xref: /linux/mm/slub.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 
38 #include <trace/events/kmem.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Lock order:
44  *   1. slab_mutex (Global Mutex)
45  *   2. node->list_lock
46  *   3. slab_lock(page) (Only on some arches and for debugging)
47  *
48  *   slab_mutex
49  *
50  *   The role of the slab_mutex is to protect the list of all the slabs
51  *   and to synchronize major metadata changes to slab cache structures.
52  *
53  *   The slab_lock is only used for debugging and on arches that do not
54  *   have the ability to do a cmpxchg_double. It only protects the second
55  *   double word in the page struct. Meaning
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->counters	-> Counters of objects
58  *	C. page->frozen		-> frozen state
59  *
60  *   If a slab is frozen then it is exempt from list management. It is not
61  *   on any list. The processor that froze the slab is the one who can
62  *   perform list operations on the page. Other processors may put objects
63  *   onto the freelist but the processor that froze the slab is the only
64  *   one that can retrieve the objects from the page's freelist.
65  *
66  *   The list_lock protects the partial and full list on each node and
67  *   the partial slab counter. If taken then no new slabs may be added or
68  *   removed from the lists nor make the number of partial slabs be modified.
69  *   (Note that the total number of slabs is an atomic value that may be
70  *   modified without taking the list lock).
71  *
72  *   The list_lock is a centralized lock and thus we avoid taking it as
73  *   much as possible. As long as SLUB does not have to handle partial
74  *   slabs, operations can continue without any centralized lock. F.e.
75  *   allocating a long series of objects that fill up slabs does not require
76  *   the list lock.
77  *   Interrupts are disabled during allocation and deallocation in order to
78  *   make the slab allocator safe to use in the context of an irq. In addition
79  *   interrupts are disabled to ensure that the processor does not change
80  *   while handling per_cpu slabs, due to kernel preemption.
81  *
82  * SLUB assigns one slab for allocation to each processor.
83  * Allocations only occur from these slabs called cpu slabs.
84  *
85  * Slabs with free elements are kept on a partial list and during regular
86  * operations no list for full slabs is used. If an object in a full slab is
87  * freed then the slab will show up again on the partial lists.
88  * We track full slabs for debugging purposes though because otherwise we
89  * cannot scan all objects.
90  *
91  * Slabs are freed when they become empty. Teardown and setup is
92  * minimal so we rely on the page allocators per cpu caches for
93  * fast frees and allocs.
94  *
95  * Overloading of page flags that are otherwise used for LRU management.
96  *
97  * PageActive 		The slab is frozen and exempt from list processing.
98  * 			This means that the slab is dedicated to a purpose
99  * 			such as satisfying allocations for a specific
100  * 			processor. Objects may be freed in the slab while
101  * 			it is frozen but slab_free will then skip the usual
102  * 			list operations. It is up to the processor holding
103  * 			the slab to integrate the slab into the slab lists
104  * 			when the slab is no longer needed.
105  *
106  * 			One use of this flag is to mark slabs that are
107  * 			used for allocations. Then such a slab becomes a cpu
108  * 			slab. The cpu slab may be equipped with an additional
109  * 			freelist that allows lockless access to
110  * 			free objects in addition to the regular freelist
111  * 			that requires the slab lock.
112  *
113  * PageError		Slab requires special handling due to debug
114  * 			options set. This moves	slab handling out of
115  * 			the fast path and disables lockless freelists.
116  */
117 
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 	return 0;
124 #endif
125 }
126 
127 void *fixup_red_left(struct kmem_cache *s, void *p)
128 {
129 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 		p += s->red_left_pad;
131 
132 	return p;
133 }
134 
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 {
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 	return !kmem_cache_debug(s);
139 #else
140 	return false;
141 #endif
142 }
143 
144 /*
145  * Issues still to be resolved:
146  *
147  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148  *
149  * - Variable sizing of the per node arrays
150  */
151 
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
154 
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
157 
158 /*
159  * Mininum number of partial slabs. These will be left on the partial
160  * lists even if they are empty. kmem_cache_shrink may reclaim them.
161  */
162 #define MIN_PARTIAL 5
163 
164 /*
165  * Maximum number of desirable partial slabs.
166  * The existence of more partial slabs makes kmem_cache_shrink
167  * sort the partial list by the number of objects in use.
168  */
169 #define MAX_PARTIAL 10
170 
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 				SLAB_POISON | SLAB_STORE_USER)
173 
174 /*
175  * These debug flags cannot use CMPXCHG because there might be consistency
176  * issues when checking or reading debug information
177  */
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 				SLAB_TRACE)
180 
181 
182 /*
183  * Debugging flags that require metadata to be stored in the slab.  These get
184  * disabled when slub_debug=O is used and a cache's min order increases with
185  * metadata.
186  */
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188 
189 #define OO_SHIFT	16
190 #define OO_MASK		((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192 
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON		0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
196 
197 #ifdef CONFIG_SMP
198 static struct notifier_block slab_notifier;
199 #endif
200 
201 /*
202  * Tracking user of a slab.
203  */
204 #define TRACK_ADDRS_COUNT 16
205 struct track {
206 	unsigned long addr;	/* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
209 #endif
210 	int cpu;		/* Was running on cpu */
211 	int pid;		/* Pid context */
212 	unsigned long when;	/* When did the operation occur */
213 };
214 
215 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 
217 #ifdef CONFIG_SYSFS
218 static int sysfs_slab_add(struct kmem_cache *);
219 static int sysfs_slab_alias(struct kmem_cache *, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 #endif
227 
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 	/*
232 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 	 * avoid this_cpu_add()'s irq-disable overhead.
234 	 */
235 	raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238 
239 /********************************************************************
240  * 			Core slab cache functions
241  *******************************************************************/
242 
243 static inline void *get_freepointer(struct kmem_cache *s, void *object)
244 {
245 	return *(void **)(object + s->offset);
246 }
247 
248 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249 {
250 	prefetch(object + s->offset);
251 }
252 
253 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254 {
255 	void *p;
256 
257 	if (!debug_pagealloc_enabled())
258 		return get_freepointer(s, object);
259 
260 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 	return p;
262 }
263 
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 	*(void **)(object + s->offset) = fp;
267 }
268 
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 	for (__p = fixup_red_left(__s, __addr); \
272 		__p < (__addr) + (__objects) * (__s)->size; \
273 		__p += (__s)->size)
274 
275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
276 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 		__idx <= __objects; \
278 		__p += (__s)->size, __idx++)
279 
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 	return (p - addr) / s->size;
284 }
285 
286 static inline int order_objects(int order, unsigned long size, int reserved)
287 {
288 	return ((PAGE_SIZE << order) - reserved) / size;
289 }
290 
291 static inline struct kmem_cache_order_objects oo_make(int order,
292 		unsigned long size, int reserved)
293 {
294 	struct kmem_cache_order_objects x = {
295 		(order << OO_SHIFT) + order_objects(order, size, reserved)
296 	};
297 
298 	return x;
299 }
300 
301 static inline int oo_order(struct kmem_cache_order_objects x)
302 {
303 	return x.x >> OO_SHIFT;
304 }
305 
306 static inline int oo_objects(struct kmem_cache_order_objects x)
307 {
308 	return x.x & OO_MASK;
309 }
310 
311 /*
312  * Per slab locking using the pagelock
313  */
314 static __always_inline void slab_lock(struct page *page)
315 {
316 	VM_BUG_ON_PAGE(PageTail(page), page);
317 	bit_spin_lock(PG_locked, &page->flags);
318 }
319 
320 static __always_inline void slab_unlock(struct page *page)
321 {
322 	VM_BUG_ON_PAGE(PageTail(page), page);
323 	__bit_spin_unlock(PG_locked, &page->flags);
324 }
325 
326 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327 {
328 	struct page tmp;
329 	tmp.counters = counters_new;
330 	/*
331 	 * page->counters can cover frozen/inuse/objects as well
332 	 * as page->_refcount.  If we assign to ->counters directly
333 	 * we run the risk of losing updates to page->_refcount, so
334 	 * be careful and only assign to the fields we need.
335 	 */
336 	page->frozen  = tmp.frozen;
337 	page->inuse   = tmp.inuse;
338 	page->objects = tmp.objects;
339 }
340 
341 /* Interrupts must be disabled (for the fallback code to work right) */
342 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 		void *freelist_old, unsigned long counters_old,
344 		void *freelist_new, unsigned long counters_new,
345 		const char *n)
346 {
347 	VM_BUG_ON(!irqs_disabled());
348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
350 	if (s->flags & __CMPXCHG_DOUBLE) {
351 		if (cmpxchg_double(&page->freelist, &page->counters,
352 				   freelist_old, counters_old,
353 				   freelist_new, counters_new))
354 			return true;
355 	} else
356 #endif
357 	{
358 		slab_lock(page);
359 		if (page->freelist == freelist_old &&
360 					page->counters == counters_old) {
361 			page->freelist = freelist_new;
362 			set_page_slub_counters(page, counters_new);
363 			slab_unlock(page);
364 			return true;
365 		}
366 		slab_unlock(page);
367 	}
368 
369 	cpu_relax();
370 	stat(s, CMPXCHG_DOUBLE_FAIL);
371 
372 #ifdef SLUB_DEBUG_CMPXCHG
373 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
374 #endif
375 
376 	return false;
377 }
378 
379 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 		void *freelist_old, unsigned long counters_old,
381 		void *freelist_new, unsigned long counters_new,
382 		const char *n)
383 {
384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
386 	if (s->flags & __CMPXCHG_DOUBLE) {
387 		if (cmpxchg_double(&page->freelist, &page->counters,
388 				   freelist_old, counters_old,
389 				   freelist_new, counters_new))
390 			return true;
391 	} else
392 #endif
393 	{
394 		unsigned long flags;
395 
396 		local_irq_save(flags);
397 		slab_lock(page);
398 		if (page->freelist == freelist_old &&
399 					page->counters == counters_old) {
400 			page->freelist = freelist_new;
401 			set_page_slub_counters(page, counters_new);
402 			slab_unlock(page);
403 			local_irq_restore(flags);
404 			return true;
405 		}
406 		slab_unlock(page);
407 		local_irq_restore(flags);
408 	}
409 
410 	cpu_relax();
411 	stat(s, CMPXCHG_DOUBLE_FAIL);
412 
413 #ifdef SLUB_DEBUG_CMPXCHG
414 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
415 #endif
416 
417 	return false;
418 }
419 
420 #ifdef CONFIG_SLUB_DEBUG
421 /*
422  * Determine a map of object in use on a page.
423  *
424  * Node listlock must be held to guarantee that the page does
425  * not vanish from under us.
426  */
427 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428 {
429 	void *p;
430 	void *addr = page_address(page);
431 
432 	for (p = page->freelist; p; p = get_freepointer(s, p))
433 		set_bit(slab_index(p, s, addr), map);
434 }
435 
436 static inline int size_from_object(struct kmem_cache *s)
437 {
438 	if (s->flags & SLAB_RED_ZONE)
439 		return s->size - s->red_left_pad;
440 
441 	return s->size;
442 }
443 
444 static inline void *restore_red_left(struct kmem_cache *s, void *p)
445 {
446 	if (s->flags & SLAB_RED_ZONE)
447 		p -= s->red_left_pad;
448 
449 	return p;
450 }
451 
452 /*
453  * Debug settings:
454  */
455 #if defined(CONFIG_SLUB_DEBUG_ON)
456 static int slub_debug = DEBUG_DEFAULT_FLAGS;
457 #else
458 static int slub_debug;
459 #endif
460 
461 static char *slub_debug_slabs;
462 static int disable_higher_order_debug;
463 
464 /*
465  * slub is about to manipulate internal object metadata.  This memory lies
466  * outside the range of the allocated object, so accessing it would normally
467  * be reported by kasan as a bounds error.  metadata_access_enable() is used
468  * to tell kasan that these accesses are OK.
469  */
470 static inline void metadata_access_enable(void)
471 {
472 	kasan_disable_current();
473 }
474 
475 static inline void metadata_access_disable(void)
476 {
477 	kasan_enable_current();
478 }
479 
480 /*
481  * Object debugging
482  */
483 
484 /* Verify that a pointer has an address that is valid within a slab page */
485 static inline int check_valid_pointer(struct kmem_cache *s,
486 				struct page *page, void *object)
487 {
488 	void *base;
489 
490 	if (!object)
491 		return 1;
492 
493 	base = page_address(page);
494 	object = restore_red_left(s, object);
495 	if (object < base || object >= base + page->objects * s->size ||
496 		(object - base) % s->size) {
497 		return 0;
498 	}
499 
500 	return 1;
501 }
502 
503 static void print_section(char *text, u8 *addr, unsigned int length)
504 {
505 	metadata_access_enable();
506 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
507 			length, 1);
508 	metadata_access_disable();
509 }
510 
511 static struct track *get_track(struct kmem_cache *s, void *object,
512 	enum track_item alloc)
513 {
514 	struct track *p;
515 
516 	if (s->offset)
517 		p = object + s->offset + sizeof(void *);
518 	else
519 		p = object + s->inuse;
520 
521 	return p + alloc;
522 }
523 
524 static void set_track(struct kmem_cache *s, void *object,
525 			enum track_item alloc, unsigned long addr)
526 {
527 	struct track *p = get_track(s, object, alloc);
528 
529 	if (addr) {
530 #ifdef CONFIG_STACKTRACE
531 		struct stack_trace trace;
532 		int i;
533 
534 		trace.nr_entries = 0;
535 		trace.max_entries = TRACK_ADDRS_COUNT;
536 		trace.entries = p->addrs;
537 		trace.skip = 3;
538 		metadata_access_enable();
539 		save_stack_trace(&trace);
540 		metadata_access_disable();
541 
542 		/* See rant in lockdep.c */
543 		if (trace.nr_entries != 0 &&
544 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
545 			trace.nr_entries--;
546 
547 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 			p->addrs[i] = 0;
549 #endif
550 		p->addr = addr;
551 		p->cpu = smp_processor_id();
552 		p->pid = current->pid;
553 		p->when = jiffies;
554 	} else
555 		memset(p, 0, sizeof(struct track));
556 }
557 
558 static void init_tracking(struct kmem_cache *s, void *object)
559 {
560 	if (!(s->flags & SLAB_STORE_USER))
561 		return;
562 
563 	set_track(s, object, TRACK_FREE, 0UL);
564 	set_track(s, object, TRACK_ALLOC, 0UL);
565 }
566 
567 static void print_track(const char *s, struct track *t)
568 {
569 	if (!t->addr)
570 		return;
571 
572 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
573 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
574 #ifdef CONFIG_STACKTRACE
575 	{
576 		int i;
577 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
578 			if (t->addrs[i])
579 				pr_err("\t%pS\n", (void *)t->addrs[i]);
580 			else
581 				break;
582 	}
583 #endif
584 }
585 
586 static void print_tracking(struct kmem_cache *s, void *object)
587 {
588 	if (!(s->flags & SLAB_STORE_USER))
589 		return;
590 
591 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
592 	print_track("Freed", get_track(s, object, TRACK_FREE));
593 }
594 
595 static void print_page_info(struct page *page)
596 {
597 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
598 	       page, page->objects, page->inuse, page->freelist, page->flags);
599 
600 }
601 
602 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
603 {
604 	struct va_format vaf;
605 	va_list args;
606 
607 	va_start(args, fmt);
608 	vaf.fmt = fmt;
609 	vaf.va = &args;
610 	pr_err("=============================================================================\n");
611 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
612 	pr_err("-----------------------------------------------------------------------------\n\n");
613 
614 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
615 	va_end(args);
616 }
617 
618 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
619 {
620 	struct va_format vaf;
621 	va_list args;
622 
623 	va_start(args, fmt);
624 	vaf.fmt = fmt;
625 	vaf.va = &args;
626 	pr_err("FIX %s: %pV\n", s->name, &vaf);
627 	va_end(args);
628 }
629 
630 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
631 {
632 	unsigned int off;	/* Offset of last byte */
633 	u8 *addr = page_address(page);
634 
635 	print_tracking(s, p);
636 
637 	print_page_info(page);
638 
639 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
640 	       p, p - addr, get_freepointer(s, p));
641 
642 	if (s->flags & SLAB_RED_ZONE)
643 		print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
644 	else if (p > addr + 16)
645 		print_section("Bytes b4 ", p - 16, 16);
646 
647 	print_section("Object ", p, min_t(unsigned long, s->object_size,
648 				PAGE_SIZE));
649 	if (s->flags & SLAB_RED_ZONE)
650 		print_section("Redzone ", p + s->object_size,
651 			s->inuse - s->object_size);
652 
653 	if (s->offset)
654 		off = s->offset + sizeof(void *);
655 	else
656 		off = s->inuse;
657 
658 	if (s->flags & SLAB_STORE_USER)
659 		off += 2 * sizeof(struct track);
660 
661 	off += kasan_metadata_size(s);
662 
663 	if (off != size_from_object(s))
664 		/* Beginning of the filler is the free pointer */
665 		print_section("Padding ", p + off, size_from_object(s) - off);
666 
667 	dump_stack();
668 }
669 
670 void object_err(struct kmem_cache *s, struct page *page,
671 			u8 *object, char *reason)
672 {
673 	slab_bug(s, "%s", reason);
674 	print_trailer(s, page, object);
675 }
676 
677 static void slab_err(struct kmem_cache *s, struct page *page,
678 			const char *fmt, ...)
679 {
680 	va_list args;
681 	char buf[100];
682 
683 	va_start(args, fmt);
684 	vsnprintf(buf, sizeof(buf), fmt, args);
685 	va_end(args);
686 	slab_bug(s, "%s", buf);
687 	print_page_info(page);
688 	dump_stack();
689 }
690 
691 static void init_object(struct kmem_cache *s, void *object, u8 val)
692 {
693 	u8 *p = object;
694 
695 	if (s->flags & SLAB_RED_ZONE)
696 		memset(p - s->red_left_pad, val, s->red_left_pad);
697 
698 	if (s->flags & __OBJECT_POISON) {
699 		memset(p, POISON_FREE, s->object_size - 1);
700 		p[s->object_size - 1] = POISON_END;
701 	}
702 
703 	if (s->flags & SLAB_RED_ZONE)
704 		memset(p + s->object_size, val, s->inuse - s->object_size);
705 }
706 
707 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 						void *from, void *to)
709 {
710 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 	memset(from, data, to - from);
712 }
713 
714 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 			u8 *object, char *what,
716 			u8 *start, unsigned int value, unsigned int bytes)
717 {
718 	u8 *fault;
719 	u8 *end;
720 
721 	metadata_access_enable();
722 	fault = memchr_inv(start, value, bytes);
723 	metadata_access_disable();
724 	if (!fault)
725 		return 1;
726 
727 	end = start + bytes;
728 	while (end > fault && end[-1] == value)
729 		end--;
730 
731 	slab_bug(s, "%s overwritten", what);
732 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
733 					fault, end - 1, fault[0], value);
734 	print_trailer(s, page, object);
735 
736 	restore_bytes(s, what, value, fault, end);
737 	return 0;
738 }
739 
740 /*
741  * Object layout:
742  *
743  * object address
744  * 	Bytes of the object to be managed.
745  * 	If the freepointer may overlay the object then the free
746  * 	pointer is the first word of the object.
747  *
748  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
749  * 	0xa5 (POISON_END)
750  *
751  * object + s->object_size
752  * 	Padding to reach word boundary. This is also used for Redzoning.
753  * 	Padding is extended by another word if Redzoning is enabled and
754  * 	object_size == inuse.
755  *
756  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757  * 	0xcc (RED_ACTIVE) for objects in use.
758  *
759  * object + s->inuse
760  * 	Meta data starts here.
761  *
762  * 	A. Free pointer (if we cannot overwrite object on free)
763  * 	B. Tracking data for SLAB_STORE_USER
764  * 	C. Padding to reach required alignment boundary or at mininum
765  * 		one word if debugging is on to be able to detect writes
766  * 		before the word boundary.
767  *
768  *	Padding is done using 0x5a (POISON_INUSE)
769  *
770  * object + s->size
771  * 	Nothing is used beyond s->size.
772  *
773  * If slabcaches are merged then the object_size and inuse boundaries are mostly
774  * ignored. And therefore no slab options that rely on these boundaries
775  * may be used with merged slabcaches.
776  */
777 
778 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779 {
780 	unsigned long off = s->inuse;	/* The end of info */
781 
782 	if (s->offset)
783 		/* Freepointer is placed after the object. */
784 		off += sizeof(void *);
785 
786 	if (s->flags & SLAB_STORE_USER)
787 		/* We also have user information there */
788 		off += 2 * sizeof(struct track);
789 
790 	off += kasan_metadata_size(s);
791 
792 	if (size_from_object(s) == off)
793 		return 1;
794 
795 	return check_bytes_and_report(s, page, p, "Object padding",
796 			p + off, POISON_INUSE, size_from_object(s) - off);
797 }
798 
799 /* Check the pad bytes at the end of a slab page */
800 static int slab_pad_check(struct kmem_cache *s, struct page *page)
801 {
802 	u8 *start;
803 	u8 *fault;
804 	u8 *end;
805 	int length;
806 	int remainder;
807 
808 	if (!(s->flags & SLAB_POISON))
809 		return 1;
810 
811 	start = page_address(page);
812 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
813 	end = start + length;
814 	remainder = length % s->size;
815 	if (!remainder)
816 		return 1;
817 
818 	metadata_access_enable();
819 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
820 	metadata_access_disable();
821 	if (!fault)
822 		return 1;
823 	while (end > fault && end[-1] == POISON_INUSE)
824 		end--;
825 
826 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
827 	print_section("Padding ", end - remainder, remainder);
828 
829 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
830 	return 0;
831 }
832 
833 static int check_object(struct kmem_cache *s, struct page *page,
834 					void *object, u8 val)
835 {
836 	u8 *p = object;
837 	u8 *endobject = object + s->object_size;
838 
839 	if (s->flags & SLAB_RED_ZONE) {
840 		if (!check_bytes_and_report(s, page, object, "Redzone",
841 			object - s->red_left_pad, val, s->red_left_pad))
842 			return 0;
843 
844 		if (!check_bytes_and_report(s, page, object, "Redzone",
845 			endobject, val, s->inuse - s->object_size))
846 			return 0;
847 	} else {
848 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
849 			check_bytes_and_report(s, page, p, "Alignment padding",
850 				endobject, POISON_INUSE,
851 				s->inuse - s->object_size);
852 		}
853 	}
854 
855 	if (s->flags & SLAB_POISON) {
856 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
857 			(!check_bytes_and_report(s, page, p, "Poison", p,
858 					POISON_FREE, s->object_size - 1) ||
859 			 !check_bytes_and_report(s, page, p, "Poison",
860 				p + s->object_size - 1, POISON_END, 1)))
861 			return 0;
862 		/*
863 		 * check_pad_bytes cleans up on its own.
864 		 */
865 		check_pad_bytes(s, page, p);
866 	}
867 
868 	if (!s->offset && val == SLUB_RED_ACTIVE)
869 		/*
870 		 * Object and freepointer overlap. Cannot check
871 		 * freepointer while object is allocated.
872 		 */
873 		return 1;
874 
875 	/* Check free pointer validity */
876 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
877 		object_err(s, page, p, "Freepointer corrupt");
878 		/*
879 		 * No choice but to zap it and thus lose the remainder
880 		 * of the free objects in this slab. May cause
881 		 * another error because the object count is now wrong.
882 		 */
883 		set_freepointer(s, p, NULL);
884 		return 0;
885 	}
886 	return 1;
887 }
888 
889 static int check_slab(struct kmem_cache *s, struct page *page)
890 {
891 	int maxobj;
892 
893 	VM_BUG_ON(!irqs_disabled());
894 
895 	if (!PageSlab(page)) {
896 		slab_err(s, page, "Not a valid slab page");
897 		return 0;
898 	}
899 
900 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
901 	if (page->objects > maxobj) {
902 		slab_err(s, page, "objects %u > max %u",
903 			page->objects, maxobj);
904 		return 0;
905 	}
906 	if (page->inuse > page->objects) {
907 		slab_err(s, page, "inuse %u > max %u",
908 			page->inuse, page->objects);
909 		return 0;
910 	}
911 	/* Slab_pad_check fixes things up after itself */
912 	slab_pad_check(s, page);
913 	return 1;
914 }
915 
916 /*
917  * Determine if a certain object on a page is on the freelist. Must hold the
918  * slab lock to guarantee that the chains are in a consistent state.
919  */
920 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
921 {
922 	int nr = 0;
923 	void *fp;
924 	void *object = NULL;
925 	int max_objects;
926 
927 	fp = page->freelist;
928 	while (fp && nr <= page->objects) {
929 		if (fp == search)
930 			return 1;
931 		if (!check_valid_pointer(s, page, fp)) {
932 			if (object) {
933 				object_err(s, page, object,
934 					"Freechain corrupt");
935 				set_freepointer(s, object, NULL);
936 			} else {
937 				slab_err(s, page, "Freepointer corrupt");
938 				page->freelist = NULL;
939 				page->inuse = page->objects;
940 				slab_fix(s, "Freelist cleared");
941 				return 0;
942 			}
943 			break;
944 		}
945 		object = fp;
946 		fp = get_freepointer(s, object);
947 		nr++;
948 	}
949 
950 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
951 	if (max_objects > MAX_OBJS_PER_PAGE)
952 		max_objects = MAX_OBJS_PER_PAGE;
953 
954 	if (page->objects != max_objects) {
955 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
956 			 page->objects, max_objects);
957 		page->objects = max_objects;
958 		slab_fix(s, "Number of objects adjusted.");
959 	}
960 	if (page->inuse != page->objects - nr) {
961 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
962 			 page->inuse, page->objects - nr);
963 		page->inuse = page->objects - nr;
964 		slab_fix(s, "Object count adjusted.");
965 	}
966 	return search == NULL;
967 }
968 
969 static void trace(struct kmem_cache *s, struct page *page, void *object,
970 								int alloc)
971 {
972 	if (s->flags & SLAB_TRACE) {
973 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
974 			s->name,
975 			alloc ? "alloc" : "free",
976 			object, page->inuse,
977 			page->freelist);
978 
979 		if (!alloc)
980 			print_section("Object ", (void *)object,
981 					s->object_size);
982 
983 		dump_stack();
984 	}
985 }
986 
987 /*
988  * Tracking of fully allocated slabs for debugging purposes.
989  */
990 static void add_full(struct kmem_cache *s,
991 	struct kmem_cache_node *n, struct page *page)
992 {
993 	if (!(s->flags & SLAB_STORE_USER))
994 		return;
995 
996 	lockdep_assert_held(&n->list_lock);
997 	list_add(&page->lru, &n->full);
998 }
999 
1000 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001 {
1002 	if (!(s->flags & SLAB_STORE_USER))
1003 		return;
1004 
1005 	lockdep_assert_held(&n->list_lock);
1006 	list_del(&page->lru);
1007 }
1008 
1009 /* Tracking of the number of slabs for debugging purposes */
1010 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011 {
1012 	struct kmem_cache_node *n = get_node(s, node);
1013 
1014 	return atomic_long_read(&n->nr_slabs);
1015 }
1016 
1017 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018 {
1019 	return atomic_long_read(&n->nr_slabs);
1020 }
1021 
1022 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1023 {
1024 	struct kmem_cache_node *n = get_node(s, node);
1025 
1026 	/*
1027 	 * May be called early in order to allocate a slab for the
1028 	 * kmem_cache_node structure. Solve the chicken-egg
1029 	 * dilemma by deferring the increment of the count during
1030 	 * bootstrap (see early_kmem_cache_node_alloc).
1031 	 */
1032 	if (likely(n)) {
1033 		atomic_long_inc(&n->nr_slabs);
1034 		atomic_long_add(objects, &n->total_objects);
1035 	}
1036 }
1037 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1038 {
1039 	struct kmem_cache_node *n = get_node(s, node);
1040 
1041 	atomic_long_dec(&n->nr_slabs);
1042 	atomic_long_sub(objects, &n->total_objects);
1043 }
1044 
1045 /* Object debug checks for alloc/free paths */
1046 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1047 								void *object)
1048 {
1049 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1050 		return;
1051 
1052 	init_object(s, object, SLUB_RED_INACTIVE);
1053 	init_tracking(s, object);
1054 }
1055 
1056 static inline int alloc_consistency_checks(struct kmem_cache *s,
1057 					struct page *page,
1058 					void *object, unsigned long addr)
1059 {
1060 	if (!check_slab(s, page))
1061 		return 0;
1062 
1063 	if (!check_valid_pointer(s, page, object)) {
1064 		object_err(s, page, object, "Freelist Pointer check fails");
1065 		return 0;
1066 	}
1067 
1068 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1069 		return 0;
1070 
1071 	return 1;
1072 }
1073 
1074 static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 					struct page *page,
1076 					void *object, unsigned long addr)
1077 {
1078 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1079 		if (!alloc_consistency_checks(s, page, object, addr))
1080 			goto bad;
1081 	}
1082 
1083 	/* Success perform special debug activities for allocs */
1084 	if (s->flags & SLAB_STORE_USER)
1085 		set_track(s, object, TRACK_ALLOC, addr);
1086 	trace(s, page, object, 1);
1087 	init_object(s, object, SLUB_RED_ACTIVE);
1088 	return 1;
1089 
1090 bad:
1091 	if (PageSlab(page)) {
1092 		/*
1093 		 * If this is a slab page then lets do the best we can
1094 		 * to avoid issues in the future. Marking all objects
1095 		 * as used avoids touching the remaining objects.
1096 		 */
1097 		slab_fix(s, "Marking all objects used");
1098 		page->inuse = page->objects;
1099 		page->freelist = NULL;
1100 	}
1101 	return 0;
1102 }
1103 
1104 static inline int free_consistency_checks(struct kmem_cache *s,
1105 		struct page *page, void *object, unsigned long addr)
1106 {
1107 	if (!check_valid_pointer(s, page, object)) {
1108 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1109 		return 0;
1110 	}
1111 
1112 	if (on_freelist(s, page, object)) {
1113 		object_err(s, page, object, "Object already free");
1114 		return 0;
1115 	}
1116 
1117 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1118 		return 0;
1119 
1120 	if (unlikely(s != page->slab_cache)) {
1121 		if (!PageSlab(page)) {
1122 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 				 object);
1124 		} else if (!page->slab_cache) {
1125 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1126 			       object);
1127 			dump_stack();
1128 		} else
1129 			object_err(s, page, object,
1130 					"page slab pointer corrupt.");
1131 		return 0;
1132 	}
1133 	return 1;
1134 }
1135 
1136 /* Supports checking bulk free of a constructed freelist */
1137 static noinline int free_debug_processing(
1138 	struct kmem_cache *s, struct page *page,
1139 	void *head, void *tail, int bulk_cnt,
1140 	unsigned long addr)
1141 {
1142 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1143 	void *object = head;
1144 	int cnt = 0;
1145 	unsigned long uninitialized_var(flags);
1146 	int ret = 0;
1147 
1148 	spin_lock_irqsave(&n->list_lock, flags);
1149 	slab_lock(page);
1150 
1151 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1152 		if (!check_slab(s, page))
1153 			goto out;
1154 	}
1155 
1156 next_object:
1157 	cnt++;
1158 
1159 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 		if (!free_consistency_checks(s, page, object, addr))
1161 			goto out;
1162 	}
1163 
1164 	if (s->flags & SLAB_STORE_USER)
1165 		set_track(s, object, TRACK_FREE, addr);
1166 	trace(s, page, object, 0);
1167 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1168 	init_object(s, object, SLUB_RED_INACTIVE);
1169 
1170 	/* Reached end of constructed freelist yet? */
1171 	if (object != tail) {
1172 		object = get_freepointer(s, object);
1173 		goto next_object;
1174 	}
1175 	ret = 1;
1176 
1177 out:
1178 	if (cnt != bulk_cnt)
1179 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1180 			 bulk_cnt, cnt);
1181 
1182 	slab_unlock(page);
1183 	spin_unlock_irqrestore(&n->list_lock, flags);
1184 	if (!ret)
1185 		slab_fix(s, "Object at 0x%p not freed", object);
1186 	return ret;
1187 }
1188 
1189 static int __init setup_slub_debug(char *str)
1190 {
1191 	slub_debug = DEBUG_DEFAULT_FLAGS;
1192 	if (*str++ != '=' || !*str)
1193 		/*
1194 		 * No options specified. Switch on full debugging.
1195 		 */
1196 		goto out;
1197 
1198 	if (*str == ',')
1199 		/*
1200 		 * No options but restriction on slabs. This means full
1201 		 * debugging for slabs matching a pattern.
1202 		 */
1203 		goto check_slabs;
1204 
1205 	slub_debug = 0;
1206 	if (*str == '-')
1207 		/*
1208 		 * Switch off all debugging measures.
1209 		 */
1210 		goto out;
1211 
1212 	/*
1213 	 * Determine which debug features should be switched on
1214 	 */
1215 	for (; *str && *str != ','; str++) {
1216 		switch (tolower(*str)) {
1217 		case 'f':
1218 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1219 			break;
1220 		case 'z':
1221 			slub_debug |= SLAB_RED_ZONE;
1222 			break;
1223 		case 'p':
1224 			slub_debug |= SLAB_POISON;
1225 			break;
1226 		case 'u':
1227 			slub_debug |= SLAB_STORE_USER;
1228 			break;
1229 		case 't':
1230 			slub_debug |= SLAB_TRACE;
1231 			break;
1232 		case 'a':
1233 			slub_debug |= SLAB_FAILSLAB;
1234 			break;
1235 		case 'o':
1236 			/*
1237 			 * Avoid enabling debugging on caches if its minimum
1238 			 * order would increase as a result.
1239 			 */
1240 			disable_higher_order_debug = 1;
1241 			break;
1242 		default:
1243 			pr_err("slub_debug option '%c' unknown. skipped\n",
1244 			       *str);
1245 		}
1246 	}
1247 
1248 check_slabs:
1249 	if (*str == ',')
1250 		slub_debug_slabs = str + 1;
1251 out:
1252 	return 1;
1253 }
1254 
1255 __setup("slub_debug", setup_slub_debug);
1256 
1257 unsigned long kmem_cache_flags(unsigned long object_size,
1258 	unsigned long flags, const char *name,
1259 	void (*ctor)(void *))
1260 {
1261 	/*
1262 	 * Enable debugging if selected on the kernel commandline.
1263 	 */
1264 	if (slub_debug && (!slub_debug_slabs || (name &&
1265 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1266 		flags |= slub_debug;
1267 
1268 	return flags;
1269 }
1270 #else /* !CONFIG_SLUB_DEBUG */
1271 static inline void setup_object_debug(struct kmem_cache *s,
1272 			struct page *page, void *object) {}
1273 
1274 static inline int alloc_debug_processing(struct kmem_cache *s,
1275 	struct page *page, void *object, unsigned long addr) { return 0; }
1276 
1277 static inline int free_debug_processing(
1278 	struct kmem_cache *s, struct page *page,
1279 	void *head, void *tail, int bulk_cnt,
1280 	unsigned long addr) { return 0; }
1281 
1282 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 			{ return 1; }
1284 static inline int check_object(struct kmem_cache *s, struct page *page,
1285 			void *object, u8 val) { return 1; }
1286 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 					struct page *page) {}
1288 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1289 					struct page *page) {}
1290 unsigned long kmem_cache_flags(unsigned long object_size,
1291 	unsigned long flags, const char *name,
1292 	void (*ctor)(void *))
1293 {
1294 	return flags;
1295 }
1296 #define slub_debug 0
1297 
1298 #define disable_higher_order_debug 0
1299 
1300 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 							{ return 0; }
1302 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 							{ return 0; }
1304 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 							int objects) {}
1306 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1307 							int objects) {}
1308 
1309 #endif /* CONFIG_SLUB_DEBUG */
1310 
1311 /*
1312  * Hooks for other subsystems that check memory allocations. In a typical
1313  * production configuration these hooks all should produce no code at all.
1314  */
1315 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316 {
1317 	kmemleak_alloc(ptr, size, 1, flags);
1318 	kasan_kmalloc_large(ptr, size, flags);
1319 }
1320 
1321 static inline void kfree_hook(const void *x)
1322 {
1323 	kmemleak_free(x);
1324 	kasan_kfree_large(x);
1325 }
1326 
1327 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1328 {
1329 	void *freeptr;
1330 
1331 	kmemleak_free_recursive(x, s->flags);
1332 
1333 	/*
1334 	 * Trouble is that we may no longer disable interrupts in the fast path
1335 	 * So in order to make the debug calls that expect irqs to be
1336 	 * disabled we need to disable interrupts temporarily.
1337 	 */
1338 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 	{
1340 		unsigned long flags;
1341 
1342 		local_irq_save(flags);
1343 		kmemcheck_slab_free(s, x, s->object_size);
1344 		debug_check_no_locks_freed(x, s->object_size);
1345 		local_irq_restore(flags);
1346 	}
1347 #endif
1348 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1349 		debug_check_no_obj_freed(x, s->object_size);
1350 
1351 	freeptr = get_freepointer(s, x);
1352 	/*
1353 	 * kasan_slab_free() may put x into memory quarantine, delaying its
1354 	 * reuse. In this case the object's freelist pointer is changed.
1355 	 */
1356 	kasan_slab_free(s, x);
1357 	return freeptr;
1358 }
1359 
1360 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1361 					   void *head, void *tail)
1362 {
1363 /*
1364  * Compiler cannot detect this function can be removed if slab_free_hook()
1365  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1366  */
1367 #if defined(CONFIG_KMEMCHECK) ||		\
1368 	defined(CONFIG_LOCKDEP)	||		\
1369 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1370 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1371 	defined(CONFIG_KASAN)
1372 
1373 	void *object = head;
1374 	void *tail_obj = tail ? : head;
1375 	void *freeptr;
1376 
1377 	do {
1378 		freeptr = slab_free_hook(s, object);
1379 	} while ((object != tail_obj) && (object = freeptr));
1380 #endif
1381 }
1382 
1383 static void setup_object(struct kmem_cache *s, struct page *page,
1384 				void *object)
1385 {
1386 	setup_object_debug(s, page, object);
1387 	kasan_init_slab_obj(s, object);
1388 	if (unlikely(s->ctor)) {
1389 		kasan_unpoison_object_data(s, object);
1390 		s->ctor(object);
1391 		kasan_poison_object_data(s, object);
1392 	}
1393 }
1394 
1395 /*
1396  * Slab allocation and freeing
1397  */
1398 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1399 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1400 {
1401 	struct page *page;
1402 	int order = oo_order(oo);
1403 
1404 	flags |= __GFP_NOTRACK;
1405 
1406 	if (node == NUMA_NO_NODE)
1407 		page = alloc_pages(flags, order);
1408 	else
1409 		page = __alloc_pages_node(node, flags, order);
1410 
1411 	if (page && memcg_charge_slab(page, flags, order, s)) {
1412 		__free_pages(page, order);
1413 		page = NULL;
1414 	}
1415 
1416 	return page;
1417 }
1418 
1419 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1420 /* Pre-initialize the random sequence cache */
1421 static int init_cache_random_seq(struct kmem_cache *s)
1422 {
1423 	int err;
1424 	unsigned long i, count = oo_objects(s->oo);
1425 
1426 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1427 	if (err) {
1428 		pr_err("SLUB: Unable to initialize free list for %s\n",
1429 			s->name);
1430 		return err;
1431 	}
1432 
1433 	/* Transform to an offset on the set of pages */
1434 	if (s->random_seq) {
1435 		for (i = 0; i < count; i++)
1436 			s->random_seq[i] *= s->size;
1437 	}
1438 	return 0;
1439 }
1440 
1441 /* Initialize each random sequence freelist per cache */
1442 static void __init init_freelist_randomization(void)
1443 {
1444 	struct kmem_cache *s;
1445 
1446 	mutex_lock(&slab_mutex);
1447 
1448 	list_for_each_entry(s, &slab_caches, list)
1449 		init_cache_random_seq(s);
1450 
1451 	mutex_unlock(&slab_mutex);
1452 }
1453 
1454 /* Get the next entry on the pre-computed freelist randomized */
1455 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1456 				unsigned long *pos, void *start,
1457 				unsigned long page_limit,
1458 				unsigned long freelist_count)
1459 {
1460 	unsigned int idx;
1461 
1462 	/*
1463 	 * If the target page allocation failed, the number of objects on the
1464 	 * page might be smaller than the usual size defined by the cache.
1465 	 */
1466 	do {
1467 		idx = s->random_seq[*pos];
1468 		*pos += 1;
1469 		if (*pos >= freelist_count)
1470 			*pos = 0;
1471 	} while (unlikely(idx >= page_limit));
1472 
1473 	return (char *)start + idx;
1474 }
1475 
1476 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1477 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1478 {
1479 	void *start;
1480 	void *cur;
1481 	void *next;
1482 	unsigned long idx, pos, page_limit, freelist_count;
1483 
1484 	if (page->objects < 2 || !s->random_seq)
1485 		return false;
1486 
1487 	freelist_count = oo_objects(s->oo);
1488 	pos = get_random_int() % freelist_count;
1489 
1490 	page_limit = page->objects * s->size;
1491 	start = fixup_red_left(s, page_address(page));
1492 
1493 	/* First entry is used as the base of the freelist */
1494 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1495 				freelist_count);
1496 	page->freelist = cur;
1497 
1498 	for (idx = 1; idx < page->objects; idx++) {
1499 		setup_object(s, page, cur);
1500 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1501 			freelist_count);
1502 		set_freepointer(s, cur, next);
1503 		cur = next;
1504 	}
1505 	setup_object(s, page, cur);
1506 	set_freepointer(s, cur, NULL);
1507 
1508 	return true;
1509 }
1510 #else
1511 static inline int init_cache_random_seq(struct kmem_cache *s)
1512 {
1513 	return 0;
1514 }
1515 static inline void init_freelist_randomization(void) { }
1516 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 {
1518 	return false;
1519 }
1520 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1521 
1522 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1523 {
1524 	struct page *page;
1525 	struct kmem_cache_order_objects oo = s->oo;
1526 	gfp_t alloc_gfp;
1527 	void *start, *p;
1528 	int idx, order;
1529 	bool shuffle;
1530 
1531 	flags &= gfp_allowed_mask;
1532 
1533 	if (gfpflags_allow_blocking(flags))
1534 		local_irq_enable();
1535 
1536 	flags |= s->allocflags;
1537 
1538 	/*
1539 	 * Let the initial higher-order allocation fail under memory pressure
1540 	 * so we fall-back to the minimum order allocation.
1541 	 */
1542 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1543 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1544 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1545 
1546 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1547 	if (unlikely(!page)) {
1548 		oo = s->min;
1549 		alloc_gfp = flags;
1550 		/*
1551 		 * Allocation may have failed due to fragmentation.
1552 		 * Try a lower order alloc if possible
1553 		 */
1554 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1555 		if (unlikely(!page))
1556 			goto out;
1557 		stat(s, ORDER_FALLBACK);
1558 	}
1559 
1560 	if (kmemcheck_enabled &&
1561 	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1562 		int pages = 1 << oo_order(oo);
1563 
1564 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1565 
1566 		/*
1567 		 * Objects from caches that have a constructor don't get
1568 		 * cleared when they're allocated, so we need to do it here.
1569 		 */
1570 		if (s->ctor)
1571 			kmemcheck_mark_uninitialized_pages(page, pages);
1572 		else
1573 			kmemcheck_mark_unallocated_pages(page, pages);
1574 	}
1575 
1576 	page->objects = oo_objects(oo);
1577 
1578 	order = compound_order(page);
1579 	page->slab_cache = s;
1580 	__SetPageSlab(page);
1581 	if (page_is_pfmemalloc(page))
1582 		SetPageSlabPfmemalloc(page);
1583 
1584 	start = page_address(page);
1585 
1586 	if (unlikely(s->flags & SLAB_POISON))
1587 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1588 
1589 	kasan_poison_slab(page);
1590 
1591 	shuffle = shuffle_freelist(s, page);
1592 
1593 	if (!shuffle) {
1594 		for_each_object_idx(p, idx, s, start, page->objects) {
1595 			setup_object(s, page, p);
1596 			if (likely(idx < page->objects))
1597 				set_freepointer(s, p, p + s->size);
1598 			else
1599 				set_freepointer(s, p, NULL);
1600 		}
1601 		page->freelist = fixup_red_left(s, start);
1602 	}
1603 
1604 	page->inuse = page->objects;
1605 	page->frozen = 1;
1606 
1607 out:
1608 	if (gfpflags_allow_blocking(flags))
1609 		local_irq_disable();
1610 	if (!page)
1611 		return NULL;
1612 
1613 	mod_zone_page_state(page_zone(page),
1614 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1615 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1616 		1 << oo_order(oo));
1617 
1618 	inc_slabs_node(s, page_to_nid(page), page->objects);
1619 
1620 	return page;
1621 }
1622 
1623 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1624 {
1625 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1626 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1627 		flags &= ~GFP_SLAB_BUG_MASK;
1628 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1629 				invalid_mask, &invalid_mask, flags, &flags);
1630 	}
1631 
1632 	return allocate_slab(s,
1633 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1634 }
1635 
1636 static void __free_slab(struct kmem_cache *s, struct page *page)
1637 {
1638 	int order = compound_order(page);
1639 	int pages = 1 << order;
1640 
1641 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1642 		void *p;
1643 
1644 		slab_pad_check(s, page);
1645 		for_each_object(p, s, page_address(page),
1646 						page->objects)
1647 			check_object(s, page, p, SLUB_RED_INACTIVE);
1648 	}
1649 
1650 	kmemcheck_free_shadow(page, compound_order(page));
1651 
1652 	mod_zone_page_state(page_zone(page),
1653 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 		-pages);
1656 
1657 	__ClearPageSlabPfmemalloc(page);
1658 	__ClearPageSlab(page);
1659 
1660 	page_mapcount_reset(page);
1661 	if (current->reclaim_state)
1662 		current->reclaim_state->reclaimed_slab += pages;
1663 	memcg_uncharge_slab(page, order, s);
1664 	__free_pages(page, order);
1665 }
1666 
1667 #define need_reserve_slab_rcu						\
1668 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1669 
1670 static void rcu_free_slab(struct rcu_head *h)
1671 {
1672 	struct page *page;
1673 
1674 	if (need_reserve_slab_rcu)
1675 		page = virt_to_head_page(h);
1676 	else
1677 		page = container_of((struct list_head *)h, struct page, lru);
1678 
1679 	__free_slab(page->slab_cache, page);
1680 }
1681 
1682 static void free_slab(struct kmem_cache *s, struct page *page)
1683 {
1684 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1685 		struct rcu_head *head;
1686 
1687 		if (need_reserve_slab_rcu) {
1688 			int order = compound_order(page);
1689 			int offset = (PAGE_SIZE << order) - s->reserved;
1690 
1691 			VM_BUG_ON(s->reserved != sizeof(*head));
1692 			head = page_address(page) + offset;
1693 		} else {
1694 			head = &page->rcu_head;
1695 		}
1696 
1697 		call_rcu(head, rcu_free_slab);
1698 	} else
1699 		__free_slab(s, page);
1700 }
1701 
1702 static void discard_slab(struct kmem_cache *s, struct page *page)
1703 {
1704 	dec_slabs_node(s, page_to_nid(page), page->objects);
1705 	free_slab(s, page);
1706 }
1707 
1708 /*
1709  * Management of partially allocated slabs.
1710  */
1711 static inline void
1712 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1713 {
1714 	n->nr_partial++;
1715 	if (tail == DEACTIVATE_TO_TAIL)
1716 		list_add_tail(&page->lru, &n->partial);
1717 	else
1718 		list_add(&page->lru, &n->partial);
1719 }
1720 
1721 static inline void add_partial(struct kmem_cache_node *n,
1722 				struct page *page, int tail)
1723 {
1724 	lockdep_assert_held(&n->list_lock);
1725 	__add_partial(n, page, tail);
1726 }
1727 
1728 static inline void remove_partial(struct kmem_cache_node *n,
1729 					struct page *page)
1730 {
1731 	lockdep_assert_held(&n->list_lock);
1732 	list_del(&page->lru);
1733 	n->nr_partial--;
1734 }
1735 
1736 /*
1737  * Remove slab from the partial list, freeze it and
1738  * return the pointer to the freelist.
1739  *
1740  * Returns a list of objects or NULL if it fails.
1741  */
1742 static inline void *acquire_slab(struct kmem_cache *s,
1743 		struct kmem_cache_node *n, struct page *page,
1744 		int mode, int *objects)
1745 {
1746 	void *freelist;
1747 	unsigned long counters;
1748 	struct page new;
1749 
1750 	lockdep_assert_held(&n->list_lock);
1751 
1752 	/*
1753 	 * Zap the freelist and set the frozen bit.
1754 	 * The old freelist is the list of objects for the
1755 	 * per cpu allocation list.
1756 	 */
1757 	freelist = page->freelist;
1758 	counters = page->counters;
1759 	new.counters = counters;
1760 	*objects = new.objects - new.inuse;
1761 	if (mode) {
1762 		new.inuse = page->objects;
1763 		new.freelist = NULL;
1764 	} else {
1765 		new.freelist = freelist;
1766 	}
1767 
1768 	VM_BUG_ON(new.frozen);
1769 	new.frozen = 1;
1770 
1771 	if (!__cmpxchg_double_slab(s, page,
1772 			freelist, counters,
1773 			new.freelist, new.counters,
1774 			"acquire_slab"))
1775 		return NULL;
1776 
1777 	remove_partial(n, page);
1778 	WARN_ON(!freelist);
1779 	return freelist;
1780 }
1781 
1782 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1783 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1784 
1785 /*
1786  * Try to allocate a partial slab from a specific node.
1787  */
1788 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 				struct kmem_cache_cpu *c, gfp_t flags)
1790 {
1791 	struct page *page, *page2;
1792 	void *object = NULL;
1793 	int available = 0;
1794 	int objects;
1795 
1796 	/*
1797 	 * Racy check. If we mistakenly see no partial slabs then we
1798 	 * just allocate an empty slab. If we mistakenly try to get a
1799 	 * partial slab and there is none available then get_partials()
1800 	 * will return NULL.
1801 	 */
1802 	if (!n || !n->nr_partial)
1803 		return NULL;
1804 
1805 	spin_lock(&n->list_lock);
1806 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1807 		void *t;
1808 
1809 		if (!pfmemalloc_match(page, flags))
1810 			continue;
1811 
1812 		t = acquire_slab(s, n, page, object == NULL, &objects);
1813 		if (!t)
1814 			break;
1815 
1816 		available += objects;
1817 		if (!object) {
1818 			c->page = page;
1819 			stat(s, ALLOC_FROM_PARTIAL);
1820 			object = t;
1821 		} else {
1822 			put_cpu_partial(s, page, 0);
1823 			stat(s, CPU_PARTIAL_NODE);
1824 		}
1825 		if (!kmem_cache_has_cpu_partial(s)
1826 			|| available > s->cpu_partial / 2)
1827 			break;
1828 
1829 	}
1830 	spin_unlock(&n->list_lock);
1831 	return object;
1832 }
1833 
1834 /*
1835  * Get a page from somewhere. Search in increasing NUMA distances.
1836  */
1837 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1838 		struct kmem_cache_cpu *c)
1839 {
1840 #ifdef CONFIG_NUMA
1841 	struct zonelist *zonelist;
1842 	struct zoneref *z;
1843 	struct zone *zone;
1844 	enum zone_type high_zoneidx = gfp_zone(flags);
1845 	void *object;
1846 	unsigned int cpuset_mems_cookie;
1847 
1848 	/*
1849 	 * The defrag ratio allows a configuration of the tradeoffs between
1850 	 * inter node defragmentation and node local allocations. A lower
1851 	 * defrag_ratio increases the tendency to do local allocations
1852 	 * instead of attempting to obtain partial slabs from other nodes.
1853 	 *
1854 	 * If the defrag_ratio is set to 0 then kmalloc() always
1855 	 * returns node local objects. If the ratio is higher then kmalloc()
1856 	 * may return off node objects because partial slabs are obtained
1857 	 * from other nodes and filled up.
1858 	 *
1859 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 	 * (which makes defrag_ratio = 1000) then every (well almost)
1861 	 * allocation will first attempt to defrag slab caches on other nodes.
1862 	 * This means scanning over all nodes to look for partial slabs which
1863 	 * may be expensive if we do it every time we are trying to find a slab
1864 	 * with available objects.
1865 	 */
1866 	if (!s->remote_node_defrag_ratio ||
1867 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1868 		return NULL;
1869 
1870 	do {
1871 		cpuset_mems_cookie = read_mems_allowed_begin();
1872 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1873 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 			struct kmem_cache_node *n;
1875 
1876 			n = get_node(s, zone_to_nid(zone));
1877 
1878 			if (n && cpuset_zone_allowed(zone, flags) &&
1879 					n->nr_partial > s->min_partial) {
1880 				object = get_partial_node(s, n, c, flags);
1881 				if (object) {
1882 					/*
1883 					 * Don't check read_mems_allowed_retry()
1884 					 * here - if mems_allowed was updated in
1885 					 * parallel, that was a harmless race
1886 					 * between allocation and the cpuset
1887 					 * update
1888 					 */
1889 					return object;
1890 				}
1891 			}
1892 		}
1893 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1894 #endif
1895 	return NULL;
1896 }
1897 
1898 /*
1899  * Get a partial page, lock it and return it.
1900  */
1901 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1902 		struct kmem_cache_cpu *c)
1903 {
1904 	void *object;
1905 	int searchnode = node;
1906 
1907 	if (node == NUMA_NO_NODE)
1908 		searchnode = numa_mem_id();
1909 	else if (!node_present_pages(node))
1910 		searchnode = node_to_mem_node(node);
1911 
1912 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1913 	if (object || node != NUMA_NO_NODE)
1914 		return object;
1915 
1916 	return get_any_partial(s, flags, c);
1917 }
1918 
1919 #ifdef CONFIG_PREEMPT
1920 /*
1921  * Calculate the next globally unique transaction for disambiguiation
1922  * during cmpxchg. The transactions start with the cpu number and are then
1923  * incremented by CONFIG_NR_CPUS.
1924  */
1925 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1926 #else
1927 /*
1928  * No preemption supported therefore also no need to check for
1929  * different cpus.
1930  */
1931 #define TID_STEP 1
1932 #endif
1933 
1934 static inline unsigned long next_tid(unsigned long tid)
1935 {
1936 	return tid + TID_STEP;
1937 }
1938 
1939 static inline unsigned int tid_to_cpu(unsigned long tid)
1940 {
1941 	return tid % TID_STEP;
1942 }
1943 
1944 static inline unsigned long tid_to_event(unsigned long tid)
1945 {
1946 	return tid / TID_STEP;
1947 }
1948 
1949 static inline unsigned int init_tid(int cpu)
1950 {
1951 	return cpu;
1952 }
1953 
1954 static inline void note_cmpxchg_failure(const char *n,
1955 		const struct kmem_cache *s, unsigned long tid)
1956 {
1957 #ifdef SLUB_DEBUG_CMPXCHG
1958 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1959 
1960 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1961 
1962 #ifdef CONFIG_PREEMPT
1963 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1964 		pr_warn("due to cpu change %d -> %d\n",
1965 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 	else
1967 #endif
1968 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1969 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1970 			tid_to_event(tid), tid_to_event(actual_tid));
1971 	else
1972 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1973 			actual_tid, tid, next_tid(tid));
1974 #endif
1975 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1976 }
1977 
1978 static void init_kmem_cache_cpus(struct kmem_cache *s)
1979 {
1980 	int cpu;
1981 
1982 	for_each_possible_cpu(cpu)
1983 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1984 }
1985 
1986 /*
1987  * Remove the cpu slab
1988  */
1989 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 				void *freelist)
1991 {
1992 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1993 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 	int lock = 0;
1995 	enum slab_modes l = M_NONE, m = M_NONE;
1996 	void *nextfree;
1997 	int tail = DEACTIVATE_TO_HEAD;
1998 	struct page new;
1999 	struct page old;
2000 
2001 	if (page->freelist) {
2002 		stat(s, DEACTIVATE_REMOTE_FREES);
2003 		tail = DEACTIVATE_TO_TAIL;
2004 	}
2005 
2006 	/*
2007 	 * Stage one: Free all available per cpu objects back
2008 	 * to the page freelist while it is still frozen. Leave the
2009 	 * last one.
2010 	 *
2011 	 * There is no need to take the list->lock because the page
2012 	 * is still frozen.
2013 	 */
2014 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 		void *prior;
2016 		unsigned long counters;
2017 
2018 		do {
2019 			prior = page->freelist;
2020 			counters = page->counters;
2021 			set_freepointer(s, freelist, prior);
2022 			new.counters = counters;
2023 			new.inuse--;
2024 			VM_BUG_ON(!new.frozen);
2025 
2026 		} while (!__cmpxchg_double_slab(s, page,
2027 			prior, counters,
2028 			freelist, new.counters,
2029 			"drain percpu freelist"));
2030 
2031 		freelist = nextfree;
2032 	}
2033 
2034 	/*
2035 	 * Stage two: Ensure that the page is unfrozen while the
2036 	 * list presence reflects the actual number of objects
2037 	 * during unfreeze.
2038 	 *
2039 	 * We setup the list membership and then perform a cmpxchg
2040 	 * with the count. If there is a mismatch then the page
2041 	 * is not unfrozen but the page is on the wrong list.
2042 	 *
2043 	 * Then we restart the process which may have to remove
2044 	 * the page from the list that we just put it on again
2045 	 * because the number of objects in the slab may have
2046 	 * changed.
2047 	 */
2048 redo:
2049 
2050 	old.freelist = page->freelist;
2051 	old.counters = page->counters;
2052 	VM_BUG_ON(!old.frozen);
2053 
2054 	/* Determine target state of the slab */
2055 	new.counters = old.counters;
2056 	if (freelist) {
2057 		new.inuse--;
2058 		set_freepointer(s, freelist, old.freelist);
2059 		new.freelist = freelist;
2060 	} else
2061 		new.freelist = old.freelist;
2062 
2063 	new.frozen = 0;
2064 
2065 	if (!new.inuse && n->nr_partial >= s->min_partial)
2066 		m = M_FREE;
2067 	else if (new.freelist) {
2068 		m = M_PARTIAL;
2069 		if (!lock) {
2070 			lock = 1;
2071 			/*
2072 			 * Taking the spinlock removes the possiblity
2073 			 * that acquire_slab() will see a slab page that
2074 			 * is frozen
2075 			 */
2076 			spin_lock(&n->list_lock);
2077 		}
2078 	} else {
2079 		m = M_FULL;
2080 		if (kmem_cache_debug(s) && !lock) {
2081 			lock = 1;
2082 			/*
2083 			 * This also ensures that the scanning of full
2084 			 * slabs from diagnostic functions will not see
2085 			 * any frozen slabs.
2086 			 */
2087 			spin_lock(&n->list_lock);
2088 		}
2089 	}
2090 
2091 	if (l != m) {
2092 
2093 		if (l == M_PARTIAL)
2094 
2095 			remove_partial(n, page);
2096 
2097 		else if (l == M_FULL)
2098 
2099 			remove_full(s, n, page);
2100 
2101 		if (m == M_PARTIAL) {
2102 
2103 			add_partial(n, page, tail);
2104 			stat(s, tail);
2105 
2106 		} else if (m == M_FULL) {
2107 
2108 			stat(s, DEACTIVATE_FULL);
2109 			add_full(s, n, page);
2110 
2111 		}
2112 	}
2113 
2114 	l = m;
2115 	if (!__cmpxchg_double_slab(s, page,
2116 				old.freelist, old.counters,
2117 				new.freelist, new.counters,
2118 				"unfreezing slab"))
2119 		goto redo;
2120 
2121 	if (lock)
2122 		spin_unlock(&n->list_lock);
2123 
2124 	if (m == M_FREE) {
2125 		stat(s, DEACTIVATE_EMPTY);
2126 		discard_slab(s, page);
2127 		stat(s, FREE_SLAB);
2128 	}
2129 }
2130 
2131 /*
2132  * Unfreeze all the cpu partial slabs.
2133  *
2134  * This function must be called with interrupts disabled
2135  * for the cpu using c (or some other guarantee must be there
2136  * to guarantee no concurrent accesses).
2137  */
2138 static void unfreeze_partials(struct kmem_cache *s,
2139 		struct kmem_cache_cpu *c)
2140 {
2141 #ifdef CONFIG_SLUB_CPU_PARTIAL
2142 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2143 	struct page *page, *discard_page = NULL;
2144 
2145 	while ((page = c->partial)) {
2146 		struct page new;
2147 		struct page old;
2148 
2149 		c->partial = page->next;
2150 
2151 		n2 = get_node(s, page_to_nid(page));
2152 		if (n != n2) {
2153 			if (n)
2154 				spin_unlock(&n->list_lock);
2155 
2156 			n = n2;
2157 			spin_lock(&n->list_lock);
2158 		}
2159 
2160 		do {
2161 
2162 			old.freelist = page->freelist;
2163 			old.counters = page->counters;
2164 			VM_BUG_ON(!old.frozen);
2165 
2166 			new.counters = old.counters;
2167 			new.freelist = old.freelist;
2168 
2169 			new.frozen = 0;
2170 
2171 		} while (!__cmpxchg_double_slab(s, page,
2172 				old.freelist, old.counters,
2173 				new.freelist, new.counters,
2174 				"unfreezing slab"));
2175 
2176 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2177 			page->next = discard_page;
2178 			discard_page = page;
2179 		} else {
2180 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2181 			stat(s, FREE_ADD_PARTIAL);
2182 		}
2183 	}
2184 
2185 	if (n)
2186 		spin_unlock(&n->list_lock);
2187 
2188 	while (discard_page) {
2189 		page = discard_page;
2190 		discard_page = discard_page->next;
2191 
2192 		stat(s, DEACTIVATE_EMPTY);
2193 		discard_slab(s, page);
2194 		stat(s, FREE_SLAB);
2195 	}
2196 #endif
2197 }
2198 
2199 /*
2200  * Put a page that was just frozen (in __slab_free) into a partial page
2201  * slot if available. This is done without interrupts disabled and without
2202  * preemption disabled. The cmpxchg is racy and may put the partial page
2203  * onto a random cpus partial slot.
2204  *
2205  * If we did not find a slot then simply move all the partials to the
2206  * per node partial list.
2207  */
2208 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2209 {
2210 #ifdef CONFIG_SLUB_CPU_PARTIAL
2211 	struct page *oldpage;
2212 	int pages;
2213 	int pobjects;
2214 
2215 	preempt_disable();
2216 	do {
2217 		pages = 0;
2218 		pobjects = 0;
2219 		oldpage = this_cpu_read(s->cpu_slab->partial);
2220 
2221 		if (oldpage) {
2222 			pobjects = oldpage->pobjects;
2223 			pages = oldpage->pages;
2224 			if (drain && pobjects > s->cpu_partial) {
2225 				unsigned long flags;
2226 				/*
2227 				 * partial array is full. Move the existing
2228 				 * set to the per node partial list.
2229 				 */
2230 				local_irq_save(flags);
2231 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2232 				local_irq_restore(flags);
2233 				oldpage = NULL;
2234 				pobjects = 0;
2235 				pages = 0;
2236 				stat(s, CPU_PARTIAL_DRAIN);
2237 			}
2238 		}
2239 
2240 		pages++;
2241 		pobjects += page->objects - page->inuse;
2242 
2243 		page->pages = pages;
2244 		page->pobjects = pobjects;
2245 		page->next = oldpage;
2246 
2247 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2248 								!= oldpage);
2249 	if (unlikely(!s->cpu_partial)) {
2250 		unsigned long flags;
2251 
2252 		local_irq_save(flags);
2253 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 		local_irq_restore(flags);
2255 	}
2256 	preempt_enable();
2257 #endif
2258 }
2259 
2260 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2261 {
2262 	stat(s, CPUSLAB_FLUSH);
2263 	deactivate_slab(s, c->page, c->freelist);
2264 
2265 	c->tid = next_tid(c->tid);
2266 	c->page = NULL;
2267 	c->freelist = NULL;
2268 }
2269 
2270 /*
2271  * Flush cpu slab.
2272  *
2273  * Called from IPI handler with interrupts disabled.
2274  */
2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2276 {
2277 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2278 
2279 	if (likely(c)) {
2280 		if (c->page)
2281 			flush_slab(s, c);
2282 
2283 		unfreeze_partials(s, c);
2284 	}
2285 }
2286 
2287 static void flush_cpu_slab(void *d)
2288 {
2289 	struct kmem_cache *s = d;
2290 
2291 	__flush_cpu_slab(s, smp_processor_id());
2292 }
2293 
2294 static bool has_cpu_slab(int cpu, void *info)
2295 {
2296 	struct kmem_cache *s = info;
2297 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298 
2299 	return c->page || c->partial;
2300 }
2301 
2302 static void flush_all(struct kmem_cache *s)
2303 {
2304 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2305 }
2306 
2307 /*
2308  * Check if the objects in a per cpu structure fit numa
2309  * locality expectations.
2310  */
2311 static inline int node_match(struct page *page, int node)
2312 {
2313 #ifdef CONFIG_NUMA
2314 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2315 		return 0;
2316 #endif
2317 	return 1;
2318 }
2319 
2320 #ifdef CONFIG_SLUB_DEBUG
2321 static int count_free(struct page *page)
2322 {
2323 	return page->objects - page->inuse;
2324 }
2325 
2326 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2327 {
2328 	return atomic_long_read(&n->total_objects);
2329 }
2330 #endif /* CONFIG_SLUB_DEBUG */
2331 
2332 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2333 static unsigned long count_partial(struct kmem_cache_node *n,
2334 					int (*get_count)(struct page *))
2335 {
2336 	unsigned long flags;
2337 	unsigned long x = 0;
2338 	struct page *page;
2339 
2340 	spin_lock_irqsave(&n->list_lock, flags);
2341 	list_for_each_entry(page, &n->partial, lru)
2342 		x += get_count(page);
2343 	spin_unlock_irqrestore(&n->list_lock, flags);
2344 	return x;
2345 }
2346 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2347 
2348 static noinline void
2349 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2350 {
2351 #ifdef CONFIG_SLUB_DEBUG
2352 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2353 				      DEFAULT_RATELIMIT_BURST);
2354 	int node;
2355 	struct kmem_cache_node *n;
2356 
2357 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2358 		return;
2359 
2360 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2361 		nid, gfpflags, &gfpflags);
2362 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2363 		s->name, s->object_size, s->size, oo_order(s->oo),
2364 		oo_order(s->min));
2365 
2366 	if (oo_order(s->min) > get_order(s->object_size))
2367 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2368 			s->name);
2369 
2370 	for_each_kmem_cache_node(s, node, n) {
2371 		unsigned long nr_slabs;
2372 		unsigned long nr_objs;
2373 		unsigned long nr_free;
2374 
2375 		nr_free  = count_partial(n, count_free);
2376 		nr_slabs = node_nr_slabs(n);
2377 		nr_objs  = node_nr_objs(n);
2378 
2379 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2380 			node, nr_slabs, nr_objs, nr_free);
2381 	}
2382 #endif
2383 }
2384 
2385 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2386 			int node, struct kmem_cache_cpu **pc)
2387 {
2388 	void *freelist;
2389 	struct kmem_cache_cpu *c = *pc;
2390 	struct page *page;
2391 
2392 	freelist = get_partial(s, flags, node, c);
2393 
2394 	if (freelist)
2395 		return freelist;
2396 
2397 	page = new_slab(s, flags, node);
2398 	if (page) {
2399 		c = raw_cpu_ptr(s->cpu_slab);
2400 		if (c->page)
2401 			flush_slab(s, c);
2402 
2403 		/*
2404 		 * No other reference to the page yet so we can
2405 		 * muck around with it freely without cmpxchg
2406 		 */
2407 		freelist = page->freelist;
2408 		page->freelist = NULL;
2409 
2410 		stat(s, ALLOC_SLAB);
2411 		c->page = page;
2412 		*pc = c;
2413 	} else
2414 		freelist = NULL;
2415 
2416 	return freelist;
2417 }
2418 
2419 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2420 {
2421 	if (unlikely(PageSlabPfmemalloc(page)))
2422 		return gfp_pfmemalloc_allowed(gfpflags);
2423 
2424 	return true;
2425 }
2426 
2427 /*
2428  * Check the page->freelist of a page and either transfer the freelist to the
2429  * per cpu freelist or deactivate the page.
2430  *
2431  * The page is still frozen if the return value is not NULL.
2432  *
2433  * If this function returns NULL then the page has been unfrozen.
2434  *
2435  * This function must be called with interrupt disabled.
2436  */
2437 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2438 {
2439 	struct page new;
2440 	unsigned long counters;
2441 	void *freelist;
2442 
2443 	do {
2444 		freelist = page->freelist;
2445 		counters = page->counters;
2446 
2447 		new.counters = counters;
2448 		VM_BUG_ON(!new.frozen);
2449 
2450 		new.inuse = page->objects;
2451 		new.frozen = freelist != NULL;
2452 
2453 	} while (!__cmpxchg_double_slab(s, page,
2454 		freelist, counters,
2455 		NULL, new.counters,
2456 		"get_freelist"));
2457 
2458 	return freelist;
2459 }
2460 
2461 /*
2462  * Slow path. The lockless freelist is empty or we need to perform
2463  * debugging duties.
2464  *
2465  * Processing is still very fast if new objects have been freed to the
2466  * regular freelist. In that case we simply take over the regular freelist
2467  * as the lockless freelist and zap the regular freelist.
2468  *
2469  * If that is not working then we fall back to the partial lists. We take the
2470  * first element of the freelist as the object to allocate now and move the
2471  * rest of the freelist to the lockless freelist.
2472  *
2473  * And if we were unable to get a new slab from the partial slab lists then
2474  * we need to allocate a new slab. This is the slowest path since it involves
2475  * a call to the page allocator and the setup of a new slab.
2476  *
2477  * Version of __slab_alloc to use when we know that interrupts are
2478  * already disabled (which is the case for bulk allocation).
2479  */
2480 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2481 			  unsigned long addr, struct kmem_cache_cpu *c)
2482 {
2483 	void *freelist;
2484 	struct page *page;
2485 
2486 	page = c->page;
2487 	if (!page)
2488 		goto new_slab;
2489 redo:
2490 
2491 	if (unlikely(!node_match(page, node))) {
2492 		int searchnode = node;
2493 
2494 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2495 			searchnode = node_to_mem_node(node);
2496 
2497 		if (unlikely(!node_match(page, searchnode))) {
2498 			stat(s, ALLOC_NODE_MISMATCH);
2499 			deactivate_slab(s, page, c->freelist);
2500 			c->page = NULL;
2501 			c->freelist = NULL;
2502 			goto new_slab;
2503 		}
2504 	}
2505 
2506 	/*
2507 	 * By rights, we should be searching for a slab page that was
2508 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2509 	 * information when the page leaves the per-cpu allocator
2510 	 */
2511 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2512 		deactivate_slab(s, page, c->freelist);
2513 		c->page = NULL;
2514 		c->freelist = NULL;
2515 		goto new_slab;
2516 	}
2517 
2518 	/* must check again c->freelist in case of cpu migration or IRQ */
2519 	freelist = c->freelist;
2520 	if (freelist)
2521 		goto load_freelist;
2522 
2523 	freelist = get_freelist(s, page);
2524 
2525 	if (!freelist) {
2526 		c->page = NULL;
2527 		stat(s, DEACTIVATE_BYPASS);
2528 		goto new_slab;
2529 	}
2530 
2531 	stat(s, ALLOC_REFILL);
2532 
2533 load_freelist:
2534 	/*
2535 	 * freelist is pointing to the list of objects to be used.
2536 	 * page is pointing to the page from which the objects are obtained.
2537 	 * That page must be frozen for per cpu allocations to work.
2538 	 */
2539 	VM_BUG_ON(!c->page->frozen);
2540 	c->freelist = get_freepointer(s, freelist);
2541 	c->tid = next_tid(c->tid);
2542 	return freelist;
2543 
2544 new_slab:
2545 
2546 	if (c->partial) {
2547 		page = c->page = c->partial;
2548 		c->partial = page->next;
2549 		stat(s, CPU_PARTIAL_ALLOC);
2550 		c->freelist = NULL;
2551 		goto redo;
2552 	}
2553 
2554 	freelist = new_slab_objects(s, gfpflags, node, &c);
2555 
2556 	if (unlikely(!freelist)) {
2557 		slab_out_of_memory(s, gfpflags, node);
2558 		return NULL;
2559 	}
2560 
2561 	page = c->page;
2562 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2563 		goto load_freelist;
2564 
2565 	/* Only entered in the debug case */
2566 	if (kmem_cache_debug(s) &&
2567 			!alloc_debug_processing(s, page, freelist, addr))
2568 		goto new_slab;	/* Slab failed checks. Next slab needed */
2569 
2570 	deactivate_slab(s, page, get_freepointer(s, freelist));
2571 	c->page = NULL;
2572 	c->freelist = NULL;
2573 	return freelist;
2574 }
2575 
2576 /*
2577  * Another one that disabled interrupt and compensates for possible
2578  * cpu changes by refetching the per cpu area pointer.
2579  */
2580 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2581 			  unsigned long addr, struct kmem_cache_cpu *c)
2582 {
2583 	void *p;
2584 	unsigned long flags;
2585 
2586 	local_irq_save(flags);
2587 #ifdef CONFIG_PREEMPT
2588 	/*
2589 	 * We may have been preempted and rescheduled on a different
2590 	 * cpu before disabling interrupts. Need to reload cpu area
2591 	 * pointer.
2592 	 */
2593 	c = this_cpu_ptr(s->cpu_slab);
2594 #endif
2595 
2596 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2597 	local_irq_restore(flags);
2598 	return p;
2599 }
2600 
2601 /*
2602  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2603  * have the fastpath folded into their functions. So no function call
2604  * overhead for requests that can be satisfied on the fastpath.
2605  *
2606  * The fastpath works by first checking if the lockless freelist can be used.
2607  * If not then __slab_alloc is called for slow processing.
2608  *
2609  * Otherwise we can simply pick the next object from the lockless free list.
2610  */
2611 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2612 		gfp_t gfpflags, int node, unsigned long addr)
2613 {
2614 	void *object;
2615 	struct kmem_cache_cpu *c;
2616 	struct page *page;
2617 	unsigned long tid;
2618 
2619 	s = slab_pre_alloc_hook(s, gfpflags);
2620 	if (!s)
2621 		return NULL;
2622 redo:
2623 	/*
2624 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2625 	 * enabled. We may switch back and forth between cpus while
2626 	 * reading from one cpu area. That does not matter as long
2627 	 * as we end up on the original cpu again when doing the cmpxchg.
2628 	 *
2629 	 * We should guarantee that tid and kmem_cache are retrieved on
2630 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2631 	 * to check if it is matched or not.
2632 	 */
2633 	do {
2634 		tid = this_cpu_read(s->cpu_slab->tid);
2635 		c = raw_cpu_ptr(s->cpu_slab);
2636 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2637 		 unlikely(tid != READ_ONCE(c->tid)));
2638 
2639 	/*
2640 	 * Irqless object alloc/free algorithm used here depends on sequence
2641 	 * of fetching cpu_slab's data. tid should be fetched before anything
2642 	 * on c to guarantee that object and page associated with previous tid
2643 	 * won't be used with current tid. If we fetch tid first, object and
2644 	 * page could be one associated with next tid and our alloc/free
2645 	 * request will be failed. In this case, we will retry. So, no problem.
2646 	 */
2647 	barrier();
2648 
2649 	/*
2650 	 * The transaction ids are globally unique per cpu and per operation on
2651 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2652 	 * occurs on the right processor and that there was no operation on the
2653 	 * linked list in between.
2654 	 */
2655 
2656 	object = c->freelist;
2657 	page = c->page;
2658 	if (unlikely(!object || !node_match(page, node))) {
2659 		object = __slab_alloc(s, gfpflags, node, addr, c);
2660 		stat(s, ALLOC_SLOWPATH);
2661 	} else {
2662 		void *next_object = get_freepointer_safe(s, object);
2663 
2664 		/*
2665 		 * The cmpxchg will only match if there was no additional
2666 		 * operation and if we are on the right processor.
2667 		 *
2668 		 * The cmpxchg does the following atomically (without lock
2669 		 * semantics!)
2670 		 * 1. Relocate first pointer to the current per cpu area.
2671 		 * 2. Verify that tid and freelist have not been changed
2672 		 * 3. If they were not changed replace tid and freelist
2673 		 *
2674 		 * Since this is without lock semantics the protection is only
2675 		 * against code executing on this cpu *not* from access by
2676 		 * other cpus.
2677 		 */
2678 		if (unlikely(!this_cpu_cmpxchg_double(
2679 				s->cpu_slab->freelist, s->cpu_slab->tid,
2680 				object, tid,
2681 				next_object, next_tid(tid)))) {
2682 
2683 			note_cmpxchg_failure("slab_alloc", s, tid);
2684 			goto redo;
2685 		}
2686 		prefetch_freepointer(s, next_object);
2687 		stat(s, ALLOC_FASTPATH);
2688 	}
2689 
2690 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2691 		memset(object, 0, s->object_size);
2692 
2693 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2694 
2695 	return object;
2696 }
2697 
2698 static __always_inline void *slab_alloc(struct kmem_cache *s,
2699 		gfp_t gfpflags, unsigned long addr)
2700 {
2701 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2702 }
2703 
2704 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2705 {
2706 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2707 
2708 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2709 				s->size, gfpflags);
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL(kmem_cache_alloc);
2714 
2715 #ifdef CONFIG_TRACING
2716 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2717 {
2718 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2719 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2720 	kasan_kmalloc(s, ret, size, gfpflags);
2721 	return ret;
2722 }
2723 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2724 #endif
2725 
2726 #ifdef CONFIG_NUMA
2727 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2728 {
2729 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2730 
2731 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2732 				    s->object_size, s->size, gfpflags, node);
2733 
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(kmem_cache_alloc_node);
2737 
2738 #ifdef CONFIG_TRACING
2739 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2740 				    gfp_t gfpflags,
2741 				    int node, size_t size)
2742 {
2743 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2744 
2745 	trace_kmalloc_node(_RET_IP_, ret,
2746 			   size, s->size, gfpflags, node);
2747 
2748 	kasan_kmalloc(s, ret, size, gfpflags);
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2752 #endif
2753 #endif
2754 
2755 /*
2756  * Slow path handling. This may still be called frequently since objects
2757  * have a longer lifetime than the cpu slabs in most processing loads.
2758  *
2759  * So we still attempt to reduce cache line usage. Just take the slab
2760  * lock and free the item. If there is no additional partial page
2761  * handling required then we can return immediately.
2762  */
2763 static void __slab_free(struct kmem_cache *s, struct page *page,
2764 			void *head, void *tail, int cnt,
2765 			unsigned long addr)
2766 
2767 {
2768 	void *prior;
2769 	int was_frozen;
2770 	struct page new;
2771 	unsigned long counters;
2772 	struct kmem_cache_node *n = NULL;
2773 	unsigned long uninitialized_var(flags);
2774 
2775 	stat(s, FREE_SLOWPATH);
2776 
2777 	if (kmem_cache_debug(s) &&
2778 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2779 		return;
2780 
2781 	do {
2782 		if (unlikely(n)) {
2783 			spin_unlock_irqrestore(&n->list_lock, flags);
2784 			n = NULL;
2785 		}
2786 		prior = page->freelist;
2787 		counters = page->counters;
2788 		set_freepointer(s, tail, prior);
2789 		new.counters = counters;
2790 		was_frozen = new.frozen;
2791 		new.inuse -= cnt;
2792 		if ((!new.inuse || !prior) && !was_frozen) {
2793 
2794 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2795 
2796 				/*
2797 				 * Slab was on no list before and will be
2798 				 * partially empty
2799 				 * We can defer the list move and instead
2800 				 * freeze it.
2801 				 */
2802 				new.frozen = 1;
2803 
2804 			} else { /* Needs to be taken off a list */
2805 
2806 				n = get_node(s, page_to_nid(page));
2807 				/*
2808 				 * Speculatively acquire the list_lock.
2809 				 * If the cmpxchg does not succeed then we may
2810 				 * drop the list_lock without any processing.
2811 				 *
2812 				 * Otherwise the list_lock will synchronize with
2813 				 * other processors updating the list of slabs.
2814 				 */
2815 				spin_lock_irqsave(&n->list_lock, flags);
2816 
2817 			}
2818 		}
2819 
2820 	} while (!cmpxchg_double_slab(s, page,
2821 		prior, counters,
2822 		head, new.counters,
2823 		"__slab_free"));
2824 
2825 	if (likely(!n)) {
2826 
2827 		/*
2828 		 * If we just froze the page then put it onto the
2829 		 * per cpu partial list.
2830 		 */
2831 		if (new.frozen && !was_frozen) {
2832 			put_cpu_partial(s, page, 1);
2833 			stat(s, CPU_PARTIAL_FREE);
2834 		}
2835 		/*
2836 		 * The list lock was not taken therefore no list
2837 		 * activity can be necessary.
2838 		 */
2839 		if (was_frozen)
2840 			stat(s, FREE_FROZEN);
2841 		return;
2842 	}
2843 
2844 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2845 		goto slab_empty;
2846 
2847 	/*
2848 	 * Objects left in the slab. If it was not on the partial list before
2849 	 * then add it.
2850 	 */
2851 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2852 		if (kmem_cache_debug(s))
2853 			remove_full(s, n, page);
2854 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2855 		stat(s, FREE_ADD_PARTIAL);
2856 	}
2857 	spin_unlock_irqrestore(&n->list_lock, flags);
2858 	return;
2859 
2860 slab_empty:
2861 	if (prior) {
2862 		/*
2863 		 * Slab on the partial list.
2864 		 */
2865 		remove_partial(n, page);
2866 		stat(s, FREE_REMOVE_PARTIAL);
2867 	} else {
2868 		/* Slab must be on the full list */
2869 		remove_full(s, n, page);
2870 	}
2871 
2872 	spin_unlock_irqrestore(&n->list_lock, flags);
2873 	stat(s, FREE_SLAB);
2874 	discard_slab(s, page);
2875 }
2876 
2877 /*
2878  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2879  * can perform fastpath freeing without additional function calls.
2880  *
2881  * The fastpath is only possible if we are freeing to the current cpu slab
2882  * of this processor. This typically the case if we have just allocated
2883  * the item before.
2884  *
2885  * If fastpath is not possible then fall back to __slab_free where we deal
2886  * with all sorts of special processing.
2887  *
2888  * Bulk free of a freelist with several objects (all pointing to the
2889  * same page) possible by specifying head and tail ptr, plus objects
2890  * count (cnt). Bulk free indicated by tail pointer being set.
2891  */
2892 static __always_inline void do_slab_free(struct kmem_cache *s,
2893 				struct page *page, void *head, void *tail,
2894 				int cnt, unsigned long addr)
2895 {
2896 	void *tail_obj = tail ? : head;
2897 	struct kmem_cache_cpu *c;
2898 	unsigned long tid;
2899 redo:
2900 	/*
2901 	 * Determine the currently cpus per cpu slab.
2902 	 * The cpu may change afterward. However that does not matter since
2903 	 * data is retrieved via this pointer. If we are on the same cpu
2904 	 * during the cmpxchg then the free will succeed.
2905 	 */
2906 	do {
2907 		tid = this_cpu_read(s->cpu_slab->tid);
2908 		c = raw_cpu_ptr(s->cpu_slab);
2909 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2910 		 unlikely(tid != READ_ONCE(c->tid)));
2911 
2912 	/* Same with comment on barrier() in slab_alloc_node() */
2913 	barrier();
2914 
2915 	if (likely(page == c->page)) {
2916 		set_freepointer(s, tail_obj, c->freelist);
2917 
2918 		if (unlikely(!this_cpu_cmpxchg_double(
2919 				s->cpu_slab->freelist, s->cpu_slab->tid,
2920 				c->freelist, tid,
2921 				head, next_tid(tid)))) {
2922 
2923 			note_cmpxchg_failure("slab_free", s, tid);
2924 			goto redo;
2925 		}
2926 		stat(s, FREE_FASTPATH);
2927 	} else
2928 		__slab_free(s, page, head, tail_obj, cnt, addr);
2929 
2930 }
2931 
2932 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2933 				      void *head, void *tail, int cnt,
2934 				      unsigned long addr)
2935 {
2936 	slab_free_freelist_hook(s, head, tail);
2937 	/*
2938 	 * slab_free_freelist_hook() could have put the items into quarantine.
2939 	 * If so, no need to free them.
2940 	 */
2941 	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2942 		return;
2943 	do_slab_free(s, page, head, tail, cnt, addr);
2944 }
2945 
2946 #ifdef CONFIG_KASAN
2947 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2948 {
2949 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2950 }
2951 #endif
2952 
2953 void kmem_cache_free(struct kmem_cache *s, void *x)
2954 {
2955 	s = cache_from_obj(s, x);
2956 	if (!s)
2957 		return;
2958 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2959 	trace_kmem_cache_free(_RET_IP_, x);
2960 }
2961 EXPORT_SYMBOL(kmem_cache_free);
2962 
2963 struct detached_freelist {
2964 	struct page *page;
2965 	void *tail;
2966 	void *freelist;
2967 	int cnt;
2968 	struct kmem_cache *s;
2969 };
2970 
2971 /*
2972  * This function progressively scans the array with free objects (with
2973  * a limited look ahead) and extract objects belonging to the same
2974  * page.  It builds a detached freelist directly within the given
2975  * page/objects.  This can happen without any need for
2976  * synchronization, because the objects are owned by running process.
2977  * The freelist is build up as a single linked list in the objects.
2978  * The idea is, that this detached freelist can then be bulk
2979  * transferred to the real freelist(s), but only requiring a single
2980  * synchronization primitive.  Look ahead in the array is limited due
2981  * to performance reasons.
2982  */
2983 static inline
2984 int build_detached_freelist(struct kmem_cache *s, size_t size,
2985 			    void **p, struct detached_freelist *df)
2986 {
2987 	size_t first_skipped_index = 0;
2988 	int lookahead = 3;
2989 	void *object;
2990 	struct page *page;
2991 
2992 	/* Always re-init detached_freelist */
2993 	df->page = NULL;
2994 
2995 	do {
2996 		object = p[--size];
2997 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
2998 	} while (!object && size);
2999 
3000 	if (!object)
3001 		return 0;
3002 
3003 	page = virt_to_head_page(object);
3004 	if (!s) {
3005 		/* Handle kalloc'ed objects */
3006 		if (unlikely(!PageSlab(page))) {
3007 			BUG_ON(!PageCompound(page));
3008 			kfree_hook(object);
3009 			__free_pages(page, compound_order(page));
3010 			p[size] = NULL; /* mark object processed */
3011 			return size;
3012 		}
3013 		/* Derive kmem_cache from object */
3014 		df->s = page->slab_cache;
3015 	} else {
3016 		df->s = cache_from_obj(s, object); /* Support for memcg */
3017 	}
3018 
3019 	/* Start new detached freelist */
3020 	df->page = page;
3021 	set_freepointer(df->s, object, NULL);
3022 	df->tail = object;
3023 	df->freelist = object;
3024 	p[size] = NULL; /* mark object processed */
3025 	df->cnt = 1;
3026 
3027 	while (size) {
3028 		object = p[--size];
3029 		if (!object)
3030 			continue; /* Skip processed objects */
3031 
3032 		/* df->page is always set at this point */
3033 		if (df->page == virt_to_head_page(object)) {
3034 			/* Opportunity build freelist */
3035 			set_freepointer(df->s, object, df->freelist);
3036 			df->freelist = object;
3037 			df->cnt++;
3038 			p[size] = NULL; /* mark object processed */
3039 
3040 			continue;
3041 		}
3042 
3043 		/* Limit look ahead search */
3044 		if (!--lookahead)
3045 			break;
3046 
3047 		if (!first_skipped_index)
3048 			first_skipped_index = size + 1;
3049 	}
3050 
3051 	return first_skipped_index;
3052 }
3053 
3054 /* Note that interrupts must be enabled when calling this function. */
3055 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3056 {
3057 	if (WARN_ON(!size))
3058 		return;
3059 
3060 	do {
3061 		struct detached_freelist df;
3062 
3063 		size = build_detached_freelist(s, size, p, &df);
3064 		if (unlikely(!df.page))
3065 			continue;
3066 
3067 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3068 	} while (likely(size));
3069 }
3070 EXPORT_SYMBOL(kmem_cache_free_bulk);
3071 
3072 /* Note that interrupts must be enabled when calling this function. */
3073 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3074 			  void **p)
3075 {
3076 	struct kmem_cache_cpu *c;
3077 	int i;
3078 
3079 	/* memcg and kmem_cache debug support */
3080 	s = slab_pre_alloc_hook(s, flags);
3081 	if (unlikely(!s))
3082 		return false;
3083 	/*
3084 	 * Drain objects in the per cpu slab, while disabling local
3085 	 * IRQs, which protects against PREEMPT and interrupts
3086 	 * handlers invoking normal fastpath.
3087 	 */
3088 	local_irq_disable();
3089 	c = this_cpu_ptr(s->cpu_slab);
3090 
3091 	for (i = 0; i < size; i++) {
3092 		void *object = c->freelist;
3093 
3094 		if (unlikely(!object)) {
3095 			/*
3096 			 * Invoking slow path likely have side-effect
3097 			 * of re-populating per CPU c->freelist
3098 			 */
3099 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3100 					    _RET_IP_, c);
3101 			if (unlikely(!p[i]))
3102 				goto error;
3103 
3104 			c = this_cpu_ptr(s->cpu_slab);
3105 			continue; /* goto for-loop */
3106 		}
3107 		c->freelist = get_freepointer(s, object);
3108 		p[i] = object;
3109 	}
3110 	c->tid = next_tid(c->tid);
3111 	local_irq_enable();
3112 
3113 	/* Clear memory outside IRQ disabled fastpath loop */
3114 	if (unlikely(flags & __GFP_ZERO)) {
3115 		int j;
3116 
3117 		for (j = 0; j < i; j++)
3118 			memset(p[j], 0, s->object_size);
3119 	}
3120 
3121 	/* memcg and kmem_cache debug support */
3122 	slab_post_alloc_hook(s, flags, size, p);
3123 	return i;
3124 error:
3125 	local_irq_enable();
3126 	slab_post_alloc_hook(s, flags, i, p);
3127 	__kmem_cache_free_bulk(s, i, p);
3128 	return 0;
3129 }
3130 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3131 
3132 
3133 /*
3134  * Object placement in a slab is made very easy because we always start at
3135  * offset 0. If we tune the size of the object to the alignment then we can
3136  * get the required alignment by putting one properly sized object after
3137  * another.
3138  *
3139  * Notice that the allocation order determines the sizes of the per cpu
3140  * caches. Each processor has always one slab available for allocations.
3141  * Increasing the allocation order reduces the number of times that slabs
3142  * must be moved on and off the partial lists and is therefore a factor in
3143  * locking overhead.
3144  */
3145 
3146 /*
3147  * Mininum / Maximum order of slab pages. This influences locking overhead
3148  * and slab fragmentation. A higher order reduces the number of partial slabs
3149  * and increases the number of allocations possible without having to
3150  * take the list_lock.
3151  */
3152 static int slub_min_order;
3153 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3154 static int slub_min_objects;
3155 
3156 /*
3157  * Calculate the order of allocation given an slab object size.
3158  *
3159  * The order of allocation has significant impact on performance and other
3160  * system components. Generally order 0 allocations should be preferred since
3161  * order 0 does not cause fragmentation in the page allocator. Larger objects
3162  * be problematic to put into order 0 slabs because there may be too much
3163  * unused space left. We go to a higher order if more than 1/16th of the slab
3164  * would be wasted.
3165  *
3166  * In order to reach satisfactory performance we must ensure that a minimum
3167  * number of objects is in one slab. Otherwise we may generate too much
3168  * activity on the partial lists which requires taking the list_lock. This is
3169  * less a concern for large slabs though which are rarely used.
3170  *
3171  * slub_max_order specifies the order where we begin to stop considering the
3172  * number of objects in a slab as critical. If we reach slub_max_order then
3173  * we try to keep the page order as low as possible. So we accept more waste
3174  * of space in favor of a small page order.
3175  *
3176  * Higher order allocations also allow the placement of more objects in a
3177  * slab and thereby reduce object handling overhead. If the user has
3178  * requested a higher mininum order then we start with that one instead of
3179  * the smallest order which will fit the object.
3180  */
3181 static inline int slab_order(int size, int min_objects,
3182 				int max_order, int fract_leftover, int reserved)
3183 {
3184 	int order;
3185 	int rem;
3186 	int min_order = slub_min_order;
3187 
3188 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3189 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3190 
3191 	for (order = max(min_order, get_order(min_objects * size + reserved));
3192 			order <= max_order; order++) {
3193 
3194 		unsigned long slab_size = PAGE_SIZE << order;
3195 
3196 		rem = (slab_size - reserved) % size;
3197 
3198 		if (rem <= slab_size / fract_leftover)
3199 			break;
3200 	}
3201 
3202 	return order;
3203 }
3204 
3205 static inline int calculate_order(int size, int reserved)
3206 {
3207 	int order;
3208 	int min_objects;
3209 	int fraction;
3210 	int max_objects;
3211 
3212 	/*
3213 	 * Attempt to find best configuration for a slab. This
3214 	 * works by first attempting to generate a layout with
3215 	 * the best configuration and backing off gradually.
3216 	 *
3217 	 * First we increase the acceptable waste in a slab. Then
3218 	 * we reduce the minimum objects required in a slab.
3219 	 */
3220 	min_objects = slub_min_objects;
3221 	if (!min_objects)
3222 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3223 	max_objects = order_objects(slub_max_order, size, reserved);
3224 	min_objects = min(min_objects, max_objects);
3225 
3226 	while (min_objects > 1) {
3227 		fraction = 16;
3228 		while (fraction >= 4) {
3229 			order = slab_order(size, min_objects,
3230 					slub_max_order, fraction, reserved);
3231 			if (order <= slub_max_order)
3232 				return order;
3233 			fraction /= 2;
3234 		}
3235 		min_objects--;
3236 	}
3237 
3238 	/*
3239 	 * We were unable to place multiple objects in a slab. Now
3240 	 * lets see if we can place a single object there.
3241 	 */
3242 	order = slab_order(size, 1, slub_max_order, 1, reserved);
3243 	if (order <= slub_max_order)
3244 		return order;
3245 
3246 	/*
3247 	 * Doh this slab cannot be placed using slub_max_order.
3248 	 */
3249 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3250 	if (order < MAX_ORDER)
3251 		return order;
3252 	return -ENOSYS;
3253 }
3254 
3255 static void
3256 init_kmem_cache_node(struct kmem_cache_node *n)
3257 {
3258 	n->nr_partial = 0;
3259 	spin_lock_init(&n->list_lock);
3260 	INIT_LIST_HEAD(&n->partial);
3261 #ifdef CONFIG_SLUB_DEBUG
3262 	atomic_long_set(&n->nr_slabs, 0);
3263 	atomic_long_set(&n->total_objects, 0);
3264 	INIT_LIST_HEAD(&n->full);
3265 #endif
3266 }
3267 
3268 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3269 {
3270 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3271 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3272 
3273 	/*
3274 	 * Must align to double word boundary for the double cmpxchg
3275 	 * instructions to work; see __pcpu_double_call_return_bool().
3276 	 */
3277 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3278 				     2 * sizeof(void *));
3279 
3280 	if (!s->cpu_slab)
3281 		return 0;
3282 
3283 	init_kmem_cache_cpus(s);
3284 
3285 	return 1;
3286 }
3287 
3288 static struct kmem_cache *kmem_cache_node;
3289 
3290 /*
3291  * No kmalloc_node yet so do it by hand. We know that this is the first
3292  * slab on the node for this slabcache. There are no concurrent accesses
3293  * possible.
3294  *
3295  * Note that this function only works on the kmem_cache_node
3296  * when allocating for the kmem_cache_node. This is used for bootstrapping
3297  * memory on a fresh node that has no slab structures yet.
3298  */
3299 static void early_kmem_cache_node_alloc(int node)
3300 {
3301 	struct page *page;
3302 	struct kmem_cache_node *n;
3303 
3304 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3305 
3306 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3307 
3308 	BUG_ON(!page);
3309 	if (page_to_nid(page) != node) {
3310 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3311 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3312 	}
3313 
3314 	n = page->freelist;
3315 	BUG_ON(!n);
3316 	page->freelist = get_freepointer(kmem_cache_node, n);
3317 	page->inuse = 1;
3318 	page->frozen = 0;
3319 	kmem_cache_node->node[node] = n;
3320 #ifdef CONFIG_SLUB_DEBUG
3321 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3322 	init_tracking(kmem_cache_node, n);
3323 #endif
3324 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3325 		      GFP_KERNEL);
3326 	init_kmem_cache_node(n);
3327 	inc_slabs_node(kmem_cache_node, node, page->objects);
3328 
3329 	/*
3330 	 * No locks need to be taken here as it has just been
3331 	 * initialized and there is no concurrent access.
3332 	 */
3333 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3334 }
3335 
3336 static void free_kmem_cache_nodes(struct kmem_cache *s)
3337 {
3338 	int node;
3339 	struct kmem_cache_node *n;
3340 
3341 	for_each_kmem_cache_node(s, node, n) {
3342 		kmem_cache_free(kmem_cache_node, n);
3343 		s->node[node] = NULL;
3344 	}
3345 }
3346 
3347 void __kmem_cache_release(struct kmem_cache *s)
3348 {
3349 	cache_random_seq_destroy(s);
3350 	free_percpu(s->cpu_slab);
3351 	free_kmem_cache_nodes(s);
3352 }
3353 
3354 static int init_kmem_cache_nodes(struct kmem_cache *s)
3355 {
3356 	int node;
3357 
3358 	for_each_node_state(node, N_NORMAL_MEMORY) {
3359 		struct kmem_cache_node *n;
3360 
3361 		if (slab_state == DOWN) {
3362 			early_kmem_cache_node_alloc(node);
3363 			continue;
3364 		}
3365 		n = kmem_cache_alloc_node(kmem_cache_node,
3366 						GFP_KERNEL, node);
3367 
3368 		if (!n) {
3369 			free_kmem_cache_nodes(s);
3370 			return 0;
3371 		}
3372 
3373 		s->node[node] = n;
3374 		init_kmem_cache_node(n);
3375 	}
3376 	return 1;
3377 }
3378 
3379 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3380 {
3381 	if (min < MIN_PARTIAL)
3382 		min = MIN_PARTIAL;
3383 	else if (min > MAX_PARTIAL)
3384 		min = MAX_PARTIAL;
3385 	s->min_partial = min;
3386 }
3387 
3388 /*
3389  * calculate_sizes() determines the order and the distribution of data within
3390  * a slab object.
3391  */
3392 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3393 {
3394 	unsigned long flags = s->flags;
3395 	size_t size = s->object_size;
3396 	int order;
3397 
3398 	/*
3399 	 * Round up object size to the next word boundary. We can only
3400 	 * place the free pointer at word boundaries and this determines
3401 	 * the possible location of the free pointer.
3402 	 */
3403 	size = ALIGN(size, sizeof(void *));
3404 
3405 #ifdef CONFIG_SLUB_DEBUG
3406 	/*
3407 	 * Determine if we can poison the object itself. If the user of
3408 	 * the slab may touch the object after free or before allocation
3409 	 * then we should never poison the object itself.
3410 	 */
3411 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3412 			!s->ctor)
3413 		s->flags |= __OBJECT_POISON;
3414 	else
3415 		s->flags &= ~__OBJECT_POISON;
3416 
3417 
3418 	/*
3419 	 * If we are Redzoning then check if there is some space between the
3420 	 * end of the object and the free pointer. If not then add an
3421 	 * additional word to have some bytes to store Redzone information.
3422 	 */
3423 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3424 		size += sizeof(void *);
3425 #endif
3426 
3427 	/*
3428 	 * With that we have determined the number of bytes in actual use
3429 	 * by the object. This is the potential offset to the free pointer.
3430 	 */
3431 	s->inuse = size;
3432 
3433 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3434 		s->ctor)) {
3435 		/*
3436 		 * Relocate free pointer after the object if it is not
3437 		 * permitted to overwrite the first word of the object on
3438 		 * kmem_cache_free.
3439 		 *
3440 		 * This is the case if we do RCU, have a constructor or
3441 		 * destructor or are poisoning the objects.
3442 		 */
3443 		s->offset = size;
3444 		size += sizeof(void *);
3445 	}
3446 
3447 #ifdef CONFIG_SLUB_DEBUG
3448 	if (flags & SLAB_STORE_USER)
3449 		/*
3450 		 * Need to store information about allocs and frees after
3451 		 * the object.
3452 		 */
3453 		size += 2 * sizeof(struct track);
3454 #endif
3455 
3456 	kasan_cache_create(s, &size, &s->flags);
3457 #ifdef CONFIG_SLUB_DEBUG
3458 	if (flags & SLAB_RED_ZONE) {
3459 		/*
3460 		 * Add some empty padding so that we can catch
3461 		 * overwrites from earlier objects rather than let
3462 		 * tracking information or the free pointer be
3463 		 * corrupted if a user writes before the start
3464 		 * of the object.
3465 		 */
3466 		size += sizeof(void *);
3467 
3468 		s->red_left_pad = sizeof(void *);
3469 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3470 		size += s->red_left_pad;
3471 	}
3472 #endif
3473 
3474 	/*
3475 	 * SLUB stores one object immediately after another beginning from
3476 	 * offset 0. In order to align the objects we have to simply size
3477 	 * each object to conform to the alignment.
3478 	 */
3479 	size = ALIGN(size, s->align);
3480 	s->size = size;
3481 	if (forced_order >= 0)
3482 		order = forced_order;
3483 	else
3484 		order = calculate_order(size, s->reserved);
3485 
3486 	if (order < 0)
3487 		return 0;
3488 
3489 	s->allocflags = 0;
3490 	if (order)
3491 		s->allocflags |= __GFP_COMP;
3492 
3493 	if (s->flags & SLAB_CACHE_DMA)
3494 		s->allocflags |= GFP_DMA;
3495 
3496 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3497 		s->allocflags |= __GFP_RECLAIMABLE;
3498 
3499 	/*
3500 	 * Determine the number of objects per slab
3501 	 */
3502 	s->oo = oo_make(order, size, s->reserved);
3503 	s->min = oo_make(get_order(size), size, s->reserved);
3504 	if (oo_objects(s->oo) > oo_objects(s->max))
3505 		s->max = s->oo;
3506 
3507 	return !!oo_objects(s->oo);
3508 }
3509 
3510 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3511 {
3512 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3513 	s->reserved = 0;
3514 
3515 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3516 		s->reserved = sizeof(struct rcu_head);
3517 
3518 	if (!calculate_sizes(s, -1))
3519 		goto error;
3520 	if (disable_higher_order_debug) {
3521 		/*
3522 		 * Disable debugging flags that store metadata if the min slab
3523 		 * order increased.
3524 		 */
3525 		if (get_order(s->size) > get_order(s->object_size)) {
3526 			s->flags &= ~DEBUG_METADATA_FLAGS;
3527 			s->offset = 0;
3528 			if (!calculate_sizes(s, -1))
3529 				goto error;
3530 		}
3531 	}
3532 
3533 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3534     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3535 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3536 		/* Enable fast mode */
3537 		s->flags |= __CMPXCHG_DOUBLE;
3538 #endif
3539 
3540 	/*
3541 	 * The larger the object size is, the more pages we want on the partial
3542 	 * list to avoid pounding the page allocator excessively.
3543 	 */
3544 	set_min_partial(s, ilog2(s->size) / 2);
3545 
3546 	/*
3547 	 * cpu_partial determined the maximum number of objects kept in the
3548 	 * per cpu partial lists of a processor.
3549 	 *
3550 	 * Per cpu partial lists mainly contain slabs that just have one
3551 	 * object freed. If they are used for allocation then they can be
3552 	 * filled up again with minimal effort. The slab will never hit the
3553 	 * per node partial lists and therefore no locking will be required.
3554 	 *
3555 	 * This setting also determines
3556 	 *
3557 	 * A) The number of objects from per cpu partial slabs dumped to the
3558 	 *    per node list when we reach the limit.
3559 	 * B) The number of objects in cpu partial slabs to extract from the
3560 	 *    per node list when we run out of per cpu objects. We only fetch
3561 	 *    50% to keep some capacity around for frees.
3562 	 */
3563 	if (!kmem_cache_has_cpu_partial(s))
3564 		s->cpu_partial = 0;
3565 	else if (s->size >= PAGE_SIZE)
3566 		s->cpu_partial = 2;
3567 	else if (s->size >= 1024)
3568 		s->cpu_partial = 6;
3569 	else if (s->size >= 256)
3570 		s->cpu_partial = 13;
3571 	else
3572 		s->cpu_partial = 30;
3573 
3574 #ifdef CONFIG_NUMA
3575 	s->remote_node_defrag_ratio = 1000;
3576 #endif
3577 
3578 	/* Initialize the pre-computed randomized freelist if slab is up */
3579 	if (slab_state >= UP) {
3580 		if (init_cache_random_seq(s))
3581 			goto error;
3582 	}
3583 
3584 	if (!init_kmem_cache_nodes(s))
3585 		goto error;
3586 
3587 	if (alloc_kmem_cache_cpus(s))
3588 		return 0;
3589 
3590 	free_kmem_cache_nodes(s);
3591 error:
3592 	if (flags & SLAB_PANIC)
3593 		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3594 		      s->name, (unsigned long)s->size, s->size,
3595 		      oo_order(s->oo), s->offset, flags);
3596 	return -EINVAL;
3597 }
3598 
3599 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3600 							const char *text)
3601 {
3602 #ifdef CONFIG_SLUB_DEBUG
3603 	void *addr = page_address(page);
3604 	void *p;
3605 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3606 				     sizeof(long), GFP_ATOMIC);
3607 	if (!map)
3608 		return;
3609 	slab_err(s, page, text, s->name);
3610 	slab_lock(page);
3611 
3612 	get_map(s, page, map);
3613 	for_each_object(p, s, addr, page->objects) {
3614 
3615 		if (!test_bit(slab_index(p, s, addr), map)) {
3616 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3617 			print_tracking(s, p);
3618 		}
3619 	}
3620 	slab_unlock(page);
3621 	kfree(map);
3622 #endif
3623 }
3624 
3625 /*
3626  * Attempt to free all partial slabs on a node.
3627  * This is called from __kmem_cache_shutdown(). We must take list_lock
3628  * because sysfs file might still access partial list after the shutdowning.
3629  */
3630 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3631 {
3632 	LIST_HEAD(discard);
3633 	struct page *page, *h;
3634 
3635 	BUG_ON(irqs_disabled());
3636 	spin_lock_irq(&n->list_lock);
3637 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3638 		if (!page->inuse) {
3639 			remove_partial(n, page);
3640 			list_add(&page->lru, &discard);
3641 		} else {
3642 			list_slab_objects(s, page,
3643 			"Objects remaining in %s on __kmem_cache_shutdown()");
3644 		}
3645 	}
3646 	spin_unlock_irq(&n->list_lock);
3647 
3648 	list_for_each_entry_safe(page, h, &discard, lru)
3649 		discard_slab(s, page);
3650 }
3651 
3652 /*
3653  * Release all resources used by a slab cache.
3654  */
3655 int __kmem_cache_shutdown(struct kmem_cache *s)
3656 {
3657 	int node;
3658 	struct kmem_cache_node *n;
3659 
3660 	flush_all(s);
3661 	/* Attempt to free all objects */
3662 	for_each_kmem_cache_node(s, node, n) {
3663 		free_partial(s, n);
3664 		if (n->nr_partial || slabs_node(s, node))
3665 			return 1;
3666 	}
3667 	return 0;
3668 }
3669 
3670 /********************************************************************
3671  *		Kmalloc subsystem
3672  *******************************************************************/
3673 
3674 static int __init setup_slub_min_order(char *str)
3675 {
3676 	get_option(&str, &slub_min_order);
3677 
3678 	return 1;
3679 }
3680 
3681 __setup("slub_min_order=", setup_slub_min_order);
3682 
3683 static int __init setup_slub_max_order(char *str)
3684 {
3685 	get_option(&str, &slub_max_order);
3686 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3687 
3688 	return 1;
3689 }
3690 
3691 __setup("slub_max_order=", setup_slub_max_order);
3692 
3693 static int __init setup_slub_min_objects(char *str)
3694 {
3695 	get_option(&str, &slub_min_objects);
3696 
3697 	return 1;
3698 }
3699 
3700 __setup("slub_min_objects=", setup_slub_min_objects);
3701 
3702 void *__kmalloc(size_t size, gfp_t flags)
3703 {
3704 	struct kmem_cache *s;
3705 	void *ret;
3706 
3707 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3708 		return kmalloc_large(size, flags);
3709 
3710 	s = kmalloc_slab(size, flags);
3711 
3712 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3713 		return s;
3714 
3715 	ret = slab_alloc(s, flags, _RET_IP_);
3716 
3717 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3718 
3719 	kasan_kmalloc(s, ret, size, flags);
3720 
3721 	return ret;
3722 }
3723 EXPORT_SYMBOL(__kmalloc);
3724 
3725 #ifdef CONFIG_NUMA
3726 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3727 {
3728 	struct page *page;
3729 	void *ptr = NULL;
3730 
3731 	flags |= __GFP_COMP | __GFP_NOTRACK;
3732 	page = alloc_pages_node(node, flags, get_order(size));
3733 	if (page)
3734 		ptr = page_address(page);
3735 
3736 	kmalloc_large_node_hook(ptr, size, flags);
3737 	return ptr;
3738 }
3739 
3740 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3741 {
3742 	struct kmem_cache *s;
3743 	void *ret;
3744 
3745 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3746 		ret = kmalloc_large_node(size, flags, node);
3747 
3748 		trace_kmalloc_node(_RET_IP_, ret,
3749 				   size, PAGE_SIZE << get_order(size),
3750 				   flags, node);
3751 
3752 		return ret;
3753 	}
3754 
3755 	s = kmalloc_slab(size, flags);
3756 
3757 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3758 		return s;
3759 
3760 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3761 
3762 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3763 
3764 	kasan_kmalloc(s, ret, size, flags);
3765 
3766 	return ret;
3767 }
3768 EXPORT_SYMBOL(__kmalloc_node);
3769 #endif
3770 
3771 #ifdef CONFIG_HARDENED_USERCOPY
3772 /*
3773  * Rejects objects that are incorrectly sized.
3774  *
3775  * Returns NULL if check passes, otherwise const char * to name of cache
3776  * to indicate an error.
3777  */
3778 const char *__check_heap_object(const void *ptr, unsigned long n,
3779 				struct page *page)
3780 {
3781 	struct kmem_cache *s;
3782 	unsigned long offset;
3783 	size_t object_size;
3784 
3785 	/* Find object and usable object size. */
3786 	s = page->slab_cache;
3787 	object_size = slab_ksize(s);
3788 
3789 	/* Reject impossible pointers. */
3790 	if (ptr < page_address(page))
3791 		return s->name;
3792 
3793 	/* Find offset within object. */
3794 	offset = (ptr - page_address(page)) % s->size;
3795 
3796 	/* Adjust for redzone and reject if within the redzone. */
3797 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3798 		if (offset < s->red_left_pad)
3799 			return s->name;
3800 		offset -= s->red_left_pad;
3801 	}
3802 
3803 	/* Allow address range falling entirely within object size. */
3804 	if (offset <= object_size && n <= object_size - offset)
3805 		return NULL;
3806 
3807 	return s->name;
3808 }
3809 #endif /* CONFIG_HARDENED_USERCOPY */
3810 
3811 static size_t __ksize(const void *object)
3812 {
3813 	struct page *page;
3814 
3815 	if (unlikely(object == ZERO_SIZE_PTR))
3816 		return 0;
3817 
3818 	page = virt_to_head_page(object);
3819 
3820 	if (unlikely(!PageSlab(page))) {
3821 		WARN_ON(!PageCompound(page));
3822 		return PAGE_SIZE << compound_order(page);
3823 	}
3824 
3825 	return slab_ksize(page->slab_cache);
3826 }
3827 
3828 size_t ksize(const void *object)
3829 {
3830 	size_t size = __ksize(object);
3831 	/* We assume that ksize callers could use whole allocated area,
3832 	 * so we need to unpoison this area.
3833 	 */
3834 	kasan_unpoison_shadow(object, size);
3835 	return size;
3836 }
3837 EXPORT_SYMBOL(ksize);
3838 
3839 void kfree(const void *x)
3840 {
3841 	struct page *page;
3842 	void *object = (void *)x;
3843 
3844 	trace_kfree(_RET_IP_, x);
3845 
3846 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3847 		return;
3848 
3849 	page = virt_to_head_page(x);
3850 	if (unlikely(!PageSlab(page))) {
3851 		BUG_ON(!PageCompound(page));
3852 		kfree_hook(x);
3853 		__free_pages(page, compound_order(page));
3854 		return;
3855 	}
3856 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3857 }
3858 EXPORT_SYMBOL(kfree);
3859 
3860 #define SHRINK_PROMOTE_MAX 32
3861 
3862 /*
3863  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3864  * up most to the head of the partial lists. New allocations will then
3865  * fill those up and thus they can be removed from the partial lists.
3866  *
3867  * The slabs with the least items are placed last. This results in them
3868  * being allocated from last increasing the chance that the last objects
3869  * are freed in them.
3870  */
3871 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3872 {
3873 	int node;
3874 	int i;
3875 	struct kmem_cache_node *n;
3876 	struct page *page;
3877 	struct page *t;
3878 	struct list_head discard;
3879 	struct list_head promote[SHRINK_PROMOTE_MAX];
3880 	unsigned long flags;
3881 	int ret = 0;
3882 
3883 	if (deactivate) {
3884 		/*
3885 		 * Disable empty slabs caching. Used to avoid pinning offline
3886 		 * memory cgroups by kmem pages that can be freed.
3887 		 */
3888 		s->cpu_partial = 0;
3889 		s->min_partial = 0;
3890 
3891 		/*
3892 		 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3893 		 * so we have to make sure the change is visible.
3894 		 */
3895 		synchronize_sched();
3896 	}
3897 
3898 	flush_all(s);
3899 	for_each_kmem_cache_node(s, node, n) {
3900 		INIT_LIST_HEAD(&discard);
3901 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3902 			INIT_LIST_HEAD(promote + i);
3903 
3904 		spin_lock_irqsave(&n->list_lock, flags);
3905 
3906 		/*
3907 		 * Build lists of slabs to discard or promote.
3908 		 *
3909 		 * Note that concurrent frees may occur while we hold the
3910 		 * list_lock. page->inuse here is the upper limit.
3911 		 */
3912 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3913 			int free = page->objects - page->inuse;
3914 
3915 			/* Do not reread page->inuse */
3916 			barrier();
3917 
3918 			/* We do not keep full slabs on the list */
3919 			BUG_ON(free <= 0);
3920 
3921 			if (free == page->objects) {
3922 				list_move(&page->lru, &discard);
3923 				n->nr_partial--;
3924 			} else if (free <= SHRINK_PROMOTE_MAX)
3925 				list_move(&page->lru, promote + free - 1);
3926 		}
3927 
3928 		/*
3929 		 * Promote the slabs filled up most to the head of the
3930 		 * partial list.
3931 		 */
3932 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3933 			list_splice(promote + i, &n->partial);
3934 
3935 		spin_unlock_irqrestore(&n->list_lock, flags);
3936 
3937 		/* Release empty slabs */
3938 		list_for_each_entry_safe(page, t, &discard, lru)
3939 			discard_slab(s, page);
3940 
3941 		if (slabs_node(s, node))
3942 			ret = 1;
3943 	}
3944 
3945 	return ret;
3946 }
3947 
3948 static int slab_mem_going_offline_callback(void *arg)
3949 {
3950 	struct kmem_cache *s;
3951 
3952 	mutex_lock(&slab_mutex);
3953 	list_for_each_entry(s, &slab_caches, list)
3954 		__kmem_cache_shrink(s, false);
3955 	mutex_unlock(&slab_mutex);
3956 
3957 	return 0;
3958 }
3959 
3960 static void slab_mem_offline_callback(void *arg)
3961 {
3962 	struct kmem_cache_node *n;
3963 	struct kmem_cache *s;
3964 	struct memory_notify *marg = arg;
3965 	int offline_node;
3966 
3967 	offline_node = marg->status_change_nid_normal;
3968 
3969 	/*
3970 	 * If the node still has available memory. we need kmem_cache_node
3971 	 * for it yet.
3972 	 */
3973 	if (offline_node < 0)
3974 		return;
3975 
3976 	mutex_lock(&slab_mutex);
3977 	list_for_each_entry(s, &slab_caches, list) {
3978 		n = get_node(s, offline_node);
3979 		if (n) {
3980 			/*
3981 			 * if n->nr_slabs > 0, slabs still exist on the node
3982 			 * that is going down. We were unable to free them,
3983 			 * and offline_pages() function shouldn't call this
3984 			 * callback. So, we must fail.
3985 			 */
3986 			BUG_ON(slabs_node(s, offline_node));
3987 
3988 			s->node[offline_node] = NULL;
3989 			kmem_cache_free(kmem_cache_node, n);
3990 		}
3991 	}
3992 	mutex_unlock(&slab_mutex);
3993 }
3994 
3995 static int slab_mem_going_online_callback(void *arg)
3996 {
3997 	struct kmem_cache_node *n;
3998 	struct kmem_cache *s;
3999 	struct memory_notify *marg = arg;
4000 	int nid = marg->status_change_nid_normal;
4001 	int ret = 0;
4002 
4003 	/*
4004 	 * If the node's memory is already available, then kmem_cache_node is
4005 	 * already created. Nothing to do.
4006 	 */
4007 	if (nid < 0)
4008 		return 0;
4009 
4010 	/*
4011 	 * We are bringing a node online. No memory is available yet. We must
4012 	 * allocate a kmem_cache_node structure in order to bring the node
4013 	 * online.
4014 	 */
4015 	mutex_lock(&slab_mutex);
4016 	list_for_each_entry(s, &slab_caches, list) {
4017 		/*
4018 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4019 		 *      since memory is not yet available from the node that
4020 		 *      is brought up.
4021 		 */
4022 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4023 		if (!n) {
4024 			ret = -ENOMEM;
4025 			goto out;
4026 		}
4027 		init_kmem_cache_node(n);
4028 		s->node[nid] = n;
4029 	}
4030 out:
4031 	mutex_unlock(&slab_mutex);
4032 	return ret;
4033 }
4034 
4035 static int slab_memory_callback(struct notifier_block *self,
4036 				unsigned long action, void *arg)
4037 {
4038 	int ret = 0;
4039 
4040 	switch (action) {
4041 	case MEM_GOING_ONLINE:
4042 		ret = slab_mem_going_online_callback(arg);
4043 		break;
4044 	case MEM_GOING_OFFLINE:
4045 		ret = slab_mem_going_offline_callback(arg);
4046 		break;
4047 	case MEM_OFFLINE:
4048 	case MEM_CANCEL_ONLINE:
4049 		slab_mem_offline_callback(arg);
4050 		break;
4051 	case MEM_ONLINE:
4052 	case MEM_CANCEL_OFFLINE:
4053 		break;
4054 	}
4055 	if (ret)
4056 		ret = notifier_from_errno(ret);
4057 	else
4058 		ret = NOTIFY_OK;
4059 	return ret;
4060 }
4061 
4062 static struct notifier_block slab_memory_callback_nb = {
4063 	.notifier_call = slab_memory_callback,
4064 	.priority = SLAB_CALLBACK_PRI,
4065 };
4066 
4067 /********************************************************************
4068  *			Basic setup of slabs
4069  *******************************************************************/
4070 
4071 /*
4072  * Used for early kmem_cache structures that were allocated using
4073  * the page allocator. Allocate them properly then fix up the pointers
4074  * that may be pointing to the wrong kmem_cache structure.
4075  */
4076 
4077 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4078 {
4079 	int node;
4080 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4081 	struct kmem_cache_node *n;
4082 
4083 	memcpy(s, static_cache, kmem_cache->object_size);
4084 
4085 	/*
4086 	 * This runs very early, and only the boot processor is supposed to be
4087 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4088 	 * IPIs around.
4089 	 */
4090 	__flush_cpu_slab(s, smp_processor_id());
4091 	for_each_kmem_cache_node(s, node, n) {
4092 		struct page *p;
4093 
4094 		list_for_each_entry(p, &n->partial, lru)
4095 			p->slab_cache = s;
4096 
4097 #ifdef CONFIG_SLUB_DEBUG
4098 		list_for_each_entry(p, &n->full, lru)
4099 			p->slab_cache = s;
4100 #endif
4101 	}
4102 	slab_init_memcg_params(s);
4103 	list_add(&s->list, &slab_caches);
4104 	return s;
4105 }
4106 
4107 void __init kmem_cache_init(void)
4108 {
4109 	static __initdata struct kmem_cache boot_kmem_cache,
4110 		boot_kmem_cache_node;
4111 
4112 	if (debug_guardpage_minorder())
4113 		slub_max_order = 0;
4114 
4115 	kmem_cache_node = &boot_kmem_cache_node;
4116 	kmem_cache = &boot_kmem_cache;
4117 
4118 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4119 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4120 
4121 	register_hotmemory_notifier(&slab_memory_callback_nb);
4122 
4123 	/* Able to allocate the per node structures */
4124 	slab_state = PARTIAL;
4125 
4126 	create_boot_cache(kmem_cache, "kmem_cache",
4127 			offsetof(struct kmem_cache, node) +
4128 				nr_node_ids * sizeof(struct kmem_cache_node *),
4129 		       SLAB_HWCACHE_ALIGN);
4130 
4131 	kmem_cache = bootstrap(&boot_kmem_cache);
4132 
4133 	/*
4134 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
4135 	 * kmem_cache_node is separately allocated so no need to
4136 	 * update any list pointers.
4137 	 */
4138 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4139 
4140 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4141 	setup_kmalloc_cache_index_table();
4142 	create_kmalloc_caches(0);
4143 
4144 	/* Setup random freelists for each cache */
4145 	init_freelist_randomization();
4146 
4147 #ifdef CONFIG_SMP
4148 	register_cpu_notifier(&slab_notifier);
4149 #endif
4150 
4151 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4152 		cache_line_size(),
4153 		slub_min_order, slub_max_order, slub_min_objects,
4154 		nr_cpu_ids, nr_node_ids);
4155 }
4156 
4157 void __init kmem_cache_init_late(void)
4158 {
4159 }
4160 
4161 struct kmem_cache *
4162 __kmem_cache_alias(const char *name, size_t size, size_t align,
4163 		   unsigned long flags, void (*ctor)(void *))
4164 {
4165 	struct kmem_cache *s, *c;
4166 
4167 	s = find_mergeable(size, align, flags, name, ctor);
4168 	if (s) {
4169 		s->refcount++;
4170 
4171 		/*
4172 		 * Adjust the object sizes so that we clear
4173 		 * the complete object on kzalloc.
4174 		 */
4175 		s->object_size = max(s->object_size, (int)size);
4176 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4177 
4178 		for_each_memcg_cache(c, s) {
4179 			c->object_size = s->object_size;
4180 			c->inuse = max_t(int, c->inuse,
4181 					 ALIGN(size, sizeof(void *)));
4182 		}
4183 
4184 		if (sysfs_slab_alias(s, name)) {
4185 			s->refcount--;
4186 			s = NULL;
4187 		}
4188 	}
4189 
4190 	return s;
4191 }
4192 
4193 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4194 {
4195 	int err;
4196 
4197 	err = kmem_cache_open(s, flags);
4198 	if (err)
4199 		return err;
4200 
4201 	/* Mutex is not taken during early boot */
4202 	if (slab_state <= UP)
4203 		return 0;
4204 
4205 	memcg_propagate_slab_attrs(s);
4206 	err = sysfs_slab_add(s);
4207 	if (err)
4208 		__kmem_cache_release(s);
4209 
4210 	return err;
4211 }
4212 
4213 #ifdef CONFIG_SMP
4214 /*
4215  * Use the cpu notifier to insure that the cpu slabs are flushed when
4216  * necessary.
4217  */
4218 static int slab_cpuup_callback(struct notifier_block *nfb,
4219 		unsigned long action, void *hcpu)
4220 {
4221 	long cpu = (long)hcpu;
4222 	struct kmem_cache *s;
4223 	unsigned long flags;
4224 
4225 	switch (action) {
4226 	case CPU_UP_CANCELED:
4227 	case CPU_UP_CANCELED_FROZEN:
4228 	case CPU_DEAD:
4229 	case CPU_DEAD_FROZEN:
4230 		mutex_lock(&slab_mutex);
4231 		list_for_each_entry(s, &slab_caches, list) {
4232 			local_irq_save(flags);
4233 			__flush_cpu_slab(s, cpu);
4234 			local_irq_restore(flags);
4235 		}
4236 		mutex_unlock(&slab_mutex);
4237 		break;
4238 	default:
4239 		break;
4240 	}
4241 	return NOTIFY_OK;
4242 }
4243 
4244 static struct notifier_block slab_notifier = {
4245 	.notifier_call = slab_cpuup_callback
4246 };
4247 
4248 #endif
4249 
4250 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4251 {
4252 	struct kmem_cache *s;
4253 	void *ret;
4254 
4255 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4256 		return kmalloc_large(size, gfpflags);
4257 
4258 	s = kmalloc_slab(size, gfpflags);
4259 
4260 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4261 		return s;
4262 
4263 	ret = slab_alloc(s, gfpflags, caller);
4264 
4265 	/* Honor the call site pointer we received. */
4266 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4267 
4268 	return ret;
4269 }
4270 
4271 #ifdef CONFIG_NUMA
4272 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4273 					int node, unsigned long caller)
4274 {
4275 	struct kmem_cache *s;
4276 	void *ret;
4277 
4278 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4279 		ret = kmalloc_large_node(size, gfpflags, node);
4280 
4281 		trace_kmalloc_node(caller, ret,
4282 				   size, PAGE_SIZE << get_order(size),
4283 				   gfpflags, node);
4284 
4285 		return ret;
4286 	}
4287 
4288 	s = kmalloc_slab(size, gfpflags);
4289 
4290 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4291 		return s;
4292 
4293 	ret = slab_alloc_node(s, gfpflags, node, caller);
4294 
4295 	/* Honor the call site pointer we received. */
4296 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4297 
4298 	return ret;
4299 }
4300 #endif
4301 
4302 #ifdef CONFIG_SYSFS
4303 static int count_inuse(struct page *page)
4304 {
4305 	return page->inuse;
4306 }
4307 
4308 static int count_total(struct page *page)
4309 {
4310 	return page->objects;
4311 }
4312 #endif
4313 
4314 #ifdef CONFIG_SLUB_DEBUG
4315 static int validate_slab(struct kmem_cache *s, struct page *page,
4316 						unsigned long *map)
4317 {
4318 	void *p;
4319 	void *addr = page_address(page);
4320 
4321 	if (!check_slab(s, page) ||
4322 			!on_freelist(s, page, NULL))
4323 		return 0;
4324 
4325 	/* Now we know that a valid freelist exists */
4326 	bitmap_zero(map, page->objects);
4327 
4328 	get_map(s, page, map);
4329 	for_each_object(p, s, addr, page->objects) {
4330 		if (test_bit(slab_index(p, s, addr), map))
4331 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4332 				return 0;
4333 	}
4334 
4335 	for_each_object(p, s, addr, page->objects)
4336 		if (!test_bit(slab_index(p, s, addr), map))
4337 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4338 				return 0;
4339 	return 1;
4340 }
4341 
4342 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4343 						unsigned long *map)
4344 {
4345 	slab_lock(page);
4346 	validate_slab(s, page, map);
4347 	slab_unlock(page);
4348 }
4349 
4350 static int validate_slab_node(struct kmem_cache *s,
4351 		struct kmem_cache_node *n, unsigned long *map)
4352 {
4353 	unsigned long count = 0;
4354 	struct page *page;
4355 	unsigned long flags;
4356 
4357 	spin_lock_irqsave(&n->list_lock, flags);
4358 
4359 	list_for_each_entry(page, &n->partial, lru) {
4360 		validate_slab_slab(s, page, map);
4361 		count++;
4362 	}
4363 	if (count != n->nr_partial)
4364 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4365 		       s->name, count, n->nr_partial);
4366 
4367 	if (!(s->flags & SLAB_STORE_USER))
4368 		goto out;
4369 
4370 	list_for_each_entry(page, &n->full, lru) {
4371 		validate_slab_slab(s, page, map);
4372 		count++;
4373 	}
4374 	if (count != atomic_long_read(&n->nr_slabs))
4375 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4376 		       s->name, count, atomic_long_read(&n->nr_slabs));
4377 
4378 out:
4379 	spin_unlock_irqrestore(&n->list_lock, flags);
4380 	return count;
4381 }
4382 
4383 static long validate_slab_cache(struct kmem_cache *s)
4384 {
4385 	int node;
4386 	unsigned long count = 0;
4387 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4388 				sizeof(unsigned long), GFP_KERNEL);
4389 	struct kmem_cache_node *n;
4390 
4391 	if (!map)
4392 		return -ENOMEM;
4393 
4394 	flush_all(s);
4395 	for_each_kmem_cache_node(s, node, n)
4396 		count += validate_slab_node(s, n, map);
4397 	kfree(map);
4398 	return count;
4399 }
4400 /*
4401  * Generate lists of code addresses where slabcache objects are allocated
4402  * and freed.
4403  */
4404 
4405 struct location {
4406 	unsigned long count;
4407 	unsigned long addr;
4408 	long long sum_time;
4409 	long min_time;
4410 	long max_time;
4411 	long min_pid;
4412 	long max_pid;
4413 	DECLARE_BITMAP(cpus, NR_CPUS);
4414 	nodemask_t nodes;
4415 };
4416 
4417 struct loc_track {
4418 	unsigned long max;
4419 	unsigned long count;
4420 	struct location *loc;
4421 };
4422 
4423 static void free_loc_track(struct loc_track *t)
4424 {
4425 	if (t->max)
4426 		free_pages((unsigned long)t->loc,
4427 			get_order(sizeof(struct location) * t->max));
4428 }
4429 
4430 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4431 {
4432 	struct location *l;
4433 	int order;
4434 
4435 	order = get_order(sizeof(struct location) * max);
4436 
4437 	l = (void *)__get_free_pages(flags, order);
4438 	if (!l)
4439 		return 0;
4440 
4441 	if (t->count) {
4442 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4443 		free_loc_track(t);
4444 	}
4445 	t->max = max;
4446 	t->loc = l;
4447 	return 1;
4448 }
4449 
4450 static int add_location(struct loc_track *t, struct kmem_cache *s,
4451 				const struct track *track)
4452 {
4453 	long start, end, pos;
4454 	struct location *l;
4455 	unsigned long caddr;
4456 	unsigned long age = jiffies - track->when;
4457 
4458 	start = -1;
4459 	end = t->count;
4460 
4461 	for ( ; ; ) {
4462 		pos = start + (end - start + 1) / 2;
4463 
4464 		/*
4465 		 * There is nothing at "end". If we end up there
4466 		 * we need to add something to before end.
4467 		 */
4468 		if (pos == end)
4469 			break;
4470 
4471 		caddr = t->loc[pos].addr;
4472 		if (track->addr == caddr) {
4473 
4474 			l = &t->loc[pos];
4475 			l->count++;
4476 			if (track->when) {
4477 				l->sum_time += age;
4478 				if (age < l->min_time)
4479 					l->min_time = age;
4480 				if (age > l->max_time)
4481 					l->max_time = age;
4482 
4483 				if (track->pid < l->min_pid)
4484 					l->min_pid = track->pid;
4485 				if (track->pid > l->max_pid)
4486 					l->max_pid = track->pid;
4487 
4488 				cpumask_set_cpu(track->cpu,
4489 						to_cpumask(l->cpus));
4490 			}
4491 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4492 			return 1;
4493 		}
4494 
4495 		if (track->addr < caddr)
4496 			end = pos;
4497 		else
4498 			start = pos;
4499 	}
4500 
4501 	/*
4502 	 * Not found. Insert new tracking element.
4503 	 */
4504 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4505 		return 0;
4506 
4507 	l = t->loc + pos;
4508 	if (pos < t->count)
4509 		memmove(l + 1, l,
4510 			(t->count - pos) * sizeof(struct location));
4511 	t->count++;
4512 	l->count = 1;
4513 	l->addr = track->addr;
4514 	l->sum_time = age;
4515 	l->min_time = age;
4516 	l->max_time = age;
4517 	l->min_pid = track->pid;
4518 	l->max_pid = track->pid;
4519 	cpumask_clear(to_cpumask(l->cpus));
4520 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4521 	nodes_clear(l->nodes);
4522 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4523 	return 1;
4524 }
4525 
4526 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4527 		struct page *page, enum track_item alloc,
4528 		unsigned long *map)
4529 {
4530 	void *addr = page_address(page);
4531 	void *p;
4532 
4533 	bitmap_zero(map, page->objects);
4534 	get_map(s, page, map);
4535 
4536 	for_each_object(p, s, addr, page->objects)
4537 		if (!test_bit(slab_index(p, s, addr), map))
4538 			add_location(t, s, get_track(s, p, alloc));
4539 }
4540 
4541 static int list_locations(struct kmem_cache *s, char *buf,
4542 					enum track_item alloc)
4543 {
4544 	int len = 0;
4545 	unsigned long i;
4546 	struct loc_track t = { 0, 0, NULL };
4547 	int node;
4548 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4549 				     sizeof(unsigned long), GFP_KERNEL);
4550 	struct kmem_cache_node *n;
4551 
4552 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4553 				     GFP_TEMPORARY)) {
4554 		kfree(map);
4555 		return sprintf(buf, "Out of memory\n");
4556 	}
4557 	/* Push back cpu slabs */
4558 	flush_all(s);
4559 
4560 	for_each_kmem_cache_node(s, node, n) {
4561 		unsigned long flags;
4562 		struct page *page;
4563 
4564 		if (!atomic_long_read(&n->nr_slabs))
4565 			continue;
4566 
4567 		spin_lock_irqsave(&n->list_lock, flags);
4568 		list_for_each_entry(page, &n->partial, lru)
4569 			process_slab(&t, s, page, alloc, map);
4570 		list_for_each_entry(page, &n->full, lru)
4571 			process_slab(&t, s, page, alloc, map);
4572 		spin_unlock_irqrestore(&n->list_lock, flags);
4573 	}
4574 
4575 	for (i = 0; i < t.count; i++) {
4576 		struct location *l = &t.loc[i];
4577 
4578 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4579 			break;
4580 		len += sprintf(buf + len, "%7ld ", l->count);
4581 
4582 		if (l->addr)
4583 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4584 		else
4585 			len += sprintf(buf + len, "<not-available>");
4586 
4587 		if (l->sum_time != l->min_time) {
4588 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4589 				l->min_time,
4590 				(long)div_u64(l->sum_time, l->count),
4591 				l->max_time);
4592 		} else
4593 			len += sprintf(buf + len, " age=%ld",
4594 				l->min_time);
4595 
4596 		if (l->min_pid != l->max_pid)
4597 			len += sprintf(buf + len, " pid=%ld-%ld",
4598 				l->min_pid, l->max_pid);
4599 		else
4600 			len += sprintf(buf + len, " pid=%ld",
4601 				l->min_pid);
4602 
4603 		if (num_online_cpus() > 1 &&
4604 				!cpumask_empty(to_cpumask(l->cpus)) &&
4605 				len < PAGE_SIZE - 60)
4606 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4607 					 " cpus=%*pbl",
4608 					 cpumask_pr_args(to_cpumask(l->cpus)));
4609 
4610 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4611 				len < PAGE_SIZE - 60)
4612 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4613 					 " nodes=%*pbl",
4614 					 nodemask_pr_args(&l->nodes));
4615 
4616 		len += sprintf(buf + len, "\n");
4617 	}
4618 
4619 	free_loc_track(&t);
4620 	kfree(map);
4621 	if (!t.count)
4622 		len += sprintf(buf, "No data\n");
4623 	return len;
4624 }
4625 #endif
4626 
4627 #ifdef SLUB_RESILIENCY_TEST
4628 static void __init resiliency_test(void)
4629 {
4630 	u8 *p;
4631 
4632 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4633 
4634 	pr_err("SLUB resiliency testing\n");
4635 	pr_err("-----------------------\n");
4636 	pr_err("A. Corruption after allocation\n");
4637 
4638 	p = kzalloc(16, GFP_KERNEL);
4639 	p[16] = 0x12;
4640 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4641 	       p + 16);
4642 
4643 	validate_slab_cache(kmalloc_caches[4]);
4644 
4645 	/* Hmmm... The next two are dangerous */
4646 	p = kzalloc(32, GFP_KERNEL);
4647 	p[32 + sizeof(void *)] = 0x34;
4648 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4649 	       p);
4650 	pr_err("If allocated object is overwritten then not detectable\n\n");
4651 
4652 	validate_slab_cache(kmalloc_caches[5]);
4653 	p = kzalloc(64, GFP_KERNEL);
4654 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4655 	*p = 0x56;
4656 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4657 	       p);
4658 	pr_err("If allocated object is overwritten then not detectable\n\n");
4659 	validate_slab_cache(kmalloc_caches[6]);
4660 
4661 	pr_err("\nB. Corruption after free\n");
4662 	p = kzalloc(128, GFP_KERNEL);
4663 	kfree(p);
4664 	*p = 0x78;
4665 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4666 	validate_slab_cache(kmalloc_caches[7]);
4667 
4668 	p = kzalloc(256, GFP_KERNEL);
4669 	kfree(p);
4670 	p[50] = 0x9a;
4671 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4672 	validate_slab_cache(kmalloc_caches[8]);
4673 
4674 	p = kzalloc(512, GFP_KERNEL);
4675 	kfree(p);
4676 	p[512] = 0xab;
4677 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4678 	validate_slab_cache(kmalloc_caches[9]);
4679 }
4680 #else
4681 #ifdef CONFIG_SYSFS
4682 static void resiliency_test(void) {};
4683 #endif
4684 #endif
4685 
4686 #ifdef CONFIG_SYSFS
4687 enum slab_stat_type {
4688 	SL_ALL,			/* All slabs */
4689 	SL_PARTIAL,		/* Only partially allocated slabs */
4690 	SL_CPU,			/* Only slabs used for cpu caches */
4691 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4692 	SL_TOTAL		/* Determine object capacity not slabs */
4693 };
4694 
4695 #define SO_ALL		(1 << SL_ALL)
4696 #define SO_PARTIAL	(1 << SL_PARTIAL)
4697 #define SO_CPU		(1 << SL_CPU)
4698 #define SO_OBJECTS	(1 << SL_OBJECTS)
4699 #define SO_TOTAL	(1 << SL_TOTAL)
4700 
4701 static ssize_t show_slab_objects(struct kmem_cache *s,
4702 			    char *buf, unsigned long flags)
4703 {
4704 	unsigned long total = 0;
4705 	int node;
4706 	int x;
4707 	unsigned long *nodes;
4708 
4709 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4710 	if (!nodes)
4711 		return -ENOMEM;
4712 
4713 	if (flags & SO_CPU) {
4714 		int cpu;
4715 
4716 		for_each_possible_cpu(cpu) {
4717 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4718 							       cpu);
4719 			int node;
4720 			struct page *page;
4721 
4722 			page = READ_ONCE(c->page);
4723 			if (!page)
4724 				continue;
4725 
4726 			node = page_to_nid(page);
4727 			if (flags & SO_TOTAL)
4728 				x = page->objects;
4729 			else if (flags & SO_OBJECTS)
4730 				x = page->inuse;
4731 			else
4732 				x = 1;
4733 
4734 			total += x;
4735 			nodes[node] += x;
4736 
4737 			page = READ_ONCE(c->partial);
4738 			if (page) {
4739 				node = page_to_nid(page);
4740 				if (flags & SO_TOTAL)
4741 					WARN_ON_ONCE(1);
4742 				else if (flags & SO_OBJECTS)
4743 					WARN_ON_ONCE(1);
4744 				else
4745 					x = page->pages;
4746 				total += x;
4747 				nodes[node] += x;
4748 			}
4749 		}
4750 	}
4751 
4752 	get_online_mems();
4753 #ifdef CONFIG_SLUB_DEBUG
4754 	if (flags & SO_ALL) {
4755 		struct kmem_cache_node *n;
4756 
4757 		for_each_kmem_cache_node(s, node, n) {
4758 
4759 			if (flags & SO_TOTAL)
4760 				x = atomic_long_read(&n->total_objects);
4761 			else if (flags & SO_OBJECTS)
4762 				x = atomic_long_read(&n->total_objects) -
4763 					count_partial(n, count_free);
4764 			else
4765 				x = atomic_long_read(&n->nr_slabs);
4766 			total += x;
4767 			nodes[node] += x;
4768 		}
4769 
4770 	} else
4771 #endif
4772 	if (flags & SO_PARTIAL) {
4773 		struct kmem_cache_node *n;
4774 
4775 		for_each_kmem_cache_node(s, node, n) {
4776 			if (flags & SO_TOTAL)
4777 				x = count_partial(n, count_total);
4778 			else if (flags & SO_OBJECTS)
4779 				x = count_partial(n, count_inuse);
4780 			else
4781 				x = n->nr_partial;
4782 			total += x;
4783 			nodes[node] += x;
4784 		}
4785 	}
4786 	x = sprintf(buf, "%lu", total);
4787 #ifdef CONFIG_NUMA
4788 	for (node = 0; node < nr_node_ids; node++)
4789 		if (nodes[node])
4790 			x += sprintf(buf + x, " N%d=%lu",
4791 					node, nodes[node]);
4792 #endif
4793 	put_online_mems();
4794 	kfree(nodes);
4795 	return x + sprintf(buf + x, "\n");
4796 }
4797 
4798 #ifdef CONFIG_SLUB_DEBUG
4799 static int any_slab_objects(struct kmem_cache *s)
4800 {
4801 	int node;
4802 	struct kmem_cache_node *n;
4803 
4804 	for_each_kmem_cache_node(s, node, n)
4805 		if (atomic_long_read(&n->total_objects))
4806 			return 1;
4807 
4808 	return 0;
4809 }
4810 #endif
4811 
4812 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4813 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4814 
4815 struct slab_attribute {
4816 	struct attribute attr;
4817 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4818 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4819 };
4820 
4821 #define SLAB_ATTR_RO(_name) \
4822 	static struct slab_attribute _name##_attr = \
4823 	__ATTR(_name, 0400, _name##_show, NULL)
4824 
4825 #define SLAB_ATTR(_name) \
4826 	static struct slab_attribute _name##_attr =  \
4827 	__ATTR(_name, 0600, _name##_show, _name##_store)
4828 
4829 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4830 {
4831 	return sprintf(buf, "%d\n", s->size);
4832 }
4833 SLAB_ATTR_RO(slab_size);
4834 
4835 static ssize_t align_show(struct kmem_cache *s, char *buf)
4836 {
4837 	return sprintf(buf, "%d\n", s->align);
4838 }
4839 SLAB_ATTR_RO(align);
4840 
4841 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4842 {
4843 	return sprintf(buf, "%d\n", s->object_size);
4844 }
4845 SLAB_ATTR_RO(object_size);
4846 
4847 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4848 {
4849 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4850 }
4851 SLAB_ATTR_RO(objs_per_slab);
4852 
4853 static ssize_t order_store(struct kmem_cache *s,
4854 				const char *buf, size_t length)
4855 {
4856 	unsigned long order;
4857 	int err;
4858 
4859 	err = kstrtoul(buf, 10, &order);
4860 	if (err)
4861 		return err;
4862 
4863 	if (order > slub_max_order || order < slub_min_order)
4864 		return -EINVAL;
4865 
4866 	calculate_sizes(s, order);
4867 	return length;
4868 }
4869 
4870 static ssize_t order_show(struct kmem_cache *s, char *buf)
4871 {
4872 	return sprintf(buf, "%d\n", oo_order(s->oo));
4873 }
4874 SLAB_ATTR(order);
4875 
4876 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4877 {
4878 	return sprintf(buf, "%lu\n", s->min_partial);
4879 }
4880 
4881 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4882 				 size_t length)
4883 {
4884 	unsigned long min;
4885 	int err;
4886 
4887 	err = kstrtoul(buf, 10, &min);
4888 	if (err)
4889 		return err;
4890 
4891 	set_min_partial(s, min);
4892 	return length;
4893 }
4894 SLAB_ATTR(min_partial);
4895 
4896 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4897 {
4898 	return sprintf(buf, "%u\n", s->cpu_partial);
4899 }
4900 
4901 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4902 				 size_t length)
4903 {
4904 	unsigned long objects;
4905 	int err;
4906 
4907 	err = kstrtoul(buf, 10, &objects);
4908 	if (err)
4909 		return err;
4910 	if (objects && !kmem_cache_has_cpu_partial(s))
4911 		return -EINVAL;
4912 
4913 	s->cpu_partial = objects;
4914 	flush_all(s);
4915 	return length;
4916 }
4917 SLAB_ATTR(cpu_partial);
4918 
4919 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4920 {
4921 	if (!s->ctor)
4922 		return 0;
4923 	return sprintf(buf, "%pS\n", s->ctor);
4924 }
4925 SLAB_ATTR_RO(ctor);
4926 
4927 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4928 {
4929 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4930 }
4931 SLAB_ATTR_RO(aliases);
4932 
4933 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4934 {
4935 	return show_slab_objects(s, buf, SO_PARTIAL);
4936 }
4937 SLAB_ATTR_RO(partial);
4938 
4939 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4940 {
4941 	return show_slab_objects(s, buf, SO_CPU);
4942 }
4943 SLAB_ATTR_RO(cpu_slabs);
4944 
4945 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4946 {
4947 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4948 }
4949 SLAB_ATTR_RO(objects);
4950 
4951 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4952 {
4953 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4954 }
4955 SLAB_ATTR_RO(objects_partial);
4956 
4957 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4958 {
4959 	int objects = 0;
4960 	int pages = 0;
4961 	int cpu;
4962 	int len;
4963 
4964 	for_each_online_cpu(cpu) {
4965 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4966 
4967 		if (page) {
4968 			pages += page->pages;
4969 			objects += page->pobjects;
4970 		}
4971 	}
4972 
4973 	len = sprintf(buf, "%d(%d)", objects, pages);
4974 
4975 #ifdef CONFIG_SMP
4976 	for_each_online_cpu(cpu) {
4977 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4978 
4979 		if (page && len < PAGE_SIZE - 20)
4980 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4981 				page->pobjects, page->pages);
4982 	}
4983 #endif
4984 	return len + sprintf(buf + len, "\n");
4985 }
4986 SLAB_ATTR_RO(slabs_cpu_partial);
4987 
4988 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4989 {
4990 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4991 }
4992 
4993 static ssize_t reclaim_account_store(struct kmem_cache *s,
4994 				const char *buf, size_t length)
4995 {
4996 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4997 	if (buf[0] == '1')
4998 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4999 	return length;
5000 }
5001 SLAB_ATTR(reclaim_account);
5002 
5003 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5004 {
5005 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5006 }
5007 SLAB_ATTR_RO(hwcache_align);
5008 
5009 #ifdef CONFIG_ZONE_DMA
5010 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5011 {
5012 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5013 }
5014 SLAB_ATTR_RO(cache_dma);
5015 #endif
5016 
5017 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5018 {
5019 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
5020 }
5021 SLAB_ATTR_RO(destroy_by_rcu);
5022 
5023 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5024 {
5025 	return sprintf(buf, "%d\n", s->reserved);
5026 }
5027 SLAB_ATTR_RO(reserved);
5028 
5029 #ifdef CONFIG_SLUB_DEBUG
5030 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return show_slab_objects(s, buf, SO_ALL);
5033 }
5034 SLAB_ATTR_RO(slabs);
5035 
5036 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5039 }
5040 SLAB_ATTR_RO(total_objects);
5041 
5042 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5043 {
5044 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5045 }
5046 
5047 static ssize_t sanity_checks_store(struct kmem_cache *s,
5048 				const char *buf, size_t length)
5049 {
5050 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5051 	if (buf[0] == '1') {
5052 		s->flags &= ~__CMPXCHG_DOUBLE;
5053 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5054 	}
5055 	return length;
5056 }
5057 SLAB_ATTR(sanity_checks);
5058 
5059 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5060 {
5061 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5062 }
5063 
5064 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5065 							size_t length)
5066 {
5067 	/*
5068 	 * Tracing a merged cache is going to give confusing results
5069 	 * as well as cause other issues like converting a mergeable
5070 	 * cache into an umergeable one.
5071 	 */
5072 	if (s->refcount > 1)
5073 		return -EINVAL;
5074 
5075 	s->flags &= ~SLAB_TRACE;
5076 	if (buf[0] == '1') {
5077 		s->flags &= ~__CMPXCHG_DOUBLE;
5078 		s->flags |= SLAB_TRACE;
5079 	}
5080 	return length;
5081 }
5082 SLAB_ATTR(trace);
5083 
5084 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5085 {
5086 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5087 }
5088 
5089 static ssize_t red_zone_store(struct kmem_cache *s,
5090 				const char *buf, size_t length)
5091 {
5092 	if (any_slab_objects(s))
5093 		return -EBUSY;
5094 
5095 	s->flags &= ~SLAB_RED_ZONE;
5096 	if (buf[0] == '1') {
5097 		s->flags |= SLAB_RED_ZONE;
5098 	}
5099 	calculate_sizes(s, -1);
5100 	return length;
5101 }
5102 SLAB_ATTR(red_zone);
5103 
5104 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5105 {
5106 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5107 }
5108 
5109 static ssize_t poison_store(struct kmem_cache *s,
5110 				const char *buf, size_t length)
5111 {
5112 	if (any_slab_objects(s))
5113 		return -EBUSY;
5114 
5115 	s->flags &= ~SLAB_POISON;
5116 	if (buf[0] == '1') {
5117 		s->flags |= SLAB_POISON;
5118 	}
5119 	calculate_sizes(s, -1);
5120 	return length;
5121 }
5122 SLAB_ATTR(poison);
5123 
5124 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5125 {
5126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5127 }
5128 
5129 static ssize_t store_user_store(struct kmem_cache *s,
5130 				const char *buf, size_t length)
5131 {
5132 	if (any_slab_objects(s))
5133 		return -EBUSY;
5134 
5135 	s->flags &= ~SLAB_STORE_USER;
5136 	if (buf[0] == '1') {
5137 		s->flags &= ~__CMPXCHG_DOUBLE;
5138 		s->flags |= SLAB_STORE_USER;
5139 	}
5140 	calculate_sizes(s, -1);
5141 	return length;
5142 }
5143 SLAB_ATTR(store_user);
5144 
5145 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5146 {
5147 	return 0;
5148 }
5149 
5150 static ssize_t validate_store(struct kmem_cache *s,
5151 			const char *buf, size_t length)
5152 {
5153 	int ret = -EINVAL;
5154 
5155 	if (buf[0] == '1') {
5156 		ret = validate_slab_cache(s);
5157 		if (ret >= 0)
5158 			ret = length;
5159 	}
5160 	return ret;
5161 }
5162 SLAB_ATTR(validate);
5163 
5164 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5165 {
5166 	if (!(s->flags & SLAB_STORE_USER))
5167 		return -ENOSYS;
5168 	return list_locations(s, buf, TRACK_ALLOC);
5169 }
5170 SLAB_ATTR_RO(alloc_calls);
5171 
5172 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5173 {
5174 	if (!(s->flags & SLAB_STORE_USER))
5175 		return -ENOSYS;
5176 	return list_locations(s, buf, TRACK_FREE);
5177 }
5178 SLAB_ATTR_RO(free_calls);
5179 #endif /* CONFIG_SLUB_DEBUG */
5180 
5181 #ifdef CONFIG_FAILSLAB
5182 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5185 }
5186 
5187 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5188 							size_t length)
5189 {
5190 	if (s->refcount > 1)
5191 		return -EINVAL;
5192 
5193 	s->flags &= ~SLAB_FAILSLAB;
5194 	if (buf[0] == '1')
5195 		s->flags |= SLAB_FAILSLAB;
5196 	return length;
5197 }
5198 SLAB_ATTR(failslab);
5199 #endif
5200 
5201 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5202 {
5203 	return 0;
5204 }
5205 
5206 static ssize_t shrink_store(struct kmem_cache *s,
5207 			const char *buf, size_t length)
5208 {
5209 	if (buf[0] == '1')
5210 		kmem_cache_shrink(s);
5211 	else
5212 		return -EINVAL;
5213 	return length;
5214 }
5215 SLAB_ATTR(shrink);
5216 
5217 #ifdef CONFIG_NUMA
5218 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5219 {
5220 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5221 }
5222 
5223 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5224 				const char *buf, size_t length)
5225 {
5226 	unsigned long ratio;
5227 	int err;
5228 
5229 	err = kstrtoul(buf, 10, &ratio);
5230 	if (err)
5231 		return err;
5232 
5233 	if (ratio <= 100)
5234 		s->remote_node_defrag_ratio = ratio * 10;
5235 
5236 	return length;
5237 }
5238 SLAB_ATTR(remote_node_defrag_ratio);
5239 #endif
5240 
5241 #ifdef CONFIG_SLUB_STATS
5242 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5243 {
5244 	unsigned long sum  = 0;
5245 	int cpu;
5246 	int len;
5247 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5248 
5249 	if (!data)
5250 		return -ENOMEM;
5251 
5252 	for_each_online_cpu(cpu) {
5253 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5254 
5255 		data[cpu] = x;
5256 		sum += x;
5257 	}
5258 
5259 	len = sprintf(buf, "%lu", sum);
5260 
5261 #ifdef CONFIG_SMP
5262 	for_each_online_cpu(cpu) {
5263 		if (data[cpu] && len < PAGE_SIZE - 20)
5264 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5265 	}
5266 #endif
5267 	kfree(data);
5268 	return len + sprintf(buf + len, "\n");
5269 }
5270 
5271 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5272 {
5273 	int cpu;
5274 
5275 	for_each_online_cpu(cpu)
5276 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5277 }
5278 
5279 #define STAT_ATTR(si, text) 					\
5280 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5281 {								\
5282 	return show_stat(s, buf, si);				\
5283 }								\
5284 static ssize_t text##_store(struct kmem_cache *s,		\
5285 				const char *buf, size_t length)	\
5286 {								\
5287 	if (buf[0] != '0')					\
5288 		return -EINVAL;					\
5289 	clear_stat(s, si);					\
5290 	return length;						\
5291 }								\
5292 SLAB_ATTR(text);						\
5293 
5294 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5295 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5296 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5297 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5298 STAT_ATTR(FREE_FROZEN, free_frozen);
5299 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5300 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5301 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5302 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5303 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5304 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5305 STAT_ATTR(FREE_SLAB, free_slab);
5306 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5307 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5308 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5309 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5310 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5311 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5312 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5313 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5314 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5315 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5316 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5317 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5318 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5319 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5320 #endif
5321 
5322 static struct attribute *slab_attrs[] = {
5323 	&slab_size_attr.attr,
5324 	&object_size_attr.attr,
5325 	&objs_per_slab_attr.attr,
5326 	&order_attr.attr,
5327 	&min_partial_attr.attr,
5328 	&cpu_partial_attr.attr,
5329 	&objects_attr.attr,
5330 	&objects_partial_attr.attr,
5331 	&partial_attr.attr,
5332 	&cpu_slabs_attr.attr,
5333 	&ctor_attr.attr,
5334 	&aliases_attr.attr,
5335 	&align_attr.attr,
5336 	&hwcache_align_attr.attr,
5337 	&reclaim_account_attr.attr,
5338 	&destroy_by_rcu_attr.attr,
5339 	&shrink_attr.attr,
5340 	&reserved_attr.attr,
5341 	&slabs_cpu_partial_attr.attr,
5342 #ifdef CONFIG_SLUB_DEBUG
5343 	&total_objects_attr.attr,
5344 	&slabs_attr.attr,
5345 	&sanity_checks_attr.attr,
5346 	&trace_attr.attr,
5347 	&red_zone_attr.attr,
5348 	&poison_attr.attr,
5349 	&store_user_attr.attr,
5350 	&validate_attr.attr,
5351 	&alloc_calls_attr.attr,
5352 	&free_calls_attr.attr,
5353 #endif
5354 #ifdef CONFIG_ZONE_DMA
5355 	&cache_dma_attr.attr,
5356 #endif
5357 #ifdef CONFIG_NUMA
5358 	&remote_node_defrag_ratio_attr.attr,
5359 #endif
5360 #ifdef CONFIG_SLUB_STATS
5361 	&alloc_fastpath_attr.attr,
5362 	&alloc_slowpath_attr.attr,
5363 	&free_fastpath_attr.attr,
5364 	&free_slowpath_attr.attr,
5365 	&free_frozen_attr.attr,
5366 	&free_add_partial_attr.attr,
5367 	&free_remove_partial_attr.attr,
5368 	&alloc_from_partial_attr.attr,
5369 	&alloc_slab_attr.attr,
5370 	&alloc_refill_attr.attr,
5371 	&alloc_node_mismatch_attr.attr,
5372 	&free_slab_attr.attr,
5373 	&cpuslab_flush_attr.attr,
5374 	&deactivate_full_attr.attr,
5375 	&deactivate_empty_attr.attr,
5376 	&deactivate_to_head_attr.attr,
5377 	&deactivate_to_tail_attr.attr,
5378 	&deactivate_remote_frees_attr.attr,
5379 	&deactivate_bypass_attr.attr,
5380 	&order_fallback_attr.attr,
5381 	&cmpxchg_double_fail_attr.attr,
5382 	&cmpxchg_double_cpu_fail_attr.attr,
5383 	&cpu_partial_alloc_attr.attr,
5384 	&cpu_partial_free_attr.attr,
5385 	&cpu_partial_node_attr.attr,
5386 	&cpu_partial_drain_attr.attr,
5387 #endif
5388 #ifdef CONFIG_FAILSLAB
5389 	&failslab_attr.attr,
5390 #endif
5391 
5392 	NULL
5393 };
5394 
5395 static struct attribute_group slab_attr_group = {
5396 	.attrs = slab_attrs,
5397 };
5398 
5399 static ssize_t slab_attr_show(struct kobject *kobj,
5400 				struct attribute *attr,
5401 				char *buf)
5402 {
5403 	struct slab_attribute *attribute;
5404 	struct kmem_cache *s;
5405 	int err;
5406 
5407 	attribute = to_slab_attr(attr);
5408 	s = to_slab(kobj);
5409 
5410 	if (!attribute->show)
5411 		return -EIO;
5412 
5413 	err = attribute->show(s, buf);
5414 
5415 	return err;
5416 }
5417 
5418 static ssize_t slab_attr_store(struct kobject *kobj,
5419 				struct attribute *attr,
5420 				const char *buf, size_t len)
5421 {
5422 	struct slab_attribute *attribute;
5423 	struct kmem_cache *s;
5424 	int err;
5425 
5426 	attribute = to_slab_attr(attr);
5427 	s = to_slab(kobj);
5428 
5429 	if (!attribute->store)
5430 		return -EIO;
5431 
5432 	err = attribute->store(s, buf, len);
5433 #ifdef CONFIG_MEMCG
5434 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5435 		struct kmem_cache *c;
5436 
5437 		mutex_lock(&slab_mutex);
5438 		if (s->max_attr_size < len)
5439 			s->max_attr_size = len;
5440 
5441 		/*
5442 		 * This is a best effort propagation, so this function's return
5443 		 * value will be determined by the parent cache only. This is
5444 		 * basically because not all attributes will have a well
5445 		 * defined semantics for rollbacks - most of the actions will
5446 		 * have permanent effects.
5447 		 *
5448 		 * Returning the error value of any of the children that fail
5449 		 * is not 100 % defined, in the sense that users seeing the
5450 		 * error code won't be able to know anything about the state of
5451 		 * the cache.
5452 		 *
5453 		 * Only returning the error code for the parent cache at least
5454 		 * has well defined semantics. The cache being written to
5455 		 * directly either failed or succeeded, in which case we loop
5456 		 * through the descendants with best-effort propagation.
5457 		 */
5458 		for_each_memcg_cache(c, s)
5459 			attribute->store(c, buf, len);
5460 		mutex_unlock(&slab_mutex);
5461 	}
5462 #endif
5463 	return err;
5464 }
5465 
5466 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5467 {
5468 #ifdef CONFIG_MEMCG
5469 	int i;
5470 	char *buffer = NULL;
5471 	struct kmem_cache *root_cache;
5472 
5473 	if (is_root_cache(s))
5474 		return;
5475 
5476 	root_cache = s->memcg_params.root_cache;
5477 
5478 	/*
5479 	 * This mean this cache had no attribute written. Therefore, no point
5480 	 * in copying default values around
5481 	 */
5482 	if (!root_cache->max_attr_size)
5483 		return;
5484 
5485 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5486 		char mbuf[64];
5487 		char *buf;
5488 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5489 
5490 		if (!attr || !attr->store || !attr->show)
5491 			continue;
5492 
5493 		/*
5494 		 * It is really bad that we have to allocate here, so we will
5495 		 * do it only as a fallback. If we actually allocate, though,
5496 		 * we can just use the allocated buffer until the end.
5497 		 *
5498 		 * Most of the slub attributes will tend to be very small in
5499 		 * size, but sysfs allows buffers up to a page, so they can
5500 		 * theoretically happen.
5501 		 */
5502 		if (buffer)
5503 			buf = buffer;
5504 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5505 			buf = mbuf;
5506 		else {
5507 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5508 			if (WARN_ON(!buffer))
5509 				continue;
5510 			buf = buffer;
5511 		}
5512 
5513 		attr->show(root_cache, buf);
5514 		attr->store(s, buf, strlen(buf));
5515 	}
5516 
5517 	if (buffer)
5518 		free_page((unsigned long)buffer);
5519 #endif
5520 }
5521 
5522 static void kmem_cache_release(struct kobject *k)
5523 {
5524 	slab_kmem_cache_release(to_slab(k));
5525 }
5526 
5527 static const struct sysfs_ops slab_sysfs_ops = {
5528 	.show = slab_attr_show,
5529 	.store = slab_attr_store,
5530 };
5531 
5532 static struct kobj_type slab_ktype = {
5533 	.sysfs_ops = &slab_sysfs_ops,
5534 	.release = kmem_cache_release,
5535 };
5536 
5537 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5538 {
5539 	struct kobj_type *ktype = get_ktype(kobj);
5540 
5541 	if (ktype == &slab_ktype)
5542 		return 1;
5543 	return 0;
5544 }
5545 
5546 static const struct kset_uevent_ops slab_uevent_ops = {
5547 	.filter = uevent_filter,
5548 };
5549 
5550 static struct kset *slab_kset;
5551 
5552 static inline struct kset *cache_kset(struct kmem_cache *s)
5553 {
5554 #ifdef CONFIG_MEMCG
5555 	if (!is_root_cache(s))
5556 		return s->memcg_params.root_cache->memcg_kset;
5557 #endif
5558 	return slab_kset;
5559 }
5560 
5561 #define ID_STR_LENGTH 64
5562 
5563 /* Create a unique string id for a slab cache:
5564  *
5565  * Format	:[flags-]size
5566  */
5567 static char *create_unique_id(struct kmem_cache *s)
5568 {
5569 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5570 	char *p = name;
5571 
5572 	BUG_ON(!name);
5573 
5574 	*p++ = ':';
5575 	/*
5576 	 * First flags affecting slabcache operations. We will only
5577 	 * get here for aliasable slabs so we do not need to support
5578 	 * too many flags. The flags here must cover all flags that
5579 	 * are matched during merging to guarantee that the id is
5580 	 * unique.
5581 	 */
5582 	if (s->flags & SLAB_CACHE_DMA)
5583 		*p++ = 'd';
5584 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5585 		*p++ = 'a';
5586 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5587 		*p++ = 'F';
5588 	if (!(s->flags & SLAB_NOTRACK))
5589 		*p++ = 't';
5590 	if (s->flags & SLAB_ACCOUNT)
5591 		*p++ = 'A';
5592 	if (p != name + 1)
5593 		*p++ = '-';
5594 	p += sprintf(p, "%07d", s->size);
5595 
5596 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5597 	return name;
5598 }
5599 
5600 static int sysfs_slab_add(struct kmem_cache *s)
5601 {
5602 	int err;
5603 	const char *name;
5604 	int unmergeable = slab_unmergeable(s);
5605 
5606 	if (unmergeable) {
5607 		/*
5608 		 * Slabcache can never be merged so we can use the name proper.
5609 		 * This is typically the case for debug situations. In that
5610 		 * case we can catch duplicate names easily.
5611 		 */
5612 		sysfs_remove_link(&slab_kset->kobj, s->name);
5613 		name = s->name;
5614 	} else {
5615 		/*
5616 		 * Create a unique name for the slab as a target
5617 		 * for the symlinks.
5618 		 */
5619 		name = create_unique_id(s);
5620 	}
5621 
5622 	s->kobj.kset = cache_kset(s);
5623 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5624 	if (err)
5625 		goto out;
5626 
5627 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5628 	if (err)
5629 		goto out_del_kobj;
5630 
5631 #ifdef CONFIG_MEMCG
5632 	if (is_root_cache(s)) {
5633 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5634 		if (!s->memcg_kset) {
5635 			err = -ENOMEM;
5636 			goto out_del_kobj;
5637 		}
5638 	}
5639 #endif
5640 
5641 	kobject_uevent(&s->kobj, KOBJ_ADD);
5642 	if (!unmergeable) {
5643 		/* Setup first alias */
5644 		sysfs_slab_alias(s, s->name);
5645 	}
5646 out:
5647 	if (!unmergeable)
5648 		kfree(name);
5649 	return err;
5650 out_del_kobj:
5651 	kobject_del(&s->kobj);
5652 	goto out;
5653 }
5654 
5655 void sysfs_slab_remove(struct kmem_cache *s)
5656 {
5657 	if (slab_state < FULL)
5658 		/*
5659 		 * Sysfs has not been setup yet so no need to remove the
5660 		 * cache from sysfs.
5661 		 */
5662 		return;
5663 
5664 #ifdef CONFIG_MEMCG
5665 	kset_unregister(s->memcg_kset);
5666 #endif
5667 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5668 	kobject_del(&s->kobj);
5669 	kobject_put(&s->kobj);
5670 }
5671 
5672 /*
5673  * Need to buffer aliases during bootup until sysfs becomes
5674  * available lest we lose that information.
5675  */
5676 struct saved_alias {
5677 	struct kmem_cache *s;
5678 	const char *name;
5679 	struct saved_alias *next;
5680 };
5681 
5682 static struct saved_alias *alias_list;
5683 
5684 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5685 {
5686 	struct saved_alias *al;
5687 
5688 	if (slab_state == FULL) {
5689 		/*
5690 		 * If we have a leftover link then remove it.
5691 		 */
5692 		sysfs_remove_link(&slab_kset->kobj, name);
5693 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5694 	}
5695 
5696 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5697 	if (!al)
5698 		return -ENOMEM;
5699 
5700 	al->s = s;
5701 	al->name = name;
5702 	al->next = alias_list;
5703 	alias_list = al;
5704 	return 0;
5705 }
5706 
5707 static int __init slab_sysfs_init(void)
5708 {
5709 	struct kmem_cache *s;
5710 	int err;
5711 
5712 	mutex_lock(&slab_mutex);
5713 
5714 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5715 	if (!slab_kset) {
5716 		mutex_unlock(&slab_mutex);
5717 		pr_err("Cannot register slab subsystem.\n");
5718 		return -ENOSYS;
5719 	}
5720 
5721 	slab_state = FULL;
5722 
5723 	list_for_each_entry(s, &slab_caches, list) {
5724 		err = sysfs_slab_add(s);
5725 		if (err)
5726 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5727 			       s->name);
5728 	}
5729 
5730 	while (alias_list) {
5731 		struct saved_alias *al = alias_list;
5732 
5733 		alias_list = alias_list->next;
5734 		err = sysfs_slab_alias(al->s, al->name);
5735 		if (err)
5736 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5737 			       al->name);
5738 		kfree(al);
5739 	}
5740 
5741 	mutex_unlock(&slab_mutex);
5742 	resiliency_test();
5743 	return 0;
5744 }
5745 
5746 __initcall(slab_sysfs_init);
5747 #endif /* CONFIG_SYSFS */
5748 
5749 /*
5750  * The /proc/slabinfo ABI
5751  */
5752 #ifdef CONFIG_SLABINFO
5753 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5754 {
5755 	unsigned long nr_slabs = 0;
5756 	unsigned long nr_objs = 0;
5757 	unsigned long nr_free = 0;
5758 	int node;
5759 	struct kmem_cache_node *n;
5760 
5761 	for_each_kmem_cache_node(s, node, n) {
5762 		nr_slabs += node_nr_slabs(n);
5763 		nr_objs += node_nr_objs(n);
5764 		nr_free += count_partial(n, count_free);
5765 	}
5766 
5767 	sinfo->active_objs = nr_objs - nr_free;
5768 	sinfo->num_objs = nr_objs;
5769 	sinfo->active_slabs = nr_slabs;
5770 	sinfo->num_slabs = nr_slabs;
5771 	sinfo->objects_per_slab = oo_objects(s->oo);
5772 	sinfo->cache_order = oo_order(s->oo);
5773 }
5774 
5775 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5776 {
5777 }
5778 
5779 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5780 		       size_t count, loff_t *ppos)
5781 {
5782 	return -EIO;
5783 }
5784 #endif /* CONFIG_SLABINFO */
5785