1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 #ifdef CONFIG_SMP 198 static struct notifier_block slab_notifier; 199 #endif 200 201 /* 202 * Tracking user of a slab. 203 */ 204 #define TRACK_ADDRS_COUNT 16 205 struct track { 206 unsigned long addr; /* Called from address */ 207 #ifdef CONFIG_STACKTRACE 208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 209 #endif 210 int cpu; /* Was running on cpu */ 211 int pid; /* Pid context */ 212 unsigned long when; /* When did the operation occur */ 213 }; 214 215 enum track_item { TRACK_ALLOC, TRACK_FREE }; 216 217 #ifdef CONFIG_SYSFS 218 static int sysfs_slab_add(struct kmem_cache *); 219 static int sysfs_slab_alias(struct kmem_cache *, const char *); 220 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 static inline void *get_freepointer(struct kmem_cache *s, void *object) 244 { 245 return *(void **)(object + s->offset); 246 } 247 248 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 249 { 250 prefetch(object + s->offset); 251 } 252 253 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 254 { 255 void *p; 256 257 if (!debug_pagealloc_enabled()) 258 return get_freepointer(s, object); 259 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 return p; 262 } 263 264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 265 { 266 *(void **)(object + s->offset) = fp; 267 } 268 269 /* Loop over all objects in a slab */ 270 #define for_each_object(__p, __s, __addr, __objects) \ 271 for (__p = fixup_red_left(__s, __addr); \ 272 __p < (__addr) + (__objects) * (__s)->size; \ 273 __p += (__s)->size) 274 275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 277 __idx <= __objects; \ 278 __p += (__s)->size, __idx++) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline int order_objects(int order, unsigned long size, int reserved) 287 { 288 return ((PAGE_SIZE << order) - reserved) / size; 289 } 290 291 static inline struct kmem_cache_order_objects oo_make(int order, 292 unsigned long size, int reserved) 293 { 294 struct kmem_cache_order_objects x = { 295 (order << OO_SHIFT) + order_objects(order, size, reserved) 296 }; 297 298 return x; 299 } 300 301 static inline int oo_order(struct kmem_cache_order_objects x) 302 { 303 return x.x >> OO_SHIFT; 304 } 305 306 static inline int oo_objects(struct kmem_cache_order_objects x) 307 { 308 return x.x & OO_MASK; 309 } 310 311 /* 312 * Per slab locking using the pagelock 313 */ 314 static __always_inline void slab_lock(struct page *page) 315 { 316 VM_BUG_ON_PAGE(PageTail(page), page); 317 bit_spin_lock(PG_locked, &page->flags); 318 } 319 320 static __always_inline void slab_unlock(struct page *page) 321 { 322 VM_BUG_ON_PAGE(PageTail(page), page); 323 __bit_spin_unlock(PG_locked, &page->flags); 324 } 325 326 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 327 { 328 struct page tmp; 329 tmp.counters = counters_new; 330 /* 331 * page->counters can cover frozen/inuse/objects as well 332 * as page->_refcount. If we assign to ->counters directly 333 * we run the risk of losing updates to page->_refcount, so 334 * be careful and only assign to the fields we need. 335 */ 336 page->frozen = tmp.frozen; 337 page->inuse = tmp.inuse; 338 page->objects = tmp.objects; 339 } 340 341 /* Interrupts must be disabled (for the fallback code to work right) */ 342 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 343 void *freelist_old, unsigned long counters_old, 344 void *freelist_new, unsigned long counters_new, 345 const char *n) 346 { 347 VM_BUG_ON(!irqs_disabled()); 348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 350 if (s->flags & __CMPXCHG_DOUBLE) { 351 if (cmpxchg_double(&page->freelist, &page->counters, 352 freelist_old, counters_old, 353 freelist_new, counters_new)) 354 return true; 355 } else 356 #endif 357 { 358 slab_lock(page); 359 if (page->freelist == freelist_old && 360 page->counters == counters_old) { 361 page->freelist = freelist_new; 362 set_page_slub_counters(page, counters_new); 363 slab_unlock(page); 364 return true; 365 } 366 slab_unlock(page); 367 } 368 369 cpu_relax(); 370 stat(s, CMPXCHG_DOUBLE_FAIL); 371 372 #ifdef SLUB_DEBUG_CMPXCHG 373 pr_info("%s %s: cmpxchg double redo ", n, s->name); 374 #endif 375 376 return false; 377 } 378 379 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 380 void *freelist_old, unsigned long counters_old, 381 void *freelist_new, unsigned long counters_new, 382 const char *n) 383 { 384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 386 if (s->flags & __CMPXCHG_DOUBLE) { 387 if (cmpxchg_double(&page->freelist, &page->counters, 388 freelist_old, counters_old, 389 freelist_new, counters_new)) 390 return true; 391 } else 392 #endif 393 { 394 unsigned long flags; 395 396 local_irq_save(flags); 397 slab_lock(page); 398 if (page->freelist == freelist_old && 399 page->counters == counters_old) { 400 page->freelist = freelist_new; 401 set_page_slub_counters(page, counters_new); 402 slab_unlock(page); 403 local_irq_restore(flags); 404 return true; 405 } 406 slab_unlock(page); 407 local_irq_restore(flags); 408 } 409 410 cpu_relax(); 411 stat(s, CMPXCHG_DOUBLE_FAIL); 412 413 #ifdef SLUB_DEBUG_CMPXCHG 414 pr_info("%s %s: cmpxchg double redo ", n, s->name); 415 #endif 416 417 return false; 418 } 419 420 #ifdef CONFIG_SLUB_DEBUG 421 /* 422 * Determine a map of object in use on a page. 423 * 424 * Node listlock must be held to guarantee that the page does 425 * not vanish from under us. 426 */ 427 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 428 { 429 void *p; 430 void *addr = page_address(page); 431 432 for (p = page->freelist; p; p = get_freepointer(s, p)) 433 set_bit(slab_index(p, s, addr), map); 434 } 435 436 static inline int size_from_object(struct kmem_cache *s) 437 { 438 if (s->flags & SLAB_RED_ZONE) 439 return s->size - s->red_left_pad; 440 441 return s->size; 442 } 443 444 static inline void *restore_red_left(struct kmem_cache *s, void *p) 445 { 446 if (s->flags & SLAB_RED_ZONE) 447 p -= s->red_left_pad; 448 449 return p; 450 } 451 452 /* 453 * Debug settings: 454 */ 455 #if defined(CONFIG_SLUB_DEBUG_ON) 456 static int slub_debug = DEBUG_DEFAULT_FLAGS; 457 #else 458 static int slub_debug; 459 #endif 460 461 static char *slub_debug_slabs; 462 static int disable_higher_order_debug; 463 464 /* 465 * slub is about to manipulate internal object metadata. This memory lies 466 * outside the range of the allocated object, so accessing it would normally 467 * be reported by kasan as a bounds error. metadata_access_enable() is used 468 * to tell kasan that these accesses are OK. 469 */ 470 static inline void metadata_access_enable(void) 471 { 472 kasan_disable_current(); 473 } 474 475 static inline void metadata_access_disable(void) 476 { 477 kasan_enable_current(); 478 } 479 480 /* 481 * Object debugging 482 */ 483 484 /* Verify that a pointer has an address that is valid within a slab page */ 485 static inline int check_valid_pointer(struct kmem_cache *s, 486 struct page *page, void *object) 487 { 488 void *base; 489 490 if (!object) 491 return 1; 492 493 base = page_address(page); 494 object = restore_red_left(s, object); 495 if (object < base || object >= base + page->objects * s->size || 496 (object - base) % s->size) { 497 return 0; 498 } 499 500 return 1; 501 } 502 503 static void print_section(char *text, u8 *addr, unsigned int length) 504 { 505 metadata_access_enable(); 506 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 507 length, 1); 508 metadata_access_disable(); 509 } 510 511 static struct track *get_track(struct kmem_cache *s, void *object, 512 enum track_item alloc) 513 { 514 struct track *p; 515 516 if (s->offset) 517 p = object + s->offset + sizeof(void *); 518 else 519 p = object + s->inuse; 520 521 return p + alloc; 522 } 523 524 static void set_track(struct kmem_cache *s, void *object, 525 enum track_item alloc, unsigned long addr) 526 { 527 struct track *p = get_track(s, object, alloc); 528 529 if (addr) { 530 #ifdef CONFIG_STACKTRACE 531 struct stack_trace trace; 532 int i; 533 534 trace.nr_entries = 0; 535 trace.max_entries = TRACK_ADDRS_COUNT; 536 trace.entries = p->addrs; 537 trace.skip = 3; 538 metadata_access_enable(); 539 save_stack_trace(&trace); 540 metadata_access_disable(); 541 542 /* See rant in lockdep.c */ 543 if (trace.nr_entries != 0 && 544 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 545 trace.nr_entries--; 546 547 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 548 p->addrs[i] = 0; 549 #endif 550 p->addr = addr; 551 p->cpu = smp_processor_id(); 552 p->pid = current->pid; 553 p->when = jiffies; 554 } else 555 memset(p, 0, sizeof(struct track)); 556 } 557 558 static void init_tracking(struct kmem_cache *s, void *object) 559 { 560 if (!(s->flags & SLAB_STORE_USER)) 561 return; 562 563 set_track(s, object, TRACK_FREE, 0UL); 564 set_track(s, object, TRACK_ALLOC, 0UL); 565 } 566 567 static void print_track(const char *s, struct track *t) 568 { 569 if (!t->addr) 570 return; 571 572 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 573 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 574 #ifdef CONFIG_STACKTRACE 575 { 576 int i; 577 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 578 if (t->addrs[i]) 579 pr_err("\t%pS\n", (void *)t->addrs[i]); 580 else 581 break; 582 } 583 #endif 584 } 585 586 static void print_tracking(struct kmem_cache *s, void *object) 587 { 588 if (!(s->flags & SLAB_STORE_USER)) 589 return; 590 591 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 592 print_track("Freed", get_track(s, object, TRACK_FREE)); 593 } 594 595 static void print_page_info(struct page *page) 596 { 597 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 598 page, page->objects, page->inuse, page->freelist, page->flags); 599 600 } 601 602 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 603 { 604 struct va_format vaf; 605 va_list args; 606 607 va_start(args, fmt); 608 vaf.fmt = fmt; 609 vaf.va = &args; 610 pr_err("=============================================================================\n"); 611 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 612 pr_err("-----------------------------------------------------------------------------\n\n"); 613 614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 615 va_end(args); 616 } 617 618 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 619 { 620 struct va_format vaf; 621 va_list args; 622 623 va_start(args, fmt); 624 vaf.fmt = fmt; 625 vaf.va = &args; 626 pr_err("FIX %s: %pV\n", s->name, &vaf); 627 va_end(args); 628 } 629 630 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 631 { 632 unsigned int off; /* Offset of last byte */ 633 u8 *addr = page_address(page); 634 635 print_tracking(s, p); 636 637 print_page_info(page); 638 639 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 640 p, p - addr, get_freepointer(s, p)); 641 642 if (s->flags & SLAB_RED_ZONE) 643 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad); 644 else if (p > addr + 16) 645 print_section("Bytes b4 ", p - 16, 16); 646 647 print_section("Object ", p, min_t(unsigned long, s->object_size, 648 PAGE_SIZE)); 649 if (s->flags & SLAB_RED_ZONE) 650 print_section("Redzone ", p + s->object_size, 651 s->inuse - s->object_size); 652 653 if (s->offset) 654 off = s->offset + sizeof(void *); 655 else 656 off = s->inuse; 657 658 if (s->flags & SLAB_STORE_USER) 659 off += 2 * sizeof(struct track); 660 661 off += kasan_metadata_size(s); 662 663 if (off != size_from_object(s)) 664 /* Beginning of the filler is the free pointer */ 665 print_section("Padding ", p + off, size_from_object(s) - off); 666 667 dump_stack(); 668 } 669 670 void object_err(struct kmem_cache *s, struct page *page, 671 u8 *object, char *reason) 672 { 673 slab_bug(s, "%s", reason); 674 print_trailer(s, page, object); 675 } 676 677 static void slab_err(struct kmem_cache *s, struct page *page, 678 const char *fmt, ...) 679 { 680 va_list args; 681 char buf[100]; 682 683 va_start(args, fmt); 684 vsnprintf(buf, sizeof(buf), fmt, args); 685 va_end(args); 686 slab_bug(s, "%s", buf); 687 print_page_info(page); 688 dump_stack(); 689 } 690 691 static void init_object(struct kmem_cache *s, void *object, u8 val) 692 { 693 u8 *p = object; 694 695 if (s->flags & SLAB_RED_ZONE) 696 memset(p - s->red_left_pad, val, s->red_left_pad); 697 698 if (s->flags & __OBJECT_POISON) { 699 memset(p, POISON_FREE, s->object_size - 1); 700 p[s->object_size - 1] = POISON_END; 701 } 702 703 if (s->flags & SLAB_RED_ZONE) 704 memset(p + s->object_size, val, s->inuse - s->object_size); 705 } 706 707 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 708 void *from, void *to) 709 { 710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 711 memset(from, data, to - from); 712 } 713 714 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 715 u8 *object, char *what, 716 u8 *start, unsigned int value, unsigned int bytes) 717 { 718 u8 *fault; 719 u8 *end; 720 721 metadata_access_enable(); 722 fault = memchr_inv(start, value, bytes); 723 metadata_access_disable(); 724 if (!fault) 725 return 1; 726 727 end = start + bytes; 728 while (end > fault && end[-1] == value) 729 end--; 730 731 slab_bug(s, "%s overwritten", what); 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 733 fault, end - 1, fault[0], value); 734 print_trailer(s, page, object); 735 736 restore_bytes(s, what, value, fault, end); 737 return 0; 738 } 739 740 /* 741 * Object layout: 742 * 743 * object address 744 * Bytes of the object to be managed. 745 * If the freepointer may overlay the object then the free 746 * pointer is the first word of the object. 747 * 748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 749 * 0xa5 (POISON_END) 750 * 751 * object + s->object_size 752 * Padding to reach word boundary. This is also used for Redzoning. 753 * Padding is extended by another word if Redzoning is enabled and 754 * object_size == inuse. 755 * 756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 757 * 0xcc (RED_ACTIVE) for objects in use. 758 * 759 * object + s->inuse 760 * Meta data starts here. 761 * 762 * A. Free pointer (if we cannot overwrite object on free) 763 * B. Tracking data for SLAB_STORE_USER 764 * C. Padding to reach required alignment boundary or at mininum 765 * one word if debugging is on to be able to detect writes 766 * before the word boundary. 767 * 768 * Padding is done using 0x5a (POISON_INUSE) 769 * 770 * object + s->size 771 * Nothing is used beyond s->size. 772 * 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly 774 * ignored. And therefore no slab options that rely on these boundaries 775 * may be used with merged slabcaches. 776 */ 777 778 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 779 { 780 unsigned long off = s->inuse; /* The end of info */ 781 782 if (s->offset) 783 /* Freepointer is placed after the object. */ 784 off += sizeof(void *); 785 786 if (s->flags & SLAB_STORE_USER) 787 /* We also have user information there */ 788 off += 2 * sizeof(struct track); 789 790 off += kasan_metadata_size(s); 791 792 if (size_from_object(s) == off) 793 return 1; 794 795 return check_bytes_and_report(s, page, p, "Object padding", 796 p + off, POISON_INUSE, size_from_object(s) - off); 797 } 798 799 /* Check the pad bytes at the end of a slab page */ 800 static int slab_pad_check(struct kmem_cache *s, struct page *page) 801 { 802 u8 *start; 803 u8 *fault; 804 u8 *end; 805 int length; 806 int remainder; 807 808 if (!(s->flags & SLAB_POISON)) 809 return 1; 810 811 start = page_address(page); 812 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 813 end = start + length; 814 remainder = length % s->size; 815 if (!remainder) 816 return 1; 817 818 metadata_access_enable(); 819 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 820 metadata_access_disable(); 821 if (!fault) 822 return 1; 823 while (end > fault && end[-1] == POISON_INUSE) 824 end--; 825 826 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 827 print_section("Padding ", end - remainder, remainder); 828 829 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 830 return 0; 831 } 832 833 static int check_object(struct kmem_cache *s, struct page *page, 834 void *object, u8 val) 835 { 836 u8 *p = object; 837 u8 *endobject = object + s->object_size; 838 839 if (s->flags & SLAB_RED_ZONE) { 840 if (!check_bytes_and_report(s, page, object, "Redzone", 841 object - s->red_left_pad, val, s->red_left_pad)) 842 return 0; 843 844 if (!check_bytes_and_report(s, page, object, "Redzone", 845 endobject, val, s->inuse - s->object_size)) 846 return 0; 847 } else { 848 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 849 check_bytes_and_report(s, page, p, "Alignment padding", 850 endobject, POISON_INUSE, 851 s->inuse - s->object_size); 852 } 853 } 854 855 if (s->flags & SLAB_POISON) { 856 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 857 (!check_bytes_and_report(s, page, p, "Poison", p, 858 POISON_FREE, s->object_size - 1) || 859 !check_bytes_and_report(s, page, p, "Poison", 860 p + s->object_size - 1, POISON_END, 1))) 861 return 0; 862 /* 863 * check_pad_bytes cleans up on its own. 864 */ 865 check_pad_bytes(s, page, p); 866 } 867 868 if (!s->offset && val == SLUB_RED_ACTIVE) 869 /* 870 * Object and freepointer overlap. Cannot check 871 * freepointer while object is allocated. 872 */ 873 return 1; 874 875 /* Check free pointer validity */ 876 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 877 object_err(s, page, p, "Freepointer corrupt"); 878 /* 879 * No choice but to zap it and thus lose the remainder 880 * of the free objects in this slab. May cause 881 * another error because the object count is now wrong. 882 */ 883 set_freepointer(s, p, NULL); 884 return 0; 885 } 886 return 1; 887 } 888 889 static int check_slab(struct kmem_cache *s, struct page *page) 890 { 891 int maxobj; 892 893 VM_BUG_ON(!irqs_disabled()); 894 895 if (!PageSlab(page)) { 896 slab_err(s, page, "Not a valid slab page"); 897 return 0; 898 } 899 900 maxobj = order_objects(compound_order(page), s->size, s->reserved); 901 if (page->objects > maxobj) { 902 slab_err(s, page, "objects %u > max %u", 903 page->objects, maxobj); 904 return 0; 905 } 906 if (page->inuse > page->objects) { 907 slab_err(s, page, "inuse %u > max %u", 908 page->inuse, page->objects); 909 return 0; 910 } 911 /* Slab_pad_check fixes things up after itself */ 912 slab_pad_check(s, page); 913 return 1; 914 } 915 916 /* 917 * Determine if a certain object on a page is on the freelist. Must hold the 918 * slab lock to guarantee that the chains are in a consistent state. 919 */ 920 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 921 { 922 int nr = 0; 923 void *fp; 924 void *object = NULL; 925 int max_objects; 926 927 fp = page->freelist; 928 while (fp && nr <= page->objects) { 929 if (fp == search) 930 return 1; 931 if (!check_valid_pointer(s, page, fp)) { 932 if (object) { 933 object_err(s, page, object, 934 "Freechain corrupt"); 935 set_freepointer(s, object, NULL); 936 } else { 937 slab_err(s, page, "Freepointer corrupt"); 938 page->freelist = NULL; 939 page->inuse = page->objects; 940 slab_fix(s, "Freelist cleared"); 941 return 0; 942 } 943 break; 944 } 945 object = fp; 946 fp = get_freepointer(s, object); 947 nr++; 948 } 949 950 max_objects = order_objects(compound_order(page), s->size, s->reserved); 951 if (max_objects > MAX_OBJS_PER_PAGE) 952 max_objects = MAX_OBJS_PER_PAGE; 953 954 if (page->objects != max_objects) { 955 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 956 page->objects, max_objects); 957 page->objects = max_objects; 958 slab_fix(s, "Number of objects adjusted."); 959 } 960 if (page->inuse != page->objects - nr) { 961 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 962 page->inuse, page->objects - nr); 963 page->inuse = page->objects - nr; 964 slab_fix(s, "Object count adjusted."); 965 } 966 return search == NULL; 967 } 968 969 static void trace(struct kmem_cache *s, struct page *page, void *object, 970 int alloc) 971 { 972 if (s->flags & SLAB_TRACE) { 973 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 974 s->name, 975 alloc ? "alloc" : "free", 976 object, page->inuse, 977 page->freelist); 978 979 if (!alloc) 980 print_section("Object ", (void *)object, 981 s->object_size); 982 983 dump_stack(); 984 } 985 } 986 987 /* 988 * Tracking of fully allocated slabs for debugging purposes. 989 */ 990 static void add_full(struct kmem_cache *s, 991 struct kmem_cache_node *n, struct page *page) 992 { 993 if (!(s->flags & SLAB_STORE_USER)) 994 return; 995 996 lockdep_assert_held(&n->list_lock); 997 list_add(&page->lru, &n->full); 998 } 999 1000 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1001 { 1002 if (!(s->flags & SLAB_STORE_USER)) 1003 return; 1004 1005 lockdep_assert_held(&n->list_lock); 1006 list_del(&page->lru); 1007 } 1008 1009 /* Tracking of the number of slabs for debugging purposes */ 1010 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1011 { 1012 struct kmem_cache_node *n = get_node(s, node); 1013 1014 return atomic_long_read(&n->nr_slabs); 1015 } 1016 1017 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1018 { 1019 return atomic_long_read(&n->nr_slabs); 1020 } 1021 1022 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1023 { 1024 struct kmem_cache_node *n = get_node(s, node); 1025 1026 /* 1027 * May be called early in order to allocate a slab for the 1028 * kmem_cache_node structure. Solve the chicken-egg 1029 * dilemma by deferring the increment of the count during 1030 * bootstrap (see early_kmem_cache_node_alloc). 1031 */ 1032 if (likely(n)) { 1033 atomic_long_inc(&n->nr_slabs); 1034 atomic_long_add(objects, &n->total_objects); 1035 } 1036 } 1037 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1038 { 1039 struct kmem_cache_node *n = get_node(s, node); 1040 1041 atomic_long_dec(&n->nr_slabs); 1042 atomic_long_sub(objects, &n->total_objects); 1043 } 1044 1045 /* Object debug checks for alloc/free paths */ 1046 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1047 void *object) 1048 { 1049 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1050 return; 1051 1052 init_object(s, object, SLUB_RED_INACTIVE); 1053 init_tracking(s, object); 1054 } 1055 1056 static inline int alloc_consistency_checks(struct kmem_cache *s, 1057 struct page *page, 1058 void *object, unsigned long addr) 1059 { 1060 if (!check_slab(s, page)) 1061 return 0; 1062 1063 if (!check_valid_pointer(s, page, object)) { 1064 object_err(s, page, object, "Freelist Pointer check fails"); 1065 return 0; 1066 } 1067 1068 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1069 return 0; 1070 1071 return 1; 1072 } 1073 1074 static noinline int alloc_debug_processing(struct kmem_cache *s, 1075 struct page *page, 1076 void *object, unsigned long addr) 1077 { 1078 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1079 if (!alloc_consistency_checks(s, page, object, addr)) 1080 goto bad; 1081 } 1082 1083 /* Success perform special debug activities for allocs */ 1084 if (s->flags & SLAB_STORE_USER) 1085 set_track(s, object, TRACK_ALLOC, addr); 1086 trace(s, page, object, 1); 1087 init_object(s, object, SLUB_RED_ACTIVE); 1088 return 1; 1089 1090 bad: 1091 if (PageSlab(page)) { 1092 /* 1093 * If this is a slab page then lets do the best we can 1094 * to avoid issues in the future. Marking all objects 1095 * as used avoids touching the remaining objects. 1096 */ 1097 slab_fix(s, "Marking all objects used"); 1098 page->inuse = page->objects; 1099 page->freelist = NULL; 1100 } 1101 return 0; 1102 } 1103 1104 static inline int free_consistency_checks(struct kmem_cache *s, 1105 struct page *page, void *object, unsigned long addr) 1106 { 1107 if (!check_valid_pointer(s, page, object)) { 1108 slab_err(s, page, "Invalid object pointer 0x%p", object); 1109 return 0; 1110 } 1111 1112 if (on_freelist(s, page, object)) { 1113 object_err(s, page, object, "Object already free"); 1114 return 0; 1115 } 1116 1117 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1118 return 0; 1119 1120 if (unlikely(s != page->slab_cache)) { 1121 if (!PageSlab(page)) { 1122 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1123 object); 1124 } else if (!page->slab_cache) { 1125 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1126 object); 1127 dump_stack(); 1128 } else 1129 object_err(s, page, object, 1130 "page slab pointer corrupt."); 1131 return 0; 1132 } 1133 return 1; 1134 } 1135 1136 /* Supports checking bulk free of a constructed freelist */ 1137 static noinline int free_debug_processing( 1138 struct kmem_cache *s, struct page *page, 1139 void *head, void *tail, int bulk_cnt, 1140 unsigned long addr) 1141 { 1142 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1143 void *object = head; 1144 int cnt = 0; 1145 unsigned long uninitialized_var(flags); 1146 int ret = 0; 1147 1148 spin_lock_irqsave(&n->list_lock, flags); 1149 slab_lock(page); 1150 1151 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1152 if (!check_slab(s, page)) 1153 goto out; 1154 } 1155 1156 next_object: 1157 cnt++; 1158 1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1160 if (!free_consistency_checks(s, page, object, addr)) 1161 goto out; 1162 } 1163 1164 if (s->flags & SLAB_STORE_USER) 1165 set_track(s, object, TRACK_FREE, addr); 1166 trace(s, page, object, 0); 1167 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1168 init_object(s, object, SLUB_RED_INACTIVE); 1169 1170 /* Reached end of constructed freelist yet? */ 1171 if (object != tail) { 1172 object = get_freepointer(s, object); 1173 goto next_object; 1174 } 1175 ret = 1; 1176 1177 out: 1178 if (cnt != bulk_cnt) 1179 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1180 bulk_cnt, cnt); 1181 1182 slab_unlock(page); 1183 spin_unlock_irqrestore(&n->list_lock, flags); 1184 if (!ret) 1185 slab_fix(s, "Object at 0x%p not freed", object); 1186 return ret; 1187 } 1188 1189 static int __init setup_slub_debug(char *str) 1190 { 1191 slub_debug = DEBUG_DEFAULT_FLAGS; 1192 if (*str++ != '=' || !*str) 1193 /* 1194 * No options specified. Switch on full debugging. 1195 */ 1196 goto out; 1197 1198 if (*str == ',') 1199 /* 1200 * No options but restriction on slabs. This means full 1201 * debugging for slabs matching a pattern. 1202 */ 1203 goto check_slabs; 1204 1205 slub_debug = 0; 1206 if (*str == '-') 1207 /* 1208 * Switch off all debugging measures. 1209 */ 1210 goto out; 1211 1212 /* 1213 * Determine which debug features should be switched on 1214 */ 1215 for (; *str && *str != ','; str++) { 1216 switch (tolower(*str)) { 1217 case 'f': 1218 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1219 break; 1220 case 'z': 1221 slub_debug |= SLAB_RED_ZONE; 1222 break; 1223 case 'p': 1224 slub_debug |= SLAB_POISON; 1225 break; 1226 case 'u': 1227 slub_debug |= SLAB_STORE_USER; 1228 break; 1229 case 't': 1230 slub_debug |= SLAB_TRACE; 1231 break; 1232 case 'a': 1233 slub_debug |= SLAB_FAILSLAB; 1234 break; 1235 case 'o': 1236 /* 1237 * Avoid enabling debugging on caches if its minimum 1238 * order would increase as a result. 1239 */ 1240 disable_higher_order_debug = 1; 1241 break; 1242 default: 1243 pr_err("slub_debug option '%c' unknown. skipped\n", 1244 *str); 1245 } 1246 } 1247 1248 check_slabs: 1249 if (*str == ',') 1250 slub_debug_slabs = str + 1; 1251 out: 1252 return 1; 1253 } 1254 1255 __setup("slub_debug", setup_slub_debug); 1256 1257 unsigned long kmem_cache_flags(unsigned long object_size, 1258 unsigned long flags, const char *name, 1259 void (*ctor)(void *)) 1260 { 1261 /* 1262 * Enable debugging if selected on the kernel commandline. 1263 */ 1264 if (slub_debug && (!slub_debug_slabs || (name && 1265 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1266 flags |= slub_debug; 1267 1268 return flags; 1269 } 1270 #else /* !CONFIG_SLUB_DEBUG */ 1271 static inline void setup_object_debug(struct kmem_cache *s, 1272 struct page *page, void *object) {} 1273 1274 static inline int alloc_debug_processing(struct kmem_cache *s, 1275 struct page *page, void *object, unsigned long addr) { return 0; } 1276 1277 static inline int free_debug_processing( 1278 struct kmem_cache *s, struct page *page, 1279 void *head, void *tail, int bulk_cnt, 1280 unsigned long addr) { return 0; } 1281 1282 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1283 { return 1; } 1284 static inline int check_object(struct kmem_cache *s, struct page *page, 1285 void *object, u8 val) { return 1; } 1286 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1287 struct page *page) {} 1288 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1289 struct page *page) {} 1290 unsigned long kmem_cache_flags(unsigned long object_size, 1291 unsigned long flags, const char *name, 1292 void (*ctor)(void *)) 1293 { 1294 return flags; 1295 } 1296 #define slub_debug 0 1297 1298 #define disable_higher_order_debug 0 1299 1300 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1301 { return 0; } 1302 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1303 { return 0; } 1304 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1305 int objects) {} 1306 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1307 int objects) {} 1308 1309 #endif /* CONFIG_SLUB_DEBUG */ 1310 1311 /* 1312 * Hooks for other subsystems that check memory allocations. In a typical 1313 * production configuration these hooks all should produce no code at all. 1314 */ 1315 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1316 { 1317 kmemleak_alloc(ptr, size, 1, flags); 1318 kasan_kmalloc_large(ptr, size, flags); 1319 } 1320 1321 static inline void kfree_hook(const void *x) 1322 { 1323 kmemleak_free(x); 1324 kasan_kfree_large(x); 1325 } 1326 1327 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1328 { 1329 void *freeptr; 1330 1331 kmemleak_free_recursive(x, s->flags); 1332 1333 /* 1334 * Trouble is that we may no longer disable interrupts in the fast path 1335 * So in order to make the debug calls that expect irqs to be 1336 * disabled we need to disable interrupts temporarily. 1337 */ 1338 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1339 { 1340 unsigned long flags; 1341 1342 local_irq_save(flags); 1343 kmemcheck_slab_free(s, x, s->object_size); 1344 debug_check_no_locks_freed(x, s->object_size); 1345 local_irq_restore(flags); 1346 } 1347 #endif 1348 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1349 debug_check_no_obj_freed(x, s->object_size); 1350 1351 freeptr = get_freepointer(s, x); 1352 /* 1353 * kasan_slab_free() may put x into memory quarantine, delaying its 1354 * reuse. In this case the object's freelist pointer is changed. 1355 */ 1356 kasan_slab_free(s, x); 1357 return freeptr; 1358 } 1359 1360 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1361 void *head, void *tail) 1362 { 1363 /* 1364 * Compiler cannot detect this function can be removed if slab_free_hook() 1365 * evaluates to nothing. Thus, catch all relevant config debug options here. 1366 */ 1367 #if defined(CONFIG_KMEMCHECK) || \ 1368 defined(CONFIG_LOCKDEP) || \ 1369 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1370 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1371 defined(CONFIG_KASAN) 1372 1373 void *object = head; 1374 void *tail_obj = tail ? : head; 1375 void *freeptr; 1376 1377 do { 1378 freeptr = slab_free_hook(s, object); 1379 } while ((object != tail_obj) && (object = freeptr)); 1380 #endif 1381 } 1382 1383 static void setup_object(struct kmem_cache *s, struct page *page, 1384 void *object) 1385 { 1386 setup_object_debug(s, page, object); 1387 kasan_init_slab_obj(s, object); 1388 if (unlikely(s->ctor)) { 1389 kasan_unpoison_object_data(s, object); 1390 s->ctor(object); 1391 kasan_poison_object_data(s, object); 1392 } 1393 } 1394 1395 /* 1396 * Slab allocation and freeing 1397 */ 1398 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1399 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1400 { 1401 struct page *page; 1402 int order = oo_order(oo); 1403 1404 flags |= __GFP_NOTRACK; 1405 1406 if (node == NUMA_NO_NODE) 1407 page = alloc_pages(flags, order); 1408 else 1409 page = __alloc_pages_node(node, flags, order); 1410 1411 if (page && memcg_charge_slab(page, flags, order, s)) { 1412 __free_pages(page, order); 1413 page = NULL; 1414 } 1415 1416 return page; 1417 } 1418 1419 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1420 /* Pre-initialize the random sequence cache */ 1421 static int init_cache_random_seq(struct kmem_cache *s) 1422 { 1423 int err; 1424 unsigned long i, count = oo_objects(s->oo); 1425 1426 err = cache_random_seq_create(s, count, GFP_KERNEL); 1427 if (err) { 1428 pr_err("SLUB: Unable to initialize free list for %s\n", 1429 s->name); 1430 return err; 1431 } 1432 1433 /* Transform to an offset on the set of pages */ 1434 if (s->random_seq) { 1435 for (i = 0; i < count; i++) 1436 s->random_seq[i] *= s->size; 1437 } 1438 return 0; 1439 } 1440 1441 /* Initialize each random sequence freelist per cache */ 1442 static void __init init_freelist_randomization(void) 1443 { 1444 struct kmem_cache *s; 1445 1446 mutex_lock(&slab_mutex); 1447 1448 list_for_each_entry(s, &slab_caches, list) 1449 init_cache_random_seq(s); 1450 1451 mutex_unlock(&slab_mutex); 1452 } 1453 1454 /* Get the next entry on the pre-computed freelist randomized */ 1455 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1456 unsigned long *pos, void *start, 1457 unsigned long page_limit, 1458 unsigned long freelist_count) 1459 { 1460 unsigned int idx; 1461 1462 /* 1463 * If the target page allocation failed, the number of objects on the 1464 * page might be smaller than the usual size defined by the cache. 1465 */ 1466 do { 1467 idx = s->random_seq[*pos]; 1468 *pos += 1; 1469 if (*pos >= freelist_count) 1470 *pos = 0; 1471 } while (unlikely(idx >= page_limit)); 1472 1473 return (char *)start + idx; 1474 } 1475 1476 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1477 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1478 { 1479 void *start; 1480 void *cur; 1481 void *next; 1482 unsigned long idx, pos, page_limit, freelist_count; 1483 1484 if (page->objects < 2 || !s->random_seq) 1485 return false; 1486 1487 freelist_count = oo_objects(s->oo); 1488 pos = get_random_int() % freelist_count; 1489 1490 page_limit = page->objects * s->size; 1491 start = fixup_red_left(s, page_address(page)); 1492 1493 /* First entry is used as the base of the freelist */ 1494 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1495 freelist_count); 1496 page->freelist = cur; 1497 1498 for (idx = 1; idx < page->objects; idx++) { 1499 setup_object(s, page, cur); 1500 next = next_freelist_entry(s, page, &pos, start, page_limit, 1501 freelist_count); 1502 set_freepointer(s, cur, next); 1503 cur = next; 1504 } 1505 setup_object(s, page, cur); 1506 set_freepointer(s, cur, NULL); 1507 1508 return true; 1509 } 1510 #else 1511 static inline int init_cache_random_seq(struct kmem_cache *s) 1512 { 1513 return 0; 1514 } 1515 static inline void init_freelist_randomization(void) { } 1516 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1517 { 1518 return false; 1519 } 1520 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1521 1522 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1523 { 1524 struct page *page; 1525 struct kmem_cache_order_objects oo = s->oo; 1526 gfp_t alloc_gfp; 1527 void *start, *p; 1528 int idx, order; 1529 bool shuffle; 1530 1531 flags &= gfp_allowed_mask; 1532 1533 if (gfpflags_allow_blocking(flags)) 1534 local_irq_enable(); 1535 1536 flags |= s->allocflags; 1537 1538 /* 1539 * Let the initial higher-order allocation fail under memory pressure 1540 * so we fall-back to the minimum order allocation. 1541 */ 1542 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1543 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1544 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1545 1546 page = alloc_slab_page(s, alloc_gfp, node, oo); 1547 if (unlikely(!page)) { 1548 oo = s->min; 1549 alloc_gfp = flags; 1550 /* 1551 * Allocation may have failed due to fragmentation. 1552 * Try a lower order alloc if possible 1553 */ 1554 page = alloc_slab_page(s, alloc_gfp, node, oo); 1555 if (unlikely(!page)) 1556 goto out; 1557 stat(s, ORDER_FALLBACK); 1558 } 1559 1560 if (kmemcheck_enabled && 1561 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1562 int pages = 1 << oo_order(oo); 1563 1564 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1565 1566 /* 1567 * Objects from caches that have a constructor don't get 1568 * cleared when they're allocated, so we need to do it here. 1569 */ 1570 if (s->ctor) 1571 kmemcheck_mark_uninitialized_pages(page, pages); 1572 else 1573 kmemcheck_mark_unallocated_pages(page, pages); 1574 } 1575 1576 page->objects = oo_objects(oo); 1577 1578 order = compound_order(page); 1579 page->slab_cache = s; 1580 __SetPageSlab(page); 1581 if (page_is_pfmemalloc(page)) 1582 SetPageSlabPfmemalloc(page); 1583 1584 start = page_address(page); 1585 1586 if (unlikely(s->flags & SLAB_POISON)) 1587 memset(start, POISON_INUSE, PAGE_SIZE << order); 1588 1589 kasan_poison_slab(page); 1590 1591 shuffle = shuffle_freelist(s, page); 1592 1593 if (!shuffle) { 1594 for_each_object_idx(p, idx, s, start, page->objects) { 1595 setup_object(s, page, p); 1596 if (likely(idx < page->objects)) 1597 set_freepointer(s, p, p + s->size); 1598 else 1599 set_freepointer(s, p, NULL); 1600 } 1601 page->freelist = fixup_red_left(s, start); 1602 } 1603 1604 page->inuse = page->objects; 1605 page->frozen = 1; 1606 1607 out: 1608 if (gfpflags_allow_blocking(flags)) 1609 local_irq_disable(); 1610 if (!page) 1611 return NULL; 1612 1613 mod_zone_page_state(page_zone(page), 1614 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1615 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1616 1 << oo_order(oo)); 1617 1618 inc_slabs_node(s, page_to_nid(page), page->objects); 1619 1620 return page; 1621 } 1622 1623 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1624 { 1625 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1626 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1627 flags &= ~GFP_SLAB_BUG_MASK; 1628 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1629 invalid_mask, &invalid_mask, flags, &flags); 1630 } 1631 1632 return allocate_slab(s, 1633 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1634 } 1635 1636 static void __free_slab(struct kmem_cache *s, struct page *page) 1637 { 1638 int order = compound_order(page); 1639 int pages = 1 << order; 1640 1641 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1642 void *p; 1643 1644 slab_pad_check(s, page); 1645 for_each_object(p, s, page_address(page), 1646 page->objects) 1647 check_object(s, page, p, SLUB_RED_INACTIVE); 1648 } 1649 1650 kmemcheck_free_shadow(page, compound_order(page)); 1651 1652 mod_zone_page_state(page_zone(page), 1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1655 -pages); 1656 1657 __ClearPageSlabPfmemalloc(page); 1658 __ClearPageSlab(page); 1659 1660 page_mapcount_reset(page); 1661 if (current->reclaim_state) 1662 current->reclaim_state->reclaimed_slab += pages; 1663 memcg_uncharge_slab(page, order, s); 1664 __free_pages(page, order); 1665 } 1666 1667 #define need_reserve_slab_rcu \ 1668 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1669 1670 static void rcu_free_slab(struct rcu_head *h) 1671 { 1672 struct page *page; 1673 1674 if (need_reserve_slab_rcu) 1675 page = virt_to_head_page(h); 1676 else 1677 page = container_of((struct list_head *)h, struct page, lru); 1678 1679 __free_slab(page->slab_cache, page); 1680 } 1681 1682 static void free_slab(struct kmem_cache *s, struct page *page) 1683 { 1684 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1685 struct rcu_head *head; 1686 1687 if (need_reserve_slab_rcu) { 1688 int order = compound_order(page); 1689 int offset = (PAGE_SIZE << order) - s->reserved; 1690 1691 VM_BUG_ON(s->reserved != sizeof(*head)); 1692 head = page_address(page) + offset; 1693 } else { 1694 head = &page->rcu_head; 1695 } 1696 1697 call_rcu(head, rcu_free_slab); 1698 } else 1699 __free_slab(s, page); 1700 } 1701 1702 static void discard_slab(struct kmem_cache *s, struct page *page) 1703 { 1704 dec_slabs_node(s, page_to_nid(page), page->objects); 1705 free_slab(s, page); 1706 } 1707 1708 /* 1709 * Management of partially allocated slabs. 1710 */ 1711 static inline void 1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1713 { 1714 n->nr_partial++; 1715 if (tail == DEACTIVATE_TO_TAIL) 1716 list_add_tail(&page->lru, &n->partial); 1717 else 1718 list_add(&page->lru, &n->partial); 1719 } 1720 1721 static inline void add_partial(struct kmem_cache_node *n, 1722 struct page *page, int tail) 1723 { 1724 lockdep_assert_held(&n->list_lock); 1725 __add_partial(n, page, tail); 1726 } 1727 1728 static inline void remove_partial(struct kmem_cache_node *n, 1729 struct page *page) 1730 { 1731 lockdep_assert_held(&n->list_lock); 1732 list_del(&page->lru); 1733 n->nr_partial--; 1734 } 1735 1736 /* 1737 * Remove slab from the partial list, freeze it and 1738 * return the pointer to the freelist. 1739 * 1740 * Returns a list of objects or NULL if it fails. 1741 */ 1742 static inline void *acquire_slab(struct kmem_cache *s, 1743 struct kmem_cache_node *n, struct page *page, 1744 int mode, int *objects) 1745 { 1746 void *freelist; 1747 unsigned long counters; 1748 struct page new; 1749 1750 lockdep_assert_held(&n->list_lock); 1751 1752 /* 1753 * Zap the freelist and set the frozen bit. 1754 * The old freelist is the list of objects for the 1755 * per cpu allocation list. 1756 */ 1757 freelist = page->freelist; 1758 counters = page->counters; 1759 new.counters = counters; 1760 *objects = new.objects - new.inuse; 1761 if (mode) { 1762 new.inuse = page->objects; 1763 new.freelist = NULL; 1764 } else { 1765 new.freelist = freelist; 1766 } 1767 1768 VM_BUG_ON(new.frozen); 1769 new.frozen = 1; 1770 1771 if (!__cmpxchg_double_slab(s, page, 1772 freelist, counters, 1773 new.freelist, new.counters, 1774 "acquire_slab")) 1775 return NULL; 1776 1777 remove_partial(n, page); 1778 WARN_ON(!freelist); 1779 return freelist; 1780 } 1781 1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1784 1785 /* 1786 * Try to allocate a partial slab from a specific node. 1787 */ 1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1789 struct kmem_cache_cpu *c, gfp_t flags) 1790 { 1791 struct page *page, *page2; 1792 void *object = NULL; 1793 int available = 0; 1794 int objects; 1795 1796 /* 1797 * Racy check. If we mistakenly see no partial slabs then we 1798 * just allocate an empty slab. If we mistakenly try to get a 1799 * partial slab and there is none available then get_partials() 1800 * will return NULL. 1801 */ 1802 if (!n || !n->nr_partial) 1803 return NULL; 1804 1805 spin_lock(&n->list_lock); 1806 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1807 void *t; 1808 1809 if (!pfmemalloc_match(page, flags)) 1810 continue; 1811 1812 t = acquire_slab(s, n, page, object == NULL, &objects); 1813 if (!t) 1814 break; 1815 1816 available += objects; 1817 if (!object) { 1818 c->page = page; 1819 stat(s, ALLOC_FROM_PARTIAL); 1820 object = t; 1821 } else { 1822 put_cpu_partial(s, page, 0); 1823 stat(s, CPU_PARTIAL_NODE); 1824 } 1825 if (!kmem_cache_has_cpu_partial(s) 1826 || available > s->cpu_partial / 2) 1827 break; 1828 1829 } 1830 spin_unlock(&n->list_lock); 1831 return object; 1832 } 1833 1834 /* 1835 * Get a page from somewhere. Search in increasing NUMA distances. 1836 */ 1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1838 struct kmem_cache_cpu *c) 1839 { 1840 #ifdef CONFIG_NUMA 1841 struct zonelist *zonelist; 1842 struct zoneref *z; 1843 struct zone *zone; 1844 enum zone_type high_zoneidx = gfp_zone(flags); 1845 void *object; 1846 unsigned int cpuset_mems_cookie; 1847 1848 /* 1849 * The defrag ratio allows a configuration of the tradeoffs between 1850 * inter node defragmentation and node local allocations. A lower 1851 * defrag_ratio increases the tendency to do local allocations 1852 * instead of attempting to obtain partial slabs from other nodes. 1853 * 1854 * If the defrag_ratio is set to 0 then kmalloc() always 1855 * returns node local objects. If the ratio is higher then kmalloc() 1856 * may return off node objects because partial slabs are obtained 1857 * from other nodes and filled up. 1858 * 1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1860 * (which makes defrag_ratio = 1000) then every (well almost) 1861 * allocation will first attempt to defrag slab caches on other nodes. 1862 * This means scanning over all nodes to look for partial slabs which 1863 * may be expensive if we do it every time we are trying to find a slab 1864 * with available objects. 1865 */ 1866 if (!s->remote_node_defrag_ratio || 1867 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1868 return NULL; 1869 1870 do { 1871 cpuset_mems_cookie = read_mems_allowed_begin(); 1872 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1874 struct kmem_cache_node *n; 1875 1876 n = get_node(s, zone_to_nid(zone)); 1877 1878 if (n && cpuset_zone_allowed(zone, flags) && 1879 n->nr_partial > s->min_partial) { 1880 object = get_partial_node(s, n, c, flags); 1881 if (object) { 1882 /* 1883 * Don't check read_mems_allowed_retry() 1884 * here - if mems_allowed was updated in 1885 * parallel, that was a harmless race 1886 * between allocation and the cpuset 1887 * update 1888 */ 1889 return object; 1890 } 1891 } 1892 } 1893 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1894 #endif 1895 return NULL; 1896 } 1897 1898 /* 1899 * Get a partial page, lock it and return it. 1900 */ 1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1902 struct kmem_cache_cpu *c) 1903 { 1904 void *object; 1905 int searchnode = node; 1906 1907 if (node == NUMA_NO_NODE) 1908 searchnode = numa_mem_id(); 1909 else if (!node_present_pages(node)) 1910 searchnode = node_to_mem_node(node); 1911 1912 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1913 if (object || node != NUMA_NO_NODE) 1914 return object; 1915 1916 return get_any_partial(s, flags, c); 1917 } 1918 1919 #ifdef CONFIG_PREEMPT 1920 /* 1921 * Calculate the next globally unique transaction for disambiguiation 1922 * during cmpxchg. The transactions start with the cpu number and are then 1923 * incremented by CONFIG_NR_CPUS. 1924 */ 1925 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1926 #else 1927 /* 1928 * No preemption supported therefore also no need to check for 1929 * different cpus. 1930 */ 1931 #define TID_STEP 1 1932 #endif 1933 1934 static inline unsigned long next_tid(unsigned long tid) 1935 { 1936 return tid + TID_STEP; 1937 } 1938 1939 static inline unsigned int tid_to_cpu(unsigned long tid) 1940 { 1941 return tid % TID_STEP; 1942 } 1943 1944 static inline unsigned long tid_to_event(unsigned long tid) 1945 { 1946 return tid / TID_STEP; 1947 } 1948 1949 static inline unsigned int init_tid(int cpu) 1950 { 1951 return cpu; 1952 } 1953 1954 static inline void note_cmpxchg_failure(const char *n, 1955 const struct kmem_cache *s, unsigned long tid) 1956 { 1957 #ifdef SLUB_DEBUG_CMPXCHG 1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1959 1960 pr_info("%s %s: cmpxchg redo ", n, s->name); 1961 1962 #ifdef CONFIG_PREEMPT 1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1964 pr_warn("due to cpu change %d -> %d\n", 1965 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1966 else 1967 #endif 1968 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1969 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1970 tid_to_event(tid), tid_to_event(actual_tid)); 1971 else 1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1973 actual_tid, tid, next_tid(tid)); 1974 #endif 1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1976 } 1977 1978 static void init_kmem_cache_cpus(struct kmem_cache *s) 1979 { 1980 int cpu; 1981 1982 for_each_possible_cpu(cpu) 1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1984 } 1985 1986 /* 1987 * Remove the cpu slab 1988 */ 1989 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1990 void *freelist) 1991 { 1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1994 int lock = 0; 1995 enum slab_modes l = M_NONE, m = M_NONE; 1996 void *nextfree; 1997 int tail = DEACTIVATE_TO_HEAD; 1998 struct page new; 1999 struct page old; 2000 2001 if (page->freelist) { 2002 stat(s, DEACTIVATE_REMOTE_FREES); 2003 tail = DEACTIVATE_TO_TAIL; 2004 } 2005 2006 /* 2007 * Stage one: Free all available per cpu objects back 2008 * to the page freelist while it is still frozen. Leave the 2009 * last one. 2010 * 2011 * There is no need to take the list->lock because the page 2012 * is still frozen. 2013 */ 2014 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2015 void *prior; 2016 unsigned long counters; 2017 2018 do { 2019 prior = page->freelist; 2020 counters = page->counters; 2021 set_freepointer(s, freelist, prior); 2022 new.counters = counters; 2023 new.inuse--; 2024 VM_BUG_ON(!new.frozen); 2025 2026 } while (!__cmpxchg_double_slab(s, page, 2027 prior, counters, 2028 freelist, new.counters, 2029 "drain percpu freelist")); 2030 2031 freelist = nextfree; 2032 } 2033 2034 /* 2035 * Stage two: Ensure that the page is unfrozen while the 2036 * list presence reflects the actual number of objects 2037 * during unfreeze. 2038 * 2039 * We setup the list membership and then perform a cmpxchg 2040 * with the count. If there is a mismatch then the page 2041 * is not unfrozen but the page is on the wrong list. 2042 * 2043 * Then we restart the process which may have to remove 2044 * the page from the list that we just put it on again 2045 * because the number of objects in the slab may have 2046 * changed. 2047 */ 2048 redo: 2049 2050 old.freelist = page->freelist; 2051 old.counters = page->counters; 2052 VM_BUG_ON(!old.frozen); 2053 2054 /* Determine target state of the slab */ 2055 new.counters = old.counters; 2056 if (freelist) { 2057 new.inuse--; 2058 set_freepointer(s, freelist, old.freelist); 2059 new.freelist = freelist; 2060 } else 2061 new.freelist = old.freelist; 2062 2063 new.frozen = 0; 2064 2065 if (!new.inuse && n->nr_partial >= s->min_partial) 2066 m = M_FREE; 2067 else if (new.freelist) { 2068 m = M_PARTIAL; 2069 if (!lock) { 2070 lock = 1; 2071 /* 2072 * Taking the spinlock removes the possiblity 2073 * that acquire_slab() will see a slab page that 2074 * is frozen 2075 */ 2076 spin_lock(&n->list_lock); 2077 } 2078 } else { 2079 m = M_FULL; 2080 if (kmem_cache_debug(s) && !lock) { 2081 lock = 1; 2082 /* 2083 * This also ensures that the scanning of full 2084 * slabs from diagnostic functions will not see 2085 * any frozen slabs. 2086 */ 2087 spin_lock(&n->list_lock); 2088 } 2089 } 2090 2091 if (l != m) { 2092 2093 if (l == M_PARTIAL) 2094 2095 remove_partial(n, page); 2096 2097 else if (l == M_FULL) 2098 2099 remove_full(s, n, page); 2100 2101 if (m == M_PARTIAL) { 2102 2103 add_partial(n, page, tail); 2104 stat(s, tail); 2105 2106 } else if (m == M_FULL) { 2107 2108 stat(s, DEACTIVATE_FULL); 2109 add_full(s, n, page); 2110 2111 } 2112 } 2113 2114 l = m; 2115 if (!__cmpxchg_double_slab(s, page, 2116 old.freelist, old.counters, 2117 new.freelist, new.counters, 2118 "unfreezing slab")) 2119 goto redo; 2120 2121 if (lock) 2122 spin_unlock(&n->list_lock); 2123 2124 if (m == M_FREE) { 2125 stat(s, DEACTIVATE_EMPTY); 2126 discard_slab(s, page); 2127 stat(s, FREE_SLAB); 2128 } 2129 } 2130 2131 /* 2132 * Unfreeze all the cpu partial slabs. 2133 * 2134 * This function must be called with interrupts disabled 2135 * for the cpu using c (or some other guarantee must be there 2136 * to guarantee no concurrent accesses). 2137 */ 2138 static void unfreeze_partials(struct kmem_cache *s, 2139 struct kmem_cache_cpu *c) 2140 { 2141 #ifdef CONFIG_SLUB_CPU_PARTIAL 2142 struct kmem_cache_node *n = NULL, *n2 = NULL; 2143 struct page *page, *discard_page = NULL; 2144 2145 while ((page = c->partial)) { 2146 struct page new; 2147 struct page old; 2148 2149 c->partial = page->next; 2150 2151 n2 = get_node(s, page_to_nid(page)); 2152 if (n != n2) { 2153 if (n) 2154 spin_unlock(&n->list_lock); 2155 2156 n = n2; 2157 spin_lock(&n->list_lock); 2158 } 2159 2160 do { 2161 2162 old.freelist = page->freelist; 2163 old.counters = page->counters; 2164 VM_BUG_ON(!old.frozen); 2165 2166 new.counters = old.counters; 2167 new.freelist = old.freelist; 2168 2169 new.frozen = 0; 2170 2171 } while (!__cmpxchg_double_slab(s, page, 2172 old.freelist, old.counters, 2173 new.freelist, new.counters, 2174 "unfreezing slab")); 2175 2176 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2177 page->next = discard_page; 2178 discard_page = page; 2179 } else { 2180 add_partial(n, page, DEACTIVATE_TO_TAIL); 2181 stat(s, FREE_ADD_PARTIAL); 2182 } 2183 } 2184 2185 if (n) 2186 spin_unlock(&n->list_lock); 2187 2188 while (discard_page) { 2189 page = discard_page; 2190 discard_page = discard_page->next; 2191 2192 stat(s, DEACTIVATE_EMPTY); 2193 discard_slab(s, page); 2194 stat(s, FREE_SLAB); 2195 } 2196 #endif 2197 } 2198 2199 /* 2200 * Put a page that was just frozen (in __slab_free) into a partial page 2201 * slot if available. This is done without interrupts disabled and without 2202 * preemption disabled. The cmpxchg is racy and may put the partial page 2203 * onto a random cpus partial slot. 2204 * 2205 * If we did not find a slot then simply move all the partials to the 2206 * per node partial list. 2207 */ 2208 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2209 { 2210 #ifdef CONFIG_SLUB_CPU_PARTIAL 2211 struct page *oldpage; 2212 int pages; 2213 int pobjects; 2214 2215 preempt_disable(); 2216 do { 2217 pages = 0; 2218 pobjects = 0; 2219 oldpage = this_cpu_read(s->cpu_slab->partial); 2220 2221 if (oldpage) { 2222 pobjects = oldpage->pobjects; 2223 pages = oldpage->pages; 2224 if (drain && pobjects > s->cpu_partial) { 2225 unsigned long flags; 2226 /* 2227 * partial array is full. Move the existing 2228 * set to the per node partial list. 2229 */ 2230 local_irq_save(flags); 2231 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2232 local_irq_restore(flags); 2233 oldpage = NULL; 2234 pobjects = 0; 2235 pages = 0; 2236 stat(s, CPU_PARTIAL_DRAIN); 2237 } 2238 } 2239 2240 pages++; 2241 pobjects += page->objects - page->inuse; 2242 2243 page->pages = pages; 2244 page->pobjects = pobjects; 2245 page->next = oldpage; 2246 2247 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2248 != oldpage); 2249 if (unlikely(!s->cpu_partial)) { 2250 unsigned long flags; 2251 2252 local_irq_save(flags); 2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2254 local_irq_restore(flags); 2255 } 2256 preempt_enable(); 2257 #endif 2258 } 2259 2260 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2261 { 2262 stat(s, CPUSLAB_FLUSH); 2263 deactivate_slab(s, c->page, c->freelist); 2264 2265 c->tid = next_tid(c->tid); 2266 c->page = NULL; 2267 c->freelist = NULL; 2268 } 2269 2270 /* 2271 * Flush cpu slab. 2272 * 2273 * Called from IPI handler with interrupts disabled. 2274 */ 2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2276 { 2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2278 2279 if (likely(c)) { 2280 if (c->page) 2281 flush_slab(s, c); 2282 2283 unfreeze_partials(s, c); 2284 } 2285 } 2286 2287 static void flush_cpu_slab(void *d) 2288 { 2289 struct kmem_cache *s = d; 2290 2291 __flush_cpu_slab(s, smp_processor_id()); 2292 } 2293 2294 static bool has_cpu_slab(int cpu, void *info) 2295 { 2296 struct kmem_cache *s = info; 2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2298 2299 return c->page || c->partial; 2300 } 2301 2302 static void flush_all(struct kmem_cache *s) 2303 { 2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2305 } 2306 2307 /* 2308 * Check if the objects in a per cpu structure fit numa 2309 * locality expectations. 2310 */ 2311 static inline int node_match(struct page *page, int node) 2312 { 2313 #ifdef CONFIG_NUMA 2314 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2315 return 0; 2316 #endif 2317 return 1; 2318 } 2319 2320 #ifdef CONFIG_SLUB_DEBUG 2321 static int count_free(struct page *page) 2322 { 2323 return page->objects - page->inuse; 2324 } 2325 2326 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2327 { 2328 return atomic_long_read(&n->total_objects); 2329 } 2330 #endif /* CONFIG_SLUB_DEBUG */ 2331 2332 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2333 static unsigned long count_partial(struct kmem_cache_node *n, 2334 int (*get_count)(struct page *)) 2335 { 2336 unsigned long flags; 2337 unsigned long x = 0; 2338 struct page *page; 2339 2340 spin_lock_irqsave(&n->list_lock, flags); 2341 list_for_each_entry(page, &n->partial, lru) 2342 x += get_count(page); 2343 spin_unlock_irqrestore(&n->list_lock, flags); 2344 return x; 2345 } 2346 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2347 2348 static noinline void 2349 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2350 { 2351 #ifdef CONFIG_SLUB_DEBUG 2352 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2353 DEFAULT_RATELIMIT_BURST); 2354 int node; 2355 struct kmem_cache_node *n; 2356 2357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2358 return; 2359 2360 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2361 nid, gfpflags, &gfpflags); 2362 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2363 s->name, s->object_size, s->size, oo_order(s->oo), 2364 oo_order(s->min)); 2365 2366 if (oo_order(s->min) > get_order(s->object_size)) 2367 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2368 s->name); 2369 2370 for_each_kmem_cache_node(s, node, n) { 2371 unsigned long nr_slabs; 2372 unsigned long nr_objs; 2373 unsigned long nr_free; 2374 2375 nr_free = count_partial(n, count_free); 2376 nr_slabs = node_nr_slabs(n); 2377 nr_objs = node_nr_objs(n); 2378 2379 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2380 node, nr_slabs, nr_objs, nr_free); 2381 } 2382 #endif 2383 } 2384 2385 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2386 int node, struct kmem_cache_cpu **pc) 2387 { 2388 void *freelist; 2389 struct kmem_cache_cpu *c = *pc; 2390 struct page *page; 2391 2392 freelist = get_partial(s, flags, node, c); 2393 2394 if (freelist) 2395 return freelist; 2396 2397 page = new_slab(s, flags, node); 2398 if (page) { 2399 c = raw_cpu_ptr(s->cpu_slab); 2400 if (c->page) 2401 flush_slab(s, c); 2402 2403 /* 2404 * No other reference to the page yet so we can 2405 * muck around with it freely without cmpxchg 2406 */ 2407 freelist = page->freelist; 2408 page->freelist = NULL; 2409 2410 stat(s, ALLOC_SLAB); 2411 c->page = page; 2412 *pc = c; 2413 } else 2414 freelist = NULL; 2415 2416 return freelist; 2417 } 2418 2419 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2420 { 2421 if (unlikely(PageSlabPfmemalloc(page))) 2422 return gfp_pfmemalloc_allowed(gfpflags); 2423 2424 return true; 2425 } 2426 2427 /* 2428 * Check the page->freelist of a page and either transfer the freelist to the 2429 * per cpu freelist or deactivate the page. 2430 * 2431 * The page is still frozen if the return value is not NULL. 2432 * 2433 * If this function returns NULL then the page has been unfrozen. 2434 * 2435 * This function must be called with interrupt disabled. 2436 */ 2437 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2438 { 2439 struct page new; 2440 unsigned long counters; 2441 void *freelist; 2442 2443 do { 2444 freelist = page->freelist; 2445 counters = page->counters; 2446 2447 new.counters = counters; 2448 VM_BUG_ON(!new.frozen); 2449 2450 new.inuse = page->objects; 2451 new.frozen = freelist != NULL; 2452 2453 } while (!__cmpxchg_double_slab(s, page, 2454 freelist, counters, 2455 NULL, new.counters, 2456 "get_freelist")); 2457 2458 return freelist; 2459 } 2460 2461 /* 2462 * Slow path. The lockless freelist is empty or we need to perform 2463 * debugging duties. 2464 * 2465 * Processing is still very fast if new objects have been freed to the 2466 * regular freelist. In that case we simply take over the regular freelist 2467 * as the lockless freelist and zap the regular freelist. 2468 * 2469 * If that is not working then we fall back to the partial lists. We take the 2470 * first element of the freelist as the object to allocate now and move the 2471 * rest of the freelist to the lockless freelist. 2472 * 2473 * And if we were unable to get a new slab from the partial slab lists then 2474 * we need to allocate a new slab. This is the slowest path since it involves 2475 * a call to the page allocator and the setup of a new slab. 2476 * 2477 * Version of __slab_alloc to use when we know that interrupts are 2478 * already disabled (which is the case for bulk allocation). 2479 */ 2480 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2481 unsigned long addr, struct kmem_cache_cpu *c) 2482 { 2483 void *freelist; 2484 struct page *page; 2485 2486 page = c->page; 2487 if (!page) 2488 goto new_slab; 2489 redo: 2490 2491 if (unlikely(!node_match(page, node))) { 2492 int searchnode = node; 2493 2494 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2495 searchnode = node_to_mem_node(node); 2496 2497 if (unlikely(!node_match(page, searchnode))) { 2498 stat(s, ALLOC_NODE_MISMATCH); 2499 deactivate_slab(s, page, c->freelist); 2500 c->page = NULL; 2501 c->freelist = NULL; 2502 goto new_slab; 2503 } 2504 } 2505 2506 /* 2507 * By rights, we should be searching for a slab page that was 2508 * PFMEMALLOC but right now, we are losing the pfmemalloc 2509 * information when the page leaves the per-cpu allocator 2510 */ 2511 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2512 deactivate_slab(s, page, c->freelist); 2513 c->page = NULL; 2514 c->freelist = NULL; 2515 goto new_slab; 2516 } 2517 2518 /* must check again c->freelist in case of cpu migration or IRQ */ 2519 freelist = c->freelist; 2520 if (freelist) 2521 goto load_freelist; 2522 2523 freelist = get_freelist(s, page); 2524 2525 if (!freelist) { 2526 c->page = NULL; 2527 stat(s, DEACTIVATE_BYPASS); 2528 goto new_slab; 2529 } 2530 2531 stat(s, ALLOC_REFILL); 2532 2533 load_freelist: 2534 /* 2535 * freelist is pointing to the list of objects to be used. 2536 * page is pointing to the page from which the objects are obtained. 2537 * That page must be frozen for per cpu allocations to work. 2538 */ 2539 VM_BUG_ON(!c->page->frozen); 2540 c->freelist = get_freepointer(s, freelist); 2541 c->tid = next_tid(c->tid); 2542 return freelist; 2543 2544 new_slab: 2545 2546 if (c->partial) { 2547 page = c->page = c->partial; 2548 c->partial = page->next; 2549 stat(s, CPU_PARTIAL_ALLOC); 2550 c->freelist = NULL; 2551 goto redo; 2552 } 2553 2554 freelist = new_slab_objects(s, gfpflags, node, &c); 2555 2556 if (unlikely(!freelist)) { 2557 slab_out_of_memory(s, gfpflags, node); 2558 return NULL; 2559 } 2560 2561 page = c->page; 2562 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2563 goto load_freelist; 2564 2565 /* Only entered in the debug case */ 2566 if (kmem_cache_debug(s) && 2567 !alloc_debug_processing(s, page, freelist, addr)) 2568 goto new_slab; /* Slab failed checks. Next slab needed */ 2569 2570 deactivate_slab(s, page, get_freepointer(s, freelist)); 2571 c->page = NULL; 2572 c->freelist = NULL; 2573 return freelist; 2574 } 2575 2576 /* 2577 * Another one that disabled interrupt and compensates for possible 2578 * cpu changes by refetching the per cpu area pointer. 2579 */ 2580 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2581 unsigned long addr, struct kmem_cache_cpu *c) 2582 { 2583 void *p; 2584 unsigned long flags; 2585 2586 local_irq_save(flags); 2587 #ifdef CONFIG_PREEMPT 2588 /* 2589 * We may have been preempted and rescheduled on a different 2590 * cpu before disabling interrupts. Need to reload cpu area 2591 * pointer. 2592 */ 2593 c = this_cpu_ptr(s->cpu_slab); 2594 #endif 2595 2596 p = ___slab_alloc(s, gfpflags, node, addr, c); 2597 local_irq_restore(flags); 2598 return p; 2599 } 2600 2601 /* 2602 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2603 * have the fastpath folded into their functions. So no function call 2604 * overhead for requests that can be satisfied on the fastpath. 2605 * 2606 * The fastpath works by first checking if the lockless freelist can be used. 2607 * If not then __slab_alloc is called for slow processing. 2608 * 2609 * Otherwise we can simply pick the next object from the lockless free list. 2610 */ 2611 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2612 gfp_t gfpflags, int node, unsigned long addr) 2613 { 2614 void *object; 2615 struct kmem_cache_cpu *c; 2616 struct page *page; 2617 unsigned long tid; 2618 2619 s = slab_pre_alloc_hook(s, gfpflags); 2620 if (!s) 2621 return NULL; 2622 redo: 2623 /* 2624 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2625 * enabled. We may switch back and forth between cpus while 2626 * reading from one cpu area. That does not matter as long 2627 * as we end up on the original cpu again when doing the cmpxchg. 2628 * 2629 * We should guarantee that tid and kmem_cache are retrieved on 2630 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2631 * to check if it is matched or not. 2632 */ 2633 do { 2634 tid = this_cpu_read(s->cpu_slab->tid); 2635 c = raw_cpu_ptr(s->cpu_slab); 2636 } while (IS_ENABLED(CONFIG_PREEMPT) && 2637 unlikely(tid != READ_ONCE(c->tid))); 2638 2639 /* 2640 * Irqless object alloc/free algorithm used here depends on sequence 2641 * of fetching cpu_slab's data. tid should be fetched before anything 2642 * on c to guarantee that object and page associated with previous tid 2643 * won't be used with current tid. If we fetch tid first, object and 2644 * page could be one associated with next tid and our alloc/free 2645 * request will be failed. In this case, we will retry. So, no problem. 2646 */ 2647 barrier(); 2648 2649 /* 2650 * The transaction ids are globally unique per cpu and per operation on 2651 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2652 * occurs on the right processor and that there was no operation on the 2653 * linked list in between. 2654 */ 2655 2656 object = c->freelist; 2657 page = c->page; 2658 if (unlikely(!object || !node_match(page, node))) { 2659 object = __slab_alloc(s, gfpflags, node, addr, c); 2660 stat(s, ALLOC_SLOWPATH); 2661 } else { 2662 void *next_object = get_freepointer_safe(s, object); 2663 2664 /* 2665 * The cmpxchg will only match if there was no additional 2666 * operation and if we are on the right processor. 2667 * 2668 * The cmpxchg does the following atomically (without lock 2669 * semantics!) 2670 * 1. Relocate first pointer to the current per cpu area. 2671 * 2. Verify that tid and freelist have not been changed 2672 * 3. If they were not changed replace tid and freelist 2673 * 2674 * Since this is without lock semantics the protection is only 2675 * against code executing on this cpu *not* from access by 2676 * other cpus. 2677 */ 2678 if (unlikely(!this_cpu_cmpxchg_double( 2679 s->cpu_slab->freelist, s->cpu_slab->tid, 2680 object, tid, 2681 next_object, next_tid(tid)))) { 2682 2683 note_cmpxchg_failure("slab_alloc", s, tid); 2684 goto redo; 2685 } 2686 prefetch_freepointer(s, next_object); 2687 stat(s, ALLOC_FASTPATH); 2688 } 2689 2690 if (unlikely(gfpflags & __GFP_ZERO) && object) 2691 memset(object, 0, s->object_size); 2692 2693 slab_post_alloc_hook(s, gfpflags, 1, &object); 2694 2695 return object; 2696 } 2697 2698 static __always_inline void *slab_alloc(struct kmem_cache *s, 2699 gfp_t gfpflags, unsigned long addr) 2700 { 2701 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2702 } 2703 2704 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2705 { 2706 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2707 2708 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2709 s->size, gfpflags); 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL(kmem_cache_alloc); 2714 2715 #ifdef CONFIG_TRACING 2716 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2717 { 2718 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2719 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2720 kasan_kmalloc(s, ret, size, gfpflags); 2721 return ret; 2722 } 2723 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2724 #endif 2725 2726 #ifdef CONFIG_NUMA 2727 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2728 { 2729 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2730 2731 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2732 s->object_size, s->size, gfpflags, node); 2733 2734 return ret; 2735 } 2736 EXPORT_SYMBOL(kmem_cache_alloc_node); 2737 2738 #ifdef CONFIG_TRACING 2739 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2740 gfp_t gfpflags, 2741 int node, size_t size) 2742 { 2743 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2744 2745 trace_kmalloc_node(_RET_IP_, ret, 2746 size, s->size, gfpflags, node); 2747 2748 kasan_kmalloc(s, ret, size, gfpflags); 2749 return ret; 2750 } 2751 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2752 #endif 2753 #endif 2754 2755 /* 2756 * Slow path handling. This may still be called frequently since objects 2757 * have a longer lifetime than the cpu slabs in most processing loads. 2758 * 2759 * So we still attempt to reduce cache line usage. Just take the slab 2760 * lock and free the item. If there is no additional partial page 2761 * handling required then we can return immediately. 2762 */ 2763 static void __slab_free(struct kmem_cache *s, struct page *page, 2764 void *head, void *tail, int cnt, 2765 unsigned long addr) 2766 2767 { 2768 void *prior; 2769 int was_frozen; 2770 struct page new; 2771 unsigned long counters; 2772 struct kmem_cache_node *n = NULL; 2773 unsigned long uninitialized_var(flags); 2774 2775 stat(s, FREE_SLOWPATH); 2776 2777 if (kmem_cache_debug(s) && 2778 !free_debug_processing(s, page, head, tail, cnt, addr)) 2779 return; 2780 2781 do { 2782 if (unlikely(n)) { 2783 spin_unlock_irqrestore(&n->list_lock, flags); 2784 n = NULL; 2785 } 2786 prior = page->freelist; 2787 counters = page->counters; 2788 set_freepointer(s, tail, prior); 2789 new.counters = counters; 2790 was_frozen = new.frozen; 2791 new.inuse -= cnt; 2792 if ((!new.inuse || !prior) && !was_frozen) { 2793 2794 if (kmem_cache_has_cpu_partial(s) && !prior) { 2795 2796 /* 2797 * Slab was on no list before and will be 2798 * partially empty 2799 * We can defer the list move and instead 2800 * freeze it. 2801 */ 2802 new.frozen = 1; 2803 2804 } else { /* Needs to be taken off a list */ 2805 2806 n = get_node(s, page_to_nid(page)); 2807 /* 2808 * Speculatively acquire the list_lock. 2809 * If the cmpxchg does not succeed then we may 2810 * drop the list_lock without any processing. 2811 * 2812 * Otherwise the list_lock will synchronize with 2813 * other processors updating the list of slabs. 2814 */ 2815 spin_lock_irqsave(&n->list_lock, flags); 2816 2817 } 2818 } 2819 2820 } while (!cmpxchg_double_slab(s, page, 2821 prior, counters, 2822 head, new.counters, 2823 "__slab_free")); 2824 2825 if (likely(!n)) { 2826 2827 /* 2828 * If we just froze the page then put it onto the 2829 * per cpu partial list. 2830 */ 2831 if (new.frozen && !was_frozen) { 2832 put_cpu_partial(s, page, 1); 2833 stat(s, CPU_PARTIAL_FREE); 2834 } 2835 /* 2836 * The list lock was not taken therefore no list 2837 * activity can be necessary. 2838 */ 2839 if (was_frozen) 2840 stat(s, FREE_FROZEN); 2841 return; 2842 } 2843 2844 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2845 goto slab_empty; 2846 2847 /* 2848 * Objects left in the slab. If it was not on the partial list before 2849 * then add it. 2850 */ 2851 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2852 if (kmem_cache_debug(s)) 2853 remove_full(s, n, page); 2854 add_partial(n, page, DEACTIVATE_TO_TAIL); 2855 stat(s, FREE_ADD_PARTIAL); 2856 } 2857 spin_unlock_irqrestore(&n->list_lock, flags); 2858 return; 2859 2860 slab_empty: 2861 if (prior) { 2862 /* 2863 * Slab on the partial list. 2864 */ 2865 remove_partial(n, page); 2866 stat(s, FREE_REMOVE_PARTIAL); 2867 } else { 2868 /* Slab must be on the full list */ 2869 remove_full(s, n, page); 2870 } 2871 2872 spin_unlock_irqrestore(&n->list_lock, flags); 2873 stat(s, FREE_SLAB); 2874 discard_slab(s, page); 2875 } 2876 2877 /* 2878 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2879 * can perform fastpath freeing without additional function calls. 2880 * 2881 * The fastpath is only possible if we are freeing to the current cpu slab 2882 * of this processor. This typically the case if we have just allocated 2883 * the item before. 2884 * 2885 * If fastpath is not possible then fall back to __slab_free where we deal 2886 * with all sorts of special processing. 2887 * 2888 * Bulk free of a freelist with several objects (all pointing to the 2889 * same page) possible by specifying head and tail ptr, plus objects 2890 * count (cnt). Bulk free indicated by tail pointer being set. 2891 */ 2892 static __always_inline void do_slab_free(struct kmem_cache *s, 2893 struct page *page, void *head, void *tail, 2894 int cnt, unsigned long addr) 2895 { 2896 void *tail_obj = tail ? : head; 2897 struct kmem_cache_cpu *c; 2898 unsigned long tid; 2899 redo: 2900 /* 2901 * Determine the currently cpus per cpu slab. 2902 * The cpu may change afterward. However that does not matter since 2903 * data is retrieved via this pointer. If we are on the same cpu 2904 * during the cmpxchg then the free will succeed. 2905 */ 2906 do { 2907 tid = this_cpu_read(s->cpu_slab->tid); 2908 c = raw_cpu_ptr(s->cpu_slab); 2909 } while (IS_ENABLED(CONFIG_PREEMPT) && 2910 unlikely(tid != READ_ONCE(c->tid))); 2911 2912 /* Same with comment on barrier() in slab_alloc_node() */ 2913 barrier(); 2914 2915 if (likely(page == c->page)) { 2916 set_freepointer(s, tail_obj, c->freelist); 2917 2918 if (unlikely(!this_cpu_cmpxchg_double( 2919 s->cpu_slab->freelist, s->cpu_slab->tid, 2920 c->freelist, tid, 2921 head, next_tid(tid)))) { 2922 2923 note_cmpxchg_failure("slab_free", s, tid); 2924 goto redo; 2925 } 2926 stat(s, FREE_FASTPATH); 2927 } else 2928 __slab_free(s, page, head, tail_obj, cnt, addr); 2929 2930 } 2931 2932 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2933 void *head, void *tail, int cnt, 2934 unsigned long addr) 2935 { 2936 slab_free_freelist_hook(s, head, tail); 2937 /* 2938 * slab_free_freelist_hook() could have put the items into quarantine. 2939 * If so, no need to free them. 2940 */ 2941 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU)) 2942 return; 2943 do_slab_free(s, page, head, tail, cnt, addr); 2944 } 2945 2946 #ifdef CONFIG_KASAN 2947 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2948 { 2949 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2950 } 2951 #endif 2952 2953 void kmem_cache_free(struct kmem_cache *s, void *x) 2954 { 2955 s = cache_from_obj(s, x); 2956 if (!s) 2957 return; 2958 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2959 trace_kmem_cache_free(_RET_IP_, x); 2960 } 2961 EXPORT_SYMBOL(kmem_cache_free); 2962 2963 struct detached_freelist { 2964 struct page *page; 2965 void *tail; 2966 void *freelist; 2967 int cnt; 2968 struct kmem_cache *s; 2969 }; 2970 2971 /* 2972 * This function progressively scans the array with free objects (with 2973 * a limited look ahead) and extract objects belonging to the same 2974 * page. It builds a detached freelist directly within the given 2975 * page/objects. This can happen without any need for 2976 * synchronization, because the objects are owned by running process. 2977 * The freelist is build up as a single linked list in the objects. 2978 * The idea is, that this detached freelist can then be bulk 2979 * transferred to the real freelist(s), but only requiring a single 2980 * synchronization primitive. Look ahead in the array is limited due 2981 * to performance reasons. 2982 */ 2983 static inline 2984 int build_detached_freelist(struct kmem_cache *s, size_t size, 2985 void **p, struct detached_freelist *df) 2986 { 2987 size_t first_skipped_index = 0; 2988 int lookahead = 3; 2989 void *object; 2990 struct page *page; 2991 2992 /* Always re-init detached_freelist */ 2993 df->page = NULL; 2994 2995 do { 2996 object = p[--size]; 2997 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 2998 } while (!object && size); 2999 3000 if (!object) 3001 return 0; 3002 3003 page = virt_to_head_page(object); 3004 if (!s) { 3005 /* Handle kalloc'ed objects */ 3006 if (unlikely(!PageSlab(page))) { 3007 BUG_ON(!PageCompound(page)); 3008 kfree_hook(object); 3009 __free_pages(page, compound_order(page)); 3010 p[size] = NULL; /* mark object processed */ 3011 return size; 3012 } 3013 /* Derive kmem_cache from object */ 3014 df->s = page->slab_cache; 3015 } else { 3016 df->s = cache_from_obj(s, object); /* Support for memcg */ 3017 } 3018 3019 /* Start new detached freelist */ 3020 df->page = page; 3021 set_freepointer(df->s, object, NULL); 3022 df->tail = object; 3023 df->freelist = object; 3024 p[size] = NULL; /* mark object processed */ 3025 df->cnt = 1; 3026 3027 while (size) { 3028 object = p[--size]; 3029 if (!object) 3030 continue; /* Skip processed objects */ 3031 3032 /* df->page is always set at this point */ 3033 if (df->page == virt_to_head_page(object)) { 3034 /* Opportunity build freelist */ 3035 set_freepointer(df->s, object, df->freelist); 3036 df->freelist = object; 3037 df->cnt++; 3038 p[size] = NULL; /* mark object processed */ 3039 3040 continue; 3041 } 3042 3043 /* Limit look ahead search */ 3044 if (!--lookahead) 3045 break; 3046 3047 if (!first_skipped_index) 3048 first_skipped_index = size + 1; 3049 } 3050 3051 return first_skipped_index; 3052 } 3053 3054 /* Note that interrupts must be enabled when calling this function. */ 3055 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3056 { 3057 if (WARN_ON(!size)) 3058 return; 3059 3060 do { 3061 struct detached_freelist df; 3062 3063 size = build_detached_freelist(s, size, p, &df); 3064 if (unlikely(!df.page)) 3065 continue; 3066 3067 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3068 } while (likely(size)); 3069 } 3070 EXPORT_SYMBOL(kmem_cache_free_bulk); 3071 3072 /* Note that interrupts must be enabled when calling this function. */ 3073 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3074 void **p) 3075 { 3076 struct kmem_cache_cpu *c; 3077 int i; 3078 3079 /* memcg and kmem_cache debug support */ 3080 s = slab_pre_alloc_hook(s, flags); 3081 if (unlikely(!s)) 3082 return false; 3083 /* 3084 * Drain objects in the per cpu slab, while disabling local 3085 * IRQs, which protects against PREEMPT and interrupts 3086 * handlers invoking normal fastpath. 3087 */ 3088 local_irq_disable(); 3089 c = this_cpu_ptr(s->cpu_slab); 3090 3091 for (i = 0; i < size; i++) { 3092 void *object = c->freelist; 3093 3094 if (unlikely(!object)) { 3095 /* 3096 * Invoking slow path likely have side-effect 3097 * of re-populating per CPU c->freelist 3098 */ 3099 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3100 _RET_IP_, c); 3101 if (unlikely(!p[i])) 3102 goto error; 3103 3104 c = this_cpu_ptr(s->cpu_slab); 3105 continue; /* goto for-loop */ 3106 } 3107 c->freelist = get_freepointer(s, object); 3108 p[i] = object; 3109 } 3110 c->tid = next_tid(c->tid); 3111 local_irq_enable(); 3112 3113 /* Clear memory outside IRQ disabled fastpath loop */ 3114 if (unlikely(flags & __GFP_ZERO)) { 3115 int j; 3116 3117 for (j = 0; j < i; j++) 3118 memset(p[j], 0, s->object_size); 3119 } 3120 3121 /* memcg and kmem_cache debug support */ 3122 slab_post_alloc_hook(s, flags, size, p); 3123 return i; 3124 error: 3125 local_irq_enable(); 3126 slab_post_alloc_hook(s, flags, i, p); 3127 __kmem_cache_free_bulk(s, i, p); 3128 return 0; 3129 } 3130 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3131 3132 3133 /* 3134 * Object placement in a slab is made very easy because we always start at 3135 * offset 0. If we tune the size of the object to the alignment then we can 3136 * get the required alignment by putting one properly sized object after 3137 * another. 3138 * 3139 * Notice that the allocation order determines the sizes of the per cpu 3140 * caches. Each processor has always one slab available for allocations. 3141 * Increasing the allocation order reduces the number of times that slabs 3142 * must be moved on and off the partial lists and is therefore a factor in 3143 * locking overhead. 3144 */ 3145 3146 /* 3147 * Mininum / Maximum order of slab pages. This influences locking overhead 3148 * and slab fragmentation. A higher order reduces the number of partial slabs 3149 * and increases the number of allocations possible without having to 3150 * take the list_lock. 3151 */ 3152 static int slub_min_order; 3153 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3154 static int slub_min_objects; 3155 3156 /* 3157 * Calculate the order of allocation given an slab object size. 3158 * 3159 * The order of allocation has significant impact on performance and other 3160 * system components. Generally order 0 allocations should be preferred since 3161 * order 0 does not cause fragmentation in the page allocator. Larger objects 3162 * be problematic to put into order 0 slabs because there may be too much 3163 * unused space left. We go to a higher order if more than 1/16th of the slab 3164 * would be wasted. 3165 * 3166 * In order to reach satisfactory performance we must ensure that a minimum 3167 * number of objects is in one slab. Otherwise we may generate too much 3168 * activity on the partial lists which requires taking the list_lock. This is 3169 * less a concern for large slabs though which are rarely used. 3170 * 3171 * slub_max_order specifies the order where we begin to stop considering the 3172 * number of objects in a slab as critical. If we reach slub_max_order then 3173 * we try to keep the page order as low as possible. So we accept more waste 3174 * of space in favor of a small page order. 3175 * 3176 * Higher order allocations also allow the placement of more objects in a 3177 * slab and thereby reduce object handling overhead. If the user has 3178 * requested a higher mininum order then we start with that one instead of 3179 * the smallest order which will fit the object. 3180 */ 3181 static inline int slab_order(int size, int min_objects, 3182 int max_order, int fract_leftover, int reserved) 3183 { 3184 int order; 3185 int rem; 3186 int min_order = slub_min_order; 3187 3188 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3189 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3190 3191 for (order = max(min_order, get_order(min_objects * size + reserved)); 3192 order <= max_order; order++) { 3193 3194 unsigned long slab_size = PAGE_SIZE << order; 3195 3196 rem = (slab_size - reserved) % size; 3197 3198 if (rem <= slab_size / fract_leftover) 3199 break; 3200 } 3201 3202 return order; 3203 } 3204 3205 static inline int calculate_order(int size, int reserved) 3206 { 3207 int order; 3208 int min_objects; 3209 int fraction; 3210 int max_objects; 3211 3212 /* 3213 * Attempt to find best configuration for a slab. This 3214 * works by first attempting to generate a layout with 3215 * the best configuration and backing off gradually. 3216 * 3217 * First we increase the acceptable waste in a slab. Then 3218 * we reduce the minimum objects required in a slab. 3219 */ 3220 min_objects = slub_min_objects; 3221 if (!min_objects) 3222 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3223 max_objects = order_objects(slub_max_order, size, reserved); 3224 min_objects = min(min_objects, max_objects); 3225 3226 while (min_objects > 1) { 3227 fraction = 16; 3228 while (fraction >= 4) { 3229 order = slab_order(size, min_objects, 3230 slub_max_order, fraction, reserved); 3231 if (order <= slub_max_order) 3232 return order; 3233 fraction /= 2; 3234 } 3235 min_objects--; 3236 } 3237 3238 /* 3239 * We were unable to place multiple objects in a slab. Now 3240 * lets see if we can place a single object there. 3241 */ 3242 order = slab_order(size, 1, slub_max_order, 1, reserved); 3243 if (order <= slub_max_order) 3244 return order; 3245 3246 /* 3247 * Doh this slab cannot be placed using slub_max_order. 3248 */ 3249 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3250 if (order < MAX_ORDER) 3251 return order; 3252 return -ENOSYS; 3253 } 3254 3255 static void 3256 init_kmem_cache_node(struct kmem_cache_node *n) 3257 { 3258 n->nr_partial = 0; 3259 spin_lock_init(&n->list_lock); 3260 INIT_LIST_HEAD(&n->partial); 3261 #ifdef CONFIG_SLUB_DEBUG 3262 atomic_long_set(&n->nr_slabs, 0); 3263 atomic_long_set(&n->total_objects, 0); 3264 INIT_LIST_HEAD(&n->full); 3265 #endif 3266 } 3267 3268 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3269 { 3270 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3271 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3272 3273 /* 3274 * Must align to double word boundary for the double cmpxchg 3275 * instructions to work; see __pcpu_double_call_return_bool(). 3276 */ 3277 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3278 2 * sizeof(void *)); 3279 3280 if (!s->cpu_slab) 3281 return 0; 3282 3283 init_kmem_cache_cpus(s); 3284 3285 return 1; 3286 } 3287 3288 static struct kmem_cache *kmem_cache_node; 3289 3290 /* 3291 * No kmalloc_node yet so do it by hand. We know that this is the first 3292 * slab on the node for this slabcache. There are no concurrent accesses 3293 * possible. 3294 * 3295 * Note that this function only works on the kmem_cache_node 3296 * when allocating for the kmem_cache_node. This is used for bootstrapping 3297 * memory on a fresh node that has no slab structures yet. 3298 */ 3299 static void early_kmem_cache_node_alloc(int node) 3300 { 3301 struct page *page; 3302 struct kmem_cache_node *n; 3303 3304 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3305 3306 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3307 3308 BUG_ON(!page); 3309 if (page_to_nid(page) != node) { 3310 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3311 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3312 } 3313 3314 n = page->freelist; 3315 BUG_ON(!n); 3316 page->freelist = get_freepointer(kmem_cache_node, n); 3317 page->inuse = 1; 3318 page->frozen = 0; 3319 kmem_cache_node->node[node] = n; 3320 #ifdef CONFIG_SLUB_DEBUG 3321 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3322 init_tracking(kmem_cache_node, n); 3323 #endif 3324 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3325 GFP_KERNEL); 3326 init_kmem_cache_node(n); 3327 inc_slabs_node(kmem_cache_node, node, page->objects); 3328 3329 /* 3330 * No locks need to be taken here as it has just been 3331 * initialized and there is no concurrent access. 3332 */ 3333 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3334 } 3335 3336 static void free_kmem_cache_nodes(struct kmem_cache *s) 3337 { 3338 int node; 3339 struct kmem_cache_node *n; 3340 3341 for_each_kmem_cache_node(s, node, n) { 3342 kmem_cache_free(kmem_cache_node, n); 3343 s->node[node] = NULL; 3344 } 3345 } 3346 3347 void __kmem_cache_release(struct kmem_cache *s) 3348 { 3349 cache_random_seq_destroy(s); 3350 free_percpu(s->cpu_slab); 3351 free_kmem_cache_nodes(s); 3352 } 3353 3354 static int init_kmem_cache_nodes(struct kmem_cache *s) 3355 { 3356 int node; 3357 3358 for_each_node_state(node, N_NORMAL_MEMORY) { 3359 struct kmem_cache_node *n; 3360 3361 if (slab_state == DOWN) { 3362 early_kmem_cache_node_alloc(node); 3363 continue; 3364 } 3365 n = kmem_cache_alloc_node(kmem_cache_node, 3366 GFP_KERNEL, node); 3367 3368 if (!n) { 3369 free_kmem_cache_nodes(s); 3370 return 0; 3371 } 3372 3373 s->node[node] = n; 3374 init_kmem_cache_node(n); 3375 } 3376 return 1; 3377 } 3378 3379 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3380 { 3381 if (min < MIN_PARTIAL) 3382 min = MIN_PARTIAL; 3383 else if (min > MAX_PARTIAL) 3384 min = MAX_PARTIAL; 3385 s->min_partial = min; 3386 } 3387 3388 /* 3389 * calculate_sizes() determines the order and the distribution of data within 3390 * a slab object. 3391 */ 3392 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3393 { 3394 unsigned long flags = s->flags; 3395 size_t size = s->object_size; 3396 int order; 3397 3398 /* 3399 * Round up object size to the next word boundary. We can only 3400 * place the free pointer at word boundaries and this determines 3401 * the possible location of the free pointer. 3402 */ 3403 size = ALIGN(size, sizeof(void *)); 3404 3405 #ifdef CONFIG_SLUB_DEBUG 3406 /* 3407 * Determine if we can poison the object itself. If the user of 3408 * the slab may touch the object after free or before allocation 3409 * then we should never poison the object itself. 3410 */ 3411 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3412 !s->ctor) 3413 s->flags |= __OBJECT_POISON; 3414 else 3415 s->flags &= ~__OBJECT_POISON; 3416 3417 3418 /* 3419 * If we are Redzoning then check if there is some space between the 3420 * end of the object and the free pointer. If not then add an 3421 * additional word to have some bytes to store Redzone information. 3422 */ 3423 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3424 size += sizeof(void *); 3425 #endif 3426 3427 /* 3428 * With that we have determined the number of bytes in actual use 3429 * by the object. This is the potential offset to the free pointer. 3430 */ 3431 s->inuse = size; 3432 3433 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3434 s->ctor)) { 3435 /* 3436 * Relocate free pointer after the object if it is not 3437 * permitted to overwrite the first word of the object on 3438 * kmem_cache_free. 3439 * 3440 * This is the case if we do RCU, have a constructor or 3441 * destructor or are poisoning the objects. 3442 */ 3443 s->offset = size; 3444 size += sizeof(void *); 3445 } 3446 3447 #ifdef CONFIG_SLUB_DEBUG 3448 if (flags & SLAB_STORE_USER) 3449 /* 3450 * Need to store information about allocs and frees after 3451 * the object. 3452 */ 3453 size += 2 * sizeof(struct track); 3454 #endif 3455 3456 kasan_cache_create(s, &size, &s->flags); 3457 #ifdef CONFIG_SLUB_DEBUG 3458 if (flags & SLAB_RED_ZONE) { 3459 /* 3460 * Add some empty padding so that we can catch 3461 * overwrites from earlier objects rather than let 3462 * tracking information or the free pointer be 3463 * corrupted if a user writes before the start 3464 * of the object. 3465 */ 3466 size += sizeof(void *); 3467 3468 s->red_left_pad = sizeof(void *); 3469 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3470 size += s->red_left_pad; 3471 } 3472 #endif 3473 3474 /* 3475 * SLUB stores one object immediately after another beginning from 3476 * offset 0. In order to align the objects we have to simply size 3477 * each object to conform to the alignment. 3478 */ 3479 size = ALIGN(size, s->align); 3480 s->size = size; 3481 if (forced_order >= 0) 3482 order = forced_order; 3483 else 3484 order = calculate_order(size, s->reserved); 3485 3486 if (order < 0) 3487 return 0; 3488 3489 s->allocflags = 0; 3490 if (order) 3491 s->allocflags |= __GFP_COMP; 3492 3493 if (s->flags & SLAB_CACHE_DMA) 3494 s->allocflags |= GFP_DMA; 3495 3496 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3497 s->allocflags |= __GFP_RECLAIMABLE; 3498 3499 /* 3500 * Determine the number of objects per slab 3501 */ 3502 s->oo = oo_make(order, size, s->reserved); 3503 s->min = oo_make(get_order(size), size, s->reserved); 3504 if (oo_objects(s->oo) > oo_objects(s->max)) 3505 s->max = s->oo; 3506 3507 return !!oo_objects(s->oo); 3508 } 3509 3510 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3511 { 3512 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3513 s->reserved = 0; 3514 3515 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3516 s->reserved = sizeof(struct rcu_head); 3517 3518 if (!calculate_sizes(s, -1)) 3519 goto error; 3520 if (disable_higher_order_debug) { 3521 /* 3522 * Disable debugging flags that store metadata if the min slab 3523 * order increased. 3524 */ 3525 if (get_order(s->size) > get_order(s->object_size)) { 3526 s->flags &= ~DEBUG_METADATA_FLAGS; 3527 s->offset = 0; 3528 if (!calculate_sizes(s, -1)) 3529 goto error; 3530 } 3531 } 3532 3533 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3534 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3535 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3536 /* Enable fast mode */ 3537 s->flags |= __CMPXCHG_DOUBLE; 3538 #endif 3539 3540 /* 3541 * The larger the object size is, the more pages we want on the partial 3542 * list to avoid pounding the page allocator excessively. 3543 */ 3544 set_min_partial(s, ilog2(s->size) / 2); 3545 3546 /* 3547 * cpu_partial determined the maximum number of objects kept in the 3548 * per cpu partial lists of a processor. 3549 * 3550 * Per cpu partial lists mainly contain slabs that just have one 3551 * object freed. If they are used for allocation then they can be 3552 * filled up again with minimal effort. The slab will never hit the 3553 * per node partial lists and therefore no locking will be required. 3554 * 3555 * This setting also determines 3556 * 3557 * A) The number of objects from per cpu partial slabs dumped to the 3558 * per node list when we reach the limit. 3559 * B) The number of objects in cpu partial slabs to extract from the 3560 * per node list when we run out of per cpu objects. We only fetch 3561 * 50% to keep some capacity around for frees. 3562 */ 3563 if (!kmem_cache_has_cpu_partial(s)) 3564 s->cpu_partial = 0; 3565 else if (s->size >= PAGE_SIZE) 3566 s->cpu_partial = 2; 3567 else if (s->size >= 1024) 3568 s->cpu_partial = 6; 3569 else if (s->size >= 256) 3570 s->cpu_partial = 13; 3571 else 3572 s->cpu_partial = 30; 3573 3574 #ifdef CONFIG_NUMA 3575 s->remote_node_defrag_ratio = 1000; 3576 #endif 3577 3578 /* Initialize the pre-computed randomized freelist if slab is up */ 3579 if (slab_state >= UP) { 3580 if (init_cache_random_seq(s)) 3581 goto error; 3582 } 3583 3584 if (!init_kmem_cache_nodes(s)) 3585 goto error; 3586 3587 if (alloc_kmem_cache_cpus(s)) 3588 return 0; 3589 3590 free_kmem_cache_nodes(s); 3591 error: 3592 if (flags & SLAB_PANIC) 3593 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3594 s->name, (unsigned long)s->size, s->size, 3595 oo_order(s->oo), s->offset, flags); 3596 return -EINVAL; 3597 } 3598 3599 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3600 const char *text) 3601 { 3602 #ifdef CONFIG_SLUB_DEBUG 3603 void *addr = page_address(page); 3604 void *p; 3605 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3606 sizeof(long), GFP_ATOMIC); 3607 if (!map) 3608 return; 3609 slab_err(s, page, text, s->name); 3610 slab_lock(page); 3611 3612 get_map(s, page, map); 3613 for_each_object(p, s, addr, page->objects) { 3614 3615 if (!test_bit(slab_index(p, s, addr), map)) { 3616 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3617 print_tracking(s, p); 3618 } 3619 } 3620 slab_unlock(page); 3621 kfree(map); 3622 #endif 3623 } 3624 3625 /* 3626 * Attempt to free all partial slabs on a node. 3627 * This is called from __kmem_cache_shutdown(). We must take list_lock 3628 * because sysfs file might still access partial list after the shutdowning. 3629 */ 3630 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3631 { 3632 LIST_HEAD(discard); 3633 struct page *page, *h; 3634 3635 BUG_ON(irqs_disabled()); 3636 spin_lock_irq(&n->list_lock); 3637 list_for_each_entry_safe(page, h, &n->partial, lru) { 3638 if (!page->inuse) { 3639 remove_partial(n, page); 3640 list_add(&page->lru, &discard); 3641 } else { 3642 list_slab_objects(s, page, 3643 "Objects remaining in %s on __kmem_cache_shutdown()"); 3644 } 3645 } 3646 spin_unlock_irq(&n->list_lock); 3647 3648 list_for_each_entry_safe(page, h, &discard, lru) 3649 discard_slab(s, page); 3650 } 3651 3652 /* 3653 * Release all resources used by a slab cache. 3654 */ 3655 int __kmem_cache_shutdown(struct kmem_cache *s) 3656 { 3657 int node; 3658 struct kmem_cache_node *n; 3659 3660 flush_all(s); 3661 /* Attempt to free all objects */ 3662 for_each_kmem_cache_node(s, node, n) { 3663 free_partial(s, n); 3664 if (n->nr_partial || slabs_node(s, node)) 3665 return 1; 3666 } 3667 return 0; 3668 } 3669 3670 /******************************************************************** 3671 * Kmalloc subsystem 3672 *******************************************************************/ 3673 3674 static int __init setup_slub_min_order(char *str) 3675 { 3676 get_option(&str, &slub_min_order); 3677 3678 return 1; 3679 } 3680 3681 __setup("slub_min_order=", setup_slub_min_order); 3682 3683 static int __init setup_slub_max_order(char *str) 3684 { 3685 get_option(&str, &slub_max_order); 3686 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3687 3688 return 1; 3689 } 3690 3691 __setup("slub_max_order=", setup_slub_max_order); 3692 3693 static int __init setup_slub_min_objects(char *str) 3694 { 3695 get_option(&str, &slub_min_objects); 3696 3697 return 1; 3698 } 3699 3700 __setup("slub_min_objects=", setup_slub_min_objects); 3701 3702 void *__kmalloc(size_t size, gfp_t flags) 3703 { 3704 struct kmem_cache *s; 3705 void *ret; 3706 3707 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3708 return kmalloc_large(size, flags); 3709 3710 s = kmalloc_slab(size, flags); 3711 3712 if (unlikely(ZERO_OR_NULL_PTR(s))) 3713 return s; 3714 3715 ret = slab_alloc(s, flags, _RET_IP_); 3716 3717 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3718 3719 kasan_kmalloc(s, ret, size, flags); 3720 3721 return ret; 3722 } 3723 EXPORT_SYMBOL(__kmalloc); 3724 3725 #ifdef CONFIG_NUMA 3726 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3727 { 3728 struct page *page; 3729 void *ptr = NULL; 3730 3731 flags |= __GFP_COMP | __GFP_NOTRACK; 3732 page = alloc_pages_node(node, flags, get_order(size)); 3733 if (page) 3734 ptr = page_address(page); 3735 3736 kmalloc_large_node_hook(ptr, size, flags); 3737 return ptr; 3738 } 3739 3740 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3741 { 3742 struct kmem_cache *s; 3743 void *ret; 3744 3745 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3746 ret = kmalloc_large_node(size, flags, node); 3747 3748 trace_kmalloc_node(_RET_IP_, ret, 3749 size, PAGE_SIZE << get_order(size), 3750 flags, node); 3751 3752 return ret; 3753 } 3754 3755 s = kmalloc_slab(size, flags); 3756 3757 if (unlikely(ZERO_OR_NULL_PTR(s))) 3758 return s; 3759 3760 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3761 3762 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3763 3764 kasan_kmalloc(s, ret, size, flags); 3765 3766 return ret; 3767 } 3768 EXPORT_SYMBOL(__kmalloc_node); 3769 #endif 3770 3771 #ifdef CONFIG_HARDENED_USERCOPY 3772 /* 3773 * Rejects objects that are incorrectly sized. 3774 * 3775 * Returns NULL if check passes, otherwise const char * to name of cache 3776 * to indicate an error. 3777 */ 3778 const char *__check_heap_object(const void *ptr, unsigned long n, 3779 struct page *page) 3780 { 3781 struct kmem_cache *s; 3782 unsigned long offset; 3783 size_t object_size; 3784 3785 /* Find object and usable object size. */ 3786 s = page->slab_cache; 3787 object_size = slab_ksize(s); 3788 3789 /* Reject impossible pointers. */ 3790 if (ptr < page_address(page)) 3791 return s->name; 3792 3793 /* Find offset within object. */ 3794 offset = (ptr - page_address(page)) % s->size; 3795 3796 /* Adjust for redzone and reject if within the redzone. */ 3797 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3798 if (offset < s->red_left_pad) 3799 return s->name; 3800 offset -= s->red_left_pad; 3801 } 3802 3803 /* Allow address range falling entirely within object size. */ 3804 if (offset <= object_size && n <= object_size - offset) 3805 return NULL; 3806 3807 return s->name; 3808 } 3809 #endif /* CONFIG_HARDENED_USERCOPY */ 3810 3811 static size_t __ksize(const void *object) 3812 { 3813 struct page *page; 3814 3815 if (unlikely(object == ZERO_SIZE_PTR)) 3816 return 0; 3817 3818 page = virt_to_head_page(object); 3819 3820 if (unlikely(!PageSlab(page))) { 3821 WARN_ON(!PageCompound(page)); 3822 return PAGE_SIZE << compound_order(page); 3823 } 3824 3825 return slab_ksize(page->slab_cache); 3826 } 3827 3828 size_t ksize(const void *object) 3829 { 3830 size_t size = __ksize(object); 3831 /* We assume that ksize callers could use whole allocated area, 3832 * so we need to unpoison this area. 3833 */ 3834 kasan_unpoison_shadow(object, size); 3835 return size; 3836 } 3837 EXPORT_SYMBOL(ksize); 3838 3839 void kfree(const void *x) 3840 { 3841 struct page *page; 3842 void *object = (void *)x; 3843 3844 trace_kfree(_RET_IP_, x); 3845 3846 if (unlikely(ZERO_OR_NULL_PTR(x))) 3847 return; 3848 3849 page = virt_to_head_page(x); 3850 if (unlikely(!PageSlab(page))) { 3851 BUG_ON(!PageCompound(page)); 3852 kfree_hook(x); 3853 __free_pages(page, compound_order(page)); 3854 return; 3855 } 3856 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3857 } 3858 EXPORT_SYMBOL(kfree); 3859 3860 #define SHRINK_PROMOTE_MAX 32 3861 3862 /* 3863 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3864 * up most to the head of the partial lists. New allocations will then 3865 * fill those up and thus they can be removed from the partial lists. 3866 * 3867 * The slabs with the least items are placed last. This results in them 3868 * being allocated from last increasing the chance that the last objects 3869 * are freed in them. 3870 */ 3871 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3872 { 3873 int node; 3874 int i; 3875 struct kmem_cache_node *n; 3876 struct page *page; 3877 struct page *t; 3878 struct list_head discard; 3879 struct list_head promote[SHRINK_PROMOTE_MAX]; 3880 unsigned long flags; 3881 int ret = 0; 3882 3883 if (deactivate) { 3884 /* 3885 * Disable empty slabs caching. Used to avoid pinning offline 3886 * memory cgroups by kmem pages that can be freed. 3887 */ 3888 s->cpu_partial = 0; 3889 s->min_partial = 0; 3890 3891 /* 3892 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3893 * so we have to make sure the change is visible. 3894 */ 3895 synchronize_sched(); 3896 } 3897 3898 flush_all(s); 3899 for_each_kmem_cache_node(s, node, n) { 3900 INIT_LIST_HEAD(&discard); 3901 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3902 INIT_LIST_HEAD(promote + i); 3903 3904 spin_lock_irqsave(&n->list_lock, flags); 3905 3906 /* 3907 * Build lists of slabs to discard or promote. 3908 * 3909 * Note that concurrent frees may occur while we hold the 3910 * list_lock. page->inuse here is the upper limit. 3911 */ 3912 list_for_each_entry_safe(page, t, &n->partial, lru) { 3913 int free = page->objects - page->inuse; 3914 3915 /* Do not reread page->inuse */ 3916 barrier(); 3917 3918 /* We do not keep full slabs on the list */ 3919 BUG_ON(free <= 0); 3920 3921 if (free == page->objects) { 3922 list_move(&page->lru, &discard); 3923 n->nr_partial--; 3924 } else if (free <= SHRINK_PROMOTE_MAX) 3925 list_move(&page->lru, promote + free - 1); 3926 } 3927 3928 /* 3929 * Promote the slabs filled up most to the head of the 3930 * partial list. 3931 */ 3932 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3933 list_splice(promote + i, &n->partial); 3934 3935 spin_unlock_irqrestore(&n->list_lock, flags); 3936 3937 /* Release empty slabs */ 3938 list_for_each_entry_safe(page, t, &discard, lru) 3939 discard_slab(s, page); 3940 3941 if (slabs_node(s, node)) 3942 ret = 1; 3943 } 3944 3945 return ret; 3946 } 3947 3948 static int slab_mem_going_offline_callback(void *arg) 3949 { 3950 struct kmem_cache *s; 3951 3952 mutex_lock(&slab_mutex); 3953 list_for_each_entry(s, &slab_caches, list) 3954 __kmem_cache_shrink(s, false); 3955 mutex_unlock(&slab_mutex); 3956 3957 return 0; 3958 } 3959 3960 static void slab_mem_offline_callback(void *arg) 3961 { 3962 struct kmem_cache_node *n; 3963 struct kmem_cache *s; 3964 struct memory_notify *marg = arg; 3965 int offline_node; 3966 3967 offline_node = marg->status_change_nid_normal; 3968 3969 /* 3970 * If the node still has available memory. we need kmem_cache_node 3971 * for it yet. 3972 */ 3973 if (offline_node < 0) 3974 return; 3975 3976 mutex_lock(&slab_mutex); 3977 list_for_each_entry(s, &slab_caches, list) { 3978 n = get_node(s, offline_node); 3979 if (n) { 3980 /* 3981 * if n->nr_slabs > 0, slabs still exist on the node 3982 * that is going down. We were unable to free them, 3983 * and offline_pages() function shouldn't call this 3984 * callback. So, we must fail. 3985 */ 3986 BUG_ON(slabs_node(s, offline_node)); 3987 3988 s->node[offline_node] = NULL; 3989 kmem_cache_free(kmem_cache_node, n); 3990 } 3991 } 3992 mutex_unlock(&slab_mutex); 3993 } 3994 3995 static int slab_mem_going_online_callback(void *arg) 3996 { 3997 struct kmem_cache_node *n; 3998 struct kmem_cache *s; 3999 struct memory_notify *marg = arg; 4000 int nid = marg->status_change_nid_normal; 4001 int ret = 0; 4002 4003 /* 4004 * If the node's memory is already available, then kmem_cache_node is 4005 * already created. Nothing to do. 4006 */ 4007 if (nid < 0) 4008 return 0; 4009 4010 /* 4011 * We are bringing a node online. No memory is available yet. We must 4012 * allocate a kmem_cache_node structure in order to bring the node 4013 * online. 4014 */ 4015 mutex_lock(&slab_mutex); 4016 list_for_each_entry(s, &slab_caches, list) { 4017 /* 4018 * XXX: kmem_cache_alloc_node will fallback to other nodes 4019 * since memory is not yet available from the node that 4020 * is brought up. 4021 */ 4022 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4023 if (!n) { 4024 ret = -ENOMEM; 4025 goto out; 4026 } 4027 init_kmem_cache_node(n); 4028 s->node[nid] = n; 4029 } 4030 out: 4031 mutex_unlock(&slab_mutex); 4032 return ret; 4033 } 4034 4035 static int slab_memory_callback(struct notifier_block *self, 4036 unsigned long action, void *arg) 4037 { 4038 int ret = 0; 4039 4040 switch (action) { 4041 case MEM_GOING_ONLINE: 4042 ret = slab_mem_going_online_callback(arg); 4043 break; 4044 case MEM_GOING_OFFLINE: 4045 ret = slab_mem_going_offline_callback(arg); 4046 break; 4047 case MEM_OFFLINE: 4048 case MEM_CANCEL_ONLINE: 4049 slab_mem_offline_callback(arg); 4050 break; 4051 case MEM_ONLINE: 4052 case MEM_CANCEL_OFFLINE: 4053 break; 4054 } 4055 if (ret) 4056 ret = notifier_from_errno(ret); 4057 else 4058 ret = NOTIFY_OK; 4059 return ret; 4060 } 4061 4062 static struct notifier_block slab_memory_callback_nb = { 4063 .notifier_call = slab_memory_callback, 4064 .priority = SLAB_CALLBACK_PRI, 4065 }; 4066 4067 /******************************************************************** 4068 * Basic setup of slabs 4069 *******************************************************************/ 4070 4071 /* 4072 * Used for early kmem_cache structures that were allocated using 4073 * the page allocator. Allocate them properly then fix up the pointers 4074 * that may be pointing to the wrong kmem_cache structure. 4075 */ 4076 4077 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4078 { 4079 int node; 4080 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4081 struct kmem_cache_node *n; 4082 4083 memcpy(s, static_cache, kmem_cache->object_size); 4084 4085 /* 4086 * This runs very early, and only the boot processor is supposed to be 4087 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4088 * IPIs around. 4089 */ 4090 __flush_cpu_slab(s, smp_processor_id()); 4091 for_each_kmem_cache_node(s, node, n) { 4092 struct page *p; 4093 4094 list_for_each_entry(p, &n->partial, lru) 4095 p->slab_cache = s; 4096 4097 #ifdef CONFIG_SLUB_DEBUG 4098 list_for_each_entry(p, &n->full, lru) 4099 p->slab_cache = s; 4100 #endif 4101 } 4102 slab_init_memcg_params(s); 4103 list_add(&s->list, &slab_caches); 4104 return s; 4105 } 4106 4107 void __init kmem_cache_init(void) 4108 { 4109 static __initdata struct kmem_cache boot_kmem_cache, 4110 boot_kmem_cache_node; 4111 4112 if (debug_guardpage_minorder()) 4113 slub_max_order = 0; 4114 4115 kmem_cache_node = &boot_kmem_cache_node; 4116 kmem_cache = &boot_kmem_cache; 4117 4118 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4119 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4120 4121 register_hotmemory_notifier(&slab_memory_callback_nb); 4122 4123 /* Able to allocate the per node structures */ 4124 slab_state = PARTIAL; 4125 4126 create_boot_cache(kmem_cache, "kmem_cache", 4127 offsetof(struct kmem_cache, node) + 4128 nr_node_ids * sizeof(struct kmem_cache_node *), 4129 SLAB_HWCACHE_ALIGN); 4130 4131 kmem_cache = bootstrap(&boot_kmem_cache); 4132 4133 /* 4134 * Allocate kmem_cache_node properly from the kmem_cache slab. 4135 * kmem_cache_node is separately allocated so no need to 4136 * update any list pointers. 4137 */ 4138 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4139 4140 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4141 setup_kmalloc_cache_index_table(); 4142 create_kmalloc_caches(0); 4143 4144 /* Setup random freelists for each cache */ 4145 init_freelist_randomization(); 4146 4147 #ifdef CONFIG_SMP 4148 register_cpu_notifier(&slab_notifier); 4149 #endif 4150 4151 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 4152 cache_line_size(), 4153 slub_min_order, slub_max_order, slub_min_objects, 4154 nr_cpu_ids, nr_node_ids); 4155 } 4156 4157 void __init kmem_cache_init_late(void) 4158 { 4159 } 4160 4161 struct kmem_cache * 4162 __kmem_cache_alias(const char *name, size_t size, size_t align, 4163 unsigned long flags, void (*ctor)(void *)) 4164 { 4165 struct kmem_cache *s, *c; 4166 4167 s = find_mergeable(size, align, flags, name, ctor); 4168 if (s) { 4169 s->refcount++; 4170 4171 /* 4172 * Adjust the object sizes so that we clear 4173 * the complete object on kzalloc. 4174 */ 4175 s->object_size = max(s->object_size, (int)size); 4176 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4177 4178 for_each_memcg_cache(c, s) { 4179 c->object_size = s->object_size; 4180 c->inuse = max_t(int, c->inuse, 4181 ALIGN(size, sizeof(void *))); 4182 } 4183 4184 if (sysfs_slab_alias(s, name)) { 4185 s->refcount--; 4186 s = NULL; 4187 } 4188 } 4189 4190 return s; 4191 } 4192 4193 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4194 { 4195 int err; 4196 4197 err = kmem_cache_open(s, flags); 4198 if (err) 4199 return err; 4200 4201 /* Mutex is not taken during early boot */ 4202 if (slab_state <= UP) 4203 return 0; 4204 4205 memcg_propagate_slab_attrs(s); 4206 err = sysfs_slab_add(s); 4207 if (err) 4208 __kmem_cache_release(s); 4209 4210 return err; 4211 } 4212 4213 #ifdef CONFIG_SMP 4214 /* 4215 * Use the cpu notifier to insure that the cpu slabs are flushed when 4216 * necessary. 4217 */ 4218 static int slab_cpuup_callback(struct notifier_block *nfb, 4219 unsigned long action, void *hcpu) 4220 { 4221 long cpu = (long)hcpu; 4222 struct kmem_cache *s; 4223 unsigned long flags; 4224 4225 switch (action) { 4226 case CPU_UP_CANCELED: 4227 case CPU_UP_CANCELED_FROZEN: 4228 case CPU_DEAD: 4229 case CPU_DEAD_FROZEN: 4230 mutex_lock(&slab_mutex); 4231 list_for_each_entry(s, &slab_caches, list) { 4232 local_irq_save(flags); 4233 __flush_cpu_slab(s, cpu); 4234 local_irq_restore(flags); 4235 } 4236 mutex_unlock(&slab_mutex); 4237 break; 4238 default: 4239 break; 4240 } 4241 return NOTIFY_OK; 4242 } 4243 4244 static struct notifier_block slab_notifier = { 4245 .notifier_call = slab_cpuup_callback 4246 }; 4247 4248 #endif 4249 4250 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4251 { 4252 struct kmem_cache *s; 4253 void *ret; 4254 4255 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4256 return kmalloc_large(size, gfpflags); 4257 4258 s = kmalloc_slab(size, gfpflags); 4259 4260 if (unlikely(ZERO_OR_NULL_PTR(s))) 4261 return s; 4262 4263 ret = slab_alloc(s, gfpflags, caller); 4264 4265 /* Honor the call site pointer we received. */ 4266 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4267 4268 return ret; 4269 } 4270 4271 #ifdef CONFIG_NUMA 4272 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4273 int node, unsigned long caller) 4274 { 4275 struct kmem_cache *s; 4276 void *ret; 4277 4278 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4279 ret = kmalloc_large_node(size, gfpflags, node); 4280 4281 trace_kmalloc_node(caller, ret, 4282 size, PAGE_SIZE << get_order(size), 4283 gfpflags, node); 4284 4285 return ret; 4286 } 4287 4288 s = kmalloc_slab(size, gfpflags); 4289 4290 if (unlikely(ZERO_OR_NULL_PTR(s))) 4291 return s; 4292 4293 ret = slab_alloc_node(s, gfpflags, node, caller); 4294 4295 /* Honor the call site pointer we received. */ 4296 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4297 4298 return ret; 4299 } 4300 #endif 4301 4302 #ifdef CONFIG_SYSFS 4303 static int count_inuse(struct page *page) 4304 { 4305 return page->inuse; 4306 } 4307 4308 static int count_total(struct page *page) 4309 { 4310 return page->objects; 4311 } 4312 #endif 4313 4314 #ifdef CONFIG_SLUB_DEBUG 4315 static int validate_slab(struct kmem_cache *s, struct page *page, 4316 unsigned long *map) 4317 { 4318 void *p; 4319 void *addr = page_address(page); 4320 4321 if (!check_slab(s, page) || 4322 !on_freelist(s, page, NULL)) 4323 return 0; 4324 4325 /* Now we know that a valid freelist exists */ 4326 bitmap_zero(map, page->objects); 4327 4328 get_map(s, page, map); 4329 for_each_object(p, s, addr, page->objects) { 4330 if (test_bit(slab_index(p, s, addr), map)) 4331 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4332 return 0; 4333 } 4334 4335 for_each_object(p, s, addr, page->objects) 4336 if (!test_bit(slab_index(p, s, addr), map)) 4337 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4338 return 0; 4339 return 1; 4340 } 4341 4342 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4343 unsigned long *map) 4344 { 4345 slab_lock(page); 4346 validate_slab(s, page, map); 4347 slab_unlock(page); 4348 } 4349 4350 static int validate_slab_node(struct kmem_cache *s, 4351 struct kmem_cache_node *n, unsigned long *map) 4352 { 4353 unsigned long count = 0; 4354 struct page *page; 4355 unsigned long flags; 4356 4357 spin_lock_irqsave(&n->list_lock, flags); 4358 4359 list_for_each_entry(page, &n->partial, lru) { 4360 validate_slab_slab(s, page, map); 4361 count++; 4362 } 4363 if (count != n->nr_partial) 4364 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4365 s->name, count, n->nr_partial); 4366 4367 if (!(s->flags & SLAB_STORE_USER)) 4368 goto out; 4369 4370 list_for_each_entry(page, &n->full, lru) { 4371 validate_slab_slab(s, page, map); 4372 count++; 4373 } 4374 if (count != atomic_long_read(&n->nr_slabs)) 4375 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4376 s->name, count, atomic_long_read(&n->nr_slabs)); 4377 4378 out: 4379 spin_unlock_irqrestore(&n->list_lock, flags); 4380 return count; 4381 } 4382 4383 static long validate_slab_cache(struct kmem_cache *s) 4384 { 4385 int node; 4386 unsigned long count = 0; 4387 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4388 sizeof(unsigned long), GFP_KERNEL); 4389 struct kmem_cache_node *n; 4390 4391 if (!map) 4392 return -ENOMEM; 4393 4394 flush_all(s); 4395 for_each_kmem_cache_node(s, node, n) 4396 count += validate_slab_node(s, n, map); 4397 kfree(map); 4398 return count; 4399 } 4400 /* 4401 * Generate lists of code addresses where slabcache objects are allocated 4402 * and freed. 4403 */ 4404 4405 struct location { 4406 unsigned long count; 4407 unsigned long addr; 4408 long long sum_time; 4409 long min_time; 4410 long max_time; 4411 long min_pid; 4412 long max_pid; 4413 DECLARE_BITMAP(cpus, NR_CPUS); 4414 nodemask_t nodes; 4415 }; 4416 4417 struct loc_track { 4418 unsigned long max; 4419 unsigned long count; 4420 struct location *loc; 4421 }; 4422 4423 static void free_loc_track(struct loc_track *t) 4424 { 4425 if (t->max) 4426 free_pages((unsigned long)t->loc, 4427 get_order(sizeof(struct location) * t->max)); 4428 } 4429 4430 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4431 { 4432 struct location *l; 4433 int order; 4434 4435 order = get_order(sizeof(struct location) * max); 4436 4437 l = (void *)__get_free_pages(flags, order); 4438 if (!l) 4439 return 0; 4440 4441 if (t->count) { 4442 memcpy(l, t->loc, sizeof(struct location) * t->count); 4443 free_loc_track(t); 4444 } 4445 t->max = max; 4446 t->loc = l; 4447 return 1; 4448 } 4449 4450 static int add_location(struct loc_track *t, struct kmem_cache *s, 4451 const struct track *track) 4452 { 4453 long start, end, pos; 4454 struct location *l; 4455 unsigned long caddr; 4456 unsigned long age = jiffies - track->when; 4457 4458 start = -1; 4459 end = t->count; 4460 4461 for ( ; ; ) { 4462 pos = start + (end - start + 1) / 2; 4463 4464 /* 4465 * There is nothing at "end". If we end up there 4466 * we need to add something to before end. 4467 */ 4468 if (pos == end) 4469 break; 4470 4471 caddr = t->loc[pos].addr; 4472 if (track->addr == caddr) { 4473 4474 l = &t->loc[pos]; 4475 l->count++; 4476 if (track->when) { 4477 l->sum_time += age; 4478 if (age < l->min_time) 4479 l->min_time = age; 4480 if (age > l->max_time) 4481 l->max_time = age; 4482 4483 if (track->pid < l->min_pid) 4484 l->min_pid = track->pid; 4485 if (track->pid > l->max_pid) 4486 l->max_pid = track->pid; 4487 4488 cpumask_set_cpu(track->cpu, 4489 to_cpumask(l->cpus)); 4490 } 4491 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4492 return 1; 4493 } 4494 4495 if (track->addr < caddr) 4496 end = pos; 4497 else 4498 start = pos; 4499 } 4500 4501 /* 4502 * Not found. Insert new tracking element. 4503 */ 4504 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4505 return 0; 4506 4507 l = t->loc + pos; 4508 if (pos < t->count) 4509 memmove(l + 1, l, 4510 (t->count - pos) * sizeof(struct location)); 4511 t->count++; 4512 l->count = 1; 4513 l->addr = track->addr; 4514 l->sum_time = age; 4515 l->min_time = age; 4516 l->max_time = age; 4517 l->min_pid = track->pid; 4518 l->max_pid = track->pid; 4519 cpumask_clear(to_cpumask(l->cpus)); 4520 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4521 nodes_clear(l->nodes); 4522 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4523 return 1; 4524 } 4525 4526 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4527 struct page *page, enum track_item alloc, 4528 unsigned long *map) 4529 { 4530 void *addr = page_address(page); 4531 void *p; 4532 4533 bitmap_zero(map, page->objects); 4534 get_map(s, page, map); 4535 4536 for_each_object(p, s, addr, page->objects) 4537 if (!test_bit(slab_index(p, s, addr), map)) 4538 add_location(t, s, get_track(s, p, alloc)); 4539 } 4540 4541 static int list_locations(struct kmem_cache *s, char *buf, 4542 enum track_item alloc) 4543 { 4544 int len = 0; 4545 unsigned long i; 4546 struct loc_track t = { 0, 0, NULL }; 4547 int node; 4548 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4549 sizeof(unsigned long), GFP_KERNEL); 4550 struct kmem_cache_node *n; 4551 4552 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4553 GFP_TEMPORARY)) { 4554 kfree(map); 4555 return sprintf(buf, "Out of memory\n"); 4556 } 4557 /* Push back cpu slabs */ 4558 flush_all(s); 4559 4560 for_each_kmem_cache_node(s, node, n) { 4561 unsigned long flags; 4562 struct page *page; 4563 4564 if (!atomic_long_read(&n->nr_slabs)) 4565 continue; 4566 4567 spin_lock_irqsave(&n->list_lock, flags); 4568 list_for_each_entry(page, &n->partial, lru) 4569 process_slab(&t, s, page, alloc, map); 4570 list_for_each_entry(page, &n->full, lru) 4571 process_slab(&t, s, page, alloc, map); 4572 spin_unlock_irqrestore(&n->list_lock, flags); 4573 } 4574 4575 for (i = 0; i < t.count; i++) { 4576 struct location *l = &t.loc[i]; 4577 4578 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4579 break; 4580 len += sprintf(buf + len, "%7ld ", l->count); 4581 4582 if (l->addr) 4583 len += sprintf(buf + len, "%pS", (void *)l->addr); 4584 else 4585 len += sprintf(buf + len, "<not-available>"); 4586 4587 if (l->sum_time != l->min_time) { 4588 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4589 l->min_time, 4590 (long)div_u64(l->sum_time, l->count), 4591 l->max_time); 4592 } else 4593 len += sprintf(buf + len, " age=%ld", 4594 l->min_time); 4595 4596 if (l->min_pid != l->max_pid) 4597 len += sprintf(buf + len, " pid=%ld-%ld", 4598 l->min_pid, l->max_pid); 4599 else 4600 len += sprintf(buf + len, " pid=%ld", 4601 l->min_pid); 4602 4603 if (num_online_cpus() > 1 && 4604 !cpumask_empty(to_cpumask(l->cpus)) && 4605 len < PAGE_SIZE - 60) 4606 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4607 " cpus=%*pbl", 4608 cpumask_pr_args(to_cpumask(l->cpus))); 4609 4610 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4611 len < PAGE_SIZE - 60) 4612 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4613 " nodes=%*pbl", 4614 nodemask_pr_args(&l->nodes)); 4615 4616 len += sprintf(buf + len, "\n"); 4617 } 4618 4619 free_loc_track(&t); 4620 kfree(map); 4621 if (!t.count) 4622 len += sprintf(buf, "No data\n"); 4623 return len; 4624 } 4625 #endif 4626 4627 #ifdef SLUB_RESILIENCY_TEST 4628 static void __init resiliency_test(void) 4629 { 4630 u8 *p; 4631 4632 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4633 4634 pr_err("SLUB resiliency testing\n"); 4635 pr_err("-----------------------\n"); 4636 pr_err("A. Corruption after allocation\n"); 4637 4638 p = kzalloc(16, GFP_KERNEL); 4639 p[16] = 0x12; 4640 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4641 p + 16); 4642 4643 validate_slab_cache(kmalloc_caches[4]); 4644 4645 /* Hmmm... The next two are dangerous */ 4646 p = kzalloc(32, GFP_KERNEL); 4647 p[32 + sizeof(void *)] = 0x34; 4648 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4649 p); 4650 pr_err("If allocated object is overwritten then not detectable\n\n"); 4651 4652 validate_slab_cache(kmalloc_caches[5]); 4653 p = kzalloc(64, GFP_KERNEL); 4654 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4655 *p = 0x56; 4656 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4657 p); 4658 pr_err("If allocated object is overwritten then not detectable\n\n"); 4659 validate_slab_cache(kmalloc_caches[6]); 4660 4661 pr_err("\nB. Corruption after free\n"); 4662 p = kzalloc(128, GFP_KERNEL); 4663 kfree(p); 4664 *p = 0x78; 4665 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4666 validate_slab_cache(kmalloc_caches[7]); 4667 4668 p = kzalloc(256, GFP_KERNEL); 4669 kfree(p); 4670 p[50] = 0x9a; 4671 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4672 validate_slab_cache(kmalloc_caches[8]); 4673 4674 p = kzalloc(512, GFP_KERNEL); 4675 kfree(p); 4676 p[512] = 0xab; 4677 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4678 validate_slab_cache(kmalloc_caches[9]); 4679 } 4680 #else 4681 #ifdef CONFIG_SYSFS 4682 static void resiliency_test(void) {}; 4683 #endif 4684 #endif 4685 4686 #ifdef CONFIG_SYSFS 4687 enum slab_stat_type { 4688 SL_ALL, /* All slabs */ 4689 SL_PARTIAL, /* Only partially allocated slabs */ 4690 SL_CPU, /* Only slabs used for cpu caches */ 4691 SL_OBJECTS, /* Determine allocated objects not slabs */ 4692 SL_TOTAL /* Determine object capacity not slabs */ 4693 }; 4694 4695 #define SO_ALL (1 << SL_ALL) 4696 #define SO_PARTIAL (1 << SL_PARTIAL) 4697 #define SO_CPU (1 << SL_CPU) 4698 #define SO_OBJECTS (1 << SL_OBJECTS) 4699 #define SO_TOTAL (1 << SL_TOTAL) 4700 4701 static ssize_t show_slab_objects(struct kmem_cache *s, 4702 char *buf, unsigned long flags) 4703 { 4704 unsigned long total = 0; 4705 int node; 4706 int x; 4707 unsigned long *nodes; 4708 4709 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4710 if (!nodes) 4711 return -ENOMEM; 4712 4713 if (flags & SO_CPU) { 4714 int cpu; 4715 4716 for_each_possible_cpu(cpu) { 4717 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4718 cpu); 4719 int node; 4720 struct page *page; 4721 4722 page = READ_ONCE(c->page); 4723 if (!page) 4724 continue; 4725 4726 node = page_to_nid(page); 4727 if (flags & SO_TOTAL) 4728 x = page->objects; 4729 else if (flags & SO_OBJECTS) 4730 x = page->inuse; 4731 else 4732 x = 1; 4733 4734 total += x; 4735 nodes[node] += x; 4736 4737 page = READ_ONCE(c->partial); 4738 if (page) { 4739 node = page_to_nid(page); 4740 if (flags & SO_TOTAL) 4741 WARN_ON_ONCE(1); 4742 else if (flags & SO_OBJECTS) 4743 WARN_ON_ONCE(1); 4744 else 4745 x = page->pages; 4746 total += x; 4747 nodes[node] += x; 4748 } 4749 } 4750 } 4751 4752 get_online_mems(); 4753 #ifdef CONFIG_SLUB_DEBUG 4754 if (flags & SO_ALL) { 4755 struct kmem_cache_node *n; 4756 4757 for_each_kmem_cache_node(s, node, n) { 4758 4759 if (flags & SO_TOTAL) 4760 x = atomic_long_read(&n->total_objects); 4761 else if (flags & SO_OBJECTS) 4762 x = atomic_long_read(&n->total_objects) - 4763 count_partial(n, count_free); 4764 else 4765 x = atomic_long_read(&n->nr_slabs); 4766 total += x; 4767 nodes[node] += x; 4768 } 4769 4770 } else 4771 #endif 4772 if (flags & SO_PARTIAL) { 4773 struct kmem_cache_node *n; 4774 4775 for_each_kmem_cache_node(s, node, n) { 4776 if (flags & SO_TOTAL) 4777 x = count_partial(n, count_total); 4778 else if (flags & SO_OBJECTS) 4779 x = count_partial(n, count_inuse); 4780 else 4781 x = n->nr_partial; 4782 total += x; 4783 nodes[node] += x; 4784 } 4785 } 4786 x = sprintf(buf, "%lu", total); 4787 #ifdef CONFIG_NUMA 4788 for (node = 0; node < nr_node_ids; node++) 4789 if (nodes[node]) 4790 x += sprintf(buf + x, " N%d=%lu", 4791 node, nodes[node]); 4792 #endif 4793 put_online_mems(); 4794 kfree(nodes); 4795 return x + sprintf(buf + x, "\n"); 4796 } 4797 4798 #ifdef CONFIG_SLUB_DEBUG 4799 static int any_slab_objects(struct kmem_cache *s) 4800 { 4801 int node; 4802 struct kmem_cache_node *n; 4803 4804 for_each_kmem_cache_node(s, node, n) 4805 if (atomic_long_read(&n->total_objects)) 4806 return 1; 4807 4808 return 0; 4809 } 4810 #endif 4811 4812 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4813 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4814 4815 struct slab_attribute { 4816 struct attribute attr; 4817 ssize_t (*show)(struct kmem_cache *s, char *buf); 4818 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4819 }; 4820 4821 #define SLAB_ATTR_RO(_name) \ 4822 static struct slab_attribute _name##_attr = \ 4823 __ATTR(_name, 0400, _name##_show, NULL) 4824 4825 #define SLAB_ATTR(_name) \ 4826 static struct slab_attribute _name##_attr = \ 4827 __ATTR(_name, 0600, _name##_show, _name##_store) 4828 4829 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4830 { 4831 return sprintf(buf, "%d\n", s->size); 4832 } 4833 SLAB_ATTR_RO(slab_size); 4834 4835 static ssize_t align_show(struct kmem_cache *s, char *buf) 4836 { 4837 return sprintf(buf, "%d\n", s->align); 4838 } 4839 SLAB_ATTR_RO(align); 4840 4841 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4842 { 4843 return sprintf(buf, "%d\n", s->object_size); 4844 } 4845 SLAB_ATTR_RO(object_size); 4846 4847 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4848 { 4849 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4850 } 4851 SLAB_ATTR_RO(objs_per_slab); 4852 4853 static ssize_t order_store(struct kmem_cache *s, 4854 const char *buf, size_t length) 4855 { 4856 unsigned long order; 4857 int err; 4858 4859 err = kstrtoul(buf, 10, &order); 4860 if (err) 4861 return err; 4862 4863 if (order > slub_max_order || order < slub_min_order) 4864 return -EINVAL; 4865 4866 calculate_sizes(s, order); 4867 return length; 4868 } 4869 4870 static ssize_t order_show(struct kmem_cache *s, char *buf) 4871 { 4872 return sprintf(buf, "%d\n", oo_order(s->oo)); 4873 } 4874 SLAB_ATTR(order); 4875 4876 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4877 { 4878 return sprintf(buf, "%lu\n", s->min_partial); 4879 } 4880 4881 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4882 size_t length) 4883 { 4884 unsigned long min; 4885 int err; 4886 4887 err = kstrtoul(buf, 10, &min); 4888 if (err) 4889 return err; 4890 4891 set_min_partial(s, min); 4892 return length; 4893 } 4894 SLAB_ATTR(min_partial); 4895 4896 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4897 { 4898 return sprintf(buf, "%u\n", s->cpu_partial); 4899 } 4900 4901 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4902 size_t length) 4903 { 4904 unsigned long objects; 4905 int err; 4906 4907 err = kstrtoul(buf, 10, &objects); 4908 if (err) 4909 return err; 4910 if (objects && !kmem_cache_has_cpu_partial(s)) 4911 return -EINVAL; 4912 4913 s->cpu_partial = objects; 4914 flush_all(s); 4915 return length; 4916 } 4917 SLAB_ATTR(cpu_partial); 4918 4919 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4920 { 4921 if (!s->ctor) 4922 return 0; 4923 return sprintf(buf, "%pS\n", s->ctor); 4924 } 4925 SLAB_ATTR_RO(ctor); 4926 4927 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4928 { 4929 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4930 } 4931 SLAB_ATTR_RO(aliases); 4932 4933 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4934 { 4935 return show_slab_objects(s, buf, SO_PARTIAL); 4936 } 4937 SLAB_ATTR_RO(partial); 4938 4939 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4940 { 4941 return show_slab_objects(s, buf, SO_CPU); 4942 } 4943 SLAB_ATTR_RO(cpu_slabs); 4944 4945 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4946 { 4947 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4948 } 4949 SLAB_ATTR_RO(objects); 4950 4951 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4952 { 4953 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4954 } 4955 SLAB_ATTR_RO(objects_partial); 4956 4957 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4958 { 4959 int objects = 0; 4960 int pages = 0; 4961 int cpu; 4962 int len; 4963 4964 for_each_online_cpu(cpu) { 4965 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4966 4967 if (page) { 4968 pages += page->pages; 4969 objects += page->pobjects; 4970 } 4971 } 4972 4973 len = sprintf(buf, "%d(%d)", objects, pages); 4974 4975 #ifdef CONFIG_SMP 4976 for_each_online_cpu(cpu) { 4977 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4978 4979 if (page && len < PAGE_SIZE - 20) 4980 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4981 page->pobjects, page->pages); 4982 } 4983 #endif 4984 return len + sprintf(buf + len, "\n"); 4985 } 4986 SLAB_ATTR_RO(slabs_cpu_partial); 4987 4988 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4989 { 4990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4991 } 4992 4993 static ssize_t reclaim_account_store(struct kmem_cache *s, 4994 const char *buf, size_t length) 4995 { 4996 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4997 if (buf[0] == '1') 4998 s->flags |= SLAB_RECLAIM_ACCOUNT; 4999 return length; 5000 } 5001 SLAB_ATTR(reclaim_account); 5002 5003 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5004 { 5005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5006 } 5007 SLAB_ATTR_RO(hwcache_align); 5008 5009 #ifdef CONFIG_ZONE_DMA 5010 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5011 { 5012 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5013 } 5014 SLAB_ATTR_RO(cache_dma); 5015 #endif 5016 5017 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5018 { 5019 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 5020 } 5021 SLAB_ATTR_RO(destroy_by_rcu); 5022 5023 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5024 { 5025 return sprintf(buf, "%d\n", s->reserved); 5026 } 5027 SLAB_ATTR_RO(reserved); 5028 5029 #ifdef CONFIG_SLUB_DEBUG 5030 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5031 { 5032 return show_slab_objects(s, buf, SO_ALL); 5033 } 5034 SLAB_ATTR_RO(slabs); 5035 5036 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5037 { 5038 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5039 } 5040 SLAB_ATTR_RO(total_objects); 5041 5042 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5043 { 5044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5045 } 5046 5047 static ssize_t sanity_checks_store(struct kmem_cache *s, 5048 const char *buf, size_t length) 5049 { 5050 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5051 if (buf[0] == '1') { 5052 s->flags &= ~__CMPXCHG_DOUBLE; 5053 s->flags |= SLAB_CONSISTENCY_CHECKS; 5054 } 5055 return length; 5056 } 5057 SLAB_ATTR(sanity_checks); 5058 5059 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5060 { 5061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5062 } 5063 5064 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5065 size_t length) 5066 { 5067 /* 5068 * Tracing a merged cache is going to give confusing results 5069 * as well as cause other issues like converting a mergeable 5070 * cache into an umergeable one. 5071 */ 5072 if (s->refcount > 1) 5073 return -EINVAL; 5074 5075 s->flags &= ~SLAB_TRACE; 5076 if (buf[0] == '1') { 5077 s->flags &= ~__CMPXCHG_DOUBLE; 5078 s->flags |= SLAB_TRACE; 5079 } 5080 return length; 5081 } 5082 SLAB_ATTR(trace); 5083 5084 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5085 { 5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5087 } 5088 5089 static ssize_t red_zone_store(struct kmem_cache *s, 5090 const char *buf, size_t length) 5091 { 5092 if (any_slab_objects(s)) 5093 return -EBUSY; 5094 5095 s->flags &= ~SLAB_RED_ZONE; 5096 if (buf[0] == '1') { 5097 s->flags |= SLAB_RED_ZONE; 5098 } 5099 calculate_sizes(s, -1); 5100 return length; 5101 } 5102 SLAB_ATTR(red_zone); 5103 5104 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5105 { 5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5107 } 5108 5109 static ssize_t poison_store(struct kmem_cache *s, 5110 const char *buf, size_t length) 5111 { 5112 if (any_slab_objects(s)) 5113 return -EBUSY; 5114 5115 s->flags &= ~SLAB_POISON; 5116 if (buf[0] == '1') { 5117 s->flags |= SLAB_POISON; 5118 } 5119 calculate_sizes(s, -1); 5120 return length; 5121 } 5122 SLAB_ATTR(poison); 5123 5124 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5125 { 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5127 } 5128 5129 static ssize_t store_user_store(struct kmem_cache *s, 5130 const char *buf, size_t length) 5131 { 5132 if (any_slab_objects(s)) 5133 return -EBUSY; 5134 5135 s->flags &= ~SLAB_STORE_USER; 5136 if (buf[0] == '1') { 5137 s->flags &= ~__CMPXCHG_DOUBLE; 5138 s->flags |= SLAB_STORE_USER; 5139 } 5140 calculate_sizes(s, -1); 5141 return length; 5142 } 5143 SLAB_ATTR(store_user); 5144 5145 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5146 { 5147 return 0; 5148 } 5149 5150 static ssize_t validate_store(struct kmem_cache *s, 5151 const char *buf, size_t length) 5152 { 5153 int ret = -EINVAL; 5154 5155 if (buf[0] == '1') { 5156 ret = validate_slab_cache(s); 5157 if (ret >= 0) 5158 ret = length; 5159 } 5160 return ret; 5161 } 5162 SLAB_ATTR(validate); 5163 5164 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5165 { 5166 if (!(s->flags & SLAB_STORE_USER)) 5167 return -ENOSYS; 5168 return list_locations(s, buf, TRACK_ALLOC); 5169 } 5170 SLAB_ATTR_RO(alloc_calls); 5171 5172 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5173 { 5174 if (!(s->flags & SLAB_STORE_USER)) 5175 return -ENOSYS; 5176 return list_locations(s, buf, TRACK_FREE); 5177 } 5178 SLAB_ATTR_RO(free_calls); 5179 #endif /* CONFIG_SLUB_DEBUG */ 5180 5181 #ifdef CONFIG_FAILSLAB 5182 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5183 { 5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5185 } 5186 5187 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5188 size_t length) 5189 { 5190 if (s->refcount > 1) 5191 return -EINVAL; 5192 5193 s->flags &= ~SLAB_FAILSLAB; 5194 if (buf[0] == '1') 5195 s->flags |= SLAB_FAILSLAB; 5196 return length; 5197 } 5198 SLAB_ATTR(failslab); 5199 #endif 5200 5201 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5202 { 5203 return 0; 5204 } 5205 5206 static ssize_t shrink_store(struct kmem_cache *s, 5207 const char *buf, size_t length) 5208 { 5209 if (buf[0] == '1') 5210 kmem_cache_shrink(s); 5211 else 5212 return -EINVAL; 5213 return length; 5214 } 5215 SLAB_ATTR(shrink); 5216 5217 #ifdef CONFIG_NUMA 5218 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5219 { 5220 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5221 } 5222 5223 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5224 const char *buf, size_t length) 5225 { 5226 unsigned long ratio; 5227 int err; 5228 5229 err = kstrtoul(buf, 10, &ratio); 5230 if (err) 5231 return err; 5232 5233 if (ratio <= 100) 5234 s->remote_node_defrag_ratio = ratio * 10; 5235 5236 return length; 5237 } 5238 SLAB_ATTR(remote_node_defrag_ratio); 5239 #endif 5240 5241 #ifdef CONFIG_SLUB_STATS 5242 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5243 { 5244 unsigned long sum = 0; 5245 int cpu; 5246 int len; 5247 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5248 5249 if (!data) 5250 return -ENOMEM; 5251 5252 for_each_online_cpu(cpu) { 5253 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5254 5255 data[cpu] = x; 5256 sum += x; 5257 } 5258 5259 len = sprintf(buf, "%lu", sum); 5260 5261 #ifdef CONFIG_SMP 5262 for_each_online_cpu(cpu) { 5263 if (data[cpu] && len < PAGE_SIZE - 20) 5264 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5265 } 5266 #endif 5267 kfree(data); 5268 return len + sprintf(buf + len, "\n"); 5269 } 5270 5271 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5272 { 5273 int cpu; 5274 5275 for_each_online_cpu(cpu) 5276 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5277 } 5278 5279 #define STAT_ATTR(si, text) \ 5280 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5281 { \ 5282 return show_stat(s, buf, si); \ 5283 } \ 5284 static ssize_t text##_store(struct kmem_cache *s, \ 5285 const char *buf, size_t length) \ 5286 { \ 5287 if (buf[0] != '0') \ 5288 return -EINVAL; \ 5289 clear_stat(s, si); \ 5290 return length; \ 5291 } \ 5292 SLAB_ATTR(text); \ 5293 5294 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5295 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5296 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5297 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5298 STAT_ATTR(FREE_FROZEN, free_frozen); 5299 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5300 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5301 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5302 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5303 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5304 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5305 STAT_ATTR(FREE_SLAB, free_slab); 5306 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5307 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5308 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5309 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5310 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5311 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5312 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5313 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5314 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5315 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5316 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5317 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5318 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5319 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5320 #endif 5321 5322 static struct attribute *slab_attrs[] = { 5323 &slab_size_attr.attr, 5324 &object_size_attr.attr, 5325 &objs_per_slab_attr.attr, 5326 &order_attr.attr, 5327 &min_partial_attr.attr, 5328 &cpu_partial_attr.attr, 5329 &objects_attr.attr, 5330 &objects_partial_attr.attr, 5331 &partial_attr.attr, 5332 &cpu_slabs_attr.attr, 5333 &ctor_attr.attr, 5334 &aliases_attr.attr, 5335 &align_attr.attr, 5336 &hwcache_align_attr.attr, 5337 &reclaim_account_attr.attr, 5338 &destroy_by_rcu_attr.attr, 5339 &shrink_attr.attr, 5340 &reserved_attr.attr, 5341 &slabs_cpu_partial_attr.attr, 5342 #ifdef CONFIG_SLUB_DEBUG 5343 &total_objects_attr.attr, 5344 &slabs_attr.attr, 5345 &sanity_checks_attr.attr, 5346 &trace_attr.attr, 5347 &red_zone_attr.attr, 5348 &poison_attr.attr, 5349 &store_user_attr.attr, 5350 &validate_attr.attr, 5351 &alloc_calls_attr.attr, 5352 &free_calls_attr.attr, 5353 #endif 5354 #ifdef CONFIG_ZONE_DMA 5355 &cache_dma_attr.attr, 5356 #endif 5357 #ifdef CONFIG_NUMA 5358 &remote_node_defrag_ratio_attr.attr, 5359 #endif 5360 #ifdef CONFIG_SLUB_STATS 5361 &alloc_fastpath_attr.attr, 5362 &alloc_slowpath_attr.attr, 5363 &free_fastpath_attr.attr, 5364 &free_slowpath_attr.attr, 5365 &free_frozen_attr.attr, 5366 &free_add_partial_attr.attr, 5367 &free_remove_partial_attr.attr, 5368 &alloc_from_partial_attr.attr, 5369 &alloc_slab_attr.attr, 5370 &alloc_refill_attr.attr, 5371 &alloc_node_mismatch_attr.attr, 5372 &free_slab_attr.attr, 5373 &cpuslab_flush_attr.attr, 5374 &deactivate_full_attr.attr, 5375 &deactivate_empty_attr.attr, 5376 &deactivate_to_head_attr.attr, 5377 &deactivate_to_tail_attr.attr, 5378 &deactivate_remote_frees_attr.attr, 5379 &deactivate_bypass_attr.attr, 5380 &order_fallback_attr.attr, 5381 &cmpxchg_double_fail_attr.attr, 5382 &cmpxchg_double_cpu_fail_attr.attr, 5383 &cpu_partial_alloc_attr.attr, 5384 &cpu_partial_free_attr.attr, 5385 &cpu_partial_node_attr.attr, 5386 &cpu_partial_drain_attr.attr, 5387 #endif 5388 #ifdef CONFIG_FAILSLAB 5389 &failslab_attr.attr, 5390 #endif 5391 5392 NULL 5393 }; 5394 5395 static struct attribute_group slab_attr_group = { 5396 .attrs = slab_attrs, 5397 }; 5398 5399 static ssize_t slab_attr_show(struct kobject *kobj, 5400 struct attribute *attr, 5401 char *buf) 5402 { 5403 struct slab_attribute *attribute; 5404 struct kmem_cache *s; 5405 int err; 5406 5407 attribute = to_slab_attr(attr); 5408 s = to_slab(kobj); 5409 5410 if (!attribute->show) 5411 return -EIO; 5412 5413 err = attribute->show(s, buf); 5414 5415 return err; 5416 } 5417 5418 static ssize_t slab_attr_store(struct kobject *kobj, 5419 struct attribute *attr, 5420 const char *buf, size_t len) 5421 { 5422 struct slab_attribute *attribute; 5423 struct kmem_cache *s; 5424 int err; 5425 5426 attribute = to_slab_attr(attr); 5427 s = to_slab(kobj); 5428 5429 if (!attribute->store) 5430 return -EIO; 5431 5432 err = attribute->store(s, buf, len); 5433 #ifdef CONFIG_MEMCG 5434 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5435 struct kmem_cache *c; 5436 5437 mutex_lock(&slab_mutex); 5438 if (s->max_attr_size < len) 5439 s->max_attr_size = len; 5440 5441 /* 5442 * This is a best effort propagation, so this function's return 5443 * value will be determined by the parent cache only. This is 5444 * basically because not all attributes will have a well 5445 * defined semantics for rollbacks - most of the actions will 5446 * have permanent effects. 5447 * 5448 * Returning the error value of any of the children that fail 5449 * is not 100 % defined, in the sense that users seeing the 5450 * error code won't be able to know anything about the state of 5451 * the cache. 5452 * 5453 * Only returning the error code for the parent cache at least 5454 * has well defined semantics. The cache being written to 5455 * directly either failed or succeeded, in which case we loop 5456 * through the descendants with best-effort propagation. 5457 */ 5458 for_each_memcg_cache(c, s) 5459 attribute->store(c, buf, len); 5460 mutex_unlock(&slab_mutex); 5461 } 5462 #endif 5463 return err; 5464 } 5465 5466 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5467 { 5468 #ifdef CONFIG_MEMCG 5469 int i; 5470 char *buffer = NULL; 5471 struct kmem_cache *root_cache; 5472 5473 if (is_root_cache(s)) 5474 return; 5475 5476 root_cache = s->memcg_params.root_cache; 5477 5478 /* 5479 * This mean this cache had no attribute written. Therefore, no point 5480 * in copying default values around 5481 */ 5482 if (!root_cache->max_attr_size) 5483 return; 5484 5485 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5486 char mbuf[64]; 5487 char *buf; 5488 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5489 5490 if (!attr || !attr->store || !attr->show) 5491 continue; 5492 5493 /* 5494 * It is really bad that we have to allocate here, so we will 5495 * do it only as a fallback. If we actually allocate, though, 5496 * we can just use the allocated buffer until the end. 5497 * 5498 * Most of the slub attributes will tend to be very small in 5499 * size, but sysfs allows buffers up to a page, so they can 5500 * theoretically happen. 5501 */ 5502 if (buffer) 5503 buf = buffer; 5504 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5505 buf = mbuf; 5506 else { 5507 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5508 if (WARN_ON(!buffer)) 5509 continue; 5510 buf = buffer; 5511 } 5512 5513 attr->show(root_cache, buf); 5514 attr->store(s, buf, strlen(buf)); 5515 } 5516 5517 if (buffer) 5518 free_page((unsigned long)buffer); 5519 #endif 5520 } 5521 5522 static void kmem_cache_release(struct kobject *k) 5523 { 5524 slab_kmem_cache_release(to_slab(k)); 5525 } 5526 5527 static const struct sysfs_ops slab_sysfs_ops = { 5528 .show = slab_attr_show, 5529 .store = slab_attr_store, 5530 }; 5531 5532 static struct kobj_type slab_ktype = { 5533 .sysfs_ops = &slab_sysfs_ops, 5534 .release = kmem_cache_release, 5535 }; 5536 5537 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5538 { 5539 struct kobj_type *ktype = get_ktype(kobj); 5540 5541 if (ktype == &slab_ktype) 5542 return 1; 5543 return 0; 5544 } 5545 5546 static const struct kset_uevent_ops slab_uevent_ops = { 5547 .filter = uevent_filter, 5548 }; 5549 5550 static struct kset *slab_kset; 5551 5552 static inline struct kset *cache_kset(struct kmem_cache *s) 5553 { 5554 #ifdef CONFIG_MEMCG 5555 if (!is_root_cache(s)) 5556 return s->memcg_params.root_cache->memcg_kset; 5557 #endif 5558 return slab_kset; 5559 } 5560 5561 #define ID_STR_LENGTH 64 5562 5563 /* Create a unique string id for a slab cache: 5564 * 5565 * Format :[flags-]size 5566 */ 5567 static char *create_unique_id(struct kmem_cache *s) 5568 { 5569 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5570 char *p = name; 5571 5572 BUG_ON(!name); 5573 5574 *p++ = ':'; 5575 /* 5576 * First flags affecting slabcache operations. We will only 5577 * get here for aliasable slabs so we do not need to support 5578 * too many flags. The flags here must cover all flags that 5579 * are matched during merging to guarantee that the id is 5580 * unique. 5581 */ 5582 if (s->flags & SLAB_CACHE_DMA) 5583 *p++ = 'd'; 5584 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5585 *p++ = 'a'; 5586 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5587 *p++ = 'F'; 5588 if (!(s->flags & SLAB_NOTRACK)) 5589 *p++ = 't'; 5590 if (s->flags & SLAB_ACCOUNT) 5591 *p++ = 'A'; 5592 if (p != name + 1) 5593 *p++ = '-'; 5594 p += sprintf(p, "%07d", s->size); 5595 5596 BUG_ON(p > name + ID_STR_LENGTH - 1); 5597 return name; 5598 } 5599 5600 static int sysfs_slab_add(struct kmem_cache *s) 5601 { 5602 int err; 5603 const char *name; 5604 int unmergeable = slab_unmergeable(s); 5605 5606 if (unmergeable) { 5607 /* 5608 * Slabcache can never be merged so we can use the name proper. 5609 * This is typically the case for debug situations. In that 5610 * case we can catch duplicate names easily. 5611 */ 5612 sysfs_remove_link(&slab_kset->kobj, s->name); 5613 name = s->name; 5614 } else { 5615 /* 5616 * Create a unique name for the slab as a target 5617 * for the symlinks. 5618 */ 5619 name = create_unique_id(s); 5620 } 5621 5622 s->kobj.kset = cache_kset(s); 5623 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5624 if (err) 5625 goto out; 5626 5627 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5628 if (err) 5629 goto out_del_kobj; 5630 5631 #ifdef CONFIG_MEMCG 5632 if (is_root_cache(s)) { 5633 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5634 if (!s->memcg_kset) { 5635 err = -ENOMEM; 5636 goto out_del_kobj; 5637 } 5638 } 5639 #endif 5640 5641 kobject_uevent(&s->kobj, KOBJ_ADD); 5642 if (!unmergeable) { 5643 /* Setup first alias */ 5644 sysfs_slab_alias(s, s->name); 5645 } 5646 out: 5647 if (!unmergeable) 5648 kfree(name); 5649 return err; 5650 out_del_kobj: 5651 kobject_del(&s->kobj); 5652 goto out; 5653 } 5654 5655 void sysfs_slab_remove(struct kmem_cache *s) 5656 { 5657 if (slab_state < FULL) 5658 /* 5659 * Sysfs has not been setup yet so no need to remove the 5660 * cache from sysfs. 5661 */ 5662 return; 5663 5664 #ifdef CONFIG_MEMCG 5665 kset_unregister(s->memcg_kset); 5666 #endif 5667 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5668 kobject_del(&s->kobj); 5669 kobject_put(&s->kobj); 5670 } 5671 5672 /* 5673 * Need to buffer aliases during bootup until sysfs becomes 5674 * available lest we lose that information. 5675 */ 5676 struct saved_alias { 5677 struct kmem_cache *s; 5678 const char *name; 5679 struct saved_alias *next; 5680 }; 5681 5682 static struct saved_alias *alias_list; 5683 5684 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5685 { 5686 struct saved_alias *al; 5687 5688 if (slab_state == FULL) { 5689 /* 5690 * If we have a leftover link then remove it. 5691 */ 5692 sysfs_remove_link(&slab_kset->kobj, name); 5693 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5694 } 5695 5696 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5697 if (!al) 5698 return -ENOMEM; 5699 5700 al->s = s; 5701 al->name = name; 5702 al->next = alias_list; 5703 alias_list = al; 5704 return 0; 5705 } 5706 5707 static int __init slab_sysfs_init(void) 5708 { 5709 struct kmem_cache *s; 5710 int err; 5711 5712 mutex_lock(&slab_mutex); 5713 5714 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5715 if (!slab_kset) { 5716 mutex_unlock(&slab_mutex); 5717 pr_err("Cannot register slab subsystem.\n"); 5718 return -ENOSYS; 5719 } 5720 5721 slab_state = FULL; 5722 5723 list_for_each_entry(s, &slab_caches, list) { 5724 err = sysfs_slab_add(s); 5725 if (err) 5726 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5727 s->name); 5728 } 5729 5730 while (alias_list) { 5731 struct saved_alias *al = alias_list; 5732 5733 alias_list = alias_list->next; 5734 err = sysfs_slab_alias(al->s, al->name); 5735 if (err) 5736 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5737 al->name); 5738 kfree(al); 5739 } 5740 5741 mutex_unlock(&slab_mutex); 5742 resiliency_test(); 5743 return 0; 5744 } 5745 5746 __initcall(slab_sysfs_init); 5747 #endif /* CONFIG_SYSFS */ 5748 5749 /* 5750 * The /proc/slabinfo ABI 5751 */ 5752 #ifdef CONFIG_SLABINFO 5753 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5754 { 5755 unsigned long nr_slabs = 0; 5756 unsigned long nr_objs = 0; 5757 unsigned long nr_free = 0; 5758 int node; 5759 struct kmem_cache_node *n; 5760 5761 for_each_kmem_cache_node(s, node, n) { 5762 nr_slabs += node_nr_slabs(n); 5763 nr_objs += node_nr_objs(n); 5764 nr_free += count_partial(n, count_free); 5765 } 5766 5767 sinfo->active_objs = nr_objs - nr_free; 5768 sinfo->num_objs = nr_objs; 5769 sinfo->active_slabs = nr_slabs; 5770 sinfo->num_slabs = nr_slabs; 5771 sinfo->objects_per_slab = oo_objects(s->oo); 5772 sinfo->cache_order = oo_order(s->oo); 5773 } 5774 5775 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5776 { 5777 } 5778 5779 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5780 size_t count, loff_t *ppos) 5781 { 5782 return -EIO; 5783 } 5784 #endif /* CONFIG_SLABINFO */ 5785