xref: /linux/mm/slub.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects:
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->inuse		-> Number of objects in use
57  *	C. page->objects	-> Number of objects in page
58  *	D. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list except per cpu partial list. The processor that froze the
62  *   slab is the one who can perform list operations on the page. Other
63  *   processors may put objects onto the freelist but the processor that
64  *   froze the slab is the only one that can retrieve the objects from the
65  *   page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	/*
254 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 	 * Normally, this doesn't cause any issues, as both set_freepointer()
256 	 * and get_freepointer() are called with a pointer with the same tag.
257 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 	 * example, when __free_slub() iterates over objects in a cache, it
259 	 * passes untagged pointers to check_object(). check_object() in turns
260 	 * calls get_freepointer() with an untagged pointer, which causes the
261 	 * freepointer to be restored incorrectly.
262 	 */
263 	return (void *)((unsigned long)ptr ^ s->random ^
264 			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 	return ptr;
267 #endif
268 }
269 
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 					 void *ptr_addr)
273 {
274 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 			    (unsigned long)ptr_addr);
276 }
277 
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return freelist_dereference(s, object + s->offset);
281 }
282 
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 	prefetch(object + s->offset);
286 }
287 
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 	unsigned long freepointer_addr;
291 	void *p;
292 
293 	if (!debug_pagealloc_enabled())
294 		return get_freepointer(s, object);
295 
296 	freepointer_addr = (unsigned long)object + s->offset;
297 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 	return freelist_ptr(s, p, freepointer_addr);
299 }
300 
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
304 
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 	BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308 
309 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311 
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 	for (__p = fixup_red_left(__s, __addr); \
315 		__p < (__addr) + (__objects) * (__s)->size; \
316 		__p += (__s)->size)
317 
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 	return (kasan_reset_tag(p) - addr) / s->size;
322 }
323 
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 	return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328 
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 		unsigned int size)
331 {
332 	struct kmem_cache_order_objects x = {
333 		(order << OO_SHIFT) + order_objects(order, size)
334 	};
335 
336 	return x;
337 }
338 
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 	return x.x >> OO_SHIFT;
342 }
343 
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 	return x.x & OO_MASK;
347 }
348 
349 /*
350  * Per slab locking using the pagelock
351  */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	bit_spin_lock(PG_locked, &page->flags);
356 }
357 
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 	VM_BUG_ON_PAGE(PageTail(page), page);
361 	__bit_spin_unlock(PG_locked, &page->flags);
362 }
363 
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 		void *freelist_old, unsigned long counters_old,
367 		void *freelist_new, unsigned long counters_new,
368 		const char *n)
369 {
370 	VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 	if (s->flags & __CMPXCHG_DOUBLE) {
374 		if (cmpxchg_double(&page->freelist, &page->counters,
375 				   freelist_old, counters_old,
376 				   freelist_new, counters_new))
377 			return true;
378 	} else
379 #endif
380 	{
381 		slab_lock(page);
382 		if (page->freelist == freelist_old &&
383 					page->counters == counters_old) {
384 			page->freelist = freelist_new;
385 			page->counters = counters_new;
386 			slab_unlock(page);
387 			return true;
388 		}
389 		slab_unlock(page);
390 	}
391 
392 	cpu_relax();
393 	stat(s, CMPXCHG_DOUBLE_FAIL);
394 
395 #ifdef SLUB_DEBUG_CMPXCHG
396 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398 
399 	return false;
400 }
401 
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 		void *freelist_old, unsigned long counters_old,
404 		void *freelist_new, unsigned long counters_new,
405 		const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 	if (s->flags & __CMPXCHG_DOUBLE) {
410 		if (cmpxchg_double(&page->freelist, &page->counters,
411 				   freelist_old, counters_old,
412 				   freelist_new, counters_new))
413 			return true;
414 	} else
415 #endif
416 	{
417 		unsigned long flags;
418 
419 		local_irq_save(flags);
420 		slab_lock(page);
421 		if (page->freelist == freelist_old &&
422 					page->counters == counters_old) {
423 			page->freelist = freelist_new;
424 			page->counters = counters_new;
425 			slab_unlock(page);
426 			local_irq_restore(flags);
427 			return true;
428 		}
429 		slab_unlock(page);
430 		local_irq_restore(flags);
431 	}
432 
433 	cpu_relax();
434 	stat(s, CMPXCHG_DOUBLE_FAIL);
435 
436 #ifdef SLUB_DEBUG_CMPXCHG
437 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439 
440 	return false;
441 }
442 
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445  * Determine a map of object in use on a page.
446  *
447  * Node listlock must be held to guarantee that the page does
448  * not vanish from under us.
449  */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 	void *p;
453 	void *addr = page_address(page);
454 
455 	for (p = page->freelist; p; p = get_freepointer(s, p))
456 		set_bit(slab_index(p, s, addr), map);
457 }
458 
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 	if (s->flags & SLAB_RED_ZONE)
462 		return s->size - s->red_left_pad;
463 
464 	return s->size;
465 }
466 
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 	if (s->flags & SLAB_RED_ZONE)
470 		p -= s->red_left_pad;
471 
472 	return p;
473 }
474 
475 /*
476  * Debug settings:
477  */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483 
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486 
487 /*
488  * slub is about to manipulate internal object metadata.  This memory lies
489  * outside the range of the allocated object, so accessing it would normally
490  * be reported by kasan as a bounds error.  metadata_access_enable() is used
491  * to tell kasan that these accesses are OK.
492  */
493 static inline void metadata_access_enable(void)
494 {
495 	kasan_disable_current();
496 }
497 
498 static inline void metadata_access_disable(void)
499 {
500 	kasan_enable_current();
501 }
502 
503 /*
504  * Object debugging
505  */
506 
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 				struct page *page, void *object)
510 {
511 	void *base;
512 
513 	if (!object)
514 		return 1;
515 
516 	base = page_address(page);
517 	object = kasan_reset_tag(object);
518 	object = restore_red_left(s, object);
519 	if (object < base || object >= base + page->objects * s->size ||
520 		(object - base) % s->size) {
521 		return 0;
522 	}
523 
524 	return 1;
525 }
526 
527 static void print_section(char *level, char *text, u8 *addr,
528 			  unsigned int length)
529 {
530 	metadata_access_enable();
531 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 			length, 1);
533 	metadata_access_disable();
534 }
535 
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 	enum track_item alloc)
538 {
539 	struct track *p;
540 
541 	if (s->offset)
542 		p = object + s->offset + sizeof(void *);
543 	else
544 		p = object + s->inuse;
545 
546 	return p + alloc;
547 }
548 
549 static void set_track(struct kmem_cache *s, void *object,
550 			enum track_item alloc, unsigned long addr)
551 {
552 	struct track *p = get_track(s, object, alloc);
553 
554 	if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 		unsigned int nr_entries;
557 
558 		metadata_access_enable();
559 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 		metadata_access_disable();
561 
562 		if (nr_entries < TRACK_ADDRS_COUNT)
563 			p->addrs[nr_entries] = 0;
564 #endif
565 		p->addr = addr;
566 		p->cpu = smp_processor_id();
567 		p->pid = current->pid;
568 		p->when = jiffies;
569 	} else {
570 		memset(p, 0, sizeof(struct track));
571 	}
572 }
573 
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 	if (!(s->flags & SLAB_STORE_USER))
577 		return;
578 
579 	set_track(s, object, TRACK_FREE, 0UL);
580 	set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582 
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 	if (!t->addr)
586 		return;
587 
588 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 	{
592 		int i;
593 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 			if (t->addrs[i])
595 				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 			else
597 				break;
598 	}
599 #endif
600 }
601 
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 	unsigned long pr_time = jiffies;
605 	if (!(s->flags & SLAB_STORE_USER))
606 		return;
607 
608 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611 
612 static void print_page_info(struct page *page)
613 {
614 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 	       page, page->objects, page->inuse, page->freelist, page->flags);
616 
617 }
618 
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 	struct va_format vaf;
622 	va_list args;
623 
624 	va_start(args, fmt);
625 	vaf.fmt = fmt;
626 	vaf.va = &args;
627 	pr_err("=============================================================================\n");
628 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 	pr_err("-----------------------------------------------------------------------------\n\n");
630 
631 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 	va_end(args);
633 }
634 
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 	struct va_format vaf;
638 	va_list args;
639 
640 	va_start(args, fmt);
641 	vaf.fmt = fmt;
642 	vaf.va = &args;
643 	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 	va_end(args);
645 }
646 
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 	unsigned int off;	/* Offset of last byte */
650 	u8 *addr = page_address(page);
651 
652 	print_tracking(s, p);
653 
654 	print_page_info(page);
655 
656 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 	       p, p - addr, get_freepointer(s, p));
658 
659 	if (s->flags & SLAB_RED_ZONE)
660 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 			      s->red_left_pad);
662 	else if (p > addr + 16)
663 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664 
665 	print_section(KERN_ERR, "Object ", p,
666 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
667 	if (s->flags & SLAB_RED_ZONE)
668 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 			s->inuse - s->object_size);
670 
671 	if (s->offset)
672 		off = s->offset + sizeof(void *);
673 	else
674 		off = s->inuse;
675 
676 	if (s->flags & SLAB_STORE_USER)
677 		off += 2 * sizeof(struct track);
678 
679 	off += kasan_metadata_size(s);
680 
681 	if (off != size_from_object(s))
682 		/* Beginning of the filler is the free pointer */
683 		print_section(KERN_ERR, "Padding ", p + off,
684 			      size_from_object(s) - off);
685 
686 	dump_stack();
687 }
688 
689 void object_err(struct kmem_cache *s, struct page *page,
690 			u8 *object, char *reason)
691 {
692 	slab_bug(s, "%s", reason);
693 	print_trailer(s, page, object);
694 }
695 
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 			const char *fmt, ...)
698 {
699 	va_list args;
700 	char buf[100];
701 
702 	va_start(args, fmt);
703 	vsnprintf(buf, sizeof(buf), fmt, args);
704 	va_end(args);
705 	slab_bug(s, "%s", buf);
706 	print_page_info(page);
707 	dump_stack();
708 }
709 
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 	u8 *p = object;
713 
714 	if (s->flags & SLAB_RED_ZONE)
715 		memset(p - s->red_left_pad, val, s->red_left_pad);
716 
717 	if (s->flags & __OBJECT_POISON) {
718 		memset(p, POISON_FREE, s->object_size - 1);
719 		p[s->object_size - 1] = POISON_END;
720 	}
721 
722 	if (s->flags & SLAB_RED_ZONE)
723 		memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725 
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 						void *from, void *to)
728 {
729 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 	memset(from, data, to - from);
731 }
732 
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 			u8 *object, char *what,
735 			u8 *start, unsigned int value, unsigned int bytes)
736 {
737 	u8 *fault;
738 	u8 *end;
739 
740 	metadata_access_enable();
741 	fault = memchr_inv(start, value, bytes);
742 	metadata_access_disable();
743 	if (!fault)
744 		return 1;
745 
746 	end = start + bytes;
747 	while (end > fault && end[-1] == value)
748 		end--;
749 
750 	slab_bug(s, "%s overwritten", what);
751 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 					fault, end - 1, fault[0], value);
753 	print_trailer(s, page, object);
754 
755 	restore_bytes(s, what, value, fault, end);
756 	return 0;
757 }
758 
759 /*
760  * Object layout:
761  *
762  * object address
763  * 	Bytes of the object to be managed.
764  * 	If the freepointer may overlay the object then the free
765  * 	pointer is the first word of the object.
766  *
767  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
768  * 	0xa5 (POISON_END)
769  *
770  * object + s->object_size
771  * 	Padding to reach word boundary. This is also used for Redzoning.
772  * 	Padding is extended by another word if Redzoning is enabled and
773  * 	object_size == inuse.
774  *
775  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776  * 	0xcc (RED_ACTIVE) for objects in use.
777  *
778  * object + s->inuse
779  * 	Meta data starts here.
780  *
781  * 	A. Free pointer (if we cannot overwrite object on free)
782  * 	B. Tracking data for SLAB_STORE_USER
783  * 	C. Padding to reach required alignment boundary or at mininum
784  * 		one word if debugging is on to be able to detect writes
785  * 		before the word boundary.
786  *
787  *	Padding is done using 0x5a (POISON_INUSE)
788  *
789  * object + s->size
790  * 	Nothing is used beyond s->size.
791  *
792  * If slabcaches are merged then the object_size and inuse boundaries are mostly
793  * ignored. And therefore no slab options that rely on these boundaries
794  * may be used with merged slabcaches.
795  */
796 
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 	unsigned long off = s->inuse;	/* The end of info */
800 
801 	if (s->offset)
802 		/* Freepointer is placed after the object. */
803 		off += sizeof(void *);
804 
805 	if (s->flags & SLAB_STORE_USER)
806 		/* We also have user information there */
807 		off += 2 * sizeof(struct track);
808 
809 	off += kasan_metadata_size(s);
810 
811 	if (size_from_object(s) == off)
812 		return 1;
813 
814 	return check_bytes_and_report(s, page, p, "Object padding",
815 			p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817 
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 	u8 *start;
822 	u8 *fault;
823 	u8 *end;
824 	u8 *pad;
825 	int length;
826 	int remainder;
827 
828 	if (!(s->flags & SLAB_POISON))
829 		return 1;
830 
831 	start = page_address(page);
832 	length = page_size(page);
833 	end = start + length;
834 	remainder = length % s->size;
835 	if (!remainder)
836 		return 1;
837 
838 	pad = end - remainder;
839 	metadata_access_enable();
840 	fault = memchr_inv(pad, POISON_INUSE, remainder);
841 	metadata_access_disable();
842 	if (!fault)
843 		return 1;
844 	while (end > fault && end[-1] == POISON_INUSE)
845 		end--;
846 
847 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 	print_section(KERN_ERR, "Padding ", pad, remainder);
849 
850 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 	return 0;
852 }
853 
854 static int check_object(struct kmem_cache *s, struct page *page,
855 					void *object, u8 val)
856 {
857 	u8 *p = object;
858 	u8 *endobject = object + s->object_size;
859 
860 	if (s->flags & SLAB_RED_ZONE) {
861 		if (!check_bytes_and_report(s, page, object, "Redzone",
862 			object - s->red_left_pad, val, s->red_left_pad))
863 			return 0;
864 
865 		if (!check_bytes_and_report(s, page, object, "Redzone",
866 			endobject, val, s->inuse - s->object_size))
867 			return 0;
868 	} else {
869 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 			check_bytes_and_report(s, page, p, "Alignment padding",
871 				endobject, POISON_INUSE,
872 				s->inuse - s->object_size);
873 		}
874 	}
875 
876 	if (s->flags & SLAB_POISON) {
877 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 			(!check_bytes_and_report(s, page, p, "Poison", p,
879 					POISON_FREE, s->object_size - 1) ||
880 			 !check_bytes_and_report(s, page, p, "Poison",
881 				p + s->object_size - 1, POISON_END, 1)))
882 			return 0;
883 		/*
884 		 * check_pad_bytes cleans up on its own.
885 		 */
886 		check_pad_bytes(s, page, p);
887 	}
888 
889 	if (!s->offset && val == SLUB_RED_ACTIVE)
890 		/*
891 		 * Object and freepointer overlap. Cannot check
892 		 * freepointer while object is allocated.
893 		 */
894 		return 1;
895 
896 	/* Check free pointer validity */
897 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 		object_err(s, page, p, "Freepointer corrupt");
899 		/*
900 		 * No choice but to zap it and thus lose the remainder
901 		 * of the free objects in this slab. May cause
902 		 * another error because the object count is now wrong.
903 		 */
904 		set_freepointer(s, p, NULL);
905 		return 0;
906 	}
907 	return 1;
908 }
909 
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 	int maxobj;
913 
914 	VM_BUG_ON(!irqs_disabled());
915 
916 	if (!PageSlab(page)) {
917 		slab_err(s, page, "Not a valid slab page");
918 		return 0;
919 	}
920 
921 	maxobj = order_objects(compound_order(page), s->size);
922 	if (page->objects > maxobj) {
923 		slab_err(s, page, "objects %u > max %u",
924 			page->objects, maxobj);
925 		return 0;
926 	}
927 	if (page->inuse > page->objects) {
928 		slab_err(s, page, "inuse %u > max %u",
929 			page->inuse, page->objects);
930 		return 0;
931 	}
932 	/* Slab_pad_check fixes things up after itself */
933 	slab_pad_check(s, page);
934 	return 1;
935 }
936 
937 /*
938  * Determine if a certain object on a page is on the freelist. Must hold the
939  * slab lock to guarantee that the chains are in a consistent state.
940  */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 	int nr = 0;
944 	void *fp;
945 	void *object = NULL;
946 	int max_objects;
947 
948 	fp = page->freelist;
949 	while (fp && nr <= page->objects) {
950 		if (fp == search)
951 			return 1;
952 		if (!check_valid_pointer(s, page, fp)) {
953 			if (object) {
954 				object_err(s, page, object,
955 					"Freechain corrupt");
956 				set_freepointer(s, object, NULL);
957 			} else {
958 				slab_err(s, page, "Freepointer corrupt");
959 				page->freelist = NULL;
960 				page->inuse = page->objects;
961 				slab_fix(s, "Freelist cleared");
962 				return 0;
963 			}
964 			break;
965 		}
966 		object = fp;
967 		fp = get_freepointer(s, object);
968 		nr++;
969 	}
970 
971 	max_objects = order_objects(compound_order(page), s->size);
972 	if (max_objects > MAX_OBJS_PER_PAGE)
973 		max_objects = MAX_OBJS_PER_PAGE;
974 
975 	if (page->objects != max_objects) {
976 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 			 page->objects, max_objects);
978 		page->objects = max_objects;
979 		slab_fix(s, "Number of objects adjusted.");
980 	}
981 	if (page->inuse != page->objects - nr) {
982 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 			 page->inuse, page->objects - nr);
984 		page->inuse = page->objects - nr;
985 		slab_fix(s, "Object count adjusted.");
986 	}
987 	return search == NULL;
988 }
989 
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 								int alloc)
992 {
993 	if (s->flags & SLAB_TRACE) {
994 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 			s->name,
996 			alloc ? "alloc" : "free",
997 			object, page->inuse,
998 			page->freelist);
999 
1000 		if (!alloc)
1001 			print_section(KERN_INFO, "Object ", (void *)object,
1002 					s->object_size);
1003 
1004 		dump_stack();
1005 	}
1006 }
1007 
1008 /*
1009  * Tracking of fully allocated slabs for debugging purposes.
1010  */
1011 static void add_full(struct kmem_cache *s,
1012 	struct kmem_cache_node *n, struct page *page)
1013 {
1014 	if (!(s->flags & SLAB_STORE_USER))
1015 		return;
1016 
1017 	lockdep_assert_held(&n->list_lock);
1018 	list_add(&page->slab_list, &n->full);
1019 }
1020 
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 	if (!(s->flags & SLAB_STORE_USER))
1024 		return;
1025 
1026 	lockdep_assert_held(&n->list_lock);
1027 	list_del(&page->slab_list);
1028 }
1029 
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 	struct kmem_cache_node *n = get_node(s, node);
1034 
1035 	return atomic_long_read(&n->nr_slabs);
1036 }
1037 
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 	return atomic_long_read(&n->nr_slabs);
1041 }
1042 
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 	struct kmem_cache_node *n = get_node(s, node);
1046 
1047 	/*
1048 	 * May be called early in order to allocate a slab for the
1049 	 * kmem_cache_node structure. Solve the chicken-egg
1050 	 * dilemma by deferring the increment of the count during
1051 	 * bootstrap (see early_kmem_cache_node_alloc).
1052 	 */
1053 	if (likely(n)) {
1054 		atomic_long_inc(&n->nr_slabs);
1055 		atomic_long_add(objects, &n->total_objects);
1056 	}
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 	struct kmem_cache_node *n = get_node(s, node);
1061 
1062 	atomic_long_dec(&n->nr_slabs);
1063 	atomic_long_sub(objects, &n->total_objects);
1064 }
1065 
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 								void *object)
1069 {
1070 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 		return;
1072 
1073 	init_object(s, object, SLUB_RED_INACTIVE);
1074 	init_tracking(s, object);
1075 }
1076 
1077 static
1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1079 {
1080 	if (!(s->flags & SLAB_POISON))
1081 		return;
1082 
1083 	metadata_access_enable();
1084 	memset(addr, POISON_INUSE, page_size(page));
1085 	metadata_access_disable();
1086 }
1087 
1088 static inline int alloc_consistency_checks(struct kmem_cache *s,
1089 					struct page *page, void *object)
1090 {
1091 	if (!check_slab(s, page))
1092 		return 0;
1093 
1094 	if (!check_valid_pointer(s, page, object)) {
1095 		object_err(s, page, object, "Freelist Pointer check fails");
1096 		return 0;
1097 	}
1098 
1099 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1100 		return 0;
1101 
1102 	return 1;
1103 }
1104 
1105 static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 					struct page *page,
1107 					void *object, unsigned long addr)
1108 {
1109 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1110 		if (!alloc_consistency_checks(s, page, object))
1111 			goto bad;
1112 	}
1113 
1114 	/* Success perform special debug activities for allocs */
1115 	if (s->flags & SLAB_STORE_USER)
1116 		set_track(s, object, TRACK_ALLOC, addr);
1117 	trace(s, page, object, 1);
1118 	init_object(s, object, SLUB_RED_ACTIVE);
1119 	return 1;
1120 
1121 bad:
1122 	if (PageSlab(page)) {
1123 		/*
1124 		 * If this is a slab page then lets do the best we can
1125 		 * to avoid issues in the future. Marking all objects
1126 		 * as used avoids touching the remaining objects.
1127 		 */
1128 		slab_fix(s, "Marking all objects used");
1129 		page->inuse = page->objects;
1130 		page->freelist = NULL;
1131 	}
1132 	return 0;
1133 }
1134 
1135 static inline int free_consistency_checks(struct kmem_cache *s,
1136 		struct page *page, void *object, unsigned long addr)
1137 {
1138 	if (!check_valid_pointer(s, page, object)) {
1139 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1140 		return 0;
1141 	}
1142 
1143 	if (on_freelist(s, page, object)) {
1144 		object_err(s, page, object, "Object already free");
1145 		return 0;
1146 	}
1147 
1148 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1149 		return 0;
1150 
1151 	if (unlikely(s != page->slab_cache)) {
1152 		if (!PageSlab(page)) {
1153 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 				 object);
1155 		} else if (!page->slab_cache) {
1156 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 			       object);
1158 			dump_stack();
1159 		} else
1160 			object_err(s, page, object,
1161 					"page slab pointer corrupt.");
1162 		return 0;
1163 	}
1164 	return 1;
1165 }
1166 
1167 /* Supports checking bulk free of a constructed freelist */
1168 static noinline int free_debug_processing(
1169 	struct kmem_cache *s, struct page *page,
1170 	void *head, void *tail, int bulk_cnt,
1171 	unsigned long addr)
1172 {
1173 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 	void *object = head;
1175 	int cnt = 0;
1176 	unsigned long uninitialized_var(flags);
1177 	int ret = 0;
1178 
1179 	spin_lock_irqsave(&n->list_lock, flags);
1180 	slab_lock(page);
1181 
1182 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 		if (!check_slab(s, page))
1184 			goto out;
1185 	}
1186 
1187 next_object:
1188 	cnt++;
1189 
1190 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 		if (!free_consistency_checks(s, page, object, addr))
1192 			goto out;
1193 	}
1194 
1195 	if (s->flags & SLAB_STORE_USER)
1196 		set_track(s, object, TRACK_FREE, addr);
1197 	trace(s, page, object, 0);
1198 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1199 	init_object(s, object, SLUB_RED_INACTIVE);
1200 
1201 	/* Reached end of constructed freelist yet? */
1202 	if (object != tail) {
1203 		object = get_freepointer(s, object);
1204 		goto next_object;
1205 	}
1206 	ret = 1;
1207 
1208 out:
1209 	if (cnt != bulk_cnt)
1210 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 			 bulk_cnt, cnt);
1212 
1213 	slab_unlock(page);
1214 	spin_unlock_irqrestore(&n->list_lock, flags);
1215 	if (!ret)
1216 		slab_fix(s, "Object at 0x%p not freed", object);
1217 	return ret;
1218 }
1219 
1220 static int __init setup_slub_debug(char *str)
1221 {
1222 	slub_debug = DEBUG_DEFAULT_FLAGS;
1223 	if (*str++ != '=' || !*str)
1224 		/*
1225 		 * No options specified. Switch on full debugging.
1226 		 */
1227 		goto out;
1228 
1229 	if (*str == ',')
1230 		/*
1231 		 * No options but restriction on slabs. This means full
1232 		 * debugging for slabs matching a pattern.
1233 		 */
1234 		goto check_slabs;
1235 
1236 	slub_debug = 0;
1237 	if (*str == '-')
1238 		/*
1239 		 * Switch off all debugging measures.
1240 		 */
1241 		goto out;
1242 
1243 	/*
1244 	 * Determine which debug features should be switched on
1245 	 */
1246 	for (; *str && *str != ','; str++) {
1247 		switch (tolower(*str)) {
1248 		case 'f':
1249 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1250 			break;
1251 		case 'z':
1252 			slub_debug |= SLAB_RED_ZONE;
1253 			break;
1254 		case 'p':
1255 			slub_debug |= SLAB_POISON;
1256 			break;
1257 		case 'u':
1258 			slub_debug |= SLAB_STORE_USER;
1259 			break;
1260 		case 't':
1261 			slub_debug |= SLAB_TRACE;
1262 			break;
1263 		case 'a':
1264 			slub_debug |= SLAB_FAILSLAB;
1265 			break;
1266 		case 'o':
1267 			/*
1268 			 * Avoid enabling debugging on caches if its minimum
1269 			 * order would increase as a result.
1270 			 */
1271 			disable_higher_order_debug = 1;
1272 			break;
1273 		default:
1274 			pr_err("slub_debug option '%c' unknown. skipped\n",
1275 			       *str);
1276 		}
1277 	}
1278 
1279 check_slabs:
1280 	if (*str == ',')
1281 		slub_debug_slabs = str + 1;
1282 out:
1283 	if ((static_branch_unlikely(&init_on_alloc) ||
1284 	     static_branch_unlikely(&init_on_free)) &&
1285 	    (slub_debug & SLAB_POISON))
1286 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1287 	return 1;
1288 }
1289 
1290 __setup("slub_debug", setup_slub_debug);
1291 
1292 /*
1293  * kmem_cache_flags - apply debugging options to the cache
1294  * @object_size:	the size of an object without meta data
1295  * @flags:		flags to set
1296  * @name:		name of the cache
1297  * @ctor:		constructor function
1298  *
1299  * Debug option(s) are applied to @flags. In addition to the debug
1300  * option(s), if a slab name (or multiple) is specified i.e.
1301  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302  * then only the select slabs will receive the debug option(s).
1303  */
1304 slab_flags_t kmem_cache_flags(unsigned int object_size,
1305 	slab_flags_t flags, const char *name,
1306 	void (*ctor)(void *))
1307 {
1308 	char *iter;
1309 	size_t len;
1310 
1311 	/* If slub_debug = 0, it folds into the if conditional. */
1312 	if (!slub_debug_slabs)
1313 		return flags | slub_debug;
1314 
1315 	len = strlen(name);
1316 	iter = slub_debug_slabs;
1317 	while (*iter) {
1318 		char *end, *glob;
1319 		size_t cmplen;
1320 
1321 		end = strchrnul(iter, ',');
1322 
1323 		glob = strnchr(iter, end - iter, '*');
1324 		if (glob)
1325 			cmplen = glob - iter;
1326 		else
1327 			cmplen = max_t(size_t, len, (end - iter));
1328 
1329 		if (!strncmp(name, iter, cmplen)) {
1330 			flags |= slub_debug;
1331 			break;
1332 		}
1333 
1334 		if (!*end)
1335 			break;
1336 		iter = end + 1;
1337 	}
1338 
1339 	return flags;
1340 }
1341 #else /* !CONFIG_SLUB_DEBUG */
1342 static inline void setup_object_debug(struct kmem_cache *s,
1343 			struct page *page, void *object) {}
1344 static inline
1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1346 
1347 static inline int alloc_debug_processing(struct kmem_cache *s,
1348 	struct page *page, void *object, unsigned long addr) { return 0; }
1349 
1350 static inline int free_debug_processing(
1351 	struct kmem_cache *s, struct page *page,
1352 	void *head, void *tail, int bulk_cnt,
1353 	unsigned long addr) { return 0; }
1354 
1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 			{ return 1; }
1357 static inline int check_object(struct kmem_cache *s, struct page *page,
1358 			void *object, u8 val) { return 1; }
1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 					struct page *page) {}
1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 					struct page *page) {}
1363 slab_flags_t kmem_cache_flags(unsigned int object_size,
1364 	slab_flags_t flags, const char *name,
1365 	void (*ctor)(void *))
1366 {
1367 	return flags;
1368 }
1369 #define slub_debug 0
1370 
1371 #define disable_higher_order_debug 0
1372 
1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 							{ return 0; }
1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 							{ return 0; }
1377 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 							int objects) {}
1379 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 							int objects) {}
1381 
1382 #endif /* CONFIG_SLUB_DEBUG */
1383 
1384 /*
1385  * Hooks for other subsystems that check memory allocations. In a typical
1386  * production configuration these hooks all should produce no code at all.
1387  */
1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1389 {
1390 	ptr = kasan_kmalloc_large(ptr, size, flags);
1391 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1392 	kmemleak_alloc(ptr, size, 1, flags);
1393 	return ptr;
1394 }
1395 
1396 static __always_inline void kfree_hook(void *x)
1397 {
1398 	kmemleak_free(x);
1399 	kasan_kfree_large(x, _RET_IP_);
1400 }
1401 
1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1403 {
1404 	kmemleak_free_recursive(x, s->flags);
1405 
1406 	/*
1407 	 * Trouble is that we may no longer disable interrupts in the fast path
1408 	 * So in order to make the debug calls that expect irqs to be
1409 	 * disabled we need to disable interrupts temporarily.
1410 	 */
1411 #ifdef CONFIG_LOCKDEP
1412 	{
1413 		unsigned long flags;
1414 
1415 		local_irq_save(flags);
1416 		debug_check_no_locks_freed(x, s->object_size);
1417 		local_irq_restore(flags);
1418 	}
1419 #endif
1420 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 		debug_check_no_obj_freed(x, s->object_size);
1422 
1423 	/* KASAN might put x into memory quarantine, delaying its reuse */
1424 	return kasan_slab_free(s, x, _RET_IP_);
1425 }
1426 
1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 					   void **head, void **tail)
1429 {
1430 
1431 	void *object;
1432 	void *next = *head;
1433 	void *old_tail = *tail ? *tail : *head;
1434 	int rsize;
1435 
1436 	if (slab_want_init_on_free(s)) {
1437 		void *p = NULL;
1438 
1439 		do {
1440 			object = next;
1441 			next = get_freepointer(s, object);
1442 			/*
1443 			 * Clear the object and the metadata, but don't touch
1444 			 * the redzone.
1445 			 */
1446 			memset(object, 0, s->object_size);
1447 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1448 							   : 0;
1449 			memset((char *)object + s->inuse, 0,
1450 			       s->size - s->inuse - rsize);
1451 			set_freepointer(s, object, p);
1452 			p = object;
1453 		} while (object != old_tail);
1454 	}
1455 
1456 /*
1457  * Compiler cannot detect this function can be removed if slab_free_hook()
1458  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1459  */
1460 #if defined(CONFIG_LOCKDEP)	||		\
1461 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1462 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1463 	defined(CONFIG_KASAN)
1464 
1465 	next = *head;
1466 
1467 	/* Head and tail of the reconstructed freelist */
1468 	*head = NULL;
1469 	*tail = NULL;
1470 
1471 	do {
1472 		object = next;
1473 		next = get_freepointer(s, object);
1474 		/* If object's reuse doesn't have to be delayed */
1475 		if (!slab_free_hook(s, object)) {
1476 			/* Move object to the new freelist */
1477 			set_freepointer(s, object, *head);
1478 			*head = object;
1479 			if (!*tail)
1480 				*tail = object;
1481 		}
1482 	} while (object != old_tail);
1483 
1484 	if (*head == *tail)
1485 		*tail = NULL;
1486 
1487 	return *head != NULL;
1488 #else
1489 	return true;
1490 #endif
1491 }
1492 
1493 static void *setup_object(struct kmem_cache *s, struct page *page,
1494 				void *object)
1495 {
1496 	setup_object_debug(s, page, object);
1497 	object = kasan_init_slab_obj(s, object);
1498 	if (unlikely(s->ctor)) {
1499 		kasan_unpoison_object_data(s, object);
1500 		s->ctor(object);
1501 		kasan_poison_object_data(s, object);
1502 	}
1503 	return object;
1504 }
1505 
1506 /*
1507  * Slab allocation and freeing
1508  */
1509 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1510 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1511 {
1512 	struct page *page;
1513 	unsigned int order = oo_order(oo);
1514 
1515 	if (node == NUMA_NO_NODE)
1516 		page = alloc_pages(flags, order);
1517 	else
1518 		page = __alloc_pages_node(node, flags, order);
1519 
1520 	if (page && charge_slab_page(page, flags, order, s)) {
1521 		__free_pages(page, order);
1522 		page = NULL;
1523 	}
1524 
1525 	return page;
1526 }
1527 
1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1529 /* Pre-initialize the random sequence cache */
1530 static int init_cache_random_seq(struct kmem_cache *s)
1531 {
1532 	unsigned int count = oo_objects(s->oo);
1533 	int err;
1534 
1535 	/* Bailout if already initialised */
1536 	if (s->random_seq)
1537 		return 0;
1538 
1539 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1540 	if (err) {
1541 		pr_err("SLUB: Unable to initialize free list for %s\n",
1542 			s->name);
1543 		return err;
1544 	}
1545 
1546 	/* Transform to an offset on the set of pages */
1547 	if (s->random_seq) {
1548 		unsigned int i;
1549 
1550 		for (i = 0; i < count; i++)
1551 			s->random_seq[i] *= s->size;
1552 	}
1553 	return 0;
1554 }
1555 
1556 /* Initialize each random sequence freelist per cache */
1557 static void __init init_freelist_randomization(void)
1558 {
1559 	struct kmem_cache *s;
1560 
1561 	mutex_lock(&slab_mutex);
1562 
1563 	list_for_each_entry(s, &slab_caches, list)
1564 		init_cache_random_seq(s);
1565 
1566 	mutex_unlock(&slab_mutex);
1567 }
1568 
1569 /* Get the next entry on the pre-computed freelist randomized */
1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1571 				unsigned long *pos, void *start,
1572 				unsigned long page_limit,
1573 				unsigned long freelist_count)
1574 {
1575 	unsigned int idx;
1576 
1577 	/*
1578 	 * If the target page allocation failed, the number of objects on the
1579 	 * page might be smaller than the usual size defined by the cache.
1580 	 */
1581 	do {
1582 		idx = s->random_seq[*pos];
1583 		*pos += 1;
1584 		if (*pos >= freelist_count)
1585 			*pos = 0;
1586 	} while (unlikely(idx >= page_limit));
1587 
1588 	return (char *)start + idx;
1589 }
1590 
1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593 {
1594 	void *start;
1595 	void *cur;
1596 	void *next;
1597 	unsigned long idx, pos, page_limit, freelist_count;
1598 
1599 	if (page->objects < 2 || !s->random_seq)
1600 		return false;
1601 
1602 	freelist_count = oo_objects(s->oo);
1603 	pos = get_random_int() % freelist_count;
1604 
1605 	page_limit = page->objects * s->size;
1606 	start = fixup_red_left(s, page_address(page));
1607 
1608 	/* First entry is used as the base of the freelist */
1609 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1610 				freelist_count);
1611 	cur = setup_object(s, page, cur);
1612 	page->freelist = cur;
1613 
1614 	for (idx = 1; idx < page->objects; idx++) {
1615 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1616 			freelist_count);
1617 		next = setup_object(s, page, next);
1618 		set_freepointer(s, cur, next);
1619 		cur = next;
1620 	}
1621 	set_freepointer(s, cur, NULL);
1622 
1623 	return true;
1624 }
1625 #else
1626 static inline int init_cache_random_seq(struct kmem_cache *s)
1627 {
1628 	return 0;
1629 }
1630 static inline void init_freelist_randomization(void) { }
1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1632 {
1633 	return false;
1634 }
1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636 
1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1638 {
1639 	struct page *page;
1640 	struct kmem_cache_order_objects oo = s->oo;
1641 	gfp_t alloc_gfp;
1642 	void *start, *p, *next;
1643 	int idx;
1644 	bool shuffle;
1645 
1646 	flags &= gfp_allowed_mask;
1647 
1648 	if (gfpflags_allow_blocking(flags))
1649 		local_irq_enable();
1650 
1651 	flags |= s->allocflags;
1652 
1653 	/*
1654 	 * Let the initial higher-order allocation fail under memory pressure
1655 	 * so we fall-back to the minimum order allocation.
1656 	 */
1657 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1658 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1659 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1660 
1661 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1662 	if (unlikely(!page)) {
1663 		oo = s->min;
1664 		alloc_gfp = flags;
1665 		/*
1666 		 * Allocation may have failed due to fragmentation.
1667 		 * Try a lower order alloc if possible
1668 		 */
1669 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1670 		if (unlikely(!page))
1671 			goto out;
1672 		stat(s, ORDER_FALLBACK);
1673 	}
1674 
1675 	page->objects = oo_objects(oo);
1676 
1677 	page->slab_cache = s;
1678 	__SetPageSlab(page);
1679 	if (page_is_pfmemalloc(page))
1680 		SetPageSlabPfmemalloc(page);
1681 
1682 	kasan_poison_slab(page);
1683 
1684 	start = page_address(page);
1685 
1686 	setup_page_debug(s, page, start);
1687 
1688 	shuffle = shuffle_freelist(s, page);
1689 
1690 	if (!shuffle) {
1691 		start = fixup_red_left(s, start);
1692 		start = setup_object(s, page, start);
1693 		page->freelist = start;
1694 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 			next = p + s->size;
1696 			next = setup_object(s, page, next);
1697 			set_freepointer(s, p, next);
1698 			p = next;
1699 		}
1700 		set_freepointer(s, p, NULL);
1701 	}
1702 
1703 	page->inuse = page->objects;
1704 	page->frozen = 1;
1705 
1706 out:
1707 	if (gfpflags_allow_blocking(flags))
1708 		local_irq_disable();
1709 	if (!page)
1710 		return NULL;
1711 
1712 	inc_slabs_node(s, page_to_nid(page), page->objects);
1713 
1714 	return page;
1715 }
1716 
1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718 {
1719 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1720 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1721 		flags &= ~GFP_SLAB_BUG_MASK;
1722 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 				invalid_mask, &invalid_mask, flags, &flags);
1724 		dump_stack();
1725 	}
1726 
1727 	return allocate_slab(s,
1728 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729 }
1730 
1731 static void __free_slab(struct kmem_cache *s, struct page *page)
1732 {
1733 	int order = compound_order(page);
1734 	int pages = 1 << order;
1735 
1736 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1737 		void *p;
1738 
1739 		slab_pad_check(s, page);
1740 		for_each_object(p, s, page_address(page),
1741 						page->objects)
1742 			check_object(s, page, p, SLUB_RED_INACTIVE);
1743 	}
1744 
1745 	__ClearPageSlabPfmemalloc(page);
1746 	__ClearPageSlab(page);
1747 
1748 	page->mapping = NULL;
1749 	if (current->reclaim_state)
1750 		current->reclaim_state->reclaimed_slab += pages;
1751 	uncharge_slab_page(page, order, s);
1752 	__free_pages(page, order);
1753 }
1754 
1755 static void rcu_free_slab(struct rcu_head *h)
1756 {
1757 	struct page *page = container_of(h, struct page, rcu_head);
1758 
1759 	__free_slab(page->slab_cache, page);
1760 }
1761 
1762 static void free_slab(struct kmem_cache *s, struct page *page)
1763 {
1764 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1765 		call_rcu(&page->rcu_head, rcu_free_slab);
1766 	} else
1767 		__free_slab(s, page);
1768 }
1769 
1770 static void discard_slab(struct kmem_cache *s, struct page *page)
1771 {
1772 	dec_slabs_node(s, page_to_nid(page), page->objects);
1773 	free_slab(s, page);
1774 }
1775 
1776 /*
1777  * Management of partially allocated slabs.
1778  */
1779 static inline void
1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1781 {
1782 	n->nr_partial++;
1783 	if (tail == DEACTIVATE_TO_TAIL)
1784 		list_add_tail(&page->slab_list, &n->partial);
1785 	else
1786 		list_add(&page->slab_list, &n->partial);
1787 }
1788 
1789 static inline void add_partial(struct kmem_cache_node *n,
1790 				struct page *page, int tail)
1791 {
1792 	lockdep_assert_held(&n->list_lock);
1793 	__add_partial(n, page, tail);
1794 }
1795 
1796 static inline void remove_partial(struct kmem_cache_node *n,
1797 					struct page *page)
1798 {
1799 	lockdep_assert_held(&n->list_lock);
1800 	list_del(&page->slab_list);
1801 	n->nr_partial--;
1802 }
1803 
1804 /*
1805  * Remove slab from the partial list, freeze it and
1806  * return the pointer to the freelist.
1807  *
1808  * Returns a list of objects or NULL if it fails.
1809  */
1810 static inline void *acquire_slab(struct kmem_cache *s,
1811 		struct kmem_cache_node *n, struct page *page,
1812 		int mode, int *objects)
1813 {
1814 	void *freelist;
1815 	unsigned long counters;
1816 	struct page new;
1817 
1818 	lockdep_assert_held(&n->list_lock);
1819 
1820 	/*
1821 	 * Zap the freelist and set the frozen bit.
1822 	 * The old freelist is the list of objects for the
1823 	 * per cpu allocation list.
1824 	 */
1825 	freelist = page->freelist;
1826 	counters = page->counters;
1827 	new.counters = counters;
1828 	*objects = new.objects - new.inuse;
1829 	if (mode) {
1830 		new.inuse = page->objects;
1831 		new.freelist = NULL;
1832 	} else {
1833 		new.freelist = freelist;
1834 	}
1835 
1836 	VM_BUG_ON(new.frozen);
1837 	new.frozen = 1;
1838 
1839 	if (!__cmpxchg_double_slab(s, page,
1840 			freelist, counters,
1841 			new.freelist, new.counters,
1842 			"acquire_slab"))
1843 		return NULL;
1844 
1845 	remove_partial(n, page);
1846 	WARN_ON(!freelist);
1847 	return freelist;
1848 }
1849 
1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1852 
1853 /*
1854  * Try to allocate a partial slab from a specific node.
1855  */
1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 				struct kmem_cache_cpu *c, gfp_t flags)
1858 {
1859 	struct page *page, *page2;
1860 	void *object = NULL;
1861 	unsigned int available = 0;
1862 	int objects;
1863 
1864 	/*
1865 	 * Racy check. If we mistakenly see no partial slabs then we
1866 	 * just allocate an empty slab. If we mistakenly try to get a
1867 	 * partial slab and there is none available then get_partials()
1868 	 * will return NULL.
1869 	 */
1870 	if (!n || !n->nr_partial)
1871 		return NULL;
1872 
1873 	spin_lock(&n->list_lock);
1874 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1875 		void *t;
1876 
1877 		if (!pfmemalloc_match(page, flags))
1878 			continue;
1879 
1880 		t = acquire_slab(s, n, page, object == NULL, &objects);
1881 		if (!t)
1882 			break;
1883 
1884 		available += objects;
1885 		if (!object) {
1886 			c->page = page;
1887 			stat(s, ALLOC_FROM_PARTIAL);
1888 			object = t;
1889 		} else {
1890 			put_cpu_partial(s, page, 0);
1891 			stat(s, CPU_PARTIAL_NODE);
1892 		}
1893 		if (!kmem_cache_has_cpu_partial(s)
1894 			|| available > slub_cpu_partial(s) / 2)
1895 			break;
1896 
1897 	}
1898 	spin_unlock(&n->list_lock);
1899 	return object;
1900 }
1901 
1902 /*
1903  * Get a page from somewhere. Search in increasing NUMA distances.
1904  */
1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1906 		struct kmem_cache_cpu *c)
1907 {
1908 #ifdef CONFIG_NUMA
1909 	struct zonelist *zonelist;
1910 	struct zoneref *z;
1911 	struct zone *zone;
1912 	enum zone_type high_zoneidx = gfp_zone(flags);
1913 	void *object;
1914 	unsigned int cpuset_mems_cookie;
1915 
1916 	/*
1917 	 * The defrag ratio allows a configuration of the tradeoffs between
1918 	 * inter node defragmentation and node local allocations. A lower
1919 	 * defrag_ratio increases the tendency to do local allocations
1920 	 * instead of attempting to obtain partial slabs from other nodes.
1921 	 *
1922 	 * If the defrag_ratio is set to 0 then kmalloc() always
1923 	 * returns node local objects. If the ratio is higher then kmalloc()
1924 	 * may return off node objects because partial slabs are obtained
1925 	 * from other nodes and filled up.
1926 	 *
1927 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 	 * (which makes defrag_ratio = 1000) then every (well almost)
1929 	 * allocation will first attempt to defrag slab caches on other nodes.
1930 	 * This means scanning over all nodes to look for partial slabs which
1931 	 * may be expensive if we do it every time we are trying to find a slab
1932 	 * with available objects.
1933 	 */
1934 	if (!s->remote_node_defrag_ratio ||
1935 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1936 		return NULL;
1937 
1938 	do {
1939 		cpuset_mems_cookie = read_mems_allowed_begin();
1940 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1941 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 			struct kmem_cache_node *n;
1943 
1944 			n = get_node(s, zone_to_nid(zone));
1945 
1946 			if (n && cpuset_zone_allowed(zone, flags) &&
1947 					n->nr_partial > s->min_partial) {
1948 				object = get_partial_node(s, n, c, flags);
1949 				if (object) {
1950 					/*
1951 					 * Don't check read_mems_allowed_retry()
1952 					 * here - if mems_allowed was updated in
1953 					 * parallel, that was a harmless race
1954 					 * between allocation and the cpuset
1955 					 * update
1956 					 */
1957 					return object;
1958 				}
1959 			}
1960 		}
1961 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1962 #endif	/* CONFIG_NUMA */
1963 	return NULL;
1964 }
1965 
1966 /*
1967  * Get a partial page, lock it and return it.
1968  */
1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1970 		struct kmem_cache_cpu *c)
1971 {
1972 	void *object;
1973 	int searchnode = node;
1974 
1975 	if (node == NUMA_NO_NODE)
1976 		searchnode = numa_mem_id();
1977 	else if (!node_present_pages(node))
1978 		searchnode = node_to_mem_node(node);
1979 
1980 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1981 	if (object || node != NUMA_NO_NODE)
1982 		return object;
1983 
1984 	return get_any_partial(s, flags, c);
1985 }
1986 
1987 #ifdef CONFIG_PREEMPT
1988 /*
1989  * Calculate the next globally unique transaction for disambiguiation
1990  * during cmpxchg. The transactions start with the cpu number and are then
1991  * incremented by CONFIG_NR_CPUS.
1992  */
1993 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1994 #else
1995 /*
1996  * No preemption supported therefore also no need to check for
1997  * different cpus.
1998  */
1999 #define TID_STEP 1
2000 #endif
2001 
2002 static inline unsigned long next_tid(unsigned long tid)
2003 {
2004 	return tid + TID_STEP;
2005 }
2006 
2007 #ifdef SLUB_DEBUG_CMPXCHG
2008 static inline unsigned int tid_to_cpu(unsigned long tid)
2009 {
2010 	return tid % TID_STEP;
2011 }
2012 
2013 static inline unsigned long tid_to_event(unsigned long tid)
2014 {
2015 	return tid / TID_STEP;
2016 }
2017 #endif
2018 
2019 static inline unsigned int init_tid(int cpu)
2020 {
2021 	return cpu;
2022 }
2023 
2024 static inline void note_cmpxchg_failure(const char *n,
2025 		const struct kmem_cache *s, unsigned long tid)
2026 {
2027 #ifdef SLUB_DEBUG_CMPXCHG
2028 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2029 
2030 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2031 
2032 #ifdef CONFIG_PREEMPT
2033 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2034 		pr_warn("due to cpu change %d -> %d\n",
2035 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2036 	else
2037 #endif
2038 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2039 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2040 			tid_to_event(tid), tid_to_event(actual_tid));
2041 	else
2042 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2043 			actual_tid, tid, next_tid(tid));
2044 #endif
2045 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2046 }
2047 
2048 static void init_kmem_cache_cpus(struct kmem_cache *s)
2049 {
2050 	int cpu;
2051 
2052 	for_each_possible_cpu(cpu)
2053 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2054 }
2055 
2056 /*
2057  * Remove the cpu slab
2058  */
2059 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2060 				void *freelist, struct kmem_cache_cpu *c)
2061 {
2062 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2063 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2064 	int lock = 0;
2065 	enum slab_modes l = M_NONE, m = M_NONE;
2066 	void *nextfree;
2067 	int tail = DEACTIVATE_TO_HEAD;
2068 	struct page new;
2069 	struct page old;
2070 
2071 	if (page->freelist) {
2072 		stat(s, DEACTIVATE_REMOTE_FREES);
2073 		tail = DEACTIVATE_TO_TAIL;
2074 	}
2075 
2076 	/*
2077 	 * Stage one: Free all available per cpu objects back
2078 	 * to the page freelist while it is still frozen. Leave the
2079 	 * last one.
2080 	 *
2081 	 * There is no need to take the list->lock because the page
2082 	 * is still frozen.
2083 	 */
2084 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2085 		void *prior;
2086 		unsigned long counters;
2087 
2088 		do {
2089 			prior = page->freelist;
2090 			counters = page->counters;
2091 			set_freepointer(s, freelist, prior);
2092 			new.counters = counters;
2093 			new.inuse--;
2094 			VM_BUG_ON(!new.frozen);
2095 
2096 		} while (!__cmpxchg_double_slab(s, page,
2097 			prior, counters,
2098 			freelist, new.counters,
2099 			"drain percpu freelist"));
2100 
2101 		freelist = nextfree;
2102 	}
2103 
2104 	/*
2105 	 * Stage two: Ensure that the page is unfrozen while the
2106 	 * list presence reflects the actual number of objects
2107 	 * during unfreeze.
2108 	 *
2109 	 * We setup the list membership and then perform a cmpxchg
2110 	 * with the count. If there is a mismatch then the page
2111 	 * is not unfrozen but the page is on the wrong list.
2112 	 *
2113 	 * Then we restart the process which may have to remove
2114 	 * the page from the list that we just put it on again
2115 	 * because the number of objects in the slab may have
2116 	 * changed.
2117 	 */
2118 redo:
2119 
2120 	old.freelist = page->freelist;
2121 	old.counters = page->counters;
2122 	VM_BUG_ON(!old.frozen);
2123 
2124 	/* Determine target state of the slab */
2125 	new.counters = old.counters;
2126 	if (freelist) {
2127 		new.inuse--;
2128 		set_freepointer(s, freelist, old.freelist);
2129 		new.freelist = freelist;
2130 	} else
2131 		new.freelist = old.freelist;
2132 
2133 	new.frozen = 0;
2134 
2135 	if (!new.inuse && n->nr_partial >= s->min_partial)
2136 		m = M_FREE;
2137 	else if (new.freelist) {
2138 		m = M_PARTIAL;
2139 		if (!lock) {
2140 			lock = 1;
2141 			/*
2142 			 * Taking the spinlock removes the possibility
2143 			 * that acquire_slab() will see a slab page that
2144 			 * is frozen
2145 			 */
2146 			spin_lock(&n->list_lock);
2147 		}
2148 	} else {
2149 		m = M_FULL;
2150 		if (kmem_cache_debug(s) && !lock) {
2151 			lock = 1;
2152 			/*
2153 			 * This also ensures that the scanning of full
2154 			 * slabs from diagnostic functions will not see
2155 			 * any frozen slabs.
2156 			 */
2157 			spin_lock(&n->list_lock);
2158 		}
2159 	}
2160 
2161 	if (l != m) {
2162 		if (l == M_PARTIAL)
2163 			remove_partial(n, page);
2164 		else if (l == M_FULL)
2165 			remove_full(s, n, page);
2166 
2167 		if (m == M_PARTIAL)
2168 			add_partial(n, page, tail);
2169 		else if (m == M_FULL)
2170 			add_full(s, n, page);
2171 	}
2172 
2173 	l = m;
2174 	if (!__cmpxchg_double_slab(s, page,
2175 				old.freelist, old.counters,
2176 				new.freelist, new.counters,
2177 				"unfreezing slab"))
2178 		goto redo;
2179 
2180 	if (lock)
2181 		spin_unlock(&n->list_lock);
2182 
2183 	if (m == M_PARTIAL)
2184 		stat(s, tail);
2185 	else if (m == M_FULL)
2186 		stat(s, DEACTIVATE_FULL);
2187 	else if (m == M_FREE) {
2188 		stat(s, DEACTIVATE_EMPTY);
2189 		discard_slab(s, page);
2190 		stat(s, FREE_SLAB);
2191 	}
2192 
2193 	c->page = NULL;
2194 	c->freelist = NULL;
2195 }
2196 
2197 /*
2198  * Unfreeze all the cpu partial slabs.
2199  *
2200  * This function must be called with interrupts disabled
2201  * for the cpu using c (or some other guarantee must be there
2202  * to guarantee no concurrent accesses).
2203  */
2204 static void unfreeze_partials(struct kmem_cache *s,
2205 		struct kmem_cache_cpu *c)
2206 {
2207 #ifdef CONFIG_SLUB_CPU_PARTIAL
2208 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2209 	struct page *page, *discard_page = NULL;
2210 
2211 	while ((page = c->partial)) {
2212 		struct page new;
2213 		struct page old;
2214 
2215 		c->partial = page->next;
2216 
2217 		n2 = get_node(s, page_to_nid(page));
2218 		if (n != n2) {
2219 			if (n)
2220 				spin_unlock(&n->list_lock);
2221 
2222 			n = n2;
2223 			spin_lock(&n->list_lock);
2224 		}
2225 
2226 		do {
2227 
2228 			old.freelist = page->freelist;
2229 			old.counters = page->counters;
2230 			VM_BUG_ON(!old.frozen);
2231 
2232 			new.counters = old.counters;
2233 			new.freelist = old.freelist;
2234 
2235 			new.frozen = 0;
2236 
2237 		} while (!__cmpxchg_double_slab(s, page,
2238 				old.freelist, old.counters,
2239 				new.freelist, new.counters,
2240 				"unfreezing slab"));
2241 
2242 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2243 			page->next = discard_page;
2244 			discard_page = page;
2245 		} else {
2246 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2247 			stat(s, FREE_ADD_PARTIAL);
2248 		}
2249 	}
2250 
2251 	if (n)
2252 		spin_unlock(&n->list_lock);
2253 
2254 	while (discard_page) {
2255 		page = discard_page;
2256 		discard_page = discard_page->next;
2257 
2258 		stat(s, DEACTIVATE_EMPTY);
2259 		discard_slab(s, page);
2260 		stat(s, FREE_SLAB);
2261 	}
2262 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2263 }
2264 
2265 /*
2266  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2267  * partial page slot if available.
2268  *
2269  * If we did not find a slot then simply move all the partials to the
2270  * per node partial list.
2271  */
2272 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2273 {
2274 #ifdef CONFIG_SLUB_CPU_PARTIAL
2275 	struct page *oldpage;
2276 	int pages;
2277 	int pobjects;
2278 
2279 	preempt_disable();
2280 	do {
2281 		pages = 0;
2282 		pobjects = 0;
2283 		oldpage = this_cpu_read(s->cpu_slab->partial);
2284 
2285 		if (oldpage) {
2286 			pobjects = oldpage->pobjects;
2287 			pages = oldpage->pages;
2288 			if (drain && pobjects > s->cpu_partial) {
2289 				unsigned long flags;
2290 				/*
2291 				 * partial array is full. Move the existing
2292 				 * set to the per node partial list.
2293 				 */
2294 				local_irq_save(flags);
2295 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2296 				local_irq_restore(flags);
2297 				oldpage = NULL;
2298 				pobjects = 0;
2299 				pages = 0;
2300 				stat(s, CPU_PARTIAL_DRAIN);
2301 			}
2302 		}
2303 
2304 		pages++;
2305 		pobjects += page->objects - page->inuse;
2306 
2307 		page->pages = pages;
2308 		page->pobjects = pobjects;
2309 		page->next = oldpage;
2310 
2311 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2312 								!= oldpage);
2313 	if (unlikely(!s->cpu_partial)) {
2314 		unsigned long flags;
2315 
2316 		local_irq_save(flags);
2317 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2318 		local_irq_restore(flags);
2319 	}
2320 	preempt_enable();
2321 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2322 }
2323 
2324 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2325 {
2326 	stat(s, CPUSLAB_FLUSH);
2327 	deactivate_slab(s, c->page, c->freelist, c);
2328 
2329 	c->tid = next_tid(c->tid);
2330 }
2331 
2332 /*
2333  * Flush cpu slab.
2334  *
2335  * Called from IPI handler with interrupts disabled.
2336  */
2337 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2338 {
2339 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340 
2341 	if (c->page)
2342 		flush_slab(s, c);
2343 
2344 	unfreeze_partials(s, c);
2345 }
2346 
2347 static void flush_cpu_slab(void *d)
2348 {
2349 	struct kmem_cache *s = d;
2350 
2351 	__flush_cpu_slab(s, smp_processor_id());
2352 }
2353 
2354 static bool has_cpu_slab(int cpu, void *info)
2355 {
2356 	struct kmem_cache *s = info;
2357 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2358 
2359 	return c->page || slub_percpu_partial(c);
2360 }
2361 
2362 static void flush_all(struct kmem_cache *s)
2363 {
2364 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2365 }
2366 
2367 /*
2368  * Use the cpu notifier to insure that the cpu slabs are flushed when
2369  * necessary.
2370  */
2371 static int slub_cpu_dead(unsigned int cpu)
2372 {
2373 	struct kmem_cache *s;
2374 	unsigned long flags;
2375 
2376 	mutex_lock(&slab_mutex);
2377 	list_for_each_entry(s, &slab_caches, list) {
2378 		local_irq_save(flags);
2379 		__flush_cpu_slab(s, cpu);
2380 		local_irq_restore(flags);
2381 	}
2382 	mutex_unlock(&slab_mutex);
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Check if the objects in a per cpu structure fit numa
2388  * locality expectations.
2389  */
2390 static inline int node_match(struct page *page, int node)
2391 {
2392 #ifdef CONFIG_NUMA
2393 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2394 		return 0;
2395 #endif
2396 	return 1;
2397 }
2398 
2399 #ifdef CONFIG_SLUB_DEBUG
2400 static int count_free(struct page *page)
2401 {
2402 	return page->objects - page->inuse;
2403 }
2404 
2405 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2406 {
2407 	return atomic_long_read(&n->total_objects);
2408 }
2409 #endif /* CONFIG_SLUB_DEBUG */
2410 
2411 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2412 static unsigned long count_partial(struct kmem_cache_node *n,
2413 					int (*get_count)(struct page *))
2414 {
2415 	unsigned long flags;
2416 	unsigned long x = 0;
2417 	struct page *page;
2418 
2419 	spin_lock_irqsave(&n->list_lock, flags);
2420 	list_for_each_entry(page, &n->partial, slab_list)
2421 		x += get_count(page);
2422 	spin_unlock_irqrestore(&n->list_lock, flags);
2423 	return x;
2424 }
2425 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2426 
2427 static noinline void
2428 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2429 {
2430 #ifdef CONFIG_SLUB_DEBUG
2431 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2432 				      DEFAULT_RATELIMIT_BURST);
2433 	int node;
2434 	struct kmem_cache_node *n;
2435 
2436 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2437 		return;
2438 
2439 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2440 		nid, gfpflags, &gfpflags);
2441 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2442 		s->name, s->object_size, s->size, oo_order(s->oo),
2443 		oo_order(s->min));
2444 
2445 	if (oo_order(s->min) > get_order(s->object_size))
2446 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2447 			s->name);
2448 
2449 	for_each_kmem_cache_node(s, node, n) {
2450 		unsigned long nr_slabs;
2451 		unsigned long nr_objs;
2452 		unsigned long nr_free;
2453 
2454 		nr_free  = count_partial(n, count_free);
2455 		nr_slabs = node_nr_slabs(n);
2456 		nr_objs  = node_nr_objs(n);
2457 
2458 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2459 			node, nr_slabs, nr_objs, nr_free);
2460 	}
2461 #endif
2462 }
2463 
2464 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2465 			int node, struct kmem_cache_cpu **pc)
2466 {
2467 	void *freelist;
2468 	struct kmem_cache_cpu *c = *pc;
2469 	struct page *page;
2470 
2471 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2472 
2473 	freelist = get_partial(s, flags, node, c);
2474 
2475 	if (freelist)
2476 		return freelist;
2477 
2478 	page = new_slab(s, flags, node);
2479 	if (page) {
2480 		c = raw_cpu_ptr(s->cpu_slab);
2481 		if (c->page)
2482 			flush_slab(s, c);
2483 
2484 		/*
2485 		 * No other reference to the page yet so we can
2486 		 * muck around with it freely without cmpxchg
2487 		 */
2488 		freelist = page->freelist;
2489 		page->freelist = NULL;
2490 
2491 		stat(s, ALLOC_SLAB);
2492 		c->page = page;
2493 		*pc = c;
2494 	}
2495 
2496 	return freelist;
2497 }
2498 
2499 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2500 {
2501 	if (unlikely(PageSlabPfmemalloc(page)))
2502 		return gfp_pfmemalloc_allowed(gfpflags);
2503 
2504 	return true;
2505 }
2506 
2507 /*
2508  * Check the page->freelist of a page and either transfer the freelist to the
2509  * per cpu freelist or deactivate the page.
2510  *
2511  * The page is still frozen if the return value is not NULL.
2512  *
2513  * If this function returns NULL then the page has been unfrozen.
2514  *
2515  * This function must be called with interrupt disabled.
2516  */
2517 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2518 {
2519 	struct page new;
2520 	unsigned long counters;
2521 	void *freelist;
2522 
2523 	do {
2524 		freelist = page->freelist;
2525 		counters = page->counters;
2526 
2527 		new.counters = counters;
2528 		VM_BUG_ON(!new.frozen);
2529 
2530 		new.inuse = page->objects;
2531 		new.frozen = freelist != NULL;
2532 
2533 	} while (!__cmpxchg_double_slab(s, page,
2534 		freelist, counters,
2535 		NULL, new.counters,
2536 		"get_freelist"));
2537 
2538 	return freelist;
2539 }
2540 
2541 /*
2542  * Slow path. The lockless freelist is empty or we need to perform
2543  * debugging duties.
2544  *
2545  * Processing is still very fast if new objects have been freed to the
2546  * regular freelist. In that case we simply take over the regular freelist
2547  * as the lockless freelist and zap the regular freelist.
2548  *
2549  * If that is not working then we fall back to the partial lists. We take the
2550  * first element of the freelist as the object to allocate now and move the
2551  * rest of the freelist to the lockless freelist.
2552  *
2553  * And if we were unable to get a new slab from the partial slab lists then
2554  * we need to allocate a new slab. This is the slowest path since it involves
2555  * a call to the page allocator and the setup of a new slab.
2556  *
2557  * Version of __slab_alloc to use when we know that interrupts are
2558  * already disabled (which is the case for bulk allocation).
2559  */
2560 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2561 			  unsigned long addr, struct kmem_cache_cpu *c)
2562 {
2563 	void *freelist;
2564 	struct page *page;
2565 
2566 	page = c->page;
2567 	if (!page)
2568 		goto new_slab;
2569 redo:
2570 
2571 	if (unlikely(!node_match(page, node))) {
2572 		int searchnode = node;
2573 
2574 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2575 			searchnode = node_to_mem_node(node);
2576 
2577 		if (unlikely(!node_match(page, searchnode))) {
2578 			stat(s, ALLOC_NODE_MISMATCH);
2579 			deactivate_slab(s, page, c->freelist, c);
2580 			goto new_slab;
2581 		}
2582 	}
2583 
2584 	/*
2585 	 * By rights, we should be searching for a slab page that was
2586 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2587 	 * information when the page leaves the per-cpu allocator
2588 	 */
2589 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2590 		deactivate_slab(s, page, c->freelist, c);
2591 		goto new_slab;
2592 	}
2593 
2594 	/* must check again c->freelist in case of cpu migration or IRQ */
2595 	freelist = c->freelist;
2596 	if (freelist)
2597 		goto load_freelist;
2598 
2599 	freelist = get_freelist(s, page);
2600 
2601 	if (!freelist) {
2602 		c->page = NULL;
2603 		stat(s, DEACTIVATE_BYPASS);
2604 		goto new_slab;
2605 	}
2606 
2607 	stat(s, ALLOC_REFILL);
2608 
2609 load_freelist:
2610 	/*
2611 	 * freelist is pointing to the list of objects to be used.
2612 	 * page is pointing to the page from which the objects are obtained.
2613 	 * That page must be frozen for per cpu allocations to work.
2614 	 */
2615 	VM_BUG_ON(!c->page->frozen);
2616 	c->freelist = get_freepointer(s, freelist);
2617 	c->tid = next_tid(c->tid);
2618 	return freelist;
2619 
2620 new_slab:
2621 
2622 	if (slub_percpu_partial(c)) {
2623 		page = c->page = slub_percpu_partial(c);
2624 		slub_set_percpu_partial(c, page);
2625 		stat(s, CPU_PARTIAL_ALLOC);
2626 		goto redo;
2627 	}
2628 
2629 	freelist = new_slab_objects(s, gfpflags, node, &c);
2630 
2631 	if (unlikely(!freelist)) {
2632 		slab_out_of_memory(s, gfpflags, node);
2633 		return NULL;
2634 	}
2635 
2636 	page = c->page;
2637 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2638 		goto load_freelist;
2639 
2640 	/* Only entered in the debug case */
2641 	if (kmem_cache_debug(s) &&
2642 			!alloc_debug_processing(s, page, freelist, addr))
2643 		goto new_slab;	/* Slab failed checks. Next slab needed */
2644 
2645 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2646 	return freelist;
2647 }
2648 
2649 /*
2650  * Another one that disabled interrupt and compensates for possible
2651  * cpu changes by refetching the per cpu area pointer.
2652  */
2653 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2654 			  unsigned long addr, struct kmem_cache_cpu *c)
2655 {
2656 	void *p;
2657 	unsigned long flags;
2658 
2659 	local_irq_save(flags);
2660 #ifdef CONFIG_PREEMPT
2661 	/*
2662 	 * We may have been preempted and rescheduled on a different
2663 	 * cpu before disabling interrupts. Need to reload cpu area
2664 	 * pointer.
2665 	 */
2666 	c = this_cpu_ptr(s->cpu_slab);
2667 #endif
2668 
2669 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2670 	local_irq_restore(flags);
2671 	return p;
2672 }
2673 
2674 /*
2675  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2676  * have the fastpath folded into their functions. So no function call
2677  * overhead for requests that can be satisfied on the fastpath.
2678  *
2679  * The fastpath works by first checking if the lockless freelist can be used.
2680  * If not then __slab_alloc is called for slow processing.
2681  *
2682  * Otherwise we can simply pick the next object from the lockless free list.
2683  */
2684 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2685 		gfp_t gfpflags, int node, unsigned long addr)
2686 {
2687 	void *object;
2688 	struct kmem_cache_cpu *c;
2689 	struct page *page;
2690 	unsigned long tid;
2691 
2692 	s = slab_pre_alloc_hook(s, gfpflags);
2693 	if (!s)
2694 		return NULL;
2695 redo:
2696 	/*
2697 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2698 	 * enabled. We may switch back and forth between cpus while
2699 	 * reading from one cpu area. That does not matter as long
2700 	 * as we end up on the original cpu again when doing the cmpxchg.
2701 	 *
2702 	 * We should guarantee that tid and kmem_cache are retrieved on
2703 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2704 	 * to check if it is matched or not.
2705 	 */
2706 	do {
2707 		tid = this_cpu_read(s->cpu_slab->tid);
2708 		c = raw_cpu_ptr(s->cpu_slab);
2709 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2710 		 unlikely(tid != READ_ONCE(c->tid)));
2711 
2712 	/*
2713 	 * Irqless object alloc/free algorithm used here depends on sequence
2714 	 * of fetching cpu_slab's data. tid should be fetched before anything
2715 	 * on c to guarantee that object and page associated with previous tid
2716 	 * won't be used with current tid. If we fetch tid first, object and
2717 	 * page could be one associated with next tid and our alloc/free
2718 	 * request will be failed. In this case, we will retry. So, no problem.
2719 	 */
2720 	barrier();
2721 
2722 	/*
2723 	 * The transaction ids are globally unique per cpu and per operation on
2724 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2725 	 * occurs on the right processor and that there was no operation on the
2726 	 * linked list in between.
2727 	 */
2728 
2729 	object = c->freelist;
2730 	page = c->page;
2731 	if (unlikely(!object || !node_match(page, node))) {
2732 		object = __slab_alloc(s, gfpflags, node, addr, c);
2733 		stat(s, ALLOC_SLOWPATH);
2734 	} else {
2735 		void *next_object = get_freepointer_safe(s, object);
2736 
2737 		/*
2738 		 * The cmpxchg will only match if there was no additional
2739 		 * operation and if we are on the right processor.
2740 		 *
2741 		 * The cmpxchg does the following atomically (without lock
2742 		 * semantics!)
2743 		 * 1. Relocate first pointer to the current per cpu area.
2744 		 * 2. Verify that tid and freelist have not been changed
2745 		 * 3. If they were not changed replace tid and freelist
2746 		 *
2747 		 * Since this is without lock semantics the protection is only
2748 		 * against code executing on this cpu *not* from access by
2749 		 * other cpus.
2750 		 */
2751 		if (unlikely(!this_cpu_cmpxchg_double(
2752 				s->cpu_slab->freelist, s->cpu_slab->tid,
2753 				object, tid,
2754 				next_object, next_tid(tid)))) {
2755 
2756 			note_cmpxchg_failure("slab_alloc", s, tid);
2757 			goto redo;
2758 		}
2759 		prefetch_freepointer(s, next_object);
2760 		stat(s, ALLOC_FASTPATH);
2761 	}
2762 	/*
2763 	 * If the object has been wiped upon free, make sure it's fully
2764 	 * initialized by zeroing out freelist pointer.
2765 	 */
2766 	if (unlikely(slab_want_init_on_free(s)) && object)
2767 		memset(object + s->offset, 0, sizeof(void *));
2768 
2769 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2770 		memset(object, 0, s->object_size);
2771 
2772 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2773 
2774 	return object;
2775 }
2776 
2777 static __always_inline void *slab_alloc(struct kmem_cache *s,
2778 		gfp_t gfpflags, unsigned long addr)
2779 {
2780 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2781 }
2782 
2783 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2784 {
2785 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2786 
2787 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2788 				s->size, gfpflags);
2789 
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL(kmem_cache_alloc);
2793 
2794 #ifdef CONFIG_TRACING
2795 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2796 {
2797 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2798 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2799 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2803 #endif
2804 
2805 #ifdef CONFIG_NUMA
2806 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2807 {
2808 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809 
2810 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2811 				    s->object_size, s->size, gfpflags, node);
2812 
2813 	return ret;
2814 }
2815 EXPORT_SYMBOL(kmem_cache_alloc_node);
2816 
2817 #ifdef CONFIG_TRACING
2818 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2819 				    gfp_t gfpflags,
2820 				    int node, size_t size)
2821 {
2822 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2823 
2824 	trace_kmalloc_node(_RET_IP_, ret,
2825 			   size, s->size, gfpflags, node);
2826 
2827 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2831 #endif
2832 #endif	/* CONFIG_NUMA */
2833 
2834 /*
2835  * Slow path handling. This may still be called frequently since objects
2836  * have a longer lifetime than the cpu slabs in most processing loads.
2837  *
2838  * So we still attempt to reduce cache line usage. Just take the slab
2839  * lock and free the item. If there is no additional partial page
2840  * handling required then we can return immediately.
2841  */
2842 static void __slab_free(struct kmem_cache *s, struct page *page,
2843 			void *head, void *tail, int cnt,
2844 			unsigned long addr)
2845 
2846 {
2847 	void *prior;
2848 	int was_frozen;
2849 	struct page new;
2850 	unsigned long counters;
2851 	struct kmem_cache_node *n = NULL;
2852 	unsigned long uninitialized_var(flags);
2853 
2854 	stat(s, FREE_SLOWPATH);
2855 
2856 	if (kmem_cache_debug(s) &&
2857 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2858 		return;
2859 
2860 	do {
2861 		if (unlikely(n)) {
2862 			spin_unlock_irqrestore(&n->list_lock, flags);
2863 			n = NULL;
2864 		}
2865 		prior = page->freelist;
2866 		counters = page->counters;
2867 		set_freepointer(s, tail, prior);
2868 		new.counters = counters;
2869 		was_frozen = new.frozen;
2870 		new.inuse -= cnt;
2871 		if ((!new.inuse || !prior) && !was_frozen) {
2872 
2873 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2874 
2875 				/*
2876 				 * Slab was on no list before and will be
2877 				 * partially empty
2878 				 * We can defer the list move and instead
2879 				 * freeze it.
2880 				 */
2881 				new.frozen = 1;
2882 
2883 			} else { /* Needs to be taken off a list */
2884 
2885 				n = get_node(s, page_to_nid(page));
2886 				/*
2887 				 * Speculatively acquire the list_lock.
2888 				 * If the cmpxchg does not succeed then we may
2889 				 * drop the list_lock without any processing.
2890 				 *
2891 				 * Otherwise the list_lock will synchronize with
2892 				 * other processors updating the list of slabs.
2893 				 */
2894 				spin_lock_irqsave(&n->list_lock, flags);
2895 
2896 			}
2897 		}
2898 
2899 	} while (!cmpxchg_double_slab(s, page,
2900 		prior, counters,
2901 		head, new.counters,
2902 		"__slab_free"));
2903 
2904 	if (likely(!n)) {
2905 
2906 		/*
2907 		 * If we just froze the page then put it onto the
2908 		 * per cpu partial list.
2909 		 */
2910 		if (new.frozen && !was_frozen) {
2911 			put_cpu_partial(s, page, 1);
2912 			stat(s, CPU_PARTIAL_FREE);
2913 		}
2914 		/*
2915 		 * The list lock was not taken therefore no list
2916 		 * activity can be necessary.
2917 		 */
2918 		if (was_frozen)
2919 			stat(s, FREE_FROZEN);
2920 		return;
2921 	}
2922 
2923 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2924 		goto slab_empty;
2925 
2926 	/*
2927 	 * Objects left in the slab. If it was not on the partial list before
2928 	 * then add it.
2929 	 */
2930 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2931 		remove_full(s, n, page);
2932 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2933 		stat(s, FREE_ADD_PARTIAL);
2934 	}
2935 	spin_unlock_irqrestore(&n->list_lock, flags);
2936 	return;
2937 
2938 slab_empty:
2939 	if (prior) {
2940 		/*
2941 		 * Slab on the partial list.
2942 		 */
2943 		remove_partial(n, page);
2944 		stat(s, FREE_REMOVE_PARTIAL);
2945 	} else {
2946 		/* Slab must be on the full list */
2947 		remove_full(s, n, page);
2948 	}
2949 
2950 	spin_unlock_irqrestore(&n->list_lock, flags);
2951 	stat(s, FREE_SLAB);
2952 	discard_slab(s, page);
2953 }
2954 
2955 /*
2956  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2957  * can perform fastpath freeing without additional function calls.
2958  *
2959  * The fastpath is only possible if we are freeing to the current cpu slab
2960  * of this processor. This typically the case if we have just allocated
2961  * the item before.
2962  *
2963  * If fastpath is not possible then fall back to __slab_free where we deal
2964  * with all sorts of special processing.
2965  *
2966  * Bulk free of a freelist with several objects (all pointing to the
2967  * same page) possible by specifying head and tail ptr, plus objects
2968  * count (cnt). Bulk free indicated by tail pointer being set.
2969  */
2970 static __always_inline void do_slab_free(struct kmem_cache *s,
2971 				struct page *page, void *head, void *tail,
2972 				int cnt, unsigned long addr)
2973 {
2974 	void *tail_obj = tail ? : head;
2975 	struct kmem_cache_cpu *c;
2976 	unsigned long tid;
2977 redo:
2978 	/*
2979 	 * Determine the currently cpus per cpu slab.
2980 	 * The cpu may change afterward. However that does not matter since
2981 	 * data is retrieved via this pointer. If we are on the same cpu
2982 	 * during the cmpxchg then the free will succeed.
2983 	 */
2984 	do {
2985 		tid = this_cpu_read(s->cpu_slab->tid);
2986 		c = raw_cpu_ptr(s->cpu_slab);
2987 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2988 		 unlikely(tid != READ_ONCE(c->tid)));
2989 
2990 	/* Same with comment on barrier() in slab_alloc_node() */
2991 	barrier();
2992 
2993 	if (likely(page == c->page)) {
2994 		set_freepointer(s, tail_obj, c->freelist);
2995 
2996 		if (unlikely(!this_cpu_cmpxchg_double(
2997 				s->cpu_slab->freelist, s->cpu_slab->tid,
2998 				c->freelist, tid,
2999 				head, next_tid(tid)))) {
3000 
3001 			note_cmpxchg_failure("slab_free", s, tid);
3002 			goto redo;
3003 		}
3004 		stat(s, FREE_FASTPATH);
3005 	} else
3006 		__slab_free(s, page, head, tail_obj, cnt, addr);
3007 
3008 }
3009 
3010 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3011 				      void *head, void *tail, int cnt,
3012 				      unsigned long addr)
3013 {
3014 	/*
3015 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3016 	 * to remove objects, whose reuse must be delayed.
3017 	 */
3018 	if (slab_free_freelist_hook(s, &head, &tail))
3019 		do_slab_free(s, page, head, tail, cnt, addr);
3020 }
3021 
3022 #ifdef CONFIG_KASAN_GENERIC
3023 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3024 {
3025 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3026 }
3027 #endif
3028 
3029 void kmem_cache_free(struct kmem_cache *s, void *x)
3030 {
3031 	s = cache_from_obj(s, x);
3032 	if (!s)
3033 		return;
3034 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3035 	trace_kmem_cache_free(_RET_IP_, x);
3036 }
3037 EXPORT_SYMBOL(kmem_cache_free);
3038 
3039 struct detached_freelist {
3040 	struct page *page;
3041 	void *tail;
3042 	void *freelist;
3043 	int cnt;
3044 	struct kmem_cache *s;
3045 };
3046 
3047 /*
3048  * This function progressively scans the array with free objects (with
3049  * a limited look ahead) and extract objects belonging to the same
3050  * page.  It builds a detached freelist directly within the given
3051  * page/objects.  This can happen without any need for
3052  * synchronization, because the objects are owned by running process.
3053  * The freelist is build up as a single linked list in the objects.
3054  * The idea is, that this detached freelist can then be bulk
3055  * transferred to the real freelist(s), but only requiring a single
3056  * synchronization primitive.  Look ahead in the array is limited due
3057  * to performance reasons.
3058  */
3059 static inline
3060 int build_detached_freelist(struct kmem_cache *s, size_t size,
3061 			    void **p, struct detached_freelist *df)
3062 {
3063 	size_t first_skipped_index = 0;
3064 	int lookahead = 3;
3065 	void *object;
3066 	struct page *page;
3067 
3068 	/* Always re-init detached_freelist */
3069 	df->page = NULL;
3070 
3071 	do {
3072 		object = p[--size];
3073 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3074 	} while (!object && size);
3075 
3076 	if (!object)
3077 		return 0;
3078 
3079 	page = virt_to_head_page(object);
3080 	if (!s) {
3081 		/* Handle kalloc'ed objects */
3082 		if (unlikely(!PageSlab(page))) {
3083 			BUG_ON(!PageCompound(page));
3084 			kfree_hook(object);
3085 			__free_pages(page, compound_order(page));
3086 			p[size] = NULL; /* mark object processed */
3087 			return size;
3088 		}
3089 		/* Derive kmem_cache from object */
3090 		df->s = page->slab_cache;
3091 	} else {
3092 		df->s = cache_from_obj(s, object); /* Support for memcg */
3093 	}
3094 
3095 	/* Start new detached freelist */
3096 	df->page = page;
3097 	set_freepointer(df->s, object, NULL);
3098 	df->tail = object;
3099 	df->freelist = object;
3100 	p[size] = NULL; /* mark object processed */
3101 	df->cnt = 1;
3102 
3103 	while (size) {
3104 		object = p[--size];
3105 		if (!object)
3106 			continue; /* Skip processed objects */
3107 
3108 		/* df->page is always set at this point */
3109 		if (df->page == virt_to_head_page(object)) {
3110 			/* Opportunity build freelist */
3111 			set_freepointer(df->s, object, df->freelist);
3112 			df->freelist = object;
3113 			df->cnt++;
3114 			p[size] = NULL; /* mark object processed */
3115 
3116 			continue;
3117 		}
3118 
3119 		/* Limit look ahead search */
3120 		if (!--lookahead)
3121 			break;
3122 
3123 		if (!first_skipped_index)
3124 			first_skipped_index = size + 1;
3125 	}
3126 
3127 	return first_skipped_index;
3128 }
3129 
3130 /* Note that interrupts must be enabled when calling this function. */
3131 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3132 {
3133 	if (WARN_ON(!size))
3134 		return;
3135 
3136 	do {
3137 		struct detached_freelist df;
3138 
3139 		size = build_detached_freelist(s, size, p, &df);
3140 		if (!df.page)
3141 			continue;
3142 
3143 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3144 	} while (likely(size));
3145 }
3146 EXPORT_SYMBOL(kmem_cache_free_bulk);
3147 
3148 /* Note that interrupts must be enabled when calling this function. */
3149 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3150 			  void **p)
3151 {
3152 	struct kmem_cache_cpu *c;
3153 	int i;
3154 
3155 	/* memcg and kmem_cache debug support */
3156 	s = slab_pre_alloc_hook(s, flags);
3157 	if (unlikely(!s))
3158 		return false;
3159 	/*
3160 	 * Drain objects in the per cpu slab, while disabling local
3161 	 * IRQs, which protects against PREEMPT and interrupts
3162 	 * handlers invoking normal fastpath.
3163 	 */
3164 	local_irq_disable();
3165 	c = this_cpu_ptr(s->cpu_slab);
3166 
3167 	for (i = 0; i < size; i++) {
3168 		void *object = c->freelist;
3169 
3170 		if (unlikely(!object)) {
3171 			/*
3172 			 * Invoking slow path likely have side-effect
3173 			 * of re-populating per CPU c->freelist
3174 			 */
3175 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3176 					    _RET_IP_, c);
3177 			if (unlikely(!p[i]))
3178 				goto error;
3179 
3180 			c = this_cpu_ptr(s->cpu_slab);
3181 			continue; /* goto for-loop */
3182 		}
3183 		c->freelist = get_freepointer(s, object);
3184 		p[i] = object;
3185 	}
3186 	c->tid = next_tid(c->tid);
3187 	local_irq_enable();
3188 
3189 	/* Clear memory outside IRQ disabled fastpath loop */
3190 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3191 		int j;
3192 
3193 		for (j = 0; j < i; j++)
3194 			memset(p[j], 0, s->object_size);
3195 	}
3196 
3197 	/* memcg and kmem_cache debug support */
3198 	slab_post_alloc_hook(s, flags, size, p);
3199 	return i;
3200 error:
3201 	local_irq_enable();
3202 	slab_post_alloc_hook(s, flags, i, p);
3203 	__kmem_cache_free_bulk(s, i, p);
3204 	return 0;
3205 }
3206 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3207 
3208 
3209 /*
3210  * Object placement in a slab is made very easy because we always start at
3211  * offset 0. If we tune the size of the object to the alignment then we can
3212  * get the required alignment by putting one properly sized object after
3213  * another.
3214  *
3215  * Notice that the allocation order determines the sizes of the per cpu
3216  * caches. Each processor has always one slab available for allocations.
3217  * Increasing the allocation order reduces the number of times that slabs
3218  * must be moved on and off the partial lists and is therefore a factor in
3219  * locking overhead.
3220  */
3221 
3222 /*
3223  * Mininum / Maximum order of slab pages. This influences locking overhead
3224  * and slab fragmentation. A higher order reduces the number of partial slabs
3225  * and increases the number of allocations possible without having to
3226  * take the list_lock.
3227  */
3228 static unsigned int slub_min_order;
3229 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3230 static unsigned int slub_min_objects;
3231 
3232 /*
3233  * Calculate the order of allocation given an slab object size.
3234  *
3235  * The order of allocation has significant impact on performance and other
3236  * system components. Generally order 0 allocations should be preferred since
3237  * order 0 does not cause fragmentation in the page allocator. Larger objects
3238  * be problematic to put into order 0 slabs because there may be too much
3239  * unused space left. We go to a higher order if more than 1/16th of the slab
3240  * would be wasted.
3241  *
3242  * In order to reach satisfactory performance we must ensure that a minimum
3243  * number of objects is in one slab. Otherwise we may generate too much
3244  * activity on the partial lists which requires taking the list_lock. This is
3245  * less a concern for large slabs though which are rarely used.
3246  *
3247  * slub_max_order specifies the order where we begin to stop considering the
3248  * number of objects in a slab as critical. If we reach slub_max_order then
3249  * we try to keep the page order as low as possible. So we accept more waste
3250  * of space in favor of a small page order.
3251  *
3252  * Higher order allocations also allow the placement of more objects in a
3253  * slab and thereby reduce object handling overhead. If the user has
3254  * requested a higher mininum order then we start with that one instead of
3255  * the smallest order which will fit the object.
3256  */
3257 static inline unsigned int slab_order(unsigned int size,
3258 		unsigned int min_objects, unsigned int max_order,
3259 		unsigned int fract_leftover)
3260 {
3261 	unsigned int min_order = slub_min_order;
3262 	unsigned int order;
3263 
3264 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3265 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3266 
3267 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3268 			order <= max_order; order++) {
3269 
3270 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3271 		unsigned int rem;
3272 
3273 		rem = slab_size % size;
3274 
3275 		if (rem <= slab_size / fract_leftover)
3276 			break;
3277 	}
3278 
3279 	return order;
3280 }
3281 
3282 static inline int calculate_order(unsigned int size)
3283 {
3284 	unsigned int order;
3285 	unsigned int min_objects;
3286 	unsigned int max_objects;
3287 
3288 	/*
3289 	 * Attempt to find best configuration for a slab. This
3290 	 * works by first attempting to generate a layout with
3291 	 * the best configuration and backing off gradually.
3292 	 *
3293 	 * First we increase the acceptable waste in a slab. Then
3294 	 * we reduce the minimum objects required in a slab.
3295 	 */
3296 	min_objects = slub_min_objects;
3297 	if (!min_objects)
3298 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3299 	max_objects = order_objects(slub_max_order, size);
3300 	min_objects = min(min_objects, max_objects);
3301 
3302 	while (min_objects > 1) {
3303 		unsigned int fraction;
3304 
3305 		fraction = 16;
3306 		while (fraction >= 4) {
3307 			order = slab_order(size, min_objects,
3308 					slub_max_order, fraction);
3309 			if (order <= slub_max_order)
3310 				return order;
3311 			fraction /= 2;
3312 		}
3313 		min_objects--;
3314 	}
3315 
3316 	/*
3317 	 * We were unable to place multiple objects in a slab. Now
3318 	 * lets see if we can place a single object there.
3319 	 */
3320 	order = slab_order(size, 1, slub_max_order, 1);
3321 	if (order <= slub_max_order)
3322 		return order;
3323 
3324 	/*
3325 	 * Doh this slab cannot be placed using slub_max_order.
3326 	 */
3327 	order = slab_order(size, 1, MAX_ORDER, 1);
3328 	if (order < MAX_ORDER)
3329 		return order;
3330 	return -ENOSYS;
3331 }
3332 
3333 static void
3334 init_kmem_cache_node(struct kmem_cache_node *n)
3335 {
3336 	n->nr_partial = 0;
3337 	spin_lock_init(&n->list_lock);
3338 	INIT_LIST_HEAD(&n->partial);
3339 #ifdef CONFIG_SLUB_DEBUG
3340 	atomic_long_set(&n->nr_slabs, 0);
3341 	atomic_long_set(&n->total_objects, 0);
3342 	INIT_LIST_HEAD(&n->full);
3343 #endif
3344 }
3345 
3346 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3347 {
3348 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3349 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3350 
3351 	/*
3352 	 * Must align to double word boundary for the double cmpxchg
3353 	 * instructions to work; see __pcpu_double_call_return_bool().
3354 	 */
3355 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3356 				     2 * sizeof(void *));
3357 
3358 	if (!s->cpu_slab)
3359 		return 0;
3360 
3361 	init_kmem_cache_cpus(s);
3362 
3363 	return 1;
3364 }
3365 
3366 static struct kmem_cache *kmem_cache_node;
3367 
3368 /*
3369  * No kmalloc_node yet so do it by hand. We know that this is the first
3370  * slab on the node for this slabcache. There are no concurrent accesses
3371  * possible.
3372  *
3373  * Note that this function only works on the kmem_cache_node
3374  * when allocating for the kmem_cache_node. This is used for bootstrapping
3375  * memory on a fresh node that has no slab structures yet.
3376  */
3377 static void early_kmem_cache_node_alloc(int node)
3378 {
3379 	struct page *page;
3380 	struct kmem_cache_node *n;
3381 
3382 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3383 
3384 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3385 
3386 	BUG_ON(!page);
3387 	if (page_to_nid(page) != node) {
3388 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3389 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3390 	}
3391 
3392 	n = page->freelist;
3393 	BUG_ON(!n);
3394 #ifdef CONFIG_SLUB_DEBUG
3395 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3396 	init_tracking(kmem_cache_node, n);
3397 #endif
3398 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3399 		      GFP_KERNEL);
3400 	page->freelist = get_freepointer(kmem_cache_node, n);
3401 	page->inuse = 1;
3402 	page->frozen = 0;
3403 	kmem_cache_node->node[node] = n;
3404 	init_kmem_cache_node(n);
3405 	inc_slabs_node(kmem_cache_node, node, page->objects);
3406 
3407 	/*
3408 	 * No locks need to be taken here as it has just been
3409 	 * initialized and there is no concurrent access.
3410 	 */
3411 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3412 }
3413 
3414 static void free_kmem_cache_nodes(struct kmem_cache *s)
3415 {
3416 	int node;
3417 	struct kmem_cache_node *n;
3418 
3419 	for_each_kmem_cache_node(s, node, n) {
3420 		s->node[node] = NULL;
3421 		kmem_cache_free(kmem_cache_node, n);
3422 	}
3423 }
3424 
3425 void __kmem_cache_release(struct kmem_cache *s)
3426 {
3427 	cache_random_seq_destroy(s);
3428 	free_percpu(s->cpu_slab);
3429 	free_kmem_cache_nodes(s);
3430 }
3431 
3432 static int init_kmem_cache_nodes(struct kmem_cache *s)
3433 {
3434 	int node;
3435 
3436 	for_each_node_state(node, N_NORMAL_MEMORY) {
3437 		struct kmem_cache_node *n;
3438 
3439 		if (slab_state == DOWN) {
3440 			early_kmem_cache_node_alloc(node);
3441 			continue;
3442 		}
3443 		n = kmem_cache_alloc_node(kmem_cache_node,
3444 						GFP_KERNEL, node);
3445 
3446 		if (!n) {
3447 			free_kmem_cache_nodes(s);
3448 			return 0;
3449 		}
3450 
3451 		init_kmem_cache_node(n);
3452 		s->node[node] = n;
3453 	}
3454 	return 1;
3455 }
3456 
3457 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3458 {
3459 	if (min < MIN_PARTIAL)
3460 		min = MIN_PARTIAL;
3461 	else if (min > MAX_PARTIAL)
3462 		min = MAX_PARTIAL;
3463 	s->min_partial = min;
3464 }
3465 
3466 static void set_cpu_partial(struct kmem_cache *s)
3467 {
3468 #ifdef CONFIG_SLUB_CPU_PARTIAL
3469 	/*
3470 	 * cpu_partial determined the maximum number of objects kept in the
3471 	 * per cpu partial lists of a processor.
3472 	 *
3473 	 * Per cpu partial lists mainly contain slabs that just have one
3474 	 * object freed. If they are used for allocation then they can be
3475 	 * filled up again with minimal effort. The slab will never hit the
3476 	 * per node partial lists and therefore no locking will be required.
3477 	 *
3478 	 * This setting also determines
3479 	 *
3480 	 * A) The number of objects from per cpu partial slabs dumped to the
3481 	 *    per node list when we reach the limit.
3482 	 * B) The number of objects in cpu partial slabs to extract from the
3483 	 *    per node list when we run out of per cpu objects. We only fetch
3484 	 *    50% to keep some capacity around for frees.
3485 	 */
3486 	if (!kmem_cache_has_cpu_partial(s))
3487 		s->cpu_partial = 0;
3488 	else if (s->size >= PAGE_SIZE)
3489 		s->cpu_partial = 2;
3490 	else if (s->size >= 1024)
3491 		s->cpu_partial = 6;
3492 	else if (s->size >= 256)
3493 		s->cpu_partial = 13;
3494 	else
3495 		s->cpu_partial = 30;
3496 #endif
3497 }
3498 
3499 /*
3500  * calculate_sizes() determines the order and the distribution of data within
3501  * a slab object.
3502  */
3503 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3504 {
3505 	slab_flags_t flags = s->flags;
3506 	unsigned int size = s->object_size;
3507 	unsigned int order;
3508 
3509 	/*
3510 	 * Round up object size to the next word boundary. We can only
3511 	 * place the free pointer at word boundaries and this determines
3512 	 * the possible location of the free pointer.
3513 	 */
3514 	size = ALIGN(size, sizeof(void *));
3515 
3516 #ifdef CONFIG_SLUB_DEBUG
3517 	/*
3518 	 * Determine if we can poison the object itself. If the user of
3519 	 * the slab may touch the object after free or before allocation
3520 	 * then we should never poison the object itself.
3521 	 */
3522 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3523 			!s->ctor)
3524 		s->flags |= __OBJECT_POISON;
3525 	else
3526 		s->flags &= ~__OBJECT_POISON;
3527 
3528 
3529 	/*
3530 	 * If we are Redzoning then check if there is some space between the
3531 	 * end of the object and the free pointer. If not then add an
3532 	 * additional word to have some bytes to store Redzone information.
3533 	 */
3534 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3535 		size += sizeof(void *);
3536 #endif
3537 
3538 	/*
3539 	 * With that we have determined the number of bytes in actual use
3540 	 * by the object. This is the potential offset to the free pointer.
3541 	 */
3542 	s->inuse = size;
3543 
3544 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3545 		s->ctor)) {
3546 		/*
3547 		 * Relocate free pointer after the object if it is not
3548 		 * permitted to overwrite the first word of the object on
3549 		 * kmem_cache_free.
3550 		 *
3551 		 * This is the case if we do RCU, have a constructor or
3552 		 * destructor or are poisoning the objects.
3553 		 */
3554 		s->offset = size;
3555 		size += sizeof(void *);
3556 	}
3557 
3558 #ifdef CONFIG_SLUB_DEBUG
3559 	if (flags & SLAB_STORE_USER)
3560 		/*
3561 		 * Need to store information about allocs and frees after
3562 		 * the object.
3563 		 */
3564 		size += 2 * sizeof(struct track);
3565 #endif
3566 
3567 	kasan_cache_create(s, &size, &s->flags);
3568 #ifdef CONFIG_SLUB_DEBUG
3569 	if (flags & SLAB_RED_ZONE) {
3570 		/*
3571 		 * Add some empty padding so that we can catch
3572 		 * overwrites from earlier objects rather than let
3573 		 * tracking information or the free pointer be
3574 		 * corrupted if a user writes before the start
3575 		 * of the object.
3576 		 */
3577 		size += sizeof(void *);
3578 
3579 		s->red_left_pad = sizeof(void *);
3580 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3581 		size += s->red_left_pad;
3582 	}
3583 #endif
3584 
3585 	/*
3586 	 * SLUB stores one object immediately after another beginning from
3587 	 * offset 0. In order to align the objects we have to simply size
3588 	 * each object to conform to the alignment.
3589 	 */
3590 	size = ALIGN(size, s->align);
3591 	s->size = size;
3592 	if (forced_order >= 0)
3593 		order = forced_order;
3594 	else
3595 		order = calculate_order(size);
3596 
3597 	if ((int)order < 0)
3598 		return 0;
3599 
3600 	s->allocflags = 0;
3601 	if (order)
3602 		s->allocflags |= __GFP_COMP;
3603 
3604 	if (s->flags & SLAB_CACHE_DMA)
3605 		s->allocflags |= GFP_DMA;
3606 
3607 	if (s->flags & SLAB_CACHE_DMA32)
3608 		s->allocflags |= GFP_DMA32;
3609 
3610 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3611 		s->allocflags |= __GFP_RECLAIMABLE;
3612 
3613 	/*
3614 	 * Determine the number of objects per slab
3615 	 */
3616 	s->oo = oo_make(order, size);
3617 	s->min = oo_make(get_order(size), size);
3618 	if (oo_objects(s->oo) > oo_objects(s->max))
3619 		s->max = s->oo;
3620 
3621 	return !!oo_objects(s->oo);
3622 }
3623 
3624 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3625 {
3626 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3627 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3628 	s->random = get_random_long();
3629 #endif
3630 
3631 	if (!calculate_sizes(s, -1))
3632 		goto error;
3633 	if (disable_higher_order_debug) {
3634 		/*
3635 		 * Disable debugging flags that store metadata if the min slab
3636 		 * order increased.
3637 		 */
3638 		if (get_order(s->size) > get_order(s->object_size)) {
3639 			s->flags &= ~DEBUG_METADATA_FLAGS;
3640 			s->offset = 0;
3641 			if (!calculate_sizes(s, -1))
3642 				goto error;
3643 		}
3644 	}
3645 
3646 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3647     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3648 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3649 		/* Enable fast mode */
3650 		s->flags |= __CMPXCHG_DOUBLE;
3651 #endif
3652 
3653 	/*
3654 	 * The larger the object size is, the more pages we want on the partial
3655 	 * list to avoid pounding the page allocator excessively.
3656 	 */
3657 	set_min_partial(s, ilog2(s->size) / 2);
3658 
3659 	set_cpu_partial(s);
3660 
3661 #ifdef CONFIG_NUMA
3662 	s->remote_node_defrag_ratio = 1000;
3663 #endif
3664 
3665 	/* Initialize the pre-computed randomized freelist if slab is up */
3666 	if (slab_state >= UP) {
3667 		if (init_cache_random_seq(s))
3668 			goto error;
3669 	}
3670 
3671 	if (!init_kmem_cache_nodes(s))
3672 		goto error;
3673 
3674 	if (alloc_kmem_cache_cpus(s))
3675 		return 0;
3676 
3677 	free_kmem_cache_nodes(s);
3678 error:
3679 	return -EINVAL;
3680 }
3681 
3682 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3683 							const char *text)
3684 {
3685 #ifdef CONFIG_SLUB_DEBUG
3686 	void *addr = page_address(page);
3687 	void *p;
3688 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3689 	if (!map)
3690 		return;
3691 	slab_err(s, page, text, s->name);
3692 	slab_lock(page);
3693 
3694 	get_map(s, page, map);
3695 	for_each_object(p, s, addr, page->objects) {
3696 
3697 		if (!test_bit(slab_index(p, s, addr), map)) {
3698 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3699 			print_tracking(s, p);
3700 		}
3701 	}
3702 	slab_unlock(page);
3703 	bitmap_free(map);
3704 #endif
3705 }
3706 
3707 /*
3708  * Attempt to free all partial slabs on a node.
3709  * This is called from __kmem_cache_shutdown(). We must take list_lock
3710  * because sysfs file might still access partial list after the shutdowning.
3711  */
3712 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3713 {
3714 	LIST_HEAD(discard);
3715 	struct page *page, *h;
3716 
3717 	BUG_ON(irqs_disabled());
3718 	spin_lock_irq(&n->list_lock);
3719 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3720 		if (!page->inuse) {
3721 			remove_partial(n, page);
3722 			list_add(&page->slab_list, &discard);
3723 		} else {
3724 			list_slab_objects(s, page,
3725 			"Objects remaining in %s on __kmem_cache_shutdown()");
3726 		}
3727 	}
3728 	spin_unlock_irq(&n->list_lock);
3729 
3730 	list_for_each_entry_safe(page, h, &discard, slab_list)
3731 		discard_slab(s, page);
3732 }
3733 
3734 bool __kmem_cache_empty(struct kmem_cache *s)
3735 {
3736 	int node;
3737 	struct kmem_cache_node *n;
3738 
3739 	for_each_kmem_cache_node(s, node, n)
3740 		if (n->nr_partial || slabs_node(s, node))
3741 			return false;
3742 	return true;
3743 }
3744 
3745 /*
3746  * Release all resources used by a slab cache.
3747  */
3748 int __kmem_cache_shutdown(struct kmem_cache *s)
3749 {
3750 	int node;
3751 	struct kmem_cache_node *n;
3752 
3753 	flush_all(s);
3754 	/* Attempt to free all objects */
3755 	for_each_kmem_cache_node(s, node, n) {
3756 		free_partial(s, n);
3757 		if (n->nr_partial || slabs_node(s, node))
3758 			return 1;
3759 	}
3760 	sysfs_slab_remove(s);
3761 	return 0;
3762 }
3763 
3764 /********************************************************************
3765  *		Kmalloc subsystem
3766  *******************************************************************/
3767 
3768 static int __init setup_slub_min_order(char *str)
3769 {
3770 	get_option(&str, (int *)&slub_min_order);
3771 
3772 	return 1;
3773 }
3774 
3775 __setup("slub_min_order=", setup_slub_min_order);
3776 
3777 static int __init setup_slub_max_order(char *str)
3778 {
3779 	get_option(&str, (int *)&slub_max_order);
3780 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3781 
3782 	return 1;
3783 }
3784 
3785 __setup("slub_max_order=", setup_slub_max_order);
3786 
3787 static int __init setup_slub_min_objects(char *str)
3788 {
3789 	get_option(&str, (int *)&slub_min_objects);
3790 
3791 	return 1;
3792 }
3793 
3794 __setup("slub_min_objects=", setup_slub_min_objects);
3795 
3796 void *__kmalloc(size_t size, gfp_t flags)
3797 {
3798 	struct kmem_cache *s;
3799 	void *ret;
3800 
3801 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3802 		return kmalloc_large(size, flags);
3803 
3804 	s = kmalloc_slab(size, flags);
3805 
3806 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3807 		return s;
3808 
3809 	ret = slab_alloc(s, flags, _RET_IP_);
3810 
3811 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3812 
3813 	ret = kasan_kmalloc(s, ret, size, flags);
3814 
3815 	return ret;
3816 }
3817 EXPORT_SYMBOL(__kmalloc);
3818 
3819 #ifdef CONFIG_NUMA
3820 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3821 {
3822 	struct page *page;
3823 	void *ptr = NULL;
3824 	unsigned int order = get_order(size);
3825 
3826 	flags |= __GFP_COMP;
3827 	page = alloc_pages_node(node, flags, order);
3828 	if (page) {
3829 		ptr = page_address(page);
3830 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3831 				    1 << order);
3832 	}
3833 
3834 	return kmalloc_large_node_hook(ptr, size, flags);
3835 }
3836 
3837 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3838 {
3839 	struct kmem_cache *s;
3840 	void *ret;
3841 
3842 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3843 		ret = kmalloc_large_node(size, flags, node);
3844 
3845 		trace_kmalloc_node(_RET_IP_, ret,
3846 				   size, PAGE_SIZE << get_order(size),
3847 				   flags, node);
3848 
3849 		return ret;
3850 	}
3851 
3852 	s = kmalloc_slab(size, flags);
3853 
3854 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3855 		return s;
3856 
3857 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3858 
3859 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3860 
3861 	ret = kasan_kmalloc(s, ret, size, flags);
3862 
3863 	return ret;
3864 }
3865 EXPORT_SYMBOL(__kmalloc_node);
3866 #endif	/* CONFIG_NUMA */
3867 
3868 #ifdef CONFIG_HARDENED_USERCOPY
3869 /*
3870  * Rejects incorrectly sized objects and objects that are to be copied
3871  * to/from userspace but do not fall entirely within the containing slab
3872  * cache's usercopy region.
3873  *
3874  * Returns NULL if check passes, otherwise const char * to name of cache
3875  * to indicate an error.
3876  */
3877 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3878 			 bool to_user)
3879 {
3880 	struct kmem_cache *s;
3881 	unsigned int offset;
3882 	size_t object_size;
3883 
3884 	ptr = kasan_reset_tag(ptr);
3885 
3886 	/* Find object and usable object size. */
3887 	s = page->slab_cache;
3888 
3889 	/* Reject impossible pointers. */
3890 	if (ptr < page_address(page))
3891 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3892 			       to_user, 0, n);
3893 
3894 	/* Find offset within object. */
3895 	offset = (ptr - page_address(page)) % s->size;
3896 
3897 	/* Adjust for redzone and reject if within the redzone. */
3898 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3899 		if (offset < s->red_left_pad)
3900 			usercopy_abort("SLUB object in left red zone",
3901 				       s->name, to_user, offset, n);
3902 		offset -= s->red_left_pad;
3903 	}
3904 
3905 	/* Allow address range falling entirely within usercopy region. */
3906 	if (offset >= s->useroffset &&
3907 	    offset - s->useroffset <= s->usersize &&
3908 	    n <= s->useroffset - offset + s->usersize)
3909 		return;
3910 
3911 	/*
3912 	 * If the copy is still within the allocated object, produce
3913 	 * a warning instead of rejecting the copy. This is intended
3914 	 * to be a temporary method to find any missing usercopy
3915 	 * whitelists.
3916 	 */
3917 	object_size = slab_ksize(s);
3918 	if (usercopy_fallback &&
3919 	    offset <= object_size && n <= object_size - offset) {
3920 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3921 		return;
3922 	}
3923 
3924 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3925 }
3926 #endif /* CONFIG_HARDENED_USERCOPY */
3927 
3928 size_t __ksize(const void *object)
3929 {
3930 	struct page *page;
3931 
3932 	if (unlikely(object == ZERO_SIZE_PTR))
3933 		return 0;
3934 
3935 	page = virt_to_head_page(object);
3936 
3937 	if (unlikely(!PageSlab(page))) {
3938 		WARN_ON(!PageCompound(page));
3939 		return page_size(page);
3940 	}
3941 
3942 	return slab_ksize(page->slab_cache);
3943 }
3944 EXPORT_SYMBOL(__ksize);
3945 
3946 void kfree(const void *x)
3947 {
3948 	struct page *page;
3949 	void *object = (void *)x;
3950 
3951 	trace_kfree(_RET_IP_, x);
3952 
3953 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3954 		return;
3955 
3956 	page = virt_to_head_page(x);
3957 	if (unlikely(!PageSlab(page))) {
3958 		unsigned int order = compound_order(page);
3959 
3960 		BUG_ON(!PageCompound(page));
3961 		kfree_hook(object);
3962 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3963 				    -(1 << order));
3964 		__free_pages(page, order);
3965 		return;
3966 	}
3967 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3968 }
3969 EXPORT_SYMBOL(kfree);
3970 
3971 #define SHRINK_PROMOTE_MAX 32
3972 
3973 /*
3974  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3975  * up most to the head of the partial lists. New allocations will then
3976  * fill those up and thus they can be removed from the partial lists.
3977  *
3978  * The slabs with the least items are placed last. This results in them
3979  * being allocated from last increasing the chance that the last objects
3980  * are freed in them.
3981  */
3982 int __kmem_cache_shrink(struct kmem_cache *s)
3983 {
3984 	int node;
3985 	int i;
3986 	struct kmem_cache_node *n;
3987 	struct page *page;
3988 	struct page *t;
3989 	struct list_head discard;
3990 	struct list_head promote[SHRINK_PROMOTE_MAX];
3991 	unsigned long flags;
3992 	int ret = 0;
3993 
3994 	flush_all(s);
3995 	for_each_kmem_cache_node(s, node, n) {
3996 		INIT_LIST_HEAD(&discard);
3997 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3998 			INIT_LIST_HEAD(promote + i);
3999 
4000 		spin_lock_irqsave(&n->list_lock, flags);
4001 
4002 		/*
4003 		 * Build lists of slabs to discard or promote.
4004 		 *
4005 		 * Note that concurrent frees may occur while we hold the
4006 		 * list_lock. page->inuse here is the upper limit.
4007 		 */
4008 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4009 			int free = page->objects - page->inuse;
4010 
4011 			/* Do not reread page->inuse */
4012 			barrier();
4013 
4014 			/* We do not keep full slabs on the list */
4015 			BUG_ON(free <= 0);
4016 
4017 			if (free == page->objects) {
4018 				list_move(&page->slab_list, &discard);
4019 				n->nr_partial--;
4020 			} else if (free <= SHRINK_PROMOTE_MAX)
4021 				list_move(&page->slab_list, promote + free - 1);
4022 		}
4023 
4024 		/*
4025 		 * Promote the slabs filled up most to the head of the
4026 		 * partial list.
4027 		 */
4028 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4029 			list_splice(promote + i, &n->partial);
4030 
4031 		spin_unlock_irqrestore(&n->list_lock, flags);
4032 
4033 		/* Release empty slabs */
4034 		list_for_each_entry_safe(page, t, &discard, slab_list)
4035 			discard_slab(s, page);
4036 
4037 		if (slabs_node(s, node))
4038 			ret = 1;
4039 	}
4040 
4041 	return ret;
4042 }
4043 
4044 #ifdef CONFIG_MEMCG
4045 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4046 {
4047 	/*
4048 	 * Called with all the locks held after a sched RCU grace period.
4049 	 * Even if @s becomes empty after shrinking, we can't know that @s
4050 	 * doesn't have allocations already in-flight and thus can't
4051 	 * destroy @s until the associated memcg is released.
4052 	 *
4053 	 * However, let's remove the sysfs files for empty caches here.
4054 	 * Each cache has a lot of interface files which aren't
4055 	 * particularly useful for empty draining caches; otherwise, we can
4056 	 * easily end up with millions of unnecessary sysfs files on
4057 	 * systems which have a lot of memory and transient cgroups.
4058 	 */
4059 	if (!__kmem_cache_shrink(s))
4060 		sysfs_slab_remove(s);
4061 }
4062 
4063 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4064 {
4065 	/*
4066 	 * Disable empty slabs caching. Used to avoid pinning offline
4067 	 * memory cgroups by kmem pages that can be freed.
4068 	 */
4069 	slub_set_cpu_partial(s, 0);
4070 	s->min_partial = 0;
4071 }
4072 #endif	/* CONFIG_MEMCG */
4073 
4074 static int slab_mem_going_offline_callback(void *arg)
4075 {
4076 	struct kmem_cache *s;
4077 
4078 	mutex_lock(&slab_mutex);
4079 	list_for_each_entry(s, &slab_caches, list)
4080 		__kmem_cache_shrink(s);
4081 	mutex_unlock(&slab_mutex);
4082 
4083 	return 0;
4084 }
4085 
4086 static void slab_mem_offline_callback(void *arg)
4087 {
4088 	struct kmem_cache_node *n;
4089 	struct kmem_cache *s;
4090 	struct memory_notify *marg = arg;
4091 	int offline_node;
4092 
4093 	offline_node = marg->status_change_nid_normal;
4094 
4095 	/*
4096 	 * If the node still has available memory. we need kmem_cache_node
4097 	 * for it yet.
4098 	 */
4099 	if (offline_node < 0)
4100 		return;
4101 
4102 	mutex_lock(&slab_mutex);
4103 	list_for_each_entry(s, &slab_caches, list) {
4104 		n = get_node(s, offline_node);
4105 		if (n) {
4106 			/*
4107 			 * if n->nr_slabs > 0, slabs still exist on the node
4108 			 * that is going down. We were unable to free them,
4109 			 * and offline_pages() function shouldn't call this
4110 			 * callback. So, we must fail.
4111 			 */
4112 			BUG_ON(slabs_node(s, offline_node));
4113 
4114 			s->node[offline_node] = NULL;
4115 			kmem_cache_free(kmem_cache_node, n);
4116 		}
4117 	}
4118 	mutex_unlock(&slab_mutex);
4119 }
4120 
4121 static int slab_mem_going_online_callback(void *arg)
4122 {
4123 	struct kmem_cache_node *n;
4124 	struct kmem_cache *s;
4125 	struct memory_notify *marg = arg;
4126 	int nid = marg->status_change_nid_normal;
4127 	int ret = 0;
4128 
4129 	/*
4130 	 * If the node's memory is already available, then kmem_cache_node is
4131 	 * already created. Nothing to do.
4132 	 */
4133 	if (nid < 0)
4134 		return 0;
4135 
4136 	/*
4137 	 * We are bringing a node online. No memory is available yet. We must
4138 	 * allocate a kmem_cache_node structure in order to bring the node
4139 	 * online.
4140 	 */
4141 	mutex_lock(&slab_mutex);
4142 	list_for_each_entry(s, &slab_caches, list) {
4143 		/*
4144 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4145 		 *      since memory is not yet available from the node that
4146 		 *      is brought up.
4147 		 */
4148 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4149 		if (!n) {
4150 			ret = -ENOMEM;
4151 			goto out;
4152 		}
4153 		init_kmem_cache_node(n);
4154 		s->node[nid] = n;
4155 	}
4156 out:
4157 	mutex_unlock(&slab_mutex);
4158 	return ret;
4159 }
4160 
4161 static int slab_memory_callback(struct notifier_block *self,
4162 				unsigned long action, void *arg)
4163 {
4164 	int ret = 0;
4165 
4166 	switch (action) {
4167 	case MEM_GOING_ONLINE:
4168 		ret = slab_mem_going_online_callback(arg);
4169 		break;
4170 	case MEM_GOING_OFFLINE:
4171 		ret = slab_mem_going_offline_callback(arg);
4172 		break;
4173 	case MEM_OFFLINE:
4174 	case MEM_CANCEL_ONLINE:
4175 		slab_mem_offline_callback(arg);
4176 		break;
4177 	case MEM_ONLINE:
4178 	case MEM_CANCEL_OFFLINE:
4179 		break;
4180 	}
4181 	if (ret)
4182 		ret = notifier_from_errno(ret);
4183 	else
4184 		ret = NOTIFY_OK;
4185 	return ret;
4186 }
4187 
4188 static struct notifier_block slab_memory_callback_nb = {
4189 	.notifier_call = slab_memory_callback,
4190 	.priority = SLAB_CALLBACK_PRI,
4191 };
4192 
4193 /********************************************************************
4194  *			Basic setup of slabs
4195  *******************************************************************/
4196 
4197 /*
4198  * Used for early kmem_cache structures that were allocated using
4199  * the page allocator. Allocate them properly then fix up the pointers
4200  * that may be pointing to the wrong kmem_cache structure.
4201  */
4202 
4203 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4204 {
4205 	int node;
4206 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4207 	struct kmem_cache_node *n;
4208 
4209 	memcpy(s, static_cache, kmem_cache->object_size);
4210 
4211 	/*
4212 	 * This runs very early, and only the boot processor is supposed to be
4213 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4214 	 * IPIs around.
4215 	 */
4216 	__flush_cpu_slab(s, smp_processor_id());
4217 	for_each_kmem_cache_node(s, node, n) {
4218 		struct page *p;
4219 
4220 		list_for_each_entry(p, &n->partial, slab_list)
4221 			p->slab_cache = s;
4222 
4223 #ifdef CONFIG_SLUB_DEBUG
4224 		list_for_each_entry(p, &n->full, slab_list)
4225 			p->slab_cache = s;
4226 #endif
4227 	}
4228 	slab_init_memcg_params(s);
4229 	list_add(&s->list, &slab_caches);
4230 	memcg_link_cache(s, NULL);
4231 	return s;
4232 }
4233 
4234 void __init kmem_cache_init(void)
4235 {
4236 	static __initdata struct kmem_cache boot_kmem_cache,
4237 		boot_kmem_cache_node;
4238 
4239 	if (debug_guardpage_minorder())
4240 		slub_max_order = 0;
4241 
4242 	kmem_cache_node = &boot_kmem_cache_node;
4243 	kmem_cache = &boot_kmem_cache;
4244 
4245 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4246 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4247 
4248 	register_hotmemory_notifier(&slab_memory_callback_nb);
4249 
4250 	/* Able to allocate the per node structures */
4251 	slab_state = PARTIAL;
4252 
4253 	create_boot_cache(kmem_cache, "kmem_cache",
4254 			offsetof(struct kmem_cache, node) +
4255 				nr_node_ids * sizeof(struct kmem_cache_node *),
4256 		       SLAB_HWCACHE_ALIGN, 0, 0);
4257 
4258 	kmem_cache = bootstrap(&boot_kmem_cache);
4259 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4260 
4261 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4262 	setup_kmalloc_cache_index_table();
4263 	create_kmalloc_caches(0);
4264 
4265 	/* Setup random freelists for each cache */
4266 	init_freelist_randomization();
4267 
4268 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4269 				  slub_cpu_dead);
4270 
4271 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4272 		cache_line_size(),
4273 		slub_min_order, slub_max_order, slub_min_objects,
4274 		nr_cpu_ids, nr_node_ids);
4275 }
4276 
4277 void __init kmem_cache_init_late(void)
4278 {
4279 }
4280 
4281 struct kmem_cache *
4282 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4283 		   slab_flags_t flags, void (*ctor)(void *))
4284 {
4285 	struct kmem_cache *s, *c;
4286 
4287 	s = find_mergeable(size, align, flags, name, ctor);
4288 	if (s) {
4289 		s->refcount++;
4290 
4291 		/*
4292 		 * Adjust the object sizes so that we clear
4293 		 * the complete object on kzalloc.
4294 		 */
4295 		s->object_size = max(s->object_size, size);
4296 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4297 
4298 		for_each_memcg_cache(c, s) {
4299 			c->object_size = s->object_size;
4300 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4301 		}
4302 
4303 		if (sysfs_slab_alias(s, name)) {
4304 			s->refcount--;
4305 			s = NULL;
4306 		}
4307 	}
4308 
4309 	return s;
4310 }
4311 
4312 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4313 {
4314 	int err;
4315 
4316 	err = kmem_cache_open(s, flags);
4317 	if (err)
4318 		return err;
4319 
4320 	/* Mutex is not taken during early boot */
4321 	if (slab_state <= UP)
4322 		return 0;
4323 
4324 	memcg_propagate_slab_attrs(s);
4325 	err = sysfs_slab_add(s);
4326 	if (err)
4327 		__kmem_cache_release(s);
4328 
4329 	return err;
4330 }
4331 
4332 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4333 {
4334 	struct kmem_cache *s;
4335 	void *ret;
4336 
4337 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4338 		return kmalloc_large(size, gfpflags);
4339 
4340 	s = kmalloc_slab(size, gfpflags);
4341 
4342 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4343 		return s;
4344 
4345 	ret = slab_alloc(s, gfpflags, caller);
4346 
4347 	/* Honor the call site pointer we received. */
4348 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4349 
4350 	return ret;
4351 }
4352 
4353 #ifdef CONFIG_NUMA
4354 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4355 					int node, unsigned long caller)
4356 {
4357 	struct kmem_cache *s;
4358 	void *ret;
4359 
4360 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4361 		ret = kmalloc_large_node(size, gfpflags, node);
4362 
4363 		trace_kmalloc_node(caller, ret,
4364 				   size, PAGE_SIZE << get_order(size),
4365 				   gfpflags, node);
4366 
4367 		return ret;
4368 	}
4369 
4370 	s = kmalloc_slab(size, gfpflags);
4371 
4372 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4373 		return s;
4374 
4375 	ret = slab_alloc_node(s, gfpflags, node, caller);
4376 
4377 	/* Honor the call site pointer we received. */
4378 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4379 
4380 	return ret;
4381 }
4382 #endif
4383 
4384 #ifdef CONFIG_SYSFS
4385 static int count_inuse(struct page *page)
4386 {
4387 	return page->inuse;
4388 }
4389 
4390 static int count_total(struct page *page)
4391 {
4392 	return page->objects;
4393 }
4394 #endif
4395 
4396 #ifdef CONFIG_SLUB_DEBUG
4397 static int validate_slab(struct kmem_cache *s, struct page *page,
4398 						unsigned long *map)
4399 {
4400 	void *p;
4401 	void *addr = page_address(page);
4402 
4403 	if (!check_slab(s, page) ||
4404 			!on_freelist(s, page, NULL))
4405 		return 0;
4406 
4407 	/* Now we know that a valid freelist exists */
4408 	bitmap_zero(map, page->objects);
4409 
4410 	get_map(s, page, map);
4411 	for_each_object(p, s, addr, page->objects) {
4412 		if (test_bit(slab_index(p, s, addr), map))
4413 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4414 				return 0;
4415 	}
4416 
4417 	for_each_object(p, s, addr, page->objects)
4418 		if (!test_bit(slab_index(p, s, addr), map))
4419 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4420 				return 0;
4421 	return 1;
4422 }
4423 
4424 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4425 						unsigned long *map)
4426 {
4427 	slab_lock(page);
4428 	validate_slab(s, page, map);
4429 	slab_unlock(page);
4430 }
4431 
4432 static int validate_slab_node(struct kmem_cache *s,
4433 		struct kmem_cache_node *n, unsigned long *map)
4434 {
4435 	unsigned long count = 0;
4436 	struct page *page;
4437 	unsigned long flags;
4438 
4439 	spin_lock_irqsave(&n->list_lock, flags);
4440 
4441 	list_for_each_entry(page, &n->partial, slab_list) {
4442 		validate_slab_slab(s, page, map);
4443 		count++;
4444 	}
4445 	if (count != n->nr_partial)
4446 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4447 		       s->name, count, n->nr_partial);
4448 
4449 	if (!(s->flags & SLAB_STORE_USER))
4450 		goto out;
4451 
4452 	list_for_each_entry(page, &n->full, slab_list) {
4453 		validate_slab_slab(s, page, map);
4454 		count++;
4455 	}
4456 	if (count != atomic_long_read(&n->nr_slabs))
4457 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4458 		       s->name, count, atomic_long_read(&n->nr_slabs));
4459 
4460 out:
4461 	spin_unlock_irqrestore(&n->list_lock, flags);
4462 	return count;
4463 }
4464 
4465 static long validate_slab_cache(struct kmem_cache *s)
4466 {
4467 	int node;
4468 	unsigned long count = 0;
4469 	struct kmem_cache_node *n;
4470 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4471 
4472 	if (!map)
4473 		return -ENOMEM;
4474 
4475 	flush_all(s);
4476 	for_each_kmem_cache_node(s, node, n)
4477 		count += validate_slab_node(s, n, map);
4478 	bitmap_free(map);
4479 	return count;
4480 }
4481 /*
4482  * Generate lists of code addresses where slabcache objects are allocated
4483  * and freed.
4484  */
4485 
4486 struct location {
4487 	unsigned long count;
4488 	unsigned long addr;
4489 	long long sum_time;
4490 	long min_time;
4491 	long max_time;
4492 	long min_pid;
4493 	long max_pid;
4494 	DECLARE_BITMAP(cpus, NR_CPUS);
4495 	nodemask_t nodes;
4496 };
4497 
4498 struct loc_track {
4499 	unsigned long max;
4500 	unsigned long count;
4501 	struct location *loc;
4502 };
4503 
4504 static void free_loc_track(struct loc_track *t)
4505 {
4506 	if (t->max)
4507 		free_pages((unsigned long)t->loc,
4508 			get_order(sizeof(struct location) * t->max));
4509 }
4510 
4511 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4512 {
4513 	struct location *l;
4514 	int order;
4515 
4516 	order = get_order(sizeof(struct location) * max);
4517 
4518 	l = (void *)__get_free_pages(flags, order);
4519 	if (!l)
4520 		return 0;
4521 
4522 	if (t->count) {
4523 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4524 		free_loc_track(t);
4525 	}
4526 	t->max = max;
4527 	t->loc = l;
4528 	return 1;
4529 }
4530 
4531 static int add_location(struct loc_track *t, struct kmem_cache *s,
4532 				const struct track *track)
4533 {
4534 	long start, end, pos;
4535 	struct location *l;
4536 	unsigned long caddr;
4537 	unsigned long age = jiffies - track->when;
4538 
4539 	start = -1;
4540 	end = t->count;
4541 
4542 	for ( ; ; ) {
4543 		pos = start + (end - start + 1) / 2;
4544 
4545 		/*
4546 		 * There is nothing at "end". If we end up there
4547 		 * we need to add something to before end.
4548 		 */
4549 		if (pos == end)
4550 			break;
4551 
4552 		caddr = t->loc[pos].addr;
4553 		if (track->addr == caddr) {
4554 
4555 			l = &t->loc[pos];
4556 			l->count++;
4557 			if (track->when) {
4558 				l->sum_time += age;
4559 				if (age < l->min_time)
4560 					l->min_time = age;
4561 				if (age > l->max_time)
4562 					l->max_time = age;
4563 
4564 				if (track->pid < l->min_pid)
4565 					l->min_pid = track->pid;
4566 				if (track->pid > l->max_pid)
4567 					l->max_pid = track->pid;
4568 
4569 				cpumask_set_cpu(track->cpu,
4570 						to_cpumask(l->cpus));
4571 			}
4572 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4573 			return 1;
4574 		}
4575 
4576 		if (track->addr < caddr)
4577 			end = pos;
4578 		else
4579 			start = pos;
4580 	}
4581 
4582 	/*
4583 	 * Not found. Insert new tracking element.
4584 	 */
4585 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4586 		return 0;
4587 
4588 	l = t->loc + pos;
4589 	if (pos < t->count)
4590 		memmove(l + 1, l,
4591 			(t->count - pos) * sizeof(struct location));
4592 	t->count++;
4593 	l->count = 1;
4594 	l->addr = track->addr;
4595 	l->sum_time = age;
4596 	l->min_time = age;
4597 	l->max_time = age;
4598 	l->min_pid = track->pid;
4599 	l->max_pid = track->pid;
4600 	cpumask_clear(to_cpumask(l->cpus));
4601 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4602 	nodes_clear(l->nodes);
4603 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4604 	return 1;
4605 }
4606 
4607 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4608 		struct page *page, enum track_item alloc,
4609 		unsigned long *map)
4610 {
4611 	void *addr = page_address(page);
4612 	void *p;
4613 
4614 	bitmap_zero(map, page->objects);
4615 	get_map(s, page, map);
4616 
4617 	for_each_object(p, s, addr, page->objects)
4618 		if (!test_bit(slab_index(p, s, addr), map))
4619 			add_location(t, s, get_track(s, p, alloc));
4620 }
4621 
4622 static int list_locations(struct kmem_cache *s, char *buf,
4623 					enum track_item alloc)
4624 {
4625 	int len = 0;
4626 	unsigned long i;
4627 	struct loc_track t = { 0, 0, NULL };
4628 	int node;
4629 	struct kmem_cache_node *n;
4630 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4631 
4632 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4633 				     GFP_KERNEL)) {
4634 		bitmap_free(map);
4635 		return sprintf(buf, "Out of memory\n");
4636 	}
4637 	/* Push back cpu slabs */
4638 	flush_all(s);
4639 
4640 	for_each_kmem_cache_node(s, node, n) {
4641 		unsigned long flags;
4642 		struct page *page;
4643 
4644 		if (!atomic_long_read(&n->nr_slabs))
4645 			continue;
4646 
4647 		spin_lock_irqsave(&n->list_lock, flags);
4648 		list_for_each_entry(page, &n->partial, slab_list)
4649 			process_slab(&t, s, page, alloc, map);
4650 		list_for_each_entry(page, &n->full, slab_list)
4651 			process_slab(&t, s, page, alloc, map);
4652 		spin_unlock_irqrestore(&n->list_lock, flags);
4653 	}
4654 
4655 	for (i = 0; i < t.count; i++) {
4656 		struct location *l = &t.loc[i];
4657 
4658 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4659 			break;
4660 		len += sprintf(buf + len, "%7ld ", l->count);
4661 
4662 		if (l->addr)
4663 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4664 		else
4665 			len += sprintf(buf + len, "<not-available>");
4666 
4667 		if (l->sum_time != l->min_time) {
4668 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4669 				l->min_time,
4670 				(long)div_u64(l->sum_time, l->count),
4671 				l->max_time);
4672 		} else
4673 			len += sprintf(buf + len, " age=%ld",
4674 				l->min_time);
4675 
4676 		if (l->min_pid != l->max_pid)
4677 			len += sprintf(buf + len, " pid=%ld-%ld",
4678 				l->min_pid, l->max_pid);
4679 		else
4680 			len += sprintf(buf + len, " pid=%ld",
4681 				l->min_pid);
4682 
4683 		if (num_online_cpus() > 1 &&
4684 				!cpumask_empty(to_cpumask(l->cpus)) &&
4685 				len < PAGE_SIZE - 60)
4686 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4687 					 " cpus=%*pbl",
4688 					 cpumask_pr_args(to_cpumask(l->cpus)));
4689 
4690 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4691 				len < PAGE_SIZE - 60)
4692 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4693 					 " nodes=%*pbl",
4694 					 nodemask_pr_args(&l->nodes));
4695 
4696 		len += sprintf(buf + len, "\n");
4697 	}
4698 
4699 	free_loc_track(&t);
4700 	bitmap_free(map);
4701 	if (!t.count)
4702 		len += sprintf(buf, "No data\n");
4703 	return len;
4704 }
4705 #endif	/* CONFIG_SLUB_DEBUG */
4706 
4707 #ifdef SLUB_RESILIENCY_TEST
4708 static void __init resiliency_test(void)
4709 {
4710 	u8 *p;
4711 	int type = KMALLOC_NORMAL;
4712 
4713 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4714 
4715 	pr_err("SLUB resiliency testing\n");
4716 	pr_err("-----------------------\n");
4717 	pr_err("A. Corruption after allocation\n");
4718 
4719 	p = kzalloc(16, GFP_KERNEL);
4720 	p[16] = 0x12;
4721 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4722 	       p + 16);
4723 
4724 	validate_slab_cache(kmalloc_caches[type][4]);
4725 
4726 	/* Hmmm... The next two are dangerous */
4727 	p = kzalloc(32, GFP_KERNEL);
4728 	p[32 + sizeof(void *)] = 0x34;
4729 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4730 	       p);
4731 	pr_err("If allocated object is overwritten then not detectable\n\n");
4732 
4733 	validate_slab_cache(kmalloc_caches[type][5]);
4734 	p = kzalloc(64, GFP_KERNEL);
4735 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4736 	*p = 0x56;
4737 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4738 	       p);
4739 	pr_err("If allocated object is overwritten then not detectable\n\n");
4740 	validate_slab_cache(kmalloc_caches[type][6]);
4741 
4742 	pr_err("\nB. Corruption after free\n");
4743 	p = kzalloc(128, GFP_KERNEL);
4744 	kfree(p);
4745 	*p = 0x78;
4746 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4747 	validate_slab_cache(kmalloc_caches[type][7]);
4748 
4749 	p = kzalloc(256, GFP_KERNEL);
4750 	kfree(p);
4751 	p[50] = 0x9a;
4752 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4753 	validate_slab_cache(kmalloc_caches[type][8]);
4754 
4755 	p = kzalloc(512, GFP_KERNEL);
4756 	kfree(p);
4757 	p[512] = 0xab;
4758 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4759 	validate_slab_cache(kmalloc_caches[type][9]);
4760 }
4761 #else
4762 #ifdef CONFIG_SYSFS
4763 static void resiliency_test(void) {};
4764 #endif
4765 #endif	/* SLUB_RESILIENCY_TEST */
4766 
4767 #ifdef CONFIG_SYSFS
4768 enum slab_stat_type {
4769 	SL_ALL,			/* All slabs */
4770 	SL_PARTIAL,		/* Only partially allocated slabs */
4771 	SL_CPU,			/* Only slabs used for cpu caches */
4772 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4773 	SL_TOTAL		/* Determine object capacity not slabs */
4774 };
4775 
4776 #define SO_ALL		(1 << SL_ALL)
4777 #define SO_PARTIAL	(1 << SL_PARTIAL)
4778 #define SO_CPU		(1 << SL_CPU)
4779 #define SO_OBJECTS	(1 << SL_OBJECTS)
4780 #define SO_TOTAL	(1 << SL_TOTAL)
4781 
4782 #ifdef CONFIG_MEMCG
4783 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4784 
4785 static int __init setup_slub_memcg_sysfs(char *str)
4786 {
4787 	int v;
4788 
4789 	if (get_option(&str, &v) > 0)
4790 		memcg_sysfs_enabled = v;
4791 
4792 	return 1;
4793 }
4794 
4795 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4796 #endif
4797 
4798 static ssize_t show_slab_objects(struct kmem_cache *s,
4799 			    char *buf, unsigned long flags)
4800 {
4801 	unsigned long total = 0;
4802 	int node;
4803 	int x;
4804 	unsigned long *nodes;
4805 
4806 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4807 	if (!nodes)
4808 		return -ENOMEM;
4809 
4810 	if (flags & SO_CPU) {
4811 		int cpu;
4812 
4813 		for_each_possible_cpu(cpu) {
4814 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4815 							       cpu);
4816 			int node;
4817 			struct page *page;
4818 
4819 			page = READ_ONCE(c->page);
4820 			if (!page)
4821 				continue;
4822 
4823 			node = page_to_nid(page);
4824 			if (flags & SO_TOTAL)
4825 				x = page->objects;
4826 			else if (flags & SO_OBJECTS)
4827 				x = page->inuse;
4828 			else
4829 				x = 1;
4830 
4831 			total += x;
4832 			nodes[node] += x;
4833 
4834 			page = slub_percpu_partial_read_once(c);
4835 			if (page) {
4836 				node = page_to_nid(page);
4837 				if (flags & SO_TOTAL)
4838 					WARN_ON_ONCE(1);
4839 				else if (flags & SO_OBJECTS)
4840 					WARN_ON_ONCE(1);
4841 				else
4842 					x = page->pages;
4843 				total += x;
4844 				nodes[node] += x;
4845 			}
4846 		}
4847 	}
4848 
4849 	get_online_mems();
4850 #ifdef CONFIG_SLUB_DEBUG
4851 	if (flags & SO_ALL) {
4852 		struct kmem_cache_node *n;
4853 
4854 		for_each_kmem_cache_node(s, node, n) {
4855 
4856 			if (flags & SO_TOTAL)
4857 				x = atomic_long_read(&n->total_objects);
4858 			else if (flags & SO_OBJECTS)
4859 				x = atomic_long_read(&n->total_objects) -
4860 					count_partial(n, count_free);
4861 			else
4862 				x = atomic_long_read(&n->nr_slabs);
4863 			total += x;
4864 			nodes[node] += x;
4865 		}
4866 
4867 	} else
4868 #endif
4869 	if (flags & SO_PARTIAL) {
4870 		struct kmem_cache_node *n;
4871 
4872 		for_each_kmem_cache_node(s, node, n) {
4873 			if (flags & SO_TOTAL)
4874 				x = count_partial(n, count_total);
4875 			else if (flags & SO_OBJECTS)
4876 				x = count_partial(n, count_inuse);
4877 			else
4878 				x = n->nr_partial;
4879 			total += x;
4880 			nodes[node] += x;
4881 		}
4882 	}
4883 	x = sprintf(buf, "%lu", total);
4884 #ifdef CONFIG_NUMA
4885 	for (node = 0; node < nr_node_ids; node++)
4886 		if (nodes[node])
4887 			x += sprintf(buf + x, " N%d=%lu",
4888 					node, nodes[node]);
4889 #endif
4890 	put_online_mems();
4891 	kfree(nodes);
4892 	return x + sprintf(buf + x, "\n");
4893 }
4894 
4895 #ifdef CONFIG_SLUB_DEBUG
4896 static int any_slab_objects(struct kmem_cache *s)
4897 {
4898 	int node;
4899 	struct kmem_cache_node *n;
4900 
4901 	for_each_kmem_cache_node(s, node, n)
4902 		if (atomic_long_read(&n->total_objects))
4903 			return 1;
4904 
4905 	return 0;
4906 }
4907 #endif
4908 
4909 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4910 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4911 
4912 struct slab_attribute {
4913 	struct attribute attr;
4914 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4915 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4916 };
4917 
4918 #define SLAB_ATTR_RO(_name) \
4919 	static struct slab_attribute _name##_attr = \
4920 	__ATTR(_name, 0400, _name##_show, NULL)
4921 
4922 #define SLAB_ATTR(_name) \
4923 	static struct slab_attribute _name##_attr =  \
4924 	__ATTR(_name, 0600, _name##_show, _name##_store)
4925 
4926 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4927 {
4928 	return sprintf(buf, "%u\n", s->size);
4929 }
4930 SLAB_ATTR_RO(slab_size);
4931 
4932 static ssize_t align_show(struct kmem_cache *s, char *buf)
4933 {
4934 	return sprintf(buf, "%u\n", s->align);
4935 }
4936 SLAB_ATTR_RO(align);
4937 
4938 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4939 {
4940 	return sprintf(buf, "%u\n", s->object_size);
4941 }
4942 SLAB_ATTR_RO(object_size);
4943 
4944 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4945 {
4946 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4947 }
4948 SLAB_ATTR_RO(objs_per_slab);
4949 
4950 static ssize_t order_store(struct kmem_cache *s,
4951 				const char *buf, size_t length)
4952 {
4953 	unsigned int order;
4954 	int err;
4955 
4956 	err = kstrtouint(buf, 10, &order);
4957 	if (err)
4958 		return err;
4959 
4960 	if (order > slub_max_order || order < slub_min_order)
4961 		return -EINVAL;
4962 
4963 	calculate_sizes(s, order);
4964 	return length;
4965 }
4966 
4967 static ssize_t order_show(struct kmem_cache *s, char *buf)
4968 {
4969 	return sprintf(buf, "%u\n", oo_order(s->oo));
4970 }
4971 SLAB_ATTR(order);
4972 
4973 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4974 {
4975 	return sprintf(buf, "%lu\n", s->min_partial);
4976 }
4977 
4978 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4979 				 size_t length)
4980 {
4981 	unsigned long min;
4982 	int err;
4983 
4984 	err = kstrtoul(buf, 10, &min);
4985 	if (err)
4986 		return err;
4987 
4988 	set_min_partial(s, min);
4989 	return length;
4990 }
4991 SLAB_ATTR(min_partial);
4992 
4993 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4994 {
4995 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4996 }
4997 
4998 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4999 				 size_t length)
5000 {
5001 	unsigned int objects;
5002 	int err;
5003 
5004 	err = kstrtouint(buf, 10, &objects);
5005 	if (err)
5006 		return err;
5007 	if (objects && !kmem_cache_has_cpu_partial(s))
5008 		return -EINVAL;
5009 
5010 	slub_set_cpu_partial(s, objects);
5011 	flush_all(s);
5012 	return length;
5013 }
5014 SLAB_ATTR(cpu_partial);
5015 
5016 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5017 {
5018 	if (!s->ctor)
5019 		return 0;
5020 	return sprintf(buf, "%pS\n", s->ctor);
5021 }
5022 SLAB_ATTR_RO(ctor);
5023 
5024 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5025 {
5026 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5027 }
5028 SLAB_ATTR_RO(aliases);
5029 
5030 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return show_slab_objects(s, buf, SO_PARTIAL);
5033 }
5034 SLAB_ATTR_RO(partial);
5035 
5036 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return show_slab_objects(s, buf, SO_CPU);
5039 }
5040 SLAB_ATTR_RO(cpu_slabs);
5041 
5042 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5043 {
5044 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5045 }
5046 SLAB_ATTR_RO(objects);
5047 
5048 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5049 {
5050 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5051 }
5052 SLAB_ATTR_RO(objects_partial);
5053 
5054 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5055 {
5056 	int objects = 0;
5057 	int pages = 0;
5058 	int cpu;
5059 	int len;
5060 
5061 	for_each_online_cpu(cpu) {
5062 		struct page *page;
5063 
5064 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5065 
5066 		if (page) {
5067 			pages += page->pages;
5068 			objects += page->pobjects;
5069 		}
5070 	}
5071 
5072 	len = sprintf(buf, "%d(%d)", objects, pages);
5073 
5074 #ifdef CONFIG_SMP
5075 	for_each_online_cpu(cpu) {
5076 		struct page *page;
5077 
5078 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5079 
5080 		if (page && len < PAGE_SIZE - 20)
5081 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5082 				page->pobjects, page->pages);
5083 	}
5084 #endif
5085 	return len + sprintf(buf + len, "\n");
5086 }
5087 SLAB_ATTR_RO(slabs_cpu_partial);
5088 
5089 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5090 {
5091 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5092 }
5093 
5094 static ssize_t reclaim_account_store(struct kmem_cache *s,
5095 				const char *buf, size_t length)
5096 {
5097 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5098 	if (buf[0] == '1')
5099 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5100 	return length;
5101 }
5102 SLAB_ATTR(reclaim_account);
5103 
5104 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5107 }
5108 SLAB_ATTR_RO(hwcache_align);
5109 
5110 #ifdef CONFIG_ZONE_DMA
5111 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5112 {
5113 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5114 }
5115 SLAB_ATTR_RO(cache_dma);
5116 #endif
5117 
5118 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5119 {
5120 	return sprintf(buf, "%u\n", s->usersize);
5121 }
5122 SLAB_ATTR_RO(usersize);
5123 
5124 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5127 }
5128 SLAB_ATTR_RO(destroy_by_rcu);
5129 
5130 #ifdef CONFIG_SLUB_DEBUG
5131 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5132 {
5133 	return show_slab_objects(s, buf, SO_ALL);
5134 }
5135 SLAB_ATTR_RO(slabs);
5136 
5137 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5138 {
5139 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5140 }
5141 SLAB_ATTR_RO(total_objects);
5142 
5143 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5144 {
5145 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5146 }
5147 
5148 static ssize_t sanity_checks_store(struct kmem_cache *s,
5149 				const char *buf, size_t length)
5150 {
5151 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5152 	if (buf[0] == '1') {
5153 		s->flags &= ~__CMPXCHG_DOUBLE;
5154 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5155 	}
5156 	return length;
5157 }
5158 SLAB_ATTR(sanity_checks);
5159 
5160 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5161 {
5162 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5163 }
5164 
5165 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5166 							size_t length)
5167 {
5168 	/*
5169 	 * Tracing a merged cache is going to give confusing results
5170 	 * as well as cause other issues like converting a mergeable
5171 	 * cache into an umergeable one.
5172 	 */
5173 	if (s->refcount > 1)
5174 		return -EINVAL;
5175 
5176 	s->flags &= ~SLAB_TRACE;
5177 	if (buf[0] == '1') {
5178 		s->flags &= ~__CMPXCHG_DOUBLE;
5179 		s->flags |= SLAB_TRACE;
5180 	}
5181 	return length;
5182 }
5183 SLAB_ATTR(trace);
5184 
5185 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5186 {
5187 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5188 }
5189 
5190 static ssize_t red_zone_store(struct kmem_cache *s,
5191 				const char *buf, size_t length)
5192 {
5193 	if (any_slab_objects(s))
5194 		return -EBUSY;
5195 
5196 	s->flags &= ~SLAB_RED_ZONE;
5197 	if (buf[0] == '1') {
5198 		s->flags |= SLAB_RED_ZONE;
5199 	}
5200 	calculate_sizes(s, -1);
5201 	return length;
5202 }
5203 SLAB_ATTR(red_zone);
5204 
5205 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5206 {
5207 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5208 }
5209 
5210 static ssize_t poison_store(struct kmem_cache *s,
5211 				const char *buf, size_t length)
5212 {
5213 	if (any_slab_objects(s))
5214 		return -EBUSY;
5215 
5216 	s->flags &= ~SLAB_POISON;
5217 	if (buf[0] == '1') {
5218 		s->flags |= SLAB_POISON;
5219 	}
5220 	calculate_sizes(s, -1);
5221 	return length;
5222 }
5223 SLAB_ATTR(poison);
5224 
5225 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5226 {
5227 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5228 }
5229 
5230 static ssize_t store_user_store(struct kmem_cache *s,
5231 				const char *buf, size_t length)
5232 {
5233 	if (any_slab_objects(s))
5234 		return -EBUSY;
5235 
5236 	s->flags &= ~SLAB_STORE_USER;
5237 	if (buf[0] == '1') {
5238 		s->flags &= ~__CMPXCHG_DOUBLE;
5239 		s->flags |= SLAB_STORE_USER;
5240 	}
5241 	calculate_sizes(s, -1);
5242 	return length;
5243 }
5244 SLAB_ATTR(store_user);
5245 
5246 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5247 {
5248 	return 0;
5249 }
5250 
5251 static ssize_t validate_store(struct kmem_cache *s,
5252 			const char *buf, size_t length)
5253 {
5254 	int ret = -EINVAL;
5255 
5256 	if (buf[0] == '1') {
5257 		ret = validate_slab_cache(s);
5258 		if (ret >= 0)
5259 			ret = length;
5260 	}
5261 	return ret;
5262 }
5263 SLAB_ATTR(validate);
5264 
5265 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5266 {
5267 	if (!(s->flags & SLAB_STORE_USER))
5268 		return -ENOSYS;
5269 	return list_locations(s, buf, TRACK_ALLOC);
5270 }
5271 SLAB_ATTR_RO(alloc_calls);
5272 
5273 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5274 {
5275 	if (!(s->flags & SLAB_STORE_USER))
5276 		return -ENOSYS;
5277 	return list_locations(s, buf, TRACK_FREE);
5278 }
5279 SLAB_ATTR_RO(free_calls);
5280 #endif /* CONFIG_SLUB_DEBUG */
5281 
5282 #ifdef CONFIG_FAILSLAB
5283 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5286 }
5287 
5288 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5289 							size_t length)
5290 {
5291 	if (s->refcount > 1)
5292 		return -EINVAL;
5293 
5294 	s->flags &= ~SLAB_FAILSLAB;
5295 	if (buf[0] == '1')
5296 		s->flags |= SLAB_FAILSLAB;
5297 	return length;
5298 }
5299 SLAB_ATTR(failslab);
5300 #endif
5301 
5302 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5303 {
5304 	return 0;
5305 }
5306 
5307 static ssize_t shrink_store(struct kmem_cache *s,
5308 			const char *buf, size_t length)
5309 {
5310 	if (buf[0] == '1')
5311 		kmem_cache_shrink_all(s);
5312 	else
5313 		return -EINVAL;
5314 	return length;
5315 }
5316 SLAB_ATTR(shrink);
5317 
5318 #ifdef CONFIG_NUMA
5319 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5320 {
5321 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5322 }
5323 
5324 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5325 				const char *buf, size_t length)
5326 {
5327 	unsigned int ratio;
5328 	int err;
5329 
5330 	err = kstrtouint(buf, 10, &ratio);
5331 	if (err)
5332 		return err;
5333 	if (ratio > 100)
5334 		return -ERANGE;
5335 
5336 	s->remote_node_defrag_ratio = ratio * 10;
5337 
5338 	return length;
5339 }
5340 SLAB_ATTR(remote_node_defrag_ratio);
5341 #endif
5342 
5343 #ifdef CONFIG_SLUB_STATS
5344 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5345 {
5346 	unsigned long sum  = 0;
5347 	int cpu;
5348 	int len;
5349 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5350 
5351 	if (!data)
5352 		return -ENOMEM;
5353 
5354 	for_each_online_cpu(cpu) {
5355 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5356 
5357 		data[cpu] = x;
5358 		sum += x;
5359 	}
5360 
5361 	len = sprintf(buf, "%lu", sum);
5362 
5363 #ifdef CONFIG_SMP
5364 	for_each_online_cpu(cpu) {
5365 		if (data[cpu] && len < PAGE_SIZE - 20)
5366 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5367 	}
5368 #endif
5369 	kfree(data);
5370 	return len + sprintf(buf + len, "\n");
5371 }
5372 
5373 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5374 {
5375 	int cpu;
5376 
5377 	for_each_online_cpu(cpu)
5378 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5379 }
5380 
5381 #define STAT_ATTR(si, text) 					\
5382 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5383 {								\
5384 	return show_stat(s, buf, si);				\
5385 }								\
5386 static ssize_t text##_store(struct kmem_cache *s,		\
5387 				const char *buf, size_t length)	\
5388 {								\
5389 	if (buf[0] != '0')					\
5390 		return -EINVAL;					\
5391 	clear_stat(s, si);					\
5392 	return length;						\
5393 }								\
5394 SLAB_ATTR(text);						\
5395 
5396 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5397 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5398 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5399 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5400 STAT_ATTR(FREE_FROZEN, free_frozen);
5401 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5402 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5403 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5404 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5405 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5406 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5407 STAT_ATTR(FREE_SLAB, free_slab);
5408 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5409 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5410 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5411 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5412 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5413 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5414 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5415 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5416 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5417 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5418 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5419 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5420 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5421 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5422 #endif	/* CONFIG_SLUB_STATS */
5423 
5424 static struct attribute *slab_attrs[] = {
5425 	&slab_size_attr.attr,
5426 	&object_size_attr.attr,
5427 	&objs_per_slab_attr.attr,
5428 	&order_attr.attr,
5429 	&min_partial_attr.attr,
5430 	&cpu_partial_attr.attr,
5431 	&objects_attr.attr,
5432 	&objects_partial_attr.attr,
5433 	&partial_attr.attr,
5434 	&cpu_slabs_attr.attr,
5435 	&ctor_attr.attr,
5436 	&aliases_attr.attr,
5437 	&align_attr.attr,
5438 	&hwcache_align_attr.attr,
5439 	&reclaim_account_attr.attr,
5440 	&destroy_by_rcu_attr.attr,
5441 	&shrink_attr.attr,
5442 	&slabs_cpu_partial_attr.attr,
5443 #ifdef CONFIG_SLUB_DEBUG
5444 	&total_objects_attr.attr,
5445 	&slabs_attr.attr,
5446 	&sanity_checks_attr.attr,
5447 	&trace_attr.attr,
5448 	&red_zone_attr.attr,
5449 	&poison_attr.attr,
5450 	&store_user_attr.attr,
5451 	&validate_attr.attr,
5452 	&alloc_calls_attr.attr,
5453 	&free_calls_attr.attr,
5454 #endif
5455 #ifdef CONFIG_ZONE_DMA
5456 	&cache_dma_attr.attr,
5457 #endif
5458 #ifdef CONFIG_NUMA
5459 	&remote_node_defrag_ratio_attr.attr,
5460 #endif
5461 #ifdef CONFIG_SLUB_STATS
5462 	&alloc_fastpath_attr.attr,
5463 	&alloc_slowpath_attr.attr,
5464 	&free_fastpath_attr.attr,
5465 	&free_slowpath_attr.attr,
5466 	&free_frozen_attr.attr,
5467 	&free_add_partial_attr.attr,
5468 	&free_remove_partial_attr.attr,
5469 	&alloc_from_partial_attr.attr,
5470 	&alloc_slab_attr.attr,
5471 	&alloc_refill_attr.attr,
5472 	&alloc_node_mismatch_attr.attr,
5473 	&free_slab_attr.attr,
5474 	&cpuslab_flush_attr.attr,
5475 	&deactivate_full_attr.attr,
5476 	&deactivate_empty_attr.attr,
5477 	&deactivate_to_head_attr.attr,
5478 	&deactivate_to_tail_attr.attr,
5479 	&deactivate_remote_frees_attr.attr,
5480 	&deactivate_bypass_attr.attr,
5481 	&order_fallback_attr.attr,
5482 	&cmpxchg_double_fail_attr.attr,
5483 	&cmpxchg_double_cpu_fail_attr.attr,
5484 	&cpu_partial_alloc_attr.attr,
5485 	&cpu_partial_free_attr.attr,
5486 	&cpu_partial_node_attr.attr,
5487 	&cpu_partial_drain_attr.attr,
5488 #endif
5489 #ifdef CONFIG_FAILSLAB
5490 	&failslab_attr.attr,
5491 #endif
5492 	&usersize_attr.attr,
5493 
5494 	NULL
5495 };
5496 
5497 static const struct attribute_group slab_attr_group = {
5498 	.attrs = slab_attrs,
5499 };
5500 
5501 static ssize_t slab_attr_show(struct kobject *kobj,
5502 				struct attribute *attr,
5503 				char *buf)
5504 {
5505 	struct slab_attribute *attribute;
5506 	struct kmem_cache *s;
5507 	int err;
5508 
5509 	attribute = to_slab_attr(attr);
5510 	s = to_slab(kobj);
5511 
5512 	if (!attribute->show)
5513 		return -EIO;
5514 
5515 	err = attribute->show(s, buf);
5516 
5517 	return err;
5518 }
5519 
5520 static ssize_t slab_attr_store(struct kobject *kobj,
5521 				struct attribute *attr,
5522 				const char *buf, size_t len)
5523 {
5524 	struct slab_attribute *attribute;
5525 	struct kmem_cache *s;
5526 	int err;
5527 
5528 	attribute = to_slab_attr(attr);
5529 	s = to_slab(kobj);
5530 
5531 	if (!attribute->store)
5532 		return -EIO;
5533 
5534 	err = attribute->store(s, buf, len);
5535 #ifdef CONFIG_MEMCG
5536 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5537 		struct kmem_cache *c;
5538 
5539 		mutex_lock(&slab_mutex);
5540 		if (s->max_attr_size < len)
5541 			s->max_attr_size = len;
5542 
5543 		/*
5544 		 * This is a best effort propagation, so this function's return
5545 		 * value will be determined by the parent cache only. This is
5546 		 * basically because not all attributes will have a well
5547 		 * defined semantics for rollbacks - most of the actions will
5548 		 * have permanent effects.
5549 		 *
5550 		 * Returning the error value of any of the children that fail
5551 		 * is not 100 % defined, in the sense that users seeing the
5552 		 * error code won't be able to know anything about the state of
5553 		 * the cache.
5554 		 *
5555 		 * Only returning the error code for the parent cache at least
5556 		 * has well defined semantics. The cache being written to
5557 		 * directly either failed or succeeded, in which case we loop
5558 		 * through the descendants with best-effort propagation.
5559 		 */
5560 		for_each_memcg_cache(c, s)
5561 			attribute->store(c, buf, len);
5562 		mutex_unlock(&slab_mutex);
5563 	}
5564 #endif
5565 	return err;
5566 }
5567 
5568 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5569 {
5570 #ifdef CONFIG_MEMCG
5571 	int i;
5572 	char *buffer = NULL;
5573 	struct kmem_cache *root_cache;
5574 
5575 	if (is_root_cache(s))
5576 		return;
5577 
5578 	root_cache = s->memcg_params.root_cache;
5579 
5580 	/*
5581 	 * This mean this cache had no attribute written. Therefore, no point
5582 	 * in copying default values around
5583 	 */
5584 	if (!root_cache->max_attr_size)
5585 		return;
5586 
5587 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5588 		char mbuf[64];
5589 		char *buf;
5590 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5591 		ssize_t len;
5592 
5593 		if (!attr || !attr->store || !attr->show)
5594 			continue;
5595 
5596 		/*
5597 		 * It is really bad that we have to allocate here, so we will
5598 		 * do it only as a fallback. If we actually allocate, though,
5599 		 * we can just use the allocated buffer until the end.
5600 		 *
5601 		 * Most of the slub attributes will tend to be very small in
5602 		 * size, but sysfs allows buffers up to a page, so they can
5603 		 * theoretically happen.
5604 		 */
5605 		if (buffer)
5606 			buf = buffer;
5607 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5608 			buf = mbuf;
5609 		else {
5610 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5611 			if (WARN_ON(!buffer))
5612 				continue;
5613 			buf = buffer;
5614 		}
5615 
5616 		len = attr->show(root_cache, buf);
5617 		if (len > 0)
5618 			attr->store(s, buf, len);
5619 	}
5620 
5621 	if (buffer)
5622 		free_page((unsigned long)buffer);
5623 #endif	/* CONFIG_MEMCG */
5624 }
5625 
5626 static void kmem_cache_release(struct kobject *k)
5627 {
5628 	slab_kmem_cache_release(to_slab(k));
5629 }
5630 
5631 static const struct sysfs_ops slab_sysfs_ops = {
5632 	.show = slab_attr_show,
5633 	.store = slab_attr_store,
5634 };
5635 
5636 static struct kobj_type slab_ktype = {
5637 	.sysfs_ops = &slab_sysfs_ops,
5638 	.release = kmem_cache_release,
5639 };
5640 
5641 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5642 {
5643 	struct kobj_type *ktype = get_ktype(kobj);
5644 
5645 	if (ktype == &slab_ktype)
5646 		return 1;
5647 	return 0;
5648 }
5649 
5650 static const struct kset_uevent_ops slab_uevent_ops = {
5651 	.filter = uevent_filter,
5652 };
5653 
5654 static struct kset *slab_kset;
5655 
5656 static inline struct kset *cache_kset(struct kmem_cache *s)
5657 {
5658 #ifdef CONFIG_MEMCG
5659 	if (!is_root_cache(s))
5660 		return s->memcg_params.root_cache->memcg_kset;
5661 #endif
5662 	return slab_kset;
5663 }
5664 
5665 #define ID_STR_LENGTH 64
5666 
5667 /* Create a unique string id for a slab cache:
5668  *
5669  * Format	:[flags-]size
5670  */
5671 static char *create_unique_id(struct kmem_cache *s)
5672 {
5673 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5674 	char *p = name;
5675 
5676 	BUG_ON(!name);
5677 
5678 	*p++ = ':';
5679 	/*
5680 	 * First flags affecting slabcache operations. We will only
5681 	 * get here for aliasable slabs so we do not need to support
5682 	 * too many flags. The flags here must cover all flags that
5683 	 * are matched during merging to guarantee that the id is
5684 	 * unique.
5685 	 */
5686 	if (s->flags & SLAB_CACHE_DMA)
5687 		*p++ = 'd';
5688 	if (s->flags & SLAB_CACHE_DMA32)
5689 		*p++ = 'D';
5690 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5691 		*p++ = 'a';
5692 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5693 		*p++ = 'F';
5694 	if (s->flags & SLAB_ACCOUNT)
5695 		*p++ = 'A';
5696 	if (p != name + 1)
5697 		*p++ = '-';
5698 	p += sprintf(p, "%07u", s->size);
5699 
5700 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5701 	return name;
5702 }
5703 
5704 static void sysfs_slab_remove_workfn(struct work_struct *work)
5705 {
5706 	struct kmem_cache *s =
5707 		container_of(work, struct kmem_cache, kobj_remove_work);
5708 
5709 	if (!s->kobj.state_in_sysfs)
5710 		/*
5711 		 * For a memcg cache, this may be called during
5712 		 * deactivation and again on shutdown.  Remove only once.
5713 		 * A cache is never shut down before deactivation is
5714 		 * complete, so no need to worry about synchronization.
5715 		 */
5716 		goto out;
5717 
5718 #ifdef CONFIG_MEMCG
5719 	kset_unregister(s->memcg_kset);
5720 #endif
5721 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5722 out:
5723 	kobject_put(&s->kobj);
5724 }
5725 
5726 static int sysfs_slab_add(struct kmem_cache *s)
5727 {
5728 	int err;
5729 	const char *name;
5730 	struct kset *kset = cache_kset(s);
5731 	int unmergeable = slab_unmergeable(s);
5732 
5733 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5734 
5735 	if (!kset) {
5736 		kobject_init(&s->kobj, &slab_ktype);
5737 		return 0;
5738 	}
5739 
5740 	if (!unmergeable && disable_higher_order_debug &&
5741 			(slub_debug & DEBUG_METADATA_FLAGS))
5742 		unmergeable = 1;
5743 
5744 	if (unmergeable) {
5745 		/*
5746 		 * Slabcache can never be merged so we can use the name proper.
5747 		 * This is typically the case for debug situations. In that
5748 		 * case we can catch duplicate names easily.
5749 		 */
5750 		sysfs_remove_link(&slab_kset->kobj, s->name);
5751 		name = s->name;
5752 	} else {
5753 		/*
5754 		 * Create a unique name for the slab as a target
5755 		 * for the symlinks.
5756 		 */
5757 		name = create_unique_id(s);
5758 	}
5759 
5760 	s->kobj.kset = kset;
5761 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5762 	if (err)
5763 		goto out;
5764 
5765 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5766 	if (err)
5767 		goto out_del_kobj;
5768 
5769 #ifdef CONFIG_MEMCG
5770 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5771 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5772 		if (!s->memcg_kset) {
5773 			err = -ENOMEM;
5774 			goto out_del_kobj;
5775 		}
5776 	}
5777 #endif
5778 
5779 	kobject_uevent(&s->kobj, KOBJ_ADD);
5780 	if (!unmergeable) {
5781 		/* Setup first alias */
5782 		sysfs_slab_alias(s, s->name);
5783 	}
5784 out:
5785 	if (!unmergeable)
5786 		kfree(name);
5787 	return err;
5788 out_del_kobj:
5789 	kobject_del(&s->kobj);
5790 	goto out;
5791 }
5792 
5793 static void sysfs_slab_remove(struct kmem_cache *s)
5794 {
5795 	if (slab_state < FULL)
5796 		/*
5797 		 * Sysfs has not been setup yet so no need to remove the
5798 		 * cache from sysfs.
5799 		 */
5800 		return;
5801 
5802 	kobject_get(&s->kobj);
5803 	schedule_work(&s->kobj_remove_work);
5804 }
5805 
5806 void sysfs_slab_unlink(struct kmem_cache *s)
5807 {
5808 	if (slab_state >= FULL)
5809 		kobject_del(&s->kobj);
5810 }
5811 
5812 void sysfs_slab_release(struct kmem_cache *s)
5813 {
5814 	if (slab_state >= FULL)
5815 		kobject_put(&s->kobj);
5816 }
5817 
5818 /*
5819  * Need to buffer aliases during bootup until sysfs becomes
5820  * available lest we lose that information.
5821  */
5822 struct saved_alias {
5823 	struct kmem_cache *s;
5824 	const char *name;
5825 	struct saved_alias *next;
5826 };
5827 
5828 static struct saved_alias *alias_list;
5829 
5830 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5831 {
5832 	struct saved_alias *al;
5833 
5834 	if (slab_state == FULL) {
5835 		/*
5836 		 * If we have a leftover link then remove it.
5837 		 */
5838 		sysfs_remove_link(&slab_kset->kobj, name);
5839 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5840 	}
5841 
5842 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5843 	if (!al)
5844 		return -ENOMEM;
5845 
5846 	al->s = s;
5847 	al->name = name;
5848 	al->next = alias_list;
5849 	alias_list = al;
5850 	return 0;
5851 }
5852 
5853 static int __init slab_sysfs_init(void)
5854 {
5855 	struct kmem_cache *s;
5856 	int err;
5857 
5858 	mutex_lock(&slab_mutex);
5859 
5860 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5861 	if (!slab_kset) {
5862 		mutex_unlock(&slab_mutex);
5863 		pr_err("Cannot register slab subsystem.\n");
5864 		return -ENOSYS;
5865 	}
5866 
5867 	slab_state = FULL;
5868 
5869 	list_for_each_entry(s, &slab_caches, list) {
5870 		err = sysfs_slab_add(s);
5871 		if (err)
5872 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5873 			       s->name);
5874 	}
5875 
5876 	while (alias_list) {
5877 		struct saved_alias *al = alias_list;
5878 
5879 		alias_list = alias_list->next;
5880 		err = sysfs_slab_alias(al->s, al->name);
5881 		if (err)
5882 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5883 			       al->name);
5884 		kfree(al);
5885 	}
5886 
5887 	mutex_unlock(&slab_mutex);
5888 	resiliency_test();
5889 	return 0;
5890 }
5891 
5892 __initcall(slab_sysfs_init);
5893 #endif /* CONFIG_SYSFS */
5894 
5895 /*
5896  * The /proc/slabinfo ABI
5897  */
5898 #ifdef CONFIG_SLUB_DEBUG
5899 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5900 {
5901 	unsigned long nr_slabs = 0;
5902 	unsigned long nr_objs = 0;
5903 	unsigned long nr_free = 0;
5904 	int node;
5905 	struct kmem_cache_node *n;
5906 
5907 	for_each_kmem_cache_node(s, node, n) {
5908 		nr_slabs += node_nr_slabs(n);
5909 		nr_objs += node_nr_objs(n);
5910 		nr_free += count_partial(n, count_free);
5911 	}
5912 
5913 	sinfo->active_objs = nr_objs - nr_free;
5914 	sinfo->num_objs = nr_objs;
5915 	sinfo->active_slabs = nr_slabs;
5916 	sinfo->num_slabs = nr_slabs;
5917 	sinfo->objects_per_slab = oo_objects(s->oo);
5918 	sinfo->cache_order = oo_order(s->oo);
5919 }
5920 
5921 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5922 {
5923 }
5924 
5925 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5926 		       size_t count, loff_t *ppos)
5927 {
5928 	return -EIO;
5929 }
5930 #endif /* CONFIG_SLUB_DEBUG */
5931