1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * Returns freelist pointer (ptr). With hardening, this is obfuscated 470 * with an XOR of the address where the pointer is held and a per-cache 471 * random number. 472 */ 473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 474 void *ptr, unsigned long ptr_addr) 475 { 476 unsigned long encoded; 477 478 #ifdef CONFIG_SLAB_FREELIST_HARDENED 479 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 480 #else 481 encoded = (unsigned long)ptr; 482 #endif 483 return (freeptr_t){.v = encoded}; 484 } 485 486 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 487 freeptr_t ptr, unsigned long ptr_addr) 488 { 489 void *decoded; 490 491 #ifdef CONFIG_SLAB_FREELIST_HARDENED 492 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 493 #else 494 decoded = (void *)ptr.v; 495 #endif 496 return decoded; 497 } 498 499 static inline void *get_freepointer(struct kmem_cache *s, void *object) 500 { 501 unsigned long ptr_addr; 502 freeptr_t p; 503 504 object = kasan_reset_tag(object); 505 ptr_addr = (unsigned long)object + s->offset; 506 p = *(freeptr_t *)(ptr_addr); 507 return freelist_ptr_decode(s, p, ptr_addr); 508 } 509 510 #ifndef CONFIG_SLUB_TINY 511 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 512 { 513 prefetchw(object + s->offset); 514 } 515 #endif 516 517 /* 518 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 519 * pointer value in the case the current thread loses the race for the next 520 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 521 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 522 * KMSAN will still check all arguments of cmpxchg because of imperfect 523 * handling of inline assembly. 524 * To work around this problem, we apply __no_kmsan_checks to ensure that 525 * get_freepointer_safe() returns initialized memory. 526 */ 527 __no_kmsan_checks 528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 529 { 530 unsigned long freepointer_addr; 531 freeptr_t p; 532 533 if (!debug_pagealloc_enabled_static()) 534 return get_freepointer(s, object); 535 536 object = kasan_reset_tag(object); 537 freepointer_addr = (unsigned long)object + s->offset; 538 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 539 return freelist_ptr_decode(s, p, freepointer_addr); 540 } 541 542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 543 { 544 unsigned long freeptr_addr = (unsigned long)object + s->offset; 545 546 #ifdef CONFIG_SLAB_FREELIST_HARDENED 547 BUG_ON(object == fp); /* naive detection of double free or corruption */ 548 #endif 549 550 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 551 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 552 } 553 554 /* 555 * See comment in calculate_sizes(). 556 */ 557 static inline bool freeptr_outside_object(struct kmem_cache *s) 558 { 559 return s->offset >= s->inuse; 560 } 561 562 /* 563 * Return offset of the end of info block which is inuse + free pointer if 564 * not overlapping with object. 565 */ 566 static inline unsigned int get_info_end(struct kmem_cache *s) 567 { 568 if (freeptr_outside_object(s)) 569 return s->inuse + sizeof(void *); 570 else 571 return s->inuse; 572 } 573 574 /* Loop over all objects in a slab */ 575 #define for_each_object(__p, __s, __addr, __objects) \ 576 for (__p = fixup_red_left(__s, __addr); \ 577 __p < (__addr) + (__objects) * (__s)->size; \ 578 __p += (__s)->size) 579 580 static inline unsigned int order_objects(unsigned int order, unsigned int size) 581 { 582 return ((unsigned int)PAGE_SIZE << order) / size; 583 } 584 585 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 586 unsigned int size) 587 { 588 struct kmem_cache_order_objects x = { 589 (order << OO_SHIFT) + order_objects(order, size) 590 }; 591 592 return x; 593 } 594 595 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 596 { 597 return x.x >> OO_SHIFT; 598 } 599 600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 601 { 602 return x.x & OO_MASK; 603 } 604 605 #ifdef CONFIG_SLUB_CPU_PARTIAL 606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 607 { 608 unsigned int nr_slabs; 609 610 s->cpu_partial = nr_objects; 611 612 /* 613 * We take the number of objects but actually limit the number of 614 * slabs on the per cpu partial list, in order to limit excessive 615 * growth of the list. For simplicity we assume that the slabs will 616 * be half-full. 617 */ 618 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 619 s->cpu_partial_slabs = nr_slabs; 620 } 621 622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 623 { 624 return s->cpu_partial_slabs; 625 } 626 #else 627 static inline void 628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 629 { 630 } 631 632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 633 { 634 return 0; 635 } 636 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 637 638 /* 639 * Per slab locking using the pagelock 640 */ 641 static __always_inline void slab_lock(struct slab *slab) 642 { 643 bit_spin_lock(PG_locked, &slab->__page_flags); 644 } 645 646 static __always_inline void slab_unlock(struct slab *slab) 647 { 648 bit_spin_unlock(PG_locked, &slab->__page_flags); 649 } 650 651 static inline bool 652 __update_freelist_fast(struct slab *slab, 653 void *freelist_old, unsigned long counters_old, 654 void *freelist_new, unsigned long counters_new) 655 { 656 #ifdef system_has_freelist_aba 657 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 658 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 659 660 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 661 #else 662 return false; 663 #endif 664 } 665 666 static inline bool 667 __update_freelist_slow(struct slab *slab, 668 void *freelist_old, unsigned long counters_old, 669 void *freelist_new, unsigned long counters_new) 670 { 671 bool ret = false; 672 673 slab_lock(slab); 674 if (slab->freelist == freelist_old && 675 slab->counters == counters_old) { 676 slab->freelist = freelist_new; 677 slab->counters = counters_new; 678 ret = true; 679 } 680 slab_unlock(slab); 681 682 return ret; 683 } 684 685 /* 686 * Interrupts must be disabled (for the fallback code to work right), typically 687 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 688 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 689 * allocation/ free operation in hardirq context. Therefore nothing can 690 * interrupt the operation. 691 */ 692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 693 void *freelist_old, unsigned long counters_old, 694 void *freelist_new, unsigned long counters_new, 695 const char *n) 696 { 697 bool ret; 698 699 if (USE_LOCKLESS_FAST_PATH()) 700 lockdep_assert_irqs_disabled(); 701 702 if (s->flags & __CMPXCHG_DOUBLE) { 703 ret = __update_freelist_fast(slab, freelist_old, counters_old, 704 freelist_new, counters_new); 705 } else { 706 ret = __update_freelist_slow(slab, freelist_old, counters_old, 707 freelist_new, counters_new); 708 } 709 if (likely(ret)) 710 return true; 711 712 cpu_relax(); 713 stat(s, CMPXCHG_DOUBLE_FAIL); 714 715 #ifdef SLUB_DEBUG_CMPXCHG 716 pr_info("%s %s: cmpxchg double redo ", n, s->name); 717 #endif 718 719 return false; 720 } 721 722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 723 void *freelist_old, unsigned long counters_old, 724 void *freelist_new, unsigned long counters_new, 725 const char *n) 726 { 727 bool ret; 728 729 if (s->flags & __CMPXCHG_DOUBLE) { 730 ret = __update_freelist_fast(slab, freelist_old, counters_old, 731 freelist_new, counters_new); 732 } else { 733 unsigned long flags; 734 735 local_irq_save(flags); 736 ret = __update_freelist_slow(slab, freelist_old, counters_old, 737 freelist_new, counters_new); 738 local_irq_restore(flags); 739 } 740 if (likely(ret)) 741 return true; 742 743 cpu_relax(); 744 stat(s, CMPXCHG_DOUBLE_FAIL); 745 746 #ifdef SLUB_DEBUG_CMPXCHG 747 pr_info("%s %s: cmpxchg double redo ", n, s->name); 748 #endif 749 750 return false; 751 } 752 753 #ifdef CONFIG_SLUB_DEBUG 754 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 755 static DEFINE_SPINLOCK(object_map_lock); 756 757 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 758 struct slab *slab) 759 { 760 void *addr = slab_address(slab); 761 void *p; 762 763 bitmap_zero(obj_map, slab->objects); 764 765 for (p = slab->freelist; p; p = get_freepointer(s, p)) 766 set_bit(__obj_to_index(s, addr, p), obj_map); 767 } 768 769 #if IS_ENABLED(CONFIG_KUNIT) 770 static bool slab_add_kunit_errors(void) 771 { 772 struct kunit_resource *resource; 773 774 if (!kunit_get_current_test()) 775 return false; 776 777 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 778 if (!resource) 779 return false; 780 781 (*(int *)resource->data)++; 782 kunit_put_resource(resource); 783 return true; 784 } 785 786 static bool slab_in_kunit_test(void) 787 { 788 struct kunit_resource *resource; 789 790 if (!kunit_get_current_test()) 791 return false; 792 793 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 794 if (!resource) 795 return false; 796 797 kunit_put_resource(resource); 798 return true; 799 } 800 #else 801 static inline bool slab_add_kunit_errors(void) { return false; } 802 static inline bool slab_in_kunit_test(void) { return false; } 803 #endif 804 805 static inline unsigned int size_from_object(struct kmem_cache *s) 806 { 807 if (s->flags & SLAB_RED_ZONE) 808 return s->size - s->red_left_pad; 809 810 return s->size; 811 } 812 813 static inline void *restore_red_left(struct kmem_cache *s, void *p) 814 { 815 if (s->flags & SLAB_RED_ZONE) 816 p -= s->red_left_pad; 817 818 return p; 819 } 820 821 /* 822 * Debug settings: 823 */ 824 #if defined(CONFIG_SLUB_DEBUG_ON) 825 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 826 #else 827 static slab_flags_t slub_debug; 828 #endif 829 830 static char *slub_debug_string; 831 static int disable_higher_order_debug; 832 833 /* 834 * slub is about to manipulate internal object metadata. This memory lies 835 * outside the range of the allocated object, so accessing it would normally 836 * be reported by kasan as a bounds error. metadata_access_enable() is used 837 * to tell kasan that these accesses are OK. 838 */ 839 static inline void metadata_access_enable(void) 840 { 841 kasan_disable_current(); 842 kmsan_disable_current(); 843 } 844 845 static inline void metadata_access_disable(void) 846 { 847 kmsan_enable_current(); 848 kasan_enable_current(); 849 } 850 851 /* 852 * Object debugging 853 */ 854 855 /* Verify that a pointer has an address that is valid within a slab page */ 856 static inline int check_valid_pointer(struct kmem_cache *s, 857 struct slab *slab, void *object) 858 { 859 void *base; 860 861 if (!object) 862 return 1; 863 864 base = slab_address(slab); 865 object = kasan_reset_tag(object); 866 object = restore_red_left(s, object); 867 if (object < base || object >= base + slab->objects * s->size || 868 (object - base) % s->size) { 869 return 0; 870 } 871 872 return 1; 873 } 874 875 static void print_section(char *level, char *text, u8 *addr, 876 unsigned int length) 877 { 878 metadata_access_enable(); 879 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 880 16, 1, kasan_reset_tag((void *)addr), length, 1); 881 metadata_access_disable(); 882 } 883 884 static struct track *get_track(struct kmem_cache *s, void *object, 885 enum track_item alloc) 886 { 887 struct track *p; 888 889 p = object + get_info_end(s); 890 891 return kasan_reset_tag(p + alloc); 892 } 893 894 #ifdef CONFIG_STACKDEPOT 895 static noinline depot_stack_handle_t set_track_prepare(void) 896 { 897 depot_stack_handle_t handle; 898 unsigned long entries[TRACK_ADDRS_COUNT]; 899 unsigned int nr_entries; 900 901 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 902 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 903 904 return handle; 905 } 906 #else 907 static inline depot_stack_handle_t set_track_prepare(void) 908 { 909 return 0; 910 } 911 #endif 912 913 static void set_track_update(struct kmem_cache *s, void *object, 914 enum track_item alloc, unsigned long addr, 915 depot_stack_handle_t handle) 916 { 917 struct track *p = get_track(s, object, alloc); 918 919 #ifdef CONFIG_STACKDEPOT 920 p->handle = handle; 921 #endif 922 p->addr = addr; 923 p->cpu = smp_processor_id(); 924 p->pid = current->pid; 925 p->when = jiffies; 926 } 927 928 static __always_inline void set_track(struct kmem_cache *s, void *object, 929 enum track_item alloc, unsigned long addr) 930 { 931 depot_stack_handle_t handle = set_track_prepare(); 932 933 set_track_update(s, object, alloc, addr, handle); 934 } 935 936 static void init_tracking(struct kmem_cache *s, void *object) 937 { 938 struct track *p; 939 940 if (!(s->flags & SLAB_STORE_USER)) 941 return; 942 943 p = get_track(s, object, TRACK_ALLOC); 944 memset(p, 0, 2*sizeof(struct track)); 945 } 946 947 static void print_track(const char *s, struct track *t, unsigned long pr_time) 948 { 949 depot_stack_handle_t handle __maybe_unused; 950 951 if (!t->addr) 952 return; 953 954 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 955 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 956 #ifdef CONFIG_STACKDEPOT 957 handle = READ_ONCE(t->handle); 958 if (handle) 959 stack_depot_print(handle); 960 else 961 pr_err("object allocation/free stack trace missing\n"); 962 #endif 963 } 964 965 void print_tracking(struct kmem_cache *s, void *object) 966 { 967 unsigned long pr_time = jiffies; 968 if (!(s->flags & SLAB_STORE_USER)) 969 return; 970 971 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 972 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 973 } 974 975 static void print_slab_info(const struct slab *slab) 976 { 977 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 978 slab, slab->objects, slab->inuse, slab->freelist, 979 &slab->__page_flags); 980 } 981 982 /* 983 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 984 * family will round up the real request size to these fixed ones, so 985 * there could be an extra area than what is requested. Save the original 986 * request size in the meta data area, for better debug and sanity check. 987 */ 988 static inline void set_orig_size(struct kmem_cache *s, 989 void *object, unsigned int orig_size) 990 { 991 void *p = kasan_reset_tag(object); 992 unsigned int kasan_meta_size; 993 994 if (!slub_debug_orig_size(s)) 995 return; 996 997 /* 998 * KASAN can save its free meta data inside of the object at offset 0. 999 * If this meta data size is larger than 'orig_size', it will overlap 1000 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 1001 * 'orig_size' to be as at least as big as KASAN's meta data. 1002 */ 1003 kasan_meta_size = kasan_metadata_size(s, true); 1004 if (kasan_meta_size > orig_size) 1005 orig_size = kasan_meta_size; 1006 1007 p += get_info_end(s); 1008 p += sizeof(struct track) * 2; 1009 1010 *(unsigned int *)p = orig_size; 1011 } 1012 1013 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1014 { 1015 void *p = kasan_reset_tag(object); 1016 1017 if (!slub_debug_orig_size(s)) 1018 return s->object_size; 1019 1020 p += get_info_end(s); 1021 p += sizeof(struct track) * 2; 1022 1023 return *(unsigned int *)p; 1024 } 1025 1026 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1027 { 1028 set_orig_size(s, (void *)object, s->object_size); 1029 } 1030 1031 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1032 { 1033 struct va_format vaf; 1034 va_list args; 1035 1036 va_start(args, fmt); 1037 vaf.fmt = fmt; 1038 vaf.va = &args; 1039 pr_err("=============================================================================\n"); 1040 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1041 pr_err("-----------------------------------------------------------------------------\n\n"); 1042 va_end(args); 1043 } 1044 1045 __printf(2, 3) 1046 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1047 { 1048 struct va_format vaf; 1049 va_list args; 1050 1051 if (slab_add_kunit_errors()) 1052 return; 1053 1054 va_start(args, fmt); 1055 vaf.fmt = fmt; 1056 vaf.va = &args; 1057 pr_err("FIX %s: %pV\n", s->name, &vaf); 1058 va_end(args); 1059 } 1060 1061 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1062 { 1063 unsigned int off; /* Offset of last byte */ 1064 u8 *addr = slab_address(slab); 1065 1066 print_tracking(s, p); 1067 1068 print_slab_info(slab); 1069 1070 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1071 p, p - addr, get_freepointer(s, p)); 1072 1073 if (s->flags & SLAB_RED_ZONE) 1074 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1075 s->red_left_pad); 1076 else if (p > addr + 16) 1077 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1078 1079 print_section(KERN_ERR, "Object ", p, 1080 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1081 if (s->flags & SLAB_RED_ZONE) 1082 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1083 s->inuse - s->object_size); 1084 1085 off = get_info_end(s); 1086 1087 if (s->flags & SLAB_STORE_USER) 1088 off += 2 * sizeof(struct track); 1089 1090 if (slub_debug_orig_size(s)) 1091 off += sizeof(unsigned int); 1092 1093 off += kasan_metadata_size(s, false); 1094 1095 if (off != size_from_object(s)) 1096 /* Beginning of the filler is the free pointer */ 1097 print_section(KERN_ERR, "Padding ", p + off, 1098 size_from_object(s) - off); 1099 1100 dump_stack(); 1101 } 1102 1103 static void object_err(struct kmem_cache *s, struct slab *slab, 1104 u8 *object, char *reason) 1105 { 1106 if (slab_add_kunit_errors()) 1107 return; 1108 1109 slab_bug(s, "%s", reason); 1110 print_trailer(s, slab, object); 1111 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1112 } 1113 1114 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1115 void **freelist, void *nextfree) 1116 { 1117 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1118 !check_valid_pointer(s, slab, nextfree) && freelist) { 1119 object_err(s, slab, *freelist, "Freechain corrupt"); 1120 *freelist = NULL; 1121 slab_fix(s, "Isolate corrupted freechain"); 1122 return true; 1123 } 1124 1125 return false; 1126 } 1127 1128 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1129 const char *fmt, ...) 1130 { 1131 va_list args; 1132 char buf[100]; 1133 1134 if (slab_add_kunit_errors()) 1135 return; 1136 1137 va_start(args, fmt); 1138 vsnprintf(buf, sizeof(buf), fmt, args); 1139 va_end(args); 1140 slab_bug(s, "%s", buf); 1141 print_slab_info(slab); 1142 dump_stack(); 1143 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1144 } 1145 1146 static void init_object(struct kmem_cache *s, void *object, u8 val) 1147 { 1148 u8 *p = kasan_reset_tag(object); 1149 unsigned int poison_size = s->object_size; 1150 1151 if (s->flags & SLAB_RED_ZONE) { 1152 /* 1153 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1154 * the shadow makes it possible to distinguish uninit-value 1155 * from use-after-free. 1156 */ 1157 memset_no_sanitize_memory(p - s->red_left_pad, val, 1158 s->red_left_pad); 1159 1160 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1161 /* 1162 * Redzone the extra allocated space by kmalloc than 1163 * requested, and the poison size will be limited to 1164 * the original request size accordingly. 1165 */ 1166 poison_size = get_orig_size(s, object); 1167 } 1168 } 1169 1170 if (s->flags & __OBJECT_POISON) { 1171 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1172 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1173 } 1174 1175 if (s->flags & SLAB_RED_ZONE) 1176 memset_no_sanitize_memory(p + poison_size, val, 1177 s->inuse - poison_size); 1178 } 1179 1180 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1181 void *from, void *to) 1182 { 1183 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1184 memset(from, data, to - from); 1185 } 1186 1187 #ifdef CONFIG_KMSAN 1188 #define pad_check_attributes noinline __no_kmsan_checks 1189 #else 1190 #define pad_check_attributes 1191 #endif 1192 1193 static pad_check_attributes int 1194 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1195 u8 *object, char *what, 1196 u8 *start, unsigned int value, unsigned int bytes) 1197 { 1198 u8 *fault; 1199 u8 *end; 1200 u8 *addr = slab_address(slab); 1201 1202 metadata_access_enable(); 1203 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1204 metadata_access_disable(); 1205 if (!fault) 1206 return 1; 1207 1208 end = start + bytes; 1209 while (end > fault && end[-1] == value) 1210 end--; 1211 1212 if (slab_add_kunit_errors()) 1213 goto skip_bug_print; 1214 1215 slab_bug(s, "%s overwritten", what); 1216 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1217 fault, end - 1, fault - addr, 1218 fault[0], value); 1219 1220 skip_bug_print: 1221 restore_bytes(s, what, value, fault, end); 1222 return 0; 1223 } 1224 1225 /* 1226 * Object layout: 1227 * 1228 * object address 1229 * Bytes of the object to be managed. 1230 * If the freepointer may overlay the object then the free 1231 * pointer is at the middle of the object. 1232 * 1233 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1234 * 0xa5 (POISON_END) 1235 * 1236 * object + s->object_size 1237 * Padding to reach word boundary. This is also used for Redzoning. 1238 * Padding is extended by another word if Redzoning is enabled and 1239 * object_size == inuse. 1240 * 1241 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1242 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1243 * 1244 * object + s->inuse 1245 * Meta data starts here. 1246 * 1247 * A. Free pointer (if we cannot overwrite object on free) 1248 * B. Tracking data for SLAB_STORE_USER 1249 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1250 * D. Padding to reach required alignment boundary or at minimum 1251 * one word if debugging is on to be able to detect writes 1252 * before the word boundary. 1253 * 1254 * Padding is done using 0x5a (POISON_INUSE) 1255 * 1256 * object + s->size 1257 * Nothing is used beyond s->size. 1258 * 1259 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1260 * ignored. And therefore no slab options that rely on these boundaries 1261 * may be used with merged slabcaches. 1262 */ 1263 1264 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1265 { 1266 unsigned long off = get_info_end(s); /* The end of info */ 1267 1268 if (s->flags & SLAB_STORE_USER) { 1269 /* We also have user information there */ 1270 off += 2 * sizeof(struct track); 1271 1272 if (s->flags & SLAB_KMALLOC) 1273 off += sizeof(unsigned int); 1274 } 1275 1276 off += kasan_metadata_size(s, false); 1277 1278 if (size_from_object(s) == off) 1279 return 1; 1280 1281 return check_bytes_and_report(s, slab, p, "Object padding", 1282 p + off, POISON_INUSE, size_from_object(s) - off); 1283 } 1284 1285 /* Check the pad bytes at the end of a slab page */ 1286 static pad_check_attributes void 1287 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1288 { 1289 u8 *start; 1290 u8 *fault; 1291 u8 *end; 1292 u8 *pad; 1293 int length; 1294 int remainder; 1295 1296 if (!(s->flags & SLAB_POISON)) 1297 return; 1298 1299 start = slab_address(slab); 1300 length = slab_size(slab); 1301 end = start + length; 1302 remainder = length % s->size; 1303 if (!remainder) 1304 return; 1305 1306 pad = end - remainder; 1307 metadata_access_enable(); 1308 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1309 metadata_access_disable(); 1310 if (!fault) 1311 return; 1312 while (end > fault && end[-1] == POISON_INUSE) 1313 end--; 1314 1315 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1316 fault, end - 1, fault - start); 1317 print_section(KERN_ERR, "Padding ", pad, remainder); 1318 1319 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1320 } 1321 1322 static int check_object(struct kmem_cache *s, struct slab *slab, 1323 void *object, u8 val) 1324 { 1325 u8 *p = object; 1326 u8 *endobject = object + s->object_size; 1327 unsigned int orig_size, kasan_meta_size; 1328 int ret = 1; 1329 1330 if (s->flags & SLAB_RED_ZONE) { 1331 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1332 object - s->red_left_pad, val, s->red_left_pad)) 1333 ret = 0; 1334 1335 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1336 endobject, val, s->inuse - s->object_size)) 1337 ret = 0; 1338 1339 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1340 orig_size = get_orig_size(s, object); 1341 1342 if (s->object_size > orig_size && 1343 !check_bytes_and_report(s, slab, object, 1344 "kmalloc Redzone", p + orig_size, 1345 val, s->object_size - orig_size)) { 1346 ret = 0; 1347 } 1348 } 1349 } else { 1350 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1351 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1352 endobject, POISON_INUSE, 1353 s->inuse - s->object_size)) 1354 ret = 0; 1355 } 1356 } 1357 1358 if (s->flags & SLAB_POISON) { 1359 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1360 /* 1361 * KASAN can save its free meta data inside of the 1362 * object at offset 0. Thus, skip checking the part of 1363 * the redzone that overlaps with the meta data. 1364 */ 1365 kasan_meta_size = kasan_metadata_size(s, true); 1366 if (kasan_meta_size < s->object_size - 1 && 1367 !check_bytes_and_report(s, slab, p, "Poison", 1368 p + kasan_meta_size, POISON_FREE, 1369 s->object_size - kasan_meta_size - 1)) 1370 ret = 0; 1371 if (kasan_meta_size < s->object_size && 1372 !check_bytes_and_report(s, slab, p, "End Poison", 1373 p + s->object_size - 1, POISON_END, 1)) 1374 ret = 0; 1375 } 1376 /* 1377 * check_pad_bytes cleans up on its own. 1378 */ 1379 if (!check_pad_bytes(s, slab, p)) 1380 ret = 0; 1381 } 1382 1383 /* 1384 * Cannot check freepointer while object is allocated if 1385 * object and freepointer overlap. 1386 */ 1387 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1388 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1389 object_err(s, slab, p, "Freepointer corrupt"); 1390 /* 1391 * No choice but to zap it and thus lose the remainder 1392 * of the free objects in this slab. May cause 1393 * another error because the object count is now wrong. 1394 */ 1395 set_freepointer(s, p, NULL); 1396 ret = 0; 1397 } 1398 1399 if (!ret && !slab_in_kunit_test()) { 1400 print_trailer(s, slab, object); 1401 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1402 } 1403 1404 return ret; 1405 } 1406 1407 static int check_slab(struct kmem_cache *s, struct slab *slab) 1408 { 1409 int maxobj; 1410 1411 if (!folio_test_slab(slab_folio(slab))) { 1412 slab_err(s, slab, "Not a valid slab page"); 1413 return 0; 1414 } 1415 1416 maxobj = order_objects(slab_order(slab), s->size); 1417 if (slab->objects > maxobj) { 1418 slab_err(s, slab, "objects %u > max %u", 1419 slab->objects, maxobj); 1420 return 0; 1421 } 1422 if (slab->inuse > slab->objects) { 1423 slab_err(s, slab, "inuse %u > max %u", 1424 slab->inuse, slab->objects); 1425 return 0; 1426 } 1427 /* Slab_pad_check fixes things up after itself */ 1428 slab_pad_check(s, slab); 1429 return 1; 1430 } 1431 1432 /* 1433 * Determine if a certain object in a slab is on the freelist. Must hold the 1434 * slab lock to guarantee that the chains are in a consistent state. 1435 */ 1436 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1437 { 1438 int nr = 0; 1439 void *fp; 1440 void *object = NULL; 1441 int max_objects; 1442 1443 fp = slab->freelist; 1444 while (fp && nr <= slab->objects) { 1445 if (fp == search) 1446 return 1; 1447 if (!check_valid_pointer(s, slab, fp)) { 1448 if (object) { 1449 object_err(s, slab, object, 1450 "Freechain corrupt"); 1451 set_freepointer(s, object, NULL); 1452 } else { 1453 slab_err(s, slab, "Freepointer corrupt"); 1454 slab->freelist = NULL; 1455 slab->inuse = slab->objects; 1456 slab_fix(s, "Freelist cleared"); 1457 return 0; 1458 } 1459 break; 1460 } 1461 object = fp; 1462 fp = get_freepointer(s, object); 1463 nr++; 1464 } 1465 1466 max_objects = order_objects(slab_order(slab), s->size); 1467 if (max_objects > MAX_OBJS_PER_PAGE) 1468 max_objects = MAX_OBJS_PER_PAGE; 1469 1470 if (slab->objects != max_objects) { 1471 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1472 slab->objects, max_objects); 1473 slab->objects = max_objects; 1474 slab_fix(s, "Number of objects adjusted"); 1475 } 1476 if (slab->inuse != slab->objects - nr) { 1477 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1478 slab->inuse, slab->objects - nr); 1479 slab->inuse = slab->objects - nr; 1480 slab_fix(s, "Object count adjusted"); 1481 } 1482 return search == NULL; 1483 } 1484 1485 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1486 int alloc) 1487 { 1488 if (s->flags & SLAB_TRACE) { 1489 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1490 s->name, 1491 alloc ? "alloc" : "free", 1492 object, slab->inuse, 1493 slab->freelist); 1494 1495 if (!alloc) 1496 print_section(KERN_INFO, "Object ", (void *)object, 1497 s->object_size); 1498 1499 dump_stack(); 1500 } 1501 } 1502 1503 /* 1504 * Tracking of fully allocated slabs for debugging purposes. 1505 */ 1506 static void add_full(struct kmem_cache *s, 1507 struct kmem_cache_node *n, struct slab *slab) 1508 { 1509 if (!(s->flags & SLAB_STORE_USER)) 1510 return; 1511 1512 lockdep_assert_held(&n->list_lock); 1513 list_add(&slab->slab_list, &n->full); 1514 } 1515 1516 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1517 { 1518 if (!(s->flags & SLAB_STORE_USER)) 1519 return; 1520 1521 lockdep_assert_held(&n->list_lock); 1522 list_del(&slab->slab_list); 1523 } 1524 1525 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1526 { 1527 return atomic_long_read(&n->nr_slabs); 1528 } 1529 1530 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1531 { 1532 struct kmem_cache_node *n = get_node(s, node); 1533 1534 atomic_long_inc(&n->nr_slabs); 1535 atomic_long_add(objects, &n->total_objects); 1536 } 1537 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1538 { 1539 struct kmem_cache_node *n = get_node(s, node); 1540 1541 atomic_long_dec(&n->nr_slabs); 1542 atomic_long_sub(objects, &n->total_objects); 1543 } 1544 1545 /* Object debug checks for alloc/free paths */ 1546 static void setup_object_debug(struct kmem_cache *s, void *object) 1547 { 1548 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1549 return; 1550 1551 init_object(s, object, SLUB_RED_INACTIVE); 1552 init_tracking(s, object); 1553 } 1554 1555 static 1556 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1557 { 1558 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1559 return; 1560 1561 metadata_access_enable(); 1562 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1563 metadata_access_disable(); 1564 } 1565 1566 static inline int alloc_consistency_checks(struct kmem_cache *s, 1567 struct slab *slab, void *object) 1568 { 1569 if (!check_slab(s, slab)) 1570 return 0; 1571 1572 if (!check_valid_pointer(s, slab, object)) { 1573 object_err(s, slab, object, "Freelist Pointer check fails"); 1574 return 0; 1575 } 1576 1577 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1578 return 0; 1579 1580 return 1; 1581 } 1582 1583 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1584 struct slab *slab, void *object, int orig_size) 1585 { 1586 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1587 if (!alloc_consistency_checks(s, slab, object)) 1588 goto bad; 1589 } 1590 1591 /* Success. Perform special debug activities for allocs */ 1592 trace(s, slab, object, 1); 1593 set_orig_size(s, object, orig_size); 1594 init_object(s, object, SLUB_RED_ACTIVE); 1595 return true; 1596 1597 bad: 1598 if (folio_test_slab(slab_folio(slab))) { 1599 /* 1600 * If this is a slab page then lets do the best we can 1601 * to avoid issues in the future. Marking all objects 1602 * as used avoids touching the remaining objects. 1603 */ 1604 slab_fix(s, "Marking all objects used"); 1605 slab->inuse = slab->objects; 1606 slab->freelist = NULL; 1607 } 1608 return false; 1609 } 1610 1611 static inline int free_consistency_checks(struct kmem_cache *s, 1612 struct slab *slab, void *object, unsigned long addr) 1613 { 1614 if (!check_valid_pointer(s, slab, object)) { 1615 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1616 return 0; 1617 } 1618 1619 if (on_freelist(s, slab, object)) { 1620 object_err(s, slab, object, "Object already free"); 1621 return 0; 1622 } 1623 1624 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1625 return 0; 1626 1627 if (unlikely(s != slab->slab_cache)) { 1628 if (!folio_test_slab(slab_folio(slab))) { 1629 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1630 object); 1631 } else if (!slab->slab_cache) { 1632 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1633 object); 1634 dump_stack(); 1635 } else 1636 object_err(s, slab, object, 1637 "page slab pointer corrupt."); 1638 return 0; 1639 } 1640 return 1; 1641 } 1642 1643 /* 1644 * Parse a block of slab_debug options. Blocks are delimited by ';' 1645 * 1646 * @str: start of block 1647 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1648 * @slabs: return start of list of slabs, or NULL when there's no list 1649 * @init: assume this is initial parsing and not per-kmem-create parsing 1650 * 1651 * returns the start of next block if there's any, or NULL 1652 */ 1653 static char * 1654 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1655 { 1656 bool higher_order_disable = false; 1657 1658 /* Skip any completely empty blocks */ 1659 while (*str && *str == ';') 1660 str++; 1661 1662 if (*str == ',') { 1663 /* 1664 * No options but restriction on slabs. This means full 1665 * debugging for slabs matching a pattern. 1666 */ 1667 *flags = DEBUG_DEFAULT_FLAGS; 1668 goto check_slabs; 1669 } 1670 *flags = 0; 1671 1672 /* Determine which debug features should be switched on */ 1673 for (; *str && *str != ',' && *str != ';'; str++) { 1674 switch (tolower(*str)) { 1675 case '-': 1676 *flags = 0; 1677 break; 1678 case 'f': 1679 *flags |= SLAB_CONSISTENCY_CHECKS; 1680 break; 1681 case 'z': 1682 *flags |= SLAB_RED_ZONE; 1683 break; 1684 case 'p': 1685 *flags |= SLAB_POISON; 1686 break; 1687 case 'u': 1688 *flags |= SLAB_STORE_USER; 1689 break; 1690 case 't': 1691 *flags |= SLAB_TRACE; 1692 break; 1693 case 'a': 1694 *flags |= SLAB_FAILSLAB; 1695 break; 1696 case 'o': 1697 /* 1698 * Avoid enabling debugging on caches if its minimum 1699 * order would increase as a result. 1700 */ 1701 higher_order_disable = true; 1702 break; 1703 default: 1704 if (init) 1705 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1706 } 1707 } 1708 check_slabs: 1709 if (*str == ',') 1710 *slabs = ++str; 1711 else 1712 *slabs = NULL; 1713 1714 /* Skip over the slab list */ 1715 while (*str && *str != ';') 1716 str++; 1717 1718 /* Skip any completely empty blocks */ 1719 while (*str && *str == ';') 1720 str++; 1721 1722 if (init && higher_order_disable) 1723 disable_higher_order_debug = 1; 1724 1725 if (*str) 1726 return str; 1727 else 1728 return NULL; 1729 } 1730 1731 static int __init setup_slub_debug(char *str) 1732 { 1733 slab_flags_t flags; 1734 slab_flags_t global_flags; 1735 char *saved_str; 1736 char *slab_list; 1737 bool global_slub_debug_changed = false; 1738 bool slab_list_specified = false; 1739 1740 global_flags = DEBUG_DEFAULT_FLAGS; 1741 if (*str++ != '=' || !*str) 1742 /* 1743 * No options specified. Switch on full debugging. 1744 */ 1745 goto out; 1746 1747 saved_str = str; 1748 while (str) { 1749 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1750 1751 if (!slab_list) { 1752 global_flags = flags; 1753 global_slub_debug_changed = true; 1754 } else { 1755 slab_list_specified = true; 1756 if (flags & SLAB_STORE_USER) 1757 stack_depot_request_early_init(); 1758 } 1759 } 1760 1761 /* 1762 * For backwards compatibility, a single list of flags with list of 1763 * slabs means debugging is only changed for those slabs, so the global 1764 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1765 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1766 * long as there is no option specifying flags without a slab list. 1767 */ 1768 if (slab_list_specified) { 1769 if (!global_slub_debug_changed) 1770 global_flags = slub_debug; 1771 slub_debug_string = saved_str; 1772 } 1773 out: 1774 slub_debug = global_flags; 1775 if (slub_debug & SLAB_STORE_USER) 1776 stack_depot_request_early_init(); 1777 if (slub_debug != 0 || slub_debug_string) 1778 static_branch_enable(&slub_debug_enabled); 1779 else 1780 static_branch_disable(&slub_debug_enabled); 1781 if ((static_branch_unlikely(&init_on_alloc) || 1782 static_branch_unlikely(&init_on_free)) && 1783 (slub_debug & SLAB_POISON)) 1784 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1785 return 1; 1786 } 1787 1788 __setup("slab_debug", setup_slub_debug); 1789 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1790 1791 /* 1792 * kmem_cache_flags - apply debugging options to the cache 1793 * @flags: flags to set 1794 * @name: name of the cache 1795 * 1796 * Debug option(s) are applied to @flags. In addition to the debug 1797 * option(s), if a slab name (or multiple) is specified i.e. 1798 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1799 * then only the select slabs will receive the debug option(s). 1800 */ 1801 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1802 { 1803 char *iter; 1804 size_t len; 1805 char *next_block; 1806 slab_flags_t block_flags; 1807 slab_flags_t slub_debug_local = slub_debug; 1808 1809 if (flags & SLAB_NO_USER_FLAGS) 1810 return flags; 1811 1812 /* 1813 * If the slab cache is for debugging (e.g. kmemleak) then 1814 * don't store user (stack trace) information by default, 1815 * but let the user enable it via the command line below. 1816 */ 1817 if (flags & SLAB_NOLEAKTRACE) 1818 slub_debug_local &= ~SLAB_STORE_USER; 1819 1820 len = strlen(name); 1821 next_block = slub_debug_string; 1822 /* Go through all blocks of debug options, see if any matches our slab's name */ 1823 while (next_block) { 1824 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1825 if (!iter) 1826 continue; 1827 /* Found a block that has a slab list, search it */ 1828 while (*iter) { 1829 char *end, *glob; 1830 size_t cmplen; 1831 1832 end = strchrnul(iter, ','); 1833 if (next_block && next_block < end) 1834 end = next_block - 1; 1835 1836 glob = strnchr(iter, end - iter, '*'); 1837 if (glob) 1838 cmplen = glob - iter; 1839 else 1840 cmplen = max_t(size_t, len, (end - iter)); 1841 1842 if (!strncmp(name, iter, cmplen)) { 1843 flags |= block_flags; 1844 return flags; 1845 } 1846 1847 if (!*end || *end == ';') 1848 break; 1849 iter = end + 1; 1850 } 1851 } 1852 1853 return flags | slub_debug_local; 1854 } 1855 #else /* !CONFIG_SLUB_DEBUG */ 1856 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1857 static inline 1858 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1859 1860 static inline bool alloc_debug_processing(struct kmem_cache *s, 1861 struct slab *slab, void *object, int orig_size) { return true; } 1862 1863 static inline bool free_debug_processing(struct kmem_cache *s, 1864 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1865 unsigned long addr, depot_stack_handle_t handle) { return true; } 1866 1867 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1868 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1869 void *object, u8 val) { return 1; } 1870 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1871 static inline void set_track(struct kmem_cache *s, void *object, 1872 enum track_item alloc, unsigned long addr) {} 1873 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1874 struct slab *slab) {} 1875 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1876 struct slab *slab) {} 1877 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1878 { 1879 return flags; 1880 } 1881 #define slub_debug 0 1882 1883 #define disable_higher_order_debug 0 1884 1885 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1886 { return 0; } 1887 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1888 int objects) {} 1889 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1890 int objects) {} 1891 1892 #ifndef CONFIG_SLUB_TINY 1893 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1894 void **freelist, void *nextfree) 1895 { 1896 return false; 1897 } 1898 #endif 1899 #endif /* CONFIG_SLUB_DEBUG */ 1900 1901 #ifdef CONFIG_SLAB_OBJ_EXT 1902 1903 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1904 1905 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1906 { 1907 struct slabobj_ext *slab_exts; 1908 struct slab *obj_exts_slab; 1909 1910 obj_exts_slab = virt_to_slab(obj_exts); 1911 slab_exts = slab_obj_exts(obj_exts_slab); 1912 if (slab_exts) { 1913 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1914 obj_exts_slab, obj_exts); 1915 /* codetag should be NULL */ 1916 WARN_ON(slab_exts[offs].ref.ct); 1917 set_codetag_empty(&slab_exts[offs].ref); 1918 } 1919 } 1920 1921 static inline void mark_failed_objexts_alloc(struct slab *slab) 1922 { 1923 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1924 } 1925 1926 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1927 struct slabobj_ext *vec, unsigned int objects) 1928 { 1929 /* 1930 * If vector previously failed to allocate then we have live 1931 * objects with no tag reference. Mark all references in this 1932 * vector as empty to avoid warnings later on. 1933 */ 1934 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1935 unsigned int i; 1936 1937 for (i = 0; i < objects; i++) 1938 set_codetag_empty(&vec[i].ref); 1939 } 1940 } 1941 1942 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1943 1944 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1945 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1946 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1947 struct slabobj_ext *vec, unsigned int objects) {} 1948 1949 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1950 1951 /* 1952 * The allocated objcg pointers array is not accounted directly. 1953 * Moreover, it should not come from DMA buffer and is not readily 1954 * reclaimable. So those GFP bits should be masked off. 1955 */ 1956 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1957 __GFP_ACCOUNT | __GFP_NOFAIL) 1958 1959 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1960 gfp_t gfp, bool new_slab) 1961 { 1962 unsigned int objects = objs_per_slab(s, slab); 1963 unsigned long new_exts; 1964 unsigned long old_exts; 1965 struct slabobj_ext *vec; 1966 1967 gfp &= ~OBJCGS_CLEAR_MASK; 1968 /* Prevent recursive extension vector allocation */ 1969 gfp |= __GFP_NO_OBJ_EXT; 1970 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1971 slab_nid(slab)); 1972 if (!vec) { 1973 /* Mark vectors which failed to allocate */ 1974 if (new_slab) 1975 mark_failed_objexts_alloc(slab); 1976 1977 return -ENOMEM; 1978 } 1979 1980 new_exts = (unsigned long)vec; 1981 #ifdef CONFIG_MEMCG 1982 new_exts |= MEMCG_DATA_OBJEXTS; 1983 #endif 1984 old_exts = READ_ONCE(slab->obj_exts); 1985 handle_failed_objexts_alloc(old_exts, vec, objects); 1986 if (new_slab) { 1987 /* 1988 * If the slab is brand new and nobody can yet access its 1989 * obj_exts, no synchronization is required and obj_exts can 1990 * be simply assigned. 1991 */ 1992 slab->obj_exts = new_exts; 1993 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 1994 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1995 /* 1996 * If the slab is already in use, somebody can allocate and 1997 * assign slabobj_exts in parallel. In this case the existing 1998 * objcg vector should be reused. 1999 */ 2000 mark_objexts_empty(vec); 2001 kfree(vec); 2002 return 0; 2003 } 2004 2005 kmemleak_not_leak(vec); 2006 return 0; 2007 } 2008 2009 static inline void free_slab_obj_exts(struct slab *slab) 2010 { 2011 struct slabobj_ext *obj_exts; 2012 2013 obj_exts = slab_obj_exts(slab); 2014 if (!obj_exts) 2015 return; 2016 2017 /* 2018 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2019 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2020 * warning if slab has extensions but the extension of an object is 2021 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2022 * the extension for obj_exts is expected to be NULL. 2023 */ 2024 mark_objexts_empty(obj_exts); 2025 kfree(obj_exts); 2026 slab->obj_exts = 0; 2027 } 2028 2029 static inline bool need_slab_obj_ext(void) 2030 { 2031 if (mem_alloc_profiling_enabled()) 2032 return true; 2033 2034 /* 2035 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2036 * inside memcg_slab_post_alloc_hook. No other users for now. 2037 */ 2038 return false; 2039 } 2040 2041 #else /* CONFIG_SLAB_OBJ_EXT */ 2042 2043 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2044 gfp_t gfp, bool new_slab) 2045 { 2046 return 0; 2047 } 2048 2049 static inline void free_slab_obj_exts(struct slab *slab) 2050 { 2051 } 2052 2053 static inline bool need_slab_obj_ext(void) 2054 { 2055 return false; 2056 } 2057 2058 #endif /* CONFIG_SLAB_OBJ_EXT */ 2059 2060 #ifdef CONFIG_MEM_ALLOC_PROFILING 2061 2062 static inline struct slabobj_ext * 2063 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2064 { 2065 struct slab *slab; 2066 2067 if (!p) 2068 return NULL; 2069 2070 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2071 return NULL; 2072 2073 if (flags & __GFP_NO_OBJ_EXT) 2074 return NULL; 2075 2076 slab = virt_to_slab(p); 2077 if (!slab_obj_exts(slab) && 2078 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2079 "%s, %s: Failed to create slab extension vector!\n", 2080 __func__, s->name)) 2081 return NULL; 2082 2083 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2084 } 2085 2086 static inline void 2087 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2088 { 2089 if (need_slab_obj_ext()) { 2090 struct slabobj_ext *obj_exts; 2091 2092 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2093 /* 2094 * Currently obj_exts is used only for allocation profiling. 2095 * If other users appear then mem_alloc_profiling_enabled() 2096 * check should be added before alloc_tag_add(). 2097 */ 2098 if (likely(obj_exts)) 2099 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2100 } 2101 } 2102 2103 static inline void 2104 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2105 int objects) 2106 { 2107 struct slabobj_ext *obj_exts; 2108 int i; 2109 2110 if (!mem_alloc_profiling_enabled()) 2111 return; 2112 2113 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2114 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2115 return; 2116 2117 obj_exts = slab_obj_exts(slab); 2118 if (!obj_exts) 2119 return; 2120 2121 for (i = 0; i < objects; i++) { 2122 unsigned int off = obj_to_index(s, slab, p[i]); 2123 2124 alloc_tag_sub(&obj_exts[off].ref, s->size); 2125 } 2126 } 2127 2128 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2129 2130 static inline void 2131 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2132 { 2133 } 2134 2135 static inline void 2136 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2137 int objects) 2138 { 2139 } 2140 2141 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2142 2143 2144 #ifdef CONFIG_MEMCG 2145 2146 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2147 2148 static __fastpath_inline 2149 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2150 gfp_t flags, size_t size, void **p) 2151 { 2152 if (likely(!memcg_kmem_online())) 2153 return true; 2154 2155 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2156 return true; 2157 2158 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2159 return true; 2160 2161 if (likely(size == 1)) { 2162 memcg_alloc_abort_single(s, *p); 2163 *p = NULL; 2164 } else { 2165 kmem_cache_free_bulk(s, size, p); 2166 } 2167 2168 return false; 2169 } 2170 2171 static __fastpath_inline 2172 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2173 int objects) 2174 { 2175 struct slabobj_ext *obj_exts; 2176 2177 if (!memcg_kmem_online()) 2178 return; 2179 2180 obj_exts = slab_obj_exts(slab); 2181 if (likely(!obj_exts)) 2182 return; 2183 2184 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2185 } 2186 #else /* CONFIG_MEMCG */ 2187 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2188 struct list_lru *lru, 2189 gfp_t flags, size_t size, 2190 void **p) 2191 { 2192 return true; 2193 } 2194 2195 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2196 void **p, int objects) 2197 { 2198 } 2199 #endif /* CONFIG_MEMCG */ 2200 2201 /* 2202 * Hooks for other subsystems that check memory allocations. In a typical 2203 * production configuration these hooks all should produce no code at all. 2204 * 2205 * Returns true if freeing of the object can proceed, false if its reuse 2206 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2207 */ 2208 static __always_inline 2209 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2210 { 2211 kmemleak_free_recursive(x, s->flags); 2212 kmsan_slab_free(s, x); 2213 2214 debug_check_no_locks_freed(x, s->object_size); 2215 2216 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2217 debug_check_no_obj_freed(x, s->object_size); 2218 2219 /* Use KCSAN to help debug racy use-after-free. */ 2220 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2221 __kcsan_check_access(x, s->object_size, 2222 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2223 2224 if (kfence_free(x)) 2225 return false; 2226 2227 /* 2228 * As memory initialization might be integrated into KASAN, 2229 * kasan_slab_free and initialization memset's must be 2230 * kept together to avoid discrepancies in behavior. 2231 * 2232 * The initialization memset's clear the object and the metadata, 2233 * but don't touch the SLAB redzone. 2234 * 2235 * The object's freepointer is also avoided if stored outside the 2236 * object. 2237 */ 2238 if (unlikely(init)) { 2239 int rsize; 2240 unsigned int inuse; 2241 2242 inuse = get_info_end(s); 2243 if (!kasan_has_integrated_init()) 2244 memset(kasan_reset_tag(x), 0, s->object_size); 2245 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2246 memset((char *)kasan_reset_tag(x) + inuse, 0, 2247 s->size - inuse - rsize); 2248 } 2249 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2250 return !kasan_slab_free(s, x, init); 2251 } 2252 2253 static __fastpath_inline 2254 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2255 int *cnt) 2256 { 2257 2258 void *object; 2259 void *next = *head; 2260 void *old_tail = *tail; 2261 bool init; 2262 2263 if (is_kfence_address(next)) { 2264 slab_free_hook(s, next, false); 2265 return false; 2266 } 2267 2268 /* Head and tail of the reconstructed freelist */ 2269 *head = NULL; 2270 *tail = NULL; 2271 2272 init = slab_want_init_on_free(s); 2273 2274 do { 2275 object = next; 2276 next = get_freepointer(s, object); 2277 2278 /* If object's reuse doesn't have to be delayed */ 2279 if (likely(slab_free_hook(s, object, init))) { 2280 /* Move object to the new freelist */ 2281 set_freepointer(s, object, *head); 2282 *head = object; 2283 if (!*tail) 2284 *tail = object; 2285 } else { 2286 /* 2287 * Adjust the reconstructed freelist depth 2288 * accordingly if object's reuse is delayed. 2289 */ 2290 --(*cnt); 2291 } 2292 } while (object != old_tail); 2293 2294 return *head != NULL; 2295 } 2296 2297 static void *setup_object(struct kmem_cache *s, void *object) 2298 { 2299 setup_object_debug(s, object); 2300 object = kasan_init_slab_obj(s, object); 2301 if (unlikely(s->ctor)) { 2302 kasan_unpoison_new_object(s, object); 2303 s->ctor(object); 2304 kasan_poison_new_object(s, object); 2305 } 2306 return object; 2307 } 2308 2309 /* 2310 * Slab allocation and freeing 2311 */ 2312 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2313 struct kmem_cache_order_objects oo) 2314 { 2315 struct folio *folio; 2316 struct slab *slab; 2317 unsigned int order = oo_order(oo); 2318 2319 folio = (struct folio *)alloc_pages_node(node, flags, order); 2320 if (!folio) 2321 return NULL; 2322 2323 slab = folio_slab(folio); 2324 __folio_set_slab(folio); 2325 /* Make the flag visible before any changes to folio->mapping */ 2326 smp_wmb(); 2327 if (folio_is_pfmemalloc(folio)) 2328 slab_set_pfmemalloc(slab); 2329 2330 return slab; 2331 } 2332 2333 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2334 /* Pre-initialize the random sequence cache */ 2335 static int init_cache_random_seq(struct kmem_cache *s) 2336 { 2337 unsigned int count = oo_objects(s->oo); 2338 int err; 2339 2340 /* Bailout if already initialised */ 2341 if (s->random_seq) 2342 return 0; 2343 2344 err = cache_random_seq_create(s, count, GFP_KERNEL); 2345 if (err) { 2346 pr_err("SLUB: Unable to initialize free list for %s\n", 2347 s->name); 2348 return err; 2349 } 2350 2351 /* Transform to an offset on the set of pages */ 2352 if (s->random_seq) { 2353 unsigned int i; 2354 2355 for (i = 0; i < count; i++) 2356 s->random_seq[i] *= s->size; 2357 } 2358 return 0; 2359 } 2360 2361 /* Initialize each random sequence freelist per cache */ 2362 static void __init init_freelist_randomization(void) 2363 { 2364 struct kmem_cache *s; 2365 2366 mutex_lock(&slab_mutex); 2367 2368 list_for_each_entry(s, &slab_caches, list) 2369 init_cache_random_seq(s); 2370 2371 mutex_unlock(&slab_mutex); 2372 } 2373 2374 /* Get the next entry on the pre-computed freelist randomized */ 2375 static void *next_freelist_entry(struct kmem_cache *s, 2376 unsigned long *pos, void *start, 2377 unsigned long page_limit, 2378 unsigned long freelist_count) 2379 { 2380 unsigned int idx; 2381 2382 /* 2383 * If the target page allocation failed, the number of objects on the 2384 * page might be smaller than the usual size defined by the cache. 2385 */ 2386 do { 2387 idx = s->random_seq[*pos]; 2388 *pos += 1; 2389 if (*pos >= freelist_count) 2390 *pos = 0; 2391 } while (unlikely(idx >= page_limit)); 2392 2393 return (char *)start + idx; 2394 } 2395 2396 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2397 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2398 { 2399 void *start; 2400 void *cur; 2401 void *next; 2402 unsigned long idx, pos, page_limit, freelist_count; 2403 2404 if (slab->objects < 2 || !s->random_seq) 2405 return false; 2406 2407 freelist_count = oo_objects(s->oo); 2408 pos = get_random_u32_below(freelist_count); 2409 2410 page_limit = slab->objects * s->size; 2411 start = fixup_red_left(s, slab_address(slab)); 2412 2413 /* First entry is used as the base of the freelist */ 2414 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2415 cur = setup_object(s, cur); 2416 slab->freelist = cur; 2417 2418 for (idx = 1; idx < slab->objects; idx++) { 2419 next = next_freelist_entry(s, &pos, start, page_limit, 2420 freelist_count); 2421 next = setup_object(s, next); 2422 set_freepointer(s, cur, next); 2423 cur = next; 2424 } 2425 set_freepointer(s, cur, NULL); 2426 2427 return true; 2428 } 2429 #else 2430 static inline int init_cache_random_seq(struct kmem_cache *s) 2431 { 2432 return 0; 2433 } 2434 static inline void init_freelist_randomization(void) { } 2435 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2436 { 2437 return false; 2438 } 2439 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2440 2441 static __always_inline void account_slab(struct slab *slab, int order, 2442 struct kmem_cache *s, gfp_t gfp) 2443 { 2444 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2445 alloc_slab_obj_exts(slab, s, gfp, true); 2446 2447 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2448 PAGE_SIZE << order); 2449 } 2450 2451 static __always_inline void unaccount_slab(struct slab *slab, int order, 2452 struct kmem_cache *s) 2453 { 2454 if (memcg_kmem_online() || need_slab_obj_ext()) 2455 free_slab_obj_exts(slab); 2456 2457 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2458 -(PAGE_SIZE << order)); 2459 } 2460 2461 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2462 { 2463 struct slab *slab; 2464 struct kmem_cache_order_objects oo = s->oo; 2465 gfp_t alloc_gfp; 2466 void *start, *p, *next; 2467 int idx; 2468 bool shuffle; 2469 2470 flags &= gfp_allowed_mask; 2471 2472 flags |= s->allocflags; 2473 2474 /* 2475 * Let the initial higher-order allocation fail under memory pressure 2476 * so we fall-back to the minimum order allocation. 2477 */ 2478 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2479 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2480 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2481 2482 slab = alloc_slab_page(alloc_gfp, node, oo); 2483 if (unlikely(!slab)) { 2484 oo = s->min; 2485 alloc_gfp = flags; 2486 /* 2487 * Allocation may have failed due to fragmentation. 2488 * Try a lower order alloc if possible 2489 */ 2490 slab = alloc_slab_page(alloc_gfp, node, oo); 2491 if (unlikely(!slab)) 2492 return NULL; 2493 stat(s, ORDER_FALLBACK); 2494 } 2495 2496 slab->objects = oo_objects(oo); 2497 slab->inuse = 0; 2498 slab->frozen = 0; 2499 2500 account_slab(slab, oo_order(oo), s, flags); 2501 2502 slab->slab_cache = s; 2503 2504 kasan_poison_slab(slab); 2505 2506 start = slab_address(slab); 2507 2508 setup_slab_debug(s, slab, start); 2509 2510 shuffle = shuffle_freelist(s, slab); 2511 2512 if (!shuffle) { 2513 start = fixup_red_left(s, start); 2514 start = setup_object(s, start); 2515 slab->freelist = start; 2516 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2517 next = p + s->size; 2518 next = setup_object(s, next); 2519 set_freepointer(s, p, next); 2520 p = next; 2521 } 2522 set_freepointer(s, p, NULL); 2523 } 2524 2525 return slab; 2526 } 2527 2528 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2529 { 2530 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2531 flags = kmalloc_fix_flags(flags); 2532 2533 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2534 2535 return allocate_slab(s, 2536 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2537 } 2538 2539 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2540 { 2541 struct folio *folio = slab_folio(slab); 2542 int order = folio_order(folio); 2543 int pages = 1 << order; 2544 2545 __slab_clear_pfmemalloc(slab); 2546 folio->mapping = NULL; 2547 /* Make the mapping reset visible before clearing the flag */ 2548 smp_wmb(); 2549 __folio_clear_slab(folio); 2550 mm_account_reclaimed_pages(pages); 2551 unaccount_slab(slab, order, s); 2552 __free_pages(&folio->page, order); 2553 } 2554 2555 static void rcu_free_slab(struct rcu_head *h) 2556 { 2557 struct slab *slab = container_of(h, struct slab, rcu_head); 2558 2559 __free_slab(slab->slab_cache, slab); 2560 } 2561 2562 static void free_slab(struct kmem_cache *s, struct slab *slab) 2563 { 2564 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2565 void *p; 2566 2567 slab_pad_check(s, slab); 2568 for_each_object(p, s, slab_address(slab), slab->objects) 2569 check_object(s, slab, p, SLUB_RED_INACTIVE); 2570 } 2571 2572 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2573 call_rcu(&slab->rcu_head, rcu_free_slab); 2574 else 2575 __free_slab(s, slab); 2576 } 2577 2578 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2579 { 2580 dec_slabs_node(s, slab_nid(slab), slab->objects); 2581 free_slab(s, slab); 2582 } 2583 2584 /* 2585 * SLUB reuses PG_workingset bit to keep track of whether it's on 2586 * the per-node partial list. 2587 */ 2588 static inline bool slab_test_node_partial(const struct slab *slab) 2589 { 2590 return folio_test_workingset(slab_folio(slab)); 2591 } 2592 2593 static inline void slab_set_node_partial(struct slab *slab) 2594 { 2595 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2596 } 2597 2598 static inline void slab_clear_node_partial(struct slab *slab) 2599 { 2600 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2601 } 2602 2603 /* 2604 * Management of partially allocated slabs. 2605 */ 2606 static inline void 2607 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2608 { 2609 n->nr_partial++; 2610 if (tail == DEACTIVATE_TO_TAIL) 2611 list_add_tail(&slab->slab_list, &n->partial); 2612 else 2613 list_add(&slab->slab_list, &n->partial); 2614 slab_set_node_partial(slab); 2615 } 2616 2617 static inline void add_partial(struct kmem_cache_node *n, 2618 struct slab *slab, int tail) 2619 { 2620 lockdep_assert_held(&n->list_lock); 2621 __add_partial(n, slab, tail); 2622 } 2623 2624 static inline void remove_partial(struct kmem_cache_node *n, 2625 struct slab *slab) 2626 { 2627 lockdep_assert_held(&n->list_lock); 2628 list_del(&slab->slab_list); 2629 slab_clear_node_partial(slab); 2630 n->nr_partial--; 2631 } 2632 2633 /* 2634 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2635 * slab from the n->partial list. Remove only a single object from the slab, do 2636 * the alloc_debug_processing() checks and leave the slab on the list, or move 2637 * it to full list if it was the last free object. 2638 */ 2639 static void *alloc_single_from_partial(struct kmem_cache *s, 2640 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2641 { 2642 void *object; 2643 2644 lockdep_assert_held(&n->list_lock); 2645 2646 object = slab->freelist; 2647 slab->freelist = get_freepointer(s, object); 2648 slab->inuse++; 2649 2650 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2651 remove_partial(n, slab); 2652 return NULL; 2653 } 2654 2655 if (slab->inuse == slab->objects) { 2656 remove_partial(n, slab); 2657 add_full(s, n, slab); 2658 } 2659 2660 return object; 2661 } 2662 2663 /* 2664 * Called only for kmem_cache_debug() caches to allocate from a freshly 2665 * allocated slab. Allocate a single object instead of whole freelist 2666 * and put the slab to the partial (or full) list. 2667 */ 2668 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2669 struct slab *slab, int orig_size) 2670 { 2671 int nid = slab_nid(slab); 2672 struct kmem_cache_node *n = get_node(s, nid); 2673 unsigned long flags; 2674 void *object; 2675 2676 2677 object = slab->freelist; 2678 slab->freelist = get_freepointer(s, object); 2679 slab->inuse = 1; 2680 2681 if (!alloc_debug_processing(s, slab, object, orig_size)) 2682 /* 2683 * It's not really expected that this would fail on a 2684 * freshly allocated slab, but a concurrent memory 2685 * corruption in theory could cause that. 2686 */ 2687 return NULL; 2688 2689 spin_lock_irqsave(&n->list_lock, flags); 2690 2691 if (slab->inuse == slab->objects) 2692 add_full(s, n, slab); 2693 else 2694 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2695 2696 inc_slabs_node(s, nid, slab->objects); 2697 spin_unlock_irqrestore(&n->list_lock, flags); 2698 2699 return object; 2700 } 2701 2702 #ifdef CONFIG_SLUB_CPU_PARTIAL 2703 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2704 #else 2705 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2706 int drain) { } 2707 #endif 2708 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2709 2710 /* 2711 * Try to allocate a partial slab from a specific node. 2712 */ 2713 static struct slab *get_partial_node(struct kmem_cache *s, 2714 struct kmem_cache_node *n, 2715 struct partial_context *pc) 2716 { 2717 struct slab *slab, *slab2, *partial = NULL; 2718 unsigned long flags; 2719 unsigned int partial_slabs = 0; 2720 2721 /* 2722 * Racy check. If we mistakenly see no partial slabs then we 2723 * just allocate an empty slab. If we mistakenly try to get a 2724 * partial slab and there is none available then get_partial() 2725 * will return NULL. 2726 */ 2727 if (!n || !n->nr_partial) 2728 return NULL; 2729 2730 spin_lock_irqsave(&n->list_lock, flags); 2731 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2732 if (!pfmemalloc_match(slab, pc->flags)) 2733 continue; 2734 2735 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2736 void *object = alloc_single_from_partial(s, n, slab, 2737 pc->orig_size); 2738 if (object) { 2739 partial = slab; 2740 pc->object = object; 2741 break; 2742 } 2743 continue; 2744 } 2745 2746 remove_partial(n, slab); 2747 2748 if (!partial) { 2749 partial = slab; 2750 stat(s, ALLOC_FROM_PARTIAL); 2751 2752 if ((slub_get_cpu_partial(s) == 0)) { 2753 break; 2754 } 2755 } else { 2756 put_cpu_partial(s, slab, 0); 2757 stat(s, CPU_PARTIAL_NODE); 2758 2759 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2760 break; 2761 } 2762 } 2763 } 2764 spin_unlock_irqrestore(&n->list_lock, flags); 2765 return partial; 2766 } 2767 2768 /* 2769 * Get a slab from somewhere. Search in increasing NUMA distances. 2770 */ 2771 static struct slab *get_any_partial(struct kmem_cache *s, 2772 struct partial_context *pc) 2773 { 2774 #ifdef CONFIG_NUMA 2775 struct zonelist *zonelist; 2776 struct zoneref *z; 2777 struct zone *zone; 2778 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2779 struct slab *slab; 2780 unsigned int cpuset_mems_cookie; 2781 2782 /* 2783 * The defrag ratio allows a configuration of the tradeoffs between 2784 * inter node defragmentation and node local allocations. A lower 2785 * defrag_ratio increases the tendency to do local allocations 2786 * instead of attempting to obtain partial slabs from other nodes. 2787 * 2788 * If the defrag_ratio is set to 0 then kmalloc() always 2789 * returns node local objects. If the ratio is higher then kmalloc() 2790 * may return off node objects because partial slabs are obtained 2791 * from other nodes and filled up. 2792 * 2793 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2794 * (which makes defrag_ratio = 1000) then every (well almost) 2795 * allocation will first attempt to defrag slab caches on other nodes. 2796 * This means scanning over all nodes to look for partial slabs which 2797 * may be expensive if we do it every time we are trying to find a slab 2798 * with available objects. 2799 */ 2800 if (!s->remote_node_defrag_ratio || 2801 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2802 return NULL; 2803 2804 do { 2805 cpuset_mems_cookie = read_mems_allowed_begin(); 2806 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2807 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2808 struct kmem_cache_node *n; 2809 2810 n = get_node(s, zone_to_nid(zone)); 2811 2812 if (n && cpuset_zone_allowed(zone, pc->flags) && 2813 n->nr_partial > s->min_partial) { 2814 slab = get_partial_node(s, n, pc); 2815 if (slab) { 2816 /* 2817 * Don't check read_mems_allowed_retry() 2818 * here - if mems_allowed was updated in 2819 * parallel, that was a harmless race 2820 * between allocation and the cpuset 2821 * update 2822 */ 2823 return slab; 2824 } 2825 } 2826 } 2827 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2828 #endif /* CONFIG_NUMA */ 2829 return NULL; 2830 } 2831 2832 /* 2833 * Get a partial slab, lock it and return it. 2834 */ 2835 static struct slab *get_partial(struct kmem_cache *s, int node, 2836 struct partial_context *pc) 2837 { 2838 struct slab *slab; 2839 int searchnode = node; 2840 2841 if (node == NUMA_NO_NODE) 2842 searchnode = numa_mem_id(); 2843 2844 slab = get_partial_node(s, get_node(s, searchnode), pc); 2845 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2846 return slab; 2847 2848 return get_any_partial(s, pc); 2849 } 2850 2851 #ifndef CONFIG_SLUB_TINY 2852 2853 #ifdef CONFIG_PREEMPTION 2854 /* 2855 * Calculate the next globally unique transaction for disambiguation 2856 * during cmpxchg. The transactions start with the cpu number and are then 2857 * incremented by CONFIG_NR_CPUS. 2858 */ 2859 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2860 #else 2861 /* 2862 * No preemption supported therefore also no need to check for 2863 * different cpus. 2864 */ 2865 #define TID_STEP 1 2866 #endif /* CONFIG_PREEMPTION */ 2867 2868 static inline unsigned long next_tid(unsigned long tid) 2869 { 2870 return tid + TID_STEP; 2871 } 2872 2873 #ifdef SLUB_DEBUG_CMPXCHG 2874 static inline unsigned int tid_to_cpu(unsigned long tid) 2875 { 2876 return tid % TID_STEP; 2877 } 2878 2879 static inline unsigned long tid_to_event(unsigned long tid) 2880 { 2881 return tid / TID_STEP; 2882 } 2883 #endif 2884 2885 static inline unsigned int init_tid(int cpu) 2886 { 2887 return cpu; 2888 } 2889 2890 static inline void note_cmpxchg_failure(const char *n, 2891 const struct kmem_cache *s, unsigned long tid) 2892 { 2893 #ifdef SLUB_DEBUG_CMPXCHG 2894 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2895 2896 pr_info("%s %s: cmpxchg redo ", n, s->name); 2897 2898 #ifdef CONFIG_PREEMPTION 2899 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2900 pr_warn("due to cpu change %d -> %d\n", 2901 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2902 else 2903 #endif 2904 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2905 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2906 tid_to_event(tid), tid_to_event(actual_tid)); 2907 else 2908 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2909 actual_tid, tid, next_tid(tid)); 2910 #endif 2911 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2912 } 2913 2914 static void init_kmem_cache_cpus(struct kmem_cache *s) 2915 { 2916 int cpu; 2917 struct kmem_cache_cpu *c; 2918 2919 for_each_possible_cpu(cpu) { 2920 c = per_cpu_ptr(s->cpu_slab, cpu); 2921 local_lock_init(&c->lock); 2922 c->tid = init_tid(cpu); 2923 } 2924 } 2925 2926 /* 2927 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2928 * unfreezes the slabs and puts it on the proper list. 2929 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2930 * by the caller. 2931 */ 2932 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2933 void *freelist) 2934 { 2935 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2936 int free_delta = 0; 2937 void *nextfree, *freelist_iter, *freelist_tail; 2938 int tail = DEACTIVATE_TO_HEAD; 2939 unsigned long flags = 0; 2940 struct slab new; 2941 struct slab old; 2942 2943 if (READ_ONCE(slab->freelist)) { 2944 stat(s, DEACTIVATE_REMOTE_FREES); 2945 tail = DEACTIVATE_TO_TAIL; 2946 } 2947 2948 /* 2949 * Stage one: Count the objects on cpu's freelist as free_delta and 2950 * remember the last object in freelist_tail for later splicing. 2951 */ 2952 freelist_tail = NULL; 2953 freelist_iter = freelist; 2954 while (freelist_iter) { 2955 nextfree = get_freepointer(s, freelist_iter); 2956 2957 /* 2958 * If 'nextfree' is invalid, it is possible that the object at 2959 * 'freelist_iter' is already corrupted. So isolate all objects 2960 * starting at 'freelist_iter' by skipping them. 2961 */ 2962 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2963 break; 2964 2965 freelist_tail = freelist_iter; 2966 free_delta++; 2967 2968 freelist_iter = nextfree; 2969 } 2970 2971 /* 2972 * Stage two: Unfreeze the slab while splicing the per-cpu 2973 * freelist to the head of slab's freelist. 2974 */ 2975 do { 2976 old.freelist = READ_ONCE(slab->freelist); 2977 old.counters = READ_ONCE(slab->counters); 2978 VM_BUG_ON(!old.frozen); 2979 2980 /* Determine target state of the slab */ 2981 new.counters = old.counters; 2982 new.frozen = 0; 2983 if (freelist_tail) { 2984 new.inuse -= free_delta; 2985 set_freepointer(s, freelist_tail, old.freelist); 2986 new.freelist = freelist; 2987 } else { 2988 new.freelist = old.freelist; 2989 } 2990 } while (!slab_update_freelist(s, slab, 2991 old.freelist, old.counters, 2992 new.freelist, new.counters, 2993 "unfreezing slab")); 2994 2995 /* 2996 * Stage three: Manipulate the slab list based on the updated state. 2997 */ 2998 if (!new.inuse && n->nr_partial >= s->min_partial) { 2999 stat(s, DEACTIVATE_EMPTY); 3000 discard_slab(s, slab); 3001 stat(s, FREE_SLAB); 3002 } else if (new.freelist) { 3003 spin_lock_irqsave(&n->list_lock, flags); 3004 add_partial(n, slab, tail); 3005 spin_unlock_irqrestore(&n->list_lock, flags); 3006 stat(s, tail); 3007 } else { 3008 stat(s, DEACTIVATE_FULL); 3009 } 3010 } 3011 3012 #ifdef CONFIG_SLUB_CPU_PARTIAL 3013 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3014 { 3015 struct kmem_cache_node *n = NULL, *n2 = NULL; 3016 struct slab *slab, *slab_to_discard = NULL; 3017 unsigned long flags = 0; 3018 3019 while (partial_slab) { 3020 slab = partial_slab; 3021 partial_slab = slab->next; 3022 3023 n2 = get_node(s, slab_nid(slab)); 3024 if (n != n2) { 3025 if (n) 3026 spin_unlock_irqrestore(&n->list_lock, flags); 3027 3028 n = n2; 3029 spin_lock_irqsave(&n->list_lock, flags); 3030 } 3031 3032 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3033 slab->next = slab_to_discard; 3034 slab_to_discard = slab; 3035 } else { 3036 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3037 stat(s, FREE_ADD_PARTIAL); 3038 } 3039 } 3040 3041 if (n) 3042 spin_unlock_irqrestore(&n->list_lock, flags); 3043 3044 while (slab_to_discard) { 3045 slab = slab_to_discard; 3046 slab_to_discard = slab_to_discard->next; 3047 3048 stat(s, DEACTIVATE_EMPTY); 3049 discard_slab(s, slab); 3050 stat(s, FREE_SLAB); 3051 } 3052 } 3053 3054 /* 3055 * Put all the cpu partial slabs to the node partial list. 3056 */ 3057 static void put_partials(struct kmem_cache *s) 3058 { 3059 struct slab *partial_slab; 3060 unsigned long flags; 3061 3062 local_lock_irqsave(&s->cpu_slab->lock, flags); 3063 partial_slab = this_cpu_read(s->cpu_slab->partial); 3064 this_cpu_write(s->cpu_slab->partial, NULL); 3065 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3066 3067 if (partial_slab) 3068 __put_partials(s, partial_slab); 3069 } 3070 3071 static void put_partials_cpu(struct kmem_cache *s, 3072 struct kmem_cache_cpu *c) 3073 { 3074 struct slab *partial_slab; 3075 3076 partial_slab = slub_percpu_partial(c); 3077 c->partial = NULL; 3078 3079 if (partial_slab) 3080 __put_partials(s, partial_slab); 3081 } 3082 3083 /* 3084 * Put a slab into a partial slab slot if available. 3085 * 3086 * If we did not find a slot then simply move all the partials to the 3087 * per node partial list. 3088 */ 3089 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3090 { 3091 struct slab *oldslab; 3092 struct slab *slab_to_put = NULL; 3093 unsigned long flags; 3094 int slabs = 0; 3095 3096 local_lock_irqsave(&s->cpu_slab->lock, flags); 3097 3098 oldslab = this_cpu_read(s->cpu_slab->partial); 3099 3100 if (oldslab) { 3101 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3102 /* 3103 * Partial array is full. Move the existing set to the 3104 * per node partial list. Postpone the actual unfreezing 3105 * outside of the critical section. 3106 */ 3107 slab_to_put = oldslab; 3108 oldslab = NULL; 3109 } else { 3110 slabs = oldslab->slabs; 3111 } 3112 } 3113 3114 slabs++; 3115 3116 slab->slabs = slabs; 3117 slab->next = oldslab; 3118 3119 this_cpu_write(s->cpu_slab->partial, slab); 3120 3121 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3122 3123 if (slab_to_put) { 3124 __put_partials(s, slab_to_put); 3125 stat(s, CPU_PARTIAL_DRAIN); 3126 } 3127 } 3128 3129 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3130 3131 static inline void put_partials(struct kmem_cache *s) { } 3132 static inline void put_partials_cpu(struct kmem_cache *s, 3133 struct kmem_cache_cpu *c) { } 3134 3135 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3136 3137 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3138 { 3139 unsigned long flags; 3140 struct slab *slab; 3141 void *freelist; 3142 3143 local_lock_irqsave(&s->cpu_slab->lock, flags); 3144 3145 slab = c->slab; 3146 freelist = c->freelist; 3147 3148 c->slab = NULL; 3149 c->freelist = NULL; 3150 c->tid = next_tid(c->tid); 3151 3152 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3153 3154 if (slab) { 3155 deactivate_slab(s, slab, freelist); 3156 stat(s, CPUSLAB_FLUSH); 3157 } 3158 } 3159 3160 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3161 { 3162 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3163 void *freelist = c->freelist; 3164 struct slab *slab = c->slab; 3165 3166 c->slab = NULL; 3167 c->freelist = NULL; 3168 c->tid = next_tid(c->tid); 3169 3170 if (slab) { 3171 deactivate_slab(s, slab, freelist); 3172 stat(s, CPUSLAB_FLUSH); 3173 } 3174 3175 put_partials_cpu(s, c); 3176 } 3177 3178 struct slub_flush_work { 3179 struct work_struct work; 3180 struct kmem_cache *s; 3181 bool skip; 3182 }; 3183 3184 /* 3185 * Flush cpu slab. 3186 * 3187 * Called from CPU work handler with migration disabled. 3188 */ 3189 static void flush_cpu_slab(struct work_struct *w) 3190 { 3191 struct kmem_cache *s; 3192 struct kmem_cache_cpu *c; 3193 struct slub_flush_work *sfw; 3194 3195 sfw = container_of(w, struct slub_flush_work, work); 3196 3197 s = sfw->s; 3198 c = this_cpu_ptr(s->cpu_slab); 3199 3200 if (c->slab) 3201 flush_slab(s, c); 3202 3203 put_partials(s); 3204 } 3205 3206 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3207 { 3208 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3209 3210 return c->slab || slub_percpu_partial(c); 3211 } 3212 3213 static DEFINE_MUTEX(flush_lock); 3214 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3215 3216 static void flush_all_cpus_locked(struct kmem_cache *s) 3217 { 3218 struct slub_flush_work *sfw; 3219 unsigned int cpu; 3220 3221 lockdep_assert_cpus_held(); 3222 mutex_lock(&flush_lock); 3223 3224 for_each_online_cpu(cpu) { 3225 sfw = &per_cpu(slub_flush, cpu); 3226 if (!has_cpu_slab(cpu, s)) { 3227 sfw->skip = true; 3228 continue; 3229 } 3230 INIT_WORK(&sfw->work, flush_cpu_slab); 3231 sfw->skip = false; 3232 sfw->s = s; 3233 queue_work_on(cpu, flushwq, &sfw->work); 3234 } 3235 3236 for_each_online_cpu(cpu) { 3237 sfw = &per_cpu(slub_flush, cpu); 3238 if (sfw->skip) 3239 continue; 3240 flush_work(&sfw->work); 3241 } 3242 3243 mutex_unlock(&flush_lock); 3244 } 3245 3246 static void flush_all(struct kmem_cache *s) 3247 { 3248 cpus_read_lock(); 3249 flush_all_cpus_locked(s); 3250 cpus_read_unlock(); 3251 } 3252 3253 /* 3254 * Use the cpu notifier to insure that the cpu slabs are flushed when 3255 * necessary. 3256 */ 3257 static int slub_cpu_dead(unsigned int cpu) 3258 { 3259 struct kmem_cache *s; 3260 3261 mutex_lock(&slab_mutex); 3262 list_for_each_entry(s, &slab_caches, list) 3263 __flush_cpu_slab(s, cpu); 3264 mutex_unlock(&slab_mutex); 3265 return 0; 3266 } 3267 3268 #else /* CONFIG_SLUB_TINY */ 3269 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3270 static inline void flush_all(struct kmem_cache *s) { } 3271 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3272 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3273 #endif /* CONFIG_SLUB_TINY */ 3274 3275 /* 3276 * Check if the objects in a per cpu structure fit numa 3277 * locality expectations. 3278 */ 3279 static inline int node_match(struct slab *slab, int node) 3280 { 3281 #ifdef CONFIG_NUMA 3282 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3283 return 0; 3284 #endif 3285 return 1; 3286 } 3287 3288 #ifdef CONFIG_SLUB_DEBUG 3289 static int count_free(struct slab *slab) 3290 { 3291 return slab->objects - slab->inuse; 3292 } 3293 3294 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3295 { 3296 return atomic_long_read(&n->total_objects); 3297 } 3298 3299 /* Supports checking bulk free of a constructed freelist */ 3300 static inline bool free_debug_processing(struct kmem_cache *s, 3301 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3302 unsigned long addr, depot_stack_handle_t handle) 3303 { 3304 bool checks_ok = false; 3305 void *object = head; 3306 int cnt = 0; 3307 3308 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3309 if (!check_slab(s, slab)) 3310 goto out; 3311 } 3312 3313 if (slab->inuse < *bulk_cnt) { 3314 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3315 slab->inuse, *bulk_cnt); 3316 goto out; 3317 } 3318 3319 next_object: 3320 3321 if (++cnt > *bulk_cnt) 3322 goto out_cnt; 3323 3324 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3325 if (!free_consistency_checks(s, slab, object, addr)) 3326 goto out; 3327 } 3328 3329 if (s->flags & SLAB_STORE_USER) 3330 set_track_update(s, object, TRACK_FREE, addr, handle); 3331 trace(s, slab, object, 0); 3332 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3333 init_object(s, object, SLUB_RED_INACTIVE); 3334 3335 /* Reached end of constructed freelist yet? */ 3336 if (object != tail) { 3337 object = get_freepointer(s, object); 3338 goto next_object; 3339 } 3340 checks_ok = true; 3341 3342 out_cnt: 3343 if (cnt != *bulk_cnt) { 3344 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3345 *bulk_cnt, cnt); 3346 *bulk_cnt = cnt; 3347 } 3348 3349 out: 3350 3351 if (!checks_ok) 3352 slab_fix(s, "Object at 0x%p not freed", object); 3353 3354 return checks_ok; 3355 } 3356 #endif /* CONFIG_SLUB_DEBUG */ 3357 3358 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3359 static unsigned long count_partial(struct kmem_cache_node *n, 3360 int (*get_count)(struct slab *)) 3361 { 3362 unsigned long flags; 3363 unsigned long x = 0; 3364 struct slab *slab; 3365 3366 spin_lock_irqsave(&n->list_lock, flags); 3367 list_for_each_entry(slab, &n->partial, slab_list) 3368 x += get_count(slab); 3369 spin_unlock_irqrestore(&n->list_lock, flags); 3370 return x; 3371 } 3372 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3373 3374 #ifdef CONFIG_SLUB_DEBUG 3375 #define MAX_PARTIAL_TO_SCAN 10000 3376 3377 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3378 { 3379 unsigned long flags; 3380 unsigned long x = 0; 3381 struct slab *slab; 3382 3383 spin_lock_irqsave(&n->list_lock, flags); 3384 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3385 list_for_each_entry(slab, &n->partial, slab_list) 3386 x += slab->objects - slab->inuse; 3387 } else { 3388 /* 3389 * For a long list, approximate the total count of objects in 3390 * it to meet the limit on the number of slabs to scan. 3391 * Scan from both the list's head and tail for better accuracy. 3392 */ 3393 unsigned long scanned = 0; 3394 3395 list_for_each_entry(slab, &n->partial, slab_list) { 3396 x += slab->objects - slab->inuse; 3397 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3398 break; 3399 } 3400 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3401 x += slab->objects - slab->inuse; 3402 if (++scanned == MAX_PARTIAL_TO_SCAN) 3403 break; 3404 } 3405 x = mult_frac(x, n->nr_partial, scanned); 3406 x = min(x, node_nr_objs(n)); 3407 } 3408 spin_unlock_irqrestore(&n->list_lock, flags); 3409 return x; 3410 } 3411 3412 static noinline void 3413 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3414 { 3415 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3416 DEFAULT_RATELIMIT_BURST); 3417 int node; 3418 struct kmem_cache_node *n; 3419 3420 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3421 return; 3422 3423 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3424 nid, gfpflags, &gfpflags); 3425 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3426 s->name, s->object_size, s->size, oo_order(s->oo), 3427 oo_order(s->min)); 3428 3429 if (oo_order(s->min) > get_order(s->object_size)) 3430 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3431 s->name); 3432 3433 for_each_kmem_cache_node(s, node, n) { 3434 unsigned long nr_slabs; 3435 unsigned long nr_objs; 3436 unsigned long nr_free; 3437 3438 nr_free = count_partial_free_approx(n); 3439 nr_slabs = node_nr_slabs(n); 3440 nr_objs = node_nr_objs(n); 3441 3442 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3443 node, nr_slabs, nr_objs, nr_free); 3444 } 3445 } 3446 #else /* CONFIG_SLUB_DEBUG */ 3447 static inline void 3448 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3449 #endif 3450 3451 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3452 { 3453 if (unlikely(slab_test_pfmemalloc(slab))) 3454 return gfp_pfmemalloc_allowed(gfpflags); 3455 3456 return true; 3457 } 3458 3459 #ifndef CONFIG_SLUB_TINY 3460 static inline bool 3461 __update_cpu_freelist_fast(struct kmem_cache *s, 3462 void *freelist_old, void *freelist_new, 3463 unsigned long tid) 3464 { 3465 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3466 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3467 3468 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3469 &old.full, new.full); 3470 } 3471 3472 /* 3473 * Check the slab->freelist and either transfer the freelist to the 3474 * per cpu freelist or deactivate the slab. 3475 * 3476 * The slab is still frozen if the return value is not NULL. 3477 * 3478 * If this function returns NULL then the slab has been unfrozen. 3479 */ 3480 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3481 { 3482 struct slab new; 3483 unsigned long counters; 3484 void *freelist; 3485 3486 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3487 3488 do { 3489 freelist = slab->freelist; 3490 counters = slab->counters; 3491 3492 new.counters = counters; 3493 3494 new.inuse = slab->objects; 3495 new.frozen = freelist != NULL; 3496 3497 } while (!__slab_update_freelist(s, slab, 3498 freelist, counters, 3499 NULL, new.counters, 3500 "get_freelist")); 3501 3502 return freelist; 3503 } 3504 3505 /* 3506 * Freeze the partial slab and return the pointer to the freelist. 3507 */ 3508 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3509 { 3510 struct slab new; 3511 unsigned long counters; 3512 void *freelist; 3513 3514 do { 3515 freelist = slab->freelist; 3516 counters = slab->counters; 3517 3518 new.counters = counters; 3519 VM_BUG_ON(new.frozen); 3520 3521 new.inuse = slab->objects; 3522 new.frozen = 1; 3523 3524 } while (!slab_update_freelist(s, slab, 3525 freelist, counters, 3526 NULL, new.counters, 3527 "freeze_slab")); 3528 3529 return freelist; 3530 } 3531 3532 /* 3533 * Slow path. The lockless freelist is empty or we need to perform 3534 * debugging duties. 3535 * 3536 * Processing is still very fast if new objects have been freed to the 3537 * regular freelist. In that case we simply take over the regular freelist 3538 * as the lockless freelist and zap the regular freelist. 3539 * 3540 * If that is not working then we fall back to the partial lists. We take the 3541 * first element of the freelist as the object to allocate now and move the 3542 * rest of the freelist to the lockless freelist. 3543 * 3544 * And if we were unable to get a new slab from the partial slab lists then 3545 * we need to allocate a new slab. This is the slowest path since it involves 3546 * a call to the page allocator and the setup of a new slab. 3547 * 3548 * Version of __slab_alloc to use when we know that preemption is 3549 * already disabled (which is the case for bulk allocation). 3550 */ 3551 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3552 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3553 { 3554 void *freelist; 3555 struct slab *slab; 3556 unsigned long flags; 3557 struct partial_context pc; 3558 bool try_thisnode = true; 3559 3560 stat(s, ALLOC_SLOWPATH); 3561 3562 reread_slab: 3563 3564 slab = READ_ONCE(c->slab); 3565 if (!slab) { 3566 /* 3567 * if the node is not online or has no normal memory, just 3568 * ignore the node constraint 3569 */ 3570 if (unlikely(node != NUMA_NO_NODE && 3571 !node_isset(node, slab_nodes))) 3572 node = NUMA_NO_NODE; 3573 goto new_slab; 3574 } 3575 3576 if (unlikely(!node_match(slab, node))) { 3577 /* 3578 * same as above but node_match() being false already 3579 * implies node != NUMA_NO_NODE 3580 */ 3581 if (!node_isset(node, slab_nodes)) { 3582 node = NUMA_NO_NODE; 3583 } else { 3584 stat(s, ALLOC_NODE_MISMATCH); 3585 goto deactivate_slab; 3586 } 3587 } 3588 3589 /* 3590 * By rights, we should be searching for a slab page that was 3591 * PFMEMALLOC but right now, we are losing the pfmemalloc 3592 * information when the page leaves the per-cpu allocator 3593 */ 3594 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3595 goto deactivate_slab; 3596 3597 /* must check again c->slab in case we got preempted and it changed */ 3598 local_lock_irqsave(&s->cpu_slab->lock, flags); 3599 if (unlikely(slab != c->slab)) { 3600 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3601 goto reread_slab; 3602 } 3603 freelist = c->freelist; 3604 if (freelist) 3605 goto load_freelist; 3606 3607 freelist = get_freelist(s, slab); 3608 3609 if (!freelist) { 3610 c->slab = NULL; 3611 c->tid = next_tid(c->tid); 3612 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3613 stat(s, DEACTIVATE_BYPASS); 3614 goto new_slab; 3615 } 3616 3617 stat(s, ALLOC_REFILL); 3618 3619 load_freelist: 3620 3621 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3622 3623 /* 3624 * freelist is pointing to the list of objects to be used. 3625 * slab is pointing to the slab from which the objects are obtained. 3626 * That slab must be frozen for per cpu allocations to work. 3627 */ 3628 VM_BUG_ON(!c->slab->frozen); 3629 c->freelist = get_freepointer(s, freelist); 3630 c->tid = next_tid(c->tid); 3631 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3632 return freelist; 3633 3634 deactivate_slab: 3635 3636 local_lock_irqsave(&s->cpu_slab->lock, flags); 3637 if (slab != c->slab) { 3638 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3639 goto reread_slab; 3640 } 3641 freelist = c->freelist; 3642 c->slab = NULL; 3643 c->freelist = NULL; 3644 c->tid = next_tid(c->tid); 3645 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3646 deactivate_slab(s, slab, freelist); 3647 3648 new_slab: 3649 3650 #ifdef CONFIG_SLUB_CPU_PARTIAL 3651 while (slub_percpu_partial(c)) { 3652 local_lock_irqsave(&s->cpu_slab->lock, flags); 3653 if (unlikely(c->slab)) { 3654 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3655 goto reread_slab; 3656 } 3657 if (unlikely(!slub_percpu_partial(c))) { 3658 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3659 /* we were preempted and partial list got empty */ 3660 goto new_objects; 3661 } 3662 3663 slab = slub_percpu_partial(c); 3664 slub_set_percpu_partial(c, slab); 3665 3666 if (likely(node_match(slab, node) && 3667 pfmemalloc_match(slab, gfpflags))) { 3668 c->slab = slab; 3669 freelist = get_freelist(s, slab); 3670 VM_BUG_ON(!freelist); 3671 stat(s, CPU_PARTIAL_ALLOC); 3672 goto load_freelist; 3673 } 3674 3675 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3676 3677 slab->next = NULL; 3678 __put_partials(s, slab); 3679 } 3680 #endif 3681 3682 new_objects: 3683 3684 pc.flags = gfpflags; 3685 /* 3686 * When a preferred node is indicated but no __GFP_THISNODE 3687 * 3688 * 1) try to get a partial slab from target node only by having 3689 * __GFP_THISNODE in pc.flags for get_partial() 3690 * 2) if 1) failed, try to allocate a new slab from target node with 3691 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3692 * 3) if 2) failed, retry with original gfpflags which will allow 3693 * get_partial() try partial lists of other nodes before potentially 3694 * allocating new page from other nodes 3695 */ 3696 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3697 && try_thisnode)) 3698 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3699 3700 pc.orig_size = orig_size; 3701 slab = get_partial(s, node, &pc); 3702 if (slab) { 3703 if (kmem_cache_debug(s)) { 3704 freelist = pc.object; 3705 /* 3706 * For debug caches here we had to go through 3707 * alloc_single_from_partial() so just store the 3708 * tracking info and return the object. 3709 */ 3710 if (s->flags & SLAB_STORE_USER) 3711 set_track(s, freelist, TRACK_ALLOC, addr); 3712 3713 return freelist; 3714 } 3715 3716 freelist = freeze_slab(s, slab); 3717 goto retry_load_slab; 3718 } 3719 3720 slub_put_cpu_ptr(s->cpu_slab); 3721 slab = new_slab(s, pc.flags, node); 3722 c = slub_get_cpu_ptr(s->cpu_slab); 3723 3724 if (unlikely(!slab)) { 3725 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3726 && try_thisnode) { 3727 try_thisnode = false; 3728 goto new_objects; 3729 } 3730 slab_out_of_memory(s, gfpflags, node); 3731 return NULL; 3732 } 3733 3734 stat(s, ALLOC_SLAB); 3735 3736 if (kmem_cache_debug(s)) { 3737 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3738 3739 if (unlikely(!freelist)) 3740 goto new_objects; 3741 3742 if (s->flags & SLAB_STORE_USER) 3743 set_track(s, freelist, TRACK_ALLOC, addr); 3744 3745 return freelist; 3746 } 3747 3748 /* 3749 * No other reference to the slab yet so we can 3750 * muck around with it freely without cmpxchg 3751 */ 3752 freelist = slab->freelist; 3753 slab->freelist = NULL; 3754 slab->inuse = slab->objects; 3755 slab->frozen = 1; 3756 3757 inc_slabs_node(s, slab_nid(slab), slab->objects); 3758 3759 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3760 /* 3761 * For !pfmemalloc_match() case we don't load freelist so that 3762 * we don't make further mismatched allocations easier. 3763 */ 3764 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3765 return freelist; 3766 } 3767 3768 retry_load_slab: 3769 3770 local_lock_irqsave(&s->cpu_slab->lock, flags); 3771 if (unlikely(c->slab)) { 3772 void *flush_freelist = c->freelist; 3773 struct slab *flush_slab = c->slab; 3774 3775 c->slab = NULL; 3776 c->freelist = NULL; 3777 c->tid = next_tid(c->tid); 3778 3779 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3780 3781 deactivate_slab(s, flush_slab, flush_freelist); 3782 3783 stat(s, CPUSLAB_FLUSH); 3784 3785 goto retry_load_slab; 3786 } 3787 c->slab = slab; 3788 3789 goto load_freelist; 3790 } 3791 3792 /* 3793 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3794 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3795 * pointer. 3796 */ 3797 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3798 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3799 { 3800 void *p; 3801 3802 #ifdef CONFIG_PREEMPT_COUNT 3803 /* 3804 * We may have been preempted and rescheduled on a different 3805 * cpu before disabling preemption. Need to reload cpu area 3806 * pointer. 3807 */ 3808 c = slub_get_cpu_ptr(s->cpu_slab); 3809 #endif 3810 3811 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3812 #ifdef CONFIG_PREEMPT_COUNT 3813 slub_put_cpu_ptr(s->cpu_slab); 3814 #endif 3815 return p; 3816 } 3817 3818 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3819 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3820 { 3821 struct kmem_cache_cpu *c; 3822 struct slab *slab; 3823 unsigned long tid; 3824 void *object; 3825 3826 redo: 3827 /* 3828 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3829 * enabled. We may switch back and forth between cpus while 3830 * reading from one cpu area. That does not matter as long 3831 * as we end up on the original cpu again when doing the cmpxchg. 3832 * 3833 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3834 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3835 * the tid. If we are preempted and switched to another cpu between the 3836 * two reads, it's OK as the two are still associated with the same cpu 3837 * and cmpxchg later will validate the cpu. 3838 */ 3839 c = raw_cpu_ptr(s->cpu_slab); 3840 tid = READ_ONCE(c->tid); 3841 3842 /* 3843 * Irqless object alloc/free algorithm used here depends on sequence 3844 * of fetching cpu_slab's data. tid should be fetched before anything 3845 * on c to guarantee that object and slab associated with previous tid 3846 * won't be used with current tid. If we fetch tid first, object and 3847 * slab could be one associated with next tid and our alloc/free 3848 * request will be failed. In this case, we will retry. So, no problem. 3849 */ 3850 barrier(); 3851 3852 /* 3853 * The transaction ids are globally unique per cpu and per operation on 3854 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3855 * occurs on the right processor and that there was no operation on the 3856 * linked list in between. 3857 */ 3858 3859 object = c->freelist; 3860 slab = c->slab; 3861 3862 if (!USE_LOCKLESS_FAST_PATH() || 3863 unlikely(!object || !slab || !node_match(slab, node))) { 3864 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3865 } else { 3866 void *next_object = get_freepointer_safe(s, object); 3867 3868 /* 3869 * The cmpxchg will only match if there was no additional 3870 * operation and if we are on the right processor. 3871 * 3872 * The cmpxchg does the following atomically (without lock 3873 * semantics!) 3874 * 1. Relocate first pointer to the current per cpu area. 3875 * 2. Verify that tid and freelist have not been changed 3876 * 3. If they were not changed replace tid and freelist 3877 * 3878 * Since this is without lock semantics the protection is only 3879 * against code executing on this cpu *not* from access by 3880 * other cpus. 3881 */ 3882 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3883 note_cmpxchg_failure("slab_alloc", s, tid); 3884 goto redo; 3885 } 3886 prefetch_freepointer(s, next_object); 3887 stat(s, ALLOC_FASTPATH); 3888 } 3889 3890 return object; 3891 } 3892 #else /* CONFIG_SLUB_TINY */ 3893 static void *__slab_alloc_node(struct kmem_cache *s, 3894 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3895 { 3896 struct partial_context pc; 3897 struct slab *slab; 3898 void *object; 3899 3900 pc.flags = gfpflags; 3901 pc.orig_size = orig_size; 3902 slab = get_partial(s, node, &pc); 3903 3904 if (slab) 3905 return pc.object; 3906 3907 slab = new_slab(s, gfpflags, node); 3908 if (unlikely(!slab)) { 3909 slab_out_of_memory(s, gfpflags, node); 3910 return NULL; 3911 } 3912 3913 object = alloc_single_from_new_slab(s, slab, orig_size); 3914 3915 return object; 3916 } 3917 #endif /* CONFIG_SLUB_TINY */ 3918 3919 /* 3920 * If the object has been wiped upon free, make sure it's fully initialized by 3921 * zeroing out freelist pointer. 3922 * 3923 * Note that we also wipe custom freelist pointers specified via 3924 * s->rcu_freeptr_offset. 3925 */ 3926 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3927 void *obj) 3928 { 3929 if (unlikely(slab_want_init_on_free(s)) && obj && 3930 !freeptr_outside_object(s)) 3931 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3932 0, sizeof(void *)); 3933 } 3934 3935 static __fastpath_inline 3936 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 3937 { 3938 flags &= gfp_allowed_mask; 3939 3940 might_alloc(flags); 3941 3942 if (unlikely(should_failslab(s, flags))) 3943 return NULL; 3944 3945 return s; 3946 } 3947 3948 static __fastpath_inline 3949 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3950 gfp_t flags, size_t size, void **p, bool init, 3951 unsigned int orig_size) 3952 { 3953 unsigned int zero_size = s->object_size; 3954 bool kasan_init = init; 3955 size_t i; 3956 gfp_t init_flags = flags & gfp_allowed_mask; 3957 3958 /* 3959 * For kmalloc object, the allocated memory size(object_size) is likely 3960 * larger than the requested size(orig_size). If redzone check is 3961 * enabled for the extra space, don't zero it, as it will be redzoned 3962 * soon. The redzone operation for this extra space could be seen as a 3963 * replacement of current poisoning under certain debug option, and 3964 * won't break other sanity checks. 3965 */ 3966 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3967 (s->flags & SLAB_KMALLOC)) 3968 zero_size = orig_size; 3969 3970 /* 3971 * When slab_debug is enabled, avoid memory initialization integrated 3972 * into KASAN and instead zero out the memory via the memset below with 3973 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3974 * cause false-positive reports. This does not lead to a performance 3975 * penalty on production builds, as slab_debug is not intended to be 3976 * enabled there. 3977 */ 3978 if (__slub_debug_enabled()) 3979 kasan_init = false; 3980 3981 /* 3982 * As memory initialization might be integrated into KASAN, 3983 * kasan_slab_alloc and initialization memset must be 3984 * kept together to avoid discrepancies in behavior. 3985 * 3986 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3987 */ 3988 for (i = 0; i < size; i++) { 3989 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3990 if (p[i] && init && (!kasan_init || 3991 !kasan_has_integrated_init())) 3992 memset(p[i], 0, zero_size); 3993 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3994 s->flags, init_flags); 3995 kmsan_slab_alloc(s, p[i], init_flags); 3996 alloc_tagging_slab_alloc_hook(s, p[i], flags); 3997 } 3998 3999 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4000 } 4001 4002 /* 4003 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4004 * have the fastpath folded into their functions. So no function call 4005 * overhead for requests that can be satisfied on the fastpath. 4006 * 4007 * The fastpath works by first checking if the lockless freelist can be used. 4008 * If not then __slab_alloc is called for slow processing. 4009 * 4010 * Otherwise we can simply pick the next object from the lockless free list. 4011 */ 4012 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4013 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4014 { 4015 void *object; 4016 bool init = false; 4017 4018 s = slab_pre_alloc_hook(s, gfpflags); 4019 if (unlikely(!s)) 4020 return NULL; 4021 4022 object = kfence_alloc(s, orig_size, gfpflags); 4023 if (unlikely(object)) 4024 goto out; 4025 4026 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4027 4028 maybe_wipe_obj_freeptr(s, object); 4029 init = slab_want_init_on_alloc(gfpflags, s); 4030 4031 out: 4032 /* 4033 * When init equals 'true', like for kzalloc() family, only 4034 * @orig_size bytes might be zeroed instead of s->object_size 4035 * In case this fails due to memcg_slab_post_alloc_hook(), 4036 * object is set to NULL 4037 */ 4038 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4039 4040 return object; 4041 } 4042 4043 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4044 { 4045 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4046 s->object_size); 4047 4048 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4049 4050 return ret; 4051 } 4052 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4053 4054 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4055 gfp_t gfpflags) 4056 { 4057 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4058 s->object_size); 4059 4060 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4061 4062 return ret; 4063 } 4064 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4065 4066 /** 4067 * kmem_cache_alloc_node - Allocate an object on the specified node 4068 * @s: The cache to allocate from. 4069 * @gfpflags: See kmalloc(). 4070 * @node: node number of the target node. 4071 * 4072 * Identical to kmem_cache_alloc but it will allocate memory on the given 4073 * node, which can improve the performance for cpu bound structures. 4074 * 4075 * Fallback to other node is possible if __GFP_THISNODE is not set. 4076 * 4077 * Return: pointer to the new object or %NULL in case of error 4078 */ 4079 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4080 { 4081 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4082 4083 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4084 4085 return ret; 4086 } 4087 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4088 4089 /* 4090 * To avoid unnecessary overhead, we pass through large allocation requests 4091 * directly to the page allocator. We use __GFP_COMP, because we will need to 4092 * know the allocation order to free the pages properly in kfree. 4093 */ 4094 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4095 { 4096 struct folio *folio; 4097 void *ptr = NULL; 4098 unsigned int order = get_order(size); 4099 4100 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4101 flags = kmalloc_fix_flags(flags); 4102 4103 flags |= __GFP_COMP; 4104 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4105 if (folio) { 4106 ptr = folio_address(folio); 4107 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4108 PAGE_SIZE << order); 4109 } 4110 4111 ptr = kasan_kmalloc_large(ptr, size, flags); 4112 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4113 kmemleak_alloc(ptr, size, 1, flags); 4114 kmsan_kmalloc_large(ptr, size, flags); 4115 4116 return ptr; 4117 } 4118 4119 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4120 { 4121 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4122 4123 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4124 flags, NUMA_NO_NODE); 4125 return ret; 4126 } 4127 EXPORT_SYMBOL(__kmalloc_large_noprof); 4128 4129 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4130 { 4131 void *ret = ___kmalloc_large_node(size, flags, node); 4132 4133 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4134 flags, node); 4135 return ret; 4136 } 4137 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4138 4139 static __always_inline 4140 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4141 unsigned long caller) 4142 { 4143 struct kmem_cache *s; 4144 void *ret; 4145 4146 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4147 ret = __kmalloc_large_node_noprof(size, flags, node); 4148 trace_kmalloc(caller, ret, size, 4149 PAGE_SIZE << get_order(size), flags, node); 4150 return ret; 4151 } 4152 4153 if (unlikely(!size)) 4154 return ZERO_SIZE_PTR; 4155 4156 s = kmalloc_slab(size, b, flags, caller); 4157 4158 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4159 ret = kasan_kmalloc(s, ret, size, flags); 4160 trace_kmalloc(caller, ret, size, s->size, flags, node); 4161 return ret; 4162 } 4163 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4164 { 4165 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4166 } 4167 EXPORT_SYMBOL(__kmalloc_node_noprof); 4168 4169 void *__kmalloc_noprof(size_t size, gfp_t flags) 4170 { 4171 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4172 } 4173 EXPORT_SYMBOL(__kmalloc_noprof); 4174 4175 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4176 int node, unsigned long caller) 4177 { 4178 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4179 4180 } 4181 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4182 4183 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4184 { 4185 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4186 _RET_IP_, size); 4187 4188 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4189 4190 ret = kasan_kmalloc(s, ret, size, gfpflags); 4191 return ret; 4192 } 4193 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4194 4195 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4196 int node, size_t size) 4197 { 4198 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4199 4200 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4201 4202 ret = kasan_kmalloc(s, ret, size, gfpflags); 4203 return ret; 4204 } 4205 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4206 4207 static noinline void free_to_partial_list( 4208 struct kmem_cache *s, struct slab *slab, 4209 void *head, void *tail, int bulk_cnt, 4210 unsigned long addr) 4211 { 4212 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4213 struct slab *slab_free = NULL; 4214 int cnt = bulk_cnt; 4215 unsigned long flags; 4216 depot_stack_handle_t handle = 0; 4217 4218 if (s->flags & SLAB_STORE_USER) 4219 handle = set_track_prepare(); 4220 4221 spin_lock_irqsave(&n->list_lock, flags); 4222 4223 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4224 void *prior = slab->freelist; 4225 4226 /* Perform the actual freeing while we still hold the locks */ 4227 slab->inuse -= cnt; 4228 set_freepointer(s, tail, prior); 4229 slab->freelist = head; 4230 4231 /* 4232 * If the slab is empty, and node's partial list is full, 4233 * it should be discarded anyway no matter it's on full or 4234 * partial list. 4235 */ 4236 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4237 slab_free = slab; 4238 4239 if (!prior) { 4240 /* was on full list */ 4241 remove_full(s, n, slab); 4242 if (!slab_free) { 4243 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4244 stat(s, FREE_ADD_PARTIAL); 4245 } 4246 } else if (slab_free) { 4247 remove_partial(n, slab); 4248 stat(s, FREE_REMOVE_PARTIAL); 4249 } 4250 } 4251 4252 if (slab_free) { 4253 /* 4254 * Update the counters while still holding n->list_lock to 4255 * prevent spurious validation warnings 4256 */ 4257 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4258 } 4259 4260 spin_unlock_irqrestore(&n->list_lock, flags); 4261 4262 if (slab_free) { 4263 stat(s, FREE_SLAB); 4264 free_slab(s, slab_free); 4265 } 4266 } 4267 4268 /* 4269 * Slow path handling. This may still be called frequently since objects 4270 * have a longer lifetime than the cpu slabs in most processing loads. 4271 * 4272 * So we still attempt to reduce cache line usage. Just take the slab 4273 * lock and free the item. If there is no additional partial slab 4274 * handling required then we can return immediately. 4275 */ 4276 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4277 void *head, void *tail, int cnt, 4278 unsigned long addr) 4279 4280 { 4281 void *prior; 4282 int was_frozen; 4283 struct slab new; 4284 unsigned long counters; 4285 struct kmem_cache_node *n = NULL; 4286 unsigned long flags; 4287 bool on_node_partial; 4288 4289 stat(s, FREE_SLOWPATH); 4290 4291 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4292 free_to_partial_list(s, slab, head, tail, cnt, addr); 4293 return; 4294 } 4295 4296 do { 4297 if (unlikely(n)) { 4298 spin_unlock_irqrestore(&n->list_lock, flags); 4299 n = NULL; 4300 } 4301 prior = slab->freelist; 4302 counters = slab->counters; 4303 set_freepointer(s, tail, prior); 4304 new.counters = counters; 4305 was_frozen = new.frozen; 4306 new.inuse -= cnt; 4307 if ((!new.inuse || !prior) && !was_frozen) { 4308 /* Needs to be taken off a list */ 4309 if (!kmem_cache_has_cpu_partial(s) || prior) { 4310 4311 n = get_node(s, slab_nid(slab)); 4312 /* 4313 * Speculatively acquire the list_lock. 4314 * If the cmpxchg does not succeed then we may 4315 * drop the list_lock without any processing. 4316 * 4317 * Otherwise the list_lock will synchronize with 4318 * other processors updating the list of slabs. 4319 */ 4320 spin_lock_irqsave(&n->list_lock, flags); 4321 4322 on_node_partial = slab_test_node_partial(slab); 4323 } 4324 } 4325 4326 } while (!slab_update_freelist(s, slab, 4327 prior, counters, 4328 head, new.counters, 4329 "__slab_free")); 4330 4331 if (likely(!n)) { 4332 4333 if (likely(was_frozen)) { 4334 /* 4335 * The list lock was not taken therefore no list 4336 * activity can be necessary. 4337 */ 4338 stat(s, FREE_FROZEN); 4339 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4340 /* 4341 * If we started with a full slab then put it onto the 4342 * per cpu partial list. 4343 */ 4344 put_cpu_partial(s, slab, 1); 4345 stat(s, CPU_PARTIAL_FREE); 4346 } 4347 4348 return; 4349 } 4350 4351 /* 4352 * This slab was partially empty but not on the per-node partial list, 4353 * in which case we shouldn't manipulate its list, just return. 4354 */ 4355 if (prior && !on_node_partial) { 4356 spin_unlock_irqrestore(&n->list_lock, flags); 4357 return; 4358 } 4359 4360 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4361 goto slab_empty; 4362 4363 /* 4364 * Objects left in the slab. If it was not on the partial list before 4365 * then add it. 4366 */ 4367 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4368 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4369 stat(s, FREE_ADD_PARTIAL); 4370 } 4371 spin_unlock_irqrestore(&n->list_lock, flags); 4372 return; 4373 4374 slab_empty: 4375 if (prior) { 4376 /* 4377 * Slab on the partial list. 4378 */ 4379 remove_partial(n, slab); 4380 stat(s, FREE_REMOVE_PARTIAL); 4381 } 4382 4383 spin_unlock_irqrestore(&n->list_lock, flags); 4384 stat(s, FREE_SLAB); 4385 discard_slab(s, slab); 4386 } 4387 4388 #ifndef CONFIG_SLUB_TINY 4389 /* 4390 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4391 * can perform fastpath freeing without additional function calls. 4392 * 4393 * The fastpath is only possible if we are freeing to the current cpu slab 4394 * of this processor. This typically the case if we have just allocated 4395 * the item before. 4396 * 4397 * If fastpath is not possible then fall back to __slab_free where we deal 4398 * with all sorts of special processing. 4399 * 4400 * Bulk free of a freelist with several objects (all pointing to the 4401 * same slab) possible by specifying head and tail ptr, plus objects 4402 * count (cnt). Bulk free indicated by tail pointer being set. 4403 */ 4404 static __always_inline void do_slab_free(struct kmem_cache *s, 4405 struct slab *slab, void *head, void *tail, 4406 int cnt, unsigned long addr) 4407 { 4408 struct kmem_cache_cpu *c; 4409 unsigned long tid; 4410 void **freelist; 4411 4412 redo: 4413 /* 4414 * Determine the currently cpus per cpu slab. 4415 * The cpu may change afterward. However that does not matter since 4416 * data is retrieved via this pointer. If we are on the same cpu 4417 * during the cmpxchg then the free will succeed. 4418 */ 4419 c = raw_cpu_ptr(s->cpu_slab); 4420 tid = READ_ONCE(c->tid); 4421 4422 /* Same with comment on barrier() in __slab_alloc_node() */ 4423 barrier(); 4424 4425 if (unlikely(slab != c->slab)) { 4426 __slab_free(s, slab, head, tail, cnt, addr); 4427 return; 4428 } 4429 4430 if (USE_LOCKLESS_FAST_PATH()) { 4431 freelist = READ_ONCE(c->freelist); 4432 4433 set_freepointer(s, tail, freelist); 4434 4435 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4436 note_cmpxchg_failure("slab_free", s, tid); 4437 goto redo; 4438 } 4439 } else { 4440 /* Update the free list under the local lock */ 4441 local_lock(&s->cpu_slab->lock); 4442 c = this_cpu_ptr(s->cpu_slab); 4443 if (unlikely(slab != c->slab)) { 4444 local_unlock(&s->cpu_slab->lock); 4445 goto redo; 4446 } 4447 tid = c->tid; 4448 freelist = c->freelist; 4449 4450 set_freepointer(s, tail, freelist); 4451 c->freelist = head; 4452 c->tid = next_tid(tid); 4453 4454 local_unlock(&s->cpu_slab->lock); 4455 } 4456 stat_add(s, FREE_FASTPATH, cnt); 4457 } 4458 #else /* CONFIG_SLUB_TINY */ 4459 static void do_slab_free(struct kmem_cache *s, 4460 struct slab *slab, void *head, void *tail, 4461 int cnt, unsigned long addr) 4462 { 4463 __slab_free(s, slab, head, tail, cnt, addr); 4464 } 4465 #endif /* CONFIG_SLUB_TINY */ 4466 4467 static __fastpath_inline 4468 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4469 unsigned long addr) 4470 { 4471 memcg_slab_free_hook(s, slab, &object, 1); 4472 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4473 4474 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4475 do_slab_free(s, slab, object, object, 1, addr); 4476 } 4477 4478 #ifdef CONFIG_MEMCG 4479 /* Do not inline the rare memcg charging failed path into the allocation path */ 4480 static noinline 4481 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4482 { 4483 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4484 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4485 } 4486 #endif 4487 4488 static __fastpath_inline 4489 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4490 void *tail, void **p, int cnt, unsigned long addr) 4491 { 4492 memcg_slab_free_hook(s, slab, p, cnt); 4493 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4494 /* 4495 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4496 * to remove objects, whose reuse must be delayed. 4497 */ 4498 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4499 do_slab_free(s, slab, head, tail, cnt, addr); 4500 } 4501 4502 #ifdef CONFIG_KASAN_GENERIC 4503 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4504 { 4505 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4506 } 4507 #endif 4508 4509 static inline struct kmem_cache *virt_to_cache(const void *obj) 4510 { 4511 struct slab *slab; 4512 4513 slab = virt_to_slab(obj); 4514 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4515 return NULL; 4516 return slab->slab_cache; 4517 } 4518 4519 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4520 { 4521 struct kmem_cache *cachep; 4522 4523 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4524 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4525 return s; 4526 4527 cachep = virt_to_cache(x); 4528 if (WARN(cachep && cachep != s, 4529 "%s: Wrong slab cache. %s but object is from %s\n", 4530 __func__, s->name, cachep->name)) 4531 print_tracking(cachep, x); 4532 return cachep; 4533 } 4534 4535 /** 4536 * kmem_cache_free - Deallocate an object 4537 * @s: The cache the allocation was from. 4538 * @x: The previously allocated object. 4539 * 4540 * Free an object which was previously allocated from this 4541 * cache. 4542 */ 4543 void kmem_cache_free(struct kmem_cache *s, void *x) 4544 { 4545 s = cache_from_obj(s, x); 4546 if (!s) 4547 return; 4548 trace_kmem_cache_free(_RET_IP_, x, s); 4549 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4550 } 4551 EXPORT_SYMBOL(kmem_cache_free); 4552 4553 static void free_large_kmalloc(struct folio *folio, void *object) 4554 { 4555 unsigned int order = folio_order(folio); 4556 4557 if (WARN_ON_ONCE(order == 0)) 4558 pr_warn_once("object pointer: 0x%p\n", object); 4559 4560 kmemleak_free(object); 4561 kasan_kfree_large(object); 4562 kmsan_kfree_large(object); 4563 4564 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4565 -(PAGE_SIZE << order)); 4566 folio_put(folio); 4567 } 4568 4569 /** 4570 * kfree - free previously allocated memory 4571 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4572 * 4573 * If @object is NULL, no operation is performed. 4574 */ 4575 void kfree(const void *object) 4576 { 4577 struct folio *folio; 4578 struct slab *slab; 4579 struct kmem_cache *s; 4580 void *x = (void *)object; 4581 4582 trace_kfree(_RET_IP_, object); 4583 4584 if (unlikely(ZERO_OR_NULL_PTR(object))) 4585 return; 4586 4587 folio = virt_to_folio(object); 4588 if (unlikely(!folio_test_slab(folio))) { 4589 free_large_kmalloc(folio, (void *)object); 4590 return; 4591 } 4592 4593 slab = folio_slab(folio); 4594 s = slab->slab_cache; 4595 slab_free(s, slab, x, _RET_IP_); 4596 } 4597 EXPORT_SYMBOL(kfree); 4598 4599 struct detached_freelist { 4600 struct slab *slab; 4601 void *tail; 4602 void *freelist; 4603 int cnt; 4604 struct kmem_cache *s; 4605 }; 4606 4607 /* 4608 * This function progressively scans the array with free objects (with 4609 * a limited look ahead) and extract objects belonging to the same 4610 * slab. It builds a detached freelist directly within the given 4611 * slab/objects. This can happen without any need for 4612 * synchronization, because the objects are owned by running process. 4613 * The freelist is build up as a single linked list in the objects. 4614 * The idea is, that this detached freelist can then be bulk 4615 * transferred to the real freelist(s), but only requiring a single 4616 * synchronization primitive. Look ahead in the array is limited due 4617 * to performance reasons. 4618 */ 4619 static inline 4620 int build_detached_freelist(struct kmem_cache *s, size_t size, 4621 void **p, struct detached_freelist *df) 4622 { 4623 int lookahead = 3; 4624 void *object; 4625 struct folio *folio; 4626 size_t same; 4627 4628 object = p[--size]; 4629 folio = virt_to_folio(object); 4630 if (!s) { 4631 /* Handle kalloc'ed objects */ 4632 if (unlikely(!folio_test_slab(folio))) { 4633 free_large_kmalloc(folio, object); 4634 df->slab = NULL; 4635 return size; 4636 } 4637 /* Derive kmem_cache from object */ 4638 df->slab = folio_slab(folio); 4639 df->s = df->slab->slab_cache; 4640 } else { 4641 df->slab = folio_slab(folio); 4642 df->s = cache_from_obj(s, object); /* Support for memcg */ 4643 } 4644 4645 /* Start new detached freelist */ 4646 df->tail = object; 4647 df->freelist = object; 4648 df->cnt = 1; 4649 4650 if (is_kfence_address(object)) 4651 return size; 4652 4653 set_freepointer(df->s, object, NULL); 4654 4655 same = size; 4656 while (size) { 4657 object = p[--size]; 4658 /* df->slab is always set at this point */ 4659 if (df->slab == virt_to_slab(object)) { 4660 /* Opportunity build freelist */ 4661 set_freepointer(df->s, object, df->freelist); 4662 df->freelist = object; 4663 df->cnt++; 4664 same--; 4665 if (size != same) 4666 swap(p[size], p[same]); 4667 continue; 4668 } 4669 4670 /* Limit look ahead search */ 4671 if (!--lookahead) 4672 break; 4673 } 4674 4675 return same; 4676 } 4677 4678 /* 4679 * Internal bulk free of objects that were not initialised by the post alloc 4680 * hooks and thus should not be processed by the free hooks 4681 */ 4682 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4683 { 4684 if (!size) 4685 return; 4686 4687 do { 4688 struct detached_freelist df; 4689 4690 size = build_detached_freelist(s, size, p, &df); 4691 if (!df.slab) 4692 continue; 4693 4694 if (kfence_free(df.freelist)) 4695 continue; 4696 4697 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4698 _RET_IP_); 4699 } while (likely(size)); 4700 } 4701 4702 /* Note that interrupts must be enabled when calling this function. */ 4703 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4704 { 4705 if (!size) 4706 return; 4707 4708 do { 4709 struct detached_freelist df; 4710 4711 size = build_detached_freelist(s, size, p, &df); 4712 if (!df.slab) 4713 continue; 4714 4715 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4716 df.cnt, _RET_IP_); 4717 } while (likely(size)); 4718 } 4719 EXPORT_SYMBOL(kmem_cache_free_bulk); 4720 4721 #ifndef CONFIG_SLUB_TINY 4722 static inline 4723 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4724 void **p) 4725 { 4726 struct kmem_cache_cpu *c; 4727 unsigned long irqflags; 4728 int i; 4729 4730 /* 4731 * Drain objects in the per cpu slab, while disabling local 4732 * IRQs, which protects against PREEMPT and interrupts 4733 * handlers invoking normal fastpath. 4734 */ 4735 c = slub_get_cpu_ptr(s->cpu_slab); 4736 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4737 4738 for (i = 0; i < size; i++) { 4739 void *object = kfence_alloc(s, s->object_size, flags); 4740 4741 if (unlikely(object)) { 4742 p[i] = object; 4743 continue; 4744 } 4745 4746 object = c->freelist; 4747 if (unlikely(!object)) { 4748 /* 4749 * We may have removed an object from c->freelist using 4750 * the fastpath in the previous iteration; in that case, 4751 * c->tid has not been bumped yet. 4752 * Since ___slab_alloc() may reenable interrupts while 4753 * allocating memory, we should bump c->tid now. 4754 */ 4755 c->tid = next_tid(c->tid); 4756 4757 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4758 4759 /* 4760 * Invoking slow path likely have side-effect 4761 * of re-populating per CPU c->freelist 4762 */ 4763 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4764 _RET_IP_, c, s->object_size); 4765 if (unlikely(!p[i])) 4766 goto error; 4767 4768 c = this_cpu_ptr(s->cpu_slab); 4769 maybe_wipe_obj_freeptr(s, p[i]); 4770 4771 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4772 4773 continue; /* goto for-loop */ 4774 } 4775 c->freelist = get_freepointer(s, object); 4776 p[i] = object; 4777 maybe_wipe_obj_freeptr(s, p[i]); 4778 stat(s, ALLOC_FASTPATH); 4779 } 4780 c->tid = next_tid(c->tid); 4781 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4782 slub_put_cpu_ptr(s->cpu_slab); 4783 4784 return i; 4785 4786 error: 4787 slub_put_cpu_ptr(s->cpu_slab); 4788 __kmem_cache_free_bulk(s, i, p); 4789 return 0; 4790 4791 } 4792 #else /* CONFIG_SLUB_TINY */ 4793 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4794 size_t size, void **p) 4795 { 4796 int i; 4797 4798 for (i = 0; i < size; i++) { 4799 void *object = kfence_alloc(s, s->object_size, flags); 4800 4801 if (unlikely(object)) { 4802 p[i] = object; 4803 continue; 4804 } 4805 4806 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4807 _RET_IP_, s->object_size); 4808 if (unlikely(!p[i])) 4809 goto error; 4810 4811 maybe_wipe_obj_freeptr(s, p[i]); 4812 } 4813 4814 return i; 4815 4816 error: 4817 __kmem_cache_free_bulk(s, i, p); 4818 return 0; 4819 } 4820 #endif /* CONFIG_SLUB_TINY */ 4821 4822 /* Note that interrupts must be enabled when calling this function. */ 4823 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 4824 void **p) 4825 { 4826 int i; 4827 4828 if (!size) 4829 return 0; 4830 4831 s = slab_pre_alloc_hook(s, flags); 4832 if (unlikely(!s)) 4833 return 0; 4834 4835 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4836 if (unlikely(i == 0)) 4837 return 0; 4838 4839 /* 4840 * memcg and kmem_cache debug support and memory initialization. 4841 * Done outside of the IRQ disabled fastpath loop. 4842 */ 4843 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 4844 slab_want_init_on_alloc(flags, s), s->object_size))) { 4845 return 0; 4846 } 4847 return i; 4848 } 4849 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 4850 4851 4852 /* 4853 * Object placement in a slab is made very easy because we always start at 4854 * offset 0. If we tune the size of the object to the alignment then we can 4855 * get the required alignment by putting one properly sized object after 4856 * another. 4857 * 4858 * Notice that the allocation order determines the sizes of the per cpu 4859 * caches. Each processor has always one slab available for allocations. 4860 * Increasing the allocation order reduces the number of times that slabs 4861 * must be moved on and off the partial lists and is therefore a factor in 4862 * locking overhead. 4863 */ 4864 4865 /* 4866 * Minimum / Maximum order of slab pages. This influences locking overhead 4867 * and slab fragmentation. A higher order reduces the number of partial slabs 4868 * and increases the number of allocations possible without having to 4869 * take the list_lock. 4870 */ 4871 static unsigned int slub_min_order; 4872 static unsigned int slub_max_order = 4873 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4874 static unsigned int slub_min_objects; 4875 4876 /* 4877 * Calculate the order of allocation given an slab object size. 4878 * 4879 * The order of allocation has significant impact on performance and other 4880 * system components. Generally order 0 allocations should be preferred since 4881 * order 0 does not cause fragmentation in the page allocator. Larger objects 4882 * be problematic to put into order 0 slabs because there may be too much 4883 * unused space left. We go to a higher order if more than 1/16th of the slab 4884 * would be wasted. 4885 * 4886 * In order to reach satisfactory performance we must ensure that a minimum 4887 * number of objects is in one slab. Otherwise we may generate too much 4888 * activity on the partial lists which requires taking the list_lock. This is 4889 * less a concern for large slabs though which are rarely used. 4890 * 4891 * slab_max_order specifies the order where we begin to stop considering the 4892 * number of objects in a slab as critical. If we reach slab_max_order then 4893 * we try to keep the page order as low as possible. So we accept more waste 4894 * of space in favor of a small page order. 4895 * 4896 * Higher order allocations also allow the placement of more objects in a 4897 * slab and thereby reduce object handling overhead. If the user has 4898 * requested a higher minimum order then we start with that one instead of 4899 * the smallest order which will fit the object. 4900 */ 4901 static inline unsigned int calc_slab_order(unsigned int size, 4902 unsigned int min_order, unsigned int max_order, 4903 unsigned int fract_leftover) 4904 { 4905 unsigned int order; 4906 4907 for (order = min_order; order <= max_order; order++) { 4908 4909 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4910 unsigned int rem; 4911 4912 rem = slab_size % size; 4913 4914 if (rem <= slab_size / fract_leftover) 4915 break; 4916 } 4917 4918 return order; 4919 } 4920 4921 static inline int calculate_order(unsigned int size) 4922 { 4923 unsigned int order; 4924 unsigned int min_objects; 4925 unsigned int max_objects; 4926 unsigned int min_order; 4927 4928 min_objects = slub_min_objects; 4929 if (!min_objects) { 4930 /* 4931 * Some architectures will only update present cpus when 4932 * onlining them, so don't trust the number if it's just 1. But 4933 * we also don't want to use nr_cpu_ids always, as on some other 4934 * architectures, there can be many possible cpus, but never 4935 * onlined. Here we compromise between trying to avoid too high 4936 * order on systems that appear larger than they are, and too 4937 * low order on systems that appear smaller than they are. 4938 */ 4939 unsigned int nr_cpus = num_present_cpus(); 4940 if (nr_cpus <= 1) 4941 nr_cpus = nr_cpu_ids; 4942 min_objects = 4 * (fls(nr_cpus) + 1); 4943 } 4944 /* min_objects can't be 0 because get_order(0) is undefined */ 4945 max_objects = max(order_objects(slub_max_order, size), 1U); 4946 min_objects = min(min_objects, max_objects); 4947 4948 min_order = max_t(unsigned int, slub_min_order, 4949 get_order(min_objects * size)); 4950 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4951 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4952 4953 /* 4954 * Attempt to find best configuration for a slab. This works by first 4955 * attempting to generate a layout with the best possible configuration 4956 * and backing off gradually. 4957 * 4958 * We start with accepting at most 1/16 waste and try to find the 4959 * smallest order from min_objects-derived/slab_min_order up to 4960 * slab_max_order that will satisfy the constraint. Note that increasing 4961 * the order can only result in same or less fractional waste, not more. 4962 * 4963 * If that fails, we increase the acceptable fraction of waste and try 4964 * again. The last iteration with fraction of 1/2 would effectively 4965 * accept any waste and give us the order determined by min_objects, as 4966 * long as at least single object fits within slab_max_order. 4967 */ 4968 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4969 order = calc_slab_order(size, min_order, slub_max_order, 4970 fraction); 4971 if (order <= slub_max_order) 4972 return order; 4973 } 4974 4975 /* 4976 * Doh this slab cannot be placed using slab_max_order. 4977 */ 4978 order = get_order(size); 4979 if (order <= MAX_PAGE_ORDER) 4980 return order; 4981 return -ENOSYS; 4982 } 4983 4984 static void 4985 init_kmem_cache_node(struct kmem_cache_node *n) 4986 { 4987 n->nr_partial = 0; 4988 spin_lock_init(&n->list_lock); 4989 INIT_LIST_HEAD(&n->partial); 4990 #ifdef CONFIG_SLUB_DEBUG 4991 atomic_long_set(&n->nr_slabs, 0); 4992 atomic_long_set(&n->total_objects, 0); 4993 INIT_LIST_HEAD(&n->full); 4994 #endif 4995 } 4996 4997 #ifndef CONFIG_SLUB_TINY 4998 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4999 { 5000 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5001 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5002 sizeof(struct kmem_cache_cpu)); 5003 5004 /* 5005 * Must align to double word boundary for the double cmpxchg 5006 * instructions to work; see __pcpu_double_call_return_bool(). 5007 */ 5008 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5009 2 * sizeof(void *)); 5010 5011 if (!s->cpu_slab) 5012 return 0; 5013 5014 init_kmem_cache_cpus(s); 5015 5016 return 1; 5017 } 5018 #else 5019 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5020 { 5021 return 1; 5022 } 5023 #endif /* CONFIG_SLUB_TINY */ 5024 5025 static struct kmem_cache *kmem_cache_node; 5026 5027 /* 5028 * No kmalloc_node yet so do it by hand. We know that this is the first 5029 * slab on the node for this slabcache. There are no concurrent accesses 5030 * possible. 5031 * 5032 * Note that this function only works on the kmem_cache_node 5033 * when allocating for the kmem_cache_node. This is used for bootstrapping 5034 * memory on a fresh node that has no slab structures yet. 5035 */ 5036 static void early_kmem_cache_node_alloc(int node) 5037 { 5038 struct slab *slab; 5039 struct kmem_cache_node *n; 5040 5041 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5042 5043 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5044 5045 BUG_ON(!slab); 5046 if (slab_nid(slab) != node) { 5047 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5048 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5049 } 5050 5051 n = slab->freelist; 5052 BUG_ON(!n); 5053 #ifdef CONFIG_SLUB_DEBUG 5054 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5055 #endif 5056 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5057 slab->freelist = get_freepointer(kmem_cache_node, n); 5058 slab->inuse = 1; 5059 kmem_cache_node->node[node] = n; 5060 init_kmem_cache_node(n); 5061 inc_slabs_node(kmem_cache_node, node, slab->objects); 5062 5063 /* 5064 * No locks need to be taken here as it has just been 5065 * initialized and there is no concurrent access. 5066 */ 5067 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5068 } 5069 5070 static void free_kmem_cache_nodes(struct kmem_cache *s) 5071 { 5072 int node; 5073 struct kmem_cache_node *n; 5074 5075 for_each_kmem_cache_node(s, node, n) { 5076 s->node[node] = NULL; 5077 kmem_cache_free(kmem_cache_node, n); 5078 } 5079 } 5080 5081 void __kmem_cache_release(struct kmem_cache *s) 5082 { 5083 cache_random_seq_destroy(s); 5084 #ifndef CONFIG_SLUB_TINY 5085 free_percpu(s->cpu_slab); 5086 #endif 5087 free_kmem_cache_nodes(s); 5088 } 5089 5090 static int init_kmem_cache_nodes(struct kmem_cache *s) 5091 { 5092 int node; 5093 5094 for_each_node_mask(node, slab_nodes) { 5095 struct kmem_cache_node *n; 5096 5097 if (slab_state == DOWN) { 5098 early_kmem_cache_node_alloc(node); 5099 continue; 5100 } 5101 n = kmem_cache_alloc_node(kmem_cache_node, 5102 GFP_KERNEL, node); 5103 5104 if (!n) { 5105 free_kmem_cache_nodes(s); 5106 return 0; 5107 } 5108 5109 init_kmem_cache_node(n); 5110 s->node[node] = n; 5111 } 5112 return 1; 5113 } 5114 5115 static void set_cpu_partial(struct kmem_cache *s) 5116 { 5117 #ifdef CONFIG_SLUB_CPU_PARTIAL 5118 unsigned int nr_objects; 5119 5120 /* 5121 * cpu_partial determined the maximum number of objects kept in the 5122 * per cpu partial lists of a processor. 5123 * 5124 * Per cpu partial lists mainly contain slabs that just have one 5125 * object freed. If they are used for allocation then they can be 5126 * filled up again with minimal effort. The slab will never hit the 5127 * per node partial lists and therefore no locking will be required. 5128 * 5129 * For backwards compatibility reasons, this is determined as number 5130 * of objects, even though we now limit maximum number of pages, see 5131 * slub_set_cpu_partial() 5132 */ 5133 if (!kmem_cache_has_cpu_partial(s)) 5134 nr_objects = 0; 5135 else if (s->size >= PAGE_SIZE) 5136 nr_objects = 6; 5137 else if (s->size >= 1024) 5138 nr_objects = 24; 5139 else if (s->size >= 256) 5140 nr_objects = 52; 5141 else 5142 nr_objects = 120; 5143 5144 slub_set_cpu_partial(s, nr_objects); 5145 #endif 5146 } 5147 5148 /* Was a valid freeptr offset requested? */ 5149 static inline bool has_freeptr_offset(const struct kmem_cache *s) 5150 { 5151 return s->rcu_freeptr_offset != UINT_MAX; 5152 } 5153 5154 /* 5155 * calculate_sizes() determines the order and the distribution of data within 5156 * a slab object. 5157 */ 5158 static int calculate_sizes(struct kmem_cache *s) 5159 { 5160 slab_flags_t flags = s->flags; 5161 unsigned int size = s->object_size; 5162 unsigned int order; 5163 5164 /* 5165 * Round up object size to the next word boundary. We can only 5166 * place the free pointer at word boundaries and this determines 5167 * the possible location of the free pointer. 5168 */ 5169 size = ALIGN(size, sizeof(void *)); 5170 5171 #ifdef CONFIG_SLUB_DEBUG 5172 /* 5173 * Determine if we can poison the object itself. If the user of 5174 * the slab may touch the object after free or before allocation 5175 * then we should never poison the object itself. 5176 */ 5177 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5178 !s->ctor) 5179 s->flags |= __OBJECT_POISON; 5180 else 5181 s->flags &= ~__OBJECT_POISON; 5182 5183 5184 /* 5185 * If we are Redzoning then check if there is some space between the 5186 * end of the object and the free pointer. If not then add an 5187 * additional word to have some bytes to store Redzone information. 5188 */ 5189 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5190 size += sizeof(void *); 5191 #endif 5192 5193 /* 5194 * With that we have determined the number of bytes in actual use 5195 * by the object and redzoning. 5196 */ 5197 s->inuse = size; 5198 5199 if (((flags & SLAB_TYPESAFE_BY_RCU) && !has_freeptr_offset(s)) || 5200 (flags & SLAB_POISON) || s->ctor || 5201 ((flags & SLAB_RED_ZONE) && 5202 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5203 /* 5204 * Relocate free pointer after the object if it is not 5205 * permitted to overwrite the first word of the object on 5206 * kmem_cache_free. 5207 * 5208 * This is the case if we do RCU, have a constructor or 5209 * destructor, are poisoning the objects, or are 5210 * redzoning an object smaller than sizeof(void *) or are 5211 * redzoning an object with slub_debug_orig_size() enabled, 5212 * in which case the right redzone may be extended. 5213 * 5214 * The assumption that s->offset >= s->inuse means free 5215 * pointer is outside of the object is used in the 5216 * freeptr_outside_object() function. If that is no 5217 * longer true, the function needs to be modified. 5218 */ 5219 s->offset = size; 5220 size += sizeof(void *); 5221 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && has_freeptr_offset(s)) { 5222 s->offset = s->rcu_freeptr_offset; 5223 } else { 5224 /* 5225 * Store freelist pointer near middle of object to keep 5226 * it away from the edges of the object to avoid small 5227 * sized over/underflows from neighboring allocations. 5228 */ 5229 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5230 } 5231 5232 #ifdef CONFIG_SLUB_DEBUG 5233 if (flags & SLAB_STORE_USER) { 5234 /* 5235 * Need to store information about allocs and frees after 5236 * the object. 5237 */ 5238 size += 2 * sizeof(struct track); 5239 5240 /* Save the original kmalloc request size */ 5241 if (flags & SLAB_KMALLOC) 5242 size += sizeof(unsigned int); 5243 } 5244 #endif 5245 5246 kasan_cache_create(s, &size, &s->flags); 5247 #ifdef CONFIG_SLUB_DEBUG 5248 if (flags & SLAB_RED_ZONE) { 5249 /* 5250 * Add some empty padding so that we can catch 5251 * overwrites from earlier objects rather than let 5252 * tracking information or the free pointer be 5253 * corrupted if a user writes before the start 5254 * of the object. 5255 */ 5256 size += sizeof(void *); 5257 5258 s->red_left_pad = sizeof(void *); 5259 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5260 size += s->red_left_pad; 5261 } 5262 #endif 5263 5264 /* 5265 * SLUB stores one object immediately after another beginning from 5266 * offset 0. In order to align the objects we have to simply size 5267 * each object to conform to the alignment. 5268 */ 5269 size = ALIGN(size, s->align); 5270 s->size = size; 5271 s->reciprocal_size = reciprocal_value(size); 5272 order = calculate_order(size); 5273 5274 if ((int)order < 0) 5275 return 0; 5276 5277 s->allocflags = __GFP_COMP; 5278 5279 if (s->flags & SLAB_CACHE_DMA) 5280 s->allocflags |= GFP_DMA; 5281 5282 if (s->flags & SLAB_CACHE_DMA32) 5283 s->allocflags |= GFP_DMA32; 5284 5285 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5286 s->allocflags |= __GFP_RECLAIMABLE; 5287 5288 /* 5289 * Determine the number of objects per slab 5290 */ 5291 s->oo = oo_make(order, size); 5292 s->min = oo_make(get_order(size), size); 5293 5294 return !!oo_objects(s->oo); 5295 } 5296 5297 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5298 { 5299 s->flags = kmem_cache_flags(flags, s->name); 5300 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5301 s->random = get_random_long(); 5302 #endif 5303 5304 if (!calculate_sizes(s)) 5305 goto error; 5306 if (disable_higher_order_debug) { 5307 /* 5308 * Disable debugging flags that store metadata if the min slab 5309 * order increased. 5310 */ 5311 if (get_order(s->size) > get_order(s->object_size)) { 5312 s->flags &= ~DEBUG_METADATA_FLAGS; 5313 s->offset = 0; 5314 if (!calculate_sizes(s)) 5315 goto error; 5316 } 5317 } 5318 5319 #ifdef system_has_freelist_aba 5320 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5321 /* Enable fast mode */ 5322 s->flags |= __CMPXCHG_DOUBLE; 5323 } 5324 #endif 5325 5326 /* 5327 * The larger the object size is, the more slabs we want on the partial 5328 * list to avoid pounding the page allocator excessively. 5329 */ 5330 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5331 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5332 5333 set_cpu_partial(s); 5334 5335 #ifdef CONFIG_NUMA 5336 s->remote_node_defrag_ratio = 1000; 5337 #endif 5338 5339 /* Initialize the pre-computed randomized freelist if slab is up */ 5340 if (slab_state >= UP) { 5341 if (init_cache_random_seq(s)) 5342 goto error; 5343 } 5344 5345 if (!init_kmem_cache_nodes(s)) 5346 goto error; 5347 5348 if (alloc_kmem_cache_cpus(s)) 5349 return 0; 5350 5351 error: 5352 __kmem_cache_release(s); 5353 return -EINVAL; 5354 } 5355 5356 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5357 const char *text) 5358 { 5359 #ifdef CONFIG_SLUB_DEBUG 5360 void *addr = slab_address(slab); 5361 void *p; 5362 5363 slab_err(s, slab, text, s->name); 5364 5365 spin_lock(&object_map_lock); 5366 __fill_map(object_map, s, slab); 5367 5368 for_each_object(p, s, addr, slab->objects) { 5369 5370 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5371 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5372 print_tracking(s, p); 5373 } 5374 } 5375 spin_unlock(&object_map_lock); 5376 #endif 5377 } 5378 5379 /* 5380 * Attempt to free all partial slabs on a node. 5381 * This is called from __kmem_cache_shutdown(). We must take list_lock 5382 * because sysfs file might still access partial list after the shutdowning. 5383 */ 5384 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5385 { 5386 LIST_HEAD(discard); 5387 struct slab *slab, *h; 5388 5389 BUG_ON(irqs_disabled()); 5390 spin_lock_irq(&n->list_lock); 5391 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5392 if (!slab->inuse) { 5393 remove_partial(n, slab); 5394 list_add(&slab->slab_list, &discard); 5395 } else { 5396 list_slab_objects(s, slab, 5397 "Objects remaining in %s on __kmem_cache_shutdown()"); 5398 } 5399 } 5400 spin_unlock_irq(&n->list_lock); 5401 5402 list_for_each_entry_safe(slab, h, &discard, slab_list) 5403 discard_slab(s, slab); 5404 } 5405 5406 bool __kmem_cache_empty(struct kmem_cache *s) 5407 { 5408 int node; 5409 struct kmem_cache_node *n; 5410 5411 for_each_kmem_cache_node(s, node, n) 5412 if (n->nr_partial || node_nr_slabs(n)) 5413 return false; 5414 return true; 5415 } 5416 5417 /* 5418 * Release all resources used by a slab cache. 5419 */ 5420 int __kmem_cache_shutdown(struct kmem_cache *s) 5421 { 5422 int node; 5423 struct kmem_cache_node *n; 5424 5425 flush_all_cpus_locked(s); 5426 /* Attempt to free all objects */ 5427 for_each_kmem_cache_node(s, node, n) { 5428 free_partial(s, n); 5429 if (n->nr_partial || node_nr_slabs(n)) 5430 return 1; 5431 } 5432 return 0; 5433 } 5434 5435 #ifdef CONFIG_PRINTK 5436 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5437 { 5438 void *base; 5439 int __maybe_unused i; 5440 unsigned int objnr; 5441 void *objp; 5442 void *objp0; 5443 struct kmem_cache *s = slab->slab_cache; 5444 struct track __maybe_unused *trackp; 5445 5446 kpp->kp_ptr = object; 5447 kpp->kp_slab = slab; 5448 kpp->kp_slab_cache = s; 5449 base = slab_address(slab); 5450 objp0 = kasan_reset_tag(object); 5451 #ifdef CONFIG_SLUB_DEBUG 5452 objp = restore_red_left(s, objp0); 5453 #else 5454 objp = objp0; 5455 #endif 5456 objnr = obj_to_index(s, slab, objp); 5457 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5458 objp = base + s->size * objnr; 5459 kpp->kp_objp = objp; 5460 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5461 || (objp - base) % s->size) || 5462 !(s->flags & SLAB_STORE_USER)) 5463 return; 5464 #ifdef CONFIG_SLUB_DEBUG 5465 objp = fixup_red_left(s, objp); 5466 trackp = get_track(s, objp, TRACK_ALLOC); 5467 kpp->kp_ret = (void *)trackp->addr; 5468 #ifdef CONFIG_STACKDEPOT 5469 { 5470 depot_stack_handle_t handle; 5471 unsigned long *entries; 5472 unsigned int nr_entries; 5473 5474 handle = READ_ONCE(trackp->handle); 5475 if (handle) { 5476 nr_entries = stack_depot_fetch(handle, &entries); 5477 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5478 kpp->kp_stack[i] = (void *)entries[i]; 5479 } 5480 5481 trackp = get_track(s, objp, TRACK_FREE); 5482 handle = READ_ONCE(trackp->handle); 5483 if (handle) { 5484 nr_entries = stack_depot_fetch(handle, &entries); 5485 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5486 kpp->kp_free_stack[i] = (void *)entries[i]; 5487 } 5488 } 5489 #endif 5490 #endif 5491 } 5492 #endif 5493 5494 /******************************************************************** 5495 * Kmalloc subsystem 5496 *******************************************************************/ 5497 5498 static int __init setup_slub_min_order(char *str) 5499 { 5500 get_option(&str, (int *)&slub_min_order); 5501 5502 if (slub_min_order > slub_max_order) 5503 slub_max_order = slub_min_order; 5504 5505 return 1; 5506 } 5507 5508 __setup("slab_min_order=", setup_slub_min_order); 5509 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5510 5511 5512 static int __init setup_slub_max_order(char *str) 5513 { 5514 get_option(&str, (int *)&slub_max_order); 5515 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5516 5517 if (slub_min_order > slub_max_order) 5518 slub_min_order = slub_max_order; 5519 5520 return 1; 5521 } 5522 5523 __setup("slab_max_order=", setup_slub_max_order); 5524 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5525 5526 static int __init setup_slub_min_objects(char *str) 5527 { 5528 get_option(&str, (int *)&slub_min_objects); 5529 5530 return 1; 5531 } 5532 5533 __setup("slab_min_objects=", setup_slub_min_objects); 5534 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5535 5536 #ifdef CONFIG_HARDENED_USERCOPY 5537 /* 5538 * Rejects incorrectly sized objects and objects that are to be copied 5539 * to/from userspace but do not fall entirely within the containing slab 5540 * cache's usercopy region. 5541 * 5542 * Returns NULL if check passes, otherwise const char * to name of cache 5543 * to indicate an error. 5544 */ 5545 void __check_heap_object(const void *ptr, unsigned long n, 5546 const struct slab *slab, bool to_user) 5547 { 5548 struct kmem_cache *s; 5549 unsigned int offset; 5550 bool is_kfence = is_kfence_address(ptr); 5551 5552 ptr = kasan_reset_tag(ptr); 5553 5554 /* Find object and usable object size. */ 5555 s = slab->slab_cache; 5556 5557 /* Reject impossible pointers. */ 5558 if (ptr < slab_address(slab)) 5559 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5560 to_user, 0, n); 5561 5562 /* Find offset within object. */ 5563 if (is_kfence) 5564 offset = ptr - kfence_object_start(ptr); 5565 else 5566 offset = (ptr - slab_address(slab)) % s->size; 5567 5568 /* Adjust for redzone and reject if within the redzone. */ 5569 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5570 if (offset < s->red_left_pad) 5571 usercopy_abort("SLUB object in left red zone", 5572 s->name, to_user, offset, n); 5573 offset -= s->red_left_pad; 5574 } 5575 5576 /* Allow address range falling entirely within usercopy region. */ 5577 if (offset >= s->useroffset && 5578 offset - s->useroffset <= s->usersize && 5579 n <= s->useroffset - offset + s->usersize) 5580 return; 5581 5582 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5583 } 5584 #endif /* CONFIG_HARDENED_USERCOPY */ 5585 5586 #define SHRINK_PROMOTE_MAX 32 5587 5588 /* 5589 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5590 * up most to the head of the partial lists. New allocations will then 5591 * fill those up and thus they can be removed from the partial lists. 5592 * 5593 * The slabs with the least items are placed last. This results in them 5594 * being allocated from last increasing the chance that the last objects 5595 * are freed in them. 5596 */ 5597 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5598 { 5599 int node; 5600 int i; 5601 struct kmem_cache_node *n; 5602 struct slab *slab; 5603 struct slab *t; 5604 struct list_head discard; 5605 struct list_head promote[SHRINK_PROMOTE_MAX]; 5606 unsigned long flags; 5607 int ret = 0; 5608 5609 for_each_kmem_cache_node(s, node, n) { 5610 INIT_LIST_HEAD(&discard); 5611 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5612 INIT_LIST_HEAD(promote + i); 5613 5614 spin_lock_irqsave(&n->list_lock, flags); 5615 5616 /* 5617 * Build lists of slabs to discard or promote. 5618 * 5619 * Note that concurrent frees may occur while we hold the 5620 * list_lock. slab->inuse here is the upper limit. 5621 */ 5622 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5623 int free = slab->objects - slab->inuse; 5624 5625 /* Do not reread slab->inuse */ 5626 barrier(); 5627 5628 /* We do not keep full slabs on the list */ 5629 BUG_ON(free <= 0); 5630 5631 if (free == slab->objects) { 5632 list_move(&slab->slab_list, &discard); 5633 slab_clear_node_partial(slab); 5634 n->nr_partial--; 5635 dec_slabs_node(s, node, slab->objects); 5636 } else if (free <= SHRINK_PROMOTE_MAX) 5637 list_move(&slab->slab_list, promote + free - 1); 5638 } 5639 5640 /* 5641 * Promote the slabs filled up most to the head of the 5642 * partial list. 5643 */ 5644 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5645 list_splice(promote + i, &n->partial); 5646 5647 spin_unlock_irqrestore(&n->list_lock, flags); 5648 5649 /* Release empty slabs */ 5650 list_for_each_entry_safe(slab, t, &discard, slab_list) 5651 free_slab(s, slab); 5652 5653 if (node_nr_slabs(n)) 5654 ret = 1; 5655 } 5656 5657 return ret; 5658 } 5659 5660 int __kmem_cache_shrink(struct kmem_cache *s) 5661 { 5662 flush_all(s); 5663 return __kmem_cache_do_shrink(s); 5664 } 5665 5666 static int slab_mem_going_offline_callback(void *arg) 5667 { 5668 struct kmem_cache *s; 5669 5670 mutex_lock(&slab_mutex); 5671 list_for_each_entry(s, &slab_caches, list) { 5672 flush_all_cpus_locked(s); 5673 __kmem_cache_do_shrink(s); 5674 } 5675 mutex_unlock(&slab_mutex); 5676 5677 return 0; 5678 } 5679 5680 static void slab_mem_offline_callback(void *arg) 5681 { 5682 struct memory_notify *marg = arg; 5683 int offline_node; 5684 5685 offline_node = marg->status_change_nid_normal; 5686 5687 /* 5688 * If the node still has available memory. we need kmem_cache_node 5689 * for it yet. 5690 */ 5691 if (offline_node < 0) 5692 return; 5693 5694 mutex_lock(&slab_mutex); 5695 node_clear(offline_node, slab_nodes); 5696 /* 5697 * We no longer free kmem_cache_node structures here, as it would be 5698 * racy with all get_node() users, and infeasible to protect them with 5699 * slab_mutex. 5700 */ 5701 mutex_unlock(&slab_mutex); 5702 } 5703 5704 static int slab_mem_going_online_callback(void *arg) 5705 { 5706 struct kmem_cache_node *n; 5707 struct kmem_cache *s; 5708 struct memory_notify *marg = arg; 5709 int nid = marg->status_change_nid_normal; 5710 int ret = 0; 5711 5712 /* 5713 * If the node's memory is already available, then kmem_cache_node is 5714 * already created. Nothing to do. 5715 */ 5716 if (nid < 0) 5717 return 0; 5718 5719 /* 5720 * We are bringing a node online. No memory is available yet. We must 5721 * allocate a kmem_cache_node structure in order to bring the node 5722 * online. 5723 */ 5724 mutex_lock(&slab_mutex); 5725 list_for_each_entry(s, &slab_caches, list) { 5726 /* 5727 * The structure may already exist if the node was previously 5728 * onlined and offlined. 5729 */ 5730 if (get_node(s, nid)) 5731 continue; 5732 /* 5733 * XXX: kmem_cache_alloc_node will fallback to other nodes 5734 * since memory is not yet available from the node that 5735 * is brought up. 5736 */ 5737 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5738 if (!n) { 5739 ret = -ENOMEM; 5740 goto out; 5741 } 5742 init_kmem_cache_node(n); 5743 s->node[nid] = n; 5744 } 5745 /* 5746 * Any cache created after this point will also have kmem_cache_node 5747 * initialized for the new node. 5748 */ 5749 node_set(nid, slab_nodes); 5750 out: 5751 mutex_unlock(&slab_mutex); 5752 return ret; 5753 } 5754 5755 static int slab_memory_callback(struct notifier_block *self, 5756 unsigned long action, void *arg) 5757 { 5758 int ret = 0; 5759 5760 switch (action) { 5761 case MEM_GOING_ONLINE: 5762 ret = slab_mem_going_online_callback(arg); 5763 break; 5764 case MEM_GOING_OFFLINE: 5765 ret = slab_mem_going_offline_callback(arg); 5766 break; 5767 case MEM_OFFLINE: 5768 case MEM_CANCEL_ONLINE: 5769 slab_mem_offline_callback(arg); 5770 break; 5771 case MEM_ONLINE: 5772 case MEM_CANCEL_OFFLINE: 5773 break; 5774 } 5775 if (ret) 5776 ret = notifier_from_errno(ret); 5777 else 5778 ret = NOTIFY_OK; 5779 return ret; 5780 } 5781 5782 /******************************************************************** 5783 * Basic setup of slabs 5784 *******************************************************************/ 5785 5786 /* 5787 * Used for early kmem_cache structures that were allocated using 5788 * the page allocator. Allocate them properly then fix up the pointers 5789 * that may be pointing to the wrong kmem_cache structure. 5790 */ 5791 5792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5793 { 5794 int node; 5795 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5796 struct kmem_cache_node *n; 5797 5798 memcpy(s, static_cache, kmem_cache->object_size); 5799 5800 /* 5801 * This runs very early, and only the boot processor is supposed to be 5802 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5803 * IPIs around. 5804 */ 5805 __flush_cpu_slab(s, smp_processor_id()); 5806 for_each_kmem_cache_node(s, node, n) { 5807 struct slab *p; 5808 5809 list_for_each_entry(p, &n->partial, slab_list) 5810 p->slab_cache = s; 5811 5812 #ifdef CONFIG_SLUB_DEBUG 5813 list_for_each_entry(p, &n->full, slab_list) 5814 p->slab_cache = s; 5815 #endif 5816 } 5817 list_add(&s->list, &slab_caches); 5818 return s; 5819 } 5820 5821 void __init kmem_cache_init(void) 5822 { 5823 static __initdata struct kmem_cache boot_kmem_cache, 5824 boot_kmem_cache_node; 5825 int node; 5826 5827 if (debug_guardpage_minorder()) 5828 slub_max_order = 0; 5829 5830 /* Print slub debugging pointers without hashing */ 5831 if (__slub_debug_enabled()) 5832 no_hash_pointers_enable(NULL); 5833 5834 kmem_cache_node = &boot_kmem_cache_node; 5835 kmem_cache = &boot_kmem_cache; 5836 5837 /* 5838 * Initialize the nodemask for which we will allocate per node 5839 * structures. Here we don't need taking slab_mutex yet. 5840 */ 5841 for_each_node_state(node, N_NORMAL_MEMORY) 5842 node_set(node, slab_nodes); 5843 5844 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5845 sizeof(struct kmem_cache_node), 5846 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5847 5848 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5849 5850 /* Able to allocate the per node structures */ 5851 slab_state = PARTIAL; 5852 5853 create_boot_cache(kmem_cache, "kmem_cache", 5854 offsetof(struct kmem_cache, node) + 5855 nr_node_ids * sizeof(struct kmem_cache_node *), 5856 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5857 5858 kmem_cache = bootstrap(&boot_kmem_cache); 5859 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5860 5861 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5862 setup_kmalloc_cache_index_table(); 5863 create_kmalloc_caches(); 5864 5865 /* Setup random freelists for each cache */ 5866 init_freelist_randomization(); 5867 5868 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5869 slub_cpu_dead); 5870 5871 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5872 cache_line_size(), 5873 slub_min_order, slub_max_order, slub_min_objects, 5874 nr_cpu_ids, nr_node_ids); 5875 } 5876 5877 void __init kmem_cache_init_late(void) 5878 { 5879 #ifndef CONFIG_SLUB_TINY 5880 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5881 WARN_ON(!flushwq); 5882 #endif 5883 } 5884 5885 struct kmem_cache * 5886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5887 slab_flags_t flags, void (*ctor)(void *)) 5888 { 5889 struct kmem_cache *s; 5890 5891 s = find_mergeable(size, align, flags, name, ctor); 5892 if (s) { 5893 if (sysfs_slab_alias(s, name)) 5894 return NULL; 5895 5896 s->refcount++; 5897 5898 /* 5899 * Adjust the object sizes so that we clear 5900 * the complete object on kzalloc. 5901 */ 5902 s->object_size = max(s->object_size, size); 5903 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5904 } 5905 5906 return s; 5907 } 5908 5909 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5910 { 5911 int err; 5912 5913 err = kmem_cache_open(s, flags); 5914 if (err) 5915 return err; 5916 5917 /* Mutex is not taken during early boot */ 5918 if (slab_state <= UP) 5919 return 0; 5920 5921 err = sysfs_slab_add(s); 5922 if (err) { 5923 __kmem_cache_release(s); 5924 return err; 5925 } 5926 5927 if (s->flags & SLAB_STORE_USER) 5928 debugfs_slab_add(s); 5929 5930 return 0; 5931 } 5932 5933 #ifdef SLAB_SUPPORTS_SYSFS 5934 static int count_inuse(struct slab *slab) 5935 { 5936 return slab->inuse; 5937 } 5938 5939 static int count_total(struct slab *slab) 5940 { 5941 return slab->objects; 5942 } 5943 #endif 5944 5945 #ifdef CONFIG_SLUB_DEBUG 5946 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5947 unsigned long *obj_map) 5948 { 5949 void *p; 5950 void *addr = slab_address(slab); 5951 5952 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5953 return; 5954 5955 /* Now we know that a valid freelist exists */ 5956 __fill_map(obj_map, s, slab); 5957 for_each_object(p, s, addr, slab->objects) { 5958 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5959 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5960 5961 if (!check_object(s, slab, p, val)) 5962 break; 5963 } 5964 } 5965 5966 static int validate_slab_node(struct kmem_cache *s, 5967 struct kmem_cache_node *n, unsigned long *obj_map) 5968 { 5969 unsigned long count = 0; 5970 struct slab *slab; 5971 unsigned long flags; 5972 5973 spin_lock_irqsave(&n->list_lock, flags); 5974 5975 list_for_each_entry(slab, &n->partial, slab_list) { 5976 validate_slab(s, slab, obj_map); 5977 count++; 5978 } 5979 if (count != n->nr_partial) { 5980 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5981 s->name, count, n->nr_partial); 5982 slab_add_kunit_errors(); 5983 } 5984 5985 if (!(s->flags & SLAB_STORE_USER)) 5986 goto out; 5987 5988 list_for_each_entry(slab, &n->full, slab_list) { 5989 validate_slab(s, slab, obj_map); 5990 count++; 5991 } 5992 if (count != node_nr_slabs(n)) { 5993 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5994 s->name, count, node_nr_slabs(n)); 5995 slab_add_kunit_errors(); 5996 } 5997 5998 out: 5999 spin_unlock_irqrestore(&n->list_lock, flags); 6000 return count; 6001 } 6002 6003 long validate_slab_cache(struct kmem_cache *s) 6004 { 6005 int node; 6006 unsigned long count = 0; 6007 struct kmem_cache_node *n; 6008 unsigned long *obj_map; 6009 6010 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6011 if (!obj_map) 6012 return -ENOMEM; 6013 6014 flush_all(s); 6015 for_each_kmem_cache_node(s, node, n) 6016 count += validate_slab_node(s, n, obj_map); 6017 6018 bitmap_free(obj_map); 6019 6020 return count; 6021 } 6022 EXPORT_SYMBOL(validate_slab_cache); 6023 6024 #ifdef CONFIG_DEBUG_FS 6025 /* 6026 * Generate lists of code addresses where slabcache objects are allocated 6027 * and freed. 6028 */ 6029 6030 struct location { 6031 depot_stack_handle_t handle; 6032 unsigned long count; 6033 unsigned long addr; 6034 unsigned long waste; 6035 long long sum_time; 6036 long min_time; 6037 long max_time; 6038 long min_pid; 6039 long max_pid; 6040 DECLARE_BITMAP(cpus, NR_CPUS); 6041 nodemask_t nodes; 6042 }; 6043 6044 struct loc_track { 6045 unsigned long max; 6046 unsigned long count; 6047 struct location *loc; 6048 loff_t idx; 6049 }; 6050 6051 static struct dentry *slab_debugfs_root; 6052 6053 static void free_loc_track(struct loc_track *t) 6054 { 6055 if (t->max) 6056 free_pages((unsigned long)t->loc, 6057 get_order(sizeof(struct location) * t->max)); 6058 } 6059 6060 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6061 { 6062 struct location *l; 6063 int order; 6064 6065 order = get_order(sizeof(struct location) * max); 6066 6067 l = (void *)__get_free_pages(flags, order); 6068 if (!l) 6069 return 0; 6070 6071 if (t->count) { 6072 memcpy(l, t->loc, sizeof(struct location) * t->count); 6073 free_loc_track(t); 6074 } 6075 t->max = max; 6076 t->loc = l; 6077 return 1; 6078 } 6079 6080 static int add_location(struct loc_track *t, struct kmem_cache *s, 6081 const struct track *track, 6082 unsigned int orig_size) 6083 { 6084 long start, end, pos; 6085 struct location *l; 6086 unsigned long caddr, chandle, cwaste; 6087 unsigned long age = jiffies - track->when; 6088 depot_stack_handle_t handle = 0; 6089 unsigned int waste = s->object_size - orig_size; 6090 6091 #ifdef CONFIG_STACKDEPOT 6092 handle = READ_ONCE(track->handle); 6093 #endif 6094 start = -1; 6095 end = t->count; 6096 6097 for ( ; ; ) { 6098 pos = start + (end - start + 1) / 2; 6099 6100 /* 6101 * There is nothing at "end". If we end up there 6102 * we need to add something to before end. 6103 */ 6104 if (pos == end) 6105 break; 6106 6107 l = &t->loc[pos]; 6108 caddr = l->addr; 6109 chandle = l->handle; 6110 cwaste = l->waste; 6111 if ((track->addr == caddr) && (handle == chandle) && 6112 (waste == cwaste)) { 6113 6114 l->count++; 6115 if (track->when) { 6116 l->sum_time += age; 6117 if (age < l->min_time) 6118 l->min_time = age; 6119 if (age > l->max_time) 6120 l->max_time = age; 6121 6122 if (track->pid < l->min_pid) 6123 l->min_pid = track->pid; 6124 if (track->pid > l->max_pid) 6125 l->max_pid = track->pid; 6126 6127 cpumask_set_cpu(track->cpu, 6128 to_cpumask(l->cpus)); 6129 } 6130 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6131 return 1; 6132 } 6133 6134 if (track->addr < caddr) 6135 end = pos; 6136 else if (track->addr == caddr && handle < chandle) 6137 end = pos; 6138 else if (track->addr == caddr && handle == chandle && 6139 waste < cwaste) 6140 end = pos; 6141 else 6142 start = pos; 6143 } 6144 6145 /* 6146 * Not found. Insert new tracking element. 6147 */ 6148 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6149 return 0; 6150 6151 l = t->loc + pos; 6152 if (pos < t->count) 6153 memmove(l + 1, l, 6154 (t->count - pos) * sizeof(struct location)); 6155 t->count++; 6156 l->count = 1; 6157 l->addr = track->addr; 6158 l->sum_time = age; 6159 l->min_time = age; 6160 l->max_time = age; 6161 l->min_pid = track->pid; 6162 l->max_pid = track->pid; 6163 l->handle = handle; 6164 l->waste = waste; 6165 cpumask_clear(to_cpumask(l->cpus)); 6166 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6167 nodes_clear(l->nodes); 6168 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6169 return 1; 6170 } 6171 6172 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6173 struct slab *slab, enum track_item alloc, 6174 unsigned long *obj_map) 6175 { 6176 void *addr = slab_address(slab); 6177 bool is_alloc = (alloc == TRACK_ALLOC); 6178 void *p; 6179 6180 __fill_map(obj_map, s, slab); 6181 6182 for_each_object(p, s, addr, slab->objects) 6183 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6184 add_location(t, s, get_track(s, p, alloc), 6185 is_alloc ? get_orig_size(s, p) : 6186 s->object_size); 6187 } 6188 #endif /* CONFIG_DEBUG_FS */ 6189 #endif /* CONFIG_SLUB_DEBUG */ 6190 6191 #ifdef SLAB_SUPPORTS_SYSFS 6192 enum slab_stat_type { 6193 SL_ALL, /* All slabs */ 6194 SL_PARTIAL, /* Only partially allocated slabs */ 6195 SL_CPU, /* Only slabs used for cpu caches */ 6196 SL_OBJECTS, /* Determine allocated objects not slabs */ 6197 SL_TOTAL /* Determine object capacity not slabs */ 6198 }; 6199 6200 #define SO_ALL (1 << SL_ALL) 6201 #define SO_PARTIAL (1 << SL_PARTIAL) 6202 #define SO_CPU (1 << SL_CPU) 6203 #define SO_OBJECTS (1 << SL_OBJECTS) 6204 #define SO_TOTAL (1 << SL_TOTAL) 6205 6206 static ssize_t show_slab_objects(struct kmem_cache *s, 6207 char *buf, unsigned long flags) 6208 { 6209 unsigned long total = 0; 6210 int node; 6211 int x; 6212 unsigned long *nodes; 6213 int len = 0; 6214 6215 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6216 if (!nodes) 6217 return -ENOMEM; 6218 6219 if (flags & SO_CPU) { 6220 int cpu; 6221 6222 for_each_possible_cpu(cpu) { 6223 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6224 cpu); 6225 int node; 6226 struct slab *slab; 6227 6228 slab = READ_ONCE(c->slab); 6229 if (!slab) 6230 continue; 6231 6232 node = slab_nid(slab); 6233 if (flags & SO_TOTAL) 6234 x = slab->objects; 6235 else if (flags & SO_OBJECTS) 6236 x = slab->inuse; 6237 else 6238 x = 1; 6239 6240 total += x; 6241 nodes[node] += x; 6242 6243 #ifdef CONFIG_SLUB_CPU_PARTIAL 6244 slab = slub_percpu_partial_read_once(c); 6245 if (slab) { 6246 node = slab_nid(slab); 6247 if (flags & SO_TOTAL) 6248 WARN_ON_ONCE(1); 6249 else if (flags & SO_OBJECTS) 6250 WARN_ON_ONCE(1); 6251 else 6252 x = data_race(slab->slabs); 6253 total += x; 6254 nodes[node] += x; 6255 } 6256 #endif 6257 } 6258 } 6259 6260 /* 6261 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6262 * already held which will conflict with an existing lock order: 6263 * 6264 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6265 * 6266 * We don't really need mem_hotplug_lock (to hold off 6267 * slab_mem_going_offline_callback) here because slab's memory hot 6268 * unplug code doesn't destroy the kmem_cache->node[] data. 6269 */ 6270 6271 #ifdef CONFIG_SLUB_DEBUG 6272 if (flags & SO_ALL) { 6273 struct kmem_cache_node *n; 6274 6275 for_each_kmem_cache_node(s, node, n) { 6276 6277 if (flags & SO_TOTAL) 6278 x = node_nr_objs(n); 6279 else if (flags & SO_OBJECTS) 6280 x = node_nr_objs(n) - count_partial(n, count_free); 6281 else 6282 x = node_nr_slabs(n); 6283 total += x; 6284 nodes[node] += x; 6285 } 6286 6287 } else 6288 #endif 6289 if (flags & SO_PARTIAL) { 6290 struct kmem_cache_node *n; 6291 6292 for_each_kmem_cache_node(s, node, n) { 6293 if (flags & SO_TOTAL) 6294 x = count_partial(n, count_total); 6295 else if (flags & SO_OBJECTS) 6296 x = count_partial(n, count_inuse); 6297 else 6298 x = n->nr_partial; 6299 total += x; 6300 nodes[node] += x; 6301 } 6302 } 6303 6304 len += sysfs_emit_at(buf, len, "%lu", total); 6305 #ifdef CONFIG_NUMA 6306 for (node = 0; node < nr_node_ids; node++) { 6307 if (nodes[node]) 6308 len += sysfs_emit_at(buf, len, " N%d=%lu", 6309 node, nodes[node]); 6310 } 6311 #endif 6312 len += sysfs_emit_at(buf, len, "\n"); 6313 kfree(nodes); 6314 6315 return len; 6316 } 6317 6318 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6319 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6320 6321 struct slab_attribute { 6322 struct attribute attr; 6323 ssize_t (*show)(struct kmem_cache *s, char *buf); 6324 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6325 }; 6326 6327 #define SLAB_ATTR_RO(_name) \ 6328 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6329 6330 #define SLAB_ATTR(_name) \ 6331 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6332 6333 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6334 { 6335 return sysfs_emit(buf, "%u\n", s->size); 6336 } 6337 SLAB_ATTR_RO(slab_size); 6338 6339 static ssize_t align_show(struct kmem_cache *s, char *buf) 6340 { 6341 return sysfs_emit(buf, "%u\n", s->align); 6342 } 6343 SLAB_ATTR_RO(align); 6344 6345 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6346 { 6347 return sysfs_emit(buf, "%u\n", s->object_size); 6348 } 6349 SLAB_ATTR_RO(object_size); 6350 6351 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6352 { 6353 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6354 } 6355 SLAB_ATTR_RO(objs_per_slab); 6356 6357 static ssize_t order_show(struct kmem_cache *s, char *buf) 6358 { 6359 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6360 } 6361 SLAB_ATTR_RO(order); 6362 6363 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6364 { 6365 return sysfs_emit(buf, "%lu\n", s->min_partial); 6366 } 6367 6368 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6369 size_t length) 6370 { 6371 unsigned long min; 6372 int err; 6373 6374 err = kstrtoul(buf, 10, &min); 6375 if (err) 6376 return err; 6377 6378 s->min_partial = min; 6379 return length; 6380 } 6381 SLAB_ATTR(min_partial); 6382 6383 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6384 { 6385 unsigned int nr_partial = 0; 6386 #ifdef CONFIG_SLUB_CPU_PARTIAL 6387 nr_partial = s->cpu_partial; 6388 #endif 6389 6390 return sysfs_emit(buf, "%u\n", nr_partial); 6391 } 6392 6393 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6394 size_t length) 6395 { 6396 unsigned int objects; 6397 int err; 6398 6399 err = kstrtouint(buf, 10, &objects); 6400 if (err) 6401 return err; 6402 if (objects && !kmem_cache_has_cpu_partial(s)) 6403 return -EINVAL; 6404 6405 slub_set_cpu_partial(s, objects); 6406 flush_all(s); 6407 return length; 6408 } 6409 SLAB_ATTR(cpu_partial); 6410 6411 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6412 { 6413 if (!s->ctor) 6414 return 0; 6415 return sysfs_emit(buf, "%pS\n", s->ctor); 6416 } 6417 SLAB_ATTR_RO(ctor); 6418 6419 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6420 { 6421 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6422 } 6423 SLAB_ATTR_RO(aliases); 6424 6425 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6426 { 6427 return show_slab_objects(s, buf, SO_PARTIAL); 6428 } 6429 SLAB_ATTR_RO(partial); 6430 6431 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6432 { 6433 return show_slab_objects(s, buf, SO_CPU); 6434 } 6435 SLAB_ATTR_RO(cpu_slabs); 6436 6437 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6438 { 6439 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6440 } 6441 SLAB_ATTR_RO(objects_partial); 6442 6443 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6444 { 6445 int objects = 0; 6446 int slabs = 0; 6447 int cpu __maybe_unused; 6448 int len = 0; 6449 6450 #ifdef CONFIG_SLUB_CPU_PARTIAL 6451 for_each_online_cpu(cpu) { 6452 struct slab *slab; 6453 6454 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6455 6456 if (slab) 6457 slabs += data_race(slab->slabs); 6458 } 6459 #endif 6460 6461 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6462 objects = (slabs * oo_objects(s->oo)) / 2; 6463 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6464 6465 #ifdef CONFIG_SLUB_CPU_PARTIAL 6466 for_each_online_cpu(cpu) { 6467 struct slab *slab; 6468 6469 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6470 if (slab) { 6471 slabs = data_race(slab->slabs); 6472 objects = (slabs * oo_objects(s->oo)) / 2; 6473 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6474 cpu, objects, slabs); 6475 } 6476 } 6477 #endif 6478 len += sysfs_emit_at(buf, len, "\n"); 6479 6480 return len; 6481 } 6482 SLAB_ATTR_RO(slabs_cpu_partial); 6483 6484 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6485 { 6486 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6487 } 6488 SLAB_ATTR_RO(reclaim_account); 6489 6490 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6491 { 6492 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6493 } 6494 SLAB_ATTR_RO(hwcache_align); 6495 6496 #ifdef CONFIG_ZONE_DMA 6497 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6498 { 6499 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6500 } 6501 SLAB_ATTR_RO(cache_dma); 6502 #endif 6503 6504 #ifdef CONFIG_HARDENED_USERCOPY 6505 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6506 { 6507 return sysfs_emit(buf, "%u\n", s->usersize); 6508 } 6509 SLAB_ATTR_RO(usersize); 6510 #endif 6511 6512 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6513 { 6514 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6515 } 6516 SLAB_ATTR_RO(destroy_by_rcu); 6517 6518 #ifdef CONFIG_SLUB_DEBUG 6519 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6520 { 6521 return show_slab_objects(s, buf, SO_ALL); 6522 } 6523 SLAB_ATTR_RO(slabs); 6524 6525 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6526 { 6527 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6528 } 6529 SLAB_ATTR_RO(total_objects); 6530 6531 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6532 { 6533 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6534 } 6535 SLAB_ATTR_RO(objects); 6536 6537 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6538 { 6539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6540 } 6541 SLAB_ATTR_RO(sanity_checks); 6542 6543 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6544 { 6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6546 } 6547 SLAB_ATTR_RO(trace); 6548 6549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6550 { 6551 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6552 } 6553 6554 SLAB_ATTR_RO(red_zone); 6555 6556 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6557 { 6558 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6559 } 6560 6561 SLAB_ATTR_RO(poison); 6562 6563 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6564 { 6565 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6566 } 6567 6568 SLAB_ATTR_RO(store_user); 6569 6570 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6571 { 6572 return 0; 6573 } 6574 6575 static ssize_t validate_store(struct kmem_cache *s, 6576 const char *buf, size_t length) 6577 { 6578 int ret = -EINVAL; 6579 6580 if (buf[0] == '1' && kmem_cache_debug(s)) { 6581 ret = validate_slab_cache(s); 6582 if (ret >= 0) 6583 ret = length; 6584 } 6585 return ret; 6586 } 6587 SLAB_ATTR(validate); 6588 6589 #endif /* CONFIG_SLUB_DEBUG */ 6590 6591 #ifdef CONFIG_FAILSLAB 6592 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6593 { 6594 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6595 } 6596 6597 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6598 size_t length) 6599 { 6600 if (s->refcount > 1) 6601 return -EINVAL; 6602 6603 if (buf[0] == '1') 6604 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6605 else 6606 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6607 6608 return length; 6609 } 6610 SLAB_ATTR(failslab); 6611 #endif 6612 6613 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6614 { 6615 return 0; 6616 } 6617 6618 static ssize_t shrink_store(struct kmem_cache *s, 6619 const char *buf, size_t length) 6620 { 6621 if (buf[0] == '1') 6622 kmem_cache_shrink(s); 6623 else 6624 return -EINVAL; 6625 return length; 6626 } 6627 SLAB_ATTR(shrink); 6628 6629 #ifdef CONFIG_NUMA 6630 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6631 { 6632 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6633 } 6634 6635 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6636 const char *buf, size_t length) 6637 { 6638 unsigned int ratio; 6639 int err; 6640 6641 err = kstrtouint(buf, 10, &ratio); 6642 if (err) 6643 return err; 6644 if (ratio > 100) 6645 return -ERANGE; 6646 6647 s->remote_node_defrag_ratio = ratio * 10; 6648 6649 return length; 6650 } 6651 SLAB_ATTR(remote_node_defrag_ratio); 6652 #endif 6653 6654 #ifdef CONFIG_SLUB_STATS 6655 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6656 { 6657 unsigned long sum = 0; 6658 int cpu; 6659 int len = 0; 6660 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6661 6662 if (!data) 6663 return -ENOMEM; 6664 6665 for_each_online_cpu(cpu) { 6666 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6667 6668 data[cpu] = x; 6669 sum += x; 6670 } 6671 6672 len += sysfs_emit_at(buf, len, "%lu", sum); 6673 6674 #ifdef CONFIG_SMP 6675 for_each_online_cpu(cpu) { 6676 if (data[cpu]) 6677 len += sysfs_emit_at(buf, len, " C%d=%u", 6678 cpu, data[cpu]); 6679 } 6680 #endif 6681 kfree(data); 6682 len += sysfs_emit_at(buf, len, "\n"); 6683 6684 return len; 6685 } 6686 6687 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6688 { 6689 int cpu; 6690 6691 for_each_online_cpu(cpu) 6692 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6693 } 6694 6695 #define STAT_ATTR(si, text) \ 6696 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6697 { \ 6698 return show_stat(s, buf, si); \ 6699 } \ 6700 static ssize_t text##_store(struct kmem_cache *s, \ 6701 const char *buf, size_t length) \ 6702 { \ 6703 if (buf[0] != '0') \ 6704 return -EINVAL; \ 6705 clear_stat(s, si); \ 6706 return length; \ 6707 } \ 6708 SLAB_ATTR(text); \ 6709 6710 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6711 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6712 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6713 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6714 STAT_ATTR(FREE_FROZEN, free_frozen); 6715 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6716 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6717 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6718 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6719 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6720 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6721 STAT_ATTR(FREE_SLAB, free_slab); 6722 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6723 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6724 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6725 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6726 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6727 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6728 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6729 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6730 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6731 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6732 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6733 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6734 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6735 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6736 #endif /* CONFIG_SLUB_STATS */ 6737 6738 #ifdef CONFIG_KFENCE 6739 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6740 { 6741 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6742 } 6743 6744 static ssize_t skip_kfence_store(struct kmem_cache *s, 6745 const char *buf, size_t length) 6746 { 6747 int ret = length; 6748 6749 if (buf[0] == '0') 6750 s->flags &= ~SLAB_SKIP_KFENCE; 6751 else if (buf[0] == '1') 6752 s->flags |= SLAB_SKIP_KFENCE; 6753 else 6754 ret = -EINVAL; 6755 6756 return ret; 6757 } 6758 SLAB_ATTR(skip_kfence); 6759 #endif 6760 6761 static struct attribute *slab_attrs[] = { 6762 &slab_size_attr.attr, 6763 &object_size_attr.attr, 6764 &objs_per_slab_attr.attr, 6765 &order_attr.attr, 6766 &min_partial_attr.attr, 6767 &cpu_partial_attr.attr, 6768 &objects_partial_attr.attr, 6769 &partial_attr.attr, 6770 &cpu_slabs_attr.attr, 6771 &ctor_attr.attr, 6772 &aliases_attr.attr, 6773 &align_attr.attr, 6774 &hwcache_align_attr.attr, 6775 &reclaim_account_attr.attr, 6776 &destroy_by_rcu_attr.attr, 6777 &shrink_attr.attr, 6778 &slabs_cpu_partial_attr.attr, 6779 #ifdef CONFIG_SLUB_DEBUG 6780 &total_objects_attr.attr, 6781 &objects_attr.attr, 6782 &slabs_attr.attr, 6783 &sanity_checks_attr.attr, 6784 &trace_attr.attr, 6785 &red_zone_attr.attr, 6786 &poison_attr.attr, 6787 &store_user_attr.attr, 6788 &validate_attr.attr, 6789 #endif 6790 #ifdef CONFIG_ZONE_DMA 6791 &cache_dma_attr.attr, 6792 #endif 6793 #ifdef CONFIG_NUMA 6794 &remote_node_defrag_ratio_attr.attr, 6795 #endif 6796 #ifdef CONFIG_SLUB_STATS 6797 &alloc_fastpath_attr.attr, 6798 &alloc_slowpath_attr.attr, 6799 &free_fastpath_attr.attr, 6800 &free_slowpath_attr.attr, 6801 &free_frozen_attr.attr, 6802 &free_add_partial_attr.attr, 6803 &free_remove_partial_attr.attr, 6804 &alloc_from_partial_attr.attr, 6805 &alloc_slab_attr.attr, 6806 &alloc_refill_attr.attr, 6807 &alloc_node_mismatch_attr.attr, 6808 &free_slab_attr.attr, 6809 &cpuslab_flush_attr.attr, 6810 &deactivate_full_attr.attr, 6811 &deactivate_empty_attr.attr, 6812 &deactivate_to_head_attr.attr, 6813 &deactivate_to_tail_attr.attr, 6814 &deactivate_remote_frees_attr.attr, 6815 &deactivate_bypass_attr.attr, 6816 &order_fallback_attr.attr, 6817 &cmpxchg_double_fail_attr.attr, 6818 &cmpxchg_double_cpu_fail_attr.attr, 6819 &cpu_partial_alloc_attr.attr, 6820 &cpu_partial_free_attr.attr, 6821 &cpu_partial_node_attr.attr, 6822 &cpu_partial_drain_attr.attr, 6823 #endif 6824 #ifdef CONFIG_FAILSLAB 6825 &failslab_attr.attr, 6826 #endif 6827 #ifdef CONFIG_HARDENED_USERCOPY 6828 &usersize_attr.attr, 6829 #endif 6830 #ifdef CONFIG_KFENCE 6831 &skip_kfence_attr.attr, 6832 #endif 6833 6834 NULL 6835 }; 6836 6837 static const struct attribute_group slab_attr_group = { 6838 .attrs = slab_attrs, 6839 }; 6840 6841 static ssize_t slab_attr_show(struct kobject *kobj, 6842 struct attribute *attr, 6843 char *buf) 6844 { 6845 struct slab_attribute *attribute; 6846 struct kmem_cache *s; 6847 6848 attribute = to_slab_attr(attr); 6849 s = to_slab(kobj); 6850 6851 if (!attribute->show) 6852 return -EIO; 6853 6854 return attribute->show(s, buf); 6855 } 6856 6857 static ssize_t slab_attr_store(struct kobject *kobj, 6858 struct attribute *attr, 6859 const char *buf, size_t len) 6860 { 6861 struct slab_attribute *attribute; 6862 struct kmem_cache *s; 6863 6864 attribute = to_slab_attr(attr); 6865 s = to_slab(kobj); 6866 6867 if (!attribute->store) 6868 return -EIO; 6869 6870 return attribute->store(s, buf, len); 6871 } 6872 6873 static void kmem_cache_release(struct kobject *k) 6874 { 6875 slab_kmem_cache_release(to_slab(k)); 6876 } 6877 6878 static const struct sysfs_ops slab_sysfs_ops = { 6879 .show = slab_attr_show, 6880 .store = slab_attr_store, 6881 }; 6882 6883 static const struct kobj_type slab_ktype = { 6884 .sysfs_ops = &slab_sysfs_ops, 6885 .release = kmem_cache_release, 6886 }; 6887 6888 static struct kset *slab_kset; 6889 6890 static inline struct kset *cache_kset(struct kmem_cache *s) 6891 { 6892 return slab_kset; 6893 } 6894 6895 #define ID_STR_LENGTH 32 6896 6897 /* Create a unique string id for a slab cache: 6898 * 6899 * Format :[flags-]size 6900 */ 6901 static char *create_unique_id(struct kmem_cache *s) 6902 { 6903 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6904 char *p = name; 6905 6906 if (!name) 6907 return ERR_PTR(-ENOMEM); 6908 6909 *p++ = ':'; 6910 /* 6911 * First flags affecting slabcache operations. We will only 6912 * get here for aliasable slabs so we do not need to support 6913 * too many flags. The flags here must cover all flags that 6914 * are matched during merging to guarantee that the id is 6915 * unique. 6916 */ 6917 if (s->flags & SLAB_CACHE_DMA) 6918 *p++ = 'd'; 6919 if (s->flags & SLAB_CACHE_DMA32) 6920 *p++ = 'D'; 6921 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6922 *p++ = 'a'; 6923 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6924 *p++ = 'F'; 6925 if (s->flags & SLAB_ACCOUNT) 6926 *p++ = 'A'; 6927 if (p != name + 1) 6928 *p++ = '-'; 6929 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6930 6931 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6932 kfree(name); 6933 return ERR_PTR(-EINVAL); 6934 } 6935 kmsan_unpoison_memory(name, p - name); 6936 return name; 6937 } 6938 6939 static int sysfs_slab_add(struct kmem_cache *s) 6940 { 6941 int err; 6942 const char *name; 6943 struct kset *kset = cache_kset(s); 6944 int unmergeable = slab_unmergeable(s); 6945 6946 if (!unmergeable && disable_higher_order_debug && 6947 (slub_debug & DEBUG_METADATA_FLAGS)) 6948 unmergeable = 1; 6949 6950 if (unmergeable) { 6951 /* 6952 * Slabcache can never be merged so we can use the name proper. 6953 * This is typically the case for debug situations. In that 6954 * case we can catch duplicate names easily. 6955 */ 6956 sysfs_remove_link(&slab_kset->kobj, s->name); 6957 name = s->name; 6958 } else { 6959 /* 6960 * Create a unique name for the slab as a target 6961 * for the symlinks. 6962 */ 6963 name = create_unique_id(s); 6964 if (IS_ERR(name)) 6965 return PTR_ERR(name); 6966 } 6967 6968 s->kobj.kset = kset; 6969 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6970 if (err) 6971 goto out; 6972 6973 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6974 if (err) 6975 goto out_del_kobj; 6976 6977 if (!unmergeable) { 6978 /* Setup first alias */ 6979 sysfs_slab_alias(s, s->name); 6980 } 6981 out: 6982 if (!unmergeable) 6983 kfree(name); 6984 return err; 6985 out_del_kobj: 6986 kobject_del(&s->kobj); 6987 goto out; 6988 } 6989 6990 void sysfs_slab_unlink(struct kmem_cache *s) 6991 { 6992 kobject_del(&s->kobj); 6993 } 6994 6995 void sysfs_slab_release(struct kmem_cache *s) 6996 { 6997 kobject_put(&s->kobj); 6998 } 6999 7000 /* 7001 * Need to buffer aliases during bootup until sysfs becomes 7002 * available lest we lose that information. 7003 */ 7004 struct saved_alias { 7005 struct kmem_cache *s; 7006 const char *name; 7007 struct saved_alias *next; 7008 }; 7009 7010 static struct saved_alias *alias_list; 7011 7012 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7013 { 7014 struct saved_alias *al; 7015 7016 if (slab_state == FULL) { 7017 /* 7018 * If we have a leftover link then remove it. 7019 */ 7020 sysfs_remove_link(&slab_kset->kobj, name); 7021 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7022 } 7023 7024 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7025 if (!al) 7026 return -ENOMEM; 7027 7028 al->s = s; 7029 al->name = name; 7030 al->next = alias_list; 7031 alias_list = al; 7032 kmsan_unpoison_memory(al, sizeof(*al)); 7033 return 0; 7034 } 7035 7036 static int __init slab_sysfs_init(void) 7037 { 7038 struct kmem_cache *s; 7039 int err; 7040 7041 mutex_lock(&slab_mutex); 7042 7043 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7044 if (!slab_kset) { 7045 mutex_unlock(&slab_mutex); 7046 pr_err("Cannot register slab subsystem.\n"); 7047 return -ENOMEM; 7048 } 7049 7050 slab_state = FULL; 7051 7052 list_for_each_entry(s, &slab_caches, list) { 7053 err = sysfs_slab_add(s); 7054 if (err) 7055 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7056 s->name); 7057 } 7058 7059 while (alias_list) { 7060 struct saved_alias *al = alias_list; 7061 7062 alias_list = alias_list->next; 7063 err = sysfs_slab_alias(al->s, al->name); 7064 if (err) 7065 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7066 al->name); 7067 kfree(al); 7068 } 7069 7070 mutex_unlock(&slab_mutex); 7071 return 0; 7072 } 7073 late_initcall(slab_sysfs_init); 7074 #endif /* SLAB_SUPPORTS_SYSFS */ 7075 7076 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7077 static int slab_debugfs_show(struct seq_file *seq, void *v) 7078 { 7079 struct loc_track *t = seq->private; 7080 struct location *l; 7081 unsigned long idx; 7082 7083 idx = (unsigned long) t->idx; 7084 if (idx < t->count) { 7085 l = &t->loc[idx]; 7086 7087 seq_printf(seq, "%7ld ", l->count); 7088 7089 if (l->addr) 7090 seq_printf(seq, "%pS", (void *)l->addr); 7091 else 7092 seq_puts(seq, "<not-available>"); 7093 7094 if (l->waste) 7095 seq_printf(seq, " waste=%lu/%lu", 7096 l->count * l->waste, l->waste); 7097 7098 if (l->sum_time != l->min_time) { 7099 seq_printf(seq, " age=%ld/%llu/%ld", 7100 l->min_time, div_u64(l->sum_time, l->count), 7101 l->max_time); 7102 } else 7103 seq_printf(seq, " age=%ld", l->min_time); 7104 7105 if (l->min_pid != l->max_pid) 7106 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7107 else 7108 seq_printf(seq, " pid=%ld", 7109 l->min_pid); 7110 7111 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7112 seq_printf(seq, " cpus=%*pbl", 7113 cpumask_pr_args(to_cpumask(l->cpus))); 7114 7115 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7116 seq_printf(seq, " nodes=%*pbl", 7117 nodemask_pr_args(&l->nodes)); 7118 7119 #ifdef CONFIG_STACKDEPOT 7120 { 7121 depot_stack_handle_t handle; 7122 unsigned long *entries; 7123 unsigned int nr_entries, j; 7124 7125 handle = READ_ONCE(l->handle); 7126 if (handle) { 7127 nr_entries = stack_depot_fetch(handle, &entries); 7128 seq_puts(seq, "\n"); 7129 for (j = 0; j < nr_entries; j++) 7130 seq_printf(seq, " %pS\n", (void *)entries[j]); 7131 } 7132 } 7133 #endif 7134 seq_puts(seq, "\n"); 7135 } 7136 7137 if (!idx && !t->count) 7138 seq_puts(seq, "No data\n"); 7139 7140 return 0; 7141 } 7142 7143 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7144 { 7145 } 7146 7147 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7148 { 7149 struct loc_track *t = seq->private; 7150 7151 t->idx = ++(*ppos); 7152 if (*ppos <= t->count) 7153 return ppos; 7154 7155 return NULL; 7156 } 7157 7158 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7159 { 7160 struct location *loc1 = (struct location *)a; 7161 struct location *loc2 = (struct location *)b; 7162 7163 if (loc1->count > loc2->count) 7164 return -1; 7165 else 7166 return 1; 7167 } 7168 7169 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7170 { 7171 struct loc_track *t = seq->private; 7172 7173 t->idx = *ppos; 7174 return ppos; 7175 } 7176 7177 static const struct seq_operations slab_debugfs_sops = { 7178 .start = slab_debugfs_start, 7179 .next = slab_debugfs_next, 7180 .stop = slab_debugfs_stop, 7181 .show = slab_debugfs_show, 7182 }; 7183 7184 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7185 { 7186 7187 struct kmem_cache_node *n; 7188 enum track_item alloc; 7189 int node; 7190 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7191 sizeof(struct loc_track)); 7192 struct kmem_cache *s = file_inode(filep)->i_private; 7193 unsigned long *obj_map; 7194 7195 if (!t) 7196 return -ENOMEM; 7197 7198 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7199 if (!obj_map) { 7200 seq_release_private(inode, filep); 7201 return -ENOMEM; 7202 } 7203 7204 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7205 alloc = TRACK_ALLOC; 7206 else 7207 alloc = TRACK_FREE; 7208 7209 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7210 bitmap_free(obj_map); 7211 seq_release_private(inode, filep); 7212 return -ENOMEM; 7213 } 7214 7215 for_each_kmem_cache_node(s, node, n) { 7216 unsigned long flags; 7217 struct slab *slab; 7218 7219 if (!node_nr_slabs(n)) 7220 continue; 7221 7222 spin_lock_irqsave(&n->list_lock, flags); 7223 list_for_each_entry(slab, &n->partial, slab_list) 7224 process_slab(t, s, slab, alloc, obj_map); 7225 list_for_each_entry(slab, &n->full, slab_list) 7226 process_slab(t, s, slab, alloc, obj_map); 7227 spin_unlock_irqrestore(&n->list_lock, flags); 7228 } 7229 7230 /* Sort locations by count */ 7231 sort_r(t->loc, t->count, sizeof(struct location), 7232 cmp_loc_by_count, NULL, NULL); 7233 7234 bitmap_free(obj_map); 7235 return 0; 7236 } 7237 7238 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7239 { 7240 struct seq_file *seq = file->private_data; 7241 struct loc_track *t = seq->private; 7242 7243 free_loc_track(t); 7244 return seq_release_private(inode, file); 7245 } 7246 7247 static const struct file_operations slab_debugfs_fops = { 7248 .open = slab_debug_trace_open, 7249 .read = seq_read, 7250 .llseek = seq_lseek, 7251 .release = slab_debug_trace_release, 7252 }; 7253 7254 static void debugfs_slab_add(struct kmem_cache *s) 7255 { 7256 struct dentry *slab_cache_dir; 7257 7258 if (unlikely(!slab_debugfs_root)) 7259 return; 7260 7261 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7262 7263 debugfs_create_file("alloc_traces", 0400, 7264 slab_cache_dir, s, &slab_debugfs_fops); 7265 7266 debugfs_create_file("free_traces", 0400, 7267 slab_cache_dir, s, &slab_debugfs_fops); 7268 } 7269 7270 void debugfs_slab_release(struct kmem_cache *s) 7271 { 7272 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7273 } 7274 7275 static int __init slab_debugfs_init(void) 7276 { 7277 struct kmem_cache *s; 7278 7279 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7280 7281 list_for_each_entry(s, &slab_caches, list) 7282 if (s->flags & SLAB_STORE_USER) 7283 debugfs_slab_add(s); 7284 7285 return 0; 7286 7287 } 7288 __initcall(slab_debugfs_init); 7289 #endif 7290 /* 7291 * The /proc/slabinfo ABI 7292 */ 7293 #ifdef CONFIG_SLUB_DEBUG 7294 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7295 { 7296 unsigned long nr_slabs = 0; 7297 unsigned long nr_objs = 0; 7298 unsigned long nr_free = 0; 7299 int node; 7300 struct kmem_cache_node *n; 7301 7302 for_each_kmem_cache_node(s, node, n) { 7303 nr_slabs += node_nr_slabs(n); 7304 nr_objs += node_nr_objs(n); 7305 nr_free += count_partial_free_approx(n); 7306 } 7307 7308 sinfo->active_objs = nr_objs - nr_free; 7309 sinfo->num_objs = nr_objs; 7310 sinfo->active_slabs = nr_slabs; 7311 sinfo->num_slabs = nr_slabs; 7312 sinfo->objects_per_slab = oo_objects(s->oo); 7313 sinfo->cache_order = oo_order(s->oo); 7314 } 7315 #endif /* CONFIG_SLUB_DEBUG */ 7316