paths. There we obtain the offset
302  * from the page struct.
303  */
304 static inline void *get_freepointer(struct kmem_cache *s, void *object)
305 {
306 	return *(void **)(object + s->offset);
307 }
308 
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 	*(void **)(object + s->offset) = fp;
312 }
313 
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 			__p += (__s)->size)
318 
319 /* Scan freelist */
320 #define for_each_free_object(__p, __s, __free) \
321 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322 
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325 {
326 	return (p - addr) / s->size;
327 }
328 
329 #ifdef CONFIG_SLUB_DEBUG
330 /*
331  * Debug settings:
332  */
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug = DEBUG_DEFAULT_FLAGS;
335 #else
336 static int slub_debug;
337 #endif
338 
339 static char *slub_debug_slabs;
340 
341 /*
342  * Object debugging
343  */
344 static void print_section(char *text, u8 *addr, unsigned int length)
345 {
346 	int i, offset;
347 	int newline = 1;
348 	char ascii[17];
349 
350 	ascii[16] = 0;
351 
352 	for (i = 0; i < length; i++) {
353 		if (newline) {
354 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355 			newline = 0;
356 		}
357 		printk(" %02x", addr[i]);
358 		offset = i % 16;
359 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 		if (offset == 15) {
361 			printk(" %s\n",ascii);
362 			newline = 1;
363 		}
364 	}
365 	if (!newline) {
366 		i %= 16;
367 		while (i < 16) {
368 			printk("   ");
369 			ascii[i] = ' ';
370 			i++;
371 		}
372 		printk(" %s\n", ascii);
373 	}
374 }
375 
376 static struct track *get_track(struct kmem_cache *s, void *object,
377 	enum track_item alloc)
378 {
379 	struct track *p;
380 
381 	if (s->offset)
382 		p = object + s->offset + sizeof(void *);
383 	else
384 		p = object + s->inuse;
385 
386 	return p + alloc;
387 }
388 
389 static void set_track(struct kmem_cache *s, void *object,
390 				enum track_item alloc, void *addr)
391 {
392 	struct track *p;
393 
394 	if (s->offset)
395 		p = object + s->offset + sizeof(void *);
396 	else
397 		p = object + s->inuse;
398 
399 	p += alloc;
400 	if (addr) {
401 		p->addr = addr;
402 		p->cpu = smp_processor_id();
403 		p->pid = current ? current->pid : -1;
404 		p->when = jiffies;
405 	} else
406 		memset(p, 0, sizeof(struct track));
407 }
408 
409 static void init_tracking(struct kmem_cache *s, void *object)
410 {
411 	if (!(s->flags & SLAB_STORE_USER))
412 		return;
413 
414 	set_track(s, object, TRACK_FREE, NULL);
415 	set_track(s, object, TRACK_ALLOC, NULL);
416 }
417 
418 static void print_track(const char *s, struct track *t)
419 {
420 	if (!t->addr)
421 		return;
422 
423 	printk(KERN_ERR "INFO: %s in ", s);
424 	__print_symbol("%s", (unsigned long)t->addr);
425 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426 }
427 
428 static void print_tracking(struct kmem_cache *s, void *object)
429 {
430 	if (!(s->flags & SLAB_STORE_USER))
431 		return;
432 
433 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 	print_track("Freed", get_track(s, object, TRACK_FREE));
435 }
436 
437 static void print_page_info(struct page *page)
438 {
439 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 		page, page->inuse, page->freelist, page->flags);
441 
442 }
443 
444 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445 {
446 	va_list args;
447 	char buf[100];
448 
449 	va_start(args, fmt);
450 	vsnprintf(buf, sizeof(buf), fmt, args);
451 	va_end(args);
452 	printk(KERN_ERR "========================================"
453 			"=====================================\n");
454 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 	printk(KERN_ERR "----------------------------------------"
456 			"-------------------------------------\n\n");
457 }
458 
459 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460 {
461 	va_list args;
462 	char buf[100];
463 
464 	va_start(args, fmt);
465 	vsnprintf(buf, sizeof(buf), fmt, args);
466 	va_end(args);
467 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468 }
469 
470 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471 {
472 	unsigned int off;	/* Offset of last byte */
473 	u8 *addr = page_address(page);
474 
475 	print_tracking(s, p);
476 
477 	print_page_info(page);
478 
479 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 			p, p - addr, get_freepointer(s, p));
481 
482 	if (p > addr + 16)
483 		print_section("Bytes b4", p - 16, 16);
484 
485 	print_section("Object", p, min(s->objsize, 128));
486 
487 	if (s->flags & SLAB_RED_ZONE)
488 		print_section("Redzone", p + s->objsize,
489 			s->inuse - s->objsize);
490 
491 	if (s->offset)
492 		off = s->offset + sizeof(void *);
493 	else
494 		off = s->inuse;
495 
496 	if (s->flags & SLAB_STORE_USER)
497 		off += 2 * sizeof(struct track);
498 
499 	if (off != s->size)
500 		/* Beginning of the filler is the free pointer */
501 		print_section("Padding", p + off, s->size - off);
502 
503 	dump_stack();
504 }
505 
506 static void object_err(struct kmem_cache *s, struct page *page,
507 			u8 *object, char *reason)
508 {
509 	slab_bug(s, reason);
510 	print_trailer(s, page, object);
511 }
512 
513 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514 {
515 	va_list args;
516 	char buf[100];
517 
518 	va_start(args, fmt);
519 	vsnprintf(buf, sizeof(buf), fmt, args);
520 	va_end(args);
521 	slab_bug(s, fmt);
522 	print_page_info(page);
523 	dump_stack();
524 }
525 
526 static void init_object(struct kmem_cache *s, void *object, int active)
527 {
528 	u8 *p = object;
529 
530 	if (s->flags & __OBJECT_POISON) {
531 		memset(p, POISON_FREE, s->objsize - 1);
532 		p[s->objsize -1] = POISON_END;
533 	}
534 
535 	if (s->flags & SLAB_RED_ZONE)
536 		memset(p + s->objsize,
537 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 			s->inuse - s->objsize);
539 }
540 
541 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542 {
543 	while (bytes) {
544 		if (*start != (u8)value)
545 			return start;
546 		start++;
547 		bytes--;
548 	}
549 	return NULL;
550 }
551 
552 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 						void *from, void *to)
554 {
555 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 	memset(from, data, to - from);
557 }
558 
559 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 			u8 *object, char *what,
561 			u8* start, unsigned int value, unsigned int bytes)
562 {
563 	u8 *fault;
564 	u8 *end;
565 
566 	fault = check_bytes(start, value, bytes);
567 	if (!fault)
568 		return 1;
569 
570 	end = start + bytes;
571 	while (end > fault && end[-1] == value)
572 		end--;
573 
574 	slab_bug(s, "%s overwritten", what);
575 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 					fault, end - 1, fault[0], value);
577 	print_trailer(s, page, object);
578 
579 	restore_bytes(s, what, value, fault, end);
580 	return 0;
581 }
582 
583 /*
584  * Object layout:
585  *
586  * object address
587  * 	Bytes of the object to be managed.
588  * 	If the freepointer may overlay the object then the free
589  * 	pointer is the first word of the object.
590  *
591  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
592  * 	0xa5 (POISON_END)
593  *
594  * object + s->objsize
595  * 	Padding to reach word boundary. This is also used for Redzoning.
596  * 	Padding is extended by another word if Redzoning is enabled and
597  * 	objsize == inuse.
598  *
599  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600  * 	0xcc (RED_ACTIVE) for objects in use.
601  *
602  * object + s->inuse
603  * 	Meta data starts here.
604  *
605  * 	A. Free pointer (if we cannot overwrite object on free)
606  * 	B. Tracking data for SLAB_STORE_USER
607  * 	C. Padding to reach required alignment boundary or at mininum
608  * 		one word if debuggin is on to be able to detect writes
609  * 		before the word boundary.
610  *
611  *	Padding is done using 0x5a (POISON_INUSE)
612  *
613  * object + s->size
614  * 	Nothing is used beyond s->size.
615  *
616  * If slabcaches are merged then the objsize and inuse boundaries are mostly
617  * ignored. And therefore no slab options that rely on these boundaries
618  * may be used with merged slabcaches.
619  */
620 
621 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 	unsigned long off = s->inuse;	/* The end of info */
624 
625 	if (s->offset)
626 		/* Freepointer is placed after the object. */
627 		off += sizeof(void *);
628 
629 	if (s->flags & SLAB_STORE_USER)
630 		/* We also have user information there */
631 		off += 2 * sizeof(struct track);
632 
633 	if (s->size == off)
634 		return 1;
635 
636 	return check_bytes_and_report(s, page, p, "Object padding",
637 				p + off, POISON_INUSE, s->size - off);
638 }
639 
640 static int slab_pad_check(struct kmem_cache *s, struct page *page)
641 {
642 	u8 *start;
643 	u8 *fault;
644 	u8 *end;
645 	int length;
646 	int remainder;
647 
648 	if (!(s->flags & SLAB_POISON))
649 		return 1;
650 
651 	start = page_address(page);
652 	end = start + (PAGE_SIZE << s->order);
653 	length = s->objects * s->size;
654 	remainder = end - (start + length);
655 	if (!remainder)
656 		return 1;
657 
658 	fault = check_bytes(start + length, POISON_INUSE, remainder);
659 	if (!fault)
660 		return 1;
661 	while (end > fault && end[-1] == POISON_INUSE)
662 		end--;
663 
664 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 	print_section("Padding", start, length);
666 
667 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 	return 0;
669 }
670 
671 static int check_object(struct kmem_cache *s, struct page *page,
672 					void *object, int active)
673 {
674 	u8 *p = object;
675 	u8 *endobject = object + s->objsize;
676 
677 	if (s->flags & SLAB_RED_ZONE) {
678 		unsigned int red =
679 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680 
681 		if (!check_bytes_and_report(s, page, object, "Redzone",
682 			endobject, red, s->inuse - s->objsize))
683 			return 0;
684 	} else {
685 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 			check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 				POISON_INUSE, s->inuse - s->objsize);
688 	}
689 
690 	if (s->flags & SLAB_POISON) {
691 		if (!active && (s->flags & __OBJECT_POISON) &&
692 			(!check_bytes_and_report(s, page, p, "Poison", p,
693 					POISON_FREE, s->objsize - 1) ||
694 			 !check_bytes_and_report(s, page, p, "Poison",
695 			 	p + s->objsize -1, POISON_END, 1)))
696 			return 0;
697 		/*
698 		 * check_pad_bytes cleans up on its own.
699 		 */
700 		check_pad_bytes(s, page, p);
701 	}
702 
703 	if (!s->offset && active)
704 		/*
705 		 * Object and freepointer overlap. Cannot check
706 		 * freepointer while object is allocated.
707 		 */
708 		return 1;
709 
710 	/* Check free pointer validity */
711 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 		object_err(s, page, p, "Freepointer corrupt");
713 		/*
714 		 * No choice but to zap it and thus loose the remainder
715 		 * of the free objects in this slab. May cause
716 		 * another error because the object count is now wrong.
717 		 */
718 		set_freepointer(s, p, NULL);
719 		return 0;
720 	}
721 	return 1;
722 }
723 
724 static int check_slab(struct kmem_cache *s, struct page *page)
725 {
726 	VM_BUG_ON(!irqs_disabled());
727 
728 	if (!PageSlab(page)) {
729 		slab_err(s, page, "Not a valid slab page");
730 		return 0;
731 	}
732 	if (page->offset * sizeof(void *) != s->offset) {
733 		slab_err(s, page, "Corrupted offset %lu",
734 			(unsigned long)(page->offset * sizeof(void *)));
735 		return 0;
736 	}
737 	if (page->inuse > s->objects) {
738 		slab_err(s, page, "inuse %u > max %u",
739 			s->name, page->inuse, s->objects);
740 		return 0;
741 	}
742 	/* Slab_pad_check fixes things up after itself */
743 	slab_pad_check(s, page);
744 	return 1;
745 }
746 
747 /*
748  * Determine if a certain object on a page is on the freelist. Must hold the
749  * slab lock to guarantee that the chains are in a consistent state.
750  */
751 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752 {
753 	int nr = 0;
754 	void *fp = page->freelist;
755 	void *object = NULL;
756 
757 	while (fp && nr <= s->objects) {
758 		if (fp == search)
759 			return 1;
760 		if (!check_valid_pointer(s, page, fp)) {
761 			if (object) {
762 				object_err(s, page, object,
763 					"Freechain corrupt");
764 				set_freepointer(s, object, NULL);
765 				break;
766 			} else {
767 				slab_err(s, page, "Freepointer corrupt");
768 				page->freelist = NULL;
769 				page->inuse = s->objects;
770 				slab_fix(s, "Freelist cleared");
771 				return 0;
772 			}
773 			break;
774 		}
775 		object = fp;
776 		fp = get_freepointer(s, object);
777 		nr++;
778 	}
779 
780 	if (page->inuse != s->objects - nr) {
781 		slab_err(s, page, "Wrong object count. Counter is %d but "
782 			"counted were %d", page->inuse, s->objects - nr);
783 		page->inuse = s->objects - nr;
784 		slab_fix(s, "Object count adjusted.");
785 	}
786 	return search == NULL;
787 }
788 
789 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790 {
791 	if (s->flags & SLAB_TRACE) {
792 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 			s->name,
794 			alloc ? "alloc" : "free",
795 			object, page->inuse,
796 			page->freelist);
797 
798 		if (!alloc)
799 			print_section("Object", (void *)object, s->objsize);
800 
801 		dump_stack();
802 	}
803 }
804 
805 /*
806  * Tracking of fully allocated slabs for debugging purposes.
807  */
808 static void add_full(struct kmem_cache_node *n, struct page *page)
809 {
810 	spin_lock(&n->list_lock);
811 	list_add(&page->lru, &n->full);
812 	spin_unlock(&n->list_lock);
813 }
814 
815 static void remove_full(struct kmem_cache *s, struct page *page)
816 {
817 	struct kmem_cache_node *n;
818 
819 	if (!(s->flags & SLAB_STORE_USER))
820 		return;
821 
822 	n = get_node(s, page_to_nid(page));
823 
824 	spin_lock(&n->list_lock);
825 	list_del(&page->lru);
826 	spin_unlock(&n->list_lock);
827 }
828 
829 static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 								void *object)
831 {
832 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 		return;
834 
835 	init_object(s, object, 0);
836 	init_tracking(s, object);
837 }
838 
839 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 						void *object, void *addr)
841 {
842 	if (!check_slab(s, page))
843 		goto bad;
844 
845 	if (object && !on_freelist(s, page, object)) {
846 		object_err(s, page, object, "Object already allocated");
847 		goto bad;
848 	}
849 
850 	if (!check_valid_pointer(s, page, object)) {
851 		object_err(s, page, object, "Freelist Pointer check fails");
852 		goto bad;
853 	}
854 
855 	if (object && !check_object(s, page, object, 0))
856 		goto bad;
857 
858 	/* Success perform special debug activities for allocs */
859 	if (s->flags & SLAB_STORE_USER)
860 		set_track(s, object, TRACK_ALLOC, addr);
861 	trace(s, page, object, 1);
862 	init_object(s, object, 1);
863 	return 1;
864 
865 bad:
866 	if (PageSlab(page)) {
867 		/*
868 		 * If this is a slab page then lets do the best we can
869 		 * to avoid issues in the future. Marking all objects
870 		 * as used avoids touching the remaining objects.
871 		 */
872 		slab_fix(s, "Marking all objects used");
873 		page->inuse = s->objects;
874 		page->freelist = NULL;
875 		/* Fix up fields that may be corrupted */
876 		page->offset = s->offset / sizeof(void *);
877 	}
878 	return 0;
879 }
880 
881 static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 						void *object, void *addr)
883 {
884 	if (!check_slab(s, page))
885 		goto fail;
886 
887 	if (!check_valid_pointer(s, page, object)) {
888 		slab_err(s, page, "Invalid object pointer 0x%p", object);
889 		goto fail;
890 	}
891 
892 	if (on_freelist(s, page, object)) {
893 		object_err(s, page, object, "Object already free");
894 		goto fail;
895 	}
896 
897 	if (!check_object(s, page, object, 1))
898 		return 0;
899 
900 	if (unlikely(s != page->slab)) {
901 		if (!PageSlab(page))
902 			slab_err(s, page, "Attempt to free object(0x%p) "
903 				"outside of slab", object);
904 		else
905 		if (!page->slab) {
906 			printk(KERN_ERR
907 				"SLUB <none>: no slab for object 0x%p.\n",
908 						object);
909 			dump_stack();
910 		}
911 		else
912 			object_err(s, page, object,
913 					"page slab pointer corrupt.");
914 		goto fail;
915 	}
916 
917 	/* Special debug activities for freeing objects */
918 	if (!SlabFrozen(page) && !page->freelist)
919 		remove_full(s, page);
920 	if (s->flags & SLAB_STORE_USER)
921 		set_track(s, object, TRACK_FREE, addr);
922 	trace(s, page, object, 0);
923 	init_object(s, object, 0);
924 	return 1;
925 
926 fail:
927 	slab_fix(s, "Object at 0x%p not freed", object);
928 	return 0;
929 }
930 
931 static int __init setup_slub_debug(char *str)
932 {
933 	slub_debug = DEBUG_DEFAULT_FLAGS;
934 	if (*str++ != '=' || !*str)
935 		/*
936 		 * No options specified. Switch on full debugging.
937 		 */
938 		goto out;
939 
940 	if (*str == ',')
941 		/*
942 		 * No options but restriction on slabs. This means full
943 		 * debugging for slabs matching a pattern.
944 		 */
945 		goto check_slabs;
946 
947 	slub_debug = 0;
948 	if (*str == '-')
949 		/*
950 		 * Switch off all debugging measures.
951 		 */
952 		goto out;
953 
954 	/*
955 	 * Determine which debug features should be switched on
956 	 */
957 	for ( ;*str && *str != ','; str++) {
958 		switch (tolower(*str)) {
959 		case 'f':
960 			slub_debug |= SLAB_DEBUG_FREE;
961 			break;
962 		case 'z':
963 			slub_debug |= SLAB_RED_ZONE;
964 			break;
965 		case 'p':
966 			slub_debug |= SLAB_POISON;
967 			break;
968 		case 'u':
969 			slub_debug |= SLAB_STORE_USER;
970 			break;
971 		case 't':
972 			slub_debug |= SLAB_TRACE;
973 			break;
974 		default:
975 			printk(KERN_ERR "slub_debug option '%c' "
976 				"unknown. skipped\n",*str);
977 		}
978 	}
979 
980 check_slabs:
981 	if (*str == ',')
982 		slub_debug_slabs = str + 1;
983 out:
984 	return 1;
985 }
986 
987 __setup("slub_debug", setup_slub_debug);
988 
989 static unsigned long kmem_cache_flags(unsigned long objsize,
990 	unsigned long flags, const char *name,
991 	void (*ctor)(void *, struct kmem_cache *, unsigned long))
992 {
993 	/*
994 	 * The page->offset field is only 16 bit wide. This is an offset
995 	 * in units of words from the beginning of an object. If the slab
996 	 * size is bigger then we cannot move the free pointer behind the
997 	 * object anymore.
998 	 *
999 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000 	 * the limit is 512k.
1001 	 *
1002 	 * Debugging or ctor may create a need to move the free
1003 	 * pointer. Fail if this happens.
1004 	 */
1005 	if (objsize >= 65535 * sizeof(void *)) {
1006 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1007 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1008 		BUG_ON(ctor);
1009 	} else {
1010 		/*
1011 		 * Enable debugging if selected on the kernel commandline.
1012 		 */
1013 		if (slub_debug && (!slub_debug_slabs ||
1014 		    strncmp(slub_debug_slabs, name,
1015 		    	strlen(slub_debug_slabs)) == 0))
1016 				flags |= slub_debug;
1017 	}
1018 
1019 	return flags;
1020 }
1021 #else
1022 static inline void setup_object_debug(struct kmem_cache *s,
1023 			struct page *page, void *object) {}
1024 
1025 static inline int alloc_debug_processing(struct kmem_cache *s,
1026 	struct page *page, void *object, void *addr) { return 0; }
1027 
1028 static inline int free_debug_processing(struct kmem_cache *s,
1029 	struct page *page, void *object, void *addr) { return 0; }
1030 
1031 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032 			{ return 1; }
1033 static inline int check_object(struct kmem_cache *s, struct page *page,
1034 			void *object, int active) { return 1; }
1035 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1036 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037 	unsigned long flags, const char *name,
1038 	void (*ctor)(void *, struct kmem_cache *, unsigned long))
1039 {
1040 	return flags;
1041 }
1042 #define slub_debug 0
1043 #endif
1044 /*
1045  * Slab allocation and freeing
1046  */
1047 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1048 {
1049 	struct page * page;
1050 	int pages = 1 << s->order;
1051 
1052 	if (s->order)
1053 		flags |= __GFP_COMP;
1054 
1055 	if (s->flags & SLAB_CACHE_DMA)
1056 		flags |= SLUB_DMA;
1057 
1058 	if (node == -1)
1059 		page = alloc_pages(flags, s->order);
1060 	else
1061 		page = alloc_pages_node(node, flags, s->order);
1062 
1063 	if (!page)
1064 		return NULL;
1065 
1066 	mod_zone_page_state(page_zone(page),
1067 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1068 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1069 		pages);
1070 
1071 	return page;
1072 }
1073 
1074 static void setup_object(struct kmem_cache *s, struct page *page,
1075 				void *object)
1076 {
1077 	setup_object_debug(s, page, object);
1078 	if (unlikely(s->ctor))
1079 		s->ctor(object, s, 0);
1080 }
1081 
1082 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 {
1084 	struct page *page;
1085 	struct kmem_cache_node *n;
1086 	void *start;
1087 	void *end;
1088 	void *last;
1089 	void *p;
1090 
1091 	BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
1092 
1093 	if (flags & __GFP_WAIT)
1094 		local_irq_enable();
1095 
1096 	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1097 	if (!page)
1098 		goto out;
1099 
1100 	n = get_node(s, page_to_nid(page));
1101 	if (n)
1102 		atomic_long_inc(&n->nr_slabs);
1103 	page->offset = s->offset / sizeof(void *);
1104 	page->slab = s;
1105 	page->flags |= 1 << PG_slab;
1106 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1107 			SLAB_STORE_USER | SLAB_TRACE))
1108 		SetSlabDebug(page);
1109 
1110 	start = page_address(page);
1111 	end = start + s->objects * s->size;
1112 
1113 	if (unlikely(s->flags & SLAB_POISON))
1114 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1115 
1116 	last = start;
1117 	for_each_object(p, s, start) {
1118 		setup_object(s, page, last);
1119 		set_freepointer(s, last, p);
1120 		last = p;
1121 	}
1122 	setup_object(s, page, last);
1123 	set_freepointer(s, last, NULL);
1124 
1125 	page->freelist = start;
1126 	page->lockless_freelist = NULL;
1127 	page->inuse = 0;
1128 out:
1129 	if (flags & __GFP_WAIT)
1130 		local_irq_disable();
1131 	return page;
1132 }
1133 
1134 static void __free_slab(struct kmem_cache *s, struct page *page)
1135 {
1136 	int pages = 1 << s->order;
1137 
1138 	if (unlikely(SlabDebug(page))) {
1139 		void *p;
1140 
1141 		slab_pad_check(s, page);
1142 		for_each_object(p, s, page_address(page))
1143 			check_object(s, page, p, 0);
1144 		ClearSlabDebug(page);
1145 	}
1146 
1147 	mod_zone_page_state(page_zone(page),
1148 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 		- pages);
1151 
1152 	page->mapping = NULL;
1153 	__free_pages(page, s->order);
1154 }
1155 
1156 static void rcu_free_slab(struct rcu_head *h)
1157 {
1158 	struct page *page;
1159 
1160 	page = container_of((struct list_head *)h, struct page, lru);
1161 	__free_slab(page->slab, page);
1162 }
1163 
1164 static void free_slab(struct kmem_cache *s, struct page *page)
1165 {
1166 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1167 		/*
1168 		 * RCU free overloads the RCU head over the LRU
1169 		 */
1170 		struct rcu_head *head = (void *)&page->lru;
1171 
1172 		call_rcu(head, rcu_free_slab);
1173 	} else
1174 		__free_slab(s, page);
1175 }
1176 
1177 static void discard_slab(struct kmem_cache *s, struct page *page)
1178 {
1179 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1180 
1181 	atomic_long_dec(&n->nr_slabs);
1182 	reset_page_mapcount(page);
1183 	__ClearPageSlab(page);
1184 	free_slab(s, page);
1185 }
1186 
1187 /*
1188  * Per slab locking using the pagelock
1189  */
1190 static __always_inline void slab_lock(struct page *page)
1191 {
1192 	bit_spin_lock(PG_locked, &page->flags);
1193 }
1194 
1195 static __always_inline void slab_unlock(struct page *page)
1196 {
1197 	bit_spin_unlock(PG_locked, &page->flags);
1198 }
1199 
1200 static __always_inline int slab_trylock(struct page *page)
1201 {
1202 	int rc = 1;
1203 
1204 	rc = bit_spin_trylock(PG_locked, &page->flags);
1205 	return rc;
1206 }
1207 
1208 /*
1209  * Management of partially allocated slabs
1210  */
1211 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1212 {
1213 	spin_lock(&n->list_lock);
1214 	n->nr_partial++;
1215 	list_add_tail(&page->lru, &n->partial);
1216 	spin_unlock(&n->list_lock);
1217 }
1218 
1219 static void add_partial(struct kmem_cache_node *n, struct page *page)
1220 {
1221 	spin_lock(&n->list_lock);
1222 	n->nr_partial++;
1223 	list_add(&page->lru, &n->partial);
1224 	spin_unlock(&n->list_lock);
1225 }
1226 
1227 static void remove_partial(struct kmem_cache *s,
1228 						struct page *page)
1229 {
1230 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1231 
1232 	spin_lock(&n->list_lock);
1233 	list_del(&page->lru);
1234 	n->nr_partial--;
1235 	spin_unlock(&n->list_lock);
1236 }
1237 
1238 /*
1239  * Lock slab and remove from the partial list.
1240  *
1241  * Must hold list_lock.
1242  */
1243 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1244 {
1245 	if (slab_trylock(page)) {
1246 		list_del(&page->lru);
1247 		n->nr_partial--;
1248 		SetSlabFrozen(page);
1249 		return 1;
1250 	}
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Try to allocate a partial slab from a specific node.
1256  */
1257 static struct page *get_partial_node(struct kmem_cache_node *n)
1258 {
1259 	struct page *page;
1260 
1261 	/*
1262 	 * Racy check. If we mistakenly see no partial slabs then we
1263 	 * just allocate an empty slab. If we mistakenly try to get a
1264 	 * partial slab and there is none available then get_partials()
1265 	 * will return NULL.
1266 	 */
1267 	if (!n || !n->nr_partial)
1268 		return NULL;
1269 
1270 	spin_lock(&n->list_lock);
1271 	list_for_each_entry(page, &n->partial, lru)
1272 		if (lock_and_freeze_slab(n, page))
1273 			goto out;
1274 	page = NULL;
1275 out:
1276 	spin_unlock(&n->list_lock);
1277 	return page;
1278 }
1279 
1280 /*
1281  * Get a page from somewhere. Search in increasing NUMA distances.
1282  */
1283 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1284 {
1285 #ifdef CONFIG_NUMA
1286 	struct zonelist *zonelist;
1287 	struct zone **z;
1288 	struct page *page;
1289 
1290 	/*
1291 	 * The defrag ratio allows a configuration of the tradeoffs between
1292 	 * inter node defragmentation and node local allocations. A lower
1293 	 * defrag_ratio increases the tendency to do local allocations
1294 	 * instead of attempting to obtain partial slabs from other nodes.
1295 	 *
1296 	 * If the defrag_ratio is set to 0 then kmalloc() always
1297 	 * returns node local objects. If the ratio is higher then kmalloc()
1298 	 * may return off node objects because partial slabs are obtained
1299 	 * from other nodes and filled up.
1300 	 *
1301 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1302 	 * defrag_ratio = 1000) then every (well almost) allocation will
1303 	 * first attempt to defrag slab caches on other nodes. This means
1304 	 * scanning over all nodes to look for partial slabs which may be
1305 	 * expensive if we do it every time we are trying to find a slab
1306 	 * with available objects.
1307 	 */
1308 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1309 		return NULL;
1310 
1311 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1312 					->node_zonelists[gfp_zone(flags)];
1313 	for (z = zonelist->zones; *z; z++) {
1314 		struct kmem_cache_node *n;
1315 
1316 		n = get_node(s, zone_to_nid(*z));
1317 
1318 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1319 				n->nr_partial > MIN_PARTIAL) {
1320 			page = get_partial_node(n);
1321 			if (page)
1322 				return page;
1323 		}
1324 	}
1325 #endif
1326 	return NULL;
1327 }
1328 
1329 /*
1330  * Get a partial page, lock it and return it.
1331  */
1332 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1333 {
1334 	struct page *page;
1335 	int searchnode = (node == -1) ? numa_node_id() : node;
1336 
1337 	page = get_partial_node(get_node(s, searchnode));
1338 	if (page || (flags & __GFP_THISNODE))
1339 		return page;
1340 
1341 	return get_any_partial(s, flags);
1342 }
1343 
1344 /*
1345  * Move a page back to the lists.
1346  *
1347  * Must be called with the slab lock held.
1348  *
1349  * On exit the slab lock will have been dropped.
1350  */
1351 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1352 {
1353 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1354 
1355 	ClearSlabFrozen(page);
1356 	if (page->inuse) {
1357 
1358 		if (page->freelist)
1359 			add_partial(n, page);
1360 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1361 			add_full(n, page);
1362 		slab_unlock(page);
1363 
1364 	} else {
1365 		if (n->nr_partial < MIN_PARTIAL) {
1366 			/*
1367 			 * Adding an empty slab to the partial slabs in order
1368 			 * to avoid page allocator overhead. This slab needs
1369 			 * to come after the other slabs with objects in
1370 			 * order to fill them up. That way the size of the
1371 			 * partial list stays small. kmem_cache_shrink can
1372 			 * reclaim empty slabs from the partial list.
1373 			 */
1374 			add_partial_tail(n, page);
1375 			slab_unlock(page);
1376 		} else {
1377 			slab_unlock(page);
1378 			discard_slab(s, page);
1379 		}
1380 	}
1381 }
1382 
1383 /*
1384  * Remove the cpu slab
1385  */
1386 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1387 {
1388 	/*
1389 	 * Merge cpu freelist into freelist. Typically we get here
1390 	 * because both freelists are empty. So this is unlikely
1391 	 * to occur.
1392 	 */
1393 	while (unlikely(page->lockless_freelist)) {
1394 		void **object;
1395 
1396 		/* Retrieve object from cpu_freelist */
1397 		object = page->lockless_freelist;
1398 		page->lockless_freelist = page->lockless_freelist[page->offset];
1399 
1400 		/* And put onto the regular freelist */
1401 		object[page->offset] = page->freelist;
1402 		page->freelist = object;
1403 		page->inuse--;
1404 	}
1405 	s->cpu_slab[cpu] = NULL;
1406 	unfreeze_slab(s, page);
1407 }
1408 
1409 static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1410 {
1411 	slab_lock(page);
1412 	deactivate_slab(s, page, cpu);
1413 }
1414 
1415 /*
1416  * Flush cpu slab.
1417  * Called from IPI handler with interrupts disabled.
1418  */
1419 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1420 {
1421 	struct page *page = s->cpu_slab[cpu];
1422 
1423 	if (likely(page))
1424 		flush_slab(s, page, cpu);
1425 }
1426 
1427 static void flush_cpu_slab(void *d)
1428 {
1429 	struct kmem_cache *s = d;
1430 	int cpu = smp_processor_id();
1431 
1432 	__flush_cpu_slab(s, cpu);
1433 }
1434 
1435 static void flush_all(struct kmem_cache *s)
1436 {
1437 #ifdef CONFIG_SMP
1438 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1439 #else
1440 	unsigned long flags;
1441 
1442 	local_irq_save(flags);
1443 	flush_cpu_slab(s);
1444 	local_irq_restore(flags);
1445 #endif
1446 }
1447 
1448 /*
1449  * Slow path. The lockless freelist is empty or we need to perform
1450  * debugging duties.
1451  *
1452  * Interrupts are disabled.
1453  *
1454  * Processing is still very fast if new objects have been freed to the
1455  * regular freelist. In that case we simply take over the regular freelist
1456  * as the lockless freelist and zap the regular freelist.
1457  *
1458  * If that is not working then we fall back to the partial lists. We take the
1459  * first element of the freelist as the object to allocate now and move the
1460  * rest of the freelist to the lockless freelist.
1461  *
1462  * And if we were unable to get a new slab from the partial slab lists then
1463  * we need to allocate a new slab. This is slowest path since we may sleep.
1464  */
1465 static void *__slab_alloc(struct kmem_cache *s,
1466 		gfp_t gfpflags, int node, void *addr, struct page *page)
1467 {
1468 	void **object;
1469 	int cpu = smp_processor_id();
1470 
1471 	if (!page)
1472 		goto new_slab;
1473 
1474 	slab_lock(page);
1475 	if (unlikely(node != -1 && page_to_nid(page) != node))
1476 		goto another_slab;
1477 load_freelist:
1478 	object = page->freelist;
1479 	if (unlikely(!object))
1480 		goto another_slab;
1481 	if (unlikely(SlabDebug(page)))
1482 		goto debug;
1483 
1484 	object = page->freelist;
1485 	page->lockless_freelist = object[page->offset];
1486 	page->inuse = s->objects;
1487 	page->freelist = NULL;
1488 	slab_unlock(page);
1489 	return object;
1490 
1491 another_slab:
1492 	deactivate_slab(s, page, cpu);
1493 
1494 new_slab:
1495 	page = get_partial(s, gfpflags, node);
1496 	if (page) {
1497 		s->cpu_slab[cpu] = page;
1498 		goto load_freelist;
1499 	}
1500 
1501 	page = new_slab(s, gfpflags, node);
1502 	if (page) {
1503 		cpu = smp_processor_id();
1504 		if (s->cpu_slab[cpu]) {
1505 			/*
1506 			 * Someone else populated the cpu_slab while we
1507 			 * enabled interrupts, or we have gotten scheduled
1508 			 * on another cpu. The page may not be on the
1509 			 * requested node even if __GFP_THISNODE was
1510 			 * specified. So we need to recheck.
1511 			 */
1512 			if (node == -1 ||
1513 				page_to_nid(s->cpu_slab[cpu]) == node) {
1514 				/*
1515 				 * Current cpuslab is acceptable and we
1516 				 * want the current one since its cache hot
1517 				 */
1518 				discard_slab(s, page);
1519 				page = s->cpu_slab[cpu];
1520 				slab_lock(page);
1521 				goto load_freelist;
1522 			}
1523 			/* New slab does not fit our expectations */
1524 			flush_slab(s, s->cpu_slab[cpu], cpu);
1525 		}
1526 		slab_lock(page);
1527 		SetSlabFrozen(page);
1528 		s->cpu_slab[cpu] = page;
1529 		goto load_freelist;
1530 	}
1531 	return NULL;
1532 debug:
1533 	object = page->freelist;
1534 	if (!alloc_debug_processing(s, page, object, addr))
1535 		goto another_slab;
1536 
1537 	page->inuse++;
1538 	page->freelist = object[page->offset];
1539 	slab_unlock(page);
1540 	return object;
1541 }
1542 
1543 /*
1544  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1545  * have the fastpath folded into their functions. So no function call
1546  * overhead for requests that can be satisfied on the fastpath.
1547  *
1548  * The fastpath works by first checking if the lockless freelist can be used.
1549  * If not then __slab_alloc is called for slow processing.
1550  *
1551  * Otherwise we can simply pick the next object from the lockless free list.
1552  */
1553 static void __always_inline *slab_alloc(struct kmem_cache *s,
1554 		gfp_t gfpflags, int node, void *addr)
1555 {
1556 	struct page *page;
1557 	void **object;
1558 	unsigned long flags;
1559 
1560 	local_irq_save(flags);
1561 	page = s->cpu_slab[smp_processor_id()];
1562 	if (unlikely(!page || !page->lockless_freelist ||
1563 			(node != -1 && page_to_nid(page) != node)))
1564 
1565 		object = __slab_alloc(s, gfpflags, node, addr, page);
1566 
1567 	else {
1568 		object = page->lockless_freelist;
1569 		page->lockless_freelist = object[page->offset];
1570 	}
1571 	local_irq_restore(flags);
1572 
1573 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1574 		memset(object, 0, s->objsize);
1575 
1576 	return object;
1577 }
1578 
1579 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1580 {
1581 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1582 }
1583 EXPORT_SYMBOL(kmem_cache_alloc);
1584 
1585 #ifdef CONFIG_NUMA
1586 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1587 {
1588 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1589 }
1590 EXPORT_SYMBOL(kmem_cache_alloc_node);
1591 #endif
1592 
1593 /*
1594  * Slow patch handling. This may still be called frequently since objects
1595  * have a longer lifetime than the cpu slabs in most processing loads.
1596  *
1597  * So we still attempt to reduce cache line usage. Just take the slab
1598  * lock and free the item. If there is no additional partial page
1599  * handling required then we can return immediately.
1600  */
1601 static void __slab_free(struct kmem_cache *s, struct page *page,
1602 					void *x, void *addr)
1603 {
1604 	void *prior;
1605 	void **object = (void *)x;
1606 
1607 	slab_lock(page);
1608 
1609 	if (unlikely(SlabDebug(page)))
1610 		goto debug;
1611 checks_ok:
1612 	prior = object[page->offset] = page->freelist;
1613 	page->freelist = object;
1614 	page->inuse--;
1615 
1616 	if (unlikely(SlabFrozen(page)))
1617 		goto out_unlock;
1618 
1619 	if (unlikely(!page->inuse))
1620 		goto slab_empty;
1621 
1622 	/*
1623 	 * Objects left in the slab. If it
1624 	 * was not on the partial list before
1625 	 * then add it.
1626 	 */
1627 	if (unlikely(!prior))
1628 		add_partial(get_node(s, page_to_nid(page)), page);
1629 
1630 out_unlock:
1631 	slab_unlock(page);
1632 	return;
1633 
1634 slab_empty:
1635 	if (prior)
1636 		/*
1637 		 * Slab still on the partial list.
1638 		 */
1639 		remove_partial(s, page);
1640 
1641 	slab_unlock(page);
1642 	discard_slab(s, page);
1643 	return;
1644 
1645 debug:
1646 	if (!free_debug_processing(s, page, x, addr))
1647 		goto out_unlock;
1648 	goto checks_ok;
1649 }
1650 
1651 /*
1652  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1653  * can perform fastpath freeing without additional function calls.
1654  *
1655  * The fastpath is only possible if we are freeing to the current cpu slab
1656  * of this processor. This typically the case if we have just allocated
1657  * the item before.
1658  *
1659  * If fastpath is not possible then fall back to __slab_free where we deal
1660  * with all sorts of special processing.
1661  */
1662 static void __always_inline slab_free(struct kmem_cache *s,
1663 			struct page *page, void *x, void *addr)
1664 {
1665 	void **object = (void *)x;
1666 	unsigned long flags;
1667 
1668 	local_irq_save(flags);
1669 	debug_check_no_locks_freed(object, s->objsize);
1670 	if (likely(page == s->cpu_slab[smp_processor_id()] &&
1671 						!SlabDebug(page))) {
1672 		object[page->offset] = page->lockless_freelist;
1673 		page->lockless_freelist = object;
1674 	} else
1675 		__slab_free(s, page, x, addr);
1676 
1677 	local_irq_restore(flags);
1678 }
1679 
1680 void kmem_cache_free(struct kmem_cache *s, void *x)
1681 {
1682 	struct page *page;
1683 
1684 	page = virt_to_head_page(x);
1685 
1686 	slab_free(s, page, x, __builtin_return_address(0));
1687 }
1688 EXPORT_SYMBOL(kmem_cache_free);
1689 
1690 /* Figure out on which slab object the object resides */
1691 static struct page *get_object_page(const void *x)
1692 {
1693 	struct page *page = virt_to_head_page(x);
1694 
1695 	if (!PageSlab(page))
1696 		return NULL;
1697 
1698 	return page;
1699 }
1700 
1701 /*
1702  * Object placement in a slab is made very easy because we always start at
1703  * offset 0. If we tune the size of the object to the alignment then we can
1704  * get the required alignment by putting one properly sized object after
1705  * another.
1706  *
1707  * Notice that the allocation order determines the sizes of the per cpu
1708  * caches. Each processor has always one slab available for allocations.
1709  * Increasing the allocation order reduces the number of times that slabs
1710  * must be moved on and off the partial lists and is therefore a factor in
1711  * locking overhead.
1712  */
1713 
1714 /*
1715  * Mininum / Maximum order of slab pages. This influences locking overhead
1716  * and slab fragmentation. A higher order reduces the number of partial slabs
1717  * and increases the number of allocations possible without having to
1718  * take the list_lock.
1719  */
1720 static int slub_min_order;
1721 static int slub_max_order = DEFAULT_MAX_ORDER;
1722 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1723 
1724 /*
1725  * Merge control. If this is set then no merging of slab caches will occur.
1726  * (Could be removed. This was introduced to pacify the merge skeptics.)
1727  */
1728 static int slub_nomerge;
1729 
1730 /*
1731  * Calculate the order of allocation given an slab object size.
1732  *
1733  * The order of allocation has significant impact on performance and other
1734  * system components. Generally order 0 allocations should be preferred since
1735  * order 0 does not cause fragmentation in the page allocator. Larger objects
1736  * be problematic to put into order 0 slabs because there may be too much
1737  * unused space left. We go to a higher order if more than 1/8th of the slab
1738  * would be wasted.
1739  *
1740  * In order to reach satisfactory performance we must ensure that a minimum
1741  * number of objects is in one slab. Otherwise we may generate too much
1742  * activity on the partial lists which requires taking the list_lock. This is
1743  * less a concern for large slabs though which are rarely used.
1744  *
1745  * slub_max_order specifies the order where we begin to stop considering the
1746  * number of objects in a slab as critical. If we reach slub_max_order then
1747  * we try to keep the page order as low as possible. So we accept more waste
1748  * of space in favor of a small page order.
1749  *
1750  * Higher order allocations also allow the placement of more objects in a
1751  * slab and thereby reduce object handling overhead. If the user has
1752  * requested a higher mininum order then we start with that one instead of
1753  * the smallest order which will fit the object.
1754  */
1755 static inline int slab_order(int size, int min_objects,
1756 				int max_order, int fract_leftover)
1757 {
1758 	int order;
1759 	int rem;
1760 	int min_order = slub_min_order;
1761 
1762 	/*
1763 	 * If we would create too many object per slab then reduce
1764 	 * the slab order even if it goes below slub_min_order.
1765 	 */
1766 	while (min_order > 0 &&
1767 		(PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1768 			min_order--;
1769 
1770 	for (order = max(min_order,
1771 				fls(min_objects * size - 1) - PAGE_SHIFT);
1772 			order <= max_order; order++) {
1773 
1774 		unsigned long slab_size = PAGE_SIZE << order;
1775 
1776 		if (slab_size < min_objects * size)
1777 			continue;
1778 
1779 		rem = slab_size % size;
1780 
1781 		if (rem <= slab_size / fract_leftover)
1782 			break;
1783 
1784 		/* If the next size is too high then exit now */
1785 		if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1786 			break;
1787 	}
1788 
1789 	return order;
1790 }
1791 
1792 static inline int calculate_order(int size)
1793 {
1794 	int order;
1795 	int min_objects;
1796 	int fraction;
1797 
1798 	/*
1799 	 * Attempt to find best configuration for a slab. This
1800 	 * works by first attempting to generate a layout with
1801 	 * the best configuration and backing off gradually.
1802 	 *
1803 	 * First we reduce the acceptable waste in a slab. Then
1804 	 * we reduce the minimum objects required in a slab.
1805 	 */
1806 	min_objects = slub_min_objects;
1807 	while (min_objects > 1) {
1808 		fraction = 8;
1809 		while (fraction >= 4) {
1810 			order = slab_order(size, min_objects,
1811 						slub_max_order, fraction);
1812 			if (order <= slub_max_order)
1813 				return order;
1814 			fraction /= 2;
1815 		}
1816 		min_objects /= 2;
1817 	}
1818 
1819 	/*
1820 	 * We were unable to place multiple objects in a slab. Now
1821 	 * lets see if we can place a single object there.
1822 	 */
1823 	order = slab_order(size, 1, slub_max_order, 1);
1824 	if (order <= slub_max_order)
1825 		return order;
1826 
1827 	/*
1828 	 * Doh this slab cannot be placed using slub_max_order.
1829 	 */
1830 	order = slab_order(size, 1, MAX_ORDER, 1);
1831 	if (order <= MAX_ORDER)
1832 		return order;
1833 	return -ENOSYS;
1834 }
1835 
1836 /*
1837  * Figure out what the alignment of the objects will be.
1838  */
1839 static unsigned long calculate_alignment(unsigned long flags,
1840 		unsigned long align, unsigned long size)
1841 {
1842 	/*
1843 	 * If the user wants hardware cache aligned objects then
1844 	 * follow that suggestion if the object is sufficiently
1845 	 * large.
1846 	 *
1847 	 * The hardware cache alignment cannot override the
1848 	 * specified alignment though. If that is greater
1849 	 * then use it.
1850 	 */
1851 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1852 			size > cache_line_size() / 2)
1853 		return max_t(unsigned long, align, cache_line_size());
1854 
1855 	if (align < ARCH_SLAB_MINALIGN)
1856 		return ARCH_SLAB_MINALIGN;
1857 
1858 	return ALIGN(align, sizeof(void *));
1859 }
1860 
1861 static void init_kmem_cache_node(struct kmem_cache_node *n)
1862 {
1863 	n->nr_partial = 0;
1864 	atomic_long_set(&n->nr_slabs, 0);
1865 	spin_lock_init(&n->list_lock);
1866 	INIT_LIST_HEAD(&n->partial);
1867 #ifdef CONFIG_SLUB_DEBUG
1868 	INIT_LIST_HEAD(&n->full);
1869 #endif
1870 }
1871 
1872 #ifdef CONFIG_NUMA
1873 /*
1874  * No kmalloc_node yet so do it by hand. We know that this is the first
1875  * slab on the node for this slabcache. There are no concurrent accesses
1876  * possible.
1877  *
1878  * Note that this function only works on the kmalloc_node_cache
1879  * when allocating for the kmalloc_node_cache.
1880  */
1881 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1882 								int node)
1883 {
1884 	struct page *page;
1885 	struct kmem_cache_node *n;
1886 
1887 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1888 
1889 	page = new_slab(kmalloc_caches, gfpflags, node);
1890 
1891 	BUG_ON(!page);
1892 	if (page_to_nid(page) != node) {
1893 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
1894 				"node %d\n", node);
1895 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1896 				"in order to be able to continue\n");
1897 	}
1898 
1899 	n = page->freelist;
1900 	BUG_ON(!n);
1901 	page->freelist = get_freepointer(kmalloc_caches, n);
1902 	page->inuse++;
1903 	kmalloc_caches->node[node] = n;
1904 #ifdef CONFIG_SLUB_DEBUG
1905 	init_object(kmalloc_caches, n, 1);
1906 	init_tracking(kmalloc_caches, n);
1907 #endif
1908 	init_kmem_cache_node(n);
1909 	atomic_long_inc(&n->nr_slabs);
1910 	add_partial(n, page);
1911 
1912 	/*
1913 	 * new_slab() disables interupts. If we do not reenable interrupts here
1914 	 * then bootup would continue with interrupts disabled.
1915 	 */
1916 	local_irq_enable();
1917 	return n;
1918 }
1919 
1920 static void free_kmem_cache_nodes(struct kmem_cache *s)
1921 {
1922 	int node;
1923 
1924 	for_each_online_node(node) {
1925 		struct kmem_cache_node *n = s->node[node];
1926 		if (n && n != &s->local_node)
1927 			kmem_cache_free(kmalloc_caches, n);
1928 		s->node[node] = NULL;
1929 	}
1930 }
1931 
1932 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1933 {
1934 	int node;
1935 	int local_node;
1936 
1937 	if (slab_state >= UP)
1938 		local_node = page_to_nid(virt_to_page(s));
1939 	else
1940 		local_node = 0;
1941 
1942 	for_each_online_node(node) {
1943 		struct kmem_cache_node *n;
1944 
1945 		if (local_node == node)
1946 			n = &s->local_node;
1947 		else {
1948 			if (slab_state == DOWN) {
1949 				n = early_kmem_cache_node_alloc(gfpflags,
1950 								node);
1951 				continue;
1952 			}
1953 			n = kmem_cache_alloc_node(kmalloc_caches,
1954 							gfpflags, node);
1955 
1956 			if (!n) {
1957 				free_kmem_cache_nodes(s);
1958 				return 0;
1959 			}
1960 
1961 		}
1962 		s->node[node] = n;
1963 		init_kmem_cache_node(n);
1964 	}
1965 	return 1;
1966 }
1967 #else
1968 static void free_kmem_cache_nodes(struct kmem_cache *s)
1969 {
1970 }
1971 
1972 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1973 {
1974 	init_kmem_cache_node(&s->local_node);
1975 	return 1;
1976 }
1977 #endif
1978 
1979 /*
1980  * calculate_sizes() determines the order and the distribution of data within
1981  * a slab object.
1982  */
1983 static int calculate_sizes(struct kmem_cache *s)
1984 {
1985 	unsigned long flags = s->flags;
1986 	unsigned long size = s->objsize;
1987 	unsigned long align = s->align;
1988 
1989 	/*
1990 	 * Determine if we can poison the object itself. If the user of
1991 	 * the slab may touch the object after free or before allocation
1992 	 * then we should never poison the object itself.
1993 	 */
1994 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1995 			!s->ctor)
1996 		s->flags |= __OBJECT_POISON;
1997 	else
1998 		s->flags &= ~__OBJECT_POISON;
1999 
2000 	/*
2001 	 * Round up object size to the next word boundary. We can only
2002 	 * place the free pointer at word boundaries and this determines
2003 	 * the possible location of the free pointer.
2004 	 */
2005 	size = ALIGN(size, sizeof(void *));
2006 
2007 #ifdef CONFIG_SLUB_DEBUG
2008 	/*
2009 	 * If we are Redzoning then check if there is some space between the
2010 	 * end of the object and the free pointer. If not then add an
2011 	 * additional word to have some bytes to store Redzone information.
2012 	 */
2013 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2014 		size += sizeof(void *);
2015 #endif
2016 
2017 	/*
2018 	 * With that we have determined the number of bytes in actual use
2019 	 * by the object. This is the potential offset to the free pointer.
2020 	 */
2021 	s->inuse = size;
2022 
2023 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2024 		s->ctor)) {
2025 		/*
2026 		 * Relocate free pointer after the object if it is not
2027 		 * permitted to overwrite the first word of the object on
2028 		 * kmem_cache_free.
2029 		 *
2030 		 * This is the case if we do RCU, have a constructor or
2031 		 * destructor or are poisoning the objects.
2032 		 */
2033 		s->offset = size;
2034 		size += sizeof(void *);
2035 	}
2036 
2037 #ifdef CONFIG_SLUB_DEBUG
2038 	if (flags & SLAB_STORE_USER)
2039 		/*
2040 		 * Need to store information about allocs and frees after
2041 		 * the object.
2042 		 */
2043 		size += 2 * sizeof(struct track);
2044 
2045 	if (flags & SLAB_RED_ZONE)
2046 		/*
2047 		 * Add some empty padding so that we can catch
2048 		 * overwrites from earlier objects rather than let
2049 		 * tracking information or the free pointer be
2050 		 * corrupted if an user writes before the start
2051 		 * of the object.
2052 		 */
2053 		size += sizeof(void *);
2054 #endif
2055 
2056 	/*
2057 	 * Determine the alignment based on various parameters that the
2058 	 * user specified and the dynamic determination of cache line size
2059 	 * on bootup.
2060 	 */
2061 	align = calculate_alignment(flags, align, s->objsize);
2062 
2063 	/*
2064 	 * SLUB stores one object immediately after another beginning from
2065 	 * offset 0. In order to align the objects we have to simply size
2066 	 * each object to conform to the alignment.
2067 	 */
2068 	size = ALIGN(size, align);
2069 	s->size = size;
2070 
2071 	s->order = calculate_order(size);
2072 	if (s->order < 0)
2073 		return 0;
2074 
2075 	/*
2076 	 * Determine the number of objects per slab
2077 	 */
2078 	s->objects = (PAGE_SIZE << s->order) / size;
2079 
2080 	/*
2081 	 * Verify that the number of objects is within permitted limits.
2082 	 * The page->inuse field is only 16 bit wide! So we cannot have
2083 	 * more than 64k objects per slab.
2084 	 */
2085 	if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
2086 		return 0;
2087 	return 1;
2088 
2089 }
2090 
2091 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2092 		const char *name, size_t size,
2093 		size_t align, unsigned long flags,
2094 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2095 {
2096 	memset(s, 0, kmem_size);
2097 	s->name = name;
2098 	s->ctor = ctor;
2099 	s->objsize = size;
2100 	s->align = align;
2101 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2102 
2103 	if (!calculate_sizes(s))
2104 		goto error;
2105 
2106 	s->refcount = 1;
2107 #ifdef CONFIG_NUMA
2108 	s->defrag_ratio = 100;
2109 #endif
2110 
2111 	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2112 		return 1;
2113 error:
2114 	if (flags & SLAB_PANIC)
2115 		panic("Cannot create slab %s size=%lu realsize=%u "
2116 			"order=%u offset=%u flags=%lx\n",
2117 			s->name, (unsigned long)size, s->size, s->order,
2118 			s->offset, flags);
2119 	return 0;
2120 }
2121 
2122 /*
2123  * Check if a given pointer is valid
2124  */
2125 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2126 {
2127 	struct page * page;
2128 
2129 	page = get_object_page(object);
2130 
2131 	if (!page || s != page->slab)
2132 		/* No slab or wrong slab */
2133 		return 0;
2134 
2135 	if (!check_valid_pointer(s, page, object))
2136 		return 0;
2137 
2138 	/*
2139 	 * We could also check if the object is on the slabs freelist.
2140 	 * But this would be too expensive and it seems that the main
2141 	 * purpose of kmem_ptr_valid is to check if the object belongs
2142 	 * to a certain slab.
2143 	 */
2144 	return 1;
2145 }
2146 EXPORT_SYMBOL(kmem_ptr_validate);
2147 
2148 /*
2149  * Determine the size of a slab object
2150  */
2151 unsigned int kmem_cache_size(struct kmem_cache *s)
2152 {
2153 	return s->objsize;
2154 }
2155 EXPORT_SYMBOL(kmem_cache_size);
2156 
2157 const char *kmem_cache_name(struct kmem_cache *s)
2158 {
2159 	return s->name;
2160 }
2161 EXPORT_SYMBOL(kmem_cache_name);
2162 
2163 /*
2164  * Attempt to free all slabs on a node. Return the number of slabs we
2165  * were unable to free.
2166  */
2167 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2168 			struct list_head *list)
2169 {
2170 	int slabs_inuse = 0;
2171 	unsigned long flags;
2172 	struct page *page, *h;
2173 
2174 	spin_lock_irqsave(&n->list_lock, flags);
2175 	list_for_each_entry_safe(page, h, list, lru)
2176 		if (!page->inuse) {
2177 			list_del(&page->lru);
2178 			discard_slab(s, page);
2179 		} else
2180 			slabs_inuse++;
2181 	spin_unlock_irqrestore(&n->list_lock, flags);
2182 	return slabs_inuse;
2183 }
2184 
2185 /*
2186  * Release all resources used by a slab cache.
2187  */
2188 static inline int kmem_cache_close(struct kmem_cache *s)
2189 {
2190 	int node;
2191 
2192 	flush_all(s);
2193 
2194 	/* Attempt to free all objects */
2195 	for_each_online_node(node) {
2196 		struct kmem_cache_node *n = get_node(s, node);
2197 
2198 		n->nr_partial -= free_list(s, n, &n->partial);
2199 		if (atomic_long_read(&n->nr_slabs))
2200 			return 1;
2201 	}
2202 	free_kmem_cache_nodes(s);
2203 	return 0;
2204 }
2205 
2206 /*
2207  * Close a cache and release the kmem_cache structure
2208  * (must be used for caches created using kmem_cache_create)
2209  */
2210 void kmem_cache_destroy(struct kmem_cache *s)
2211 {
2212 	down_write(&slub_lock);
2213 	s->refcount--;
2214 	if (!s->refcount) {
2215 		list_del(&s->list);
2216 		up_write(&slub_lock);
2217 		if (kmem_cache_close(s))
2218 			WARN_ON(1);
2219 		sysfs_slab_remove(s);
2220 		kfree(s);
2221 	} else
2222 		up_write(&slub_lock);
2223 }
2224 EXPORT_SYMBOL(kmem_cache_destroy);
2225 
2226 /********************************************************************
2227  *		Kmalloc subsystem
2228  *******************************************************************/
2229 
2230 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2231 EXPORT_SYMBOL(kmalloc_caches);
2232 
2233 #ifdef CONFIG_ZONE_DMA
2234 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2235 #endif
2236 
2237 static int __init setup_slub_min_order(char *str)
2238 {
2239 	get_option (&str, &slub_min_order);
2240 
2241 	return 1;
2242 }
2243 
2244 __setup("slub_min_order=", setup_slub_min_order);
2245 
2246 static int __init setup_slub_max_order(char *str)
2247 {
2248 	get_option (&str, &slub_max_order);
2249 
2250 	return 1;
2251 }
2252 
2253 __setup("slub_max_order=", setup_slub_max_order);
2254 
2255 static int __init setup_slub_min_objects(char *str)
2256 {
2257 	get_option (&str, &slub_min_objects);
2258 
2259 	return 1;
2260 }
2261 
2262 __setup("slub_min_objects=", setup_slub_min_objects);
2263 
2264 static int __init setup_slub_nomerge(char *str)
2265 {
2266 	slub_nomerge = 1;
2267 	return 1;
2268 }
2269 
2270 __setup("slub_nomerge", setup_slub_nomerge);
2271 
2272 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2273 		const char *name, int size, gfp_t gfp_flags)
2274 {
2275 	unsigned int flags = 0;
2276 
2277 	if (gfp_flags & SLUB_DMA)
2278 		flags = SLAB_CACHE_DMA;
2279 
2280 	down_write(&slub_lock);
2281 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2282 			flags, NULL))
2283 		goto panic;
2284 
2285 	list_add(&s->list, &slab_caches);
2286 	up_write(&slub_lock);
2287 	if (sysfs_slab_add(s))
2288 		goto panic;
2289 	return s;
2290 
2291 panic:
2292 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2293 }
2294 
2295 #ifdef CONFIG_ZONE_DMA
2296 
2297 static void sysfs_add_func(struct work_struct *w)
2298 {
2299 	struct kmem_cache *s;
2300 
2301 	down_write(&slub_lock);
2302 	list_for_each_entry(s, &slab_caches, list) {
2303 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2304 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2305 			sysfs_slab_add(s);
2306 		}
2307 	}
2308 	up_write(&slub_lock);
2309 }
2310 
2311 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2312 
2313 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2314 {
2315 	struct kmem_cache *s;
2316 	char *text;
2317 	size_t realsize;
2318 
2319 	s = kmalloc_caches_dma[index];
2320 	if (s)
2321 		return s;
2322 
2323 	/* Dynamically create dma cache */
2324 	if (flags & __GFP_WAIT)
2325 		down_write(&slub_lock);
2326 	else {
2327 		if (!down_write_trylock(&slub_lock))
2328 			goto out;
2329 	}
2330 
2331 	if (kmalloc_caches_dma[index])
2332 		goto unlock_out;
2333 
2334 	realsize = kmalloc_caches[index].objsize;
2335 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2336 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2337 
2338 	if (!s || !text || !kmem_cache_open(s, flags, text,
2339 			realsize, ARCH_KMALLOC_MINALIGN,
2340 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2341 		kfree(s);
2342 		kfree(text);
2343 		goto unlock_out;
2344 	}
2345 
2346 	list_add(&s->list, &slab_caches);
2347 	kmalloc_caches_dma[index] = s;
2348 
2349 	schedule_work(&sysfs_add_work);
2350 
2351 unlock_out:
2352 	up_write(&slub_lock);
2353 out:
2354 	return kmalloc_caches_dma[index];
2355 }
2356 #endif
2357 
2358 /*
2359  * Conversion table for small slabs sizes / 8 to the index in the
2360  * kmalloc array. This is necessary for slabs < 192 since we have non power
2361  * of two cache sizes there. The size of larger slabs can be determined using
2362  * fls.
2363  */
2364 static s8 size_index[24] = {
2365 	3,	/* 8 */
2366 	4,	/* 16 */
2367 	5,	/* 24 */
2368 	5,	/* 32 */
2369 	6,	/* 40 */
2370 	6,	/* 48 */
2371 	6,	/* 56 */
2372 	6,	/* 64 */
2373 	1,	/* 72 */
2374 	1,	/* 80 */
2375 	1,	/* 88 */
2376 	1,	/* 96 */
2377 	7,	/* 104 */
2378 	7,	/* 112 */
2379 	7,	/* 120 */
2380 	7,	/* 128 */
2381 	2,	/* 136 */
2382 	2,	/* 144 */
2383 	2,	/* 152 */
2384 	2,	/* 160 */
2385 	2,	/* 168 */
2386 	2,	/* 176 */
2387 	2,	/* 184 */
2388 	2	/* 192 */
2389 };
2390 
2391 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2392 {
2393 	int index;
2394 
2395 	if (size <= 192) {
2396 		if (!size)
2397 			return ZERO_SIZE_PTR;
2398 
2399 		index = size_index[(size - 1) / 8];
2400 	} else {
2401 		if (size > KMALLOC_MAX_SIZE)
2402 			return NULL;
2403 
2404 		index = fls(size - 1);
2405 	}
2406 
2407 #ifdef CONFIG_ZONE_DMA
2408 	if (unlikely((flags & SLUB_DMA)))
2409 		return dma_kmalloc_cache(index, flags);
2410 
2411 #endif
2412 	return &kmalloc_caches[index];
2413 }
2414 
2415 void *__kmalloc(size_t size, gfp_t flags)
2416 {
2417 	struct kmem_cache *s = get_slab(size, flags);
2418 
2419 	if (ZERO_OR_NULL_PTR(s))
2420 		return s;
2421 
2422 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2423 }
2424 EXPORT_SYMBOL(__kmalloc);
2425 
2426 #ifdef CONFIG_NUMA
2427 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2428 {
2429 	struct kmem_cache *s = get_slab(size, flags);
2430 
2431 	if (ZERO_OR_NULL_PTR(s))
2432 		return s;
2433 
2434 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2435 }
2436 EXPORT_SYMBOL(__kmalloc_node);
2437 #endif
2438 
2439 size_t ksize(const void *object)
2440 {
2441 	struct page *page;
2442 	struct kmem_cache *s;
2443 
2444 	if (ZERO_OR_NULL_PTR(object))
2445 		return 0;
2446 
2447 	page = get_object_page(object);
2448 	BUG_ON(!page);
2449 	s = page->slab;
2450 	BUG_ON(!s);
2451 
2452 	/*
2453 	 * Debugging requires use of the padding between object
2454 	 * and whatever may come after it.
2455 	 */
2456 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2457 		return s->objsize;
2458 
2459 	/*
2460 	 * If we have the need to store the freelist pointer
2461 	 * back there or track user information then we can
2462 	 * only use the space before that information.
2463 	 */
2464 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2465 		return s->inuse;
2466 
2467 	/*
2468 	 * Else we can use all the padding etc for the allocation
2469 	 */
2470 	return s->size;
2471 }
2472 EXPORT_SYMBOL(ksize);
2473 
2474 void kfree(const void *x)
2475 {
2476 	struct kmem_cache *s;
2477 	struct page *page;
2478 
2479 	/*
2480 	 * This has to be an unsigned comparison. According to Linus
2481 	 * some gcc version treat a pointer as a signed entity. Then
2482 	 * this comparison would be true for all "negative" pointers
2483 	 * (which would cover the whole upper half of the address space).
2484 	 */
2485 	if (ZERO_OR_NULL_PTR(x))
2486 		return;
2487 
2488 	page = virt_to_head_page(x);
2489 	s = page->slab;
2490 
2491 	slab_free(s, page, (void *)x, __builtin_return_address(0));
2492 }
2493 EXPORT_SYMBOL(kfree);
2494 
2495 /*
2496  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2497  * the remaining slabs by the number of items in use. The slabs with the
2498  * most items in use come first. New allocations will then fill those up
2499  * and thus they can be removed from the partial lists.
2500  *
2501  * The slabs with the least items are placed last. This results in them
2502  * being allocated from last increasing the chance that the last objects
2503  * are freed in them.
2504  */
2505 int kmem_cache_shrink(struct kmem_cache *s)
2506 {
2507 	int node;
2508 	int i;
2509 	struct kmem_cache_node *n;
2510 	struct page *page;
2511 	struct page *t;
2512 	struct list_head *slabs_by_inuse =
2513 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2514 	unsigned long flags;
2515 
2516 	if (!slabs_by_inuse)
2517 		return -ENOMEM;
2518 
2519 	flush_all(s);
2520 	for_each_online_node(node) {
2521 		n = get_node(s, node);
2522 
2523 		if (!n->nr_partial)
2524 			continue;
2525 
2526 		for (i = 0; i < s->objects; i++)
2527 			INIT_LIST_HEAD(slabs_by_inuse + i);
2528 
2529 		spin_lock_irqsave(&n->list_lock, flags);
2530 
2531 		/*
2532 		 * Build lists indexed by the items in use in each slab.
2533 		 *
2534 		 * Note that concurrent frees may occur while we hold the
2535 		 * list_lock. page->inuse here is the upper limit.
2536 		 */
2537 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2538 			if (!page->inuse && slab_trylock(page)) {
2539 				/*
2540 				 * Must hold slab lock here because slab_free
2541 				 * may have freed the last object and be
2542 				 * waiting to release the slab.
2543 				 */
2544 				list_del(&page->lru);
2545 				n->nr_partial--;
2546 				slab_unlock(page);
2547 				discard_slab(s, page);
2548 			} else {
2549 				list_move(&page->lru,
2550 				slabs_by_inuse + page->inuse);
2551 			}
2552 		}
2553 
2554 		/*
2555 		 * Rebuild the partial list with the slabs filled up most
2556 		 * first and the least used slabs at the end.
2557 		 */
2558 		for (i = s->objects - 1; i >= 0; i--)
2559 			list_splice(slabs_by_inuse + i, n->partial.prev);
2560 
2561 		spin_unlock_irqrestore(&n->list_lock, flags);
2562 	}
2563 
2564 	kfree(slabs_by_inuse);
2565 	return 0;
2566 }
2567 EXPORT_SYMBOL(kmem_cache_shrink);
2568 
2569 /********************************************************************
2570  *			Basic setup of slabs
2571  *******************************************************************/
2572 
2573 void __init kmem_cache_init(void)
2574 {
2575 	int i;
2576 	int caches = 0;
2577 
2578 #ifdef CONFIG_NUMA
2579 	/*
2580 	 * Must first have the slab cache available for the allocations of the
2581 	 * struct kmem_cache_node's. There is special bootstrap code in
2582 	 * kmem_cache_open for slab_state == DOWN.
2583 	 */
2584 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2585 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2586 	kmalloc_caches[0].refcount = -1;
2587 	caches++;
2588 #endif
2589 
2590 	/* Able to allocate the per node structures */
2591 	slab_state = PARTIAL;
2592 
2593 	/* Caches that are not of the two-to-the-power-of size */
2594 	if (KMALLOC_MIN_SIZE <= 64) {
2595 		create_kmalloc_cache(&kmalloc_caches[1],
2596 				"kmalloc-96", 96, GFP_KERNEL);
2597 		caches++;
2598 	}
2599 	if (KMALLOC_MIN_SIZE <= 128) {
2600 		create_kmalloc_cache(&kmalloc_caches[2],
2601 				"kmalloc-192", 192, GFP_KERNEL);
2602 		caches++;
2603 	}
2604 
2605 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
2606 		create_kmalloc_cache(&kmalloc_caches[i],
2607 			"kmalloc", 1 << i, GFP_KERNEL);
2608 		caches++;
2609 	}
2610 
2611 
2612 	/*
2613 	 * Patch up the size_index table if we have strange large alignment
2614 	 * requirements for the kmalloc array. This is only the case for
2615 	 * mips it seems. The standard arches will not generate any code here.
2616 	 *
2617 	 * Largest permitted alignment is 256 bytes due to the way we
2618 	 * handle the index determination for the smaller caches.
2619 	 *
2620 	 * Make sure that nothing crazy happens if someone starts tinkering
2621 	 * around with ARCH_KMALLOC_MINALIGN
2622 	 */
2623 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2624 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2625 
2626 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2627 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2628 
2629 	slab_state = UP;
2630 
2631 	/* Provide the correct kmalloc names now that the caches are up */
2632 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2633 		kmalloc_caches[i]. name =
2634 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2635 
2636 #ifdef CONFIG_SMP
2637 	register_cpu_notifier(&slab_notifier);
2638 #endif
2639 
2640 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2641 				nr_cpu_ids * sizeof(struct page *);
2642 
2643 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2644 		" CPUs=%d, Nodes=%d\n",
2645 		caches, cache_line_size(),
2646 		slub_min_order, slub_max_order, slub_min_objects,
2647 		nr_cpu_ids, nr_node_ids);
2648 }
2649 
2650 /*
2651  * Find a mergeable slab cache
2652  */
2653 static int slab_unmergeable(struct kmem_cache *s)
2654 {
2655 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2656 		return 1;
2657 
2658 	if (s->ctor)
2659 		return 1;
2660 
2661 	/*
2662 	 * We may have set a slab to be unmergeable during bootstrap.
2663 	 */
2664 	if (s->refcount < 0)
2665 		return 1;
2666 
2667 	return 0;
2668 }
2669 
2670 static struct kmem_cache *find_mergeable(size_t size,
2671 		size_t align, unsigned long flags, const char *name,
2672 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2673 {
2674 	struct kmem_cache *s;
2675 
2676 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2677 		return NULL;
2678 
2679 	if (ctor)
2680 		return NULL;
2681 
2682 	size = ALIGN(size, sizeof(void *));
2683 	align = calculate_alignment(flags, align, size);
2684 	size = ALIGN(size, align);
2685 	flags = kmem_cache_flags(size, flags, name, NULL);
2686 
2687 	list_for_each_entry(s, &slab_caches, list) {
2688 		if (slab_unmergeable(s))
2689 			continue;
2690 
2691 		if (size > s->size)
2692 			continue;
2693 
2694 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2695 				continue;
2696 		/*
2697 		 * Check if alignment is compatible.
2698 		 * Courtesy of Adrian Drzewiecki
2699 		 */
2700 		if ((s->size & ~(align -1)) != s->size)
2701 			continue;
2702 
2703 		if (s->size - size >= sizeof(void *))
2704 			continue;
2705 
2706 		return s;
2707 	}
2708 	return NULL;
2709 }
2710 
2711 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2712 		size_t align, unsigned long flags,
2713 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2714 {
2715 	struct kmem_cache *s;
2716 
2717 	down_write(&slub_lock);
2718 	s = find_mergeable(size, align, flags, name, ctor);
2719 	if (s) {
2720 		s->refcount++;
2721 		/*
2722 		 * Adjust the object sizes so that we clear
2723 		 * the complete object on kzalloc.
2724 		 */
2725 		s->objsize = max(s->objsize, (int)size);
2726 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2727 		up_write(&slub_lock);
2728 		if (sysfs_slab_alias(s, name))
2729 			goto err;
2730 		return s;
2731 	}
2732 	s = kmalloc(kmem_size, GFP_KERNEL);
2733 	if (s) {
2734 		if (kmem_cache_open(s, GFP_KERNEL, name,
2735 				size, align, flags, ctor)) {
2736 			list_add(&s->list, &slab_caches);
2737 			up_write(&slub_lock);
2738 			if (sysfs_slab_add(s))
2739 				goto err;
2740 			return s;
2741 		}
2742 		kfree(s);
2743 	}
2744 	up_write(&slub_lock);
2745 
2746 err:
2747 	if (flags & SLAB_PANIC)
2748 		panic("Cannot create slabcache %s\n", name);
2749 	else
2750 		s = NULL;
2751 	return s;
2752 }
2753 EXPORT_SYMBOL(kmem_cache_create);
2754 
2755 #ifdef CONFIG_SMP
2756 /*
2757  * Use the cpu notifier to insure that the cpu slabs are flushed when
2758  * necessary.
2759  */
2760 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2761 		unsigned long action, void *hcpu)
2762 {
2763 	long cpu = (long)hcpu;
2764 	struct kmem_cache *s;
2765 	unsigned long flags;
2766 
2767 	switch (action) {
2768 	case CPU_UP_CANCELED:
2769 	case CPU_UP_CANCELED_FROZEN:
2770 	case CPU_DEAD:
2771 	case CPU_DEAD_FROZEN:
2772 		down_read(&slub_lock);
2773 		list_for_each_entry(s, &slab_caches, list) {
2774 			local_irq_save(flags);
2775 			__flush_cpu_slab(s, cpu);
2776 			local_irq_restore(flags);
2777 		}
2778 		up_read(&slub_lock);
2779 		break;
2780 	default:
2781 		break;
2782 	}
2783 	return NOTIFY_OK;
2784 }
2785 
2786 static struct notifier_block __cpuinitdata slab_notifier =
2787 	{ &slab_cpuup_callback, NULL, 0 };
2788 
2789 #endif
2790 
2791 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2792 {
2793 	struct kmem_cache *s = get_slab(size, gfpflags);
2794 
2795 	if (ZERO_OR_NULL_PTR(s))
2796 		return s;
2797 
2798 	return slab_alloc(s, gfpflags, -1, caller);
2799 }
2800 
2801 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2802 					int node, void *caller)
2803 {
2804 	struct kmem_cache *s = get_slab(size, gfpflags);
2805 
2806 	if (ZERO_OR_NULL_PTR(s))
2807 		return s;
2808 
2809 	return slab_alloc(s, gfpflags, node, caller);
2810 }
2811 
2812 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2813 static int validate_slab(struct kmem_cache *s, struct page *page,
2814 						unsigned long *map)
2815 {
2816 	void *p;
2817 	void *addr = page_address(page);
2818 
2819 	if (!check_slab(s, page) ||
2820 			!on_freelist(s, page, NULL))
2821 		return 0;
2822 
2823 	/* Now we know that a valid freelist exists */
2824 	bitmap_zero(map, s->objects);
2825 
2826 	for_each_free_object(p, s, page->freelist) {
2827 		set_bit(slab_index(p, s, addr), map);
2828 		if (!check_object(s, page, p, 0))
2829 			return 0;
2830 	}
2831 
2832 	for_each_object(p, s, addr)
2833 		if (!test_bit(slab_index(p, s, addr), map))
2834 			if (!check_object(s, page, p, 1))
2835 				return 0;
2836 	return 1;
2837 }
2838 
2839 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2840 						unsigned long *map)
2841 {
2842 	if (slab_trylock(page)) {
2843 		validate_slab(s, page, map);
2844 		slab_unlock(page);
2845 	} else
2846 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2847 			s->name, page);
2848 
2849 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2850 		if (!SlabDebug(page))
2851 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2852 				"on slab 0x%p\n", s->name, page);
2853 	} else {
2854 		if (SlabDebug(page))
2855 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2856 				"slab 0x%p\n", s->name, page);
2857 	}
2858 }
2859 
2860 static int validate_slab_node(struct kmem_cache *s,
2861 		struct kmem_cache_node *n, unsigned long *map)
2862 {
2863 	unsigned long count = 0;
2864 	struct page *page;
2865 	unsigned long flags;
2866 
2867 	spin_lock_irqsave(&n->list_lock, flags);
2868 
2869 	list_for_each_entry(page, &n->partial, lru) {
2870 		validate_slab_slab(s, page, map);
2871 		count++;
2872 	}
2873 	if (count != n->nr_partial)
2874 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2875 			"counter=%ld\n", s->name, count, n->nr_partial);
2876 
2877 	if (!(s->flags & SLAB_STORE_USER))
2878 		goto out;
2879 
2880 	list_for_each_entry(page, &n->full, lru) {
2881 		validate_slab_slab(s, page, map);
2882 		count++;
2883 	}
2884 	if (count != atomic_long_read(&n->nr_slabs))
2885 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2886 			"counter=%ld\n", s->name, count,
2887 			atomic_long_read(&n->nr_slabs));
2888 
2889 out:
2890 	spin_unlock_irqrestore(&n->list_lock, flags);
2891 	return count;
2892 }
2893 
2894 static long validate_slab_cache(struct kmem_cache *s)
2895 {
2896 	int node;
2897 	unsigned long count = 0;
2898 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2899 				sizeof(unsigned long), GFP_KERNEL);
2900 
2901 	if (!map)
2902 		return -ENOMEM;
2903 
2904 	flush_all(s);
2905 	for_each_online_node(node) {
2906 		struct kmem_cache_node *n = get_node(s, node);
2907 
2908 		count += validate_slab_node(s, n, map);
2909 	}
2910 	kfree(map);
2911 	return count;
2912 }
2913 
2914 #ifdef SLUB_RESILIENCY_TEST
2915 static void resiliency_test(void)
2916 {
2917 	u8 *p;
2918 
2919 	printk(KERN_ERR "SLUB resiliency testing\n");
2920 	printk(KERN_ERR "-----------------------\n");
2921 	printk(KERN_ERR "A. Corruption after allocation\n");
2922 
2923 	p = kzalloc(16, GFP_KERNEL);
2924 	p[16] = 0x12;
2925 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2926 			" 0x12->0x%p\n\n", p + 16);
2927 
2928 	validate_slab_cache(kmalloc_caches + 4);
2929 
2930 	/* Hmmm... The next two are dangerous */
2931 	p = kzalloc(32, GFP_KERNEL);
2932 	p[32 + sizeof(void *)] = 0x34;
2933 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2934 		 	" 0x34 -> -0x%p\n", p);
2935 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2936 
2937 	validate_slab_cache(kmalloc_caches + 5);
2938 	p = kzalloc(64, GFP_KERNEL);
2939 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2940 	*p = 0x56;
2941 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2942 									p);
2943 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2944 	validate_slab_cache(kmalloc_caches + 6);
2945 
2946 	printk(KERN_ERR "\nB. Corruption after free\n");
2947 	p = kzalloc(128, GFP_KERNEL);
2948 	kfree(p);
2949 	*p = 0x78;
2950 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2951 	validate_slab_cache(kmalloc_caches + 7);
2952 
2953 	p = kzalloc(256, GFP_KERNEL);
2954 	kfree(p);
2955 	p[50] = 0x9a;
2956 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2957 	validate_slab_cache(kmalloc_caches + 8);
2958 
2959 	p = kzalloc(512, GFP_KERNEL);
2960 	kfree(p);
2961 	p[512] = 0xab;
2962 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2963 	validate_slab_cache(kmalloc_caches + 9);
2964 }
2965 #else
2966 static void resiliency_test(void) {};
2967 #endif
2968 
2969 /*
2970  * Generate lists of code addresses where slabcache objects are allocated
2971  * and freed.
2972  */
2973 
2974 struct location {
2975 	unsigned long count;
2976 	void *addr;
2977 	long long sum_time;
2978 	long min_time;
2979 	long max_time;
2980 	long min_pid;
2981 	long max_pid;
2982 	cpumask_t cpus;
2983 	nodemask_t nodes;
2984 };
2985 
2986 struct loc_track {
2987 	unsigned long max;
2988 	unsigned long count;
2989 	struct location *loc;
2990 };
2991 
2992 static void free_loc_track(struct loc_track *t)
2993 {
2994 	if (t->max)
2995 		free_pages((unsigned long)t->loc,
2996 			get_order(sizeof(struct location) * t->max));
2997 }
2998 
2999 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3000 {
3001 	struct location *l;
3002 	int order;
3003 
3004 	order = get_order(sizeof(struct location) * max);
3005 
3006 	l = (void *)__get_free_pages(flags, order);
3007 	if (!l)
3008 		return 0;
3009 
3010 	if (t->count) {
3011 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3012 		free_loc_track(t);
3013 	}
3014 	t->max = max;
3015 	t->loc = l;
3016 	return 1;
3017 }
3018 
3019 static int add_location(struct loc_track *t, struct kmem_cache *s,
3020 				const struct track *track)
3021 {
3022 	long start, end, pos;
3023 	struct location *l;
3024 	void *caddr;
3025 	unsigned long age = jiffies - track->when;
3026 
3027 	start = -1;
3028 	end = t->count;
3029 
3030 	for ( ; ; ) {
3031 		pos = start + (end - start + 1) / 2;
3032 
3033 		/*
3034 		 * There is nothing at "end". If we end up there
3035 		 * we need to add something to before end.
3036 		 */
3037 		if (pos == end)
3038 			break;
3039 
3040 		caddr = t->loc[pos].addr;
3041 		if (track->addr == caddr) {
3042 
3043 			l = &t->loc[pos];
3044 			l->count++;
3045 			if (track->when) {
3046 				l->sum_time += age;
3047 				if (age < l->min_time)
3048 					l->min_time = age;
3049 				if (age > l->max_time)
3050 					l->max_time = age;
3051 
3052 				if (track->pid < l->min_pid)
3053 					l->min_pid = track->pid;
3054 				if (track->pid > l->max_pid)
3055 					l->max_pid = track->pid;
3056 
3057 				cpu_set(track->cpu, l->cpus);
3058 			}
3059 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3060 			return 1;
3061 		}
3062 
3063 		if (track->addr < caddr)
3064 			end = pos;
3065 		else
3066 			start = pos;
3067 	}
3068 
3069 	/*
3070 	 * Not found. Insert new tracking element.
3071 	 */
3072 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3073 		return 0;
3074 
3075 	l = t->loc + pos;
3076 	if (pos < t->count)
3077 		memmove(l + 1, l,
3078 			(t->count - pos) * sizeof(struct location));
3079 	t->count++;
3080 	l->count = 1;
3081 	l->addr = track->addr;
3082 	l->sum_time = age;
3083 	l->min_time = age;
3084 	l->max_time = age;
3085 	l->min_pid = track->pid;
3086 	l->max_pid = track->pid;
3087 	cpus_clear(l->cpus);
3088 	cpu_set(track->cpu, l->cpus);
3089 	nodes_clear(l->nodes);
3090 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3091 	return 1;
3092 }
3093 
3094 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3095 		struct page *page, enum track_item alloc)
3096 {
3097 	void *addr = page_address(page);
3098 	DECLARE_BITMAP(map, s->objects);
3099 	void *p;
3100 
3101 	bitmap_zero(map, s->objects);
3102 	for_each_free_object(p, s, page->freelist)
3103 		set_bit(slab_index(p, s, addr), map);
3104 
3105 	for_each_object(p, s, addr)
3106 		if (!test_bit(slab_index(p, s, addr), map))
3107 			add_location(t, s, get_track(s, p, alloc));
3108 }
3109 
3110 static int list_locations(struct kmem_cache *s, char *buf,
3111 					enum track_item alloc)
3112 {
3113 	int n = 0;
3114 	unsigned long i;
3115 	struct loc_track t = { 0, 0, NULL };
3116 	int node;
3117 
3118 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3119 			GFP_KERNEL))
3120 		return sprintf(buf, "Out of memory\n");
3121 
3122 	/* Push back cpu slabs */
3123 	flush_all(s);
3124 
3125 	for_each_online_node(node) {
3126 		struct kmem_cache_node *n = get_node(s, node);
3127 		unsigned long flags;
3128 		struct page *page;
3129 
3130 		if (!atomic_long_read(&n->nr_slabs))
3131 			continue;
3132 
3133 		spin_lock_irqsave(&n->list_lock, flags);
3134 		list_for_each_entry(page, &n->partial, lru)
3135 			process_slab(&t, s, page, alloc);
3136 		list_for_each_entry(page, &n->full, lru)
3137 			process_slab(&t, s, page, alloc);
3138 		spin_unlock_irqrestore(&n->list_lock, flags);
3139 	}
3140 
3141 	for (i = 0; i < t.count; i++) {
3142 		struct location *l = &t.loc[i];
3143 
3144 		if (n > PAGE_SIZE - 100)
3145 			break;
3146 		n += sprintf(buf + n, "%7ld ", l->count);
3147 
3148 		if (l->addr)
3149 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
3150 		else
3151 			n += sprintf(buf + n, "<not-available>");
3152 
3153 		if (l->sum_time != l->min_time) {
3154 			unsigned long remainder;
3155 
3156 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
3157 			l->min_time,
3158 			div_long_long_rem(l->sum_time, l->count, &remainder),
3159 			l->max_time);
3160 		} else
3161 			n += sprintf(buf + n, " age=%ld",
3162 				l->min_time);
3163 
3164 		if (l->min_pid != l->max_pid)
3165 			n += sprintf(buf + n, " pid=%ld-%ld",
3166 				l->min_pid, l->max_pid);
3167 		else
3168 			n += sprintf(buf + n, " pid=%ld",
3169 				l->min_pid);
3170 
3171 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3172 				n < PAGE_SIZE - 60) {
3173 			n += sprintf(buf + n, " cpus=");
3174 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3175 					l->cpus);
3176 		}
3177 
3178 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3179 				n < PAGE_SIZE - 60) {
3180 			n += sprintf(buf + n, " nodes=");
3181 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3182 					l->nodes);
3183 		}
3184 
3185 		n += sprintf(buf + n, "\n");
3186 	}
3187 
3188 	free_loc_track(&t);
3189 	if (!t.count)
3190 		n += sprintf(buf, "No data\n");
3191 	return n;
3192 }
3193 
3194 static unsigned long count_partial(struct kmem_cache_node *n)
3195 {
3196 	unsigned long flags;
3197 	unsigned long x = 0;
3198 	struct page *page;
3199 
3200 	spin_lock_irqsave(&n->list_lock, flags);
3201 	list_for_each_entry(page, &n->partial, lru)
3202 		x += page->inuse;
3203 	spin_unlock_irqrestore(&n->list_lock, flags);
3204 	return x;
3205 }
3206 
3207 enum slab_stat_type {
3208 	SL_FULL,
3209 	SL_PARTIAL,
3210 	SL_CPU,
3211 	SL_OBJECTS
3212 };
3213 
3214 #define SO_FULL		(1 << SL_FULL)
3215 #define SO_PARTIAL	(1 << SL_PARTIAL)
3216 #define SO_CPU		(1 << SL_CPU)
3217 #define SO_OBJECTS	(1 << SL_OBJECTS)
3218 
3219 static unsigned long slab_objects(struct kmem_cache *s,
3220 			char *buf, unsigned long flags)
3221 {
3222 	unsigned long total = 0;
3223 	int cpu;
3224 	int node;
3225 	int x;
3226 	unsigned long *nodes;
3227 	unsigned long *per_cpu;
3228 
3229 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3230 	per_cpu = nodes + nr_node_ids;
3231 
3232 	for_each_possible_cpu(cpu) {
3233 		struct page *page = s->cpu_slab[cpu];
3234 		int node;
3235 
3236 		if (page) {
3237 			node = page_to_nid(page);
3238 			if (flags & SO_CPU) {
3239 				int x = 0;
3240 
3241 				if (flags & SO_OBJECTS)
3242 					x = page->inuse;
3243 				else
3244 					x = 1;
3245 				total += x;
3246 				nodes[node] += x;
3247 			}
3248 			per_cpu[node]++;
3249 		}
3250 	}
3251 
3252 	for_each_online_node(node) {
3253 		struct kmem_cache_node *n = get_node(s, node);
3254 
3255 		if (flags & SO_PARTIAL) {
3256 			if (flags & SO_OBJECTS)
3257 				x = count_partial(n);
3258 			else
3259 				x = n->nr_partial;
3260 			total += x;
3261 			nodes[node] += x;
3262 		}
3263 
3264 		if (flags & SO_FULL) {
3265 			int full_slabs = atomic_long_read(&n->nr_slabs)
3266 					- per_cpu[node]
3267 					- n->nr_partial;
3268 
3269 			if (flags & SO_OBJECTS)
3270 				x = full_slabs * s->objects;
3271 			else
3272 				x = full_slabs;
3273 			total += x;
3274 			nodes[node] += x;
3275 		}
3276 	}
3277 
3278 	x = sprintf(buf, "%lu", total);
3279 #ifdef CONFIG_NUMA
3280 	for_each_online_node(node)
3281 		if (nodes[node])
3282 			x += sprintf(buf + x, " N%d=%lu",
3283 					node, nodes[node]);
3284 #endif
3285 	kfree(nodes);
3286 	return x + sprintf(buf + x, "\n");
3287 }
3288 
3289 static int any_slab_objects(struct kmem_cache *s)
3290 {
3291 	int node;
3292 	int cpu;
3293 
3294 	for_each_possible_cpu(cpu)
3295 		if (s->cpu_slab[cpu])
3296 			return 1;
3297 
3298 	for_each_node(node) {
3299 		struct kmem_cache_node *n = get_node(s, node);
3300 
3301 		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3302 			return 1;
3303 	}
3304 	return 0;
3305 }
3306 
3307 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3308 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3309 
3310 struct slab_attribute {
3311 	struct attribute attr;
3312 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3313 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3314 };
3315 
3316 #define SLAB_ATTR_RO(_name) \
3317 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3318 
3319 #define SLAB_ATTR(_name) \
3320 	static struct slab_attribute _name##_attr =  \
3321 	__ATTR(_name, 0644, _name##_show, _name##_store)
3322 
3323 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3324 {
3325 	return sprintf(buf, "%d\n", s->size);
3326 }
3327 SLAB_ATTR_RO(slab_size);
3328 
3329 static ssize_t align_show(struct kmem_cache *s, char *buf)
3330 {
3331 	return sprintf(buf, "%d\n", s->align);
3332 }
3333 SLAB_ATTR_RO(align);
3334 
3335 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3336 {
3337 	return sprintf(buf, "%d\n", s->objsize);
3338 }
3339 SLAB_ATTR_RO(object_size);
3340 
3341 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3342 {
3343 	return sprintf(buf, "%d\n", s->objects);
3344 }
3345 SLAB_ATTR_RO(objs_per_slab);
3346 
3347 static ssize_t order_show(struct kmem_cache *s, char *buf)
3348 {
3349 	return sprintf(buf, "%d\n", s->order);
3350 }
3351 SLAB_ATTR_RO(order);
3352 
3353 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3354 {
3355 	if (s->ctor) {
3356 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3357 
3358 		return n + sprintf(buf + n, "\n");
3359 	}
3360 	return 0;
3361 }
3362 SLAB_ATTR_RO(ctor);
3363 
3364 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3365 {
3366 	return sprintf(buf, "%d\n", s->refcount - 1);
3367 }
3368 SLAB_ATTR_RO(aliases);
3369 
3370 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3371 {
3372 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3373 }
3374 SLAB_ATTR_RO(slabs);
3375 
3376 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3377 {
3378 	return slab_objects(s, buf, SO_PARTIAL);
3379 }
3380 SLAB_ATTR_RO(partial);
3381 
3382 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3383 {
3384 	return slab_objects(s, buf, SO_CPU);
3385 }
3386 SLAB_ATTR_RO(cpu_slabs);
3387 
3388 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3389 {
3390 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3391 }
3392 SLAB_ATTR_RO(objects);
3393 
3394 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3395 {
3396 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3397 }
3398 
3399 static ssize_t sanity_checks_store(struct kmem_cache *s,
3400 				const char *buf, size_t length)
3401 {
3402 	s->flags &= ~SLAB_DEBUG_FREE;
3403 	if (buf[0] == '1')
3404 		s->flags |= SLAB_DEBUG_FREE;
3405 	return length;
3406 }
3407 SLAB_ATTR(sanity_checks);
3408 
3409 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3410 {
3411 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3412 }
3413 
3414 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3415 							size_t length)
3416 {
3417 	s->flags &= ~SLAB_TRACE;
3418 	if (buf[0] == '1')
3419 		s->flags |= SLAB_TRACE;
3420 	return length;
3421 }
3422 SLAB_ATTR(trace);
3423 
3424 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3425 {
3426 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3427 }
3428 
3429 static ssize_t reclaim_account_store(struct kmem_cache *s,
3430 				const char *buf, size_t length)
3431 {
3432 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3433 	if (buf[0] == '1')
3434 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3435 	return length;
3436 }
3437 SLAB_ATTR(reclaim_account);
3438 
3439 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3440 {
3441 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3442 }
3443 SLAB_ATTR_RO(hwcache_align);
3444 
3445 #ifdef CONFIG_ZONE_DMA
3446 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3447 {
3448 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3449 }
3450 SLAB_ATTR_RO(cache_dma);
3451 #endif
3452 
3453 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3454 {
3455 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3456 }
3457 SLAB_ATTR_RO(destroy_by_rcu);
3458 
3459 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3460 {
3461 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3462 }
3463 
3464 static ssize_t red_zone_store(struct kmem_cache *s,
3465 				const char *buf, size_t length)
3466 {
3467 	if (any_slab_objects(s))
3468 		return -EBUSY;
3469 
3470 	s->flags &= ~SLAB_RED_ZONE;
3471 	if (buf[0] == '1')
3472 		s->flags |= SLAB_RED_ZONE;
3473 	calculate_sizes(s);
3474 	return length;
3475 }
3476 SLAB_ATTR(red_zone);
3477 
3478 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3479 {
3480 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3481 }
3482 
3483 static ssize_t poison_store(struct kmem_cache *s,
3484 				const char *buf, size_t length)
3485 {
3486 	if (any_slab_objects(s))
3487 		return -EBUSY;
3488 
3489 	s->flags &= ~SLAB_POISON;
3490 	if (buf[0] == '1')
3491 		s->flags |= SLAB_POISON;
3492 	calculate_sizes(s);
3493 	return length;
3494 }
3495 SLAB_ATTR(poison);
3496 
3497 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3498 {
3499 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3500 }
3501 
3502 static ssize_t store_user_store(struct kmem_cache *s,
3503 				const char *buf, size_t length)
3504 {
3505 	if (any_slab_objects(s))
3506 		return -EBUSY;
3507 
3508 	s->flags &= ~SLAB_STORE_USER;
3509 	if (buf[0] == '1')
3510 		s->flags |= SLAB_STORE_USER;
3511 	calculate_sizes(s);
3512 	return length;
3513 }
3514 SLAB_ATTR(store_user);
3515 
3516 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3517 {
3518 	return 0;
3519 }
3520 
3521 static ssize_t validate_store(struct kmem_cache *s,
3522 			const char *buf, size_t length)
3523 {
3524 	int ret = -EINVAL;
3525 
3526 	if (buf[0] == '1') {
3527 		ret = validate_slab_cache(s);
3528 		if (ret >= 0)
3529 			ret = length;
3530 	}
3531 	return ret;
3532 }
3533 SLAB_ATTR(validate);
3534 
3535 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3536 {
3537 	return 0;
3538 }
3539 
3540 static ssize_t shrink_store(struct kmem_cache *s,
3541 			const char *buf, size_t length)
3542 {
3543 	if (buf[0] == '1') {
3544 		int rc = kmem_cache_shrink(s);
3545 
3546 		if (rc)
3547 			return rc;
3548 	} else
3549 		return -EINVAL;
3550 	return length;
3551 }
3552 SLAB_ATTR(shrink);
3553 
3554 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3555 {
3556 	if (!(s->flags & SLAB_STORE_USER))
3557 		return -ENOSYS;
3558 	return list_locations(s, buf, TRACK_ALLOC);
3559 }
3560 SLAB_ATTR_RO(alloc_calls);
3561 
3562 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3563 {
3564 	if (!(s->flags & SLAB_STORE_USER))
3565 		return -ENOSYS;
3566 	return list_locations(s, buf, TRACK_FREE);
3567 }
3568 SLAB_ATTR_RO(free_calls);
3569 
3570 #ifdef CONFIG_NUMA
3571 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3572 {
3573 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3574 }
3575 
3576 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3577 				const char *buf, size_t length)
3578 {
3579 	int n = simple_strtoul(buf, NULL, 10);
3580 
3581 	if (n < 100)
3582 		s->defrag_ratio = n * 10;
3583 	return length;
3584 }
3585 SLAB_ATTR(defrag_ratio);
3586 #endif
3587 
3588 static struct attribute * slab_attrs[] = {
3589 	&slab_size_attr.attr,
3590 	&object_size_attr.attr,
3591 	&objs_per_slab_attr.attr,
3592 	&order_attr.attr,
3593 	&objects_attr.attr,
3594 	&slabs_attr.attr,
3595 	&partial_attr.attr,
3596 	&cpu_slabs_attr.attr,
3597 	&ctor_attr.attr,
3598 	&aliases_attr.attr,
3599 	&align_attr.attr,
3600 	&sanity_checks_attr.attr,
3601 	&trace_attr.attr,
3602 	&hwcache_align_attr.attr,
3603 	&reclaim_account_attr.attr,
3604 	&destroy_by_rcu_attr.attr,
3605 	&red_zone_attr.attr,
3606 	&poison_attr.attr,
3607 	&store_user_attr.attr,
3608 	&validate_attr.attr,
3609 	&shrink_attr.attr,
3610 	&alloc_calls_attr.attr,
3611 	&free_calls_attr.attr,
3612 #ifdef CONFIG_ZONE_DMA
3613 	&cache_dma_attr.attr,
3614 #endif
3615 #ifdef CONFIG_NUMA
3616 	&defrag_ratio_attr.attr,
3617 #endif
3618 	NULL
3619 };
3620 
3621 static struct attribute_group slab_attr_group = {
3622 	.attrs = slab_attrs,
3623 };
3624 
3625 static ssize_t slab_attr_show(struct kobject *kobj,
3626 				struct attribute *attr,
3627 				char *buf)
3628 {
3629 	struct slab_attribute *attribute;
3630 	struct kmem_cache *s;
3631 	int err;
3632 
3633 	attribute = to_slab_attr(attr);
3634 	s = to_slab(kobj);
3635 
3636 	if (!attribute->show)
3637 		return -EIO;
3638 
3639 	err = attribute->show(s, buf);
3640 
3641 	return err;
3642 }
3643 
3644 static ssize_t slab_attr_store(struct kobject *kobj,
3645 				struct attribute *attr,
3646 				const char *buf, size_t len)
3647 {
3648 	struct slab_attribute *attribute;
3649 	struct kmem_cache *s;
3650 	int err;
3651 
3652 	attribute = to_slab_attr(attr);
3653 	s = to_slab(kobj);
3654 
3655 	if (!attribute->store)
3656 		return -EIO;
3657 
3658 	err = attribute->store(s, buf, len);
3659 
3660 	return err;
3661 }
3662 
3663 static struct sysfs_ops slab_sysfs_ops = {
3664 	.show = slab_attr_show,
3665 	.store = slab_attr_store,
3666 };
3667 
3668 static struct kobj_type slab_ktype = {
3669 	.sysfs_ops = &slab_sysfs_ops,
3670 };
3671 
3672 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3673 {
3674 	struct kobj_type *ktype = get_ktype(kobj);
3675 
3676 	if (ktype == &slab_ktype)
3677 		return 1;
3678 	return 0;
3679 }
3680 
3681 static struct kset_uevent_ops slab_uevent_ops = {
3682 	.filter = uevent_filter,
3683 };
3684 
3685 static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3686 
3687 #define ID_STR_LENGTH 64
3688 
3689 /* Create a unique string id for a slab cache:
3690  * format
3691  * :[flags-]size:[memory address of kmemcache]
3692  */
3693 static char *create_unique_id(struct kmem_cache *s)
3694 {
3695 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3696 	char *p = name;
3697 
3698 	BUG_ON(!name);
3699 
3700 	*p++ = ':';
3701 	/*
3702 	 * First flags affecting slabcache operations. We will only
3703 	 * get here for aliasable slabs so we do not need to support
3704 	 * too many flags. The flags here must cover all flags that
3705 	 * are matched during merging to guarantee that the id is
3706 	 * unique.
3707 	 */
3708 	if (s->flags & SLAB_CACHE_DMA)
3709 		*p++ = 'd';
3710 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3711 		*p++ = 'a';
3712 	if (s->flags & SLAB_DEBUG_FREE)
3713 		*p++ = 'F';
3714 	if (p != name + 1)
3715 		*p++ = '-';
3716 	p += sprintf(p, "%07d", s->size);
3717 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3718 	return name;
3719 }
3720 
3721 static int sysfs_slab_add(struct kmem_cache *s)
3722 {
3723 	int err;
3724 	const char *name;
3725 	int unmergeable;
3726 
3727 	if (slab_state < SYSFS)
3728 		/* Defer until later */
3729 		return 0;
3730 
3731 	unmergeable = slab_unmergeable(s);
3732 	if (unmergeable) {
3733 		/*
3734 		 * Slabcache can never be merged so we can use the name proper.
3735 		 * This is typically the case for debug situations. In that
3736 		 * case we can catch duplicate names easily.
3737 		 */
3738 		sysfs_remove_link(&slab_subsys.kobj, s->name);
3739 		name = s->name;
3740 	} else {
3741 		/*
3742 		 * Create a unique name for the slab as a target
3743 		 * for the symlinks.
3744 		 */
3745 		name = create_unique_id(s);
3746 	}
3747 
3748 	kobj_set_kset_s(s, slab_subsys);
3749 	kobject_set_name(&s->kobj, name);
3750 	kobject_init(&s->kobj);
3751 	err = kobject_add(&s->kobj);
3752 	if (err)
3753 		return err;
3754 
3755 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3756 	if (err)
3757 		return err;
3758 	kobject_uevent(&s->kobj, KOBJ_ADD);
3759 	if (!unmergeable) {
3760 		/* Setup first alias */
3761 		sysfs_slab_alias(s, s->name);
3762 		kfree(name);
3763 	}
3764 	return 0;
3765 }
3766 
3767 static void sysfs_slab_remove(struct kmem_cache *s)
3768 {
3769 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3770 	kobject_del(&s->kobj);
3771 }
3772 
3773 /*
3774  * Need to buffer aliases during bootup until sysfs becomes
3775  * available lest we loose that information.
3776  */
3777 struct saved_alias {
3778 	struct kmem_cache *s;
3779 	const char *name;
3780 	struct saved_alias *next;
3781 };
3782 
3783 static struct saved_alias *alias_list;
3784 
3785 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3786 {
3787 	struct saved_alias *al;
3788 
3789 	if (slab_state == SYSFS) {
3790 		/*
3791 		 * If we have a leftover link then remove it.
3792 		 */
3793 		sysfs_remove_link(&slab_subsys.kobj, name);
3794 		return sysfs_create_link(&slab_subsys.kobj,
3795 						&s->kobj, name);
3796 	}
3797 
3798 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3799 	if (!al)
3800 		return -ENOMEM;
3801 
3802 	al->s = s;
3803 	al->name = name;
3804 	al->next = alias_list;
3805 	alias_list = al;
3806 	return 0;
3807 }
3808 
3809 static int __init slab_sysfs_init(void)
3810 {
3811 	struct kmem_cache *s;
3812 	int err;
3813 
3814 	err = subsystem_register(&slab_subsys);
3815 	if (err) {
3816 		printk(KERN_ERR "Cannot register slab subsystem.\n");
3817 		return -ENOSYS;
3818 	}
3819 
3820 	slab_state = SYSFS;
3821 
3822 	list_for_each_entry(s, &slab_caches, list) {
3823 		err = sysfs_slab_add(s);
3824 		if (err)
3825 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3826 						" to sysfs\n", s->name);
3827 	}
3828 
3829 	while (alias_list) {
3830 		struct saved_alias *al = alias_list;
3831 
3832 		alias_list = alias_list->next;
3833 		err = sysfs_slab_alias(al->s, al->name);
3834 		if (err)
3835 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3836 					" %s to sysfs\n", s->name);
3837 		kfree(al);
3838 	}
3839 
3840 	resiliency_test();
3841 	return 0;
3842 }
3843 
3844 __initcall(slab_sysfs_init);
3845 #endif
3846