xref: /linux/mm/slub.c (revision 194fcd20ebccbc34bba80d7d9b203920087bb01d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * Returns freelist pointer (ptr). With hardening, this is obfuscated
470  * with an XOR of the address where the pointer is held and a per-cache
471  * random number.
472  */
473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 					    void *ptr, unsigned long ptr_addr)
475 {
476 	unsigned long encoded;
477 
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
480 #else
481 	encoded = (unsigned long)ptr;
482 #endif
483 	return (freeptr_t){.v = encoded};
484 }
485 
486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 					freeptr_t ptr, unsigned long ptr_addr)
488 {
489 	void *decoded;
490 
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
493 #else
494 	decoded = (void *)ptr.v;
495 #endif
496 	return decoded;
497 }
498 
499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
500 {
501 	unsigned long ptr_addr;
502 	freeptr_t p;
503 
504 	object = kasan_reset_tag(object);
505 	ptr_addr = (unsigned long)object + s->offset;
506 	p = *(freeptr_t *)(ptr_addr);
507 	return freelist_ptr_decode(s, p, ptr_addr);
508 }
509 
510 #ifndef CONFIG_SLUB_TINY
511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
512 {
513 	prefetchw(object + s->offset);
514 }
515 #endif
516 
517 /*
518  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519  * pointer value in the case the current thread loses the race for the next
520  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522  * KMSAN will still check all arguments of cmpxchg because of imperfect
523  * handling of inline assembly.
524  * To work around this problem, we apply __no_kmsan_checks to ensure that
525  * get_freepointer_safe() returns initialized memory.
526  */
527 __no_kmsan_checks
528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
529 {
530 	unsigned long freepointer_addr;
531 	freeptr_t p;
532 
533 	if (!debug_pagealloc_enabled_static())
534 		return get_freepointer(s, object);
535 
536 	object = kasan_reset_tag(object);
537 	freepointer_addr = (unsigned long)object + s->offset;
538 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 	return freelist_ptr_decode(s, p, freepointer_addr);
540 }
541 
542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
543 {
544 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
545 
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 	BUG_ON(object == fp); /* naive detection of double free or corruption */
548 #endif
549 
550 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
552 }
553 
554 /*
555  * See comment in calculate_sizes().
556  */
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 	return s->offset >= s->inuse;
560 }
561 
562 /*
563  * Return offset of the end of info block which is inuse + free pointer if
564  * not overlapping with object.
565  */
566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 	if (freeptr_outside_object(s))
569 		return s->inuse + sizeof(void *);
570 	else
571 		return s->inuse;
572 }
573 
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 	for (__p = fixup_red_left(__s, __addr); \
577 		__p < (__addr) + (__objects) * (__s)->size; \
578 		__p += (__s)->size)
579 
580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
581 {
582 	return ((unsigned int)PAGE_SIZE << order) / size;
583 }
584 
585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
586 		unsigned int size)
587 {
588 	struct kmem_cache_order_objects x = {
589 		(order << OO_SHIFT) + order_objects(order, size)
590 	};
591 
592 	return x;
593 }
594 
595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
596 {
597 	return x.x >> OO_SHIFT;
598 }
599 
600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
601 {
602 	return x.x & OO_MASK;
603 }
604 
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
607 {
608 	unsigned int nr_slabs;
609 
610 	s->cpu_partial = nr_objects;
611 
612 	/*
613 	 * We take the number of objects but actually limit the number of
614 	 * slabs on the per cpu partial list, in order to limit excessive
615 	 * growth of the list. For simplicity we assume that the slabs will
616 	 * be half-full.
617 	 */
618 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 	s->cpu_partial_slabs = nr_slabs;
620 }
621 
622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
623 {
624 	return s->cpu_partial_slabs;
625 }
626 #else
627 static inline void
628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
629 {
630 }
631 
632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
633 {
634 	return 0;
635 }
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637 
638 /*
639  * Per slab locking using the pagelock
640  */
641 static __always_inline void slab_lock(struct slab *slab)
642 {
643 	bit_spin_lock(PG_locked, &slab->__page_flags);
644 }
645 
646 static __always_inline void slab_unlock(struct slab *slab)
647 {
648 	bit_spin_unlock(PG_locked, &slab->__page_flags);
649 }
650 
651 static inline bool
652 __update_freelist_fast(struct slab *slab,
653 		      void *freelist_old, unsigned long counters_old,
654 		      void *freelist_new, unsigned long counters_new)
655 {
656 #ifdef system_has_freelist_aba
657 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
659 
660 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
661 #else
662 	return false;
663 #endif
664 }
665 
666 static inline bool
667 __update_freelist_slow(struct slab *slab,
668 		      void *freelist_old, unsigned long counters_old,
669 		      void *freelist_new, unsigned long counters_new)
670 {
671 	bool ret = false;
672 
673 	slab_lock(slab);
674 	if (slab->freelist == freelist_old &&
675 	    slab->counters == counters_old) {
676 		slab->freelist = freelist_new;
677 		slab->counters = counters_new;
678 		ret = true;
679 	}
680 	slab_unlock(slab);
681 
682 	return ret;
683 }
684 
685 /*
686  * Interrupts must be disabled (for the fallback code to work right), typically
687  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689  * allocation/ free operation in hardirq context. Therefore nothing can
690  * interrupt the operation.
691  */
692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 		void *freelist_old, unsigned long counters_old,
694 		void *freelist_new, unsigned long counters_new,
695 		const char *n)
696 {
697 	bool ret;
698 
699 	if (USE_LOCKLESS_FAST_PATH())
700 		lockdep_assert_irqs_disabled();
701 
702 	if (s->flags & __CMPXCHG_DOUBLE) {
703 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 				            freelist_new, counters_new);
705 	} else {
706 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 				            freelist_new, counters_new);
708 	}
709 	if (likely(ret))
710 		return true;
711 
712 	cpu_relax();
713 	stat(s, CMPXCHG_DOUBLE_FAIL);
714 
715 #ifdef SLUB_DEBUG_CMPXCHG
716 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
717 #endif
718 
719 	return false;
720 }
721 
722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 		void *freelist_old, unsigned long counters_old,
724 		void *freelist_new, unsigned long counters_new,
725 		const char *n)
726 {
727 	bool ret;
728 
729 	if (s->flags & __CMPXCHG_DOUBLE) {
730 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 				            freelist_new, counters_new);
732 	} else {
733 		unsigned long flags;
734 
735 		local_irq_save(flags);
736 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 		local_irq_restore(flags);
739 	}
740 	if (likely(ret))
741 		return true;
742 
743 	cpu_relax();
744 	stat(s, CMPXCHG_DOUBLE_FAIL);
745 
746 #ifdef SLUB_DEBUG_CMPXCHG
747 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
748 #endif
749 
750 	return false;
751 }
752 
753 #ifdef CONFIG_SLUB_DEBUG
754 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
755 static DEFINE_SPINLOCK(object_map_lock);
756 
757 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
758 		       struct slab *slab)
759 {
760 	void *addr = slab_address(slab);
761 	void *p;
762 
763 	bitmap_zero(obj_map, slab->objects);
764 
765 	for (p = slab->freelist; p; p = get_freepointer(s, p))
766 		set_bit(__obj_to_index(s, addr, p), obj_map);
767 }
768 
769 #if IS_ENABLED(CONFIG_KUNIT)
770 static bool slab_add_kunit_errors(void)
771 {
772 	struct kunit_resource *resource;
773 
774 	if (!kunit_get_current_test())
775 		return false;
776 
777 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
778 	if (!resource)
779 		return false;
780 
781 	(*(int *)resource->data)++;
782 	kunit_put_resource(resource);
783 	return true;
784 }
785 
786 static bool slab_in_kunit_test(void)
787 {
788 	struct kunit_resource *resource;
789 
790 	if (!kunit_get_current_test())
791 		return false;
792 
793 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
794 	if (!resource)
795 		return false;
796 
797 	kunit_put_resource(resource);
798 	return true;
799 }
800 #else
801 static inline bool slab_add_kunit_errors(void) { return false; }
802 static inline bool slab_in_kunit_test(void) { return false; }
803 #endif
804 
805 static inline unsigned int size_from_object(struct kmem_cache *s)
806 {
807 	if (s->flags & SLAB_RED_ZONE)
808 		return s->size - s->red_left_pad;
809 
810 	return s->size;
811 }
812 
813 static inline void *restore_red_left(struct kmem_cache *s, void *p)
814 {
815 	if (s->flags & SLAB_RED_ZONE)
816 		p -= s->red_left_pad;
817 
818 	return p;
819 }
820 
821 /*
822  * Debug settings:
823  */
824 #if defined(CONFIG_SLUB_DEBUG_ON)
825 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
826 #else
827 static slab_flags_t slub_debug;
828 #endif
829 
830 static char *slub_debug_string;
831 static int disable_higher_order_debug;
832 
833 /*
834  * slub is about to manipulate internal object metadata.  This memory lies
835  * outside the range of the allocated object, so accessing it would normally
836  * be reported by kasan as a bounds error.  metadata_access_enable() is used
837  * to tell kasan that these accesses are OK.
838  */
839 static inline void metadata_access_enable(void)
840 {
841 	kasan_disable_current();
842 	kmsan_disable_current();
843 }
844 
845 static inline void metadata_access_disable(void)
846 {
847 	kmsan_enable_current();
848 	kasan_enable_current();
849 }
850 
851 /*
852  * Object debugging
853  */
854 
855 /* Verify that a pointer has an address that is valid within a slab page */
856 static inline int check_valid_pointer(struct kmem_cache *s,
857 				struct slab *slab, void *object)
858 {
859 	void *base;
860 
861 	if (!object)
862 		return 1;
863 
864 	base = slab_address(slab);
865 	object = kasan_reset_tag(object);
866 	object = restore_red_left(s, object);
867 	if (object < base || object >= base + slab->objects * s->size ||
868 		(object - base) % s->size) {
869 		return 0;
870 	}
871 
872 	return 1;
873 }
874 
875 static void print_section(char *level, char *text, u8 *addr,
876 			  unsigned int length)
877 {
878 	metadata_access_enable();
879 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
880 			16, 1, kasan_reset_tag((void *)addr), length, 1);
881 	metadata_access_disable();
882 }
883 
884 static struct track *get_track(struct kmem_cache *s, void *object,
885 	enum track_item alloc)
886 {
887 	struct track *p;
888 
889 	p = object + get_info_end(s);
890 
891 	return kasan_reset_tag(p + alloc);
892 }
893 
894 #ifdef CONFIG_STACKDEPOT
895 static noinline depot_stack_handle_t set_track_prepare(void)
896 {
897 	depot_stack_handle_t handle;
898 	unsigned long entries[TRACK_ADDRS_COUNT];
899 	unsigned int nr_entries;
900 
901 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
902 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
903 
904 	return handle;
905 }
906 #else
907 static inline depot_stack_handle_t set_track_prepare(void)
908 {
909 	return 0;
910 }
911 #endif
912 
913 static void set_track_update(struct kmem_cache *s, void *object,
914 			     enum track_item alloc, unsigned long addr,
915 			     depot_stack_handle_t handle)
916 {
917 	struct track *p = get_track(s, object, alloc);
918 
919 #ifdef CONFIG_STACKDEPOT
920 	p->handle = handle;
921 #endif
922 	p->addr = addr;
923 	p->cpu = smp_processor_id();
924 	p->pid = current->pid;
925 	p->when = jiffies;
926 }
927 
928 static __always_inline void set_track(struct kmem_cache *s, void *object,
929 				      enum track_item alloc, unsigned long addr)
930 {
931 	depot_stack_handle_t handle = set_track_prepare();
932 
933 	set_track_update(s, object, alloc, addr, handle);
934 }
935 
936 static void init_tracking(struct kmem_cache *s, void *object)
937 {
938 	struct track *p;
939 
940 	if (!(s->flags & SLAB_STORE_USER))
941 		return;
942 
943 	p = get_track(s, object, TRACK_ALLOC);
944 	memset(p, 0, 2*sizeof(struct track));
945 }
946 
947 static void print_track(const char *s, struct track *t, unsigned long pr_time)
948 {
949 	depot_stack_handle_t handle __maybe_unused;
950 
951 	if (!t->addr)
952 		return;
953 
954 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
955 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
956 #ifdef CONFIG_STACKDEPOT
957 	handle = READ_ONCE(t->handle);
958 	if (handle)
959 		stack_depot_print(handle);
960 	else
961 		pr_err("object allocation/free stack trace missing\n");
962 #endif
963 }
964 
965 void print_tracking(struct kmem_cache *s, void *object)
966 {
967 	unsigned long pr_time = jiffies;
968 	if (!(s->flags & SLAB_STORE_USER))
969 		return;
970 
971 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
972 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
973 }
974 
975 static void print_slab_info(const struct slab *slab)
976 {
977 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
978 	       slab, slab->objects, slab->inuse, slab->freelist,
979 	       &slab->__page_flags);
980 }
981 
982 /*
983  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
984  * family will round up the real request size to these fixed ones, so
985  * there could be an extra area than what is requested. Save the original
986  * request size in the meta data area, for better debug and sanity check.
987  */
988 static inline void set_orig_size(struct kmem_cache *s,
989 				void *object, unsigned int orig_size)
990 {
991 	void *p = kasan_reset_tag(object);
992 	unsigned int kasan_meta_size;
993 
994 	if (!slub_debug_orig_size(s))
995 		return;
996 
997 	/*
998 	 * KASAN can save its free meta data inside of the object at offset 0.
999 	 * If this meta data size is larger than 'orig_size', it will overlap
1000 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1001 	 * 'orig_size' to be as at least as big as KASAN's meta data.
1002 	 */
1003 	kasan_meta_size = kasan_metadata_size(s, true);
1004 	if (kasan_meta_size > orig_size)
1005 		orig_size = kasan_meta_size;
1006 
1007 	p += get_info_end(s);
1008 	p += sizeof(struct track) * 2;
1009 
1010 	*(unsigned int *)p = orig_size;
1011 }
1012 
1013 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1014 {
1015 	void *p = kasan_reset_tag(object);
1016 
1017 	if (!slub_debug_orig_size(s))
1018 		return s->object_size;
1019 
1020 	p += get_info_end(s);
1021 	p += sizeof(struct track) * 2;
1022 
1023 	return *(unsigned int *)p;
1024 }
1025 
1026 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1027 {
1028 	set_orig_size(s, (void *)object, s->object_size);
1029 }
1030 
1031 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1032 {
1033 	struct va_format vaf;
1034 	va_list args;
1035 
1036 	va_start(args, fmt);
1037 	vaf.fmt = fmt;
1038 	vaf.va = &args;
1039 	pr_err("=============================================================================\n");
1040 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1041 	pr_err("-----------------------------------------------------------------------------\n\n");
1042 	va_end(args);
1043 }
1044 
1045 __printf(2, 3)
1046 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1047 {
1048 	struct va_format vaf;
1049 	va_list args;
1050 
1051 	if (slab_add_kunit_errors())
1052 		return;
1053 
1054 	va_start(args, fmt);
1055 	vaf.fmt = fmt;
1056 	vaf.va = &args;
1057 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1058 	va_end(args);
1059 }
1060 
1061 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1062 {
1063 	unsigned int off;	/* Offset of last byte */
1064 	u8 *addr = slab_address(slab);
1065 
1066 	print_tracking(s, p);
1067 
1068 	print_slab_info(slab);
1069 
1070 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1071 	       p, p - addr, get_freepointer(s, p));
1072 
1073 	if (s->flags & SLAB_RED_ZONE)
1074 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1075 			      s->red_left_pad);
1076 	else if (p > addr + 16)
1077 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1078 
1079 	print_section(KERN_ERR,         "Object   ", p,
1080 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1081 	if (s->flags & SLAB_RED_ZONE)
1082 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1083 			s->inuse - s->object_size);
1084 
1085 	off = get_info_end(s);
1086 
1087 	if (s->flags & SLAB_STORE_USER)
1088 		off += 2 * sizeof(struct track);
1089 
1090 	if (slub_debug_orig_size(s))
1091 		off += sizeof(unsigned int);
1092 
1093 	off += kasan_metadata_size(s, false);
1094 
1095 	if (off != size_from_object(s))
1096 		/* Beginning of the filler is the free pointer */
1097 		print_section(KERN_ERR, "Padding  ", p + off,
1098 			      size_from_object(s) - off);
1099 
1100 	dump_stack();
1101 }
1102 
1103 static void object_err(struct kmem_cache *s, struct slab *slab,
1104 			u8 *object, char *reason)
1105 {
1106 	if (slab_add_kunit_errors())
1107 		return;
1108 
1109 	slab_bug(s, "%s", reason);
1110 	print_trailer(s, slab, object);
1111 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1112 }
1113 
1114 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1115 			       void **freelist, void *nextfree)
1116 {
1117 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1118 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1119 		object_err(s, slab, *freelist, "Freechain corrupt");
1120 		*freelist = NULL;
1121 		slab_fix(s, "Isolate corrupted freechain");
1122 		return true;
1123 	}
1124 
1125 	return false;
1126 }
1127 
1128 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1129 			const char *fmt, ...)
1130 {
1131 	va_list args;
1132 	char buf[100];
1133 
1134 	if (slab_add_kunit_errors())
1135 		return;
1136 
1137 	va_start(args, fmt);
1138 	vsnprintf(buf, sizeof(buf), fmt, args);
1139 	va_end(args);
1140 	slab_bug(s, "%s", buf);
1141 	print_slab_info(slab);
1142 	dump_stack();
1143 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1144 }
1145 
1146 static void init_object(struct kmem_cache *s, void *object, u8 val)
1147 {
1148 	u8 *p = kasan_reset_tag(object);
1149 	unsigned int poison_size = s->object_size;
1150 
1151 	if (s->flags & SLAB_RED_ZONE) {
1152 		/*
1153 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1154 		 * the shadow makes it possible to distinguish uninit-value
1155 		 * from use-after-free.
1156 		 */
1157 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1158 					  s->red_left_pad);
1159 
1160 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1161 			/*
1162 			 * Redzone the extra allocated space by kmalloc than
1163 			 * requested, and the poison size will be limited to
1164 			 * the original request size accordingly.
1165 			 */
1166 			poison_size = get_orig_size(s, object);
1167 		}
1168 	}
1169 
1170 	if (s->flags & __OBJECT_POISON) {
1171 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1172 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1173 	}
1174 
1175 	if (s->flags & SLAB_RED_ZONE)
1176 		memset_no_sanitize_memory(p + poison_size, val,
1177 					  s->inuse - poison_size);
1178 }
1179 
1180 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1181 						void *from, void *to)
1182 {
1183 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1184 	memset(from, data, to - from);
1185 }
1186 
1187 #ifdef CONFIG_KMSAN
1188 #define pad_check_attributes noinline __no_kmsan_checks
1189 #else
1190 #define pad_check_attributes
1191 #endif
1192 
1193 static pad_check_attributes int
1194 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1195 		       u8 *object, char *what,
1196 		       u8 *start, unsigned int value, unsigned int bytes)
1197 {
1198 	u8 *fault;
1199 	u8 *end;
1200 	u8 *addr = slab_address(slab);
1201 
1202 	metadata_access_enable();
1203 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1204 	metadata_access_disable();
1205 	if (!fault)
1206 		return 1;
1207 
1208 	end = start + bytes;
1209 	while (end > fault && end[-1] == value)
1210 		end--;
1211 
1212 	if (slab_add_kunit_errors())
1213 		goto skip_bug_print;
1214 
1215 	slab_bug(s, "%s overwritten", what);
1216 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1217 					fault, end - 1, fault - addr,
1218 					fault[0], value);
1219 
1220 skip_bug_print:
1221 	restore_bytes(s, what, value, fault, end);
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Object layout:
1227  *
1228  * object address
1229  * 	Bytes of the object to be managed.
1230  * 	If the freepointer may overlay the object then the free
1231  *	pointer is at the middle of the object.
1232  *
1233  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1234  * 	0xa5 (POISON_END)
1235  *
1236  * object + s->object_size
1237  * 	Padding to reach word boundary. This is also used for Redzoning.
1238  * 	Padding is extended by another word if Redzoning is enabled and
1239  * 	object_size == inuse.
1240  *
1241  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1242  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1243  *
1244  * object + s->inuse
1245  * 	Meta data starts here.
1246  *
1247  * 	A. Free pointer (if we cannot overwrite object on free)
1248  * 	B. Tracking data for SLAB_STORE_USER
1249  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1250  *	D. Padding to reach required alignment boundary or at minimum
1251  * 		one word if debugging is on to be able to detect writes
1252  * 		before the word boundary.
1253  *
1254  *	Padding is done using 0x5a (POISON_INUSE)
1255  *
1256  * object + s->size
1257  * 	Nothing is used beyond s->size.
1258  *
1259  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1260  * ignored. And therefore no slab options that rely on these boundaries
1261  * may be used with merged slabcaches.
1262  */
1263 
1264 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1265 {
1266 	unsigned long off = get_info_end(s);	/* The end of info */
1267 
1268 	if (s->flags & SLAB_STORE_USER) {
1269 		/* We also have user information there */
1270 		off += 2 * sizeof(struct track);
1271 
1272 		if (s->flags & SLAB_KMALLOC)
1273 			off += sizeof(unsigned int);
1274 	}
1275 
1276 	off += kasan_metadata_size(s, false);
1277 
1278 	if (size_from_object(s) == off)
1279 		return 1;
1280 
1281 	return check_bytes_and_report(s, slab, p, "Object padding",
1282 			p + off, POISON_INUSE, size_from_object(s) - off);
1283 }
1284 
1285 /* Check the pad bytes at the end of a slab page */
1286 static pad_check_attributes void
1287 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1288 {
1289 	u8 *start;
1290 	u8 *fault;
1291 	u8 *end;
1292 	u8 *pad;
1293 	int length;
1294 	int remainder;
1295 
1296 	if (!(s->flags & SLAB_POISON))
1297 		return;
1298 
1299 	start = slab_address(slab);
1300 	length = slab_size(slab);
1301 	end = start + length;
1302 	remainder = length % s->size;
1303 	if (!remainder)
1304 		return;
1305 
1306 	pad = end - remainder;
1307 	metadata_access_enable();
1308 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1309 	metadata_access_disable();
1310 	if (!fault)
1311 		return;
1312 	while (end > fault && end[-1] == POISON_INUSE)
1313 		end--;
1314 
1315 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1316 			fault, end - 1, fault - start);
1317 	print_section(KERN_ERR, "Padding ", pad, remainder);
1318 
1319 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1320 }
1321 
1322 static int check_object(struct kmem_cache *s, struct slab *slab,
1323 					void *object, u8 val)
1324 {
1325 	u8 *p = object;
1326 	u8 *endobject = object + s->object_size;
1327 	unsigned int orig_size, kasan_meta_size;
1328 	int ret = 1;
1329 
1330 	if (s->flags & SLAB_RED_ZONE) {
1331 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1332 			object - s->red_left_pad, val, s->red_left_pad))
1333 			ret = 0;
1334 
1335 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1336 			endobject, val, s->inuse - s->object_size))
1337 			ret = 0;
1338 
1339 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1340 			orig_size = get_orig_size(s, object);
1341 
1342 			if (s->object_size > orig_size  &&
1343 				!check_bytes_and_report(s, slab, object,
1344 					"kmalloc Redzone", p + orig_size,
1345 					val, s->object_size - orig_size)) {
1346 				ret = 0;
1347 			}
1348 		}
1349 	} else {
1350 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1351 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1352 				endobject, POISON_INUSE,
1353 				s->inuse - s->object_size))
1354 				ret = 0;
1355 		}
1356 	}
1357 
1358 	if (s->flags & SLAB_POISON) {
1359 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1360 			/*
1361 			 * KASAN can save its free meta data inside of the
1362 			 * object at offset 0. Thus, skip checking the part of
1363 			 * the redzone that overlaps with the meta data.
1364 			 */
1365 			kasan_meta_size = kasan_metadata_size(s, true);
1366 			if (kasan_meta_size < s->object_size - 1 &&
1367 			    !check_bytes_and_report(s, slab, p, "Poison",
1368 					p + kasan_meta_size, POISON_FREE,
1369 					s->object_size - kasan_meta_size - 1))
1370 				ret = 0;
1371 			if (kasan_meta_size < s->object_size &&
1372 			    !check_bytes_and_report(s, slab, p, "End Poison",
1373 					p + s->object_size - 1, POISON_END, 1))
1374 				ret = 0;
1375 		}
1376 		/*
1377 		 * check_pad_bytes cleans up on its own.
1378 		 */
1379 		if (!check_pad_bytes(s, slab, p))
1380 			ret = 0;
1381 	}
1382 
1383 	/*
1384 	 * Cannot check freepointer while object is allocated if
1385 	 * object and freepointer overlap.
1386 	 */
1387 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1388 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1389 		object_err(s, slab, p, "Freepointer corrupt");
1390 		/*
1391 		 * No choice but to zap it and thus lose the remainder
1392 		 * of the free objects in this slab. May cause
1393 		 * another error because the object count is now wrong.
1394 		 */
1395 		set_freepointer(s, p, NULL);
1396 		ret = 0;
1397 	}
1398 
1399 	if (!ret && !slab_in_kunit_test()) {
1400 		print_trailer(s, slab, object);
1401 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 static int check_slab(struct kmem_cache *s, struct slab *slab)
1408 {
1409 	int maxobj;
1410 
1411 	if (!folio_test_slab(slab_folio(slab))) {
1412 		slab_err(s, slab, "Not a valid slab page");
1413 		return 0;
1414 	}
1415 
1416 	maxobj = order_objects(slab_order(slab), s->size);
1417 	if (slab->objects > maxobj) {
1418 		slab_err(s, slab, "objects %u > max %u",
1419 			slab->objects, maxobj);
1420 		return 0;
1421 	}
1422 	if (slab->inuse > slab->objects) {
1423 		slab_err(s, slab, "inuse %u > max %u",
1424 			slab->inuse, slab->objects);
1425 		return 0;
1426 	}
1427 	/* Slab_pad_check fixes things up after itself */
1428 	slab_pad_check(s, slab);
1429 	return 1;
1430 }
1431 
1432 /*
1433  * Determine if a certain object in a slab is on the freelist. Must hold the
1434  * slab lock to guarantee that the chains are in a consistent state.
1435  */
1436 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1437 {
1438 	int nr = 0;
1439 	void *fp;
1440 	void *object = NULL;
1441 	int max_objects;
1442 
1443 	fp = slab->freelist;
1444 	while (fp && nr <= slab->objects) {
1445 		if (fp == search)
1446 			return 1;
1447 		if (!check_valid_pointer(s, slab, fp)) {
1448 			if (object) {
1449 				object_err(s, slab, object,
1450 					"Freechain corrupt");
1451 				set_freepointer(s, object, NULL);
1452 			} else {
1453 				slab_err(s, slab, "Freepointer corrupt");
1454 				slab->freelist = NULL;
1455 				slab->inuse = slab->objects;
1456 				slab_fix(s, "Freelist cleared");
1457 				return 0;
1458 			}
1459 			break;
1460 		}
1461 		object = fp;
1462 		fp = get_freepointer(s, object);
1463 		nr++;
1464 	}
1465 
1466 	max_objects = order_objects(slab_order(slab), s->size);
1467 	if (max_objects > MAX_OBJS_PER_PAGE)
1468 		max_objects = MAX_OBJS_PER_PAGE;
1469 
1470 	if (slab->objects != max_objects) {
1471 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1472 			 slab->objects, max_objects);
1473 		slab->objects = max_objects;
1474 		slab_fix(s, "Number of objects adjusted");
1475 	}
1476 	if (slab->inuse != slab->objects - nr) {
1477 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1478 			 slab->inuse, slab->objects - nr);
1479 		slab->inuse = slab->objects - nr;
1480 		slab_fix(s, "Object count adjusted");
1481 	}
1482 	return search == NULL;
1483 }
1484 
1485 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1486 								int alloc)
1487 {
1488 	if (s->flags & SLAB_TRACE) {
1489 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1490 			s->name,
1491 			alloc ? "alloc" : "free",
1492 			object, slab->inuse,
1493 			slab->freelist);
1494 
1495 		if (!alloc)
1496 			print_section(KERN_INFO, "Object ", (void *)object,
1497 					s->object_size);
1498 
1499 		dump_stack();
1500 	}
1501 }
1502 
1503 /*
1504  * Tracking of fully allocated slabs for debugging purposes.
1505  */
1506 static void add_full(struct kmem_cache *s,
1507 	struct kmem_cache_node *n, struct slab *slab)
1508 {
1509 	if (!(s->flags & SLAB_STORE_USER))
1510 		return;
1511 
1512 	lockdep_assert_held(&n->list_lock);
1513 	list_add(&slab->slab_list, &n->full);
1514 }
1515 
1516 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1517 {
1518 	if (!(s->flags & SLAB_STORE_USER))
1519 		return;
1520 
1521 	lockdep_assert_held(&n->list_lock);
1522 	list_del(&slab->slab_list);
1523 }
1524 
1525 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1526 {
1527 	return atomic_long_read(&n->nr_slabs);
1528 }
1529 
1530 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1531 {
1532 	struct kmem_cache_node *n = get_node(s, node);
1533 
1534 	atomic_long_inc(&n->nr_slabs);
1535 	atomic_long_add(objects, &n->total_objects);
1536 }
1537 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1538 {
1539 	struct kmem_cache_node *n = get_node(s, node);
1540 
1541 	atomic_long_dec(&n->nr_slabs);
1542 	atomic_long_sub(objects, &n->total_objects);
1543 }
1544 
1545 /* Object debug checks for alloc/free paths */
1546 static void setup_object_debug(struct kmem_cache *s, void *object)
1547 {
1548 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1549 		return;
1550 
1551 	init_object(s, object, SLUB_RED_INACTIVE);
1552 	init_tracking(s, object);
1553 }
1554 
1555 static
1556 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1557 {
1558 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1559 		return;
1560 
1561 	metadata_access_enable();
1562 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1563 	metadata_access_disable();
1564 }
1565 
1566 static inline int alloc_consistency_checks(struct kmem_cache *s,
1567 					struct slab *slab, void *object)
1568 {
1569 	if (!check_slab(s, slab))
1570 		return 0;
1571 
1572 	if (!check_valid_pointer(s, slab, object)) {
1573 		object_err(s, slab, object, "Freelist Pointer check fails");
1574 		return 0;
1575 	}
1576 
1577 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1578 		return 0;
1579 
1580 	return 1;
1581 }
1582 
1583 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1584 			struct slab *slab, void *object, int orig_size)
1585 {
1586 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1587 		if (!alloc_consistency_checks(s, slab, object))
1588 			goto bad;
1589 	}
1590 
1591 	/* Success. Perform special debug activities for allocs */
1592 	trace(s, slab, object, 1);
1593 	set_orig_size(s, object, orig_size);
1594 	init_object(s, object, SLUB_RED_ACTIVE);
1595 	return true;
1596 
1597 bad:
1598 	if (folio_test_slab(slab_folio(slab))) {
1599 		/*
1600 		 * If this is a slab page then lets do the best we can
1601 		 * to avoid issues in the future. Marking all objects
1602 		 * as used avoids touching the remaining objects.
1603 		 */
1604 		slab_fix(s, "Marking all objects used");
1605 		slab->inuse = slab->objects;
1606 		slab->freelist = NULL;
1607 	}
1608 	return false;
1609 }
1610 
1611 static inline int free_consistency_checks(struct kmem_cache *s,
1612 		struct slab *slab, void *object, unsigned long addr)
1613 {
1614 	if (!check_valid_pointer(s, slab, object)) {
1615 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1616 		return 0;
1617 	}
1618 
1619 	if (on_freelist(s, slab, object)) {
1620 		object_err(s, slab, object, "Object already free");
1621 		return 0;
1622 	}
1623 
1624 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1625 		return 0;
1626 
1627 	if (unlikely(s != slab->slab_cache)) {
1628 		if (!folio_test_slab(slab_folio(slab))) {
1629 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1630 				 object);
1631 		} else if (!slab->slab_cache) {
1632 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1633 			       object);
1634 			dump_stack();
1635 		} else
1636 			object_err(s, slab, object,
1637 					"page slab pointer corrupt.");
1638 		return 0;
1639 	}
1640 	return 1;
1641 }
1642 
1643 /*
1644  * Parse a block of slab_debug options. Blocks are delimited by ';'
1645  *
1646  * @str:    start of block
1647  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1648  * @slabs:  return start of list of slabs, or NULL when there's no list
1649  * @init:   assume this is initial parsing and not per-kmem-create parsing
1650  *
1651  * returns the start of next block if there's any, or NULL
1652  */
1653 static char *
1654 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1655 {
1656 	bool higher_order_disable = false;
1657 
1658 	/* Skip any completely empty blocks */
1659 	while (*str && *str == ';')
1660 		str++;
1661 
1662 	if (*str == ',') {
1663 		/*
1664 		 * No options but restriction on slabs. This means full
1665 		 * debugging for slabs matching a pattern.
1666 		 */
1667 		*flags = DEBUG_DEFAULT_FLAGS;
1668 		goto check_slabs;
1669 	}
1670 	*flags = 0;
1671 
1672 	/* Determine which debug features should be switched on */
1673 	for (; *str && *str != ',' && *str != ';'; str++) {
1674 		switch (tolower(*str)) {
1675 		case '-':
1676 			*flags = 0;
1677 			break;
1678 		case 'f':
1679 			*flags |= SLAB_CONSISTENCY_CHECKS;
1680 			break;
1681 		case 'z':
1682 			*flags |= SLAB_RED_ZONE;
1683 			break;
1684 		case 'p':
1685 			*flags |= SLAB_POISON;
1686 			break;
1687 		case 'u':
1688 			*flags |= SLAB_STORE_USER;
1689 			break;
1690 		case 't':
1691 			*flags |= SLAB_TRACE;
1692 			break;
1693 		case 'a':
1694 			*flags |= SLAB_FAILSLAB;
1695 			break;
1696 		case 'o':
1697 			/*
1698 			 * Avoid enabling debugging on caches if its minimum
1699 			 * order would increase as a result.
1700 			 */
1701 			higher_order_disable = true;
1702 			break;
1703 		default:
1704 			if (init)
1705 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1706 		}
1707 	}
1708 check_slabs:
1709 	if (*str == ',')
1710 		*slabs = ++str;
1711 	else
1712 		*slabs = NULL;
1713 
1714 	/* Skip over the slab list */
1715 	while (*str && *str != ';')
1716 		str++;
1717 
1718 	/* Skip any completely empty blocks */
1719 	while (*str && *str == ';')
1720 		str++;
1721 
1722 	if (init && higher_order_disable)
1723 		disable_higher_order_debug = 1;
1724 
1725 	if (*str)
1726 		return str;
1727 	else
1728 		return NULL;
1729 }
1730 
1731 static int __init setup_slub_debug(char *str)
1732 {
1733 	slab_flags_t flags;
1734 	slab_flags_t global_flags;
1735 	char *saved_str;
1736 	char *slab_list;
1737 	bool global_slub_debug_changed = false;
1738 	bool slab_list_specified = false;
1739 
1740 	global_flags = DEBUG_DEFAULT_FLAGS;
1741 	if (*str++ != '=' || !*str)
1742 		/*
1743 		 * No options specified. Switch on full debugging.
1744 		 */
1745 		goto out;
1746 
1747 	saved_str = str;
1748 	while (str) {
1749 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1750 
1751 		if (!slab_list) {
1752 			global_flags = flags;
1753 			global_slub_debug_changed = true;
1754 		} else {
1755 			slab_list_specified = true;
1756 			if (flags & SLAB_STORE_USER)
1757 				stack_depot_request_early_init();
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * For backwards compatibility, a single list of flags with list of
1763 	 * slabs means debugging is only changed for those slabs, so the global
1764 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1765 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1766 	 * long as there is no option specifying flags without a slab list.
1767 	 */
1768 	if (slab_list_specified) {
1769 		if (!global_slub_debug_changed)
1770 			global_flags = slub_debug;
1771 		slub_debug_string = saved_str;
1772 	}
1773 out:
1774 	slub_debug = global_flags;
1775 	if (slub_debug & SLAB_STORE_USER)
1776 		stack_depot_request_early_init();
1777 	if (slub_debug != 0 || slub_debug_string)
1778 		static_branch_enable(&slub_debug_enabled);
1779 	else
1780 		static_branch_disable(&slub_debug_enabled);
1781 	if ((static_branch_unlikely(&init_on_alloc) ||
1782 	     static_branch_unlikely(&init_on_free)) &&
1783 	    (slub_debug & SLAB_POISON))
1784 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1785 	return 1;
1786 }
1787 
1788 __setup("slab_debug", setup_slub_debug);
1789 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1790 
1791 /*
1792  * kmem_cache_flags - apply debugging options to the cache
1793  * @flags:		flags to set
1794  * @name:		name of the cache
1795  *
1796  * Debug option(s) are applied to @flags. In addition to the debug
1797  * option(s), if a slab name (or multiple) is specified i.e.
1798  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1799  * then only the select slabs will receive the debug option(s).
1800  */
1801 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1802 {
1803 	char *iter;
1804 	size_t len;
1805 	char *next_block;
1806 	slab_flags_t block_flags;
1807 	slab_flags_t slub_debug_local = slub_debug;
1808 
1809 	if (flags & SLAB_NO_USER_FLAGS)
1810 		return flags;
1811 
1812 	/*
1813 	 * If the slab cache is for debugging (e.g. kmemleak) then
1814 	 * don't store user (stack trace) information by default,
1815 	 * but let the user enable it via the command line below.
1816 	 */
1817 	if (flags & SLAB_NOLEAKTRACE)
1818 		slub_debug_local &= ~SLAB_STORE_USER;
1819 
1820 	len = strlen(name);
1821 	next_block = slub_debug_string;
1822 	/* Go through all blocks of debug options, see if any matches our slab's name */
1823 	while (next_block) {
1824 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1825 		if (!iter)
1826 			continue;
1827 		/* Found a block that has a slab list, search it */
1828 		while (*iter) {
1829 			char *end, *glob;
1830 			size_t cmplen;
1831 
1832 			end = strchrnul(iter, ',');
1833 			if (next_block && next_block < end)
1834 				end = next_block - 1;
1835 
1836 			glob = strnchr(iter, end - iter, '*');
1837 			if (glob)
1838 				cmplen = glob - iter;
1839 			else
1840 				cmplen = max_t(size_t, len, (end - iter));
1841 
1842 			if (!strncmp(name, iter, cmplen)) {
1843 				flags |= block_flags;
1844 				return flags;
1845 			}
1846 
1847 			if (!*end || *end == ';')
1848 				break;
1849 			iter = end + 1;
1850 		}
1851 	}
1852 
1853 	return flags | slub_debug_local;
1854 }
1855 #else /* !CONFIG_SLUB_DEBUG */
1856 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1857 static inline
1858 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1859 
1860 static inline bool alloc_debug_processing(struct kmem_cache *s,
1861 	struct slab *slab, void *object, int orig_size) { return true; }
1862 
1863 static inline bool free_debug_processing(struct kmem_cache *s,
1864 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1865 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1866 
1867 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1868 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1869 			void *object, u8 val) { return 1; }
1870 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1871 static inline void set_track(struct kmem_cache *s, void *object,
1872 			     enum track_item alloc, unsigned long addr) {}
1873 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1874 					struct slab *slab) {}
1875 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1876 					struct slab *slab) {}
1877 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1878 {
1879 	return flags;
1880 }
1881 #define slub_debug 0
1882 
1883 #define disable_higher_order_debug 0
1884 
1885 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1886 							{ return 0; }
1887 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1888 							int objects) {}
1889 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1890 							int objects) {}
1891 
1892 #ifndef CONFIG_SLUB_TINY
1893 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1894 			       void **freelist, void *nextfree)
1895 {
1896 	return false;
1897 }
1898 #endif
1899 #endif /* CONFIG_SLUB_DEBUG */
1900 
1901 #ifdef CONFIG_SLAB_OBJ_EXT
1902 
1903 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1904 
1905 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1906 {
1907 	struct slabobj_ext *slab_exts;
1908 	struct slab *obj_exts_slab;
1909 
1910 	obj_exts_slab = virt_to_slab(obj_exts);
1911 	slab_exts = slab_obj_exts(obj_exts_slab);
1912 	if (slab_exts) {
1913 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1914 						 obj_exts_slab, obj_exts);
1915 		/* codetag should be NULL */
1916 		WARN_ON(slab_exts[offs].ref.ct);
1917 		set_codetag_empty(&slab_exts[offs].ref);
1918 	}
1919 }
1920 
1921 static inline void mark_failed_objexts_alloc(struct slab *slab)
1922 {
1923 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1924 }
1925 
1926 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1927 			struct slabobj_ext *vec, unsigned int objects)
1928 {
1929 	/*
1930 	 * If vector previously failed to allocate then we have live
1931 	 * objects with no tag reference. Mark all references in this
1932 	 * vector as empty to avoid warnings later on.
1933 	 */
1934 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1935 		unsigned int i;
1936 
1937 		for (i = 0; i < objects; i++)
1938 			set_codetag_empty(&vec[i].ref);
1939 	}
1940 }
1941 
1942 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1943 
1944 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1945 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1946 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1947 			struct slabobj_ext *vec, unsigned int objects) {}
1948 
1949 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1950 
1951 /*
1952  * The allocated objcg pointers array is not accounted directly.
1953  * Moreover, it should not come from DMA buffer and is not readily
1954  * reclaimable. So those GFP bits should be masked off.
1955  */
1956 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1957 				__GFP_ACCOUNT | __GFP_NOFAIL)
1958 
1959 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1960 		        gfp_t gfp, bool new_slab)
1961 {
1962 	unsigned int objects = objs_per_slab(s, slab);
1963 	unsigned long new_exts;
1964 	unsigned long old_exts;
1965 	struct slabobj_ext *vec;
1966 
1967 	gfp &= ~OBJCGS_CLEAR_MASK;
1968 	/* Prevent recursive extension vector allocation */
1969 	gfp |= __GFP_NO_OBJ_EXT;
1970 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1971 			   slab_nid(slab));
1972 	if (!vec) {
1973 		/* Mark vectors which failed to allocate */
1974 		if (new_slab)
1975 			mark_failed_objexts_alloc(slab);
1976 
1977 		return -ENOMEM;
1978 	}
1979 
1980 	new_exts = (unsigned long)vec;
1981 #ifdef CONFIG_MEMCG
1982 	new_exts |= MEMCG_DATA_OBJEXTS;
1983 #endif
1984 	old_exts = READ_ONCE(slab->obj_exts);
1985 	handle_failed_objexts_alloc(old_exts, vec, objects);
1986 	if (new_slab) {
1987 		/*
1988 		 * If the slab is brand new and nobody can yet access its
1989 		 * obj_exts, no synchronization is required and obj_exts can
1990 		 * be simply assigned.
1991 		 */
1992 		slab->obj_exts = new_exts;
1993 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1994 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1995 		/*
1996 		 * If the slab is already in use, somebody can allocate and
1997 		 * assign slabobj_exts in parallel. In this case the existing
1998 		 * objcg vector should be reused.
1999 		 */
2000 		mark_objexts_empty(vec);
2001 		kfree(vec);
2002 		return 0;
2003 	}
2004 
2005 	kmemleak_not_leak(vec);
2006 	return 0;
2007 }
2008 
2009 static inline void free_slab_obj_exts(struct slab *slab)
2010 {
2011 	struct slabobj_ext *obj_exts;
2012 
2013 	obj_exts = slab_obj_exts(slab);
2014 	if (!obj_exts)
2015 		return;
2016 
2017 	/*
2018 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2019 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2020 	 * warning if slab has extensions but the extension of an object is
2021 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2022 	 * the extension for obj_exts is expected to be NULL.
2023 	 */
2024 	mark_objexts_empty(obj_exts);
2025 	kfree(obj_exts);
2026 	slab->obj_exts = 0;
2027 }
2028 
2029 static inline bool need_slab_obj_ext(void)
2030 {
2031 	if (mem_alloc_profiling_enabled())
2032 		return true;
2033 
2034 	/*
2035 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2036 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2037 	 */
2038 	return false;
2039 }
2040 
2041 #else /* CONFIG_SLAB_OBJ_EXT */
2042 
2043 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2044 			       gfp_t gfp, bool new_slab)
2045 {
2046 	return 0;
2047 }
2048 
2049 static inline void free_slab_obj_exts(struct slab *slab)
2050 {
2051 }
2052 
2053 static inline bool need_slab_obj_ext(void)
2054 {
2055 	return false;
2056 }
2057 
2058 #endif /* CONFIG_SLAB_OBJ_EXT */
2059 
2060 #ifdef CONFIG_MEM_ALLOC_PROFILING
2061 
2062 static inline struct slabobj_ext *
2063 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2064 {
2065 	struct slab *slab;
2066 
2067 	if (!p)
2068 		return NULL;
2069 
2070 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2071 		return NULL;
2072 
2073 	if (flags & __GFP_NO_OBJ_EXT)
2074 		return NULL;
2075 
2076 	slab = virt_to_slab(p);
2077 	if (!slab_obj_exts(slab) &&
2078 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2079 		 "%s, %s: Failed to create slab extension vector!\n",
2080 		 __func__, s->name))
2081 		return NULL;
2082 
2083 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2084 }
2085 
2086 static inline void
2087 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2088 {
2089 	if (need_slab_obj_ext()) {
2090 		struct slabobj_ext *obj_exts;
2091 
2092 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2093 		/*
2094 		 * Currently obj_exts is used only for allocation profiling.
2095 		 * If other users appear then mem_alloc_profiling_enabled()
2096 		 * check should be added before alloc_tag_add().
2097 		 */
2098 		if (likely(obj_exts))
2099 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2100 	}
2101 }
2102 
2103 static inline void
2104 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2105 			     int objects)
2106 {
2107 	struct slabobj_ext *obj_exts;
2108 	int i;
2109 
2110 	if (!mem_alloc_profiling_enabled())
2111 		return;
2112 
2113 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2114 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2115 		return;
2116 
2117 	obj_exts = slab_obj_exts(slab);
2118 	if (!obj_exts)
2119 		return;
2120 
2121 	for (i = 0; i < objects; i++) {
2122 		unsigned int off = obj_to_index(s, slab, p[i]);
2123 
2124 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2125 	}
2126 }
2127 
2128 #else /* CONFIG_MEM_ALLOC_PROFILING */
2129 
2130 static inline void
2131 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2132 {
2133 }
2134 
2135 static inline void
2136 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2137 			     int objects)
2138 {
2139 }
2140 
2141 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2142 
2143 
2144 #ifdef CONFIG_MEMCG
2145 
2146 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2147 
2148 static __fastpath_inline
2149 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2150 				gfp_t flags, size_t size, void **p)
2151 {
2152 	if (likely(!memcg_kmem_online()))
2153 		return true;
2154 
2155 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2156 		return true;
2157 
2158 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2159 		return true;
2160 
2161 	if (likely(size == 1)) {
2162 		memcg_alloc_abort_single(s, *p);
2163 		*p = NULL;
2164 	} else {
2165 		kmem_cache_free_bulk(s, size, p);
2166 	}
2167 
2168 	return false;
2169 }
2170 
2171 static __fastpath_inline
2172 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2173 			  int objects)
2174 {
2175 	struct slabobj_ext *obj_exts;
2176 
2177 	if (!memcg_kmem_online())
2178 		return;
2179 
2180 	obj_exts = slab_obj_exts(slab);
2181 	if (likely(!obj_exts))
2182 		return;
2183 
2184 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2185 }
2186 #else /* CONFIG_MEMCG */
2187 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2188 					      struct list_lru *lru,
2189 					      gfp_t flags, size_t size,
2190 					      void **p)
2191 {
2192 	return true;
2193 }
2194 
2195 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2196 					void **p, int objects)
2197 {
2198 }
2199 #endif /* CONFIG_MEMCG */
2200 
2201 /*
2202  * Hooks for other subsystems that check memory allocations. In a typical
2203  * production configuration these hooks all should produce no code at all.
2204  *
2205  * Returns true if freeing of the object can proceed, false if its reuse
2206  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2207  */
2208 static __always_inline
2209 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2210 {
2211 	kmemleak_free_recursive(x, s->flags);
2212 	kmsan_slab_free(s, x);
2213 
2214 	debug_check_no_locks_freed(x, s->object_size);
2215 
2216 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2217 		debug_check_no_obj_freed(x, s->object_size);
2218 
2219 	/* Use KCSAN to help debug racy use-after-free. */
2220 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2221 		__kcsan_check_access(x, s->object_size,
2222 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2223 
2224 	if (kfence_free(x))
2225 		return false;
2226 
2227 	/*
2228 	 * As memory initialization might be integrated into KASAN,
2229 	 * kasan_slab_free and initialization memset's must be
2230 	 * kept together to avoid discrepancies in behavior.
2231 	 *
2232 	 * The initialization memset's clear the object and the metadata,
2233 	 * but don't touch the SLAB redzone.
2234 	 *
2235 	 * The object's freepointer is also avoided if stored outside the
2236 	 * object.
2237 	 */
2238 	if (unlikely(init)) {
2239 		int rsize;
2240 		unsigned int inuse;
2241 
2242 		inuse = get_info_end(s);
2243 		if (!kasan_has_integrated_init())
2244 			memset(kasan_reset_tag(x), 0, s->object_size);
2245 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2246 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2247 		       s->size - inuse - rsize);
2248 	}
2249 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2250 	return !kasan_slab_free(s, x, init);
2251 }
2252 
2253 static __fastpath_inline
2254 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2255 			     int *cnt)
2256 {
2257 
2258 	void *object;
2259 	void *next = *head;
2260 	void *old_tail = *tail;
2261 	bool init;
2262 
2263 	if (is_kfence_address(next)) {
2264 		slab_free_hook(s, next, false);
2265 		return false;
2266 	}
2267 
2268 	/* Head and tail of the reconstructed freelist */
2269 	*head = NULL;
2270 	*tail = NULL;
2271 
2272 	init = slab_want_init_on_free(s);
2273 
2274 	do {
2275 		object = next;
2276 		next = get_freepointer(s, object);
2277 
2278 		/* If object's reuse doesn't have to be delayed */
2279 		if (likely(slab_free_hook(s, object, init))) {
2280 			/* Move object to the new freelist */
2281 			set_freepointer(s, object, *head);
2282 			*head = object;
2283 			if (!*tail)
2284 				*tail = object;
2285 		} else {
2286 			/*
2287 			 * Adjust the reconstructed freelist depth
2288 			 * accordingly if object's reuse is delayed.
2289 			 */
2290 			--(*cnt);
2291 		}
2292 	} while (object != old_tail);
2293 
2294 	return *head != NULL;
2295 }
2296 
2297 static void *setup_object(struct kmem_cache *s, void *object)
2298 {
2299 	setup_object_debug(s, object);
2300 	object = kasan_init_slab_obj(s, object);
2301 	if (unlikely(s->ctor)) {
2302 		kasan_unpoison_new_object(s, object);
2303 		s->ctor(object);
2304 		kasan_poison_new_object(s, object);
2305 	}
2306 	return object;
2307 }
2308 
2309 /*
2310  * Slab allocation and freeing
2311  */
2312 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2313 		struct kmem_cache_order_objects oo)
2314 {
2315 	struct folio *folio;
2316 	struct slab *slab;
2317 	unsigned int order = oo_order(oo);
2318 
2319 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2320 	if (!folio)
2321 		return NULL;
2322 
2323 	slab = folio_slab(folio);
2324 	__folio_set_slab(folio);
2325 	/* Make the flag visible before any changes to folio->mapping */
2326 	smp_wmb();
2327 	if (folio_is_pfmemalloc(folio))
2328 		slab_set_pfmemalloc(slab);
2329 
2330 	return slab;
2331 }
2332 
2333 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2334 /* Pre-initialize the random sequence cache */
2335 static int init_cache_random_seq(struct kmem_cache *s)
2336 {
2337 	unsigned int count = oo_objects(s->oo);
2338 	int err;
2339 
2340 	/* Bailout if already initialised */
2341 	if (s->random_seq)
2342 		return 0;
2343 
2344 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2345 	if (err) {
2346 		pr_err("SLUB: Unable to initialize free list for %s\n",
2347 			s->name);
2348 		return err;
2349 	}
2350 
2351 	/* Transform to an offset on the set of pages */
2352 	if (s->random_seq) {
2353 		unsigned int i;
2354 
2355 		for (i = 0; i < count; i++)
2356 			s->random_seq[i] *= s->size;
2357 	}
2358 	return 0;
2359 }
2360 
2361 /* Initialize each random sequence freelist per cache */
2362 static void __init init_freelist_randomization(void)
2363 {
2364 	struct kmem_cache *s;
2365 
2366 	mutex_lock(&slab_mutex);
2367 
2368 	list_for_each_entry(s, &slab_caches, list)
2369 		init_cache_random_seq(s);
2370 
2371 	mutex_unlock(&slab_mutex);
2372 }
2373 
2374 /* Get the next entry on the pre-computed freelist randomized */
2375 static void *next_freelist_entry(struct kmem_cache *s,
2376 				unsigned long *pos, void *start,
2377 				unsigned long page_limit,
2378 				unsigned long freelist_count)
2379 {
2380 	unsigned int idx;
2381 
2382 	/*
2383 	 * If the target page allocation failed, the number of objects on the
2384 	 * page might be smaller than the usual size defined by the cache.
2385 	 */
2386 	do {
2387 		idx = s->random_seq[*pos];
2388 		*pos += 1;
2389 		if (*pos >= freelist_count)
2390 			*pos = 0;
2391 	} while (unlikely(idx >= page_limit));
2392 
2393 	return (char *)start + idx;
2394 }
2395 
2396 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2397 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2398 {
2399 	void *start;
2400 	void *cur;
2401 	void *next;
2402 	unsigned long idx, pos, page_limit, freelist_count;
2403 
2404 	if (slab->objects < 2 || !s->random_seq)
2405 		return false;
2406 
2407 	freelist_count = oo_objects(s->oo);
2408 	pos = get_random_u32_below(freelist_count);
2409 
2410 	page_limit = slab->objects * s->size;
2411 	start = fixup_red_left(s, slab_address(slab));
2412 
2413 	/* First entry is used as the base of the freelist */
2414 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2415 	cur = setup_object(s, cur);
2416 	slab->freelist = cur;
2417 
2418 	for (idx = 1; idx < slab->objects; idx++) {
2419 		next = next_freelist_entry(s, &pos, start, page_limit,
2420 			freelist_count);
2421 		next = setup_object(s, next);
2422 		set_freepointer(s, cur, next);
2423 		cur = next;
2424 	}
2425 	set_freepointer(s, cur, NULL);
2426 
2427 	return true;
2428 }
2429 #else
2430 static inline int init_cache_random_seq(struct kmem_cache *s)
2431 {
2432 	return 0;
2433 }
2434 static inline void init_freelist_randomization(void) { }
2435 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2436 {
2437 	return false;
2438 }
2439 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2440 
2441 static __always_inline void account_slab(struct slab *slab, int order,
2442 					 struct kmem_cache *s, gfp_t gfp)
2443 {
2444 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2445 		alloc_slab_obj_exts(slab, s, gfp, true);
2446 
2447 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2448 			    PAGE_SIZE << order);
2449 }
2450 
2451 static __always_inline void unaccount_slab(struct slab *slab, int order,
2452 					   struct kmem_cache *s)
2453 {
2454 	if (memcg_kmem_online() || need_slab_obj_ext())
2455 		free_slab_obj_exts(slab);
2456 
2457 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2458 			    -(PAGE_SIZE << order));
2459 }
2460 
2461 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2462 {
2463 	struct slab *slab;
2464 	struct kmem_cache_order_objects oo = s->oo;
2465 	gfp_t alloc_gfp;
2466 	void *start, *p, *next;
2467 	int idx;
2468 	bool shuffle;
2469 
2470 	flags &= gfp_allowed_mask;
2471 
2472 	flags |= s->allocflags;
2473 
2474 	/*
2475 	 * Let the initial higher-order allocation fail under memory pressure
2476 	 * so we fall-back to the minimum order allocation.
2477 	 */
2478 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2479 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2480 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2481 
2482 	slab = alloc_slab_page(alloc_gfp, node, oo);
2483 	if (unlikely(!slab)) {
2484 		oo = s->min;
2485 		alloc_gfp = flags;
2486 		/*
2487 		 * Allocation may have failed due to fragmentation.
2488 		 * Try a lower order alloc if possible
2489 		 */
2490 		slab = alloc_slab_page(alloc_gfp, node, oo);
2491 		if (unlikely(!slab))
2492 			return NULL;
2493 		stat(s, ORDER_FALLBACK);
2494 	}
2495 
2496 	slab->objects = oo_objects(oo);
2497 	slab->inuse = 0;
2498 	slab->frozen = 0;
2499 
2500 	account_slab(slab, oo_order(oo), s, flags);
2501 
2502 	slab->slab_cache = s;
2503 
2504 	kasan_poison_slab(slab);
2505 
2506 	start = slab_address(slab);
2507 
2508 	setup_slab_debug(s, slab, start);
2509 
2510 	shuffle = shuffle_freelist(s, slab);
2511 
2512 	if (!shuffle) {
2513 		start = fixup_red_left(s, start);
2514 		start = setup_object(s, start);
2515 		slab->freelist = start;
2516 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2517 			next = p + s->size;
2518 			next = setup_object(s, next);
2519 			set_freepointer(s, p, next);
2520 			p = next;
2521 		}
2522 		set_freepointer(s, p, NULL);
2523 	}
2524 
2525 	return slab;
2526 }
2527 
2528 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2529 {
2530 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2531 		flags = kmalloc_fix_flags(flags);
2532 
2533 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2534 
2535 	return allocate_slab(s,
2536 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2537 }
2538 
2539 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2540 {
2541 	struct folio *folio = slab_folio(slab);
2542 	int order = folio_order(folio);
2543 	int pages = 1 << order;
2544 
2545 	__slab_clear_pfmemalloc(slab);
2546 	folio->mapping = NULL;
2547 	/* Make the mapping reset visible before clearing the flag */
2548 	smp_wmb();
2549 	__folio_clear_slab(folio);
2550 	mm_account_reclaimed_pages(pages);
2551 	unaccount_slab(slab, order, s);
2552 	__free_pages(&folio->page, order);
2553 }
2554 
2555 static void rcu_free_slab(struct rcu_head *h)
2556 {
2557 	struct slab *slab = container_of(h, struct slab, rcu_head);
2558 
2559 	__free_slab(slab->slab_cache, slab);
2560 }
2561 
2562 static void free_slab(struct kmem_cache *s, struct slab *slab)
2563 {
2564 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2565 		void *p;
2566 
2567 		slab_pad_check(s, slab);
2568 		for_each_object(p, s, slab_address(slab), slab->objects)
2569 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2570 	}
2571 
2572 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2573 		call_rcu(&slab->rcu_head, rcu_free_slab);
2574 	else
2575 		__free_slab(s, slab);
2576 }
2577 
2578 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2579 {
2580 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2581 	free_slab(s, slab);
2582 }
2583 
2584 /*
2585  * SLUB reuses PG_workingset bit to keep track of whether it's on
2586  * the per-node partial list.
2587  */
2588 static inline bool slab_test_node_partial(const struct slab *slab)
2589 {
2590 	return folio_test_workingset(slab_folio(slab));
2591 }
2592 
2593 static inline void slab_set_node_partial(struct slab *slab)
2594 {
2595 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2596 }
2597 
2598 static inline void slab_clear_node_partial(struct slab *slab)
2599 {
2600 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2601 }
2602 
2603 /*
2604  * Management of partially allocated slabs.
2605  */
2606 static inline void
2607 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2608 {
2609 	n->nr_partial++;
2610 	if (tail == DEACTIVATE_TO_TAIL)
2611 		list_add_tail(&slab->slab_list, &n->partial);
2612 	else
2613 		list_add(&slab->slab_list, &n->partial);
2614 	slab_set_node_partial(slab);
2615 }
2616 
2617 static inline void add_partial(struct kmem_cache_node *n,
2618 				struct slab *slab, int tail)
2619 {
2620 	lockdep_assert_held(&n->list_lock);
2621 	__add_partial(n, slab, tail);
2622 }
2623 
2624 static inline void remove_partial(struct kmem_cache_node *n,
2625 					struct slab *slab)
2626 {
2627 	lockdep_assert_held(&n->list_lock);
2628 	list_del(&slab->slab_list);
2629 	slab_clear_node_partial(slab);
2630 	n->nr_partial--;
2631 }
2632 
2633 /*
2634  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2635  * slab from the n->partial list. Remove only a single object from the slab, do
2636  * the alloc_debug_processing() checks and leave the slab on the list, or move
2637  * it to full list if it was the last free object.
2638  */
2639 static void *alloc_single_from_partial(struct kmem_cache *s,
2640 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2641 {
2642 	void *object;
2643 
2644 	lockdep_assert_held(&n->list_lock);
2645 
2646 	object = slab->freelist;
2647 	slab->freelist = get_freepointer(s, object);
2648 	slab->inuse++;
2649 
2650 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2651 		remove_partial(n, slab);
2652 		return NULL;
2653 	}
2654 
2655 	if (slab->inuse == slab->objects) {
2656 		remove_partial(n, slab);
2657 		add_full(s, n, slab);
2658 	}
2659 
2660 	return object;
2661 }
2662 
2663 /*
2664  * Called only for kmem_cache_debug() caches to allocate from a freshly
2665  * allocated slab. Allocate a single object instead of whole freelist
2666  * and put the slab to the partial (or full) list.
2667  */
2668 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2669 					struct slab *slab, int orig_size)
2670 {
2671 	int nid = slab_nid(slab);
2672 	struct kmem_cache_node *n = get_node(s, nid);
2673 	unsigned long flags;
2674 	void *object;
2675 
2676 
2677 	object = slab->freelist;
2678 	slab->freelist = get_freepointer(s, object);
2679 	slab->inuse = 1;
2680 
2681 	if (!alloc_debug_processing(s, slab, object, orig_size))
2682 		/*
2683 		 * It's not really expected that this would fail on a
2684 		 * freshly allocated slab, but a concurrent memory
2685 		 * corruption in theory could cause that.
2686 		 */
2687 		return NULL;
2688 
2689 	spin_lock_irqsave(&n->list_lock, flags);
2690 
2691 	if (slab->inuse == slab->objects)
2692 		add_full(s, n, slab);
2693 	else
2694 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2695 
2696 	inc_slabs_node(s, nid, slab->objects);
2697 	spin_unlock_irqrestore(&n->list_lock, flags);
2698 
2699 	return object;
2700 }
2701 
2702 #ifdef CONFIG_SLUB_CPU_PARTIAL
2703 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2704 #else
2705 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2706 				   int drain) { }
2707 #endif
2708 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2709 
2710 /*
2711  * Try to allocate a partial slab from a specific node.
2712  */
2713 static struct slab *get_partial_node(struct kmem_cache *s,
2714 				     struct kmem_cache_node *n,
2715 				     struct partial_context *pc)
2716 {
2717 	struct slab *slab, *slab2, *partial = NULL;
2718 	unsigned long flags;
2719 	unsigned int partial_slabs = 0;
2720 
2721 	/*
2722 	 * Racy check. If we mistakenly see no partial slabs then we
2723 	 * just allocate an empty slab. If we mistakenly try to get a
2724 	 * partial slab and there is none available then get_partial()
2725 	 * will return NULL.
2726 	 */
2727 	if (!n || !n->nr_partial)
2728 		return NULL;
2729 
2730 	spin_lock_irqsave(&n->list_lock, flags);
2731 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2732 		if (!pfmemalloc_match(slab, pc->flags))
2733 			continue;
2734 
2735 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2736 			void *object = alloc_single_from_partial(s, n, slab,
2737 							pc->orig_size);
2738 			if (object) {
2739 				partial = slab;
2740 				pc->object = object;
2741 				break;
2742 			}
2743 			continue;
2744 		}
2745 
2746 		remove_partial(n, slab);
2747 
2748 		if (!partial) {
2749 			partial = slab;
2750 			stat(s, ALLOC_FROM_PARTIAL);
2751 
2752 			if ((slub_get_cpu_partial(s) == 0)) {
2753 				break;
2754 			}
2755 		} else {
2756 			put_cpu_partial(s, slab, 0);
2757 			stat(s, CPU_PARTIAL_NODE);
2758 
2759 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2760 				break;
2761 			}
2762 		}
2763 	}
2764 	spin_unlock_irqrestore(&n->list_lock, flags);
2765 	return partial;
2766 }
2767 
2768 /*
2769  * Get a slab from somewhere. Search in increasing NUMA distances.
2770  */
2771 static struct slab *get_any_partial(struct kmem_cache *s,
2772 				    struct partial_context *pc)
2773 {
2774 #ifdef CONFIG_NUMA
2775 	struct zonelist *zonelist;
2776 	struct zoneref *z;
2777 	struct zone *zone;
2778 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2779 	struct slab *slab;
2780 	unsigned int cpuset_mems_cookie;
2781 
2782 	/*
2783 	 * The defrag ratio allows a configuration of the tradeoffs between
2784 	 * inter node defragmentation and node local allocations. A lower
2785 	 * defrag_ratio increases the tendency to do local allocations
2786 	 * instead of attempting to obtain partial slabs from other nodes.
2787 	 *
2788 	 * If the defrag_ratio is set to 0 then kmalloc() always
2789 	 * returns node local objects. If the ratio is higher then kmalloc()
2790 	 * may return off node objects because partial slabs are obtained
2791 	 * from other nodes and filled up.
2792 	 *
2793 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2794 	 * (which makes defrag_ratio = 1000) then every (well almost)
2795 	 * allocation will first attempt to defrag slab caches on other nodes.
2796 	 * This means scanning over all nodes to look for partial slabs which
2797 	 * may be expensive if we do it every time we are trying to find a slab
2798 	 * with available objects.
2799 	 */
2800 	if (!s->remote_node_defrag_ratio ||
2801 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2802 		return NULL;
2803 
2804 	do {
2805 		cpuset_mems_cookie = read_mems_allowed_begin();
2806 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2807 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2808 			struct kmem_cache_node *n;
2809 
2810 			n = get_node(s, zone_to_nid(zone));
2811 
2812 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2813 					n->nr_partial > s->min_partial) {
2814 				slab = get_partial_node(s, n, pc);
2815 				if (slab) {
2816 					/*
2817 					 * Don't check read_mems_allowed_retry()
2818 					 * here - if mems_allowed was updated in
2819 					 * parallel, that was a harmless race
2820 					 * between allocation and the cpuset
2821 					 * update
2822 					 */
2823 					return slab;
2824 				}
2825 			}
2826 		}
2827 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2828 #endif	/* CONFIG_NUMA */
2829 	return NULL;
2830 }
2831 
2832 /*
2833  * Get a partial slab, lock it and return it.
2834  */
2835 static struct slab *get_partial(struct kmem_cache *s, int node,
2836 				struct partial_context *pc)
2837 {
2838 	struct slab *slab;
2839 	int searchnode = node;
2840 
2841 	if (node == NUMA_NO_NODE)
2842 		searchnode = numa_mem_id();
2843 
2844 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2845 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2846 		return slab;
2847 
2848 	return get_any_partial(s, pc);
2849 }
2850 
2851 #ifndef CONFIG_SLUB_TINY
2852 
2853 #ifdef CONFIG_PREEMPTION
2854 /*
2855  * Calculate the next globally unique transaction for disambiguation
2856  * during cmpxchg. The transactions start with the cpu number and are then
2857  * incremented by CONFIG_NR_CPUS.
2858  */
2859 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2860 #else
2861 /*
2862  * No preemption supported therefore also no need to check for
2863  * different cpus.
2864  */
2865 #define TID_STEP 1
2866 #endif /* CONFIG_PREEMPTION */
2867 
2868 static inline unsigned long next_tid(unsigned long tid)
2869 {
2870 	return tid + TID_STEP;
2871 }
2872 
2873 #ifdef SLUB_DEBUG_CMPXCHG
2874 static inline unsigned int tid_to_cpu(unsigned long tid)
2875 {
2876 	return tid % TID_STEP;
2877 }
2878 
2879 static inline unsigned long tid_to_event(unsigned long tid)
2880 {
2881 	return tid / TID_STEP;
2882 }
2883 #endif
2884 
2885 static inline unsigned int init_tid(int cpu)
2886 {
2887 	return cpu;
2888 }
2889 
2890 static inline void note_cmpxchg_failure(const char *n,
2891 		const struct kmem_cache *s, unsigned long tid)
2892 {
2893 #ifdef SLUB_DEBUG_CMPXCHG
2894 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2895 
2896 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2897 
2898 #ifdef CONFIG_PREEMPTION
2899 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2900 		pr_warn("due to cpu change %d -> %d\n",
2901 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2902 	else
2903 #endif
2904 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2905 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2906 			tid_to_event(tid), tid_to_event(actual_tid));
2907 	else
2908 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2909 			actual_tid, tid, next_tid(tid));
2910 #endif
2911 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2912 }
2913 
2914 static void init_kmem_cache_cpus(struct kmem_cache *s)
2915 {
2916 	int cpu;
2917 	struct kmem_cache_cpu *c;
2918 
2919 	for_each_possible_cpu(cpu) {
2920 		c = per_cpu_ptr(s->cpu_slab, cpu);
2921 		local_lock_init(&c->lock);
2922 		c->tid = init_tid(cpu);
2923 	}
2924 }
2925 
2926 /*
2927  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2928  * unfreezes the slabs and puts it on the proper list.
2929  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2930  * by the caller.
2931  */
2932 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2933 			    void *freelist)
2934 {
2935 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2936 	int free_delta = 0;
2937 	void *nextfree, *freelist_iter, *freelist_tail;
2938 	int tail = DEACTIVATE_TO_HEAD;
2939 	unsigned long flags = 0;
2940 	struct slab new;
2941 	struct slab old;
2942 
2943 	if (READ_ONCE(slab->freelist)) {
2944 		stat(s, DEACTIVATE_REMOTE_FREES);
2945 		tail = DEACTIVATE_TO_TAIL;
2946 	}
2947 
2948 	/*
2949 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2950 	 * remember the last object in freelist_tail for later splicing.
2951 	 */
2952 	freelist_tail = NULL;
2953 	freelist_iter = freelist;
2954 	while (freelist_iter) {
2955 		nextfree = get_freepointer(s, freelist_iter);
2956 
2957 		/*
2958 		 * If 'nextfree' is invalid, it is possible that the object at
2959 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2960 		 * starting at 'freelist_iter' by skipping them.
2961 		 */
2962 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2963 			break;
2964 
2965 		freelist_tail = freelist_iter;
2966 		free_delta++;
2967 
2968 		freelist_iter = nextfree;
2969 	}
2970 
2971 	/*
2972 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2973 	 * freelist to the head of slab's freelist.
2974 	 */
2975 	do {
2976 		old.freelist = READ_ONCE(slab->freelist);
2977 		old.counters = READ_ONCE(slab->counters);
2978 		VM_BUG_ON(!old.frozen);
2979 
2980 		/* Determine target state of the slab */
2981 		new.counters = old.counters;
2982 		new.frozen = 0;
2983 		if (freelist_tail) {
2984 			new.inuse -= free_delta;
2985 			set_freepointer(s, freelist_tail, old.freelist);
2986 			new.freelist = freelist;
2987 		} else {
2988 			new.freelist = old.freelist;
2989 		}
2990 	} while (!slab_update_freelist(s, slab,
2991 		old.freelist, old.counters,
2992 		new.freelist, new.counters,
2993 		"unfreezing slab"));
2994 
2995 	/*
2996 	 * Stage three: Manipulate the slab list based on the updated state.
2997 	 */
2998 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2999 		stat(s, DEACTIVATE_EMPTY);
3000 		discard_slab(s, slab);
3001 		stat(s, FREE_SLAB);
3002 	} else if (new.freelist) {
3003 		spin_lock_irqsave(&n->list_lock, flags);
3004 		add_partial(n, slab, tail);
3005 		spin_unlock_irqrestore(&n->list_lock, flags);
3006 		stat(s, tail);
3007 	} else {
3008 		stat(s, DEACTIVATE_FULL);
3009 	}
3010 }
3011 
3012 #ifdef CONFIG_SLUB_CPU_PARTIAL
3013 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3014 {
3015 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3016 	struct slab *slab, *slab_to_discard = NULL;
3017 	unsigned long flags = 0;
3018 
3019 	while (partial_slab) {
3020 		slab = partial_slab;
3021 		partial_slab = slab->next;
3022 
3023 		n2 = get_node(s, slab_nid(slab));
3024 		if (n != n2) {
3025 			if (n)
3026 				spin_unlock_irqrestore(&n->list_lock, flags);
3027 
3028 			n = n2;
3029 			spin_lock_irqsave(&n->list_lock, flags);
3030 		}
3031 
3032 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3033 			slab->next = slab_to_discard;
3034 			slab_to_discard = slab;
3035 		} else {
3036 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3037 			stat(s, FREE_ADD_PARTIAL);
3038 		}
3039 	}
3040 
3041 	if (n)
3042 		spin_unlock_irqrestore(&n->list_lock, flags);
3043 
3044 	while (slab_to_discard) {
3045 		slab = slab_to_discard;
3046 		slab_to_discard = slab_to_discard->next;
3047 
3048 		stat(s, DEACTIVATE_EMPTY);
3049 		discard_slab(s, slab);
3050 		stat(s, FREE_SLAB);
3051 	}
3052 }
3053 
3054 /*
3055  * Put all the cpu partial slabs to the node partial list.
3056  */
3057 static void put_partials(struct kmem_cache *s)
3058 {
3059 	struct slab *partial_slab;
3060 	unsigned long flags;
3061 
3062 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3063 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3064 	this_cpu_write(s->cpu_slab->partial, NULL);
3065 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3066 
3067 	if (partial_slab)
3068 		__put_partials(s, partial_slab);
3069 }
3070 
3071 static void put_partials_cpu(struct kmem_cache *s,
3072 			     struct kmem_cache_cpu *c)
3073 {
3074 	struct slab *partial_slab;
3075 
3076 	partial_slab = slub_percpu_partial(c);
3077 	c->partial = NULL;
3078 
3079 	if (partial_slab)
3080 		__put_partials(s, partial_slab);
3081 }
3082 
3083 /*
3084  * Put a slab into a partial slab slot if available.
3085  *
3086  * If we did not find a slot then simply move all the partials to the
3087  * per node partial list.
3088  */
3089 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3090 {
3091 	struct slab *oldslab;
3092 	struct slab *slab_to_put = NULL;
3093 	unsigned long flags;
3094 	int slabs = 0;
3095 
3096 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3097 
3098 	oldslab = this_cpu_read(s->cpu_slab->partial);
3099 
3100 	if (oldslab) {
3101 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3102 			/*
3103 			 * Partial array is full. Move the existing set to the
3104 			 * per node partial list. Postpone the actual unfreezing
3105 			 * outside of the critical section.
3106 			 */
3107 			slab_to_put = oldslab;
3108 			oldslab = NULL;
3109 		} else {
3110 			slabs = oldslab->slabs;
3111 		}
3112 	}
3113 
3114 	slabs++;
3115 
3116 	slab->slabs = slabs;
3117 	slab->next = oldslab;
3118 
3119 	this_cpu_write(s->cpu_slab->partial, slab);
3120 
3121 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3122 
3123 	if (slab_to_put) {
3124 		__put_partials(s, slab_to_put);
3125 		stat(s, CPU_PARTIAL_DRAIN);
3126 	}
3127 }
3128 
3129 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3130 
3131 static inline void put_partials(struct kmem_cache *s) { }
3132 static inline void put_partials_cpu(struct kmem_cache *s,
3133 				    struct kmem_cache_cpu *c) { }
3134 
3135 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3136 
3137 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3138 {
3139 	unsigned long flags;
3140 	struct slab *slab;
3141 	void *freelist;
3142 
3143 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3144 
3145 	slab = c->slab;
3146 	freelist = c->freelist;
3147 
3148 	c->slab = NULL;
3149 	c->freelist = NULL;
3150 	c->tid = next_tid(c->tid);
3151 
3152 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153 
3154 	if (slab) {
3155 		deactivate_slab(s, slab, freelist);
3156 		stat(s, CPUSLAB_FLUSH);
3157 	}
3158 }
3159 
3160 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3161 {
3162 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3163 	void *freelist = c->freelist;
3164 	struct slab *slab = c->slab;
3165 
3166 	c->slab = NULL;
3167 	c->freelist = NULL;
3168 	c->tid = next_tid(c->tid);
3169 
3170 	if (slab) {
3171 		deactivate_slab(s, slab, freelist);
3172 		stat(s, CPUSLAB_FLUSH);
3173 	}
3174 
3175 	put_partials_cpu(s, c);
3176 }
3177 
3178 struct slub_flush_work {
3179 	struct work_struct work;
3180 	struct kmem_cache *s;
3181 	bool skip;
3182 };
3183 
3184 /*
3185  * Flush cpu slab.
3186  *
3187  * Called from CPU work handler with migration disabled.
3188  */
3189 static void flush_cpu_slab(struct work_struct *w)
3190 {
3191 	struct kmem_cache *s;
3192 	struct kmem_cache_cpu *c;
3193 	struct slub_flush_work *sfw;
3194 
3195 	sfw = container_of(w, struct slub_flush_work, work);
3196 
3197 	s = sfw->s;
3198 	c = this_cpu_ptr(s->cpu_slab);
3199 
3200 	if (c->slab)
3201 		flush_slab(s, c);
3202 
3203 	put_partials(s);
3204 }
3205 
3206 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3207 {
3208 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3209 
3210 	return c->slab || slub_percpu_partial(c);
3211 }
3212 
3213 static DEFINE_MUTEX(flush_lock);
3214 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3215 
3216 static void flush_all_cpus_locked(struct kmem_cache *s)
3217 {
3218 	struct slub_flush_work *sfw;
3219 	unsigned int cpu;
3220 
3221 	lockdep_assert_cpus_held();
3222 	mutex_lock(&flush_lock);
3223 
3224 	for_each_online_cpu(cpu) {
3225 		sfw = &per_cpu(slub_flush, cpu);
3226 		if (!has_cpu_slab(cpu, s)) {
3227 			sfw->skip = true;
3228 			continue;
3229 		}
3230 		INIT_WORK(&sfw->work, flush_cpu_slab);
3231 		sfw->skip = false;
3232 		sfw->s = s;
3233 		queue_work_on(cpu, flushwq, &sfw->work);
3234 	}
3235 
3236 	for_each_online_cpu(cpu) {
3237 		sfw = &per_cpu(slub_flush, cpu);
3238 		if (sfw->skip)
3239 			continue;
3240 		flush_work(&sfw->work);
3241 	}
3242 
3243 	mutex_unlock(&flush_lock);
3244 }
3245 
3246 static void flush_all(struct kmem_cache *s)
3247 {
3248 	cpus_read_lock();
3249 	flush_all_cpus_locked(s);
3250 	cpus_read_unlock();
3251 }
3252 
3253 /*
3254  * Use the cpu notifier to insure that the cpu slabs are flushed when
3255  * necessary.
3256  */
3257 static int slub_cpu_dead(unsigned int cpu)
3258 {
3259 	struct kmem_cache *s;
3260 
3261 	mutex_lock(&slab_mutex);
3262 	list_for_each_entry(s, &slab_caches, list)
3263 		__flush_cpu_slab(s, cpu);
3264 	mutex_unlock(&slab_mutex);
3265 	return 0;
3266 }
3267 
3268 #else /* CONFIG_SLUB_TINY */
3269 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3270 static inline void flush_all(struct kmem_cache *s) { }
3271 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3272 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3273 #endif /* CONFIG_SLUB_TINY */
3274 
3275 /*
3276  * Check if the objects in a per cpu structure fit numa
3277  * locality expectations.
3278  */
3279 static inline int node_match(struct slab *slab, int node)
3280 {
3281 #ifdef CONFIG_NUMA
3282 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3283 		return 0;
3284 #endif
3285 	return 1;
3286 }
3287 
3288 #ifdef CONFIG_SLUB_DEBUG
3289 static int count_free(struct slab *slab)
3290 {
3291 	return slab->objects - slab->inuse;
3292 }
3293 
3294 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3295 {
3296 	return atomic_long_read(&n->total_objects);
3297 }
3298 
3299 /* Supports checking bulk free of a constructed freelist */
3300 static inline bool free_debug_processing(struct kmem_cache *s,
3301 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3302 	unsigned long addr, depot_stack_handle_t handle)
3303 {
3304 	bool checks_ok = false;
3305 	void *object = head;
3306 	int cnt = 0;
3307 
3308 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3309 		if (!check_slab(s, slab))
3310 			goto out;
3311 	}
3312 
3313 	if (slab->inuse < *bulk_cnt) {
3314 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3315 			 slab->inuse, *bulk_cnt);
3316 		goto out;
3317 	}
3318 
3319 next_object:
3320 
3321 	if (++cnt > *bulk_cnt)
3322 		goto out_cnt;
3323 
3324 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3325 		if (!free_consistency_checks(s, slab, object, addr))
3326 			goto out;
3327 	}
3328 
3329 	if (s->flags & SLAB_STORE_USER)
3330 		set_track_update(s, object, TRACK_FREE, addr, handle);
3331 	trace(s, slab, object, 0);
3332 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3333 	init_object(s, object, SLUB_RED_INACTIVE);
3334 
3335 	/* Reached end of constructed freelist yet? */
3336 	if (object != tail) {
3337 		object = get_freepointer(s, object);
3338 		goto next_object;
3339 	}
3340 	checks_ok = true;
3341 
3342 out_cnt:
3343 	if (cnt != *bulk_cnt) {
3344 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3345 			 *bulk_cnt, cnt);
3346 		*bulk_cnt = cnt;
3347 	}
3348 
3349 out:
3350 
3351 	if (!checks_ok)
3352 		slab_fix(s, "Object at 0x%p not freed", object);
3353 
3354 	return checks_ok;
3355 }
3356 #endif /* CONFIG_SLUB_DEBUG */
3357 
3358 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3359 static unsigned long count_partial(struct kmem_cache_node *n,
3360 					int (*get_count)(struct slab *))
3361 {
3362 	unsigned long flags;
3363 	unsigned long x = 0;
3364 	struct slab *slab;
3365 
3366 	spin_lock_irqsave(&n->list_lock, flags);
3367 	list_for_each_entry(slab, &n->partial, slab_list)
3368 		x += get_count(slab);
3369 	spin_unlock_irqrestore(&n->list_lock, flags);
3370 	return x;
3371 }
3372 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3373 
3374 #ifdef CONFIG_SLUB_DEBUG
3375 #define MAX_PARTIAL_TO_SCAN 10000
3376 
3377 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3378 {
3379 	unsigned long flags;
3380 	unsigned long x = 0;
3381 	struct slab *slab;
3382 
3383 	spin_lock_irqsave(&n->list_lock, flags);
3384 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3385 		list_for_each_entry(slab, &n->partial, slab_list)
3386 			x += slab->objects - slab->inuse;
3387 	} else {
3388 		/*
3389 		 * For a long list, approximate the total count of objects in
3390 		 * it to meet the limit on the number of slabs to scan.
3391 		 * Scan from both the list's head and tail for better accuracy.
3392 		 */
3393 		unsigned long scanned = 0;
3394 
3395 		list_for_each_entry(slab, &n->partial, slab_list) {
3396 			x += slab->objects - slab->inuse;
3397 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3398 				break;
3399 		}
3400 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3401 			x += slab->objects - slab->inuse;
3402 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3403 				break;
3404 		}
3405 		x = mult_frac(x, n->nr_partial, scanned);
3406 		x = min(x, node_nr_objs(n));
3407 	}
3408 	spin_unlock_irqrestore(&n->list_lock, flags);
3409 	return x;
3410 }
3411 
3412 static noinline void
3413 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3414 {
3415 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3416 				      DEFAULT_RATELIMIT_BURST);
3417 	int node;
3418 	struct kmem_cache_node *n;
3419 
3420 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3421 		return;
3422 
3423 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3424 		nid, gfpflags, &gfpflags);
3425 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3426 		s->name, s->object_size, s->size, oo_order(s->oo),
3427 		oo_order(s->min));
3428 
3429 	if (oo_order(s->min) > get_order(s->object_size))
3430 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3431 			s->name);
3432 
3433 	for_each_kmem_cache_node(s, node, n) {
3434 		unsigned long nr_slabs;
3435 		unsigned long nr_objs;
3436 		unsigned long nr_free;
3437 
3438 		nr_free  = count_partial_free_approx(n);
3439 		nr_slabs = node_nr_slabs(n);
3440 		nr_objs  = node_nr_objs(n);
3441 
3442 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3443 			node, nr_slabs, nr_objs, nr_free);
3444 	}
3445 }
3446 #else /* CONFIG_SLUB_DEBUG */
3447 static inline void
3448 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3449 #endif
3450 
3451 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3452 {
3453 	if (unlikely(slab_test_pfmemalloc(slab)))
3454 		return gfp_pfmemalloc_allowed(gfpflags);
3455 
3456 	return true;
3457 }
3458 
3459 #ifndef CONFIG_SLUB_TINY
3460 static inline bool
3461 __update_cpu_freelist_fast(struct kmem_cache *s,
3462 			   void *freelist_old, void *freelist_new,
3463 			   unsigned long tid)
3464 {
3465 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3466 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3467 
3468 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3469 					     &old.full, new.full);
3470 }
3471 
3472 /*
3473  * Check the slab->freelist and either transfer the freelist to the
3474  * per cpu freelist or deactivate the slab.
3475  *
3476  * The slab is still frozen if the return value is not NULL.
3477  *
3478  * If this function returns NULL then the slab has been unfrozen.
3479  */
3480 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3481 {
3482 	struct slab new;
3483 	unsigned long counters;
3484 	void *freelist;
3485 
3486 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3487 
3488 	do {
3489 		freelist = slab->freelist;
3490 		counters = slab->counters;
3491 
3492 		new.counters = counters;
3493 
3494 		new.inuse = slab->objects;
3495 		new.frozen = freelist != NULL;
3496 
3497 	} while (!__slab_update_freelist(s, slab,
3498 		freelist, counters,
3499 		NULL, new.counters,
3500 		"get_freelist"));
3501 
3502 	return freelist;
3503 }
3504 
3505 /*
3506  * Freeze the partial slab and return the pointer to the freelist.
3507  */
3508 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3509 {
3510 	struct slab new;
3511 	unsigned long counters;
3512 	void *freelist;
3513 
3514 	do {
3515 		freelist = slab->freelist;
3516 		counters = slab->counters;
3517 
3518 		new.counters = counters;
3519 		VM_BUG_ON(new.frozen);
3520 
3521 		new.inuse = slab->objects;
3522 		new.frozen = 1;
3523 
3524 	} while (!slab_update_freelist(s, slab,
3525 		freelist, counters,
3526 		NULL, new.counters,
3527 		"freeze_slab"));
3528 
3529 	return freelist;
3530 }
3531 
3532 /*
3533  * Slow path. The lockless freelist is empty or we need to perform
3534  * debugging duties.
3535  *
3536  * Processing is still very fast if new objects have been freed to the
3537  * regular freelist. In that case we simply take over the regular freelist
3538  * as the lockless freelist and zap the regular freelist.
3539  *
3540  * If that is not working then we fall back to the partial lists. We take the
3541  * first element of the freelist as the object to allocate now and move the
3542  * rest of the freelist to the lockless freelist.
3543  *
3544  * And if we were unable to get a new slab from the partial slab lists then
3545  * we need to allocate a new slab. This is the slowest path since it involves
3546  * a call to the page allocator and the setup of a new slab.
3547  *
3548  * Version of __slab_alloc to use when we know that preemption is
3549  * already disabled (which is the case for bulk allocation).
3550  */
3551 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3552 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3553 {
3554 	void *freelist;
3555 	struct slab *slab;
3556 	unsigned long flags;
3557 	struct partial_context pc;
3558 	bool try_thisnode = true;
3559 
3560 	stat(s, ALLOC_SLOWPATH);
3561 
3562 reread_slab:
3563 
3564 	slab = READ_ONCE(c->slab);
3565 	if (!slab) {
3566 		/*
3567 		 * if the node is not online or has no normal memory, just
3568 		 * ignore the node constraint
3569 		 */
3570 		if (unlikely(node != NUMA_NO_NODE &&
3571 			     !node_isset(node, slab_nodes)))
3572 			node = NUMA_NO_NODE;
3573 		goto new_slab;
3574 	}
3575 
3576 	if (unlikely(!node_match(slab, node))) {
3577 		/*
3578 		 * same as above but node_match() being false already
3579 		 * implies node != NUMA_NO_NODE
3580 		 */
3581 		if (!node_isset(node, slab_nodes)) {
3582 			node = NUMA_NO_NODE;
3583 		} else {
3584 			stat(s, ALLOC_NODE_MISMATCH);
3585 			goto deactivate_slab;
3586 		}
3587 	}
3588 
3589 	/*
3590 	 * By rights, we should be searching for a slab page that was
3591 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3592 	 * information when the page leaves the per-cpu allocator
3593 	 */
3594 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3595 		goto deactivate_slab;
3596 
3597 	/* must check again c->slab in case we got preempted and it changed */
3598 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3599 	if (unlikely(slab != c->slab)) {
3600 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3601 		goto reread_slab;
3602 	}
3603 	freelist = c->freelist;
3604 	if (freelist)
3605 		goto load_freelist;
3606 
3607 	freelist = get_freelist(s, slab);
3608 
3609 	if (!freelist) {
3610 		c->slab = NULL;
3611 		c->tid = next_tid(c->tid);
3612 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3613 		stat(s, DEACTIVATE_BYPASS);
3614 		goto new_slab;
3615 	}
3616 
3617 	stat(s, ALLOC_REFILL);
3618 
3619 load_freelist:
3620 
3621 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3622 
3623 	/*
3624 	 * freelist is pointing to the list of objects to be used.
3625 	 * slab is pointing to the slab from which the objects are obtained.
3626 	 * That slab must be frozen for per cpu allocations to work.
3627 	 */
3628 	VM_BUG_ON(!c->slab->frozen);
3629 	c->freelist = get_freepointer(s, freelist);
3630 	c->tid = next_tid(c->tid);
3631 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3632 	return freelist;
3633 
3634 deactivate_slab:
3635 
3636 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3637 	if (slab != c->slab) {
3638 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3639 		goto reread_slab;
3640 	}
3641 	freelist = c->freelist;
3642 	c->slab = NULL;
3643 	c->freelist = NULL;
3644 	c->tid = next_tid(c->tid);
3645 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3646 	deactivate_slab(s, slab, freelist);
3647 
3648 new_slab:
3649 
3650 #ifdef CONFIG_SLUB_CPU_PARTIAL
3651 	while (slub_percpu_partial(c)) {
3652 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3653 		if (unlikely(c->slab)) {
3654 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3655 			goto reread_slab;
3656 		}
3657 		if (unlikely(!slub_percpu_partial(c))) {
3658 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3659 			/* we were preempted and partial list got empty */
3660 			goto new_objects;
3661 		}
3662 
3663 		slab = slub_percpu_partial(c);
3664 		slub_set_percpu_partial(c, slab);
3665 
3666 		if (likely(node_match(slab, node) &&
3667 			   pfmemalloc_match(slab, gfpflags))) {
3668 			c->slab = slab;
3669 			freelist = get_freelist(s, slab);
3670 			VM_BUG_ON(!freelist);
3671 			stat(s, CPU_PARTIAL_ALLOC);
3672 			goto load_freelist;
3673 		}
3674 
3675 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3676 
3677 		slab->next = NULL;
3678 		__put_partials(s, slab);
3679 	}
3680 #endif
3681 
3682 new_objects:
3683 
3684 	pc.flags = gfpflags;
3685 	/*
3686 	 * When a preferred node is indicated but no __GFP_THISNODE
3687 	 *
3688 	 * 1) try to get a partial slab from target node only by having
3689 	 *    __GFP_THISNODE in pc.flags for get_partial()
3690 	 * 2) if 1) failed, try to allocate a new slab from target node with
3691 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3692 	 * 3) if 2) failed, retry with original gfpflags which will allow
3693 	 *    get_partial() try partial lists of other nodes before potentially
3694 	 *    allocating new page from other nodes
3695 	 */
3696 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3697 		     && try_thisnode))
3698 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3699 
3700 	pc.orig_size = orig_size;
3701 	slab = get_partial(s, node, &pc);
3702 	if (slab) {
3703 		if (kmem_cache_debug(s)) {
3704 			freelist = pc.object;
3705 			/*
3706 			 * For debug caches here we had to go through
3707 			 * alloc_single_from_partial() so just store the
3708 			 * tracking info and return the object.
3709 			 */
3710 			if (s->flags & SLAB_STORE_USER)
3711 				set_track(s, freelist, TRACK_ALLOC, addr);
3712 
3713 			return freelist;
3714 		}
3715 
3716 		freelist = freeze_slab(s, slab);
3717 		goto retry_load_slab;
3718 	}
3719 
3720 	slub_put_cpu_ptr(s->cpu_slab);
3721 	slab = new_slab(s, pc.flags, node);
3722 	c = slub_get_cpu_ptr(s->cpu_slab);
3723 
3724 	if (unlikely(!slab)) {
3725 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3726 		    && try_thisnode) {
3727 			try_thisnode = false;
3728 			goto new_objects;
3729 		}
3730 		slab_out_of_memory(s, gfpflags, node);
3731 		return NULL;
3732 	}
3733 
3734 	stat(s, ALLOC_SLAB);
3735 
3736 	if (kmem_cache_debug(s)) {
3737 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3738 
3739 		if (unlikely(!freelist))
3740 			goto new_objects;
3741 
3742 		if (s->flags & SLAB_STORE_USER)
3743 			set_track(s, freelist, TRACK_ALLOC, addr);
3744 
3745 		return freelist;
3746 	}
3747 
3748 	/*
3749 	 * No other reference to the slab yet so we can
3750 	 * muck around with it freely without cmpxchg
3751 	 */
3752 	freelist = slab->freelist;
3753 	slab->freelist = NULL;
3754 	slab->inuse = slab->objects;
3755 	slab->frozen = 1;
3756 
3757 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3758 
3759 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3760 		/*
3761 		 * For !pfmemalloc_match() case we don't load freelist so that
3762 		 * we don't make further mismatched allocations easier.
3763 		 */
3764 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3765 		return freelist;
3766 	}
3767 
3768 retry_load_slab:
3769 
3770 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3771 	if (unlikely(c->slab)) {
3772 		void *flush_freelist = c->freelist;
3773 		struct slab *flush_slab = c->slab;
3774 
3775 		c->slab = NULL;
3776 		c->freelist = NULL;
3777 		c->tid = next_tid(c->tid);
3778 
3779 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3780 
3781 		deactivate_slab(s, flush_slab, flush_freelist);
3782 
3783 		stat(s, CPUSLAB_FLUSH);
3784 
3785 		goto retry_load_slab;
3786 	}
3787 	c->slab = slab;
3788 
3789 	goto load_freelist;
3790 }
3791 
3792 /*
3793  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3794  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3795  * pointer.
3796  */
3797 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3798 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3799 {
3800 	void *p;
3801 
3802 #ifdef CONFIG_PREEMPT_COUNT
3803 	/*
3804 	 * We may have been preempted and rescheduled on a different
3805 	 * cpu before disabling preemption. Need to reload cpu area
3806 	 * pointer.
3807 	 */
3808 	c = slub_get_cpu_ptr(s->cpu_slab);
3809 #endif
3810 
3811 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3812 #ifdef CONFIG_PREEMPT_COUNT
3813 	slub_put_cpu_ptr(s->cpu_slab);
3814 #endif
3815 	return p;
3816 }
3817 
3818 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3819 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3820 {
3821 	struct kmem_cache_cpu *c;
3822 	struct slab *slab;
3823 	unsigned long tid;
3824 	void *object;
3825 
3826 redo:
3827 	/*
3828 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3829 	 * enabled. We may switch back and forth between cpus while
3830 	 * reading from one cpu area. That does not matter as long
3831 	 * as we end up on the original cpu again when doing the cmpxchg.
3832 	 *
3833 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3834 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3835 	 * the tid. If we are preempted and switched to another cpu between the
3836 	 * two reads, it's OK as the two are still associated with the same cpu
3837 	 * and cmpxchg later will validate the cpu.
3838 	 */
3839 	c = raw_cpu_ptr(s->cpu_slab);
3840 	tid = READ_ONCE(c->tid);
3841 
3842 	/*
3843 	 * Irqless object alloc/free algorithm used here depends on sequence
3844 	 * of fetching cpu_slab's data. tid should be fetched before anything
3845 	 * on c to guarantee that object and slab associated with previous tid
3846 	 * won't be used with current tid. If we fetch tid first, object and
3847 	 * slab could be one associated with next tid and our alloc/free
3848 	 * request will be failed. In this case, we will retry. So, no problem.
3849 	 */
3850 	barrier();
3851 
3852 	/*
3853 	 * The transaction ids are globally unique per cpu and per operation on
3854 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3855 	 * occurs on the right processor and that there was no operation on the
3856 	 * linked list in between.
3857 	 */
3858 
3859 	object = c->freelist;
3860 	slab = c->slab;
3861 
3862 	if (!USE_LOCKLESS_FAST_PATH() ||
3863 	    unlikely(!object || !slab || !node_match(slab, node))) {
3864 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3865 	} else {
3866 		void *next_object = get_freepointer_safe(s, object);
3867 
3868 		/*
3869 		 * The cmpxchg will only match if there was no additional
3870 		 * operation and if we are on the right processor.
3871 		 *
3872 		 * The cmpxchg does the following atomically (without lock
3873 		 * semantics!)
3874 		 * 1. Relocate first pointer to the current per cpu area.
3875 		 * 2. Verify that tid and freelist have not been changed
3876 		 * 3. If they were not changed replace tid and freelist
3877 		 *
3878 		 * Since this is without lock semantics the protection is only
3879 		 * against code executing on this cpu *not* from access by
3880 		 * other cpus.
3881 		 */
3882 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3883 			note_cmpxchg_failure("slab_alloc", s, tid);
3884 			goto redo;
3885 		}
3886 		prefetch_freepointer(s, next_object);
3887 		stat(s, ALLOC_FASTPATH);
3888 	}
3889 
3890 	return object;
3891 }
3892 #else /* CONFIG_SLUB_TINY */
3893 static void *__slab_alloc_node(struct kmem_cache *s,
3894 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3895 {
3896 	struct partial_context pc;
3897 	struct slab *slab;
3898 	void *object;
3899 
3900 	pc.flags = gfpflags;
3901 	pc.orig_size = orig_size;
3902 	slab = get_partial(s, node, &pc);
3903 
3904 	if (slab)
3905 		return pc.object;
3906 
3907 	slab = new_slab(s, gfpflags, node);
3908 	if (unlikely(!slab)) {
3909 		slab_out_of_memory(s, gfpflags, node);
3910 		return NULL;
3911 	}
3912 
3913 	object = alloc_single_from_new_slab(s, slab, orig_size);
3914 
3915 	return object;
3916 }
3917 #endif /* CONFIG_SLUB_TINY */
3918 
3919 /*
3920  * If the object has been wiped upon free, make sure it's fully initialized by
3921  * zeroing out freelist pointer.
3922  *
3923  * Note that we also wipe custom freelist pointers specified via
3924  * s->rcu_freeptr_offset.
3925  */
3926 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3927 						   void *obj)
3928 {
3929 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3930 	    !freeptr_outside_object(s))
3931 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3932 			0, sizeof(void *));
3933 }
3934 
3935 static __fastpath_inline
3936 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3937 {
3938 	flags &= gfp_allowed_mask;
3939 
3940 	might_alloc(flags);
3941 
3942 	if (unlikely(should_failslab(s, flags)))
3943 		return NULL;
3944 
3945 	return s;
3946 }
3947 
3948 static __fastpath_inline
3949 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3950 			  gfp_t flags, size_t size, void **p, bool init,
3951 			  unsigned int orig_size)
3952 {
3953 	unsigned int zero_size = s->object_size;
3954 	bool kasan_init = init;
3955 	size_t i;
3956 	gfp_t init_flags = flags & gfp_allowed_mask;
3957 
3958 	/*
3959 	 * For kmalloc object, the allocated memory size(object_size) is likely
3960 	 * larger than the requested size(orig_size). If redzone check is
3961 	 * enabled for the extra space, don't zero it, as it will be redzoned
3962 	 * soon. The redzone operation for this extra space could be seen as a
3963 	 * replacement of current poisoning under certain debug option, and
3964 	 * won't break other sanity checks.
3965 	 */
3966 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3967 	    (s->flags & SLAB_KMALLOC))
3968 		zero_size = orig_size;
3969 
3970 	/*
3971 	 * When slab_debug is enabled, avoid memory initialization integrated
3972 	 * into KASAN and instead zero out the memory via the memset below with
3973 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3974 	 * cause false-positive reports. This does not lead to a performance
3975 	 * penalty on production builds, as slab_debug is not intended to be
3976 	 * enabled there.
3977 	 */
3978 	if (__slub_debug_enabled())
3979 		kasan_init = false;
3980 
3981 	/*
3982 	 * As memory initialization might be integrated into KASAN,
3983 	 * kasan_slab_alloc and initialization memset must be
3984 	 * kept together to avoid discrepancies in behavior.
3985 	 *
3986 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3987 	 */
3988 	for (i = 0; i < size; i++) {
3989 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3990 		if (p[i] && init && (!kasan_init ||
3991 				     !kasan_has_integrated_init()))
3992 			memset(p[i], 0, zero_size);
3993 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3994 					 s->flags, init_flags);
3995 		kmsan_slab_alloc(s, p[i], init_flags);
3996 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
3997 	}
3998 
3999 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4000 }
4001 
4002 /*
4003  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4004  * have the fastpath folded into their functions. So no function call
4005  * overhead for requests that can be satisfied on the fastpath.
4006  *
4007  * The fastpath works by first checking if the lockless freelist can be used.
4008  * If not then __slab_alloc is called for slow processing.
4009  *
4010  * Otherwise we can simply pick the next object from the lockless free list.
4011  */
4012 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4013 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4014 {
4015 	void *object;
4016 	bool init = false;
4017 
4018 	s = slab_pre_alloc_hook(s, gfpflags);
4019 	if (unlikely(!s))
4020 		return NULL;
4021 
4022 	object = kfence_alloc(s, orig_size, gfpflags);
4023 	if (unlikely(object))
4024 		goto out;
4025 
4026 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4027 
4028 	maybe_wipe_obj_freeptr(s, object);
4029 	init = slab_want_init_on_alloc(gfpflags, s);
4030 
4031 out:
4032 	/*
4033 	 * When init equals 'true', like for kzalloc() family, only
4034 	 * @orig_size bytes might be zeroed instead of s->object_size
4035 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4036 	 * object is set to NULL
4037 	 */
4038 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4039 
4040 	return object;
4041 }
4042 
4043 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4044 {
4045 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4046 				    s->object_size);
4047 
4048 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4049 
4050 	return ret;
4051 }
4052 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4053 
4054 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4055 			   gfp_t gfpflags)
4056 {
4057 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4058 				    s->object_size);
4059 
4060 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4061 
4062 	return ret;
4063 }
4064 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4065 
4066 /**
4067  * kmem_cache_alloc_node - Allocate an object on the specified node
4068  * @s: The cache to allocate from.
4069  * @gfpflags: See kmalloc().
4070  * @node: node number of the target node.
4071  *
4072  * Identical to kmem_cache_alloc but it will allocate memory on the given
4073  * node, which can improve the performance for cpu bound structures.
4074  *
4075  * Fallback to other node is possible if __GFP_THISNODE is not set.
4076  *
4077  * Return: pointer to the new object or %NULL in case of error
4078  */
4079 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4080 {
4081 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4082 
4083 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4084 
4085 	return ret;
4086 }
4087 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4088 
4089 /*
4090  * To avoid unnecessary overhead, we pass through large allocation requests
4091  * directly to the page allocator. We use __GFP_COMP, because we will need to
4092  * know the allocation order to free the pages properly in kfree.
4093  */
4094 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4095 {
4096 	struct folio *folio;
4097 	void *ptr = NULL;
4098 	unsigned int order = get_order(size);
4099 
4100 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4101 		flags = kmalloc_fix_flags(flags);
4102 
4103 	flags |= __GFP_COMP;
4104 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4105 	if (folio) {
4106 		ptr = folio_address(folio);
4107 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4108 				      PAGE_SIZE << order);
4109 	}
4110 
4111 	ptr = kasan_kmalloc_large(ptr, size, flags);
4112 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4113 	kmemleak_alloc(ptr, size, 1, flags);
4114 	kmsan_kmalloc_large(ptr, size, flags);
4115 
4116 	return ptr;
4117 }
4118 
4119 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4120 {
4121 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4122 
4123 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4124 		      flags, NUMA_NO_NODE);
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL(__kmalloc_large_noprof);
4128 
4129 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4130 {
4131 	void *ret = ___kmalloc_large_node(size, flags, node);
4132 
4133 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4134 		      flags, node);
4135 	return ret;
4136 }
4137 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4138 
4139 static __always_inline
4140 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4141 			unsigned long caller)
4142 {
4143 	struct kmem_cache *s;
4144 	void *ret;
4145 
4146 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4147 		ret = __kmalloc_large_node_noprof(size, flags, node);
4148 		trace_kmalloc(caller, ret, size,
4149 			      PAGE_SIZE << get_order(size), flags, node);
4150 		return ret;
4151 	}
4152 
4153 	if (unlikely(!size))
4154 		return ZERO_SIZE_PTR;
4155 
4156 	s = kmalloc_slab(size, b, flags, caller);
4157 
4158 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4159 	ret = kasan_kmalloc(s, ret, size, flags);
4160 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4161 	return ret;
4162 }
4163 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4164 {
4165 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4166 }
4167 EXPORT_SYMBOL(__kmalloc_node_noprof);
4168 
4169 void *__kmalloc_noprof(size_t size, gfp_t flags)
4170 {
4171 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4172 }
4173 EXPORT_SYMBOL(__kmalloc_noprof);
4174 
4175 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4176 					 int node, unsigned long caller)
4177 {
4178 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4179 
4180 }
4181 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4182 
4183 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4184 {
4185 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4186 					    _RET_IP_, size);
4187 
4188 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4189 
4190 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4191 	return ret;
4192 }
4193 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4194 
4195 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4196 				  int node, size_t size)
4197 {
4198 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4199 
4200 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4201 
4202 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4203 	return ret;
4204 }
4205 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4206 
4207 static noinline void free_to_partial_list(
4208 	struct kmem_cache *s, struct slab *slab,
4209 	void *head, void *tail, int bulk_cnt,
4210 	unsigned long addr)
4211 {
4212 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4213 	struct slab *slab_free = NULL;
4214 	int cnt = bulk_cnt;
4215 	unsigned long flags;
4216 	depot_stack_handle_t handle = 0;
4217 
4218 	if (s->flags & SLAB_STORE_USER)
4219 		handle = set_track_prepare();
4220 
4221 	spin_lock_irqsave(&n->list_lock, flags);
4222 
4223 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4224 		void *prior = slab->freelist;
4225 
4226 		/* Perform the actual freeing while we still hold the locks */
4227 		slab->inuse -= cnt;
4228 		set_freepointer(s, tail, prior);
4229 		slab->freelist = head;
4230 
4231 		/*
4232 		 * If the slab is empty, and node's partial list is full,
4233 		 * it should be discarded anyway no matter it's on full or
4234 		 * partial list.
4235 		 */
4236 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4237 			slab_free = slab;
4238 
4239 		if (!prior) {
4240 			/* was on full list */
4241 			remove_full(s, n, slab);
4242 			if (!slab_free) {
4243 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4244 				stat(s, FREE_ADD_PARTIAL);
4245 			}
4246 		} else if (slab_free) {
4247 			remove_partial(n, slab);
4248 			stat(s, FREE_REMOVE_PARTIAL);
4249 		}
4250 	}
4251 
4252 	if (slab_free) {
4253 		/*
4254 		 * Update the counters while still holding n->list_lock to
4255 		 * prevent spurious validation warnings
4256 		 */
4257 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4258 	}
4259 
4260 	spin_unlock_irqrestore(&n->list_lock, flags);
4261 
4262 	if (slab_free) {
4263 		stat(s, FREE_SLAB);
4264 		free_slab(s, slab_free);
4265 	}
4266 }
4267 
4268 /*
4269  * Slow path handling. This may still be called frequently since objects
4270  * have a longer lifetime than the cpu slabs in most processing loads.
4271  *
4272  * So we still attempt to reduce cache line usage. Just take the slab
4273  * lock and free the item. If there is no additional partial slab
4274  * handling required then we can return immediately.
4275  */
4276 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4277 			void *head, void *tail, int cnt,
4278 			unsigned long addr)
4279 
4280 {
4281 	void *prior;
4282 	int was_frozen;
4283 	struct slab new;
4284 	unsigned long counters;
4285 	struct kmem_cache_node *n = NULL;
4286 	unsigned long flags;
4287 	bool on_node_partial;
4288 
4289 	stat(s, FREE_SLOWPATH);
4290 
4291 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4292 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4293 		return;
4294 	}
4295 
4296 	do {
4297 		if (unlikely(n)) {
4298 			spin_unlock_irqrestore(&n->list_lock, flags);
4299 			n = NULL;
4300 		}
4301 		prior = slab->freelist;
4302 		counters = slab->counters;
4303 		set_freepointer(s, tail, prior);
4304 		new.counters = counters;
4305 		was_frozen = new.frozen;
4306 		new.inuse -= cnt;
4307 		if ((!new.inuse || !prior) && !was_frozen) {
4308 			/* Needs to be taken off a list */
4309 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4310 
4311 				n = get_node(s, slab_nid(slab));
4312 				/*
4313 				 * Speculatively acquire the list_lock.
4314 				 * If the cmpxchg does not succeed then we may
4315 				 * drop the list_lock without any processing.
4316 				 *
4317 				 * Otherwise the list_lock will synchronize with
4318 				 * other processors updating the list of slabs.
4319 				 */
4320 				spin_lock_irqsave(&n->list_lock, flags);
4321 
4322 				on_node_partial = slab_test_node_partial(slab);
4323 			}
4324 		}
4325 
4326 	} while (!slab_update_freelist(s, slab,
4327 		prior, counters,
4328 		head, new.counters,
4329 		"__slab_free"));
4330 
4331 	if (likely(!n)) {
4332 
4333 		if (likely(was_frozen)) {
4334 			/*
4335 			 * The list lock was not taken therefore no list
4336 			 * activity can be necessary.
4337 			 */
4338 			stat(s, FREE_FROZEN);
4339 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4340 			/*
4341 			 * If we started with a full slab then put it onto the
4342 			 * per cpu partial list.
4343 			 */
4344 			put_cpu_partial(s, slab, 1);
4345 			stat(s, CPU_PARTIAL_FREE);
4346 		}
4347 
4348 		return;
4349 	}
4350 
4351 	/*
4352 	 * This slab was partially empty but not on the per-node partial list,
4353 	 * in which case we shouldn't manipulate its list, just return.
4354 	 */
4355 	if (prior && !on_node_partial) {
4356 		spin_unlock_irqrestore(&n->list_lock, flags);
4357 		return;
4358 	}
4359 
4360 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4361 		goto slab_empty;
4362 
4363 	/*
4364 	 * Objects left in the slab. If it was not on the partial list before
4365 	 * then add it.
4366 	 */
4367 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4368 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4369 		stat(s, FREE_ADD_PARTIAL);
4370 	}
4371 	spin_unlock_irqrestore(&n->list_lock, flags);
4372 	return;
4373 
4374 slab_empty:
4375 	if (prior) {
4376 		/*
4377 		 * Slab on the partial list.
4378 		 */
4379 		remove_partial(n, slab);
4380 		stat(s, FREE_REMOVE_PARTIAL);
4381 	}
4382 
4383 	spin_unlock_irqrestore(&n->list_lock, flags);
4384 	stat(s, FREE_SLAB);
4385 	discard_slab(s, slab);
4386 }
4387 
4388 #ifndef CONFIG_SLUB_TINY
4389 /*
4390  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4391  * can perform fastpath freeing without additional function calls.
4392  *
4393  * The fastpath is only possible if we are freeing to the current cpu slab
4394  * of this processor. This typically the case if we have just allocated
4395  * the item before.
4396  *
4397  * If fastpath is not possible then fall back to __slab_free where we deal
4398  * with all sorts of special processing.
4399  *
4400  * Bulk free of a freelist with several objects (all pointing to the
4401  * same slab) possible by specifying head and tail ptr, plus objects
4402  * count (cnt). Bulk free indicated by tail pointer being set.
4403  */
4404 static __always_inline void do_slab_free(struct kmem_cache *s,
4405 				struct slab *slab, void *head, void *tail,
4406 				int cnt, unsigned long addr)
4407 {
4408 	struct kmem_cache_cpu *c;
4409 	unsigned long tid;
4410 	void **freelist;
4411 
4412 redo:
4413 	/*
4414 	 * Determine the currently cpus per cpu slab.
4415 	 * The cpu may change afterward. However that does not matter since
4416 	 * data is retrieved via this pointer. If we are on the same cpu
4417 	 * during the cmpxchg then the free will succeed.
4418 	 */
4419 	c = raw_cpu_ptr(s->cpu_slab);
4420 	tid = READ_ONCE(c->tid);
4421 
4422 	/* Same with comment on barrier() in __slab_alloc_node() */
4423 	barrier();
4424 
4425 	if (unlikely(slab != c->slab)) {
4426 		__slab_free(s, slab, head, tail, cnt, addr);
4427 		return;
4428 	}
4429 
4430 	if (USE_LOCKLESS_FAST_PATH()) {
4431 		freelist = READ_ONCE(c->freelist);
4432 
4433 		set_freepointer(s, tail, freelist);
4434 
4435 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4436 			note_cmpxchg_failure("slab_free", s, tid);
4437 			goto redo;
4438 		}
4439 	} else {
4440 		/* Update the free list under the local lock */
4441 		local_lock(&s->cpu_slab->lock);
4442 		c = this_cpu_ptr(s->cpu_slab);
4443 		if (unlikely(slab != c->slab)) {
4444 			local_unlock(&s->cpu_slab->lock);
4445 			goto redo;
4446 		}
4447 		tid = c->tid;
4448 		freelist = c->freelist;
4449 
4450 		set_freepointer(s, tail, freelist);
4451 		c->freelist = head;
4452 		c->tid = next_tid(tid);
4453 
4454 		local_unlock(&s->cpu_slab->lock);
4455 	}
4456 	stat_add(s, FREE_FASTPATH, cnt);
4457 }
4458 #else /* CONFIG_SLUB_TINY */
4459 static void do_slab_free(struct kmem_cache *s,
4460 				struct slab *slab, void *head, void *tail,
4461 				int cnt, unsigned long addr)
4462 {
4463 	__slab_free(s, slab, head, tail, cnt, addr);
4464 }
4465 #endif /* CONFIG_SLUB_TINY */
4466 
4467 static __fastpath_inline
4468 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4469 	       unsigned long addr)
4470 {
4471 	memcg_slab_free_hook(s, slab, &object, 1);
4472 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4473 
4474 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4475 		do_slab_free(s, slab, object, object, 1, addr);
4476 }
4477 
4478 #ifdef CONFIG_MEMCG
4479 /* Do not inline the rare memcg charging failed path into the allocation path */
4480 static noinline
4481 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4482 {
4483 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4484 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4485 }
4486 #endif
4487 
4488 static __fastpath_inline
4489 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4490 		    void *tail, void **p, int cnt, unsigned long addr)
4491 {
4492 	memcg_slab_free_hook(s, slab, p, cnt);
4493 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4494 	/*
4495 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4496 	 * to remove objects, whose reuse must be delayed.
4497 	 */
4498 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4499 		do_slab_free(s, slab, head, tail, cnt, addr);
4500 }
4501 
4502 #ifdef CONFIG_KASAN_GENERIC
4503 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4504 {
4505 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4506 }
4507 #endif
4508 
4509 static inline struct kmem_cache *virt_to_cache(const void *obj)
4510 {
4511 	struct slab *slab;
4512 
4513 	slab = virt_to_slab(obj);
4514 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4515 		return NULL;
4516 	return slab->slab_cache;
4517 }
4518 
4519 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4520 {
4521 	struct kmem_cache *cachep;
4522 
4523 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4524 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4525 		return s;
4526 
4527 	cachep = virt_to_cache(x);
4528 	if (WARN(cachep && cachep != s,
4529 		 "%s: Wrong slab cache. %s but object is from %s\n",
4530 		 __func__, s->name, cachep->name))
4531 		print_tracking(cachep, x);
4532 	return cachep;
4533 }
4534 
4535 /**
4536  * kmem_cache_free - Deallocate an object
4537  * @s: The cache the allocation was from.
4538  * @x: The previously allocated object.
4539  *
4540  * Free an object which was previously allocated from this
4541  * cache.
4542  */
4543 void kmem_cache_free(struct kmem_cache *s, void *x)
4544 {
4545 	s = cache_from_obj(s, x);
4546 	if (!s)
4547 		return;
4548 	trace_kmem_cache_free(_RET_IP_, x, s);
4549 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4550 }
4551 EXPORT_SYMBOL(kmem_cache_free);
4552 
4553 static void free_large_kmalloc(struct folio *folio, void *object)
4554 {
4555 	unsigned int order = folio_order(folio);
4556 
4557 	if (WARN_ON_ONCE(order == 0))
4558 		pr_warn_once("object pointer: 0x%p\n", object);
4559 
4560 	kmemleak_free(object);
4561 	kasan_kfree_large(object);
4562 	kmsan_kfree_large(object);
4563 
4564 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4565 			      -(PAGE_SIZE << order));
4566 	folio_put(folio);
4567 }
4568 
4569 /**
4570  * kfree - free previously allocated memory
4571  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4572  *
4573  * If @object is NULL, no operation is performed.
4574  */
4575 void kfree(const void *object)
4576 {
4577 	struct folio *folio;
4578 	struct slab *slab;
4579 	struct kmem_cache *s;
4580 	void *x = (void *)object;
4581 
4582 	trace_kfree(_RET_IP_, object);
4583 
4584 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4585 		return;
4586 
4587 	folio = virt_to_folio(object);
4588 	if (unlikely(!folio_test_slab(folio))) {
4589 		free_large_kmalloc(folio, (void *)object);
4590 		return;
4591 	}
4592 
4593 	slab = folio_slab(folio);
4594 	s = slab->slab_cache;
4595 	slab_free(s, slab, x, _RET_IP_);
4596 }
4597 EXPORT_SYMBOL(kfree);
4598 
4599 struct detached_freelist {
4600 	struct slab *slab;
4601 	void *tail;
4602 	void *freelist;
4603 	int cnt;
4604 	struct kmem_cache *s;
4605 };
4606 
4607 /*
4608  * This function progressively scans the array with free objects (with
4609  * a limited look ahead) and extract objects belonging to the same
4610  * slab.  It builds a detached freelist directly within the given
4611  * slab/objects.  This can happen without any need for
4612  * synchronization, because the objects are owned by running process.
4613  * The freelist is build up as a single linked list in the objects.
4614  * The idea is, that this detached freelist can then be bulk
4615  * transferred to the real freelist(s), but only requiring a single
4616  * synchronization primitive.  Look ahead in the array is limited due
4617  * to performance reasons.
4618  */
4619 static inline
4620 int build_detached_freelist(struct kmem_cache *s, size_t size,
4621 			    void **p, struct detached_freelist *df)
4622 {
4623 	int lookahead = 3;
4624 	void *object;
4625 	struct folio *folio;
4626 	size_t same;
4627 
4628 	object = p[--size];
4629 	folio = virt_to_folio(object);
4630 	if (!s) {
4631 		/* Handle kalloc'ed objects */
4632 		if (unlikely(!folio_test_slab(folio))) {
4633 			free_large_kmalloc(folio, object);
4634 			df->slab = NULL;
4635 			return size;
4636 		}
4637 		/* Derive kmem_cache from object */
4638 		df->slab = folio_slab(folio);
4639 		df->s = df->slab->slab_cache;
4640 	} else {
4641 		df->slab = folio_slab(folio);
4642 		df->s = cache_from_obj(s, object); /* Support for memcg */
4643 	}
4644 
4645 	/* Start new detached freelist */
4646 	df->tail = object;
4647 	df->freelist = object;
4648 	df->cnt = 1;
4649 
4650 	if (is_kfence_address(object))
4651 		return size;
4652 
4653 	set_freepointer(df->s, object, NULL);
4654 
4655 	same = size;
4656 	while (size) {
4657 		object = p[--size];
4658 		/* df->slab is always set at this point */
4659 		if (df->slab == virt_to_slab(object)) {
4660 			/* Opportunity build freelist */
4661 			set_freepointer(df->s, object, df->freelist);
4662 			df->freelist = object;
4663 			df->cnt++;
4664 			same--;
4665 			if (size != same)
4666 				swap(p[size], p[same]);
4667 			continue;
4668 		}
4669 
4670 		/* Limit look ahead search */
4671 		if (!--lookahead)
4672 			break;
4673 	}
4674 
4675 	return same;
4676 }
4677 
4678 /*
4679  * Internal bulk free of objects that were not initialised by the post alloc
4680  * hooks and thus should not be processed by the free hooks
4681  */
4682 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4683 {
4684 	if (!size)
4685 		return;
4686 
4687 	do {
4688 		struct detached_freelist df;
4689 
4690 		size = build_detached_freelist(s, size, p, &df);
4691 		if (!df.slab)
4692 			continue;
4693 
4694 		if (kfence_free(df.freelist))
4695 			continue;
4696 
4697 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4698 			     _RET_IP_);
4699 	} while (likely(size));
4700 }
4701 
4702 /* Note that interrupts must be enabled when calling this function. */
4703 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4704 {
4705 	if (!size)
4706 		return;
4707 
4708 	do {
4709 		struct detached_freelist df;
4710 
4711 		size = build_detached_freelist(s, size, p, &df);
4712 		if (!df.slab)
4713 			continue;
4714 
4715 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4716 			       df.cnt, _RET_IP_);
4717 	} while (likely(size));
4718 }
4719 EXPORT_SYMBOL(kmem_cache_free_bulk);
4720 
4721 #ifndef CONFIG_SLUB_TINY
4722 static inline
4723 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4724 			    void **p)
4725 {
4726 	struct kmem_cache_cpu *c;
4727 	unsigned long irqflags;
4728 	int i;
4729 
4730 	/*
4731 	 * Drain objects in the per cpu slab, while disabling local
4732 	 * IRQs, which protects against PREEMPT and interrupts
4733 	 * handlers invoking normal fastpath.
4734 	 */
4735 	c = slub_get_cpu_ptr(s->cpu_slab);
4736 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4737 
4738 	for (i = 0; i < size; i++) {
4739 		void *object = kfence_alloc(s, s->object_size, flags);
4740 
4741 		if (unlikely(object)) {
4742 			p[i] = object;
4743 			continue;
4744 		}
4745 
4746 		object = c->freelist;
4747 		if (unlikely(!object)) {
4748 			/*
4749 			 * We may have removed an object from c->freelist using
4750 			 * the fastpath in the previous iteration; in that case,
4751 			 * c->tid has not been bumped yet.
4752 			 * Since ___slab_alloc() may reenable interrupts while
4753 			 * allocating memory, we should bump c->tid now.
4754 			 */
4755 			c->tid = next_tid(c->tid);
4756 
4757 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4758 
4759 			/*
4760 			 * Invoking slow path likely have side-effect
4761 			 * of re-populating per CPU c->freelist
4762 			 */
4763 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4764 					    _RET_IP_, c, s->object_size);
4765 			if (unlikely(!p[i]))
4766 				goto error;
4767 
4768 			c = this_cpu_ptr(s->cpu_slab);
4769 			maybe_wipe_obj_freeptr(s, p[i]);
4770 
4771 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4772 
4773 			continue; /* goto for-loop */
4774 		}
4775 		c->freelist = get_freepointer(s, object);
4776 		p[i] = object;
4777 		maybe_wipe_obj_freeptr(s, p[i]);
4778 		stat(s, ALLOC_FASTPATH);
4779 	}
4780 	c->tid = next_tid(c->tid);
4781 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4782 	slub_put_cpu_ptr(s->cpu_slab);
4783 
4784 	return i;
4785 
4786 error:
4787 	slub_put_cpu_ptr(s->cpu_slab);
4788 	__kmem_cache_free_bulk(s, i, p);
4789 	return 0;
4790 
4791 }
4792 #else /* CONFIG_SLUB_TINY */
4793 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4794 				   size_t size, void **p)
4795 {
4796 	int i;
4797 
4798 	for (i = 0; i < size; i++) {
4799 		void *object = kfence_alloc(s, s->object_size, flags);
4800 
4801 		if (unlikely(object)) {
4802 			p[i] = object;
4803 			continue;
4804 		}
4805 
4806 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4807 					 _RET_IP_, s->object_size);
4808 		if (unlikely(!p[i]))
4809 			goto error;
4810 
4811 		maybe_wipe_obj_freeptr(s, p[i]);
4812 	}
4813 
4814 	return i;
4815 
4816 error:
4817 	__kmem_cache_free_bulk(s, i, p);
4818 	return 0;
4819 }
4820 #endif /* CONFIG_SLUB_TINY */
4821 
4822 /* Note that interrupts must be enabled when calling this function. */
4823 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4824 				 void **p)
4825 {
4826 	int i;
4827 
4828 	if (!size)
4829 		return 0;
4830 
4831 	s = slab_pre_alloc_hook(s, flags);
4832 	if (unlikely(!s))
4833 		return 0;
4834 
4835 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4836 	if (unlikely(i == 0))
4837 		return 0;
4838 
4839 	/*
4840 	 * memcg and kmem_cache debug support and memory initialization.
4841 	 * Done outside of the IRQ disabled fastpath loop.
4842 	 */
4843 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4844 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4845 		return 0;
4846 	}
4847 	return i;
4848 }
4849 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4850 
4851 
4852 /*
4853  * Object placement in a slab is made very easy because we always start at
4854  * offset 0. If we tune the size of the object to the alignment then we can
4855  * get the required alignment by putting one properly sized object after
4856  * another.
4857  *
4858  * Notice that the allocation order determines the sizes of the per cpu
4859  * caches. Each processor has always one slab available for allocations.
4860  * Increasing the allocation order reduces the number of times that slabs
4861  * must be moved on and off the partial lists and is therefore a factor in
4862  * locking overhead.
4863  */
4864 
4865 /*
4866  * Minimum / Maximum order of slab pages. This influences locking overhead
4867  * and slab fragmentation. A higher order reduces the number of partial slabs
4868  * and increases the number of allocations possible without having to
4869  * take the list_lock.
4870  */
4871 static unsigned int slub_min_order;
4872 static unsigned int slub_max_order =
4873 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4874 static unsigned int slub_min_objects;
4875 
4876 /*
4877  * Calculate the order of allocation given an slab object size.
4878  *
4879  * The order of allocation has significant impact on performance and other
4880  * system components. Generally order 0 allocations should be preferred since
4881  * order 0 does not cause fragmentation in the page allocator. Larger objects
4882  * be problematic to put into order 0 slabs because there may be too much
4883  * unused space left. We go to a higher order if more than 1/16th of the slab
4884  * would be wasted.
4885  *
4886  * In order to reach satisfactory performance we must ensure that a minimum
4887  * number of objects is in one slab. Otherwise we may generate too much
4888  * activity on the partial lists which requires taking the list_lock. This is
4889  * less a concern for large slabs though which are rarely used.
4890  *
4891  * slab_max_order specifies the order where we begin to stop considering the
4892  * number of objects in a slab as critical. If we reach slab_max_order then
4893  * we try to keep the page order as low as possible. So we accept more waste
4894  * of space in favor of a small page order.
4895  *
4896  * Higher order allocations also allow the placement of more objects in a
4897  * slab and thereby reduce object handling overhead. If the user has
4898  * requested a higher minimum order then we start with that one instead of
4899  * the smallest order which will fit the object.
4900  */
4901 static inline unsigned int calc_slab_order(unsigned int size,
4902 		unsigned int min_order, unsigned int max_order,
4903 		unsigned int fract_leftover)
4904 {
4905 	unsigned int order;
4906 
4907 	for (order = min_order; order <= max_order; order++) {
4908 
4909 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4910 		unsigned int rem;
4911 
4912 		rem = slab_size % size;
4913 
4914 		if (rem <= slab_size / fract_leftover)
4915 			break;
4916 	}
4917 
4918 	return order;
4919 }
4920 
4921 static inline int calculate_order(unsigned int size)
4922 {
4923 	unsigned int order;
4924 	unsigned int min_objects;
4925 	unsigned int max_objects;
4926 	unsigned int min_order;
4927 
4928 	min_objects = slub_min_objects;
4929 	if (!min_objects) {
4930 		/*
4931 		 * Some architectures will only update present cpus when
4932 		 * onlining them, so don't trust the number if it's just 1. But
4933 		 * we also don't want to use nr_cpu_ids always, as on some other
4934 		 * architectures, there can be many possible cpus, but never
4935 		 * onlined. Here we compromise between trying to avoid too high
4936 		 * order on systems that appear larger than they are, and too
4937 		 * low order on systems that appear smaller than they are.
4938 		 */
4939 		unsigned int nr_cpus = num_present_cpus();
4940 		if (nr_cpus <= 1)
4941 			nr_cpus = nr_cpu_ids;
4942 		min_objects = 4 * (fls(nr_cpus) + 1);
4943 	}
4944 	/* min_objects can't be 0 because get_order(0) is undefined */
4945 	max_objects = max(order_objects(slub_max_order, size), 1U);
4946 	min_objects = min(min_objects, max_objects);
4947 
4948 	min_order = max_t(unsigned int, slub_min_order,
4949 			  get_order(min_objects * size));
4950 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4951 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4952 
4953 	/*
4954 	 * Attempt to find best configuration for a slab. This works by first
4955 	 * attempting to generate a layout with the best possible configuration
4956 	 * and backing off gradually.
4957 	 *
4958 	 * We start with accepting at most 1/16 waste and try to find the
4959 	 * smallest order from min_objects-derived/slab_min_order up to
4960 	 * slab_max_order that will satisfy the constraint. Note that increasing
4961 	 * the order can only result in same or less fractional waste, not more.
4962 	 *
4963 	 * If that fails, we increase the acceptable fraction of waste and try
4964 	 * again. The last iteration with fraction of 1/2 would effectively
4965 	 * accept any waste and give us the order determined by min_objects, as
4966 	 * long as at least single object fits within slab_max_order.
4967 	 */
4968 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4969 		order = calc_slab_order(size, min_order, slub_max_order,
4970 					fraction);
4971 		if (order <= slub_max_order)
4972 			return order;
4973 	}
4974 
4975 	/*
4976 	 * Doh this slab cannot be placed using slab_max_order.
4977 	 */
4978 	order = get_order(size);
4979 	if (order <= MAX_PAGE_ORDER)
4980 		return order;
4981 	return -ENOSYS;
4982 }
4983 
4984 static void
4985 init_kmem_cache_node(struct kmem_cache_node *n)
4986 {
4987 	n->nr_partial = 0;
4988 	spin_lock_init(&n->list_lock);
4989 	INIT_LIST_HEAD(&n->partial);
4990 #ifdef CONFIG_SLUB_DEBUG
4991 	atomic_long_set(&n->nr_slabs, 0);
4992 	atomic_long_set(&n->total_objects, 0);
4993 	INIT_LIST_HEAD(&n->full);
4994 #endif
4995 }
4996 
4997 #ifndef CONFIG_SLUB_TINY
4998 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4999 {
5000 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5001 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5002 			sizeof(struct kmem_cache_cpu));
5003 
5004 	/*
5005 	 * Must align to double word boundary for the double cmpxchg
5006 	 * instructions to work; see __pcpu_double_call_return_bool().
5007 	 */
5008 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5009 				     2 * sizeof(void *));
5010 
5011 	if (!s->cpu_slab)
5012 		return 0;
5013 
5014 	init_kmem_cache_cpus(s);
5015 
5016 	return 1;
5017 }
5018 #else
5019 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5020 {
5021 	return 1;
5022 }
5023 #endif /* CONFIG_SLUB_TINY */
5024 
5025 static struct kmem_cache *kmem_cache_node;
5026 
5027 /*
5028  * No kmalloc_node yet so do it by hand. We know that this is the first
5029  * slab on the node for this slabcache. There are no concurrent accesses
5030  * possible.
5031  *
5032  * Note that this function only works on the kmem_cache_node
5033  * when allocating for the kmem_cache_node. This is used for bootstrapping
5034  * memory on a fresh node that has no slab structures yet.
5035  */
5036 static void early_kmem_cache_node_alloc(int node)
5037 {
5038 	struct slab *slab;
5039 	struct kmem_cache_node *n;
5040 
5041 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5042 
5043 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5044 
5045 	BUG_ON(!slab);
5046 	if (slab_nid(slab) != node) {
5047 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5048 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5049 	}
5050 
5051 	n = slab->freelist;
5052 	BUG_ON(!n);
5053 #ifdef CONFIG_SLUB_DEBUG
5054 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5055 #endif
5056 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5057 	slab->freelist = get_freepointer(kmem_cache_node, n);
5058 	slab->inuse = 1;
5059 	kmem_cache_node->node[node] = n;
5060 	init_kmem_cache_node(n);
5061 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5062 
5063 	/*
5064 	 * No locks need to be taken here as it has just been
5065 	 * initialized and there is no concurrent access.
5066 	 */
5067 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5068 }
5069 
5070 static void free_kmem_cache_nodes(struct kmem_cache *s)
5071 {
5072 	int node;
5073 	struct kmem_cache_node *n;
5074 
5075 	for_each_kmem_cache_node(s, node, n) {
5076 		s->node[node] = NULL;
5077 		kmem_cache_free(kmem_cache_node, n);
5078 	}
5079 }
5080 
5081 void __kmem_cache_release(struct kmem_cache *s)
5082 {
5083 	cache_random_seq_destroy(s);
5084 #ifndef CONFIG_SLUB_TINY
5085 	free_percpu(s->cpu_slab);
5086 #endif
5087 	free_kmem_cache_nodes(s);
5088 }
5089 
5090 static int init_kmem_cache_nodes(struct kmem_cache *s)
5091 {
5092 	int node;
5093 
5094 	for_each_node_mask(node, slab_nodes) {
5095 		struct kmem_cache_node *n;
5096 
5097 		if (slab_state == DOWN) {
5098 			early_kmem_cache_node_alloc(node);
5099 			continue;
5100 		}
5101 		n = kmem_cache_alloc_node(kmem_cache_node,
5102 						GFP_KERNEL, node);
5103 
5104 		if (!n) {
5105 			free_kmem_cache_nodes(s);
5106 			return 0;
5107 		}
5108 
5109 		init_kmem_cache_node(n);
5110 		s->node[node] = n;
5111 	}
5112 	return 1;
5113 }
5114 
5115 static void set_cpu_partial(struct kmem_cache *s)
5116 {
5117 #ifdef CONFIG_SLUB_CPU_PARTIAL
5118 	unsigned int nr_objects;
5119 
5120 	/*
5121 	 * cpu_partial determined the maximum number of objects kept in the
5122 	 * per cpu partial lists of a processor.
5123 	 *
5124 	 * Per cpu partial lists mainly contain slabs that just have one
5125 	 * object freed. If they are used for allocation then they can be
5126 	 * filled up again with minimal effort. The slab will never hit the
5127 	 * per node partial lists and therefore no locking will be required.
5128 	 *
5129 	 * For backwards compatibility reasons, this is determined as number
5130 	 * of objects, even though we now limit maximum number of pages, see
5131 	 * slub_set_cpu_partial()
5132 	 */
5133 	if (!kmem_cache_has_cpu_partial(s))
5134 		nr_objects = 0;
5135 	else if (s->size >= PAGE_SIZE)
5136 		nr_objects = 6;
5137 	else if (s->size >= 1024)
5138 		nr_objects = 24;
5139 	else if (s->size >= 256)
5140 		nr_objects = 52;
5141 	else
5142 		nr_objects = 120;
5143 
5144 	slub_set_cpu_partial(s, nr_objects);
5145 #endif
5146 }
5147 
5148 /* Was a valid freeptr offset requested? */
5149 static inline bool has_freeptr_offset(const struct kmem_cache *s)
5150 {
5151 	return s->rcu_freeptr_offset != UINT_MAX;
5152 }
5153 
5154 /*
5155  * calculate_sizes() determines the order and the distribution of data within
5156  * a slab object.
5157  */
5158 static int calculate_sizes(struct kmem_cache *s)
5159 {
5160 	slab_flags_t flags = s->flags;
5161 	unsigned int size = s->object_size;
5162 	unsigned int order;
5163 
5164 	/*
5165 	 * Round up object size to the next word boundary. We can only
5166 	 * place the free pointer at word boundaries and this determines
5167 	 * the possible location of the free pointer.
5168 	 */
5169 	size = ALIGN(size, sizeof(void *));
5170 
5171 #ifdef CONFIG_SLUB_DEBUG
5172 	/*
5173 	 * Determine if we can poison the object itself. If the user of
5174 	 * the slab may touch the object after free or before allocation
5175 	 * then we should never poison the object itself.
5176 	 */
5177 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5178 			!s->ctor)
5179 		s->flags |= __OBJECT_POISON;
5180 	else
5181 		s->flags &= ~__OBJECT_POISON;
5182 
5183 
5184 	/*
5185 	 * If we are Redzoning then check if there is some space between the
5186 	 * end of the object and the free pointer. If not then add an
5187 	 * additional word to have some bytes to store Redzone information.
5188 	 */
5189 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5190 		size += sizeof(void *);
5191 #endif
5192 
5193 	/*
5194 	 * With that we have determined the number of bytes in actual use
5195 	 * by the object and redzoning.
5196 	 */
5197 	s->inuse = size;
5198 
5199 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !has_freeptr_offset(s)) ||
5200 	    (flags & SLAB_POISON) || s->ctor ||
5201 	    ((flags & SLAB_RED_ZONE) &&
5202 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5203 		/*
5204 		 * Relocate free pointer after the object if it is not
5205 		 * permitted to overwrite the first word of the object on
5206 		 * kmem_cache_free.
5207 		 *
5208 		 * This is the case if we do RCU, have a constructor or
5209 		 * destructor, are poisoning the objects, or are
5210 		 * redzoning an object smaller than sizeof(void *) or are
5211 		 * redzoning an object with slub_debug_orig_size() enabled,
5212 		 * in which case the right redzone may be extended.
5213 		 *
5214 		 * The assumption that s->offset >= s->inuse means free
5215 		 * pointer is outside of the object is used in the
5216 		 * freeptr_outside_object() function. If that is no
5217 		 * longer true, the function needs to be modified.
5218 		 */
5219 		s->offset = size;
5220 		size += sizeof(void *);
5221 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && has_freeptr_offset(s)) {
5222 		s->offset = s->rcu_freeptr_offset;
5223 	} else {
5224 		/*
5225 		 * Store freelist pointer near middle of object to keep
5226 		 * it away from the edges of the object to avoid small
5227 		 * sized over/underflows from neighboring allocations.
5228 		 */
5229 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5230 	}
5231 
5232 #ifdef CONFIG_SLUB_DEBUG
5233 	if (flags & SLAB_STORE_USER) {
5234 		/*
5235 		 * Need to store information about allocs and frees after
5236 		 * the object.
5237 		 */
5238 		size += 2 * sizeof(struct track);
5239 
5240 		/* Save the original kmalloc request size */
5241 		if (flags & SLAB_KMALLOC)
5242 			size += sizeof(unsigned int);
5243 	}
5244 #endif
5245 
5246 	kasan_cache_create(s, &size, &s->flags);
5247 #ifdef CONFIG_SLUB_DEBUG
5248 	if (flags & SLAB_RED_ZONE) {
5249 		/*
5250 		 * Add some empty padding so that we can catch
5251 		 * overwrites from earlier objects rather than let
5252 		 * tracking information or the free pointer be
5253 		 * corrupted if a user writes before the start
5254 		 * of the object.
5255 		 */
5256 		size += sizeof(void *);
5257 
5258 		s->red_left_pad = sizeof(void *);
5259 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5260 		size += s->red_left_pad;
5261 	}
5262 #endif
5263 
5264 	/*
5265 	 * SLUB stores one object immediately after another beginning from
5266 	 * offset 0. In order to align the objects we have to simply size
5267 	 * each object to conform to the alignment.
5268 	 */
5269 	size = ALIGN(size, s->align);
5270 	s->size = size;
5271 	s->reciprocal_size = reciprocal_value(size);
5272 	order = calculate_order(size);
5273 
5274 	if ((int)order < 0)
5275 		return 0;
5276 
5277 	s->allocflags = __GFP_COMP;
5278 
5279 	if (s->flags & SLAB_CACHE_DMA)
5280 		s->allocflags |= GFP_DMA;
5281 
5282 	if (s->flags & SLAB_CACHE_DMA32)
5283 		s->allocflags |= GFP_DMA32;
5284 
5285 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5286 		s->allocflags |= __GFP_RECLAIMABLE;
5287 
5288 	/*
5289 	 * Determine the number of objects per slab
5290 	 */
5291 	s->oo = oo_make(order, size);
5292 	s->min = oo_make(get_order(size), size);
5293 
5294 	return !!oo_objects(s->oo);
5295 }
5296 
5297 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5298 {
5299 	s->flags = kmem_cache_flags(flags, s->name);
5300 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5301 	s->random = get_random_long();
5302 #endif
5303 
5304 	if (!calculate_sizes(s))
5305 		goto error;
5306 	if (disable_higher_order_debug) {
5307 		/*
5308 		 * Disable debugging flags that store metadata if the min slab
5309 		 * order increased.
5310 		 */
5311 		if (get_order(s->size) > get_order(s->object_size)) {
5312 			s->flags &= ~DEBUG_METADATA_FLAGS;
5313 			s->offset = 0;
5314 			if (!calculate_sizes(s))
5315 				goto error;
5316 		}
5317 	}
5318 
5319 #ifdef system_has_freelist_aba
5320 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5321 		/* Enable fast mode */
5322 		s->flags |= __CMPXCHG_DOUBLE;
5323 	}
5324 #endif
5325 
5326 	/*
5327 	 * The larger the object size is, the more slabs we want on the partial
5328 	 * list to avoid pounding the page allocator excessively.
5329 	 */
5330 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5331 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5332 
5333 	set_cpu_partial(s);
5334 
5335 #ifdef CONFIG_NUMA
5336 	s->remote_node_defrag_ratio = 1000;
5337 #endif
5338 
5339 	/* Initialize the pre-computed randomized freelist if slab is up */
5340 	if (slab_state >= UP) {
5341 		if (init_cache_random_seq(s))
5342 			goto error;
5343 	}
5344 
5345 	if (!init_kmem_cache_nodes(s))
5346 		goto error;
5347 
5348 	if (alloc_kmem_cache_cpus(s))
5349 		return 0;
5350 
5351 error:
5352 	__kmem_cache_release(s);
5353 	return -EINVAL;
5354 }
5355 
5356 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5357 			      const char *text)
5358 {
5359 #ifdef CONFIG_SLUB_DEBUG
5360 	void *addr = slab_address(slab);
5361 	void *p;
5362 
5363 	slab_err(s, slab, text, s->name);
5364 
5365 	spin_lock(&object_map_lock);
5366 	__fill_map(object_map, s, slab);
5367 
5368 	for_each_object(p, s, addr, slab->objects) {
5369 
5370 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5371 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5372 			print_tracking(s, p);
5373 		}
5374 	}
5375 	spin_unlock(&object_map_lock);
5376 #endif
5377 }
5378 
5379 /*
5380  * Attempt to free all partial slabs on a node.
5381  * This is called from __kmem_cache_shutdown(). We must take list_lock
5382  * because sysfs file might still access partial list after the shutdowning.
5383  */
5384 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5385 {
5386 	LIST_HEAD(discard);
5387 	struct slab *slab, *h;
5388 
5389 	BUG_ON(irqs_disabled());
5390 	spin_lock_irq(&n->list_lock);
5391 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5392 		if (!slab->inuse) {
5393 			remove_partial(n, slab);
5394 			list_add(&slab->slab_list, &discard);
5395 		} else {
5396 			list_slab_objects(s, slab,
5397 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5398 		}
5399 	}
5400 	spin_unlock_irq(&n->list_lock);
5401 
5402 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5403 		discard_slab(s, slab);
5404 }
5405 
5406 bool __kmem_cache_empty(struct kmem_cache *s)
5407 {
5408 	int node;
5409 	struct kmem_cache_node *n;
5410 
5411 	for_each_kmem_cache_node(s, node, n)
5412 		if (n->nr_partial || node_nr_slabs(n))
5413 			return false;
5414 	return true;
5415 }
5416 
5417 /*
5418  * Release all resources used by a slab cache.
5419  */
5420 int __kmem_cache_shutdown(struct kmem_cache *s)
5421 {
5422 	int node;
5423 	struct kmem_cache_node *n;
5424 
5425 	flush_all_cpus_locked(s);
5426 	/* Attempt to free all objects */
5427 	for_each_kmem_cache_node(s, node, n) {
5428 		free_partial(s, n);
5429 		if (n->nr_partial || node_nr_slabs(n))
5430 			return 1;
5431 	}
5432 	return 0;
5433 }
5434 
5435 #ifdef CONFIG_PRINTK
5436 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5437 {
5438 	void *base;
5439 	int __maybe_unused i;
5440 	unsigned int objnr;
5441 	void *objp;
5442 	void *objp0;
5443 	struct kmem_cache *s = slab->slab_cache;
5444 	struct track __maybe_unused *trackp;
5445 
5446 	kpp->kp_ptr = object;
5447 	kpp->kp_slab = slab;
5448 	kpp->kp_slab_cache = s;
5449 	base = slab_address(slab);
5450 	objp0 = kasan_reset_tag(object);
5451 #ifdef CONFIG_SLUB_DEBUG
5452 	objp = restore_red_left(s, objp0);
5453 #else
5454 	objp = objp0;
5455 #endif
5456 	objnr = obj_to_index(s, slab, objp);
5457 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5458 	objp = base + s->size * objnr;
5459 	kpp->kp_objp = objp;
5460 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5461 			 || (objp - base) % s->size) ||
5462 	    !(s->flags & SLAB_STORE_USER))
5463 		return;
5464 #ifdef CONFIG_SLUB_DEBUG
5465 	objp = fixup_red_left(s, objp);
5466 	trackp = get_track(s, objp, TRACK_ALLOC);
5467 	kpp->kp_ret = (void *)trackp->addr;
5468 #ifdef CONFIG_STACKDEPOT
5469 	{
5470 		depot_stack_handle_t handle;
5471 		unsigned long *entries;
5472 		unsigned int nr_entries;
5473 
5474 		handle = READ_ONCE(trackp->handle);
5475 		if (handle) {
5476 			nr_entries = stack_depot_fetch(handle, &entries);
5477 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5478 				kpp->kp_stack[i] = (void *)entries[i];
5479 		}
5480 
5481 		trackp = get_track(s, objp, TRACK_FREE);
5482 		handle = READ_ONCE(trackp->handle);
5483 		if (handle) {
5484 			nr_entries = stack_depot_fetch(handle, &entries);
5485 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5486 				kpp->kp_free_stack[i] = (void *)entries[i];
5487 		}
5488 	}
5489 #endif
5490 #endif
5491 }
5492 #endif
5493 
5494 /********************************************************************
5495  *		Kmalloc subsystem
5496  *******************************************************************/
5497 
5498 static int __init setup_slub_min_order(char *str)
5499 {
5500 	get_option(&str, (int *)&slub_min_order);
5501 
5502 	if (slub_min_order > slub_max_order)
5503 		slub_max_order = slub_min_order;
5504 
5505 	return 1;
5506 }
5507 
5508 __setup("slab_min_order=", setup_slub_min_order);
5509 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5510 
5511 
5512 static int __init setup_slub_max_order(char *str)
5513 {
5514 	get_option(&str, (int *)&slub_max_order);
5515 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5516 
5517 	if (slub_min_order > slub_max_order)
5518 		slub_min_order = slub_max_order;
5519 
5520 	return 1;
5521 }
5522 
5523 __setup("slab_max_order=", setup_slub_max_order);
5524 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5525 
5526 static int __init setup_slub_min_objects(char *str)
5527 {
5528 	get_option(&str, (int *)&slub_min_objects);
5529 
5530 	return 1;
5531 }
5532 
5533 __setup("slab_min_objects=", setup_slub_min_objects);
5534 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5535 
5536 #ifdef CONFIG_HARDENED_USERCOPY
5537 /*
5538  * Rejects incorrectly sized objects and objects that are to be copied
5539  * to/from userspace but do not fall entirely within the containing slab
5540  * cache's usercopy region.
5541  *
5542  * Returns NULL if check passes, otherwise const char * to name of cache
5543  * to indicate an error.
5544  */
5545 void __check_heap_object(const void *ptr, unsigned long n,
5546 			 const struct slab *slab, bool to_user)
5547 {
5548 	struct kmem_cache *s;
5549 	unsigned int offset;
5550 	bool is_kfence = is_kfence_address(ptr);
5551 
5552 	ptr = kasan_reset_tag(ptr);
5553 
5554 	/* Find object and usable object size. */
5555 	s = slab->slab_cache;
5556 
5557 	/* Reject impossible pointers. */
5558 	if (ptr < slab_address(slab))
5559 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5560 			       to_user, 0, n);
5561 
5562 	/* Find offset within object. */
5563 	if (is_kfence)
5564 		offset = ptr - kfence_object_start(ptr);
5565 	else
5566 		offset = (ptr - slab_address(slab)) % s->size;
5567 
5568 	/* Adjust for redzone and reject if within the redzone. */
5569 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5570 		if (offset < s->red_left_pad)
5571 			usercopy_abort("SLUB object in left red zone",
5572 				       s->name, to_user, offset, n);
5573 		offset -= s->red_left_pad;
5574 	}
5575 
5576 	/* Allow address range falling entirely within usercopy region. */
5577 	if (offset >= s->useroffset &&
5578 	    offset - s->useroffset <= s->usersize &&
5579 	    n <= s->useroffset - offset + s->usersize)
5580 		return;
5581 
5582 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5583 }
5584 #endif /* CONFIG_HARDENED_USERCOPY */
5585 
5586 #define SHRINK_PROMOTE_MAX 32
5587 
5588 /*
5589  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5590  * up most to the head of the partial lists. New allocations will then
5591  * fill those up and thus they can be removed from the partial lists.
5592  *
5593  * The slabs with the least items are placed last. This results in them
5594  * being allocated from last increasing the chance that the last objects
5595  * are freed in them.
5596  */
5597 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5598 {
5599 	int node;
5600 	int i;
5601 	struct kmem_cache_node *n;
5602 	struct slab *slab;
5603 	struct slab *t;
5604 	struct list_head discard;
5605 	struct list_head promote[SHRINK_PROMOTE_MAX];
5606 	unsigned long flags;
5607 	int ret = 0;
5608 
5609 	for_each_kmem_cache_node(s, node, n) {
5610 		INIT_LIST_HEAD(&discard);
5611 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5612 			INIT_LIST_HEAD(promote + i);
5613 
5614 		spin_lock_irqsave(&n->list_lock, flags);
5615 
5616 		/*
5617 		 * Build lists of slabs to discard or promote.
5618 		 *
5619 		 * Note that concurrent frees may occur while we hold the
5620 		 * list_lock. slab->inuse here is the upper limit.
5621 		 */
5622 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5623 			int free = slab->objects - slab->inuse;
5624 
5625 			/* Do not reread slab->inuse */
5626 			barrier();
5627 
5628 			/* We do not keep full slabs on the list */
5629 			BUG_ON(free <= 0);
5630 
5631 			if (free == slab->objects) {
5632 				list_move(&slab->slab_list, &discard);
5633 				slab_clear_node_partial(slab);
5634 				n->nr_partial--;
5635 				dec_slabs_node(s, node, slab->objects);
5636 			} else if (free <= SHRINK_PROMOTE_MAX)
5637 				list_move(&slab->slab_list, promote + free - 1);
5638 		}
5639 
5640 		/*
5641 		 * Promote the slabs filled up most to the head of the
5642 		 * partial list.
5643 		 */
5644 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5645 			list_splice(promote + i, &n->partial);
5646 
5647 		spin_unlock_irqrestore(&n->list_lock, flags);
5648 
5649 		/* Release empty slabs */
5650 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5651 			free_slab(s, slab);
5652 
5653 		if (node_nr_slabs(n))
5654 			ret = 1;
5655 	}
5656 
5657 	return ret;
5658 }
5659 
5660 int __kmem_cache_shrink(struct kmem_cache *s)
5661 {
5662 	flush_all(s);
5663 	return __kmem_cache_do_shrink(s);
5664 }
5665 
5666 static int slab_mem_going_offline_callback(void *arg)
5667 {
5668 	struct kmem_cache *s;
5669 
5670 	mutex_lock(&slab_mutex);
5671 	list_for_each_entry(s, &slab_caches, list) {
5672 		flush_all_cpus_locked(s);
5673 		__kmem_cache_do_shrink(s);
5674 	}
5675 	mutex_unlock(&slab_mutex);
5676 
5677 	return 0;
5678 }
5679 
5680 static void slab_mem_offline_callback(void *arg)
5681 {
5682 	struct memory_notify *marg = arg;
5683 	int offline_node;
5684 
5685 	offline_node = marg->status_change_nid_normal;
5686 
5687 	/*
5688 	 * If the node still has available memory. we need kmem_cache_node
5689 	 * for it yet.
5690 	 */
5691 	if (offline_node < 0)
5692 		return;
5693 
5694 	mutex_lock(&slab_mutex);
5695 	node_clear(offline_node, slab_nodes);
5696 	/*
5697 	 * We no longer free kmem_cache_node structures here, as it would be
5698 	 * racy with all get_node() users, and infeasible to protect them with
5699 	 * slab_mutex.
5700 	 */
5701 	mutex_unlock(&slab_mutex);
5702 }
5703 
5704 static int slab_mem_going_online_callback(void *arg)
5705 {
5706 	struct kmem_cache_node *n;
5707 	struct kmem_cache *s;
5708 	struct memory_notify *marg = arg;
5709 	int nid = marg->status_change_nid_normal;
5710 	int ret = 0;
5711 
5712 	/*
5713 	 * If the node's memory is already available, then kmem_cache_node is
5714 	 * already created. Nothing to do.
5715 	 */
5716 	if (nid < 0)
5717 		return 0;
5718 
5719 	/*
5720 	 * We are bringing a node online. No memory is available yet. We must
5721 	 * allocate a kmem_cache_node structure in order to bring the node
5722 	 * online.
5723 	 */
5724 	mutex_lock(&slab_mutex);
5725 	list_for_each_entry(s, &slab_caches, list) {
5726 		/*
5727 		 * The structure may already exist if the node was previously
5728 		 * onlined and offlined.
5729 		 */
5730 		if (get_node(s, nid))
5731 			continue;
5732 		/*
5733 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5734 		 *      since memory is not yet available from the node that
5735 		 *      is brought up.
5736 		 */
5737 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5738 		if (!n) {
5739 			ret = -ENOMEM;
5740 			goto out;
5741 		}
5742 		init_kmem_cache_node(n);
5743 		s->node[nid] = n;
5744 	}
5745 	/*
5746 	 * Any cache created after this point will also have kmem_cache_node
5747 	 * initialized for the new node.
5748 	 */
5749 	node_set(nid, slab_nodes);
5750 out:
5751 	mutex_unlock(&slab_mutex);
5752 	return ret;
5753 }
5754 
5755 static int slab_memory_callback(struct notifier_block *self,
5756 				unsigned long action, void *arg)
5757 {
5758 	int ret = 0;
5759 
5760 	switch (action) {
5761 	case MEM_GOING_ONLINE:
5762 		ret = slab_mem_going_online_callback(arg);
5763 		break;
5764 	case MEM_GOING_OFFLINE:
5765 		ret = slab_mem_going_offline_callback(arg);
5766 		break;
5767 	case MEM_OFFLINE:
5768 	case MEM_CANCEL_ONLINE:
5769 		slab_mem_offline_callback(arg);
5770 		break;
5771 	case MEM_ONLINE:
5772 	case MEM_CANCEL_OFFLINE:
5773 		break;
5774 	}
5775 	if (ret)
5776 		ret = notifier_from_errno(ret);
5777 	else
5778 		ret = NOTIFY_OK;
5779 	return ret;
5780 }
5781 
5782 /********************************************************************
5783  *			Basic setup of slabs
5784  *******************************************************************/
5785 
5786 /*
5787  * Used for early kmem_cache structures that were allocated using
5788  * the page allocator. Allocate them properly then fix up the pointers
5789  * that may be pointing to the wrong kmem_cache structure.
5790  */
5791 
5792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5793 {
5794 	int node;
5795 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5796 	struct kmem_cache_node *n;
5797 
5798 	memcpy(s, static_cache, kmem_cache->object_size);
5799 
5800 	/*
5801 	 * This runs very early, and only the boot processor is supposed to be
5802 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5803 	 * IPIs around.
5804 	 */
5805 	__flush_cpu_slab(s, smp_processor_id());
5806 	for_each_kmem_cache_node(s, node, n) {
5807 		struct slab *p;
5808 
5809 		list_for_each_entry(p, &n->partial, slab_list)
5810 			p->slab_cache = s;
5811 
5812 #ifdef CONFIG_SLUB_DEBUG
5813 		list_for_each_entry(p, &n->full, slab_list)
5814 			p->slab_cache = s;
5815 #endif
5816 	}
5817 	list_add(&s->list, &slab_caches);
5818 	return s;
5819 }
5820 
5821 void __init kmem_cache_init(void)
5822 {
5823 	static __initdata struct kmem_cache boot_kmem_cache,
5824 		boot_kmem_cache_node;
5825 	int node;
5826 
5827 	if (debug_guardpage_minorder())
5828 		slub_max_order = 0;
5829 
5830 	/* Print slub debugging pointers without hashing */
5831 	if (__slub_debug_enabled())
5832 		no_hash_pointers_enable(NULL);
5833 
5834 	kmem_cache_node = &boot_kmem_cache_node;
5835 	kmem_cache = &boot_kmem_cache;
5836 
5837 	/*
5838 	 * Initialize the nodemask for which we will allocate per node
5839 	 * structures. Here we don't need taking slab_mutex yet.
5840 	 */
5841 	for_each_node_state(node, N_NORMAL_MEMORY)
5842 		node_set(node, slab_nodes);
5843 
5844 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5845 			sizeof(struct kmem_cache_node),
5846 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5847 
5848 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5849 
5850 	/* Able to allocate the per node structures */
5851 	slab_state = PARTIAL;
5852 
5853 	create_boot_cache(kmem_cache, "kmem_cache",
5854 			offsetof(struct kmem_cache, node) +
5855 				nr_node_ids * sizeof(struct kmem_cache_node *),
5856 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5857 
5858 	kmem_cache = bootstrap(&boot_kmem_cache);
5859 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5860 
5861 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5862 	setup_kmalloc_cache_index_table();
5863 	create_kmalloc_caches();
5864 
5865 	/* Setup random freelists for each cache */
5866 	init_freelist_randomization();
5867 
5868 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5869 				  slub_cpu_dead);
5870 
5871 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5872 		cache_line_size(),
5873 		slub_min_order, slub_max_order, slub_min_objects,
5874 		nr_cpu_ids, nr_node_ids);
5875 }
5876 
5877 void __init kmem_cache_init_late(void)
5878 {
5879 #ifndef CONFIG_SLUB_TINY
5880 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5881 	WARN_ON(!flushwq);
5882 #endif
5883 }
5884 
5885 struct kmem_cache *
5886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5887 		   slab_flags_t flags, void (*ctor)(void *))
5888 {
5889 	struct kmem_cache *s;
5890 
5891 	s = find_mergeable(size, align, flags, name, ctor);
5892 	if (s) {
5893 		if (sysfs_slab_alias(s, name))
5894 			return NULL;
5895 
5896 		s->refcount++;
5897 
5898 		/*
5899 		 * Adjust the object sizes so that we clear
5900 		 * the complete object on kzalloc.
5901 		 */
5902 		s->object_size = max(s->object_size, size);
5903 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5904 	}
5905 
5906 	return s;
5907 }
5908 
5909 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5910 {
5911 	int err;
5912 
5913 	err = kmem_cache_open(s, flags);
5914 	if (err)
5915 		return err;
5916 
5917 	/* Mutex is not taken during early boot */
5918 	if (slab_state <= UP)
5919 		return 0;
5920 
5921 	err = sysfs_slab_add(s);
5922 	if (err) {
5923 		__kmem_cache_release(s);
5924 		return err;
5925 	}
5926 
5927 	if (s->flags & SLAB_STORE_USER)
5928 		debugfs_slab_add(s);
5929 
5930 	return 0;
5931 }
5932 
5933 #ifdef SLAB_SUPPORTS_SYSFS
5934 static int count_inuse(struct slab *slab)
5935 {
5936 	return slab->inuse;
5937 }
5938 
5939 static int count_total(struct slab *slab)
5940 {
5941 	return slab->objects;
5942 }
5943 #endif
5944 
5945 #ifdef CONFIG_SLUB_DEBUG
5946 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5947 			  unsigned long *obj_map)
5948 {
5949 	void *p;
5950 	void *addr = slab_address(slab);
5951 
5952 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5953 		return;
5954 
5955 	/* Now we know that a valid freelist exists */
5956 	__fill_map(obj_map, s, slab);
5957 	for_each_object(p, s, addr, slab->objects) {
5958 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5959 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5960 
5961 		if (!check_object(s, slab, p, val))
5962 			break;
5963 	}
5964 }
5965 
5966 static int validate_slab_node(struct kmem_cache *s,
5967 		struct kmem_cache_node *n, unsigned long *obj_map)
5968 {
5969 	unsigned long count = 0;
5970 	struct slab *slab;
5971 	unsigned long flags;
5972 
5973 	spin_lock_irqsave(&n->list_lock, flags);
5974 
5975 	list_for_each_entry(slab, &n->partial, slab_list) {
5976 		validate_slab(s, slab, obj_map);
5977 		count++;
5978 	}
5979 	if (count != n->nr_partial) {
5980 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5981 		       s->name, count, n->nr_partial);
5982 		slab_add_kunit_errors();
5983 	}
5984 
5985 	if (!(s->flags & SLAB_STORE_USER))
5986 		goto out;
5987 
5988 	list_for_each_entry(slab, &n->full, slab_list) {
5989 		validate_slab(s, slab, obj_map);
5990 		count++;
5991 	}
5992 	if (count != node_nr_slabs(n)) {
5993 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5994 		       s->name, count, node_nr_slabs(n));
5995 		slab_add_kunit_errors();
5996 	}
5997 
5998 out:
5999 	spin_unlock_irqrestore(&n->list_lock, flags);
6000 	return count;
6001 }
6002 
6003 long validate_slab_cache(struct kmem_cache *s)
6004 {
6005 	int node;
6006 	unsigned long count = 0;
6007 	struct kmem_cache_node *n;
6008 	unsigned long *obj_map;
6009 
6010 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6011 	if (!obj_map)
6012 		return -ENOMEM;
6013 
6014 	flush_all(s);
6015 	for_each_kmem_cache_node(s, node, n)
6016 		count += validate_slab_node(s, n, obj_map);
6017 
6018 	bitmap_free(obj_map);
6019 
6020 	return count;
6021 }
6022 EXPORT_SYMBOL(validate_slab_cache);
6023 
6024 #ifdef CONFIG_DEBUG_FS
6025 /*
6026  * Generate lists of code addresses where slabcache objects are allocated
6027  * and freed.
6028  */
6029 
6030 struct location {
6031 	depot_stack_handle_t handle;
6032 	unsigned long count;
6033 	unsigned long addr;
6034 	unsigned long waste;
6035 	long long sum_time;
6036 	long min_time;
6037 	long max_time;
6038 	long min_pid;
6039 	long max_pid;
6040 	DECLARE_BITMAP(cpus, NR_CPUS);
6041 	nodemask_t nodes;
6042 };
6043 
6044 struct loc_track {
6045 	unsigned long max;
6046 	unsigned long count;
6047 	struct location *loc;
6048 	loff_t idx;
6049 };
6050 
6051 static struct dentry *slab_debugfs_root;
6052 
6053 static void free_loc_track(struct loc_track *t)
6054 {
6055 	if (t->max)
6056 		free_pages((unsigned long)t->loc,
6057 			get_order(sizeof(struct location) * t->max));
6058 }
6059 
6060 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6061 {
6062 	struct location *l;
6063 	int order;
6064 
6065 	order = get_order(sizeof(struct location) * max);
6066 
6067 	l = (void *)__get_free_pages(flags, order);
6068 	if (!l)
6069 		return 0;
6070 
6071 	if (t->count) {
6072 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6073 		free_loc_track(t);
6074 	}
6075 	t->max = max;
6076 	t->loc = l;
6077 	return 1;
6078 }
6079 
6080 static int add_location(struct loc_track *t, struct kmem_cache *s,
6081 				const struct track *track,
6082 				unsigned int orig_size)
6083 {
6084 	long start, end, pos;
6085 	struct location *l;
6086 	unsigned long caddr, chandle, cwaste;
6087 	unsigned long age = jiffies - track->when;
6088 	depot_stack_handle_t handle = 0;
6089 	unsigned int waste = s->object_size - orig_size;
6090 
6091 #ifdef CONFIG_STACKDEPOT
6092 	handle = READ_ONCE(track->handle);
6093 #endif
6094 	start = -1;
6095 	end = t->count;
6096 
6097 	for ( ; ; ) {
6098 		pos = start + (end - start + 1) / 2;
6099 
6100 		/*
6101 		 * There is nothing at "end". If we end up there
6102 		 * we need to add something to before end.
6103 		 */
6104 		if (pos == end)
6105 			break;
6106 
6107 		l = &t->loc[pos];
6108 		caddr = l->addr;
6109 		chandle = l->handle;
6110 		cwaste = l->waste;
6111 		if ((track->addr == caddr) && (handle == chandle) &&
6112 			(waste == cwaste)) {
6113 
6114 			l->count++;
6115 			if (track->when) {
6116 				l->sum_time += age;
6117 				if (age < l->min_time)
6118 					l->min_time = age;
6119 				if (age > l->max_time)
6120 					l->max_time = age;
6121 
6122 				if (track->pid < l->min_pid)
6123 					l->min_pid = track->pid;
6124 				if (track->pid > l->max_pid)
6125 					l->max_pid = track->pid;
6126 
6127 				cpumask_set_cpu(track->cpu,
6128 						to_cpumask(l->cpus));
6129 			}
6130 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6131 			return 1;
6132 		}
6133 
6134 		if (track->addr < caddr)
6135 			end = pos;
6136 		else if (track->addr == caddr && handle < chandle)
6137 			end = pos;
6138 		else if (track->addr == caddr && handle == chandle &&
6139 				waste < cwaste)
6140 			end = pos;
6141 		else
6142 			start = pos;
6143 	}
6144 
6145 	/*
6146 	 * Not found. Insert new tracking element.
6147 	 */
6148 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6149 		return 0;
6150 
6151 	l = t->loc + pos;
6152 	if (pos < t->count)
6153 		memmove(l + 1, l,
6154 			(t->count - pos) * sizeof(struct location));
6155 	t->count++;
6156 	l->count = 1;
6157 	l->addr = track->addr;
6158 	l->sum_time = age;
6159 	l->min_time = age;
6160 	l->max_time = age;
6161 	l->min_pid = track->pid;
6162 	l->max_pid = track->pid;
6163 	l->handle = handle;
6164 	l->waste = waste;
6165 	cpumask_clear(to_cpumask(l->cpus));
6166 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6167 	nodes_clear(l->nodes);
6168 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6169 	return 1;
6170 }
6171 
6172 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6173 		struct slab *slab, enum track_item alloc,
6174 		unsigned long *obj_map)
6175 {
6176 	void *addr = slab_address(slab);
6177 	bool is_alloc = (alloc == TRACK_ALLOC);
6178 	void *p;
6179 
6180 	__fill_map(obj_map, s, slab);
6181 
6182 	for_each_object(p, s, addr, slab->objects)
6183 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6184 			add_location(t, s, get_track(s, p, alloc),
6185 				     is_alloc ? get_orig_size(s, p) :
6186 						s->object_size);
6187 }
6188 #endif  /* CONFIG_DEBUG_FS   */
6189 #endif	/* CONFIG_SLUB_DEBUG */
6190 
6191 #ifdef SLAB_SUPPORTS_SYSFS
6192 enum slab_stat_type {
6193 	SL_ALL,			/* All slabs */
6194 	SL_PARTIAL,		/* Only partially allocated slabs */
6195 	SL_CPU,			/* Only slabs used for cpu caches */
6196 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6197 	SL_TOTAL		/* Determine object capacity not slabs */
6198 };
6199 
6200 #define SO_ALL		(1 << SL_ALL)
6201 #define SO_PARTIAL	(1 << SL_PARTIAL)
6202 #define SO_CPU		(1 << SL_CPU)
6203 #define SO_OBJECTS	(1 << SL_OBJECTS)
6204 #define SO_TOTAL	(1 << SL_TOTAL)
6205 
6206 static ssize_t show_slab_objects(struct kmem_cache *s,
6207 				 char *buf, unsigned long flags)
6208 {
6209 	unsigned long total = 0;
6210 	int node;
6211 	int x;
6212 	unsigned long *nodes;
6213 	int len = 0;
6214 
6215 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6216 	if (!nodes)
6217 		return -ENOMEM;
6218 
6219 	if (flags & SO_CPU) {
6220 		int cpu;
6221 
6222 		for_each_possible_cpu(cpu) {
6223 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6224 							       cpu);
6225 			int node;
6226 			struct slab *slab;
6227 
6228 			slab = READ_ONCE(c->slab);
6229 			if (!slab)
6230 				continue;
6231 
6232 			node = slab_nid(slab);
6233 			if (flags & SO_TOTAL)
6234 				x = slab->objects;
6235 			else if (flags & SO_OBJECTS)
6236 				x = slab->inuse;
6237 			else
6238 				x = 1;
6239 
6240 			total += x;
6241 			nodes[node] += x;
6242 
6243 #ifdef CONFIG_SLUB_CPU_PARTIAL
6244 			slab = slub_percpu_partial_read_once(c);
6245 			if (slab) {
6246 				node = slab_nid(slab);
6247 				if (flags & SO_TOTAL)
6248 					WARN_ON_ONCE(1);
6249 				else if (flags & SO_OBJECTS)
6250 					WARN_ON_ONCE(1);
6251 				else
6252 					x = data_race(slab->slabs);
6253 				total += x;
6254 				nodes[node] += x;
6255 			}
6256 #endif
6257 		}
6258 	}
6259 
6260 	/*
6261 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6262 	 * already held which will conflict with an existing lock order:
6263 	 *
6264 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6265 	 *
6266 	 * We don't really need mem_hotplug_lock (to hold off
6267 	 * slab_mem_going_offline_callback) here because slab's memory hot
6268 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6269 	 */
6270 
6271 #ifdef CONFIG_SLUB_DEBUG
6272 	if (flags & SO_ALL) {
6273 		struct kmem_cache_node *n;
6274 
6275 		for_each_kmem_cache_node(s, node, n) {
6276 
6277 			if (flags & SO_TOTAL)
6278 				x = node_nr_objs(n);
6279 			else if (flags & SO_OBJECTS)
6280 				x = node_nr_objs(n) - count_partial(n, count_free);
6281 			else
6282 				x = node_nr_slabs(n);
6283 			total += x;
6284 			nodes[node] += x;
6285 		}
6286 
6287 	} else
6288 #endif
6289 	if (flags & SO_PARTIAL) {
6290 		struct kmem_cache_node *n;
6291 
6292 		for_each_kmem_cache_node(s, node, n) {
6293 			if (flags & SO_TOTAL)
6294 				x = count_partial(n, count_total);
6295 			else if (flags & SO_OBJECTS)
6296 				x = count_partial(n, count_inuse);
6297 			else
6298 				x = n->nr_partial;
6299 			total += x;
6300 			nodes[node] += x;
6301 		}
6302 	}
6303 
6304 	len += sysfs_emit_at(buf, len, "%lu", total);
6305 #ifdef CONFIG_NUMA
6306 	for (node = 0; node < nr_node_ids; node++) {
6307 		if (nodes[node])
6308 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6309 					     node, nodes[node]);
6310 	}
6311 #endif
6312 	len += sysfs_emit_at(buf, len, "\n");
6313 	kfree(nodes);
6314 
6315 	return len;
6316 }
6317 
6318 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6319 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6320 
6321 struct slab_attribute {
6322 	struct attribute attr;
6323 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6324 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6325 };
6326 
6327 #define SLAB_ATTR_RO(_name) \
6328 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6329 
6330 #define SLAB_ATTR(_name) \
6331 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6332 
6333 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6334 {
6335 	return sysfs_emit(buf, "%u\n", s->size);
6336 }
6337 SLAB_ATTR_RO(slab_size);
6338 
6339 static ssize_t align_show(struct kmem_cache *s, char *buf)
6340 {
6341 	return sysfs_emit(buf, "%u\n", s->align);
6342 }
6343 SLAB_ATTR_RO(align);
6344 
6345 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6346 {
6347 	return sysfs_emit(buf, "%u\n", s->object_size);
6348 }
6349 SLAB_ATTR_RO(object_size);
6350 
6351 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6352 {
6353 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6354 }
6355 SLAB_ATTR_RO(objs_per_slab);
6356 
6357 static ssize_t order_show(struct kmem_cache *s, char *buf)
6358 {
6359 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6360 }
6361 SLAB_ATTR_RO(order);
6362 
6363 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6364 {
6365 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6366 }
6367 
6368 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6369 				 size_t length)
6370 {
6371 	unsigned long min;
6372 	int err;
6373 
6374 	err = kstrtoul(buf, 10, &min);
6375 	if (err)
6376 		return err;
6377 
6378 	s->min_partial = min;
6379 	return length;
6380 }
6381 SLAB_ATTR(min_partial);
6382 
6383 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6384 {
6385 	unsigned int nr_partial = 0;
6386 #ifdef CONFIG_SLUB_CPU_PARTIAL
6387 	nr_partial = s->cpu_partial;
6388 #endif
6389 
6390 	return sysfs_emit(buf, "%u\n", nr_partial);
6391 }
6392 
6393 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6394 				 size_t length)
6395 {
6396 	unsigned int objects;
6397 	int err;
6398 
6399 	err = kstrtouint(buf, 10, &objects);
6400 	if (err)
6401 		return err;
6402 	if (objects && !kmem_cache_has_cpu_partial(s))
6403 		return -EINVAL;
6404 
6405 	slub_set_cpu_partial(s, objects);
6406 	flush_all(s);
6407 	return length;
6408 }
6409 SLAB_ATTR(cpu_partial);
6410 
6411 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6412 {
6413 	if (!s->ctor)
6414 		return 0;
6415 	return sysfs_emit(buf, "%pS\n", s->ctor);
6416 }
6417 SLAB_ATTR_RO(ctor);
6418 
6419 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6420 {
6421 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6422 }
6423 SLAB_ATTR_RO(aliases);
6424 
6425 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6426 {
6427 	return show_slab_objects(s, buf, SO_PARTIAL);
6428 }
6429 SLAB_ATTR_RO(partial);
6430 
6431 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6432 {
6433 	return show_slab_objects(s, buf, SO_CPU);
6434 }
6435 SLAB_ATTR_RO(cpu_slabs);
6436 
6437 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6438 {
6439 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6440 }
6441 SLAB_ATTR_RO(objects_partial);
6442 
6443 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6444 {
6445 	int objects = 0;
6446 	int slabs = 0;
6447 	int cpu __maybe_unused;
6448 	int len = 0;
6449 
6450 #ifdef CONFIG_SLUB_CPU_PARTIAL
6451 	for_each_online_cpu(cpu) {
6452 		struct slab *slab;
6453 
6454 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6455 
6456 		if (slab)
6457 			slabs += data_race(slab->slabs);
6458 	}
6459 #endif
6460 
6461 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6462 	objects = (slabs * oo_objects(s->oo)) / 2;
6463 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6464 
6465 #ifdef CONFIG_SLUB_CPU_PARTIAL
6466 	for_each_online_cpu(cpu) {
6467 		struct slab *slab;
6468 
6469 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6470 		if (slab) {
6471 			slabs = data_race(slab->slabs);
6472 			objects = (slabs * oo_objects(s->oo)) / 2;
6473 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6474 					     cpu, objects, slabs);
6475 		}
6476 	}
6477 #endif
6478 	len += sysfs_emit_at(buf, len, "\n");
6479 
6480 	return len;
6481 }
6482 SLAB_ATTR_RO(slabs_cpu_partial);
6483 
6484 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6485 {
6486 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6487 }
6488 SLAB_ATTR_RO(reclaim_account);
6489 
6490 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6491 {
6492 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6493 }
6494 SLAB_ATTR_RO(hwcache_align);
6495 
6496 #ifdef CONFIG_ZONE_DMA
6497 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6498 {
6499 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6500 }
6501 SLAB_ATTR_RO(cache_dma);
6502 #endif
6503 
6504 #ifdef CONFIG_HARDENED_USERCOPY
6505 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6506 {
6507 	return sysfs_emit(buf, "%u\n", s->usersize);
6508 }
6509 SLAB_ATTR_RO(usersize);
6510 #endif
6511 
6512 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6513 {
6514 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6515 }
6516 SLAB_ATTR_RO(destroy_by_rcu);
6517 
6518 #ifdef CONFIG_SLUB_DEBUG
6519 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6520 {
6521 	return show_slab_objects(s, buf, SO_ALL);
6522 }
6523 SLAB_ATTR_RO(slabs);
6524 
6525 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6526 {
6527 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6528 }
6529 SLAB_ATTR_RO(total_objects);
6530 
6531 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6532 {
6533 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6534 }
6535 SLAB_ATTR_RO(objects);
6536 
6537 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6538 {
6539 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6540 }
6541 SLAB_ATTR_RO(sanity_checks);
6542 
6543 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6544 {
6545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6546 }
6547 SLAB_ATTR_RO(trace);
6548 
6549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6550 {
6551 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6552 }
6553 
6554 SLAB_ATTR_RO(red_zone);
6555 
6556 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6557 {
6558 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6559 }
6560 
6561 SLAB_ATTR_RO(poison);
6562 
6563 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6564 {
6565 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6566 }
6567 
6568 SLAB_ATTR_RO(store_user);
6569 
6570 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6571 {
6572 	return 0;
6573 }
6574 
6575 static ssize_t validate_store(struct kmem_cache *s,
6576 			const char *buf, size_t length)
6577 {
6578 	int ret = -EINVAL;
6579 
6580 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6581 		ret = validate_slab_cache(s);
6582 		if (ret >= 0)
6583 			ret = length;
6584 	}
6585 	return ret;
6586 }
6587 SLAB_ATTR(validate);
6588 
6589 #endif /* CONFIG_SLUB_DEBUG */
6590 
6591 #ifdef CONFIG_FAILSLAB
6592 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6593 {
6594 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6595 }
6596 
6597 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6598 				size_t length)
6599 {
6600 	if (s->refcount > 1)
6601 		return -EINVAL;
6602 
6603 	if (buf[0] == '1')
6604 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6605 	else
6606 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6607 
6608 	return length;
6609 }
6610 SLAB_ATTR(failslab);
6611 #endif
6612 
6613 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6614 {
6615 	return 0;
6616 }
6617 
6618 static ssize_t shrink_store(struct kmem_cache *s,
6619 			const char *buf, size_t length)
6620 {
6621 	if (buf[0] == '1')
6622 		kmem_cache_shrink(s);
6623 	else
6624 		return -EINVAL;
6625 	return length;
6626 }
6627 SLAB_ATTR(shrink);
6628 
6629 #ifdef CONFIG_NUMA
6630 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6631 {
6632 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6633 }
6634 
6635 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6636 				const char *buf, size_t length)
6637 {
6638 	unsigned int ratio;
6639 	int err;
6640 
6641 	err = kstrtouint(buf, 10, &ratio);
6642 	if (err)
6643 		return err;
6644 	if (ratio > 100)
6645 		return -ERANGE;
6646 
6647 	s->remote_node_defrag_ratio = ratio * 10;
6648 
6649 	return length;
6650 }
6651 SLAB_ATTR(remote_node_defrag_ratio);
6652 #endif
6653 
6654 #ifdef CONFIG_SLUB_STATS
6655 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6656 {
6657 	unsigned long sum  = 0;
6658 	int cpu;
6659 	int len = 0;
6660 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6661 
6662 	if (!data)
6663 		return -ENOMEM;
6664 
6665 	for_each_online_cpu(cpu) {
6666 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6667 
6668 		data[cpu] = x;
6669 		sum += x;
6670 	}
6671 
6672 	len += sysfs_emit_at(buf, len, "%lu", sum);
6673 
6674 #ifdef CONFIG_SMP
6675 	for_each_online_cpu(cpu) {
6676 		if (data[cpu])
6677 			len += sysfs_emit_at(buf, len, " C%d=%u",
6678 					     cpu, data[cpu]);
6679 	}
6680 #endif
6681 	kfree(data);
6682 	len += sysfs_emit_at(buf, len, "\n");
6683 
6684 	return len;
6685 }
6686 
6687 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6688 {
6689 	int cpu;
6690 
6691 	for_each_online_cpu(cpu)
6692 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6693 }
6694 
6695 #define STAT_ATTR(si, text) 					\
6696 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6697 {								\
6698 	return show_stat(s, buf, si);				\
6699 }								\
6700 static ssize_t text##_store(struct kmem_cache *s,		\
6701 				const char *buf, size_t length)	\
6702 {								\
6703 	if (buf[0] != '0')					\
6704 		return -EINVAL;					\
6705 	clear_stat(s, si);					\
6706 	return length;						\
6707 }								\
6708 SLAB_ATTR(text);						\
6709 
6710 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6711 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6712 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6713 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6714 STAT_ATTR(FREE_FROZEN, free_frozen);
6715 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6716 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6717 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6718 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6719 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6720 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6721 STAT_ATTR(FREE_SLAB, free_slab);
6722 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6723 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6724 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6725 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6726 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6727 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6728 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6729 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6730 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6731 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6732 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6733 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6734 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6735 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6736 #endif	/* CONFIG_SLUB_STATS */
6737 
6738 #ifdef CONFIG_KFENCE
6739 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6740 {
6741 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6742 }
6743 
6744 static ssize_t skip_kfence_store(struct kmem_cache *s,
6745 			const char *buf, size_t length)
6746 {
6747 	int ret = length;
6748 
6749 	if (buf[0] == '0')
6750 		s->flags &= ~SLAB_SKIP_KFENCE;
6751 	else if (buf[0] == '1')
6752 		s->flags |= SLAB_SKIP_KFENCE;
6753 	else
6754 		ret = -EINVAL;
6755 
6756 	return ret;
6757 }
6758 SLAB_ATTR(skip_kfence);
6759 #endif
6760 
6761 static struct attribute *slab_attrs[] = {
6762 	&slab_size_attr.attr,
6763 	&object_size_attr.attr,
6764 	&objs_per_slab_attr.attr,
6765 	&order_attr.attr,
6766 	&min_partial_attr.attr,
6767 	&cpu_partial_attr.attr,
6768 	&objects_partial_attr.attr,
6769 	&partial_attr.attr,
6770 	&cpu_slabs_attr.attr,
6771 	&ctor_attr.attr,
6772 	&aliases_attr.attr,
6773 	&align_attr.attr,
6774 	&hwcache_align_attr.attr,
6775 	&reclaim_account_attr.attr,
6776 	&destroy_by_rcu_attr.attr,
6777 	&shrink_attr.attr,
6778 	&slabs_cpu_partial_attr.attr,
6779 #ifdef CONFIG_SLUB_DEBUG
6780 	&total_objects_attr.attr,
6781 	&objects_attr.attr,
6782 	&slabs_attr.attr,
6783 	&sanity_checks_attr.attr,
6784 	&trace_attr.attr,
6785 	&red_zone_attr.attr,
6786 	&poison_attr.attr,
6787 	&store_user_attr.attr,
6788 	&validate_attr.attr,
6789 #endif
6790 #ifdef CONFIG_ZONE_DMA
6791 	&cache_dma_attr.attr,
6792 #endif
6793 #ifdef CONFIG_NUMA
6794 	&remote_node_defrag_ratio_attr.attr,
6795 #endif
6796 #ifdef CONFIG_SLUB_STATS
6797 	&alloc_fastpath_attr.attr,
6798 	&alloc_slowpath_attr.attr,
6799 	&free_fastpath_attr.attr,
6800 	&free_slowpath_attr.attr,
6801 	&free_frozen_attr.attr,
6802 	&free_add_partial_attr.attr,
6803 	&free_remove_partial_attr.attr,
6804 	&alloc_from_partial_attr.attr,
6805 	&alloc_slab_attr.attr,
6806 	&alloc_refill_attr.attr,
6807 	&alloc_node_mismatch_attr.attr,
6808 	&free_slab_attr.attr,
6809 	&cpuslab_flush_attr.attr,
6810 	&deactivate_full_attr.attr,
6811 	&deactivate_empty_attr.attr,
6812 	&deactivate_to_head_attr.attr,
6813 	&deactivate_to_tail_attr.attr,
6814 	&deactivate_remote_frees_attr.attr,
6815 	&deactivate_bypass_attr.attr,
6816 	&order_fallback_attr.attr,
6817 	&cmpxchg_double_fail_attr.attr,
6818 	&cmpxchg_double_cpu_fail_attr.attr,
6819 	&cpu_partial_alloc_attr.attr,
6820 	&cpu_partial_free_attr.attr,
6821 	&cpu_partial_node_attr.attr,
6822 	&cpu_partial_drain_attr.attr,
6823 #endif
6824 #ifdef CONFIG_FAILSLAB
6825 	&failslab_attr.attr,
6826 #endif
6827 #ifdef CONFIG_HARDENED_USERCOPY
6828 	&usersize_attr.attr,
6829 #endif
6830 #ifdef CONFIG_KFENCE
6831 	&skip_kfence_attr.attr,
6832 #endif
6833 
6834 	NULL
6835 };
6836 
6837 static const struct attribute_group slab_attr_group = {
6838 	.attrs = slab_attrs,
6839 };
6840 
6841 static ssize_t slab_attr_show(struct kobject *kobj,
6842 				struct attribute *attr,
6843 				char *buf)
6844 {
6845 	struct slab_attribute *attribute;
6846 	struct kmem_cache *s;
6847 
6848 	attribute = to_slab_attr(attr);
6849 	s = to_slab(kobj);
6850 
6851 	if (!attribute->show)
6852 		return -EIO;
6853 
6854 	return attribute->show(s, buf);
6855 }
6856 
6857 static ssize_t slab_attr_store(struct kobject *kobj,
6858 				struct attribute *attr,
6859 				const char *buf, size_t len)
6860 {
6861 	struct slab_attribute *attribute;
6862 	struct kmem_cache *s;
6863 
6864 	attribute = to_slab_attr(attr);
6865 	s = to_slab(kobj);
6866 
6867 	if (!attribute->store)
6868 		return -EIO;
6869 
6870 	return attribute->store(s, buf, len);
6871 }
6872 
6873 static void kmem_cache_release(struct kobject *k)
6874 {
6875 	slab_kmem_cache_release(to_slab(k));
6876 }
6877 
6878 static const struct sysfs_ops slab_sysfs_ops = {
6879 	.show = slab_attr_show,
6880 	.store = slab_attr_store,
6881 };
6882 
6883 static const struct kobj_type slab_ktype = {
6884 	.sysfs_ops = &slab_sysfs_ops,
6885 	.release = kmem_cache_release,
6886 };
6887 
6888 static struct kset *slab_kset;
6889 
6890 static inline struct kset *cache_kset(struct kmem_cache *s)
6891 {
6892 	return slab_kset;
6893 }
6894 
6895 #define ID_STR_LENGTH 32
6896 
6897 /* Create a unique string id for a slab cache:
6898  *
6899  * Format	:[flags-]size
6900  */
6901 static char *create_unique_id(struct kmem_cache *s)
6902 {
6903 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6904 	char *p = name;
6905 
6906 	if (!name)
6907 		return ERR_PTR(-ENOMEM);
6908 
6909 	*p++ = ':';
6910 	/*
6911 	 * First flags affecting slabcache operations. We will only
6912 	 * get here for aliasable slabs so we do not need to support
6913 	 * too many flags. The flags here must cover all flags that
6914 	 * are matched during merging to guarantee that the id is
6915 	 * unique.
6916 	 */
6917 	if (s->flags & SLAB_CACHE_DMA)
6918 		*p++ = 'd';
6919 	if (s->flags & SLAB_CACHE_DMA32)
6920 		*p++ = 'D';
6921 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6922 		*p++ = 'a';
6923 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6924 		*p++ = 'F';
6925 	if (s->flags & SLAB_ACCOUNT)
6926 		*p++ = 'A';
6927 	if (p != name + 1)
6928 		*p++ = '-';
6929 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6930 
6931 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6932 		kfree(name);
6933 		return ERR_PTR(-EINVAL);
6934 	}
6935 	kmsan_unpoison_memory(name, p - name);
6936 	return name;
6937 }
6938 
6939 static int sysfs_slab_add(struct kmem_cache *s)
6940 {
6941 	int err;
6942 	const char *name;
6943 	struct kset *kset = cache_kset(s);
6944 	int unmergeable = slab_unmergeable(s);
6945 
6946 	if (!unmergeable && disable_higher_order_debug &&
6947 			(slub_debug & DEBUG_METADATA_FLAGS))
6948 		unmergeable = 1;
6949 
6950 	if (unmergeable) {
6951 		/*
6952 		 * Slabcache can never be merged so we can use the name proper.
6953 		 * This is typically the case for debug situations. In that
6954 		 * case we can catch duplicate names easily.
6955 		 */
6956 		sysfs_remove_link(&slab_kset->kobj, s->name);
6957 		name = s->name;
6958 	} else {
6959 		/*
6960 		 * Create a unique name for the slab as a target
6961 		 * for the symlinks.
6962 		 */
6963 		name = create_unique_id(s);
6964 		if (IS_ERR(name))
6965 			return PTR_ERR(name);
6966 	}
6967 
6968 	s->kobj.kset = kset;
6969 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6970 	if (err)
6971 		goto out;
6972 
6973 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6974 	if (err)
6975 		goto out_del_kobj;
6976 
6977 	if (!unmergeable) {
6978 		/* Setup first alias */
6979 		sysfs_slab_alias(s, s->name);
6980 	}
6981 out:
6982 	if (!unmergeable)
6983 		kfree(name);
6984 	return err;
6985 out_del_kobj:
6986 	kobject_del(&s->kobj);
6987 	goto out;
6988 }
6989 
6990 void sysfs_slab_unlink(struct kmem_cache *s)
6991 {
6992 	kobject_del(&s->kobj);
6993 }
6994 
6995 void sysfs_slab_release(struct kmem_cache *s)
6996 {
6997 	kobject_put(&s->kobj);
6998 }
6999 
7000 /*
7001  * Need to buffer aliases during bootup until sysfs becomes
7002  * available lest we lose that information.
7003  */
7004 struct saved_alias {
7005 	struct kmem_cache *s;
7006 	const char *name;
7007 	struct saved_alias *next;
7008 };
7009 
7010 static struct saved_alias *alias_list;
7011 
7012 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7013 {
7014 	struct saved_alias *al;
7015 
7016 	if (slab_state == FULL) {
7017 		/*
7018 		 * If we have a leftover link then remove it.
7019 		 */
7020 		sysfs_remove_link(&slab_kset->kobj, name);
7021 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7022 	}
7023 
7024 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7025 	if (!al)
7026 		return -ENOMEM;
7027 
7028 	al->s = s;
7029 	al->name = name;
7030 	al->next = alias_list;
7031 	alias_list = al;
7032 	kmsan_unpoison_memory(al, sizeof(*al));
7033 	return 0;
7034 }
7035 
7036 static int __init slab_sysfs_init(void)
7037 {
7038 	struct kmem_cache *s;
7039 	int err;
7040 
7041 	mutex_lock(&slab_mutex);
7042 
7043 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7044 	if (!slab_kset) {
7045 		mutex_unlock(&slab_mutex);
7046 		pr_err("Cannot register slab subsystem.\n");
7047 		return -ENOMEM;
7048 	}
7049 
7050 	slab_state = FULL;
7051 
7052 	list_for_each_entry(s, &slab_caches, list) {
7053 		err = sysfs_slab_add(s);
7054 		if (err)
7055 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7056 			       s->name);
7057 	}
7058 
7059 	while (alias_list) {
7060 		struct saved_alias *al = alias_list;
7061 
7062 		alias_list = alias_list->next;
7063 		err = sysfs_slab_alias(al->s, al->name);
7064 		if (err)
7065 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7066 			       al->name);
7067 		kfree(al);
7068 	}
7069 
7070 	mutex_unlock(&slab_mutex);
7071 	return 0;
7072 }
7073 late_initcall(slab_sysfs_init);
7074 #endif /* SLAB_SUPPORTS_SYSFS */
7075 
7076 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7077 static int slab_debugfs_show(struct seq_file *seq, void *v)
7078 {
7079 	struct loc_track *t = seq->private;
7080 	struct location *l;
7081 	unsigned long idx;
7082 
7083 	idx = (unsigned long) t->idx;
7084 	if (idx < t->count) {
7085 		l = &t->loc[idx];
7086 
7087 		seq_printf(seq, "%7ld ", l->count);
7088 
7089 		if (l->addr)
7090 			seq_printf(seq, "%pS", (void *)l->addr);
7091 		else
7092 			seq_puts(seq, "<not-available>");
7093 
7094 		if (l->waste)
7095 			seq_printf(seq, " waste=%lu/%lu",
7096 				l->count * l->waste, l->waste);
7097 
7098 		if (l->sum_time != l->min_time) {
7099 			seq_printf(seq, " age=%ld/%llu/%ld",
7100 				l->min_time, div_u64(l->sum_time, l->count),
7101 				l->max_time);
7102 		} else
7103 			seq_printf(seq, " age=%ld", l->min_time);
7104 
7105 		if (l->min_pid != l->max_pid)
7106 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7107 		else
7108 			seq_printf(seq, " pid=%ld",
7109 				l->min_pid);
7110 
7111 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7112 			seq_printf(seq, " cpus=%*pbl",
7113 				 cpumask_pr_args(to_cpumask(l->cpus)));
7114 
7115 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7116 			seq_printf(seq, " nodes=%*pbl",
7117 				 nodemask_pr_args(&l->nodes));
7118 
7119 #ifdef CONFIG_STACKDEPOT
7120 		{
7121 			depot_stack_handle_t handle;
7122 			unsigned long *entries;
7123 			unsigned int nr_entries, j;
7124 
7125 			handle = READ_ONCE(l->handle);
7126 			if (handle) {
7127 				nr_entries = stack_depot_fetch(handle, &entries);
7128 				seq_puts(seq, "\n");
7129 				for (j = 0; j < nr_entries; j++)
7130 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7131 			}
7132 		}
7133 #endif
7134 		seq_puts(seq, "\n");
7135 	}
7136 
7137 	if (!idx && !t->count)
7138 		seq_puts(seq, "No data\n");
7139 
7140 	return 0;
7141 }
7142 
7143 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7144 {
7145 }
7146 
7147 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7148 {
7149 	struct loc_track *t = seq->private;
7150 
7151 	t->idx = ++(*ppos);
7152 	if (*ppos <= t->count)
7153 		return ppos;
7154 
7155 	return NULL;
7156 }
7157 
7158 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7159 {
7160 	struct location *loc1 = (struct location *)a;
7161 	struct location *loc2 = (struct location *)b;
7162 
7163 	if (loc1->count > loc2->count)
7164 		return -1;
7165 	else
7166 		return 1;
7167 }
7168 
7169 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7170 {
7171 	struct loc_track *t = seq->private;
7172 
7173 	t->idx = *ppos;
7174 	return ppos;
7175 }
7176 
7177 static const struct seq_operations slab_debugfs_sops = {
7178 	.start  = slab_debugfs_start,
7179 	.next   = slab_debugfs_next,
7180 	.stop   = slab_debugfs_stop,
7181 	.show   = slab_debugfs_show,
7182 };
7183 
7184 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7185 {
7186 
7187 	struct kmem_cache_node *n;
7188 	enum track_item alloc;
7189 	int node;
7190 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7191 						sizeof(struct loc_track));
7192 	struct kmem_cache *s = file_inode(filep)->i_private;
7193 	unsigned long *obj_map;
7194 
7195 	if (!t)
7196 		return -ENOMEM;
7197 
7198 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7199 	if (!obj_map) {
7200 		seq_release_private(inode, filep);
7201 		return -ENOMEM;
7202 	}
7203 
7204 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7205 		alloc = TRACK_ALLOC;
7206 	else
7207 		alloc = TRACK_FREE;
7208 
7209 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7210 		bitmap_free(obj_map);
7211 		seq_release_private(inode, filep);
7212 		return -ENOMEM;
7213 	}
7214 
7215 	for_each_kmem_cache_node(s, node, n) {
7216 		unsigned long flags;
7217 		struct slab *slab;
7218 
7219 		if (!node_nr_slabs(n))
7220 			continue;
7221 
7222 		spin_lock_irqsave(&n->list_lock, flags);
7223 		list_for_each_entry(slab, &n->partial, slab_list)
7224 			process_slab(t, s, slab, alloc, obj_map);
7225 		list_for_each_entry(slab, &n->full, slab_list)
7226 			process_slab(t, s, slab, alloc, obj_map);
7227 		spin_unlock_irqrestore(&n->list_lock, flags);
7228 	}
7229 
7230 	/* Sort locations by count */
7231 	sort_r(t->loc, t->count, sizeof(struct location),
7232 		cmp_loc_by_count, NULL, NULL);
7233 
7234 	bitmap_free(obj_map);
7235 	return 0;
7236 }
7237 
7238 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7239 {
7240 	struct seq_file *seq = file->private_data;
7241 	struct loc_track *t = seq->private;
7242 
7243 	free_loc_track(t);
7244 	return seq_release_private(inode, file);
7245 }
7246 
7247 static const struct file_operations slab_debugfs_fops = {
7248 	.open    = slab_debug_trace_open,
7249 	.read    = seq_read,
7250 	.llseek  = seq_lseek,
7251 	.release = slab_debug_trace_release,
7252 };
7253 
7254 static void debugfs_slab_add(struct kmem_cache *s)
7255 {
7256 	struct dentry *slab_cache_dir;
7257 
7258 	if (unlikely(!slab_debugfs_root))
7259 		return;
7260 
7261 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7262 
7263 	debugfs_create_file("alloc_traces", 0400,
7264 		slab_cache_dir, s, &slab_debugfs_fops);
7265 
7266 	debugfs_create_file("free_traces", 0400,
7267 		slab_cache_dir, s, &slab_debugfs_fops);
7268 }
7269 
7270 void debugfs_slab_release(struct kmem_cache *s)
7271 {
7272 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7273 }
7274 
7275 static int __init slab_debugfs_init(void)
7276 {
7277 	struct kmem_cache *s;
7278 
7279 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7280 
7281 	list_for_each_entry(s, &slab_caches, list)
7282 		if (s->flags & SLAB_STORE_USER)
7283 			debugfs_slab_add(s);
7284 
7285 	return 0;
7286 
7287 }
7288 __initcall(slab_debugfs_init);
7289 #endif
7290 /*
7291  * The /proc/slabinfo ABI
7292  */
7293 #ifdef CONFIG_SLUB_DEBUG
7294 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7295 {
7296 	unsigned long nr_slabs = 0;
7297 	unsigned long nr_objs = 0;
7298 	unsigned long nr_free = 0;
7299 	int node;
7300 	struct kmem_cache_node *n;
7301 
7302 	for_each_kmem_cache_node(s, node, n) {
7303 		nr_slabs += node_nr_slabs(n);
7304 		nr_objs += node_nr_objs(n);
7305 		nr_free += count_partial_free_approx(n);
7306 	}
7307 
7308 	sinfo->active_objs = nr_objs - nr_free;
7309 	sinfo->num_objs = nr_objs;
7310 	sinfo->active_slabs = nr_slabs;
7311 	sinfo->num_slabs = nr_slabs;
7312 	sinfo->objects_per_slab = oo_objects(s->oo);
7313 	sinfo->cache_order = oo_order(s->oo);
7314 }
7315 #endif /* CONFIG_SLUB_DEBUG */
7316