1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/stacktrace.h> 38 #include <linux/prefetch.h> 39 #include <linux/memcontrol.h> 40 #include <linux/random.h> 41 #include <kunit/test.h> 42 #include <kunit/test-bug.h> 43 #include <linux/sort.h> 44 45 #include <linux/debugfs.h> 46 #include <trace/events/kmem.h> 47 48 #include "internal.h" 49 50 /* 51 * Lock order: 52 * 1. slab_mutex (Global Mutex) 53 * 2. node->list_lock (Spinlock) 54 * 3. kmem_cache->cpu_slab->lock (Local lock) 55 * 4. slab_lock(slab) (Only on some arches) 56 * 5. object_map_lock (Only for debugging) 57 * 58 * slab_mutex 59 * 60 * The role of the slab_mutex is to protect the list of all the slabs 61 * and to synchronize major metadata changes to slab cache structures. 62 * Also synchronizes memory hotplug callbacks. 63 * 64 * slab_lock 65 * 66 * The slab_lock is a wrapper around the page lock, thus it is a bit 67 * spinlock. 68 * 69 * The slab_lock is only used on arches that do not have the ability 70 * to do a cmpxchg_double. It only protects: 71 * 72 * A. slab->freelist -> List of free objects in a slab 73 * B. slab->inuse -> Number of objects in use 74 * C. slab->objects -> Number of objects in slab 75 * D. slab->frozen -> frozen state 76 * 77 * Frozen slabs 78 * 79 * If a slab is frozen then it is exempt from list management. It is not 80 * on any list except per cpu partial list. The processor that froze the 81 * slab is the one who can perform list operations on the slab. Other 82 * processors may put objects onto the freelist but the processor that 83 * froze the slab is the only one that can retrieve the objects from the 84 * slab's freelist. 85 * 86 * list_lock 87 * 88 * The list_lock protects the partial and full list on each node and 89 * the partial slab counter. If taken then no new slabs may be added or 90 * removed from the lists nor make the number of partial slabs be modified. 91 * (Note that the total number of slabs is an atomic value that may be 92 * modified without taking the list lock). 93 * 94 * The list_lock is a centralized lock and thus we avoid taking it as 95 * much as possible. As long as SLUB does not have to handle partial 96 * slabs, operations can continue without any centralized lock. F.e. 97 * allocating a long series of objects that fill up slabs does not require 98 * the list lock. 99 * 100 * For debug caches, all allocations are forced to go through a list_lock 101 * protected region to serialize against concurrent validation. 102 * 103 * cpu_slab->lock local lock 104 * 105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 106 * except the stat counters. This is a percpu structure manipulated only by 107 * the local cpu, so the lock protects against being preempted or interrupted 108 * by an irq. Fast path operations rely on lockless operations instead. 109 * 110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 111 * which means the lockless fastpath cannot be used as it might interfere with 112 * an in-progress slow path operations. In this case the local lock is always 113 * taken but it still utilizes the freelist for the common operations. 114 * 115 * lockless fastpaths 116 * 117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 118 * are fully lockless when satisfied from the percpu slab (and when 119 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 120 * They also don't disable preemption or migration or irqs. They rely on 121 * the transaction id (tid) field to detect being preempted or moved to 122 * another cpu. 123 * 124 * irq, preemption, migration considerations 125 * 126 * Interrupts are disabled as part of list_lock or local_lock operations, or 127 * around the slab_lock operation, in order to make the slab allocator safe 128 * to use in the context of an irq. 129 * 130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 133 * doesn't have to be revalidated in each section protected by the local lock. 134 * 135 * SLUB assigns one slab for allocation to each processor. 136 * Allocations only occur from these slabs called cpu slabs. 137 * 138 * Slabs with free elements are kept on a partial list and during regular 139 * operations no list for full slabs is used. If an object in a full slab is 140 * freed then the slab will show up again on the partial lists. 141 * We track full slabs for debugging purposes though because otherwise we 142 * cannot scan all objects. 143 * 144 * Slabs are freed when they become empty. Teardown and setup is 145 * minimal so we rely on the page allocators per cpu caches for 146 * fast frees and allocs. 147 * 148 * slab->frozen The slab is frozen and exempt from list processing. 149 * This means that the slab is dedicated to a purpose 150 * such as satisfying allocations for a specific 151 * processor. Objects may be freed in the slab while 152 * it is frozen but slab_free will then skip the usual 153 * list operations. It is up to the processor holding 154 * the slab to integrate the slab into the slab lists 155 * when the slab is no longer needed. 156 * 157 * One use of this flag is to mark slabs that are 158 * used for allocations. Then such a slab becomes a cpu 159 * slab. The cpu slab may be equipped with an additional 160 * freelist that allows lockless access to 161 * free objects in addition to the regular freelist 162 * that requires the slab lock. 163 * 164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 165 * options set. This moves slab handling out of 166 * the fast path and disables lockless freelists. 167 */ 168 169 /* 170 * We could simply use migrate_disable()/enable() but as long as it's a 171 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 172 */ 173 #ifndef CONFIG_PREEMPT_RT 174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 176 #define USE_LOCKLESS_FAST_PATH() (true) 177 #else 178 #define slub_get_cpu_ptr(var) \ 179 ({ \ 180 migrate_disable(); \ 181 this_cpu_ptr(var); \ 182 }) 183 #define slub_put_cpu_ptr(var) \ 184 do { \ 185 (void)(var); \ 186 migrate_enable(); \ 187 } while (0) 188 #define USE_LOCKLESS_FAST_PATH() (false) 189 #endif 190 191 #ifndef CONFIG_SLUB_TINY 192 #define __fastpath_inline __always_inline 193 #else 194 #define __fastpath_inline 195 #endif 196 197 #ifdef CONFIG_SLUB_DEBUG 198 #ifdef CONFIG_SLUB_DEBUG_ON 199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 200 #else 201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 202 #endif 203 #endif /* CONFIG_SLUB_DEBUG */ 204 205 /* Structure holding parameters for get_partial() call chain */ 206 struct partial_context { 207 struct slab **slab; 208 gfp_t flags; 209 unsigned int orig_size; 210 }; 211 212 static inline bool kmem_cache_debug(struct kmem_cache *s) 213 { 214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 215 } 216 217 static inline bool slub_debug_orig_size(struct kmem_cache *s) 218 { 219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 220 (s->flags & SLAB_KMALLOC)); 221 } 222 223 void *fixup_red_left(struct kmem_cache *s, void *p) 224 { 225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 226 p += s->red_left_pad; 227 228 return p; 229 } 230 231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 232 { 233 #ifdef CONFIG_SLUB_CPU_PARTIAL 234 return !kmem_cache_debug(s); 235 #else 236 return false; 237 #endif 238 } 239 240 /* 241 * Issues still to be resolved: 242 * 243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 244 * 245 * - Variable sizing of the per node arrays 246 */ 247 248 /* Enable to log cmpxchg failures */ 249 #undef SLUB_DEBUG_CMPXCHG 250 251 #ifndef CONFIG_SLUB_TINY 252 /* 253 * Minimum number of partial slabs. These will be left on the partial 254 * lists even if they are empty. kmem_cache_shrink may reclaim them. 255 */ 256 #define MIN_PARTIAL 5 257 258 /* 259 * Maximum number of desirable partial slabs. 260 * The existence of more partial slabs makes kmem_cache_shrink 261 * sort the partial list by the number of objects in use. 262 */ 263 #define MAX_PARTIAL 10 264 #else 265 #define MIN_PARTIAL 0 266 #define MAX_PARTIAL 0 267 #endif 268 269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 270 SLAB_POISON | SLAB_STORE_USER) 271 272 /* 273 * These debug flags cannot use CMPXCHG because there might be consistency 274 * issues when checking or reading debug information 275 */ 276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 277 SLAB_TRACE) 278 279 280 /* 281 * Debugging flags that require metadata to be stored in the slab. These get 282 * disabled when slub_debug=O is used and a cache's min order increases with 283 * metadata. 284 */ 285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 286 287 #define OO_SHIFT 16 288 #define OO_MASK ((1 << OO_SHIFT) - 1) 289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 290 291 /* Internal SLUB flags */ 292 /* Poison object */ 293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 294 /* Use cmpxchg_double */ 295 296 #ifdef system_has_freelist_aba 297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 298 #else 299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U) 300 #endif 301 302 /* 303 * Tracking user of a slab. 304 */ 305 #define TRACK_ADDRS_COUNT 16 306 struct track { 307 unsigned long addr; /* Called from address */ 308 #ifdef CONFIG_STACKDEPOT 309 depot_stack_handle_t handle; 310 #endif 311 int cpu; /* Was running on cpu */ 312 int pid; /* Pid context */ 313 unsigned long when; /* When did the operation occur */ 314 }; 315 316 enum track_item { TRACK_ALLOC, TRACK_FREE }; 317 318 #ifdef SLAB_SUPPORTS_SYSFS 319 static int sysfs_slab_add(struct kmem_cache *); 320 static int sysfs_slab_alias(struct kmem_cache *, const char *); 321 #else 322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 324 { return 0; } 325 #endif 326 327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 328 static void debugfs_slab_add(struct kmem_cache *); 329 #else 330 static inline void debugfs_slab_add(struct kmem_cache *s) { } 331 #endif 332 333 static inline void stat(const struct kmem_cache *s, enum stat_item si) 334 { 335 #ifdef CONFIG_SLUB_STATS 336 /* 337 * The rmw is racy on a preemptible kernel but this is acceptable, so 338 * avoid this_cpu_add()'s irq-disable overhead. 339 */ 340 raw_cpu_inc(s->cpu_slab->stat[si]); 341 #endif 342 } 343 344 /* 345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 347 * differ during memory hotplug/hotremove operations. 348 * Protected by slab_mutex. 349 */ 350 static nodemask_t slab_nodes; 351 352 #ifndef CONFIG_SLUB_TINY 353 /* 354 * Workqueue used for flush_cpu_slab(). 355 */ 356 static struct workqueue_struct *flushwq; 357 #endif 358 359 /******************************************************************** 360 * Core slab cache functions 361 *******************************************************************/ 362 363 /* 364 * freeptr_t represents a SLUB freelist pointer, which might be encoded 365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 366 */ 367 typedef struct { unsigned long v; } freeptr_t; 368 369 /* 370 * Returns freelist pointer (ptr). With hardening, this is obfuscated 371 * with an XOR of the address where the pointer is held and a per-cache 372 * random number. 373 */ 374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 375 void *ptr, unsigned long ptr_addr) 376 { 377 unsigned long encoded; 378 379 #ifdef CONFIG_SLAB_FREELIST_HARDENED 380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 381 #else 382 encoded = (unsigned long)ptr; 383 #endif 384 return (freeptr_t){.v = encoded}; 385 } 386 387 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 388 freeptr_t ptr, unsigned long ptr_addr) 389 { 390 void *decoded; 391 392 #ifdef CONFIG_SLAB_FREELIST_HARDENED 393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 394 #else 395 decoded = (void *)ptr.v; 396 #endif 397 return decoded; 398 } 399 400 static inline void *get_freepointer(struct kmem_cache *s, void *object) 401 { 402 unsigned long ptr_addr; 403 freeptr_t p; 404 405 object = kasan_reset_tag(object); 406 ptr_addr = (unsigned long)object + s->offset; 407 p = *(freeptr_t *)(ptr_addr); 408 return freelist_ptr_decode(s, p, ptr_addr); 409 } 410 411 #ifndef CONFIG_SLUB_TINY 412 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 413 { 414 prefetchw(object + s->offset); 415 } 416 #endif 417 418 /* 419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 420 * pointer value in the case the current thread loses the race for the next 421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 423 * KMSAN will still check all arguments of cmpxchg because of imperfect 424 * handling of inline assembly. 425 * To work around this problem, we apply __no_kmsan_checks to ensure that 426 * get_freepointer_safe() returns initialized memory. 427 */ 428 __no_kmsan_checks 429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 430 { 431 unsigned long freepointer_addr; 432 freeptr_t p; 433 434 if (!debug_pagealloc_enabled_static()) 435 return get_freepointer(s, object); 436 437 object = kasan_reset_tag(object); 438 freepointer_addr = (unsigned long)object + s->offset; 439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 440 return freelist_ptr_decode(s, p, freepointer_addr); 441 } 442 443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 444 { 445 unsigned long freeptr_addr = (unsigned long)object + s->offset; 446 447 #ifdef CONFIG_SLAB_FREELIST_HARDENED 448 BUG_ON(object == fp); /* naive detection of double free or corruption */ 449 #endif 450 451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 453 } 454 455 /* Loop over all objects in a slab */ 456 #define for_each_object(__p, __s, __addr, __objects) \ 457 for (__p = fixup_red_left(__s, __addr); \ 458 __p < (__addr) + (__objects) * (__s)->size; \ 459 __p += (__s)->size) 460 461 static inline unsigned int order_objects(unsigned int order, unsigned int size) 462 { 463 return ((unsigned int)PAGE_SIZE << order) / size; 464 } 465 466 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 467 unsigned int size) 468 { 469 struct kmem_cache_order_objects x = { 470 (order << OO_SHIFT) + order_objects(order, size) 471 }; 472 473 return x; 474 } 475 476 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 477 { 478 return x.x >> OO_SHIFT; 479 } 480 481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 482 { 483 return x.x & OO_MASK; 484 } 485 486 #ifdef CONFIG_SLUB_CPU_PARTIAL 487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 488 { 489 unsigned int nr_slabs; 490 491 s->cpu_partial = nr_objects; 492 493 /* 494 * We take the number of objects but actually limit the number of 495 * slabs on the per cpu partial list, in order to limit excessive 496 * growth of the list. For simplicity we assume that the slabs will 497 * be half-full. 498 */ 499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 500 s->cpu_partial_slabs = nr_slabs; 501 } 502 #else 503 static inline void 504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 505 { 506 } 507 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 508 509 /* 510 * Per slab locking using the pagelock 511 */ 512 static __always_inline void slab_lock(struct slab *slab) 513 { 514 struct page *page = slab_page(slab); 515 516 VM_BUG_ON_PAGE(PageTail(page), page); 517 bit_spin_lock(PG_locked, &page->flags); 518 } 519 520 static __always_inline void slab_unlock(struct slab *slab) 521 { 522 struct page *page = slab_page(slab); 523 524 VM_BUG_ON_PAGE(PageTail(page), page); 525 __bit_spin_unlock(PG_locked, &page->flags); 526 } 527 528 static inline bool 529 __update_freelist_fast(struct slab *slab, 530 void *freelist_old, unsigned long counters_old, 531 void *freelist_new, unsigned long counters_new) 532 { 533 #ifdef system_has_freelist_aba 534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 536 537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 538 #else 539 return false; 540 #endif 541 } 542 543 static inline bool 544 __update_freelist_slow(struct slab *slab, 545 void *freelist_old, unsigned long counters_old, 546 void *freelist_new, unsigned long counters_new) 547 { 548 bool ret = false; 549 550 slab_lock(slab); 551 if (slab->freelist == freelist_old && 552 slab->counters == counters_old) { 553 slab->freelist = freelist_new; 554 slab->counters = counters_new; 555 ret = true; 556 } 557 slab_unlock(slab); 558 559 return ret; 560 } 561 562 /* 563 * Interrupts must be disabled (for the fallback code to work right), typically 564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 566 * allocation/ free operation in hardirq context. Therefore nothing can 567 * interrupt the operation. 568 */ 569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 570 void *freelist_old, unsigned long counters_old, 571 void *freelist_new, unsigned long counters_new, 572 const char *n) 573 { 574 bool ret; 575 576 if (USE_LOCKLESS_FAST_PATH()) 577 lockdep_assert_irqs_disabled(); 578 579 if (s->flags & __CMPXCHG_DOUBLE) { 580 ret = __update_freelist_fast(slab, freelist_old, counters_old, 581 freelist_new, counters_new); 582 } else { 583 ret = __update_freelist_slow(slab, freelist_old, counters_old, 584 freelist_new, counters_new); 585 } 586 if (likely(ret)) 587 return true; 588 589 cpu_relax(); 590 stat(s, CMPXCHG_DOUBLE_FAIL); 591 592 #ifdef SLUB_DEBUG_CMPXCHG 593 pr_info("%s %s: cmpxchg double redo ", n, s->name); 594 #endif 595 596 return false; 597 } 598 599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 600 void *freelist_old, unsigned long counters_old, 601 void *freelist_new, unsigned long counters_new, 602 const char *n) 603 { 604 bool ret; 605 606 if (s->flags & __CMPXCHG_DOUBLE) { 607 ret = __update_freelist_fast(slab, freelist_old, counters_old, 608 freelist_new, counters_new); 609 } else { 610 unsigned long flags; 611 612 local_irq_save(flags); 613 ret = __update_freelist_slow(slab, freelist_old, counters_old, 614 freelist_new, counters_new); 615 local_irq_restore(flags); 616 } 617 if (likely(ret)) 618 return true; 619 620 cpu_relax(); 621 stat(s, CMPXCHG_DOUBLE_FAIL); 622 623 #ifdef SLUB_DEBUG_CMPXCHG 624 pr_info("%s %s: cmpxchg double redo ", n, s->name); 625 #endif 626 627 return false; 628 } 629 630 #ifdef CONFIG_SLUB_DEBUG 631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 632 static DEFINE_SPINLOCK(object_map_lock); 633 634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 635 struct slab *slab) 636 { 637 void *addr = slab_address(slab); 638 void *p; 639 640 bitmap_zero(obj_map, slab->objects); 641 642 for (p = slab->freelist; p; p = get_freepointer(s, p)) 643 set_bit(__obj_to_index(s, addr, p), obj_map); 644 } 645 646 #if IS_ENABLED(CONFIG_KUNIT) 647 static bool slab_add_kunit_errors(void) 648 { 649 struct kunit_resource *resource; 650 651 if (!kunit_get_current_test()) 652 return false; 653 654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 655 if (!resource) 656 return false; 657 658 (*(int *)resource->data)++; 659 kunit_put_resource(resource); 660 return true; 661 } 662 #else 663 static inline bool slab_add_kunit_errors(void) { return false; } 664 #endif 665 666 static inline unsigned int size_from_object(struct kmem_cache *s) 667 { 668 if (s->flags & SLAB_RED_ZONE) 669 return s->size - s->red_left_pad; 670 671 return s->size; 672 } 673 674 static inline void *restore_red_left(struct kmem_cache *s, void *p) 675 { 676 if (s->flags & SLAB_RED_ZONE) 677 p -= s->red_left_pad; 678 679 return p; 680 } 681 682 /* 683 * Debug settings: 684 */ 685 #if defined(CONFIG_SLUB_DEBUG_ON) 686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 687 #else 688 static slab_flags_t slub_debug; 689 #endif 690 691 static char *slub_debug_string; 692 static int disable_higher_order_debug; 693 694 /* 695 * slub is about to manipulate internal object metadata. This memory lies 696 * outside the range of the allocated object, so accessing it would normally 697 * be reported by kasan as a bounds error. metadata_access_enable() is used 698 * to tell kasan that these accesses are OK. 699 */ 700 static inline void metadata_access_enable(void) 701 { 702 kasan_disable_current(); 703 } 704 705 static inline void metadata_access_disable(void) 706 { 707 kasan_enable_current(); 708 } 709 710 /* 711 * Object debugging 712 */ 713 714 /* Verify that a pointer has an address that is valid within a slab page */ 715 static inline int check_valid_pointer(struct kmem_cache *s, 716 struct slab *slab, void *object) 717 { 718 void *base; 719 720 if (!object) 721 return 1; 722 723 base = slab_address(slab); 724 object = kasan_reset_tag(object); 725 object = restore_red_left(s, object); 726 if (object < base || object >= base + slab->objects * s->size || 727 (object - base) % s->size) { 728 return 0; 729 } 730 731 return 1; 732 } 733 734 static void print_section(char *level, char *text, u8 *addr, 735 unsigned int length) 736 { 737 metadata_access_enable(); 738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 739 16, 1, kasan_reset_tag((void *)addr), length, 1); 740 metadata_access_disable(); 741 } 742 743 /* 744 * See comment in calculate_sizes(). 745 */ 746 static inline bool freeptr_outside_object(struct kmem_cache *s) 747 { 748 return s->offset >= s->inuse; 749 } 750 751 /* 752 * Return offset of the end of info block which is inuse + free pointer if 753 * not overlapping with object. 754 */ 755 static inline unsigned int get_info_end(struct kmem_cache *s) 756 { 757 if (freeptr_outside_object(s)) 758 return s->inuse + sizeof(void *); 759 else 760 return s->inuse; 761 } 762 763 static struct track *get_track(struct kmem_cache *s, void *object, 764 enum track_item alloc) 765 { 766 struct track *p; 767 768 p = object + get_info_end(s); 769 770 return kasan_reset_tag(p + alloc); 771 } 772 773 #ifdef CONFIG_STACKDEPOT 774 static noinline depot_stack_handle_t set_track_prepare(void) 775 { 776 depot_stack_handle_t handle; 777 unsigned long entries[TRACK_ADDRS_COUNT]; 778 unsigned int nr_entries; 779 780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 782 783 return handle; 784 } 785 #else 786 static inline depot_stack_handle_t set_track_prepare(void) 787 { 788 return 0; 789 } 790 #endif 791 792 static void set_track_update(struct kmem_cache *s, void *object, 793 enum track_item alloc, unsigned long addr, 794 depot_stack_handle_t handle) 795 { 796 struct track *p = get_track(s, object, alloc); 797 798 #ifdef CONFIG_STACKDEPOT 799 p->handle = handle; 800 #endif 801 p->addr = addr; 802 p->cpu = smp_processor_id(); 803 p->pid = current->pid; 804 p->when = jiffies; 805 } 806 807 static __always_inline void set_track(struct kmem_cache *s, void *object, 808 enum track_item alloc, unsigned long addr) 809 { 810 depot_stack_handle_t handle = set_track_prepare(); 811 812 set_track_update(s, object, alloc, addr, handle); 813 } 814 815 static void init_tracking(struct kmem_cache *s, void *object) 816 { 817 struct track *p; 818 819 if (!(s->flags & SLAB_STORE_USER)) 820 return; 821 822 p = get_track(s, object, TRACK_ALLOC); 823 memset(p, 0, 2*sizeof(struct track)); 824 } 825 826 static void print_track(const char *s, struct track *t, unsigned long pr_time) 827 { 828 depot_stack_handle_t handle __maybe_unused; 829 830 if (!t->addr) 831 return; 832 833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 835 #ifdef CONFIG_STACKDEPOT 836 handle = READ_ONCE(t->handle); 837 if (handle) 838 stack_depot_print(handle); 839 else 840 pr_err("object allocation/free stack trace missing\n"); 841 #endif 842 } 843 844 void print_tracking(struct kmem_cache *s, void *object) 845 { 846 unsigned long pr_time = jiffies; 847 if (!(s->flags & SLAB_STORE_USER)) 848 return; 849 850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 852 } 853 854 static void print_slab_info(const struct slab *slab) 855 { 856 struct folio *folio = (struct folio *)slab_folio(slab); 857 858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 859 slab, slab->objects, slab->inuse, slab->freelist, 860 folio_flags(folio, 0)); 861 } 862 863 /* 864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 865 * family will round up the real request size to these fixed ones, so 866 * there could be an extra area than what is requested. Save the original 867 * request size in the meta data area, for better debug and sanity check. 868 */ 869 static inline void set_orig_size(struct kmem_cache *s, 870 void *object, unsigned int orig_size) 871 { 872 void *p = kasan_reset_tag(object); 873 874 if (!slub_debug_orig_size(s)) 875 return; 876 877 #ifdef CONFIG_KASAN_GENERIC 878 /* 879 * KASAN could save its free meta data in object's data area at 880 * offset 0, if the size is larger than 'orig_size', it will 881 * overlap the data redzone in [orig_size+1, object_size], and 882 * the check should be skipped. 883 */ 884 if (kasan_metadata_size(s, true) > orig_size) 885 orig_size = s->object_size; 886 #endif 887 888 p += get_info_end(s); 889 p += sizeof(struct track) * 2; 890 891 *(unsigned int *)p = orig_size; 892 } 893 894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 895 { 896 void *p = kasan_reset_tag(object); 897 898 if (!slub_debug_orig_size(s)) 899 return s->object_size; 900 901 p += get_info_end(s); 902 p += sizeof(struct track) * 2; 903 904 return *(unsigned int *)p; 905 } 906 907 void skip_orig_size_check(struct kmem_cache *s, const void *object) 908 { 909 set_orig_size(s, (void *)object, s->object_size); 910 } 911 912 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 913 { 914 struct va_format vaf; 915 va_list args; 916 917 va_start(args, fmt); 918 vaf.fmt = fmt; 919 vaf.va = &args; 920 pr_err("=============================================================================\n"); 921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 922 pr_err("-----------------------------------------------------------------------------\n\n"); 923 va_end(args); 924 } 925 926 __printf(2, 3) 927 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 928 { 929 struct va_format vaf; 930 va_list args; 931 932 if (slab_add_kunit_errors()) 933 return; 934 935 va_start(args, fmt); 936 vaf.fmt = fmt; 937 vaf.va = &args; 938 pr_err("FIX %s: %pV\n", s->name, &vaf); 939 va_end(args); 940 } 941 942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 943 { 944 unsigned int off; /* Offset of last byte */ 945 u8 *addr = slab_address(slab); 946 947 print_tracking(s, p); 948 949 print_slab_info(slab); 950 951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 952 p, p - addr, get_freepointer(s, p)); 953 954 if (s->flags & SLAB_RED_ZONE) 955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 956 s->red_left_pad); 957 else if (p > addr + 16) 958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 959 960 print_section(KERN_ERR, "Object ", p, 961 min_t(unsigned int, s->object_size, PAGE_SIZE)); 962 if (s->flags & SLAB_RED_ZONE) 963 print_section(KERN_ERR, "Redzone ", p + s->object_size, 964 s->inuse - s->object_size); 965 966 off = get_info_end(s); 967 968 if (s->flags & SLAB_STORE_USER) 969 off += 2 * sizeof(struct track); 970 971 if (slub_debug_orig_size(s)) 972 off += sizeof(unsigned int); 973 974 off += kasan_metadata_size(s, false); 975 976 if (off != size_from_object(s)) 977 /* Beginning of the filler is the free pointer */ 978 print_section(KERN_ERR, "Padding ", p + off, 979 size_from_object(s) - off); 980 981 dump_stack(); 982 } 983 984 static void object_err(struct kmem_cache *s, struct slab *slab, 985 u8 *object, char *reason) 986 { 987 if (slab_add_kunit_errors()) 988 return; 989 990 slab_bug(s, "%s", reason); 991 print_trailer(s, slab, object); 992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 993 } 994 995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 996 void **freelist, void *nextfree) 997 { 998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 999 !check_valid_pointer(s, slab, nextfree) && freelist) { 1000 object_err(s, slab, *freelist, "Freechain corrupt"); 1001 *freelist = NULL; 1002 slab_fix(s, "Isolate corrupted freechain"); 1003 return true; 1004 } 1005 1006 return false; 1007 } 1008 1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1010 const char *fmt, ...) 1011 { 1012 va_list args; 1013 char buf[100]; 1014 1015 if (slab_add_kunit_errors()) 1016 return; 1017 1018 va_start(args, fmt); 1019 vsnprintf(buf, sizeof(buf), fmt, args); 1020 va_end(args); 1021 slab_bug(s, "%s", buf); 1022 print_slab_info(slab); 1023 dump_stack(); 1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1025 } 1026 1027 static void init_object(struct kmem_cache *s, void *object, u8 val) 1028 { 1029 u8 *p = kasan_reset_tag(object); 1030 unsigned int poison_size = s->object_size; 1031 1032 if (s->flags & SLAB_RED_ZONE) { 1033 memset(p - s->red_left_pad, val, s->red_left_pad); 1034 1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1036 /* 1037 * Redzone the extra allocated space by kmalloc than 1038 * requested, and the poison size will be limited to 1039 * the original request size accordingly. 1040 */ 1041 poison_size = get_orig_size(s, object); 1042 } 1043 } 1044 1045 if (s->flags & __OBJECT_POISON) { 1046 memset(p, POISON_FREE, poison_size - 1); 1047 p[poison_size - 1] = POISON_END; 1048 } 1049 1050 if (s->flags & SLAB_RED_ZONE) 1051 memset(p + poison_size, val, s->inuse - poison_size); 1052 } 1053 1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1055 void *from, void *to) 1056 { 1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1058 memset(from, data, to - from); 1059 } 1060 1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1062 u8 *object, char *what, 1063 u8 *start, unsigned int value, unsigned int bytes) 1064 { 1065 u8 *fault; 1066 u8 *end; 1067 u8 *addr = slab_address(slab); 1068 1069 metadata_access_enable(); 1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1071 metadata_access_disable(); 1072 if (!fault) 1073 return 1; 1074 1075 end = start + bytes; 1076 while (end > fault && end[-1] == value) 1077 end--; 1078 1079 if (slab_add_kunit_errors()) 1080 goto skip_bug_print; 1081 1082 slab_bug(s, "%s overwritten", what); 1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1084 fault, end - 1, fault - addr, 1085 fault[0], value); 1086 print_trailer(s, slab, object); 1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1088 1089 skip_bug_print: 1090 restore_bytes(s, what, value, fault, end); 1091 return 0; 1092 } 1093 1094 /* 1095 * Object layout: 1096 * 1097 * object address 1098 * Bytes of the object to be managed. 1099 * If the freepointer may overlay the object then the free 1100 * pointer is at the middle of the object. 1101 * 1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1103 * 0xa5 (POISON_END) 1104 * 1105 * object + s->object_size 1106 * Padding to reach word boundary. This is also used for Redzoning. 1107 * Padding is extended by another word if Redzoning is enabled and 1108 * object_size == inuse. 1109 * 1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 1111 * 0xcc (RED_ACTIVE) for objects in use. 1112 * 1113 * object + s->inuse 1114 * Meta data starts here. 1115 * 1116 * A. Free pointer (if we cannot overwrite object on free) 1117 * B. Tracking data for SLAB_STORE_USER 1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1119 * D. Padding to reach required alignment boundary or at minimum 1120 * one word if debugging is on to be able to detect writes 1121 * before the word boundary. 1122 * 1123 * Padding is done using 0x5a (POISON_INUSE) 1124 * 1125 * object + s->size 1126 * Nothing is used beyond s->size. 1127 * 1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1129 * ignored. And therefore no slab options that rely on these boundaries 1130 * may be used with merged slabcaches. 1131 */ 1132 1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1134 { 1135 unsigned long off = get_info_end(s); /* The end of info */ 1136 1137 if (s->flags & SLAB_STORE_USER) { 1138 /* We also have user information there */ 1139 off += 2 * sizeof(struct track); 1140 1141 if (s->flags & SLAB_KMALLOC) 1142 off += sizeof(unsigned int); 1143 } 1144 1145 off += kasan_metadata_size(s, false); 1146 1147 if (size_from_object(s) == off) 1148 return 1; 1149 1150 return check_bytes_and_report(s, slab, p, "Object padding", 1151 p + off, POISON_INUSE, size_from_object(s) - off); 1152 } 1153 1154 /* Check the pad bytes at the end of a slab page */ 1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1156 { 1157 u8 *start; 1158 u8 *fault; 1159 u8 *end; 1160 u8 *pad; 1161 int length; 1162 int remainder; 1163 1164 if (!(s->flags & SLAB_POISON)) 1165 return; 1166 1167 start = slab_address(slab); 1168 length = slab_size(slab); 1169 end = start + length; 1170 remainder = length % s->size; 1171 if (!remainder) 1172 return; 1173 1174 pad = end - remainder; 1175 metadata_access_enable(); 1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1177 metadata_access_disable(); 1178 if (!fault) 1179 return; 1180 while (end > fault && end[-1] == POISON_INUSE) 1181 end--; 1182 1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1184 fault, end - 1, fault - start); 1185 print_section(KERN_ERR, "Padding ", pad, remainder); 1186 1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1188 } 1189 1190 static int check_object(struct kmem_cache *s, struct slab *slab, 1191 void *object, u8 val) 1192 { 1193 u8 *p = object; 1194 u8 *endobject = object + s->object_size; 1195 unsigned int orig_size; 1196 1197 if (s->flags & SLAB_RED_ZONE) { 1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1199 object - s->red_left_pad, val, s->red_left_pad)) 1200 return 0; 1201 1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1203 endobject, val, s->inuse - s->object_size)) 1204 return 0; 1205 1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1207 orig_size = get_orig_size(s, object); 1208 1209 if (s->object_size > orig_size && 1210 !check_bytes_and_report(s, slab, object, 1211 "kmalloc Redzone", p + orig_size, 1212 val, s->object_size - orig_size)) { 1213 return 0; 1214 } 1215 } 1216 } else { 1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1218 check_bytes_and_report(s, slab, p, "Alignment padding", 1219 endobject, POISON_INUSE, 1220 s->inuse - s->object_size); 1221 } 1222 } 1223 1224 if (s->flags & SLAB_POISON) { 1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1226 (!check_bytes_and_report(s, slab, p, "Poison", p, 1227 POISON_FREE, s->object_size - 1) || 1228 !check_bytes_and_report(s, slab, p, "End Poison", 1229 p + s->object_size - 1, POISON_END, 1))) 1230 return 0; 1231 /* 1232 * check_pad_bytes cleans up on its own. 1233 */ 1234 check_pad_bytes(s, slab, p); 1235 } 1236 1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1238 /* 1239 * Object and freepointer overlap. Cannot check 1240 * freepointer while object is allocated. 1241 */ 1242 return 1; 1243 1244 /* Check free pointer validity */ 1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1246 object_err(s, slab, p, "Freepointer corrupt"); 1247 /* 1248 * No choice but to zap it and thus lose the remainder 1249 * of the free objects in this slab. May cause 1250 * another error because the object count is now wrong. 1251 */ 1252 set_freepointer(s, p, NULL); 1253 return 0; 1254 } 1255 return 1; 1256 } 1257 1258 static int check_slab(struct kmem_cache *s, struct slab *slab) 1259 { 1260 int maxobj; 1261 1262 if (!folio_test_slab(slab_folio(slab))) { 1263 slab_err(s, slab, "Not a valid slab page"); 1264 return 0; 1265 } 1266 1267 maxobj = order_objects(slab_order(slab), s->size); 1268 if (slab->objects > maxobj) { 1269 slab_err(s, slab, "objects %u > max %u", 1270 slab->objects, maxobj); 1271 return 0; 1272 } 1273 if (slab->inuse > slab->objects) { 1274 slab_err(s, slab, "inuse %u > max %u", 1275 slab->inuse, slab->objects); 1276 return 0; 1277 } 1278 /* Slab_pad_check fixes things up after itself */ 1279 slab_pad_check(s, slab); 1280 return 1; 1281 } 1282 1283 /* 1284 * Determine if a certain object in a slab is on the freelist. Must hold the 1285 * slab lock to guarantee that the chains are in a consistent state. 1286 */ 1287 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1288 { 1289 int nr = 0; 1290 void *fp; 1291 void *object = NULL; 1292 int max_objects; 1293 1294 fp = slab->freelist; 1295 while (fp && nr <= slab->objects) { 1296 if (fp == search) 1297 return 1; 1298 if (!check_valid_pointer(s, slab, fp)) { 1299 if (object) { 1300 object_err(s, slab, object, 1301 "Freechain corrupt"); 1302 set_freepointer(s, object, NULL); 1303 } else { 1304 slab_err(s, slab, "Freepointer corrupt"); 1305 slab->freelist = NULL; 1306 slab->inuse = slab->objects; 1307 slab_fix(s, "Freelist cleared"); 1308 return 0; 1309 } 1310 break; 1311 } 1312 object = fp; 1313 fp = get_freepointer(s, object); 1314 nr++; 1315 } 1316 1317 max_objects = order_objects(slab_order(slab), s->size); 1318 if (max_objects > MAX_OBJS_PER_PAGE) 1319 max_objects = MAX_OBJS_PER_PAGE; 1320 1321 if (slab->objects != max_objects) { 1322 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1323 slab->objects, max_objects); 1324 slab->objects = max_objects; 1325 slab_fix(s, "Number of objects adjusted"); 1326 } 1327 if (slab->inuse != slab->objects - nr) { 1328 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1329 slab->inuse, slab->objects - nr); 1330 slab->inuse = slab->objects - nr; 1331 slab_fix(s, "Object count adjusted"); 1332 } 1333 return search == NULL; 1334 } 1335 1336 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1337 int alloc) 1338 { 1339 if (s->flags & SLAB_TRACE) { 1340 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1341 s->name, 1342 alloc ? "alloc" : "free", 1343 object, slab->inuse, 1344 slab->freelist); 1345 1346 if (!alloc) 1347 print_section(KERN_INFO, "Object ", (void *)object, 1348 s->object_size); 1349 1350 dump_stack(); 1351 } 1352 } 1353 1354 /* 1355 * Tracking of fully allocated slabs for debugging purposes. 1356 */ 1357 static void add_full(struct kmem_cache *s, 1358 struct kmem_cache_node *n, struct slab *slab) 1359 { 1360 if (!(s->flags & SLAB_STORE_USER)) 1361 return; 1362 1363 lockdep_assert_held(&n->list_lock); 1364 list_add(&slab->slab_list, &n->full); 1365 } 1366 1367 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1368 { 1369 if (!(s->flags & SLAB_STORE_USER)) 1370 return; 1371 1372 lockdep_assert_held(&n->list_lock); 1373 list_del(&slab->slab_list); 1374 } 1375 1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1377 { 1378 return atomic_long_read(&n->nr_slabs); 1379 } 1380 1381 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1382 { 1383 struct kmem_cache_node *n = get_node(s, node); 1384 1385 /* 1386 * May be called early in order to allocate a slab for the 1387 * kmem_cache_node structure. Solve the chicken-egg 1388 * dilemma by deferring the increment of the count during 1389 * bootstrap (see early_kmem_cache_node_alloc). 1390 */ 1391 if (likely(n)) { 1392 atomic_long_inc(&n->nr_slabs); 1393 atomic_long_add(objects, &n->total_objects); 1394 } 1395 } 1396 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1397 { 1398 struct kmem_cache_node *n = get_node(s, node); 1399 1400 atomic_long_dec(&n->nr_slabs); 1401 atomic_long_sub(objects, &n->total_objects); 1402 } 1403 1404 /* Object debug checks for alloc/free paths */ 1405 static void setup_object_debug(struct kmem_cache *s, void *object) 1406 { 1407 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1408 return; 1409 1410 init_object(s, object, SLUB_RED_INACTIVE); 1411 init_tracking(s, object); 1412 } 1413 1414 static 1415 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1416 { 1417 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1418 return; 1419 1420 metadata_access_enable(); 1421 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1422 metadata_access_disable(); 1423 } 1424 1425 static inline int alloc_consistency_checks(struct kmem_cache *s, 1426 struct slab *slab, void *object) 1427 { 1428 if (!check_slab(s, slab)) 1429 return 0; 1430 1431 if (!check_valid_pointer(s, slab, object)) { 1432 object_err(s, slab, object, "Freelist Pointer check fails"); 1433 return 0; 1434 } 1435 1436 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1437 return 0; 1438 1439 return 1; 1440 } 1441 1442 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1443 struct slab *slab, void *object, int orig_size) 1444 { 1445 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1446 if (!alloc_consistency_checks(s, slab, object)) 1447 goto bad; 1448 } 1449 1450 /* Success. Perform special debug activities for allocs */ 1451 trace(s, slab, object, 1); 1452 set_orig_size(s, object, orig_size); 1453 init_object(s, object, SLUB_RED_ACTIVE); 1454 return true; 1455 1456 bad: 1457 if (folio_test_slab(slab_folio(slab))) { 1458 /* 1459 * If this is a slab page then lets do the best we can 1460 * to avoid issues in the future. Marking all objects 1461 * as used avoids touching the remaining objects. 1462 */ 1463 slab_fix(s, "Marking all objects used"); 1464 slab->inuse = slab->objects; 1465 slab->freelist = NULL; 1466 } 1467 return false; 1468 } 1469 1470 static inline int free_consistency_checks(struct kmem_cache *s, 1471 struct slab *slab, void *object, unsigned long addr) 1472 { 1473 if (!check_valid_pointer(s, slab, object)) { 1474 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1475 return 0; 1476 } 1477 1478 if (on_freelist(s, slab, object)) { 1479 object_err(s, slab, object, "Object already free"); 1480 return 0; 1481 } 1482 1483 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1484 return 0; 1485 1486 if (unlikely(s != slab->slab_cache)) { 1487 if (!folio_test_slab(slab_folio(slab))) { 1488 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1489 object); 1490 } else if (!slab->slab_cache) { 1491 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1492 object); 1493 dump_stack(); 1494 } else 1495 object_err(s, slab, object, 1496 "page slab pointer corrupt."); 1497 return 0; 1498 } 1499 return 1; 1500 } 1501 1502 /* 1503 * Parse a block of slub_debug options. Blocks are delimited by ';' 1504 * 1505 * @str: start of block 1506 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1507 * @slabs: return start of list of slabs, or NULL when there's no list 1508 * @init: assume this is initial parsing and not per-kmem-create parsing 1509 * 1510 * returns the start of next block if there's any, or NULL 1511 */ 1512 static char * 1513 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1514 { 1515 bool higher_order_disable = false; 1516 1517 /* Skip any completely empty blocks */ 1518 while (*str && *str == ';') 1519 str++; 1520 1521 if (*str == ',') { 1522 /* 1523 * No options but restriction on slabs. This means full 1524 * debugging for slabs matching a pattern. 1525 */ 1526 *flags = DEBUG_DEFAULT_FLAGS; 1527 goto check_slabs; 1528 } 1529 *flags = 0; 1530 1531 /* Determine which debug features should be switched on */ 1532 for (; *str && *str != ',' && *str != ';'; str++) { 1533 switch (tolower(*str)) { 1534 case '-': 1535 *flags = 0; 1536 break; 1537 case 'f': 1538 *flags |= SLAB_CONSISTENCY_CHECKS; 1539 break; 1540 case 'z': 1541 *flags |= SLAB_RED_ZONE; 1542 break; 1543 case 'p': 1544 *flags |= SLAB_POISON; 1545 break; 1546 case 'u': 1547 *flags |= SLAB_STORE_USER; 1548 break; 1549 case 't': 1550 *flags |= SLAB_TRACE; 1551 break; 1552 case 'a': 1553 *flags |= SLAB_FAILSLAB; 1554 break; 1555 case 'o': 1556 /* 1557 * Avoid enabling debugging on caches if its minimum 1558 * order would increase as a result. 1559 */ 1560 higher_order_disable = true; 1561 break; 1562 default: 1563 if (init) 1564 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1565 } 1566 } 1567 check_slabs: 1568 if (*str == ',') 1569 *slabs = ++str; 1570 else 1571 *slabs = NULL; 1572 1573 /* Skip over the slab list */ 1574 while (*str && *str != ';') 1575 str++; 1576 1577 /* Skip any completely empty blocks */ 1578 while (*str && *str == ';') 1579 str++; 1580 1581 if (init && higher_order_disable) 1582 disable_higher_order_debug = 1; 1583 1584 if (*str) 1585 return str; 1586 else 1587 return NULL; 1588 } 1589 1590 static int __init setup_slub_debug(char *str) 1591 { 1592 slab_flags_t flags; 1593 slab_flags_t global_flags; 1594 char *saved_str; 1595 char *slab_list; 1596 bool global_slub_debug_changed = false; 1597 bool slab_list_specified = false; 1598 1599 global_flags = DEBUG_DEFAULT_FLAGS; 1600 if (*str++ != '=' || !*str) 1601 /* 1602 * No options specified. Switch on full debugging. 1603 */ 1604 goto out; 1605 1606 saved_str = str; 1607 while (str) { 1608 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1609 1610 if (!slab_list) { 1611 global_flags = flags; 1612 global_slub_debug_changed = true; 1613 } else { 1614 slab_list_specified = true; 1615 if (flags & SLAB_STORE_USER) 1616 stack_depot_request_early_init(); 1617 } 1618 } 1619 1620 /* 1621 * For backwards compatibility, a single list of flags with list of 1622 * slabs means debugging is only changed for those slabs, so the global 1623 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1624 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1625 * long as there is no option specifying flags without a slab list. 1626 */ 1627 if (slab_list_specified) { 1628 if (!global_slub_debug_changed) 1629 global_flags = slub_debug; 1630 slub_debug_string = saved_str; 1631 } 1632 out: 1633 slub_debug = global_flags; 1634 if (slub_debug & SLAB_STORE_USER) 1635 stack_depot_request_early_init(); 1636 if (slub_debug != 0 || slub_debug_string) 1637 static_branch_enable(&slub_debug_enabled); 1638 else 1639 static_branch_disable(&slub_debug_enabled); 1640 if ((static_branch_unlikely(&init_on_alloc) || 1641 static_branch_unlikely(&init_on_free)) && 1642 (slub_debug & SLAB_POISON)) 1643 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1644 return 1; 1645 } 1646 1647 __setup("slub_debug", setup_slub_debug); 1648 1649 /* 1650 * kmem_cache_flags - apply debugging options to the cache 1651 * @object_size: the size of an object without meta data 1652 * @flags: flags to set 1653 * @name: name of the cache 1654 * 1655 * Debug option(s) are applied to @flags. In addition to the debug 1656 * option(s), if a slab name (or multiple) is specified i.e. 1657 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1658 * then only the select slabs will receive the debug option(s). 1659 */ 1660 slab_flags_t kmem_cache_flags(unsigned int object_size, 1661 slab_flags_t flags, const char *name) 1662 { 1663 char *iter; 1664 size_t len; 1665 char *next_block; 1666 slab_flags_t block_flags; 1667 slab_flags_t slub_debug_local = slub_debug; 1668 1669 if (flags & SLAB_NO_USER_FLAGS) 1670 return flags; 1671 1672 /* 1673 * If the slab cache is for debugging (e.g. kmemleak) then 1674 * don't store user (stack trace) information by default, 1675 * but let the user enable it via the command line below. 1676 */ 1677 if (flags & SLAB_NOLEAKTRACE) 1678 slub_debug_local &= ~SLAB_STORE_USER; 1679 1680 len = strlen(name); 1681 next_block = slub_debug_string; 1682 /* Go through all blocks of debug options, see if any matches our slab's name */ 1683 while (next_block) { 1684 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1685 if (!iter) 1686 continue; 1687 /* Found a block that has a slab list, search it */ 1688 while (*iter) { 1689 char *end, *glob; 1690 size_t cmplen; 1691 1692 end = strchrnul(iter, ','); 1693 if (next_block && next_block < end) 1694 end = next_block - 1; 1695 1696 glob = strnchr(iter, end - iter, '*'); 1697 if (glob) 1698 cmplen = glob - iter; 1699 else 1700 cmplen = max_t(size_t, len, (end - iter)); 1701 1702 if (!strncmp(name, iter, cmplen)) { 1703 flags |= block_flags; 1704 return flags; 1705 } 1706 1707 if (!*end || *end == ';') 1708 break; 1709 iter = end + 1; 1710 } 1711 } 1712 1713 return flags | slub_debug_local; 1714 } 1715 #else /* !CONFIG_SLUB_DEBUG */ 1716 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1717 static inline 1718 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1719 1720 static inline bool alloc_debug_processing(struct kmem_cache *s, 1721 struct slab *slab, void *object, int orig_size) { return true; } 1722 1723 static inline bool free_debug_processing(struct kmem_cache *s, 1724 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1725 unsigned long addr, depot_stack_handle_t handle) { return true; } 1726 1727 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1728 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1729 void *object, u8 val) { return 1; } 1730 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1731 static inline void set_track(struct kmem_cache *s, void *object, 1732 enum track_item alloc, unsigned long addr) {} 1733 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1734 struct slab *slab) {} 1735 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1736 struct slab *slab) {} 1737 slab_flags_t kmem_cache_flags(unsigned int object_size, 1738 slab_flags_t flags, const char *name) 1739 { 1740 return flags; 1741 } 1742 #define slub_debug 0 1743 1744 #define disable_higher_order_debug 0 1745 1746 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1747 { return 0; } 1748 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1749 int objects) {} 1750 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1751 int objects) {} 1752 1753 #ifndef CONFIG_SLUB_TINY 1754 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1755 void **freelist, void *nextfree) 1756 { 1757 return false; 1758 } 1759 #endif 1760 #endif /* CONFIG_SLUB_DEBUG */ 1761 1762 /* 1763 * Hooks for other subsystems that check memory allocations. In a typical 1764 * production configuration these hooks all should produce no code at all. 1765 */ 1766 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1767 void *x, bool init) 1768 { 1769 kmemleak_free_recursive(x, s->flags); 1770 kmsan_slab_free(s, x); 1771 1772 debug_check_no_locks_freed(x, s->object_size); 1773 1774 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1775 debug_check_no_obj_freed(x, s->object_size); 1776 1777 /* Use KCSAN to help debug racy use-after-free. */ 1778 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1779 __kcsan_check_access(x, s->object_size, 1780 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1781 1782 /* 1783 * As memory initialization might be integrated into KASAN, 1784 * kasan_slab_free and initialization memset's must be 1785 * kept together to avoid discrepancies in behavior. 1786 * 1787 * The initialization memset's clear the object and the metadata, 1788 * but don't touch the SLAB redzone. 1789 */ 1790 if (init) { 1791 int rsize; 1792 1793 if (!kasan_has_integrated_init()) 1794 memset(kasan_reset_tag(x), 0, s->object_size); 1795 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1796 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1797 s->size - s->inuse - rsize); 1798 } 1799 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1800 return kasan_slab_free(s, x, init); 1801 } 1802 1803 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1804 void **head, void **tail, 1805 int *cnt) 1806 { 1807 1808 void *object; 1809 void *next = *head; 1810 void *old_tail = *tail ? *tail : *head; 1811 1812 if (is_kfence_address(next)) { 1813 slab_free_hook(s, next, false); 1814 return true; 1815 } 1816 1817 /* Head and tail of the reconstructed freelist */ 1818 *head = NULL; 1819 *tail = NULL; 1820 1821 do { 1822 object = next; 1823 next = get_freepointer(s, object); 1824 1825 /* If object's reuse doesn't have to be delayed */ 1826 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1827 /* Move object to the new freelist */ 1828 set_freepointer(s, object, *head); 1829 *head = object; 1830 if (!*tail) 1831 *tail = object; 1832 } else { 1833 /* 1834 * Adjust the reconstructed freelist depth 1835 * accordingly if object's reuse is delayed. 1836 */ 1837 --(*cnt); 1838 } 1839 } while (object != old_tail); 1840 1841 if (*head == *tail) 1842 *tail = NULL; 1843 1844 return *head != NULL; 1845 } 1846 1847 static void *setup_object(struct kmem_cache *s, void *object) 1848 { 1849 setup_object_debug(s, object); 1850 object = kasan_init_slab_obj(s, object); 1851 if (unlikely(s->ctor)) { 1852 kasan_unpoison_object_data(s, object); 1853 s->ctor(object); 1854 kasan_poison_object_data(s, object); 1855 } 1856 return object; 1857 } 1858 1859 /* 1860 * Slab allocation and freeing 1861 */ 1862 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1863 struct kmem_cache_order_objects oo) 1864 { 1865 struct folio *folio; 1866 struct slab *slab; 1867 unsigned int order = oo_order(oo); 1868 1869 if (node == NUMA_NO_NODE) 1870 folio = (struct folio *)alloc_pages(flags, order); 1871 else 1872 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1873 1874 if (!folio) 1875 return NULL; 1876 1877 slab = folio_slab(folio); 1878 __folio_set_slab(folio); 1879 /* Make the flag visible before any changes to folio->mapping */ 1880 smp_wmb(); 1881 if (folio_is_pfmemalloc(folio)) 1882 slab_set_pfmemalloc(slab); 1883 1884 return slab; 1885 } 1886 1887 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1888 /* Pre-initialize the random sequence cache */ 1889 static int init_cache_random_seq(struct kmem_cache *s) 1890 { 1891 unsigned int count = oo_objects(s->oo); 1892 int err; 1893 1894 /* Bailout if already initialised */ 1895 if (s->random_seq) 1896 return 0; 1897 1898 err = cache_random_seq_create(s, count, GFP_KERNEL); 1899 if (err) { 1900 pr_err("SLUB: Unable to initialize free list for %s\n", 1901 s->name); 1902 return err; 1903 } 1904 1905 /* Transform to an offset on the set of pages */ 1906 if (s->random_seq) { 1907 unsigned int i; 1908 1909 for (i = 0; i < count; i++) 1910 s->random_seq[i] *= s->size; 1911 } 1912 return 0; 1913 } 1914 1915 /* Initialize each random sequence freelist per cache */ 1916 static void __init init_freelist_randomization(void) 1917 { 1918 struct kmem_cache *s; 1919 1920 mutex_lock(&slab_mutex); 1921 1922 list_for_each_entry(s, &slab_caches, list) 1923 init_cache_random_seq(s); 1924 1925 mutex_unlock(&slab_mutex); 1926 } 1927 1928 /* Get the next entry on the pre-computed freelist randomized */ 1929 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1930 unsigned long *pos, void *start, 1931 unsigned long page_limit, 1932 unsigned long freelist_count) 1933 { 1934 unsigned int idx; 1935 1936 /* 1937 * If the target page allocation failed, the number of objects on the 1938 * page might be smaller than the usual size defined by the cache. 1939 */ 1940 do { 1941 idx = s->random_seq[*pos]; 1942 *pos += 1; 1943 if (*pos >= freelist_count) 1944 *pos = 0; 1945 } while (unlikely(idx >= page_limit)); 1946 1947 return (char *)start + idx; 1948 } 1949 1950 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1951 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1952 { 1953 void *start; 1954 void *cur; 1955 void *next; 1956 unsigned long idx, pos, page_limit, freelist_count; 1957 1958 if (slab->objects < 2 || !s->random_seq) 1959 return false; 1960 1961 freelist_count = oo_objects(s->oo); 1962 pos = get_random_u32_below(freelist_count); 1963 1964 page_limit = slab->objects * s->size; 1965 start = fixup_red_left(s, slab_address(slab)); 1966 1967 /* First entry is used as the base of the freelist */ 1968 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1969 freelist_count); 1970 cur = setup_object(s, cur); 1971 slab->freelist = cur; 1972 1973 for (idx = 1; idx < slab->objects; idx++) { 1974 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1975 freelist_count); 1976 next = setup_object(s, next); 1977 set_freepointer(s, cur, next); 1978 cur = next; 1979 } 1980 set_freepointer(s, cur, NULL); 1981 1982 return true; 1983 } 1984 #else 1985 static inline int init_cache_random_seq(struct kmem_cache *s) 1986 { 1987 return 0; 1988 } 1989 static inline void init_freelist_randomization(void) { } 1990 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1991 { 1992 return false; 1993 } 1994 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1995 1996 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1997 { 1998 struct slab *slab; 1999 struct kmem_cache_order_objects oo = s->oo; 2000 gfp_t alloc_gfp; 2001 void *start, *p, *next; 2002 int idx; 2003 bool shuffle; 2004 2005 flags &= gfp_allowed_mask; 2006 2007 flags |= s->allocflags; 2008 2009 /* 2010 * Let the initial higher-order allocation fail under memory pressure 2011 * so we fall-back to the minimum order allocation. 2012 */ 2013 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2014 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2015 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2016 2017 slab = alloc_slab_page(alloc_gfp, node, oo); 2018 if (unlikely(!slab)) { 2019 oo = s->min; 2020 alloc_gfp = flags; 2021 /* 2022 * Allocation may have failed due to fragmentation. 2023 * Try a lower order alloc if possible 2024 */ 2025 slab = alloc_slab_page(alloc_gfp, node, oo); 2026 if (unlikely(!slab)) 2027 return NULL; 2028 stat(s, ORDER_FALLBACK); 2029 } 2030 2031 slab->objects = oo_objects(oo); 2032 slab->inuse = 0; 2033 slab->frozen = 0; 2034 2035 account_slab(slab, oo_order(oo), s, flags); 2036 2037 slab->slab_cache = s; 2038 2039 kasan_poison_slab(slab); 2040 2041 start = slab_address(slab); 2042 2043 setup_slab_debug(s, slab, start); 2044 2045 shuffle = shuffle_freelist(s, slab); 2046 2047 if (!shuffle) { 2048 start = fixup_red_left(s, start); 2049 start = setup_object(s, start); 2050 slab->freelist = start; 2051 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2052 next = p + s->size; 2053 next = setup_object(s, next); 2054 set_freepointer(s, p, next); 2055 p = next; 2056 } 2057 set_freepointer(s, p, NULL); 2058 } 2059 2060 return slab; 2061 } 2062 2063 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2064 { 2065 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2066 flags = kmalloc_fix_flags(flags); 2067 2068 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2069 2070 return allocate_slab(s, 2071 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2072 } 2073 2074 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2075 { 2076 struct folio *folio = slab_folio(slab); 2077 int order = folio_order(folio); 2078 int pages = 1 << order; 2079 2080 __slab_clear_pfmemalloc(slab); 2081 folio->mapping = NULL; 2082 /* Make the mapping reset visible before clearing the flag */ 2083 smp_wmb(); 2084 __folio_clear_slab(folio); 2085 mm_account_reclaimed_pages(pages); 2086 unaccount_slab(slab, order, s); 2087 __free_pages(&folio->page, order); 2088 } 2089 2090 static void rcu_free_slab(struct rcu_head *h) 2091 { 2092 struct slab *slab = container_of(h, struct slab, rcu_head); 2093 2094 __free_slab(slab->slab_cache, slab); 2095 } 2096 2097 static void free_slab(struct kmem_cache *s, struct slab *slab) 2098 { 2099 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2100 void *p; 2101 2102 slab_pad_check(s, slab); 2103 for_each_object(p, s, slab_address(slab), slab->objects) 2104 check_object(s, slab, p, SLUB_RED_INACTIVE); 2105 } 2106 2107 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2108 call_rcu(&slab->rcu_head, rcu_free_slab); 2109 else 2110 __free_slab(s, slab); 2111 } 2112 2113 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2114 { 2115 dec_slabs_node(s, slab_nid(slab), slab->objects); 2116 free_slab(s, slab); 2117 } 2118 2119 /* 2120 * Management of partially allocated slabs. 2121 */ 2122 static inline void 2123 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2124 { 2125 n->nr_partial++; 2126 if (tail == DEACTIVATE_TO_TAIL) 2127 list_add_tail(&slab->slab_list, &n->partial); 2128 else 2129 list_add(&slab->slab_list, &n->partial); 2130 } 2131 2132 static inline void add_partial(struct kmem_cache_node *n, 2133 struct slab *slab, int tail) 2134 { 2135 lockdep_assert_held(&n->list_lock); 2136 __add_partial(n, slab, tail); 2137 } 2138 2139 static inline void remove_partial(struct kmem_cache_node *n, 2140 struct slab *slab) 2141 { 2142 lockdep_assert_held(&n->list_lock); 2143 list_del(&slab->slab_list); 2144 n->nr_partial--; 2145 } 2146 2147 /* 2148 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a 2149 * slab from the n->partial list. Remove only a single object from the slab, do 2150 * the alloc_debug_processing() checks and leave the slab on the list, or move 2151 * it to full list if it was the last free object. 2152 */ 2153 static void *alloc_single_from_partial(struct kmem_cache *s, 2154 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2155 { 2156 void *object; 2157 2158 lockdep_assert_held(&n->list_lock); 2159 2160 object = slab->freelist; 2161 slab->freelist = get_freepointer(s, object); 2162 slab->inuse++; 2163 2164 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2165 remove_partial(n, slab); 2166 return NULL; 2167 } 2168 2169 if (slab->inuse == slab->objects) { 2170 remove_partial(n, slab); 2171 add_full(s, n, slab); 2172 } 2173 2174 return object; 2175 } 2176 2177 /* 2178 * Called only for kmem_cache_debug() caches to allocate from a freshly 2179 * allocated slab. Allocate a single object instead of whole freelist 2180 * and put the slab to the partial (or full) list. 2181 */ 2182 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2183 struct slab *slab, int orig_size) 2184 { 2185 int nid = slab_nid(slab); 2186 struct kmem_cache_node *n = get_node(s, nid); 2187 unsigned long flags; 2188 void *object; 2189 2190 2191 object = slab->freelist; 2192 slab->freelist = get_freepointer(s, object); 2193 slab->inuse = 1; 2194 2195 if (!alloc_debug_processing(s, slab, object, orig_size)) 2196 /* 2197 * It's not really expected that this would fail on a 2198 * freshly allocated slab, but a concurrent memory 2199 * corruption in theory could cause that. 2200 */ 2201 return NULL; 2202 2203 spin_lock_irqsave(&n->list_lock, flags); 2204 2205 if (slab->inuse == slab->objects) 2206 add_full(s, n, slab); 2207 else 2208 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2209 2210 inc_slabs_node(s, nid, slab->objects); 2211 spin_unlock_irqrestore(&n->list_lock, flags); 2212 2213 return object; 2214 } 2215 2216 /* 2217 * Remove slab from the partial list, freeze it and 2218 * return the pointer to the freelist. 2219 * 2220 * Returns a list of objects or NULL if it fails. 2221 */ 2222 static inline void *acquire_slab(struct kmem_cache *s, 2223 struct kmem_cache_node *n, struct slab *slab, 2224 int mode) 2225 { 2226 void *freelist; 2227 unsigned long counters; 2228 struct slab new; 2229 2230 lockdep_assert_held(&n->list_lock); 2231 2232 /* 2233 * Zap the freelist and set the frozen bit. 2234 * The old freelist is the list of objects for the 2235 * per cpu allocation list. 2236 */ 2237 freelist = slab->freelist; 2238 counters = slab->counters; 2239 new.counters = counters; 2240 if (mode) { 2241 new.inuse = slab->objects; 2242 new.freelist = NULL; 2243 } else { 2244 new.freelist = freelist; 2245 } 2246 2247 VM_BUG_ON(new.frozen); 2248 new.frozen = 1; 2249 2250 if (!__slab_update_freelist(s, slab, 2251 freelist, counters, 2252 new.freelist, new.counters, 2253 "acquire_slab")) 2254 return NULL; 2255 2256 remove_partial(n, slab); 2257 WARN_ON(!freelist); 2258 return freelist; 2259 } 2260 2261 #ifdef CONFIG_SLUB_CPU_PARTIAL 2262 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2263 #else 2264 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2265 int drain) { } 2266 #endif 2267 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2268 2269 /* 2270 * Try to allocate a partial slab from a specific node. 2271 */ 2272 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2273 struct partial_context *pc) 2274 { 2275 struct slab *slab, *slab2; 2276 void *object = NULL; 2277 unsigned long flags; 2278 unsigned int partial_slabs = 0; 2279 2280 /* 2281 * Racy check. If we mistakenly see no partial slabs then we 2282 * just allocate an empty slab. If we mistakenly try to get a 2283 * partial slab and there is none available then get_partial() 2284 * will return NULL. 2285 */ 2286 if (!n || !n->nr_partial) 2287 return NULL; 2288 2289 spin_lock_irqsave(&n->list_lock, flags); 2290 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2291 void *t; 2292 2293 if (!pfmemalloc_match(slab, pc->flags)) 2294 continue; 2295 2296 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2297 object = alloc_single_from_partial(s, n, slab, 2298 pc->orig_size); 2299 if (object) 2300 break; 2301 continue; 2302 } 2303 2304 t = acquire_slab(s, n, slab, object == NULL); 2305 if (!t) 2306 break; 2307 2308 if (!object) { 2309 *pc->slab = slab; 2310 stat(s, ALLOC_FROM_PARTIAL); 2311 object = t; 2312 } else { 2313 put_cpu_partial(s, slab, 0); 2314 stat(s, CPU_PARTIAL_NODE); 2315 partial_slabs++; 2316 } 2317 #ifdef CONFIG_SLUB_CPU_PARTIAL 2318 if (!kmem_cache_has_cpu_partial(s) 2319 || partial_slabs > s->cpu_partial_slabs / 2) 2320 break; 2321 #else 2322 break; 2323 #endif 2324 2325 } 2326 spin_unlock_irqrestore(&n->list_lock, flags); 2327 return object; 2328 } 2329 2330 /* 2331 * Get a slab from somewhere. Search in increasing NUMA distances. 2332 */ 2333 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) 2334 { 2335 #ifdef CONFIG_NUMA 2336 struct zonelist *zonelist; 2337 struct zoneref *z; 2338 struct zone *zone; 2339 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2340 void *object; 2341 unsigned int cpuset_mems_cookie; 2342 2343 /* 2344 * The defrag ratio allows a configuration of the tradeoffs between 2345 * inter node defragmentation and node local allocations. A lower 2346 * defrag_ratio increases the tendency to do local allocations 2347 * instead of attempting to obtain partial slabs from other nodes. 2348 * 2349 * If the defrag_ratio is set to 0 then kmalloc() always 2350 * returns node local objects. If the ratio is higher then kmalloc() 2351 * may return off node objects because partial slabs are obtained 2352 * from other nodes and filled up. 2353 * 2354 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2355 * (which makes defrag_ratio = 1000) then every (well almost) 2356 * allocation will first attempt to defrag slab caches on other nodes. 2357 * This means scanning over all nodes to look for partial slabs which 2358 * may be expensive if we do it every time we are trying to find a slab 2359 * with available objects. 2360 */ 2361 if (!s->remote_node_defrag_ratio || 2362 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2363 return NULL; 2364 2365 do { 2366 cpuset_mems_cookie = read_mems_allowed_begin(); 2367 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2368 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2369 struct kmem_cache_node *n; 2370 2371 n = get_node(s, zone_to_nid(zone)); 2372 2373 if (n && cpuset_zone_allowed(zone, pc->flags) && 2374 n->nr_partial > s->min_partial) { 2375 object = get_partial_node(s, n, pc); 2376 if (object) { 2377 /* 2378 * Don't check read_mems_allowed_retry() 2379 * here - if mems_allowed was updated in 2380 * parallel, that was a harmless race 2381 * between allocation and the cpuset 2382 * update 2383 */ 2384 return object; 2385 } 2386 } 2387 } 2388 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2389 #endif /* CONFIG_NUMA */ 2390 return NULL; 2391 } 2392 2393 /* 2394 * Get a partial slab, lock it and return it. 2395 */ 2396 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) 2397 { 2398 void *object; 2399 int searchnode = node; 2400 2401 if (node == NUMA_NO_NODE) 2402 searchnode = numa_mem_id(); 2403 2404 object = get_partial_node(s, get_node(s, searchnode), pc); 2405 if (object || node != NUMA_NO_NODE) 2406 return object; 2407 2408 return get_any_partial(s, pc); 2409 } 2410 2411 #ifndef CONFIG_SLUB_TINY 2412 2413 #ifdef CONFIG_PREEMPTION 2414 /* 2415 * Calculate the next globally unique transaction for disambiguation 2416 * during cmpxchg. The transactions start with the cpu number and are then 2417 * incremented by CONFIG_NR_CPUS. 2418 */ 2419 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2420 #else 2421 /* 2422 * No preemption supported therefore also no need to check for 2423 * different cpus. 2424 */ 2425 #define TID_STEP 1 2426 #endif /* CONFIG_PREEMPTION */ 2427 2428 static inline unsigned long next_tid(unsigned long tid) 2429 { 2430 return tid + TID_STEP; 2431 } 2432 2433 #ifdef SLUB_DEBUG_CMPXCHG 2434 static inline unsigned int tid_to_cpu(unsigned long tid) 2435 { 2436 return tid % TID_STEP; 2437 } 2438 2439 static inline unsigned long tid_to_event(unsigned long tid) 2440 { 2441 return tid / TID_STEP; 2442 } 2443 #endif 2444 2445 static inline unsigned int init_tid(int cpu) 2446 { 2447 return cpu; 2448 } 2449 2450 static inline void note_cmpxchg_failure(const char *n, 2451 const struct kmem_cache *s, unsigned long tid) 2452 { 2453 #ifdef SLUB_DEBUG_CMPXCHG 2454 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2455 2456 pr_info("%s %s: cmpxchg redo ", n, s->name); 2457 2458 #ifdef CONFIG_PREEMPTION 2459 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2460 pr_warn("due to cpu change %d -> %d\n", 2461 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2462 else 2463 #endif 2464 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2465 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2466 tid_to_event(tid), tid_to_event(actual_tid)); 2467 else 2468 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2469 actual_tid, tid, next_tid(tid)); 2470 #endif 2471 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2472 } 2473 2474 static void init_kmem_cache_cpus(struct kmem_cache *s) 2475 { 2476 int cpu; 2477 struct kmem_cache_cpu *c; 2478 2479 for_each_possible_cpu(cpu) { 2480 c = per_cpu_ptr(s->cpu_slab, cpu); 2481 local_lock_init(&c->lock); 2482 c->tid = init_tid(cpu); 2483 } 2484 } 2485 2486 /* 2487 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2488 * unfreezes the slabs and puts it on the proper list. 2489 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2490 * by the caller. 2491 */ 2492 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2493 void *freelist) 2494 { 2495 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST }; 2496 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2497 int free_delta = 0; 2498 enum slab_modes mode = M_NONE; 2499 void *nextfree, *freelist_iter, *freelist_tail; 2500 int tail = DEACTIVATE_TO_HEAD; 2501 unsigned long flags = 0; 2502 struct slab new; 2503 struct slab old; 2504 2505 if (slab->freelist) { 2506 stat(s, DEACTIVATE_REMOTE_FREES); 2507 tail = DEACTIVATE_TO_TAIL; 2508 } 2509 2510 /* 2511 * Stage one: Count the objects on cpu's freelist as free_delta and 2512 * remember the last object in freelist_tail for later splicing. 2513 */ 2514 freelist_tail = NULL; 2515 freelist_iter = freelist; 2516 while (freelist_iter) { 2517 nextfree = get_freepointer(s, freelist_iter); 2518 2519 /* 2520 * If 'nextfree' is invalid, it is possible that the object at 2521 * 'freelist_iter' is already corrupted. So isolate all objects 2522 * starting at 'freelist_iter' by skipping them. 2523 */ 2524 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2525 break; 2526 2527 freelist_tail = freelist_iter; 2528 free_delta++; 2529 2530 freelist_iter = nextfree; 2531 } 2532 2533 /* 2534 * Stage two: Unfreeze the slab while splicing the per-cpu 2535 * freelist to the head of slab's freelist. 2536 * 2537 * Ensure that the slab is unfrozen while the list presence 2538 * reflects the actual number of objects during unfreeze. 2539 * 2540 * We first perform cmpxchg holding lock and insert to list 2541 * when it succeed. If there is mismatch then the slab is not 2542 * unfrozen and number of objects in the slab may have changed. 2543 * Then release lock and retry cmpxchg again. 2544 */ 2545 redo: 2546 2547 old.freelist = READ_ONCE(slab->freelist); 2548 old.counters = READ_ONCE(slab->counters); 2549 VM_BUG_ON(!old.frozen); 2550 2551 /* Determine target state of the slab */ 2552 new.counters = old.counters; 2553 if (freelist_tail) { 2554 new.inuse -= free_delta; 2555 set_freepointer(s, freelist_tail, old.freelist); 2556 new.freelist = freelist; 2557 } else 2558 new.freelist = old.freelist; 2559 2560 new.frozen = 0; 2561 2562 if (!new.inuse && n->nr_partial >= s->min_partial) { 2563 mode = M_FREE; 2564 } else if (new.freelist) { 2565 mode = M_PARTIAL; 2566 /* 2567 * Taking the spinlock removes the possibility that 2568 * acquire_slab() will see a slab that is frozen 2569 */ 2570 spin_lock_irqsave(&n->list_lock, flags); 2571 } else { 2572 mode = M_FULL_NOLIST; 2573 } 2574 2575 2576 if (!slab_update_freelist(s, slab, 2577 old.freelist, old.counters, 2578 new.freelist, new.counters, 2579 "unfreezing slab")) { 2580 if (mode == M_PARTIAL) 2581 spin_unlock_irqrestore(&n->list_lock, flags); 2582 goto redo; 2583 } 2584 2585 2586 if (mode == M_PARTIAL) { 2587 add_partial(n, slab, tail); 2588 spin_unlock_irqrestore(&n->list_lock, flags); 2589 stat(s, tail); 2590 } else if (mode == M_FREE) { 2591 stat(s, DEACTIVATE_EMPTY); 2592 discard_slab(s, slab); 2593 stat(s, FREE_SLAB); 2594 } else if (mode == M_FULL_NOLIST) { 2595 stat(s, DEACTIVATE_FULL); 2596 } 2597 } 2598 2599 #ifdef CONFIG_SLUB_CPU_PARTIAL 2600 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2601 { 2602 struct kmem_cache_node *n = NULL, *n2 = NULL; 2603 struct slab *slab, *slab_to_discard = NULL; 2604 unsigned long flags = 0; 2605 2606 while (partial_slab) { 2607 struct slab new; 2608 struct slab old; 2609 2610 slab = partial_slab; 2611 partial_slab = slab->next; 2612 2613 n2 = get_node(s, slab_nid(slab)); 2614 if (n != n2) { 2615 if (n) 2616 spin_unlock_irqrestore(&n->list_lock, flags); 2617 2618 n = n2; 2619 spin_lock_irqsave(&n->list_lock, flags); 2620 } 2621 2622 do { 2623 2624 old.freelist = slab->freelist; 2625 old.counters = slab->counters; 2626 VM_BUG_ON(!old.frozen); 2627 2628 new.counters = old.counters; 2629 new.freelist = old.freelist; 2630 2631 new.frozen = 0; 2632 2633 } while (!__slab_update_freelist(s, slab, 2634 old.freelist, old.counters, 2635 new.freelist, new.counters, 2636 "unfreezing slab")); 2637 2638 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2639 slab->next = slab_to_discard; 2640 slab_to_discard = slab; 2641 } else { 2642 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2643 stat(s, FREE_ADD_PARTIAL); 2644 } 2645 } 2646 2647 if (n) 2648 spin_unlock_irqrestore(&n->list_lock, flags); 2649 2650 while (slab_to_discard) { 2651 slab = slab_to_discard; 2652 slab_to_discard = slab_to_discard->next; 2653 2654 stat(s, DEACTIVATE_EMPTY); 2655 discard_slab(s, slab); 2656 stat(s, FREE_SLAB); 2657 } 2658 } 2659 2660 /* 2661 * Unfreeze all the cpu partial slabs. 2662 */ 2663 static void unfreeze_partials(struct kmem_cache *s) 2664 { 2665 struct slab *partial_slab; 2666 unsigned long flags; 2667 2668 local_lock_irqsave(&s->cpu_slab->lock, flags); 2669 partial_slab = this_cpu_read(s->cpu_slab->partial); 2670 this_cpu_write(s->cpu_slab->partial, NULL); 2671 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2672 2673 if (partial_slab) 2674 __unfreeze_partials(s, partial_slab); 2675 } 2676 2677 static void unfreeze_partials_cpu(struct kmem_cache *s, 2678 struct kmem_cache_cpu *c) 2679 { 2680 struct slab *partial_slab; 2681 2682 partial_slab = slub_percpu_partial(c); 2683 c->partial = NULL; 2684 2685 if (partial_slab) 2686 __unfreeze_partials(s, partial_slab); 2687 } 2688 2689 /* 2690 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2691 * partial slab slot if available. 2692 * 2693 * If we did not find a slot then simply move all the partials to the 2694 * per node partial list. 2695 */ 2696 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2697 { 2698 struct slab *oldslab; 2699 struct slab *slab_to_unfreeze = NULL; 2700 unsigned long flags; 2701 int slabs = 0; 2702 2703 local_lock_irqsave(&s->cpu_slab->lock, flags); 2704 2705 oldslab = this_cpu_read(s->cpu_slab->partial); 2706 2707 if (oldslab) { 2708 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2709 /* 2710 * Partial array is full. Move the existing set to the 2711 * per node partial list. Postpone the actual unfreezing 2712 * outside of the critical section. 2713 */ 2714 slab_to_unfreeze = oldslab; 2715 oldslab = NULL; 2716 } else { 2717 slabs = oldslab->slabs; 2718 } 2719 } 2720 2721 slabs++; 2722 2723 slab->slabs = slabs; 2724 slab->next = oldslab; 2725 2726 this_cpu_write(s->cpu_slab->partial, slab); 2727 2728 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2729 2730 if (slab_to_unfreeze) { 2731 __unfreeze_partials(s, slab_to_unfreeze); 2732 stat(s, CPU_PARTIAL_DRAIN); 2733 } 2734 } 2735 2736 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2737 2738 static inline void unfreeze_partials(struct kmem_cache *s) { } 2739 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2740 struct kmem_cache_cpu *c) { } 2741 2742 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2743 2744 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2745 { 2746 unsigned long flags; 2747 struct slab *slab; 2748 void *freelist; 2749 2750 local_lock_irqsave(&s->cpu_slab->lock, flags); 2751 2752 slab = c->slab; 2753 freelist = c->freelist; 2754 2755 c->slab = NULL; 2756 c->freelist = NULL; 2757 c->tid = next_tid(c->tid); 2758 2759 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2760 2761 if (slab) { 2762 deactivate_slab(s, slab, freelist); 2763 stat(s, CPUSLAB_FLUSH); 2764 } 2765 } 2766 2767 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2768 { 2769 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2770 void *freelist = c->freelist; 2771 struct slab *slab = c->slab; 2772 2773 c->slab = NULL; 2774 c->freelist = NULL; 2775 c->tid = next_tid(c->tid); 2776 2777 if (slab) { 2778 deactivate_slab(s, slab, freelist); 2779 stat(s, CPUSLAB_FLUSH); 2780 } 2781 2782 unfreeze_partials_cpu(s, c); 2783 } 2784 2785 struct slub_flush_work { 2786 struct work_struct work; 2787 struct kmem_cache *s; 2788 bool skip; 2789 }; 2790 2791 /* 2792 * Flush cpu slab. 2793 * 2794 * Called from CPU work handler with migration disabled. 2795 */ 2796 static void flush_cpu_slab(struct work_struct *w) 2797 { 2798 struct kmem_cache *s; 2799 struct kmem_cache_cpu *c; 2800 struct slub_flush_work *sfw; 2801 2802 sfw = container_of(w, struct slub_flush_work, work); 2803 2804 s = sfw->s; 2805 c = this_cpu_ptr(s->cpu_slab); 2806 2807 if (c->slab) 2808 flush_slab(s, c); 2809 2810 unfreeze_partials(s); 2811 } 2812 2813 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2814 { 2815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2816 2817 return c->slab || slub_percpu_partial(c); 2818 } 2819 2820 static DEFINE_MUTEX(flush_lock); 2821 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2822 2823 static void flush_all_cpus_locked(struct kmem_cache *s) 2824 { 2825 struct slub_flush_work *sfw; 2826 unsigned int cpu; 2827 2828 lockdep_assert_cpus_held(); 2829 mutex_lock(&flush_lock); 2830 2831 for_each_online_cpu(cpu) { 2832 sfw = &per_cpu(slub_flush, cpu); 2833 if (!has_cpu_slab(cpu, s)) { 2834 sfw->skip = true; 2835 continue; 2836 } 2837 INIT_WORK(&sfw->work, flush_cpu_slab); 2838 sfw->skip = false; 2839 sfw->s = s; 2840 queue_work_on(cpu, flushwq, &sfw->work); 2841 } 2842 2843 for_each_online_cpu(cpu) { 2844 sfw = &per_cpu(slub_flush, cpu); 2845 if (sfw->skip) 2846 continue; 2847 flush_work(&sfw->work); 2848 } 2849 2850 mutex_unlock(&flush_lock); 2851 } 2852 2853 static void flush_all(struct kmem_cache *s) 2854 { 2855 cpus_read_lock(); 2856 flush_all_cpus_locked(s); 2857 cpus_read_unlock(); 2858 } 2859 2860 /* 2861 * Use the cpu notifier to insure that the cpu slabs are flushed when 2862 * necessary. 2863 */ 2864 static int slub_cpu_dead(unsigned int cpu) 2865 { 2866 struct kmem_cache *s; 2867 2868 mutex_lock(&slab_mutex); 2869 list_for_each_entry(s, &slab_caches, list) 2870 __flush_cpu_slab(s, cpu); 2871 mutex_unlock(&slab_mutex); 2872 return 0; 2873 } 2874 2875 #else /* CONFIG_SLUB_TINY */ 2876 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 2877 static inline void flush_all(struct kmem_cache *s) { } 2878 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 2879 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 2880 #endif /* CONFIG_SLUB_TINY */ 2881 2882 /* 2883 * Check if the objects in a per cpu structure fit numa 2884 * locality expectations. 2885 */ 2886 static inline int node_match(struct slab *slab, int node) 2887 { 2888 #ifdef CONFIG_NUMA 2889 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2890 return 0; 2891 #endif 2892 return 1; 2893 } 2894 2895 #ifdef CONFIG_SLUB_DEBUG 2896 static int count_free(struct slab *slab) 2897 { 2898 return slab->objects - slab->inuse; 2899 } 2900 2901 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2902 { 2903 return atomic_long_read(&n->total_objects); 2904 } 2905 2906 /* Supports checking bulk free of a constructed freelist */ 2907 static inline bool free_debug_processing(struct kmem_cache *s, 2908 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2909 unsigned long addr, depot_stack_handle_t handle) 2910 { 2911 bool checks_ok = false; 2912 void *object = head; 2913 int cnt = 0; 2914 2915 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2916 if (!check_slab(s, slab)) 2917 goto out; 2918 } 2919 2920 if (slab->inuse < *bulk_cnt) { 2921 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 2922 slab->inuse, *bulk_cnt); 2923 goto out; 2924 } 2925 2926 next_object: 2927 2928 if (++cnt > *bulk_cnt) 2929 goto out_cnt; 2930 2931 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 2932 if (!free_consistency_checks(s, slab, object, addr)) 2933 goto out; 2934 } 2935 2936 if (s->flags & SLAB_STORE_USER) 2937 set_track_update(s, object, TRACK_FREE, addr, handle); 2938 trace(s, slab, object, 0); 2939 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 2940 init_object(s, object, SLUB_RED_INACTIVE); 2941 2942 /* Reached end of constructed freelist yet? */ 2943 if (object != tail) { 2944 object = get_freepointer(s, object); 2945 goto next_object; 2946 } 2947 checks_ok = true; 2948 2949 out_cnt: 2950 if (cnt != *bulk_cnt) { 2951 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 2952 *bulk_cnt, cnt); 2953 *bulk_cnt = cnt; 2954 } 2955 2956 out: 2957 2958 if (!checks_ok) 2959 slab_fix(s, "Object at 0x%p not freed", object); 2960 2961 return checks_ok; 2962 } 2963 #endif /* CONFIG_SLUB_DEBUG */ 2964 2965 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 2966 static unsigned long count_partial(struct kmem_cache_node *n, 2967 int (*get_count)(struct slab *)) 2968 { 2969 unsigned long flags; 2970 unsigned long x = 0; 2971 struct slab *slab; 2972 2973 spin_lock_irqsave(&n->list_lock, flags); 2974 list_for_each_entry(slab, &n->partial, slab_list) 2975 x += get_count(slab); 2976 spin_unlock_irqrestore(&n->list_lock, flags); 2977 return x; 2978 } 2979 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 2980 2981 #ifdef CONFIG_SLUB_DEBUG 2982 static noinline void 2983 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2984 { 2985 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2986 DEFAULT_RATELIMIT_BURST); 2987 int node; 2988 struct kmem_cache_node *n; 2989 2990 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2991 return; 2992 2993 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2994 nid, gfpflags, &gfpflags); 2995 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2996 s->name, s->object_size, s->size, oo_order(s->oo), 2997 oo_order(s->min)); 2998 2999 if (oo_order(s->min) > get_order(s->object_size)) 3000 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 3001 s->name); 3002 3003 for_each_kmem_cache_node(s, node, n) { 3004 unsigned long nr_slabs; 3005 unsigned long nr_objs; 3006 unsigned long nr_free; 3007 3008 nr_free = count_partial(n, count_free); 3009 nr_slabs = node_nr_slabs(n); 3010 nr_objs = node_nr_objs(n); 3011 3012 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3013 node, nr_slabs, nr_objs, nr_free); 3014 } 3015 } 3016 #else /* CONFIG_SLUB_DEBUG */ 3017 static inline void 3018 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3019 #endif 3020 3021 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3022 { 3023 if (unlikely(slab_test_pfmemalloc(slab))) 3024 return gfp_pfmemalloc_allowed(gfpflags); 3025 3026 return true; 3027 } 3028 3029 #ifndef CONFIG_SLUB_TINY 3030 static inline bool 3031 __update_cpu_freelist_fast(struct kmem_cache *s, 3032 void *freelist_old, void *freelist_new, 3033 unsigned long tid) 3034 { 3035 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3036 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3037 3038 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3039 &old.full, new.full); 3040 } 3041 3042 /* 3043 * Check the slab->freelist and either transfer the freelist to the 3044 * per cpu freelist or deactivate the slab. 3045 * 3046 * The slab is still frozen if the return value is not NULL. 3047 * 3048 * If this function returns NULL then the slab has been unfrozen. 3049 */ 3050 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3051 { 3052 struct slab new; 3053 unsigned long counters; 3054 void *freelist; 3055 3056 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3057 3058 do { 3059 freelist = slab->freelist; 3060 counters = slab->counters; 3061 3062 new.counters = counters; 3063 VM_BUG_ON(!new.frozen); 3064 3065 new.inuse = slab->objects; 3066 new.frozen = freelist != NULL; 3067 3068 } while (!__slab_update_freelist(s, slab, 3069 freelist, counters, 3070 NULL, new.counters, 3071 "get_freelist")); 3072 3073 return freelist; 3074 } 3075 3076 /* 3077 * Slow path. The lockless freelist is empty or we need to perform 3078 * debugging duties. 3079 * 3080 * Processing is still very fast if new objects have been freed to the 3081 * regular freelist. In that case we simply take over the regular freelist 3082 * as the lockless freelist and zap the regular freelist. 3083 * 3084 * If that is not working then we fall back to the partial lists. We take the 3085 * first element of the freelist as the object to allocate now and move the 3086 * rest of the freelist to the lockless freelist. 3087 * 3088 * And if we were unable to get a new slab from the partial slab lists then 3089 * we need to allocate a new slab. This is the slowest path since it involves 3090 * a call to the page allocator and the setup of a new slab. 3091 * 3092 * Version of __slab_alloc to use when we know that preemption is 3093 * already disabled (which is the case for bulk allocation). 3094 */ 3095 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3096 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3097 { 3098 void *freelist; 3099 struct slab *slab; 3100 unsigned long flags; 3101 struct partial_context pc; 3102 3103 stat(s, ALLOC_SLOWPATH); 3104 3105 reread_slab: 3106 3107 slab = READ_ONCE(c->slab); 3108 if (!slab) { 3109 /* 3110 * if the node is not online or has no normal memory, just 3111 * ignore the node constraint 3112 */ 3113 if (unlikely(node != NUMA_NO_NODE && 3114 !node_isset(node, slab_nodes))) 3115 node = NUMA_NO_NODE; 3116 goto new_slab; 3117 } 3118 redo: 3119 3120 if (unlikely(!node_match(slab, node))) { 3121 /* 3122 * same as above but node_match() being false already 3123 * implies node != NUMA_NO_NODE 3124 */ 3125 if (!node_isset(node, slab_nodes)) { 3126 node = NUMA_NO_NODE; 3127 } else { 3128 stat(s, ALLOC_NODE_MISMATCH); 3129 goto deactivate_slab; 3130 } 3131 } 3132 3133 /* 3134 * By rights, we should be searching for a slab page that was 3135 * PFMEMALLOC but right now, we are losing the pfmemalloc 3136 * information when the page leaves the per-cpu allocator 3137 */ 3138 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3139 goto deactivate_slab; 3140 3141 /* must check again c->slab in case we got preempted and it changed */ 3142 local_lock_irqsave(&s->cpu_slab->lock, flags); 3143 if (unlikely(slab != c->slab)) { 3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3145 goto reread_slab; 3146 } 3147 freelist = c->freelist; 3148 if (freelist) 3149 goto load_freelist; 3150 3151 freelist = get_freelist(s, slab); 3152 3153 if (!freelist) { 3154 c->slab = NULL; 3155 c->tid = next_tid(c->tid); 3156 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3157 stat(s, DEACTIVATE_BYPASS); 3158 goto new_slab; 3159 } 3160 3161 stat(s, ALLOC_REFILL); 3162 3163 load_freelist: 3164 3165 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3166 3167 /* 3168 * freelist is pointing to the list of objects to be used. 3169 * slab is pointing to the slab from which the objects are obtained. 3170 * That slab must be frozen for per cpu allocations to work. 3171 */ 3172 VM_BUG_ON(!c->slab->frozen); 3173 c->freelist = get_freepointer(s, freelist); 3174 c->tid = next_tid(c->tid); 3175 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3176 return freelist; 3177 3178 deactivate_slab: 3179 3180 local_lock_irqsave(&s->cpu_slab->lock, flags); 3181 if (slab != c->slab) { 3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3183 goto reread_slab; 3184 } 3185 freelist = c->freelist; 3186 c->slab = NULL; 3187 c->freelist = NULL; 3188 c->tid = next_tid(c->tid); 3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3190 deactivate_slab(s, slab, freelist); 3191 3192 new_slab: 3193 3194 if (slub_percpu_partial(c)) { 3195 local_lock_irqsave(&s->cpu_slab->lock, flags); 3196 if (unlikely(c->slab)) { 3197 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3198 goto reread_slab; 3199 } 3200 if (unlikely(!slub_percpu_partial(c))) { 3201 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3202 /* we were preempted and partial list got empty */ 3203 goto new_objects; 3204 } 3205 3206 slab = c->slab = slub_percpu_partial(c); 3207 slub_set_percpu_partial(c, slab); 3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3209 stat(s, CPU_PARTIAL_ALLOC); 3210 goto redo; 3211 } 3212 3213 new_objects: 3214 3215 pc.flags = gfpflags; 3216 pc.slab = &slab; 3217 pc.orig_size = orig_size; 3218 freelist = get_partial(s, node, &pc); 3219 if (freelist) 3220 goto check_new_slab; 3221 3222 slub_put_cpu_ptr(s->cpu_slab); 3223 slab = new_slab(s, gfpflags, node); 3224 c = slub_get_cpu_ptr(s->cpu_slab); 3225 3226 if (unlikely(!slab)) { 3227 slab_out_of_memory(s, gfpflags, node); 3228 return NULL; 3229 } 3230 3231 stat(s, ALLOC_SLAB); 3232 3233 if (kmem_cache_debug(s)) { 3234 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3235 3236 if (unlikely(!freelist)) 3237 goto new_objects; 3238 3239 if (s->flags & SLAB_STORE_USER) 3240 set_track(s, freelist, TRACK_ALLOC, addr); 3241 3242 return freelist; 3243 } 3244 3245 /* 3246 * No other reference to the slab yet so we can 3247 * muck around with it freely without cmpxchg 3248 */ 3249 freelist = slab->freelist; 3250 slab->freelist = NULL; 3251 slab->inuse = slab->objects; 3252 slab->frozen = 1; 3253 3254 inc_slabs_node(s, slab_nid(slab), slab->objects); 3255 3256 check_new_slab: 3257 3258 if (kmem_cache_debug(s)) { 3259 /* 3260 * For debug caches here we had to go through 3261 * alloc_single_from_partial() so just store the tracking info 3262 * and return the object 3263 */ 3264 if (s->flags & SLAB_STORE_USER) 3265 set_track(s, freelist, TRACK_ALLOC, addr); 3266 3267 return freelist; 3268 } 3269 3270 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3271 /* 3272 * For !pfmemalloc_match() case we don't load freelist so that 3273 * we don't make further mismatched allocations easier. 3274 */ 3275 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3276 return freelist; 3277 } 3278 3279 retry_load_slab: 3280 3281 local_lock_irqsave(&s->cpu_slab->lock, flags); 3282 if (unlikely(c->slab)) { 3283 void *flush_freelist = c->freelist; 3284 struct slab *flush_slab = c->slab; 3285 3286 c->slab = NULL; 3287 c->freelist = NULL; 3288 c->tid = next_tid(c->tid); 3289 3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3291 3292 deactivate_slab(s, flush_slab, flush_freelist); 3293 3294 stat(s, CPUSLAB_FLUSH); 3295 3296 goto retry_load_slab; 3297 } 3298 c->slab = slab; 3299 3300 goto load_freelist; 3301 } 3302 3303 /* 3304 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3305 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3306 * pointer. 3307 */ 3308 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3309 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3310 { 3311 void *p; 3312 3313 #ifdef CONFIG_PREEMPT_COUNT 3314 /* 3315 * We may have been preempted and rescheduled on a different 3316 * cpu before disabling preemption. Need to reload cpu area 3317 * pointer. 3318 */ 3319 c = slub_get_cpu_ptr(s->cpu_slab); 3320 #endif 3321 3322 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3323 #ifdef CONFIG_PREEMPT_COUNT 3324 slub_put_cpu_ptr(s->cpu_slab); 3325 #endif 3326 return p; 3327 } 3328 3329 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3330 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3331 { 3332 struct kmem_cache_cpu *c; 3333 struct slab *slab; 3334 unsigned long tid; 3335 void *object; 3336 3337 redo: 3338 /* 3339 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3340 * enabled. We may switch back and forth between cpus while 3341 * reading from one cpu area. That does not matter as long 3342 * as we end up on the original cpu again when doing the cmpxchg. 3343 * 3344 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3345 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3346 * the tid. If we are preempted and switched to another cpu between the 3347 * two reads, it's OK as the two are still associated with the same cpu 3348 * and cmpxchg later will validate the cpu. 3349 */ 3350 c = raw_cpu_ptr(s->cpu_slab); 3351 tid = READ_ONCE(c->tid); 3352 3353 /* 3354 * Irqless object alloc/free algorithm used here depends on sequence 3355 * of fetching cpu_slab's data. tid should be fetched before anything 3356 * on c to guarantee that object and slab associated with previous tid 3357 * won't be used with current tid. If we fetch tid first, object and 3358 * slab could be one associated with next tid and our alloc/free 3359 * request will be failed. In this case, we will retry. So, no problem. 3360 */ 3361 barrier(); 3362 3363 /* 3364 * The transaction ids are globally unique per cpu and per operation on 3365 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3366 * occurs on the right processor and that there was no operation on the 3367 * linked list in between. 3368 */ 3369 3370 object = c->freelist; 3371 slab = c->slab; 3372 3373 if (!USE_LOCKLESS_FAST_PATH() || 3374 unlikely(!object || !slab || !node_match(slab, node))) { 3375 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3376 } else { 3377 void *next_object = get_freepointer_safe(s, object); 3378 3379 /* 3380 * The cmpxchg will only match if there was no additional 3381 * operation and if we are on the right processor. 3382 * 3383 * The cmpxchg does the following atomically (without lock 3384 * semantics!) 3385 * 1. Relocate first pointer to the current per cpu area. 3386 * 2. Verify that tid and freelist have not been changed 3387 * 3. If they were not changed replace tid and freelist 3388 * 3389 * Since this is without lock semantics the protection is only 3390 * against code executing on this cpu *not* from access by 3391 * other cpus. 3392 */ 3393 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3394 note_cmpxchg_failure("slab_alloc", s, tid); 3395 goto redo; 3396 } 3397 prefetch_freepointer(s, next_object); 3398 stat(s, ALLOC_FASTPATH); 3399 } 3400 3401 return object; 3402 } 3403 #else /* CONFIG_SLUB_TINY */ 3404 static void *__slab_alloc_node(struct kmem_cache *s, 3405 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3406 { 3407 struct partial_context pc; 3408 struct slab *slab; 3409 void *object; 3410 3411 pc.flags = gfpflags; 3412 pc.slab = &slab; 3413 pc.orig_size = orig_size; 3414 object = get_partial(s, node, &pc); 3415 3416 if (object) 3417 return object; 3418 3419 slab = new_slab(s, gfpflags, node); 3420 if (unlikely(!slab)) { 3421 slab_out_of_memory(s, gfpflags, node); 3422 return NULL; 3423 } 3424 3425 object = alloc_single_from_new_slab(s, slab, orig_size); 3426 3427 return object; 3428 } 3429 #endif /* CONFIG_SLUB_TINY */ 3430 3431 /* 3432 * If the object has been wiped upon free, make sure it's fully initialized by 3433 * zeroing out freelist pointer. 3434 */ 3435 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3436 void *obj) 3437 { 3438 if (unlikely(slab_want_init_on_free(s)) && obj) 3439 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3440 0, sizeof(void *)); 3441 } 3442 3443 /* 3444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3445 * have the fastpath folded into their functions. So no function call 3446 * overhead for requests that can be satisfied on the fastpath. 3447 * 3448 * The fastpath works by first checking if the lockless freelist can be used. 3449 * If not then __slab_alloc is called for slow processing. 3450 * 3451 * Otherwise we can simply pick the next object from the lockless free list. 3452 */ 3453 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3454 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3455 { 3456 void *object; 3457 struct obj_cgroup *objcg = NULL; 3458 bool init = false; 3459 3460 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3461 if (!s) 3462 return NULL; 3463 3464 object = kfence_alloc(s, orig_size, gfpflags); 3465 if (unlikely(object)) 3466 goto out; 3467 3468 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 3469 3470 maybe_wipe_obj_freeptr(s, object); 3471 init = slab_want_init_on_alloc(gfpflags, s); 3472 3473 out: 3474 /* 3475 * When init equals 'true', like for kzalloc() family, only 3476 * @orig_size bytes might be zeroed instead of s->object_size 3477 */ 3478 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size); 3479 3480 return object; 3481 } 3482 3483 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3484 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3485 { 3486 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3487 } 3488 3489 static __fastpath_inline 3490 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3491 gfp_t gfpflags) 3492 { 3493 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3494 3495 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 3496 3497 return ret; 3498 } 3499 3500 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3501 { 3502 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3503 } 3504 EXPORT_SYMBOL(kmem_cache_alloc); 3505 3506 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3507 gfp_t gfpflags) 3508 { 3509 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3510 } 3511 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3512 3513 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, 3514 int node, size_t orig_size, 3515 unsigned long caller) 3516 { 3517 return slab_alloc_node(s, NULL, gfpflags, node, 3518 caller, orig_size); 3519 } 3520 3521 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3522 { 3523 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3524 3525 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 3526 3527 return ret; 3528 } 3529 EXPORT_SYMBOL(kmem_cache_alloc_node); 3530 3531 static noinline void free_to_partial_list( 3532 struct kmem_cache *s, struct slab *slab, 3533 void *head, void *tail, int bulk_cnt, 3534 unsigned long addr) 3535 { 3536 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3537 struct slab *slab_free = NULL; 3538 int cnt = bulk_cnt; 3539 unsigned long flags; 3540 depot_stack_handle_t handle = 0; 3541 3542 if (s->flags & SLAB_STORE_USER) 3543 handle = set_track_prepare(); 3544 3545 spin_lock_irqsave(&n->list_lock, flags); 3546 3547 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 3548 void *prior = slab->freelist; 3549 3550 /* Perform the actual freeing while we still hold the locks */ 3551 slab->inuse -= cnt; 3552 set_freepointer(s, tail, prior); 3553 slab->freelist = head; 3554 3555 /* 3556 * If the slab is empty, and node's partial list is full, 3557 * it should be discarded anyway no matter it's on full or 3558 * partial list. 3559 */ 3560 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 3561 slab_free = slab; 3562 3563 if (!prior) { 3564 /* was on full list */ 3565 remove_full(s, n, slab); 3566 if (!slab_free) { 3567 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3568 stat(s, FREE_ADD_PARTIAL); 3569 } 3570 } else if (slab_free) { 3571 remove_partial(n, slab); 3572 stat(s, FREE_REMOVE_PARTIAL); 3573 } 3574 } 3575 3576 if (slab_free) { 3577 /* 3578 * Update the counters while still holding n->list_lock to 3579 * prevent spurious validation warnings 3580 */ 3581 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 3582 } 3583 3584 spin_unlock_irqrestore(&n->list_lock, flags); 3585 3586 if (slab_free) { 3587 stat(s, FREE_SLAB); 3588 free_slab(s, slab_free); 3589 } 3590 } 3591 3592 /* 3593 * Slow path handling. This may still be called frequently since objects 3594 * have a longer lifetime than the cpu slabs in most processing loads. 3595 * 3596 * So we still attempt to reduce cache line usage. Just take the slab 3597 * lock and free the item. If there is no additional partial slab 3598 * handling required then we can return immediately. 3599 */ 3600 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3601 void *head, void *tail, int cnt, 3602 unsigned long addr) 3603 3604 { 3605 void *prior; 3606 int was_frozen; 3607 struct slab new; 3608 unsigned long counters; 3609 struct kmem_cache_node *n = NULL; 3610 unsigned long flags; 3611 3612 stat(s, FREE_SLOWPATH); 3613 3614 if (kfence_free(head)) 3615 return; 3616 3617 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3618 free_to_partial_list(s, slab, head, tail, cnt, addr); 3619 return; 3620 } 3621 3622 do { 3623 if (unlikely(n)) { 3624 spin_unlock_irqrestore(&n->list_lock, flags); 3625 n = NULL; 3626 } 3627 prior = slab->freelist; 3628 counters = slab->counters; 3629 set_freepointer(s, tail, prior); 3630 new.counters = counters; 3631 was_frozen = new.frozen; 3632 new.inuse -= cnt; 3633 if ((!new.inuse || !prior) && !was_frozen) { 3634 3635 if (kmem_cache_has_cpu_partial(s) && !prior) { 3636 3637 /* 3638 * Slab was on no list before and will be 3639 * partially empty 3640 * We can defer the list move and instead 3641 * freeze it. 3642 */ 3643 new.frozen = 1; 3644 3645 } else { /* Needs to be taken off a list */ 3646 3647 n = get_node(s, slab_nid(slab)); 3648 /* 3649 * Speculatively acquire the list_lock. 3650 * If the cmpxchg does not succeed then we may 3651 * drop the list_lock without any processing. 3652 * 3653 * Otherwise the list_lock will synchronize with 3654 * other processors updating the list of slabs. 3655 */ 3656 spin_lock_irqsave(&n->list_lock, flags); 3657 3658 } 3659 } 3660 3661 } while (!slab_update_freelist(s, slab, 3662 prior, counters, 3663 head, new.counters, 3664 "__slab_free")); 3665 3666 if (likely(!n)) { 3667 3668 if (likely(was_frozen)) { 3669 /* 3670 * The list lock was not taken therefore no list 3671 * activity can be necessary. 3672 */ 3673 stat(s, FREE_FROZEN); 3674 } else if (new.frozen) { 3675 /* 3676 * If we just froze the slab then put it onto the 3677 * per cpu partial list. 3678 */ 3679 put_cpu_partial(s, slab, 1); 3680 stat(s, CPU_PARTIAL_FREE); 3681 } 3682 3683 return; 3684 } 3685 3686 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3687 goto slab_empty; 3688 3689 /* 3690 * Objects left in the slab. If it was not on the partial list before 3691 * then add it. 3692 */ 3693 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3694 remove_full(s, n, slab); 3695 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3696 stat(s, FREE_ADD_PARTIAL); 3697 } 3698 spin_unlock_irqrestore(&n->list_lock, flags); 3699 return; 3700 3701 slab_empty: 3702 if (prior) { 3703 /* 3704 * Slab on the partial list. 3705 */ 3706 remove_partial(n, slab); 3707 stat(s, FREE_REMOVE_PARTIAL); 3708 } else { 3709 /* Slab must be on the full list */ 3710 remove_full(s, n, slab); 3711 } 3712 3713 spin_unlock_irqrestore(&n->list_lock, flags); 3714 stat(s, FREE_SLAB); 3715 discard_slab(s, slab); 3716 } 3717 3718 #ifndef CONFIG_SLUB_TINY 3719 /* 3720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3721 * can perform fastpath freeing without additional function calls. 3722 * 3723 * The fastpath is only possible if we are freeing to the current cpu slab 3724 * of this processor. This typically the case if we have just allocated 3725 * the item before. 3726 * 3727 * If fastpath is not possible then fall back to __slab_free where we deal 3728 * with all sorts of special processing. 3729 * 3730 * Bulk free of a freelist with several objects (all pointing to the 3731 * same slab) possible by specifying head and tail ptr, plus objects 3732 * count (cnt). Bulk free indicated by tail pointer being set. 3733 */ 3734 static __always_inline void do_slab_free(struct kmem_cache *s, 3735 struct slab *slab, void *head, void *tail, 3736 int cnt, unsigned long addr) 3737 { 3738 void *tail_obj = tail ? : head; 3739 struct kmem_cache_cpu *c; 3740 unsigned long tid; 3741 void **freelist; 3742 3743 redo: 3744 /* 3745 * Determine the currently cpus per cpu slab. 3746 * The cpu may change afterward. However that does not matter since 3747 * data is retrieved via this pointer. If we are on the same cpu 3748 * during the cmpxchg then the free will succeed. 3749 */ 3750 c = raw_cpu_ptr(s->cpu_slab); 3751 tid = READ_ONCE(c->tid); 3752 3753 /* Same with comment on barrier() in slab_alloc_node() */ 3754 barrier(); 3755 3756 if (unlikely(slab != c->slab)) { 3757 __slab_free(s, slab, head, tail_obj, cnt, addr); 3758 return; 3759 } 3760 3761 if (USE_LOCKLESS_FAST_PATH()) { 3762 freelist = READ_ONCE(c->freelist); 3763 3764 set_freepointer(s, tail_obj, freelist); 3765 3766 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 3767 note_cmpxchg_failure("slab_free", s, tid); 3768 goto redo; 3769 } 3770 } else { 3771 /* Update the free list under the local lock */ 3772 local_lock(&s->cpu_slab->lock); 3773 c = this_cpu_ptr(s->cpu_slab); 3774 if (unlikely(slab != c->slab)) { 3775 local_unlock(&s->cpu_slab->lock); 3776 goto redo; 3777 } 3778 tid = c->tid; 3779 freelist = c->freelist; 3780 3781 set_freepointer(s, tail_obj, freelist); 3782 c->freelist = head; 3783 c->tid = next_tid(tid); 3784 3785 local_unlock(&s->cpu_slab->lock); 3786 } 3787 stat(s, FREE_FASTPATH); 3788 } 3789 #else /* CONFIG_SLUB_TINY */ 3790 static void do_slab_free(struct kmem_cache *s, 3791 struct slab *slab, void *head, void *tail, 3792 int cnt, unsigned long addr) 3793 { 3794 void *tail_obj = tail ? : head; 3795 3796 __slab_free(s, slab, head, tail_obj, cnt, addr); 3797 } 3798 #endif /* CONFIG_SLUB_TINY */ 3799 3800 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3801 void *head, void *tail, void **p, int cnt, 3802 unsigned long addr) 3803 { 3804 memcg_slab_free_hook(s, slab, p, cnt); 3805 /* 3806 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3807 * to remove objects, whose reuse must be delayed. 3808 */ 3809 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3810 do_slab_free(s, slab, head, tail, cnt, addr); 3811 } 3812 3813 #ifdef CONFIG_KASAN_GENERIC 3814 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3815 { 3816 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3817 } 3818 #endif 3819 3820 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) 3821 { 3822 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); 3823 } 3824 3825 void kmem_cache_free(struct kmem_cache *s, void *x) 3826 { 3827 s = cache_from_obj(s, x); 3828 if (!s) 3829 return; 3830 trace_kmem_cache_free(_RET_IP_, x, s); 3831 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); 3832 } 3833 EXPORT_SYMBOL(kmem_cache_free); 3834 3835 struct detached_freelist { 3836 struct slab *slab; 3837 void *tail; 3838 void *freelist; 3839 int cnt; 3840 struct kmem_cache *s; 3841 }; 3842 3843 /* 3844 * This function progressively scans the array with free objects (with 3845 * a limited look ahead) and extract objects belonging to the same 3846 * slab. It builds a detached freelist directly within the given 3847 * slab/objects. This can happen without any need for 3848 * synchronization, because the objects are owned by running process. 3849 * The freelist is build up as a single linked list in the objects. 3850 * The idea is, that this detached freelist can then be bulk 3851 * transferred to the real freelist(s), but only requiring a single 3852 * synchronization primitive. Look ahead in the array is limited due 3853 * to performance reasons. 3854 */ 3855 static inline 3856 int build_detached_freelist(struct kmem_cache *s, size_t size, 3857 void **p, struct detached_freelist *df) 3858 { 3859 int lookahead = 3; 3860 void *object; 3861 struct folio *folio; 3862 size_t same; 3863 3864 object = p[--size]; 3865 folio = virt_to_folio(object); 3866 if (!s) { 3867 /* Handle kalloc'ed objects */ 3868 if (unlikely(!folio_test_slab(folio))) { 3869 free_large_kmalloc(folio, object); 3870 df->slab = NULL; 3871 return size; 3872 } 3873 /* Derive kmem_cache from object */ 3874 df->slab = folio_slab(folio); 3875 df->s = df->slab->slab_cache; 3876 } else { 3877 df->slab = folio_slab(folio); 3878 df->s = cache_from_obj(s, object); /* Support for memcg */ 3879 } 3880 3881 /* Start new detached freelist */ 3882 df->tail = object; 3883 df->freelist = object; 3884 df->cnt = 1; 3885 3886 if (is_kfence_address(object)) 3887 return size; 3888 3889 set_freepointer(df->s, object, NULL); 3890 3891 same = size; 3892 while (size) { 3893 object = p[--size]; 3894 /* df->slab is always set at this point */ 3895 if (df->slab == virt_to_slab(object)) { 3896 /* Opportunity build freelist */ 3897 set_freepointer(df->s, object, df->freelist); 3898 df->freelist = object; 3899 df->cnt++; 3900 same--; 3901 if (size != same) 3902 swap(p[size], p[same]); 3903 continue; 3904 } 3905 3906 /* Limit look ahead search */ 3907 if (!--lookahead) 3908 break; 3909 } 3910 3911 return same; 3912 } 3913 3914 /* Note that interrupts must be enabled when calling this function. */ 3915 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3916 { 3917 if (!size) 3918 return; 3919 3920 do { 3921 struct detached_freelist df; 3922 3923 size = build_detached_freelist(s, size, p, &df); 3924 if (!df.slab) 3925 continue; 3926 3927 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, 3928 _RET_IP_); 3929 } while (likely(size)); 3930 } 3931 EXPORT_SYMBOL(kmem_cache_free_bulk); 3932 3933 #ifndef CONFIG_SLUB_TINY 3934 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 3935 size_t size, void **p, struct obj_cgroup *objcg) 3936 { 3937 struct kmem_cache_cpu *c; 3938 unsigned long irqflags; 3939 int i; 3940 3941 /* 3942 * Drain objects in the per cpu slab, while disabling local 3943 * IRQs, which protects against PREEMPT and interrupts 3944 * handlers invoking normal fastpath. 3945 */ 3946 c = slub_get_cpu_ptr(s->cpu_slab); 3947 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3948 3949 for (i = 0; i < size; i++) { 3950 void *object = kfence_alloc(s, s->object_size, flags); 3951 3952 if (unlikely(object)) { 3953 p[i] = object; 3954 continue; 3955 } 3956 3957 object = c->freelist; 3958 if (unlikely(!object)) { 3959 /* 3960 * We may have removed an object from c->freelist using 3961 * the fastpath in the previous iteration; in that case, 3962 * c->tid has not been bumped yet. 3963 * Since ___slab_alloc() may reenable interrupts while 3964 * allocating memory, we should bump c->tid now. 3965 */ 3966 c->tid = next_tid(c->tid); 3967 3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3969 3970 /* 3971 * Invoking slow path likely have side-effect 3972 * of re-populating per CPU c->freelist 3973 */ 3974 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3975 _RET_IP_, c, s->object_size); 3976 if (unlikely(!p[i])) 3977 goto error; 3978 3979 c = this_cpu_ptr(s->cpu_slab); 3980 maybe_wipe_obj_freeptr(s, p[i]); 3981 3982 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 3983 3984 continue; /* goto for-loop */ 3985 } 3986 c->freelist = get_freepointer(s, object); 3987 p[i] = object; 3988 maybe_wipe_obj_freeptr(s, p[i]); 3989 } 3990 c->tid = next_tid(c->tid); 3991 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 3992 slub_put_cpu_ptr(s->cpu_slab); 3993 3994 return i; 3995 3996 error: 3997 slub_put_cpu_ptr(s->cpu_slab); 3998 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 3999 kmem_cache_free_bulk(s, i, p); 4000 return 0; 4001 4002 } 4003 #else /* CONFIG_SLUB_TINY */ 4004 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4005 size_t size, void **p, struct obj_cgroup *objcg) 4006 { 4007 int i; 4008 4009 for (i = 0; i < size; i++) { 4010 void *object = kfence_alloc(s, s->object_size, flags); 4011 4012 if (unlikely(object)) { 4013 p[i] = object; 4014 continue; 4015 } 4016 4017 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4018 _RET_IP_, s->object_size); 4019 if (unlikely(!p[i])) 4020 goto error; 4021 4022 maybe_wipe_obj_freeptr(s, p[i]); 4023 } 4024 4025 return i; 4026 4027 error: 4028 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size); 4029 kmem_cache_free_bulk(s, i, p); 4030 return 0; 4031 } 4032 #endif /* CONFIG_SLUB_TINY */ 4033 4034 /* Note that interrupts must be enabled when calling this function. */ 4035 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4036 void **p) 4037 { 4038 int i; 4039 struct obj_cgroup *objcg = NULL; 4040 4041 if (!size) 4042 return 0; 4043 4044 /* memcg and kmem_cache debug support */ 4045 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 4046 if (unlikely(!s)) 4047 return 0; 4048 4049 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg); 4050 4051 /* 4052 * memcg and kmem_cache debug support and memory initialization. 4053 * Done outside of the IRQ disabled fastpath loop. 4054 */ 4055 if (i != 0) 4056 slab_post_alloc_hook(s, objcg, flags, size, p, 4057 slab_want_init_on_alloc(flags, s), s->object_size); 4058 return i; 4059 } 4060 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 4061 4062 4063 /* 4064 * Object placement in a slab is made very easy because we always start at 4065 * offset 0. If we tune the size of the object to the alignment then we can 4066 * get the required alignment by putting one properly sized object after 4067 * another. 4068 * 4069 * Notice that the allocation order determines the sizes of the per cpu 4070 * caches. Each processor has always one slab available for allocations. 4071 * Increasing the allocation order reduces the number of times that slabs 4072 * must be moved on and off the partial lists and is therefore a factor in 4073 * locking overhead. 4074 */ 4075 4076 /* 4077 * Minimum / Maximum order of slab pages. This influences locking overhead 4078 * and slab fragmentation. A higher order reduces the number of partial slabs 4079 * and increases the number of allocations possible without having to 4080 * take the list_lock. 4081 */ 4082 static unsigned int slub_min_order; 4083 static unsigned int slub_max_order = 4084 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4085 static unsigned int slub_min_objects; 4086 4087 /* 4088 * Calculate the order of allocation given an slab object size. 4089 * 4090 * The order of allocation has significant impact on performance and other 4091 * system components. Generally order 0 allocations should be preferred since 4092 * order 0 does not cause fragmentation in the page allocator. Larger objects 4093 * be problematic to put into order 0 slabs because there may be too much 4094 * unused space left. We go to a higher order if more than 1/16th of the slab 4095 * would be wasted. 4096 * 4097 * In order to reach satisfactory performance we must ensure that a minimum 4098 * number of objects is in one slab. Otherwise we may generate too much 4099 * activity on the partial lists which requires taking the list_lock. This is 4100 * less a concern for large slabs though which are rarely used. 4101 * 4102 * slub_max_order specifies the order where we begin to stop considering the 4103 * number of objects in a slab as critical. If we reach slub_max_order then 4104 * we try to keep the page order as low as possible. So we accept more waste 4105 * of space in favor of a small page order. 4106 * 4107 * Higher order allocations also allow the placement of more objects in a 4108 * slab and thereby reduce object handling overhead. If the user has 4109 * requested a higher minimum order then we start with that one instead of 4110 * the smallest order which will fit the object. 4111 */ 4112 static inline unsigned int calc_slab_order(unsigned int size, 4113 unsigned int min_order, unsigned int max_order, 4114 unsigned int fract_leftover) 4115 { 4116 unsigned int order; 4117 4118 for (order = min_order; order <= max_order; order++) { 4119 4120 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4121 unsigned int rem; 4122 4123 rem = slab_size % size; 4124 4125 if (rem <= slab_size / fract_leftover) 4126 break; 4127 } 4128 4129 return order; 4130 } 4131 4132 static inline int calculate_order(unsigned int size) 4133 { 4134 unsigned int order; 4135 unsigned int min_objects; 4136 unsigned int max_objects; 4137 unsigned int min_order; 4138 4139 min_objects = slub_min_objects; 4140 if (!min_objects) { 4141 /* 4142 * Some architectures will only update present cpus when 4143 * onlining them, so don't trust the number if it's just 1. But 4144 * we also don't want to use nr_cpu_ids always, as on some other 4145 * architectures, there can be many possible cpus, but never 4146 * onlined. Here we compromise between trying to avoid too high 4147 * order on systems that appear larger than they are, and too 4148 * low order on systems that appear smaller than they are. 4149 */ 4150 unsigned int nr_cpus = num_present_cpus(); 4151 if (nr_cpus <= 1) 4152 nr_cpus = nr_cpu_ids; 4153 min_objects = 4 * (fls(nr_cpus) + 1); 4154 } 4155 /* min_objects can't be 0 because get_order(0) is undefined */ 4156 max_objects = max(order_objects(slub_max_order, size), 1U); 4157 min_objects = min(min_objects, max_objects); 4158 4159 min_order = max_t(unsigned int, slub_min_order, 4160 get_order(min_objects * size)); 4161 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4162 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4163 4164 /* 4165 * Attempt to find best configuration for a slab. This works by first 4166 * attempting to generate a layout with the best possible configuration 4167 * and backing off gradually. 4168 * 4169 * We start with accepting at most 1/16 waste and try to find the 4170 * smallest order from min_objects-derived/slub_min_order up to 4171 * slub_max_order that will satisfy the constraint. Note that increasing 4172 * the order can only result in same or less fractional waste, not more. 4173 * 4174 * If that fails, we increase the acceptable fraction of waste and try 4175 * again. The last iteration with fraction of 1/2 would effectively 4176 * accept any waste and give us the order determined by min_objects, as 4177 * long as at least single object fits within slub_max_order. 4178 */ 4179 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4180 order = calc_slab_order(size, min_order, slub_max_order, 4181 fraction); 4182 if (order <= slub_max_order) 4183 return order; 4184 } 4185 4186 /* 4187 * Doh this slab cannot be placed using slub_max_order. 4188 */ 4189 order = get_order(size); 4190 if (order <= MAX_ORDER) 4191 return order; 4192 return -ENOSYS; 4193 } 4194 4195 static void 4196 init_kmem_cache_node(struct kmem_cache_node *n) 4197 { 4198 n->nr_partial = 0; 4199 spin_lock_init(&n->list_lock); 4200 INIT_LIST_HEAD(&n->partial); 4201 #ifdef CONFIG_SLUB_DEBUG 4202 atomic_long_set(&n->nr_slabs, 0); 4203 atomic_long_set(&n->total_objects, 0); 4204 INIT_LIST_HEAD(&n->full); 4205 #endif 4206 } 4207 4208 #ifndef CONFIG_SLUB_TINY 4209 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4210 { 4211 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4212 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4213 sizeof(struct kmem_cache_cpu)); 4214 4215 /* 4216 * Must align to double word boundary for the double cmpxchg 4217 * instructions to work; see __pcpu_double_call_return_bool(). 4218 */ 4219 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 4220 2 * sizeof(void *)); 4221 4222 if (!s->cpu_slab) 4223 return 0; 4224 4225 init_kmem_cache_cpus(s); 4226 4227 return 1; 4228 } 4229 #else 4230 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4231 { 4232 return 1; 4233 } 4234 #endif /* CONFIG_SLUB_TINY */ 4235 4236 static struct kmem_cache *kmem_cache_node; 4237 4238 /* 4239 * No kmalloc_node yet so do it by hand. We know that this is the first 4240 * slab on the node for this slabcache. There are no concurrent accesses 4241 * possible. 4242 * 4243 * Note that this function only works on the kmem_cache_node 4244 * when allocating for the kmem_cache_node. This is used for bootstrapping 4245 * memory on a fresh node that has no slab structures yet. 4246 */ 4247 static void early_kmem_cache_node_alloc(int node) 4248 { 4249 struct slab *slab; 4250 struct kmem_cache_node *n; 4251 4252 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 4253 4254 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 4255 4256 BUG_ON(!slab); 4257 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); 4258 if (slab_nid(slab) != node) { 4259 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 4260 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 4261 } 4262 4263 n = slab->freelist; 4264 BUG_ON(!n); 4265 #ifdef CONFIG_SLUB_DEBUG 4266 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 4267 init_tracking(kmem_cache_node, n); 4268 #endif 4269 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 4270 slab->freelist = get_freepointer(kmem_cache_node, n); 4271 slab->inuse = 1; 4272 kmem_cache_node->node[node] = n; 4273 init_kmem_cache_node(n); 4274 inc_slabs_node(kmem_cache_node, node, slab->objects); 4275 4276 /* 4277 * No locks need to be taken here as it has just been 4278 * initialized and there is no concurrent access. 4279 */ 4280 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 4281 } 4282 4283 static void free_kmem_cache_nodes(struct kmem_cache *s) 4284 { 4285 int node; 4286 struct kmem_cache_node *n; 4287 4288 for_each_kmem_cache_node(s, node, n) { 4289 s->node[node] = NULL; 4290 kmem_cache_free(kmem_cache_node, n); 4291 } 4292 } 4293 4294 void __kmem_cache_release(struct kmem_cache *s) 4295 { 4296 cache_random_seq_destroy(s); 4297 #ifndef CONFIG_SLUB_TINY 4298 free_percpu(s->cpu_slab); 4299 #endif 4300 free_kmem_cache_nodes(s); 4301 } 4302 4303 static int init_kmem_cache_nodes(struct kmem_cache *s) 4304 { 4305 int node; 4306 4307 for_each_node_mask(node, slab_nodes) { 4308 struct kmem_cache_node *n; 4309 4310 if (slab_state == DOWN) { 4311 early_kmem_cache_node_alloc(node); 4312 continue; 4313 } 4314 n = kmem_cache_alloc_node(kmem_cache_node, 4315 GFP_KERNEL, node); 4316 4317 if (!n) { 4318 free_kmem_cache_nodes(s); 4319 return 0; 4320 } 4321 4322 init_kmem_cache_node(n); 4323 s->node[node] = n; 4324 } 4325 return 1; 4326 } 4327 4328 static void set_cpu_partial(struct kmem_cache *s) 4329 { 4330 #ifdef CONFIG_SLUB_CPU_PARTIAL 4331 unsigned int nr_objects; 4332 4333 /* 4334 * cpu_partial determined the maximum number of objects kept in the 4335 * per cpu partial lists of a processor. 4336 * 4337 * Per cpu partial lists mainly contain slabs that just have one 4338 * object freed. If they are used for allocation then they can be 4339 * filled up again with minimal effort. The slab will never hit the 4340 * per node partial lists and therefore no locking will be required. 4341 * 4342 * For backwards compatibility reasons, this is determined as number 4343 * of objects, even though we now limit maximum number of pages, see 4344 * slub_set_cpu_partial() 4345 */ 4346 if (!kmem_cache_has_cpu_partial(s)) 4347 nr_objects = 0; 4348 else if (s->size >= PAGE_SIZE) 4349 nr_objects = 6; 4350 else if (s->size >= 1024) 4351 nr_objects = 24; 4352 else if (s->size >= 256) 4353 nr_objects = 52; 4354 else 4355 nr_objects = 120; 4356 4357 slub_set_cpu_partial(s, nr_objects); 4358 #endif 4359 } 4360 4361 /* 4362 * calculate_sizes() determines the order and the distribution of data within 4363 * a slab object. 4364 */ 4365 static int calculate_sizes(struct kmem_cache *s) 4366 { 4367 slab_flags_t flags = s->flags; 4368 unsigned int size = s->object_size; 4369 unsigned int order; 4370 4371 /* 4372 * Round up object size to the next word boundary. We can only 4373 * place the free pointer at word boundaries and this determines 4374 * the possible location of the free pointer. 4375 */ 4376 size = ALIGN(size, sizeof(void *)); 4377 4378 #ifdef CONFIG_SLUB_DEBUG 4379 /* 4380 * Determine if we can poison the object itself. If the user of 4381 * the slab may touch the object after free or before allocation 4382 * then we should never poison the object itself. 4383 */ 4384 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4385 !s->ctor) 4386 s->flags |= __OBJECT_POISON; 4387 else 4388 s->flags &= ~__OBJECT_POISON; 4389 4390 4391 /* 4392 * If we are Redzoning then check if there is some space between the 4393 * end of the object and the free pointer. If not then add an 4394 * additional word to have some bytes to store Redzone information. 4395 */ 4396 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4397 size += sizeof(void *); 4398 #endif 4399 4400 /* 4401 * With that we have determined the number of bytes in actual use 4402 * by the object and redzoning. 4403 */ 4404 s->inuse = size; 4405 4406 if (slub_debug_orig_size(s) || 4407 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4408 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4409 s->ctor) { 4410 /* 4411 * Relocate free pointer after the object if it is not 4412 * permitted to overwrite the first word of the object on 4413 * kmem_cache_free. 4414 * 4415 * This is the case if we do RCU, have a constructor or 4416 * destructor, are poisoning the objects, or are 4417 * redzoning an object smaller than sizeof(void *). 4418 * 4419 * The assumption that s->offset >= s->inuse means free 4420 * pointer is outside of the object is used in the 4421 * freeptr_outside_object() function. If that is no 4422 * longer true, the function needs to be modified. 4423 */ 4424 s->offset = size; 4425 size += sizeof(void *); 4426 } else { 4427 /* 4428 * Store freelist pointer near middle of object to keep 4429 * it away from the edges of the object to avoid small 4430 * sized over/underflows from neighboring allocations. 4431 */ 4432 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4433 } 4434 4435 #ifdef CONFIG_SLUB_DEBUG 4436 if (flags & SLAB_STORE_USER) { 4437 /* 4438 * Need to store information about allocs and frees after 4439 * the object. 4440 */ 4441 size += 2 * sizeof(struct track); 4442 4443 /* Save the original kmalloc request size */ 4444 if (flags & SLAB_KMALLOC) 4445 size += sizeof(unsigned int); 4446 } 4447 #endif 4448 4449 kasan_cache_create(s, &size, &s->flags); 4450 #ifdef CONFIG_SLUB_DEBUG 4451 if (flags & SLAB_RED_ZONE) { 4452 /* 4453 * Add some empty padding so that we can catch 4454 * overwrites from earlier objects rather than let 4455 * tracking information or the free pointer be 4456 * corrupted if a user writes before the start 4457 * of the object. 4458 */ 4459 size += sizeof(void *); 4460 4461 s->red_left_pad = sizeof(void *); 4462 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4463 size += s->red_left_pad; 4464 } 4465 #endif 4466 4467 /* 4468 * SLUB stores one object immediately after another beginning from 4469 * offset 0. In order to align the objects we have to simply size 4470 * each object to conform to the alignment. 4471 */ 4472 size = ALIGN(size, s->align); 4473 s->size = size; 4474 s->reciprocal_size = reciprocal_value(size); 4475 order = calculate_order(size); 4476 4477 if ((int)order < 0) 4478 return 0; 4479 4480 s->allocflags = 0; 4481 if (order) 4482 s->allocflags |= __GFP_COMP; 4483 4484 if (s->flags & SLAB_CACHE_DMA) 4485 s->allocflags |= GFP_DMA; 4486 4487 if (s->flags & SLAB_CACHE_DMA32) 4488 s->allocflags |= GFP_DMA32; 4489 4490 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4491 s->allocflags |= __GFP_RECLAIMABLE; 4492 4493 /* 4494 * Determine the number of objects per slab 4495 */ 4496 s->oo = oo_make(order, size); 4497 s->min = oo_make(get_order(size), size); 4498 4499 return !!oo_objects(s->oo); 4500 } 4501 4502 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4503 { 4504 s->flags = kmem_cache_flags(s->size, flags, s->name); 4505 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4506 s->random = get_random_long(); 4507 #endif 4508 4509 if (!calculate_sizes(s)) 4510 goto error; 4511 if (disable_higher_order_debug) { 4512 /* 4513 * Disable debugging flags that store metadata if the min slab 4514 * order increased. 4515 */ 4516 if (get_order(s->size) > get_order(s->object_size)) { 4517 s->flags &= ~DEBUG_METADATA_FLAGS; 4518 s->offset = 0; 4519 if (!calculate_sizes(s)) 4520 goto error; 4521 } 4522 } 4523 4524 #ifdef system_has_freelist_aba 4525 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 4526 /* Enable fast mode */ 4527 s->flags |= __CMPXCHG_DOUBLE; 4528 } 4529 #endif 4530 4531 /* 4532 * The larger the object size is, the more slabs we want on the partial 4533 * list to avoid pounding the page allocator excessively. 4534 */ 4535 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4536 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4537 4538 set_cpu_partial(s); 4539 4540 #ifdef CONFIG_NUMA 4541 s->remote_node_defrag_ratio = 1000; 4542 #endif 4543 4544 /* Initialize the pre-computed randomized freelist if slab is up */ 4545 if (slab_state >= UP) { 4546 if (init_cache_random_seq(s)) 4547 goto error; 4548 } 4549 4550 if (!init_kmem_cache_nodes(s)) 4551 goto error; 4552 4553 if (alloc_kmem_cache_cpus(s)) 4554 return 0; 4555 4556 error: 4557 __kmem_cache_release(s); 4558 return -EINVAL; 4559 } 4560 4561 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4562 const char *text) 4563 { 4564 #ifdef CONFIG_SLUB_DEBUG 4565 void *addr = slab_address(slab); 4566 void *p; 4567 4568 slab_err(s, slab, text, s->name); 4569 4570 spin_lock(&object_map_lock); 4571 __fill_map(object_map, s, slab); 4572 4573 for_each_object(p, s, addr, slab->objects) { 4574 4575 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 4576 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4577 print_tracking(s, p); 4578 } 4579 } 4580 spin_unlock(&object_map_lock); 4581 #endif 4582 } 4583 4584 /* 4585 * Attempt to free all partial slabs on a node. 4586 * This is called from __kmem_cache_shutdown(). We must take list_lock 4587 * because sysfs file might still access partial list after the shutdowning. 4588 */ 4589 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4590 { 4591 LIST_HEAD(discard); 4592 struct slab *slab, *h; 4593 4594 BUG_ON(irqs_disabled()); 4595 spin_lock_irq(&n->list_lock); 4596 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4597 if (!slab->inuse) { 4598 remove_partial(n, slab); 4599 list_add(&slab->slab_list, &discard); 4600 } else { 4601 list_slab_objects(s, slab, 4602 "Objects remaining in %s on __kmem_cache_shutdown()"); 4603 } 4604 } 4605 spin_unlock_irq(&n->list_lock); 4606 4607 list_for_each_entry_safe(slab, h, &discard, slab_list) 4608 discard_slab(s, slab); 4609 } 4610 4611 bool __kmem_cache_empty(struct kmem_cache *s) 4612 { 4613 int node; 4614 struct kmem_cache_node *n; 4615 4616 for_each_kmem_cache_node(s, node, n) 4617 if (n->nr_partial || node_nr_slabs(n)) 4618 return false; 4619 return true; 4620 } 4621 4622 /* 4623 * Release all resources used by a slab cache. 4624 */ 4625 int __kmem_cache_shutdown(struct kmem_cache *s) 4626 { 4627 int node; 4628 struct kmem_cache_node *n; 4629 4630 flush_all_cpus_locked(s); 4631 /* Attempt to free all objects */ 4632 for_each_kmem_cache_node(s, node, n) { 4633 free_partial(s, n); 4634 if (n->nr_partial || node_nr_slabs(n)) 4635 return 1; 4636 } 4637 return 0; 4638 } 4639 4640 #ifdef CONFIG_PRINTK 4641 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4642 { 4643 void *base; 4644 int __maybe_unused i; 4645 unsigned int objnr; 4646 void *objp; 4647 void *objp0; 4648 struct kmem_cache *s = slab->slab_cache; 4649 struct track __maybe_unused *trackp; 4650 4651 kpp->kp_ptr = object; 4652 kpp->kp_slab = slab; 4653 kpp->kp_slab_cache = s; 4654 base = slab_address(slab); 4655 objp0 = kasan_reset_tag(object); 4656 #ifdef CONFIG_SLUB_DEBUG 4657 objp = restore_red_left(s, objp0); 4658 #else 4659 objp = objp0; 4660 #endif 4661 objnr = obj_to_index(s, slab, objp); 4662 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4663 objp = base + s->size * objnr; 4664 kpp->kp_objp = objp; 4665 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4666 || (objp - base) % s->size) || 4667 !(s->flags & SLAB_STORE_USER)) 4668 return; 4669 #ifdef CONFIG_SLUB_DEBUG 4670 objp = fixup_red_left(s, objp); 4671 trackp = get_track(s, objp, TRACK_ALLOC); 4672 kpp->kp_ret = (void *)trackp->addr; 4673 #ifdef CONFIG_STACKDEPOT 4674 { 4675 depot_stack_handle_t handle; 4676 unsigned long *entries; 4677 unsigned int nr_entries; 4678 4679 handle = READ_ONCE(trackp->handle); 4680 if (handle) { 4681 nr_entries = stack_depot_fetch(handle, &entries); 4682 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4683 kpp->kp_stack[i] = (void *)entries[i]; 4684 } 4685 4686 trackp = get_track(s, objp, TRACK_FREE); 4687 handle = READ_ONCE(trackp->handle); 4688 if (handle) { 4689 nr_entries = stack_depot_fetch(handle, &entries); 4690 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4691 kpp->kp_free_stack[i] = (void *)entries[i]; 4692 } 4693 } 4694 #endif 4695 #endif 4696 } 4697 #endif 4698 4699 /******************************************************************** 4700 * Kmalloc subsystem 4701 *******************************************************************/ 4702 4703 static int __init setup_slub_min_order(char *str) 4704 { 4705 get_option(&str, (int *)&slub_min_order); 4706 4707 if (slub_min_order > slub_max_order) 4708 slub_max_order = slub_min_order; 4709 4710 return 1; 4711 } 4712 4713 __setup("slub_min_order=", setup_slub_min_order); 4714 4715 static int __init setup_slub_max_order(char *str) 4716 { 4717 get_option(&str, (int *)&slub_max_order); 4718 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER); 4719 4720 if (slub_min_order > slub_max_order) 4721 slub_min_order = slub_max_order; 4722 4723 return 1; 4724 } 4725 4726 __setup("slub_max_order=", setup_slub_max_order); 4727 4728 static int __init setup_slub_min_objects(char *str) 4729 { 4730 get_option(&str, (int *)&slub_min_objects); 4731 4732 return 1; 4733 } 4734 4735 __setup("slub_min_objects=", setup_slub_min_objects); 4736 4737 #ifdef CONFIG_HARDENED_USERCOPY 4738 /* 4739 * Rejects incorrectly sized objects and objects that are to be copied 4740 * to/from userspace but do not fall entirely within the containing slab 4741 * cache's usercopy region. 4742 * 4743 * Returns NULL if check passes, otherwise const char * to name of cache 4744 * to indicate an error. 4745 */ 4746 void __check_heap_object(const void *ptr, unsigned long n, 4747 const struct slab *slab, bool to_user) 4748 { 4749 struct kmem_cache *s; 4750 unsigned int offset; 4751 bool is_kfence = is_kfence_address(ptr); 4752 4753 ptr = kasan_reset_tag(ptr); 4754 4755 /* Find object and usable object size. */ 4756 s = slab->slab_cache; 4757 4758 /* Reject impossible pointers. */ 4759 if (ptr < slab_address(slab)) 4760 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4761 to_user, 0, n); 4762 4763 /* Find offset within object. */ 4764 if (is_kfence) 4765 offset = ptr - kfence_object_start(ptr); 4766 else 4767 offset = (ptr - slab_address(slab)) % s->size; 4768 4769 /* Adjust for redzone and reject if within the redzone. */ 4770 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4771 if (offset < s->red_left_pad) 4772 usercopy_abort("SLUB object in left red zone", 4773 s->name, to_user, offset, n); 4774 offset -= s->red_left_pad; 4775 } 4776 4777 /* Allow address range falling entirely within usercopy region. */ 4778 if (offset >= s->useroffset && 4779 offset - s->useroffset <= s->usersize && 4780 n <= s->useroffset - offset + s->usersize) 4781 return; 4782 4783 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4784 } 4785 #endif /* CONFIG_HARDENED_USERCOPY */ 4786 4787 #define SHRINK_PROMOTE_MAX 32 4788 4789 /* 4790 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4791 * up most to the head of the partial lists. New allocations will then 4792 * fill those up and thus they can be removed from the partial lists. 4793 * 4794 * The slabs with the least items are placed last. This results in them 4795 * being allocated from last increasing the chance that the last objects 4796 * are freed in them. 4797 */ 4798 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4799 { 4800 int node; 4801 int i; 4802 struct kmem_cache_node *n; 4803 struct slab *slab; 4804 struct slab *t; 4805 struct list_head discard; 4806 struct list_head promote[SHRINK_PROMOTE_MAX]; 4807 unsigned long flags; 4808 int ret = 0; 4809 4810 for_each_kmem_cache_node(s, node, n) { 4811 INIT_LIST_HEAD(&discard); 4812 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4813 INIT_LIST_HEAD(promote + i); 4814 4815 spin_lock_irqsave(&n->list_lock, flags); 4816 4817 /* 4818 * Build lists of slabs to discard or promote. 4819 * 4820 * Note that concurrent frees may occur while we hold the 4821 * list_lock. slab->inuse here is the upper limit. 4822 */ 4823 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4824 int free = slab->objects - slab->inuse; 4825 4826 /* Do not reread slab->inuse */ 4827 barrier(); 4828 4829 /* We do not keep full slabs on the list */ 4830 BUG_ON(free <= 0); 4831 4832 if (free == slab->objects) { 4833 list_move(&slab->slab_list, &discard); 4834 n->nr_partial--; 4835 dec_slabs_node(s, node, slab->objects); 4836 } else if (free <= SHRINK_PROMOTE_MAX) 4837 list_move(&slab->slab_list, promote + free - 1); 4838 } 4839 4840 /* 4841 * Promote the slabs filled up most to the head of the 4842 * partial list. 4843 */ 4844 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4845 list_splice(promote + i, &n->partial); 4846 4847 spin_unlock_irqrestore(&n->list_lock, flags); 4848 4849 /* Release empty slabs */ 4850 list_for_each_entry_safe(slab, t, &discard, slab_list) 4851 free_slab(s, slab); 4852 4853 if (node_nr_slabs(n)) 4854 ret = 1; 4855 } 4856 4857 return ret; 4858 } 4859 4860 int __kmem_cache_shrink(struct kmem_cache *s) 4861 { 4862 flush_all(s); 4863 return __kmem_cache_do_shrink(s); 4864 } 4865 4866 static int slab_mem_going_offline_callback(void *arg) 4867 { 4868 struct kmem_cache *s; 4869 4870 mutex_lock(&slab_mutex); 4871 list_for_each_entry(s, &slab_caches, list) { 4872 flush_all_cpus_locked(s); 4873 __kmem_cache_do_shrink(s); 4874 } 4875 mutex_unlock(&slab_mutex); 4876 4877 return 0; 4878 } 4879 4880 static void slab_mem_offline_callback(void *arg) 4881 { 4882 struct memory_notify *marg = arg; 4883 int offline_node; 4884 4885 offline_node = marg->status_change_nid_normal; 4886 4887 /* 4888 * If the node still has available memory. we need kmem_cache_node 4889 * for it yet. 4890 */ 4891 if (offline_node < 0) 4892 return; 4893 4894 mutex_lock(&slab_mutex); 4895 node_clear(offline_node, slab_nodes); 4896 /* 4897 * We no longer free kmem_cache_node structures here, as it would be 4898 * racy with all get_node() users, and infeasible to protect them with 4899 * slab_mutex. 4900 */ 4901 mutex_unlock(&slab_mutex); 4902 } 4903 4904 static int slab_mem_going_online_callback(void *arg) 4905 { 4906 struct kmem_cache_node *n; 4907 struct kmem_cache *s; 4908 struct memory_notify *marg = arg; 4909 int nid = marg->status_change_nid_normal; 4910 int ret = 0; 4911 4912 /* 4913 * If the node's memory is already available, then kmem_cache_node is 4914 * already created. Nothing to do. 4915 */ 4916 if (nid < 0) 4917 return 0; 4918 4919 /* 4920 * We are bringing a node online. No memory is available yet. We must 4921 * allocate a kmem_cache_node structure in order to bring the node 4922 * online. 4923 */ 4924 mutex_lock(&slab_mutex); 4925 list_for_each_entry(s, &slab_caches, list) { 4926 /* 4927 * The structure may already exist if the node was previously 4928 * onlined and offlined. 4929 */ 4930 if (get_node(s, nid)) 4931 continue; 4932 /* 4933 * XXX: kmem_cache_alloc_node will fallback to other nodes 4934 * since memory is not yet available from the node that 4935 * is brought up. 4936 */ 4937 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4938 if (!n) { 4939 ret = -ENOMEM; 4940 goto out; 4941 } 4942 init_kmem_cache_node(n); 4943 s->node[nid] = n; 4944 } 4945 /* 4946 * Any cache created after this point will also have kmem_cache_node 4947 * initialized for the new node. 4948 */ 4949 node_set(nid, slab_nodes); 4950 out: 4951 mutex_unlock(&slab_mutex); 4952 return ret; 4953 } 4954 4955 static int slab_memory_callback(struct notifier_block *self, 4956 unsigned long action, void *arg) 4957 { 4958 int ret = 0; 4959 4960 switch (action) { 4961 case MEM_GOING_ONLINE: 4962 ret = slab_mem_going_online_callback(arg); 4963 break; 4964 case MEM_GOING_OFFLINE: 4965 ret = slab_mem_going_offline_callback(arg); 4966 break; 4967 case MEM_OFFLINE: 4968 case MEM_CANCEL_ONLINE: 4969 slab_mem_offline_callback(arg); 4970 break; 4971 case MEM_ONLINE: 4972 case MEM_CANCEL_OFFLINE: 4973 break; 4974 } 4975 if (ret) 4976 ret = notifier_from_errno(ret); 4977 else 4978 ret = NOTIFY_OK; 4979 return ret; 4980 } 4981 4982 /******************************************************************** 4983 * Basic setup of slabs 4984 *******************************************************************/ 4985 4986 /* 4987 * Used for early kmem_cache structures that were allocated using 4988 * the page allocator. Allocate them properly then fix up the pointers 4989 * that may be pointing to the wrong kmem_cache structure. 4990 */ 4991 4992 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4993 { 4994 int node; 4995 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4996 struct kmem_cache_node *n; 4997 4998 memcpy(s, static_cache, kmem_cache->object_size); 4999 5000 /* 5001 * This runs very early, and only the boot processor is supposed to be 5002 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5003 * IPIs around. 5004 */ 5005 __flush_cpu_slab(s, smp_processor_id()); 5006 for_each_kmem_cache_node(s, node, n) { 5007 struct slab *p; 5008 5009 list_for_each_entry(p, &n->partial, slab_list) 5010 p->slab_cache = s; 5011 5012 #ifdef CONFIG_SLUB_DEBUG 5013 list_for_each_entry(p, &n->full, slab_list) 5014 p->slab_cache = s; 5015 #endif 5016 } 5017 list_add(&s->list, &slab_caches); 5018 return s; 5019 } 5020 5021 void __init kmem_cache_init(void) 5022 { 5023 static __initdata struct kmem_cache boot_kmem_cache, 5024 boot_kmem_cache_node; 5025 int node; 5026 5027 if (debug_guardpage_minorder()) 5028 slub_max_order = 0; 5029 5030 /* Print slub debugging pointers without hashing */ 5031 if (__slub_debug_enabled()) 5032 no_hash_pointers_enable(NULL); 5033 5034 kmem_cache_node = &boot_kmem_cache_node; 5035 kmem_cache = &boot_kmem_cache; 5036 5037 /* 5038 * Initialize the nodemask for which we will allocate per node 5039 * structures. Here we don't need taking slab_mutex yet. 5040 */ 5041 for_each_node_state(node, N_NORMAL_MEMORY) 5042 node_set(node, slab_nodes); 5043 5044 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5045 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 5046 5047 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5048 5049 /* Able to allocate the per node structures */ 5050 slab_state = PARTIAL; 5051 5052 create_boot_cache(kmem_cache, "kmem_cache", 5053 offsetof(struct kmem_cache, node) + 5054 nr_node_ids * sizeof(struct kmem_cache_node *), 5055 SLAB_HWCACHE_ALIGN, 0, 0); 5056 5057 kmem_cache = bootstrap(&boot_kmem_cache); 5058 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5059 5060 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5061 setup_kmalloc_cache_index_table(); 5062 create_kmalloc_caches(0); 5063 5064 /* Setup random freelists for each cache */ 5065 init_freelist_randomization(); 5066 5067 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5068 slub_cpu_dead); 5069 5070 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5071 cache_line_size(), 5072 slub_min_order, slub_max_order, slub_min_objects, 5073 nr_cpu_ids, nr_node_ids); 5074 } 5075 5076 void __init kmem_cache_init_late(void) 5077 { 5078 #ifndef CONFIG_SLUB_TINY 5079 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5080 WARN_ON(!flushwq); 5081 #endif 5082 } 5083 5084 struct kmem_cache * 5085 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5086 slab_flags_t flags, void (*ctor)(void *)) 5087 { 5088 struct kmem_cache *s; 5089 5090 s = find_mergeable(size, align, flags, name, ctor); 5091 if (s) { 5092 if (sysfs_slab_alias(s, name)) 5093 return NULL; 5094 5095 s->refcount++; 5096 5097 /* 5098 * Adjust the object sizes so that we clear 5099 * the complete object on kzalloc. 5100 */ 5101 s->object_size = max(s->object_size, size); 5102 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5103 } 5104 5105 return s; 5106 } 5107 5108 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5109 { 5110 int err; 5111 5112 err = kmem_cache_open(s, flags); 5113 if (err) 5114 return err; 5115 5116 /* Mutex is not taken during early boot */ 5117 if (slab_state <= UP) 5118 return 0; 5119 5120 err = sysfs_slab_add(s); 5121 if (err) { 5122 __kmem_cache_release(s); 5123 return err; 5124 } 5125 5126 if (s->flags & SLAB_STORE_USER) 5127 debugfs_slab_add(s); 5128 5129 return 0; 5130 } 5131 5132 #ifdef SLAB_SUPPORTS_SYSFS 5133 static int count_inuse(struct slab *slab) 5134 { 5135 return slab->inuse; 5136 } 5137 5138 static int count_total(struct slab *slab) 5139 { 5140 return slab->objects; 5141 } 5142 #endif 5143 5144 #ifdef CONFIG_SLUB_DEBUG 5145 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5146 unsigned long *obj_map) 5147 { 5148 void *p; 5149 void *addr = slab_address(slab); 5150 5151 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5152 return; 5153 5154 /* Now we know that a valid freelist exists */ 5155 __fill_map(obj_map, s, slab); 5156 for_each_object(p, s, addr, slab->objects) { 5157 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5158 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5159 5160 if (!check_object(s, slab, p, val)) 5161 break; 5162 } 5163 } 5164 5165 static int validate_slab_node(struct kmem_cache *s, 5166 struct kmem_cache_node *n, unsigned long *obj_map) 5167 { 5168 unsigned long count = 0; 5169 struct slab *slab; 5170 unsigned long flags; 5171 5172 spin_lock_irqsave(&n->list_lock, flags); 5173 5174 list_for_each_entry(slab, &n->partial, slab_list) { 5175 validate_slab(s, slab, obj_map); 5176 count++; 5177 } 5178 if (count != n->nr_partial) { 5179 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5180 s->name, count, n->nr_partial); 5181 slab_add_kunit_errors(); 5182 } 5183 5184 if (!(s->flags & SLAB_STORE_USER)) 5185 goto out; 5186 5187 list_for_each_entry(slab, &n->full, slab_list) { 5188 validate_slab(s, slab, obj_map); 5189 count++; 5190 } 5191 if (count != node_nr_slabs(n)) { 5192 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5193 s->name, count, node_nr_slabs(n)); 5194 slab_add_kunit_errors(); 5195 } 5196 5197 out: 5198 spin_unlock_irqrestore(&n->list_lock, flags); 5199 return count; 5200 } 5201 5202 long validate_slab_cache(struct kmem_cache *s) 5203 { 5204 int node; 5205 unsigned long count = 0; 5206 struct kmem_cache_node *n; 5207 unsigned long *obj_map; 5208 5209 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5210 if (!obj_map) 5211 return -ENOMEM; 5212 5213 flush_all(s); 5214 for_each_kmem_cache_node(s, node, n) 5215 count += validate_slab_node(s, n, obj_map); 5216 5217 bitmap_free(obj_map); 5218 5219 return count; 5220 } 5221 EXPORT_SYMBOL(validate_slab_cache); 5222 5223 #ifdef CONFIG_DEBUG_FS 5224 /* 5225 * Generate lists of code addresses where slabcache objects are allocated 5226 * and freed. 5227 */ 5228 5229 struct location { 5230 depot_stack_handle_t handle; 5231 unsigned long count; 5232 unsigned long addr; 5233 unsigned long waste; 5234 long long sum_time; 5235 long min_time; 5236 long max_time; 5237 long min_pid; 5238 long max_pid; 5239 DECLARE_BITMAP(cpus, NR_CPUS); 5240 nodemask_t nodes; 5241 }; 5242 5243 struct loc_track { 5244 unsigned long max; 5245 unsigned long count; 5246 struct location *loc; 5247 loff_t idx; 5248 }; 5249 5250 static struct dentry *slab_debugfs_root; 5251 5252 static void free_loc_track(struct loc_track *t) 5253 { 5254 if (t->max) 5255 free_pages((unsigned long)t->loc, 5256 get_order(sizeof(struct location) * t->max)); 5257 } 5258 5259 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5260 { 5261 struct location *l; 5262 int order; 5263 5264 order = get_order(sizeof(struct location) * max); 5265 5266 l = (void *)__get_free_pages(flags, order); 5267 if (!l) 5268 return 0; 5269 5270 if (t->count) { 5271 memcpy(l, t->loc, sizeof(struct location) * t->count); 5272 free_loc_track(t); 5273 } 5274 t->max = max; 5275 t->loc = l; 5276 return 1; 5277 } 5278 5279 static int add_location(struct loc_track *t, struct kmem_cache *s, 5280 const struct track *track, 5281 unsigned int orig_size) 5282 { 5283 long start, end, pos; 5284 struct location *l; 5285 unsigned long caddr, chandle, cwaste; 5286 unsigned long age = jiffies - track->when; 5287 depot_stack_handle_t handle = 0; 5288 unsigned int waste = s->object_size - orig_size; 5289 5290 #ifdef CONFIG_STACKDEPOT 5291 handle = READ_ONCE(track->handle); 5292 #endif 5293 start = -1; 5294 end = t->count; 5295 5296 for ( ; ; ) { 5297 pos = start + (end - start + 1) / 2; 5298 5299 /* 5300 * There is nothing at "end". If we end up there 5301 * we need to add something to before end. 5302 */ 5303 if (pos == end) 5304 break; 5305 5306 l = &t->loc[pos]; 5307 caddr = l->addr; 5308 chandle = l->handle; 5309 cwaste = l->waste; 5310 if ((track->addr == caddr) && (handle == chandle) && 5311 (waste == cwaste)) { 5312 5313 l->count++; 5314 if (track->when) { 5315 l->sum_time += age; 5316 if (age < l->min_time) 5317 l->min_time = age; 5318 if (age > l->max_time) 5319 l->max_time = age; 5320 5321 if (track->pid < l->min_pid) 5322 l->min_pid = track->pid; 5323 if (track->pid > l->max_pid) 5324 l->max_pid = track->pid; 5325 5326 cpumask_set_cpu(track->cpu, 5327 to_cpumask(l->cpus)); 5328 } 5329 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5330 return 1; 5331 } 5332 5333 if (track->addr < caddr) 5334 end = pos; 5335 else if (track->addr == caddr && handle < chandle) 5336 end = pos; 5337 else if (track->addr == caddr && handle == chandle && 5338 waste < cwaste) 5339 end = pos; 5340 else 5341 start = pos; 5342 } 5343 5344 /* 5345 * Not found. Insert new tracking element. 5346 */ 5347 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5348 return 0; 5349 5350 l = t->loc + pos; 5351 if (pos < t->count) 5352 memmove(l + 1, l, 5353 (t->count - pos) * sizeof(struct location)); 5354 t->count++; 5355 l->count = 1; 5356 l->addr = track->addr; 5357 l->sum_time = age; 5358 l->min_time = age; 5359 l->max_time = age; 5360 l->min_pid = track->pid; 5361 l->max_pid = track->pid; 5362 l->handle = handle; 5363 l->waste = waste; 5364 cpumask_clear(to_cpumask(l->cpus)); 5365 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5366 nodes_clear(l->nodes); 5367 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5368 return 1; 5369 } 5370 5371 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5372 struct slab *slab, enum track_item alloc, 5373 unsigned long *obj_map) 5374 { 5375 void *addr = slab_address(slab); 5376 bool is_alloc = (alloc == TRACK_ALLOC); 5377 void *p; 5378 5379 __fill_map(obj_map, s, slab); 5380 5381 for_each_object(p, s, addr, slab->objects) 5382 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5383 add_location(t, s, get_track(s, p, alloc), 5384 is_alloc ? get_orig_size(s, p) : 5385 s->object_size); 5386 } 5387 #endif /* CONFIG_DEBUG_FS */ 5388 #endif /* CONFIG_SLUB_DEBUG */ 5389 5390 #ifdef SLAB_SUPPORTS_SYSFS 5391 enum slab_stat_type { 5392 SL_ALL, /* All slabs */ 5393 SL_PARTIAL, /* Only partially allocated slabs */ 5394 SL_CPU, /* Only slabs used for cpu caches */ 5395 SL_OBJECTS, /* Determine allocated objects not slabs */ 5396 SL_TOTAL /* Determine object capacity not slabs */ 5397 }; 5398 5399 #define SO_ALL (1 << SL_ALL) 5400 #define SO_PARTIAL (1 << SL_PARTIAL) 5401 #define SO_CPU (1 << SL_CPU) 5402 #define SO_OBJECTS (1 << SL_OBJECTS) 5403 #define SO_TOTAL (1 << SL_TOTAL) 5404 5405 static ssize_t show_slab_objects(struct kmem_cache *s, 5406 char *buf, unsigned long flags) 5407 { 5408 unsigned long total = 0; 5409 int node; 5410 int x; 5411 unsigned long *nodes; 5412 int len = 0; 5413 5414 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5415 if (!nodes) 5416 return -ENOMEM; 5417 5418 if (flags & SO_CPU) { 5419 int cpu; 5420 5421 for_each_possible_cpu(cpu) { 5422 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5423 cpu); 5424 int node; 5425 struct slab *slab; 5426 5427 slab = READ_ONCE(c->slab); 5428 if (!slab) 5429 continue; 5430 5431 node = slab_nid(slab); 5432 if (flags & SO_TOTAL) 5433 x = slab->objects; 5434 else if (flags & SO_OBJECTS) 5435 x = slab->inuse; 5436 else 5437 x = 1; 5438 5439 total += x; 5440 nodes[node] += x; 5441 5442 #ifdef CONFIG_SLUB_CPU_PARTIAL 5443 slab = slub_percpu_partial_read_once(c); 5444 if (slab) { 5445 node = slab_nid(slab); 5446 if (flags & SO_TOTAL) 5447 WARN_ON_ONCE(1); 5448 else if (flags & SO_OBJECTS) 5449 WARN_ON_ONCE(1); 5450 else 5451 x = slab->slabs; 5452 total += x; 5453 nodes[node] += x; 5454 } 5455 #endif 5456 } 5457 } 5458 5459 /* 5460 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5461 * already held which will conflict with an existing lock order: 5462 * 5463 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5464 * 5465 * We don't really need mem_hotplug_lock (to hold off 5466 * slab_mem_going_offline_callback) here because slab's memory hot 5467 * unplug code doesn't destroy the kmem_cache->node[] data. 5468 */ 5469 5470 #ifdef CONFIG_SLUB_DEBUG 5471 if (flags & SO_ALL) { 5472 struct kmem_cache_node *n; 5473 5474 for_each_kmem_cache_node(s, node, n) { 5475 5476 if (flags & SO_TOTAL) 5477 x = node_nr_objs(n); 5478 else if (flags & SO_OBJECTS) 5479 x = node_nr_objs(n) - count_partial(n, count_free); 5480 else 5481 x = node_nr_slabs(n); 5482 total += x; 5483 nodes[node] += x; 5484 } 5485 5486 } else 5487 #endif 5488 if (flags & SO_PARTIAL) { 5489 struct kmem_cache_node *n; 5490 5491 for_each_kmem_cache_node(s, node, n) { 5492 if (flags & SO_TOTAL) 5493 x = count_partial(n, count_total); 5494 else if (flags & SO_OBJECTS) 5495 x = count_partial(n, count_inuse); 5496 else 5497 x = n->nr_partial; 5498 total += x; 5499 nodes[node] += x; 5500 } 5501 } 5502 5503 len += sysfs_emit_at(buf, len, "%lu", total); 5504 #ifdef CONFIG_NUMA 5505 for (node = 0; node < nr_node_ids; node++) { 5506 if (nodes[node]) 5507 len += sysfs_emit_at(buf, len, " N%d=%lu", 5508 node, nodes[node]); 5509 } 5510 #endif 5511 len += sysfs_emit_at(buf, len, "\n"); 5512 kfree(nodes); 5513 5514 return len; 5515 } 5516 5517 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5518 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5519 5520 struct slab_attribute { 5521 struct attribute attr; 5522 ssize_t (*show)(struct kmem_cache *s, char *buf); 5523 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5524 }; 5525 5526 #define SLAB_ATTR_RO(_name) \ 5527 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5528 5529 #define SLAB_ATTR(_name) \ 5530 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5531 5532 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5533 { 5534 return sysfs_emit(buf, "%u\n", s->size); 5535 } 5536 SLAB_ATTR_RO(slab_size); 5537 5538 static ssize_t align_show(struct kmem_cache *s, char *buf) 5539 { 5540 return sysfs_emit(buf, "%u\n", s->align); 5541 } 5542 SLAB_ATTR_RO(align); 5543 5544 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5545 { 5546 return sysfs_emit(buf, "%u\n", s->object_size); 5547 } 5548 SLAB_ATTR_RO(object_size); 5549 5550 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5551 { 5552 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5553 } 5554 SLAB_ATTR_RO(objs_per_slab); 5555 5556 static ssize_t order_show(struct kmem_cache *s, char *buf) 5557 { 5558 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5559 } 5560 SLAB_ATTR_RO(order); 5561 5562 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5563 { 5564 return sysfs_emit(buf, "%lu\n", s->min_partial); 5565 } 5566 5567 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5568 size_t length) 5569 { 5570 unsigned long min; 5571 int err; 5572 5573 err = kstrtoul(buf, 10, &min); 5574 if (err) 5575 return err; 5576 5577 s->min_partial = min; 5578 return length; 5579 } 5580 SLAB_ATTR(min_partial); 5581 5582 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5583 { 5584 unsigned int nr_partial = 0; 5585 #ifdef CONFIG_SLUB_CPU_PARTIAL 5586 nr_partial = s->cpu_partial; 5587 #endif 5588 5589 return sysfs_emit(buf, "%u\n", nr_partial); 5590 } 5591 5592 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5593 size_t length) 5594 { 5595 unsigned int objects; 5596 int err; 5597 5598 err = kstrtouint(buf, 10, &objects); 5599 if (err) 5600 return err; 5601 if (objects && !kmem_cache_has_cpu_partial(s)) 5602 return -EINVAL; 5603 5604 slub_set_cpu_partial(s, objects); 5605 flush_all(s); 5606 return length; 5607 } 5608 SLAB_ATTR(cpu_partial); 5609 5610 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5611 { 5612 if (!s->ctor) 5613 return 0; 5614 return sysfs_emit(buf, "%pS\n", s->ctor); 5615 } 5616 SLAB_ATTR_RO(ctor); 5617 5618 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5619 { 5620 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5621 } 5622 SLAB_ATTR_RO(aliases); 5623 5624 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5625 { 5626 return show_slab_objects(s, buf, SO_PARTIAL); 5627 } 5628 SLAB_ATTR_RO(partial); 5629 5630 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5631 { 5632 return show_slab_objects(s, buf, SO_CPU); 5633 } 5634 SLAB_ATTR_RO(cpu_slabs); 5635 5636 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5637 { 5638 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5639 } 5640 SLAB_ATTR_RO(objects_partial); 5641 5642 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5643 { 5644 int objects = 0; 5645 int slabs = 0; 5646 int cpu __maybe_unused; 5647 int len = 0; 5648 5649 #ifdef CONFIG_SLUB_CPU_PARTIAL 5650 for_each_online_cpu(cpu) { 5651 struct slab *slab; 5652 5653 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5654 5655 if (slab) 5656 slabs += slab->slabs; 5657 } 5658 #endif 5659 5660 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5661 objects = (slabs * oo_objects(s->oo)) / 2; 5662 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5663 5664 #ifdef CONFIG_SLUB_CPU_PARTIAL 5665 for_each_online_cpu(cpu) { 5666 struct slab *slab; 5667 5668 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5669 if (slab) { 5670 slabs = READ_ONCE(slab->slabs); 5671 objects = (slabs * oo_objects(s->oo)) / 2; 5672 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5673 cpu, objects, slabs); 5674 } 5675 } 5676 #endif 5677 len += sysfs_emit_at(buf, len, "\n"); 5678 5679 return len; 5680 } 5681 SLAB_ATTR_RO(slabs_cpu_partial); 5682 5683 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5684 { 5685 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5686 } 5687 SLAB_ATTR_RO(reclaim_account); 5688 5689 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5690 { 5691 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5692 } 5693 SLAB_ATTR_RO(hwcache_align); 5694 5695 #ifdef CONFIG_ZONE_DMA 5696 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5697 { 5698 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5699 } 5700 SLAB_ATTR_RO(cache_dma); 5701 #endif 5702 5703 #ifdef CONFIG_HARDENED_USERCOPY 5704 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5705 { 5706 return sysfs_emit(buf, "%u\n", s->usersize); 5707 } 5708 SLAB_ATTR_RO(usersize); 5709 #endif 5710 5711 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5712 { 5713 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5714 } 5715 SLAB_ATTR_RO(destroy_by_rcu); 5716 5717 #ifdef CONFIG_SLUB_DEBUG 5718 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5719 { 5720 return show_slab_objects(s, buf, SO_ALL); 5721 } 5722 SLAB_ATTR_RO(slabs); 5723 5724 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5725 { 5726 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5727 } 5728 SLAB_ATTR_RO(total_objects); 5729 5730 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5731 { 5732 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5733 } 5734 SLAB_ATTR_RO(objects); 5735 5736 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5737 { 5738 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5739 } 5740 SLAB_ATTR_RO(sanity_checks); 5741 5742 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5743 { 5744 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5745 } 5746 SLAB_ATTR_RO(trace); 5747 5748 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5749 { 5750 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5751 } 5752 5753 SLAB_ATTR_RO(red_zone); 5754 5755 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5756 { 5757 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5758 } 5759 5760 SLAB_ATTR_RO(poison); 5761 5762 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5763 { 5764 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5765 } 5766 5767 SLAB_ATTR_RO(store_user); 5768 5769 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5770 { 5771 return 0; 5772 } 5773 5774 static ssize_t validate_store(struct kmem_cache *s, 5775 const char *buf, size_t length) 5776 { 5777 int ret = -EINVAL; 5778 5779 if (buf[0] == '1' && kmem_cache_debug(s)) { 5780 ret = validate_slab_cache(s); 5781 if (ret >= 0) 5782 ret = length; 5783 } 5784 return ret; 5785 } 5786 SLAB_ATTR(validate); 5787 5788 #endif /* CONFIG_SLUB_DEBUG */ 5789 5790 #ifdef CONFIG_FAILSLAB 5791 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5792 { 5793 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5794 } 5795 5796 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5797 size_t length) 5798 { 5799 if (s->refcount > 1) 5800 return -EINVAL; 5801 5802 if (buf[0] == '1') 5803 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 5804 else 5805 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 5806 5807 return length; 5808 } 5809 SLAB_ATTR(failslab); 5810 #endif 5811 5812 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5813 { 5814 return 0; 5815 } 5816 5817 static ssize_t shrink_store(struct kmem_cache *s, 5818 const char *buf, size_t length) 5819 { 5820 if (buf[0] == '1') 5821 kmem_cache_shrink(s); 5822 else 5823 return -EINVAL; 5824 return length; 5825 } 5826 SLAB_ATTR(shrink); 5827 5828 #ifdef CONFIG_NUMA 5829 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5830 { 5831 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5832 } 5833 5834 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5835 const char *buf, size_t length) 5836 { 5837 unsigned int ratio; 5838 int err; 5839 5840 err = kstrtouint(buf, 10, &ratio); 5841 if (err) 5842 return err; 5843 if (ratio > 100) 5844 return -ERANGE; 5845 5846 s->remote_node_defrag_ratio = ratio * 10; 5847 5848 return length; 5849 } 5850 SLAB_ATTR(remote_node_defrag_ratio); 5851 #endif 5852 5853 #ifdef CONFIG_SLUB_STATS 5854 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5855 { 5856 unsigned long sum = 0; 5857 int cpu; 5858 int len = 0; 5859 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5860 5861 if (!data) 5862 return -ENOMEM; 5863 5864 for_each_online_cpu(cpu) { 5865 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5866 5867 data[cpu] = x; 5868 sum += x; 5869 } 5870 5871 len += sysfs_emit_at(buf, len, "%lu", sum); 5872 5873 #ifdef CONFIG_SMP 5874 for_each_online_cpu(cpu) { 5875 if (data[cpu]) 5876 len += sysfs_emit_at(buf, len, " C%d=%u", 5877 cpu, data[cpu]); 5878 } 5879 #endif 5880 kfree(data); 5881 len += sysfs_emit_at(buf, len, "\n"); 5882 5883 return len; 5884 } 5885 5886 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5887 { 5888 int cpu; 5889 5890 for_each_online_cpu(cpu) 5891 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5892 } 5893 5894 #define STAT_ATTR(si, text) \ 5895 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5896 { \ 5897 return show_stat(s, buf, si); \ 5898 } \ 5899 static ssize_t text##_store(struct kmem_cache *s, \ 5900 const char *buf, size_t length) \ 5901 { \ 5902 if (buf[0] != '0') \ 5903 return -EINVAL; \ 5904 clear_stat(s, si); \ 5905 return length; \ 5906 } \ 5907 SLAB_ATTR(text); \ 5908 5909 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5910 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5911 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5912 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5913 STAT_ATTR(FREE_FROZEN, free_frozen); 5914 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5915 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5916 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5917 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5918 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5919 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5920 STAT_ATTR(FREE_SLAB, free_slab); 5921 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5922 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5923 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5924 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5925 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5926 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5927 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5928 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5929 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5930 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5931 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5932 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5933 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5934 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5935 #endif /* CONFIG_SLUB_STATS */ 5936 5937 #ifdef CONFIG_KFENCE 5938 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 5939 { 5940 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 5941 } 5942 5943 static ssize_t skip_kfence_store(struct kmem_cache *s, 5944 const char *buf, size_t length) 5945 { 5946 int ret = length; 5947 5948 if (buf[0] == '0') 5949 s->flags &= ~SLAB_SKIP_KFENCE; 5950 else if (buf[0] == '1') 5951 s->flags |= SLAB_SKIP_KFENCE; 5952 else 5953 ret = -EINVAL; 5954 5955 return ret; 5956 } 5957 SLAB_ATTR(skip_kfence); 5958 #endif 5959 5960 static struct attribute *slab_attrs[] = { 5961 &slab_size_attr.attr, 5962 &object_size_attr.attr, 5963 &objs_per_slab_attr.attr, 5964 &order_attr.attr, 5965 &min_partial_attr.attr, 5966 &cpu_partial_attr.attr, 5967 &objects_partial_attr.attr, 5968 &partial_attr.attr, 5969 &cpu_slabs_attr.attr, 5970 &ctor_attr.attr, 5971 &aliases_attr.attr, 5972 &align_attr.attr, 5973 &hwcache_align_attr.attr, 5974 &reclaim_account_attr.attr, 5975 &destroy_by_rcu_attr.attr, 5976 &shrink_attr.attr, 5977 &slabs_cpu_partial_attr.attr, 5978 #ifdef CONFIG_SLUB_DEBUG 5979 &total_objects_attr.attr, 5980 &objects_attr.attr, 5981 &slabs_attr.attr, 5982 &sanity_checks_attr.attr, 5983 &trace_attr.attr, 5984 &red_zone_attr.attr, 5985 &poison_attr.attr, 5986 &store_user_attr.attr, 5987 &validate_attr.attr, 5988 #endif 5989 #ifdef CONFIG_ZONE_DMA 5990 &cache_dma_attr.attr, 5991 #endif 5992 #ifdef CONFIG_NUMA 5993 &remote_node_defrag_ratio_attr.attr, 5994 #endif 5995 #ifdef CONFIG_SLUB_STATS 5996 &alloc_fastpath_attr.attr, 5997 &alloc_slowpath_attr.attr, 5998 &free_fastpath_attr.attr, 5999 &free_slowpath_attr.attr, 6000 &free_frozen_attr.attr, 6001 &free_add_partial_attr.attr, 6002 &free_remove_partial_attr.attr, 6003 &alloc_from_partial_attr.attr, 6004 &alloc_slab_attr.attr, 6005 &alloc_refill_attr.attr, 6006 &alloc_node_mismatch_attr.attr, 6007 &free_slab_attr.attr, 6008 &cpuslab_flush_attr.attr, 6009 &deactivate_full_attr.attr, 6010 &deactivate_empty_attr.attr, 6011 &deactivate_to_head_attr.attr, 6012 &deactivate_to_tail_attr.attr, 6013 &deactivate_remote_frees_attr.attr, 6014 &deactivate_bypass_attr.attr, 6015 &order_fallback_attr.attr, 6016 &cmpxchg_double_fail_attr.attr, 6017 &cmpxchg_double_cpu_fail_attr.attr, 6018 &cpu_partial_alloc_attr.attr, 6019 &cpu_partial_free_attr.attr, 6020 &cpu_partial_node_attr.attr, 6021 &cpu_partial_drain_attr.attr, 6022 #endif 6023 #ifdef CONFIG_FAILSLAB 6024 &failslab_attr.attr, 6025 #endif 6026 #ifdef CONFIG_HARDENED_USERCOPY 6027 &usersize_attr.attr, 6028 #endif 6029 #ifdef CONFIG_KFENCE 6030 &skip_kfence_attr.attr, 6031 #endif 6032 6033 NULL 6034 }; 6035 6036 static const struct attribute_group slab_attr_group = { 6037 .attrs = slab_attrs, 6038 }; 6039 6040 static ssize_t slab_attr_show(struct kobject *kobj, 6041 struct attribute *attr, 6042 char *buf) 6043 { 6044 struct slab_attribute *attribute; 6045 struct kmem_cache *s; 6046 6047 attribute = to_slab_attr(attr); 6048 s = to_slab(kobj); 6049 6050 if (!attribute->show) 6051 return -EIO; 6052 6053 return attribute->show(s, buf); 6054 } 6055 6056 static ssize_t slab_attr_store(struct kobject *kobj, 6057 struct attribute *attr, 6058 const char *buf, size_t len) 6059 { 6060 struct slab_attribute *attribute; 6061 struct kmem_cache *s; 6062 6063 attribute = to_slab_attr(attr); 6064 s = to_slab(kobj); 6065 6066 if (!attribute->store) 6067 return -EIO; 6068 6069 return attribute->store(s, buf, len); 6070 } 6071 6072 static void kmem_cache_release(struct kobject *k) 6073 { 6074 slab_kmem_cache_release(to_slab(k)); 6075 } 6076 6077 static const struct sysfs_ops slab_sysfs_ops = { 6078 .show = slab_attr_show, 6079 .store = slab_attr_store, 6080 }; 6081 6082 static const struct kobj_type slab_ktype = { 6083 .sysfs_ops = &slab_sysfs_ops, 6084 .release = kmem_cache_release, 6085 }; 6086 6087 static struct kset *slab_kset; 6088 6089 static inline struct kset *cache_kset(struct kmem_cache *s) 6090 { 6091 return slab_kset; 6092 } 6093 6094 #define ID_STR_LENGTH 32 6095 6096 /* Create a unique string id for a slab cache: 6097 * 6098 * Format :[flags-]size 6099 */ 6100 static char *create_unique_id(struct kmem_cache *s) 6101 { 6102 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6103 char *p = name; 6104 6105 if (!name) 6106 return ERR_PTR(-ENOMEM); 6107 6108 *p++ = ':'; 6109 /* 6110 * First flags affecting slabcache operations. We will only 6111 * get here for aliasable slabs so we do not need to support 6112 * too many flags. The flags here must cover all flags that 6113 * are matched during merging to guarantee that the id is 6114 * unique. 6115 */ 6116 if (s->flags & SLAB_CACHE_DMA) 6117 *p++ = 'd'; 6118 if (s->flags & SLAB_CACHE_DMA32) 6119 *p++ = 'D'; 6120 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6121 *p++ = 'a'; 6122 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6123 *p++ = 'F'; 6124 if (s->flags & SLAB_ACCOUNT) 6125 *p++ = 'A'; 6126 if (p != name + 1) 6127 *p++ = '-'; 6128 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6129 6130 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6131 kfree(name); 6132 return ERR_PTR(-EINVAL); 6133 } 6134 kmsan_unpoison_memory(name, p - name); 6135 return name; 6136 } 6137 6138 static int sysfs_slab_add(struct kmem_cache *s) 6139 { 6140 int err; 6141 const char *name; 6142 struct kset *kset = cache_kset(s); 6143 int unmergeable = slab_unmergeable(s); 6144 6145 if (!unmergeable && disable_higher_order_debug && 6146 (slub_debug & DEBUG_METADATA_FLAGS)) 6147 unmergeable = 1; 6148 6149 if (unmergeable) { 6150 /* 6151 * Slabcache can never be merged so we can use the name proper. 6152 * This is typically the case for debug situations. In that 6153 * case we can catch duplicate names easily. 6154 */ 6155 sysfs_remove_link(&slab_kset->kobj, s->name); 6156 name = s->name; 6157 } else { 6158 /* 6159 * Create a unique name for the slab as a target 6160 * for the symlinks. 6161 */ 6162 name = create_unique_id(s); 6163 if (IS_ERR(name)) 6164 return PTR_ERR(name); 6165 } 6166 6167 s->kobj.kset = kset; 6168 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6169 if (err) 6170 goto out; 6171 6172 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6173 if (err) 6174 goto out_del_kobj; 6175 6176 if (!unmergeable) { 6177 /* Setup first alias */ 6178 sysfs_slab_alias(s, s->name); 6179 } 6180 out: 6181 if (!unmergeable) 6182 kfree(name); 6183 return err; 6184 out_del_kobj: 6185 kobject_del(&s->kobj); 6186 goto out; 6187 } 6188 6189 void sysfs_slab_unlink(struct kmem_cache *s) 6190 { 6191 if (slab_state >= FULL) 6192 kobject_del(&s->kobj); 6193 } 6194 6195 void sysfs_slab_release(struct kmem_cache *s) 6196 { 6197 if (slab_state >= FULL) 6198 kobject_put(&s->kobj); 6199 } 6200 6201 /* 6202 * Need to buffer aliases during bootup until sysfs becomes 6203 * available lest we lose that information. 6204 */ 6205 struct saved_alias { 6206 struct kmem_cache *s; 6207 const char *name; 6208 struct saved_alias *next; 6209 }; 6210 6211 static struct saved_alias *alias_list; 6212 6213 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 6214 { 6215 struct saved_alias *al; 6216 6217 if (slab_state == FULL) { 6218 /* 6219 * If we have a leftover link then remove it. 6220 */ 6221 sysfs_remove_link(&slab_kset->kobj, name); 6222 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6223 } 6224 6225 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6226 if (!al) 6227 return -ENOMEM; 6228 6229 al->s = s; 6230 al->name = name; 6231 al->next = alias_list; 6232 alias_list = al; 6233 kmsan_unpoison_memory(al, sizeof(*al)); 6234 return 0; 6235 } 6236 6237 static int __init slab_sysfs_init(void) 6238 { 6239 struct kmem_cache *s; 6240 int err; 6241 6242 mutex_lock(&slab_mutex); 6243 6244 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6245 if (!slab_kset) { 6246 mutex_unlock(&slab_mutex); 6247 pr_err("Cannot register slab subsystem.\n"); 6248 return -ENOMEM; 6249 } 6250 6251 slab_state = FULL; 6252 6253 list_for_each_entry(s, &slab_caches, list) { 6254 err = sysfs_slab_add(s); 6255 if (err) 6256 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6257 s->name); 6258 } 6259 6260 while (alias_list) { 6261 struct saved_alias *al = alias_list; 6262 6263 alias_list = alias_list->next; 6264 err = sysfs_slab_alias(al->s, al->name); 6265 if (err) 6266 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6267 al->name); 6268 kfree(al); 6269 } 6270 6271 mutex_unlock(&slab_mutex); 6272 return 0; 6273 } 6274 late_initcall(slab_sysfs_init); 6275 #endif /* SLAB_SUPPORTS_SYSFS */ 6276 6277 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6278 static int slab_debugfs_show(struct seq_file *seq, void *v) 6279 { 6280 struct loc_track *t = seq->private; 6281 struct location *l; 6282 unsigned long idx; 6283 6284 idx = (unsigned long) t->idx; 6285 if (idx < t->count) { 6286 l = &t->loc[idx]; 6287 6288 seq_printf(seq, "%7ld ", l->count); 6289 6290 if (l->addr) 6291 seq_printf(seq, "%pS", (void *)l->addr); 6292 else 6293 seq_puts(seq, "<not-available>"); 6294 6295 if (l->waste) 6296 seq_printf(seq, " waste=%lu/%lu", 6297 l->count * l->waste, l->waste); 6298 6299 if (l->sum_time != l->min_time) { 6300 seq_printf(seq, " age=%ld/%llu/%ld", 6301 l->min_time, div_u64(l->sum_time, l->count), 6302 l->max_time); 6303 } else 6304 seq_printf(seq, " age=%ld", l->min_time); 6305 6306 if (l->min_pid != l->max_pid) 6307 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6308 else 6309 seq_printf(seq, " pid=%ld", 6310 l->min_pid); 6311 6312 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6313 seq_printf(seq, " cpus=%*pbl", 6314 cpumask_pr_args(to_cpumask(l->cpus))); 6315 6316 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6317 seq_printf(seq, " nodes=%*pbl", 6318 nodemask_pr_args(&l->nodes)); 6319 6320 #ifdef CONFIG_STACKDEPOT 6321 { 6322 depot_stack_handle_t handle; 6323 unsigned long *entries; 6324 unsigned int nr_entries, j; 6325 6326 handle = READ_ONCE(l->handle); 6327 if (handle) { 6328 nr_entries = stack_depot_fetch(handle, &entries); 6329 seq_puts(seq, "\n"); 6330 for (j = 0; j < nr_entries; j++) 6331 seq_printf(seq, " %pS\n", (void *)entries[j]); 6332 } 6333 } 6334 #endif 6335 seq_puts(seq, "\n"); 6336 } 6337 6338 if (!idx && !t->count) 6339 seq_puts(seq, "No data\n"); 6340 6341 return 0; 6342 } 6343 6344 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6345 { 6346 } 6347 6348 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6349 { 6350 struct loc_track *t = seq->private; 6351 6352 t->idx = ++(*ppos); 6353 if (*ppos <= t->count) 6354 return ppos; 6355 6356 return NULL; 6357 } 6358 6359 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6360 { 6361 struct location *loc1 = (struct location *)a; 6362 struct location *loc2 = (struct location *)b; 6363 6364 if (loc1->count > loc2->count) 6365 return -1; 6366 else 6367 return 1; 6368 } 6369 6370 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6371 { 6372 struct loc_track *t = seq->private; 6373 6374 t->idx = *ppos; 6375 return ppos; 6376 } 6377 6378 static const struct seq_operations slab_debugfs_sops = { 6379 .start = slab_debugfs_start, 6380 .next = slab_debugfs_next, 6381 .stop = slab_debugfs_stop, 6382 .show = slab_debugfs_show, 6383 }; 6384 6385 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6386 { 6387 6388 struct kmem_cache_node *n; 6389 enum track_item alloc; 6390 int node; 6391 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6392 sizeof(struct loc_track)); 6393 struct kmem_cache *s = file_inode(filep)->i_private; 6394 unsigned long *obj_map; 6395 6396 if (!t) 6397 return -ENOMEM; 6398 6399 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6400 if (!obj_map) { 6401 seq_release_private(inode, filep); 6402 return -ENOMEM; 6403 } 6404 6405 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6406 alloc = TRACK_ALLOC; 6407 else 6408 alloc = TRACK_FREE; 6409 6410 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6411 bitmap_free(obj_map); 6412 seq_release_private(inode, filep); 6413 return -ENOMEM; 6414 } 6415 6416 for_each_kmem_cache_node(s, node, n) { 6417 unsigned long flags; 6418 struct slab *slab; 6419 6420 if (!node_nr_slabs(n)) 6421 continue; 6422 6423 spin_lock_irqsave(&n->list_lock, flags); 6424 list_for_each_entry(slab, &n->partial, slab_list) 6425 process_slab(t, s, slab, alloc, obj_map); 6426 list_for_each_entry(slab, &n->full, slab_list) 6427 process_slab(t, s, slab, alloc, obj_map); 6428 spin_unlock_irqrestore(&n->list_lock, flags); 6429 } 6430 6431 /* Sort locations by count */ 6432 sort_r(t->loc, t->count, sizeof(struct location), 6433 cmp_loc_by_count, NULL, NULL); 6434 6435 bitmap_free(obj_map); 6436 return 0; 6437 } 6438 6439 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6440 { 6441 struct seq_file *seq = file->private_data; 6442 struct loc_track *t = seq->private; 6443 6444 free_loc_track(t); 6445 return seq_release_private(inode, file); 6446 } 6447 6448 static const struct file_operations slab_debugfs_fops = { 6449 .open = slab_debug_trace_open, 6450 .read = seq_read, 6451 .llseek = seq_lseek, 6452 .release = slab_debug_trace_release, 6453 }; 6454 6455 static void debugfs_slab_add(struct kmem_cache *s) 6456 { 6457 struct dentry *slab_cache_dir; 6458 6459 if (unlikely(!slab_debugfs_root)) 6460 return; 6461 6462 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6463 6464 debugfs_create_file("alloc_traces", 0400, 6465 slab_cache_dir, s, &slab_debugfs_fops); 6466 6467 debugfs_create_file("free_traces", 0400, 6468 slab_cache_dir, s, &slab_debugfs_fops); 6469 } 6470 6471 void debugfs_slab_release(struct kmem_cache *s) 6472 { 6473 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 6474 } 6475 6476 static int __init slab_debugfs_init(void) 6477 { 6478 struct kmem_cache *s; 6479 6480 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6481 6482 list_for_each_entry(s, &slab_caches, list) 6483 if (s->flags & SLAB_STORE_USER) 6484 debugfs_slab_add(s); 6485 6486 return 0; 6487 6488 } 6489 __initcall(slab_debugfs_init); 6490 #endif 6491 /* 6492 * The /proc/slabinfo ABI 6493 */ 6494 #ifdef CONFIG_SLUB_DEBUG 6495 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6496 { 6497 unsigned long nr_slabs = 0; 6498 unsigned long nr_objs = 0; 6499 unsigned long nr_free = 0; 6500 int node; 6501 struct kmem_cache_node *n; 6502 6503 for_each_kmem_cache_node(s, node, n) { 6504 nr_slabs += node_nr_slabs(n); 6505 nr_objs += node_nr_objs(n); 6506 nr_free += count_partial(n, count_free); 6507 } 6508 6509 sinfo->active_objs = nr_objs - nr_free; 6510 sinfo->num_objs = nr_objs; 6511 sinfo->active_slabs = nr_slabs; 6512 sinfo->num_slabs = nr_slabs; 6513 sinfo->objects_per_slab = oo_objects(s->oo); 6514 sinfo->cache_order = oo_order(s->oo); 6515 } 6516 6517 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6518 { 6519 } 6520 6521 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6522 size_t count, loff_t *ppos) 6523 { 6524 return -EIO; 6525 } 6526 #endif /* CONFIG_SLUB_DEBUG */ 6527