1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/vmalloc.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/kasan.h> 26 #include <linux/node.h> 27 #include <linux/kmsan.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/mempolicy.h> 31 #include <linux/ctype.h> 32 #include <linux/stackdepot.h> 33 #include <linux/debugobjects.h> 34 #include <linux/kallsyms.h> 35 #include <linux/kfence.h> 36 #include <linux/memory.h> 37 #include <linux/math64.h> 38 #include <linux/fault-inject.h> 39 #include <linux/kmemleak.h> 40 #include <linux/stacktrace.h> 41 #include <linux/prefetch.h> 42 #include <linux/memcontrol.h> 43 #include <linux/random.h> 44 #include <kunit/test.h> 45 #include <kunit/test-bug.h> 46 #include <linux/sort.h> 47 48 #include <linux/debugfs.h> 49 #include <trace/events/kmem.h> 50 51 #include "internal.h" 52 53 /* 54 * Lock order: 55 * 1. slab_mutex (Global Mutex) 56 * 2. node->list_lock (Spinlock) 57 * 3. kmem_cache->cpu_slab->lock (Local lock) 58 * 4. slab_lock(slab) (Only on some arches) 59 * 5. object_map_lock (Only for debugging) 60 * 61 * slab_mutex 62 * 63 * The role of the slab_mutex is to protect the list of all the slabs 64 * and to synchronize major metadata changes to slab cache structures. 65 * Also synchronizes memory hotplug callbacks. 66 * 67 * slab_lock 68 * 69 * The slab_lock is a wrapper around the page lock, thus it is a bit 70 * spinlock. 71 * 72 * The slab_lock is only used on arches that do not have the ability 73 * to do a cmpxchg_double. It only protects: 74 * 75 * A. slab->freelist -> List of free objects in a slab 76 * B. slab->inuse -> Number of objects in use 77 * C. slab->objects -> Number of objects in slab 78 * D. slab->frozen -> frozen state 79 * 80 * Frozen slabs 81 * 82 * If a slab is frozen then it is exempt from list management. It is 83 * the cpu slab which is actively allocated from by the processor that 84 * froze it and it is not on any list. The processor that froze the 85 * slab is the one who can perform list operations on the slab. Other 86 * processors may put objects onto the freelist but the processor that 87 * froze the slab is the only one that can retrieve the objects from the 88 * slab's freelist. 89 * 90 * CPU partial slabs 91 * 92 * The partially empty slabs cached on the CPU partial list are used 93 * for performance reasons, which speeds up the allocation process. 94 * These slabs are not frozen, but are also exempt from list management, 95 * by clearing the SL_partial flag when moving out of the node 96 * partial list. Please see __slab_free() for more details. 97 * 98 * To sum up, the current scheme is: 99 * - node partial slab: SL_partial && !frozen 100 * - cpu partial slab: !SL_partial && !frozen 101 * - cpu slab: !SL_partial && frozen 102 * - full slab: !SL_partial && !frozen 103 * 104 * list_lock 105 * 106 * The list_lock protects the partial and full list on each node and 107 * the partial slab counter. If taken then no new slabs may be added or 108 * removed from the lists nor make the number of partial slabs be modified. 109 * (Note that the total number of slabs is an atomic value that may be 110 * modified without taking the list lock). 111 * 112 * The list_lock is a centralized lock and thus we avoid taking it as 113 * much as possible. As long as SLUB does not have to handle partial 114 * slabs, operations can continue without any centralized lock. F.e. 115 * allocating a long series of objects that fill up slabs does not require 116 * the list lock. 117 * 118 * For debug caches, all allocations are forced to go through a list_lock 119 * protected region to serialize against concurrent validation. 120 * 121 * cpu_slab->lock local lock 122 * 123 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 124 * except the stat counters. This is a percpu structure manipulated only by 125 * the local cpu, so the lock protects against being preempted or interrupted 126 * by an irq. Fast path operations rely on lockless operations instead. 127 * 128 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 129 * which means the lockless fastpath cannot be used as it might interfere with 130 * an in-progress slow path operations. In this case the local lock is always 131 * taken but it still utilizes the freelist for the common operations. 132 * 133 * lockless fastpaths 134 * 135 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 136 * are fully lockless when satisfied from the percpu slab (and when 137 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 138 * They also don't disable preemption or migration or irqs. They rely on 139 * the transaction id (tid) field to detect being preempted or moved to 140 * another cpu. 141 * 142 * irq, preemption, migration considerations 143 * 144 * Interrupts are disabled as part of list_lock or local_lock operations, or 145 * around the slab_lock operation, in order to make the slab allocator safe 146 * to use in the context of an irq. 147 * 148 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 149 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 150 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 151 * doesn't have to be revalidated in each section protected by the local lock. 152 * 153 * SLUB assigns one slab for allocation to each processor. 154 * Allocations only occur from these slabs called cpu slabs. 155 * 156 * Slabs with free elements are kept on a partial list and during regular 157 * operations no list for full slabs is used. If an object in a full slab is 158 * freed then the slab will show up again on the partial lists. 159 * We track full slabs for debugging purposes though because otherwise we 160 * cannot scan all objects. 161 * 162 * Slabs are freed when they become empty. Teardown and setup is 163 * minimal so we rely on the page allocators per cpu caches for 164 * fast frees and allocs. 165 * 166 * slab->frozen The slab is frozen and exempt from list processing. 167 * This means that the slab is dedicated to a purpose 168 * such as satisfying allocations for a specific 169 * processor. Objects may be freed in the slab while 170 * it is frozen but slab_free will then skip the usual 171 * list operations. It is up to the processor holding 172 * the slab to integrate the slab into the slab lists 173 * when the slab is no longer needed. 174 * 175 * One use of this flag is to mark slabs that are 176 * used for allocations. Then such a slab becomes a cpu 177 * slab. The cpu slab may be equipped with an additional 178 * freelist that allows lockless access to 179 * free objects in addition to the regular freelist 180 * that requires the slab lock. 181 * 182 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 183 * options set. This moves slab handling out of 184 * the fast path and disables lockless freelists. 185 */ 186 187 /** 188 * enum slab_flags - How the slab flags bits are used. 189 * @SL_locked: Is locked with slab_lock() 190 * @SL_partial: On the per-node partial list 191 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves 192 * 193 * The slab flags share space with the page flags but some bits have 194 * different interpretations. The high bits are used for information 195 * like zone/node/section. 196 */ 197 enum slab_flags { 198 SL_locked = PG_locked, 199 SL_partial = PG_workingset, /* Historical reasons for this bit */ 200 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */ 201 }; 202 203 /* 204 * We could simply use migrate_disable()/enable() but as long as it's a 205 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 206 */ 207 #ifndef CONFIG_PREEMPT_RT 208 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 209 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 210 #define USE_LOCKLESS_FAST_PATH() (true) 211 #else 212 #define slub_get_cpu_ptr(var) \ 213 ({ \ 214 migrate_disable(); \ 215 this_cpu_ptr(var); \ 216 }) 217 #define slub_put_cpu_ptr(var) \ 218 do { \ 219 (void)(var); \ 220 migrate_enable(); \ 221 } while (0) 222 #define USE_LOCKLESS_FAST_PATH() (false) 223 #endif 224 225 #ifndef CONFIG_SLUB_TINY 226 #define __fastpath_inline __always_inline 227 #else 228 #define __fastpath_inline 229 #endif 230 231 #ifdef CONFIG_SLUB_DEBUG 232 #ifdef CONFIG_SLUB_DEBUG_ON 233 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 234 #else 235 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 236 #endif 237 #endif /* CONFIG_SLUB_DEBUG */ 238 239 #ifdef CONFIG_NUMA 240 static DEFINE_STATIC_KEY_FALSE(strict_numa); 241 #endif 242 243 /* Structure holding parameters for get_partial() call chain */ 244 struct partial_context { 245 gfp_t flags; 246 unsigned int orig_size; 247 void *object; 248 }; 249 250 static inline bool kmem_cache_debug(struct kmem_cache *s) 251 { 252 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 253 } 254 255 void *fixup_red_left(struct kmem_cache *s, void *p) 256 { 257 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 258 p += s->red_left_pad; 259 260 return p; 261 } 262 263 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 264 { 265 #ifdef CONFIG_SLUB_CPU_PARTIAL 266 return !kmem_cache_debug(s); 267 #else 268 return false; 269 #endif 270 } 271 272 /* 273 * Issues still to be resolved: 274 * 275 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 276 * 277 * - Variable sizing of the per node arrays 278 */ 279 280 /* Enable to log cmpxchg failures */ 281 #undef SLUB_DEBUG_CMPXCHG 282 283 #ifndef CONFIG_SLUB_TINY 284 /* 285 * Minimum number of partial slabs. These will be left on the partial 286 * lists even if they are empty. kmem_cache_shrink may reclaim them. 287 */ 288 #define MIN_PARTIAL 5 289 290 /* 291 * Maximum number of desirable partial slabs. 292 * The existence of more partial slabs makes kmem_cache_shrink 293 * sort the partial list by the number of objects in use. 294 */ 295 #define MAX_PARTIAL 10 296 #else 297 #define MIN_PARTIAL 0 298 #define MAX_PARTIAL 0 299 #endif 300 301 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 302 SLAB_POISON | SLAB_STORE_USER) 303 304 /* 305 * These debug flags cannot use CMPXCHG because there might be consistency 306 * issues when checking or reading debug information 307 */ 308 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 309 SLAB_TRACE) 310 311 312 /* 313 * Debugging flags that require metadata to be stored in the slab. These get 314 * disabled when slab_debug=O is used and a cache's min order increases with 315 * metadata. 316 */ 317 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 318 319 #define OO_SHIFT 16 320 #define OO_MASK ((1 << OO_SHIFT) - 1) 321 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 322 323 /* Internal SLUB flags */ 324 /* Poison object */ 325 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 326 /* Use cmpxchg_double */ 327 328 #ifdef system_has_freelist_aba 329 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 330 #else 331 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 332 #endif 333 334 /* 335 * Tracking user of a slab. 336 */ 337 #define TRACK_ADDRS_COUNT 16 338 struct track { 339 unsigned long addr; /* Called from address */ 340 #ifdef CONFIG_STACKDEPOT 341 depot_stack_handle_t handle; 342 #endif 343 int cpu; /* Was running on cpu */ 344 int pid; /* Pid context */ 345 unsigned long when; /* When did the operation occur */ 346 }; 347 348 enum track_item { TRACK_ALLOC, TRACK_FREE }; 349 350 #ifdef SLAB_SUPPORTS_SYSFS 351 static int sysfs_slab_add(struct kmem_cache *); 352 static int sysfs_slab_alias(struct kmem_cache *, const char *); 353 #else 354 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 355 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 356 { return 0; } 357 #endif 358 359 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 360 static void debugfs_slab_add(struct kmem_cache *); 361 #else 362 static inline void debugfs_slab_add(struct kmem_cache *s) { } 363 #endif 364 365 enum stat_item { 366 ALLOC_FASTPATH, /* Allocation from cpu slab */ 367 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 368 FREE_FASTPATH, /* Free to cpu slab */ 369 FREE_SLOWPATH, /* Freeing not to cpu slab */ 370 FREE_FROZEN, /* Freeing to frozen slab */ 371 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 372 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 373 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 374 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 375 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 376 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 377 FREE_SLAB, /* Slab freed to the page allocator */ 378 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 379 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 380 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 381 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 382 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 383 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 384 DEACTIVATE_BYPASS, /* Implicit deactivation */ 385 ORDER_FALLBACK, /* Number of times fallback was necessary */ 386 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 387 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 388 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 389 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 390 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 391 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 392 NR_SLUB_STAT_ITEMS 393 }; 394 395 #ifndef CONFIG_SLUB_TINY 396 /* 397 * When changing the layout, make sure freelist and tid are still compatible 398 * with this_cpu_cmpxchg_double() alignment requirements. 399 */ 400 struct kmem_cache_cpu { 401 union { 402 struct { 403 void **freelist; /* Pointer to next available object */ 404 unsigned long tid; /* Globally unique transaction id */ 405 }; 406 freelist_aba_t freelist_tid; 407 }; 408 struct slab *slab; /* The slab from which we are allocating */ 409 #ifdef CONFIG_SLUB_CPU_PARTIAL 410 struct slab *partial; /* Partially allocated slabs */ 411 #endif 412 local_lock_t lock; /* Protects the fields above */ 413 #ifdef CONFIG_SLUB_STATS 414 unsigned int stat[NR_SLUB_STAT_ITEMS]; 415 #endif 416 }; 417 #endif /* CONFIG_SLUB_TINY */ 418 419 static inline void stat(const struct kmem_cache *s, enum stat_item si) 420 { 421 #ifdef CONFIG_SLUB_STATS 422 /* 423 * The rmw is racy on a preemptible kernel but this is acceptable, so 424 * avoid this_cpu_add()'s irq-disable overhead. 425 */ 426 raw_cpu_inc(s->cpu_slab->stat[si]); 427 #endif 428 } 429 430 static inline 431 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 432 { 433 #ifdef CONFIG_SLUB_STATS 434 raw_cpu_add(s->cpu_slab->stat[si], v); 435 #endif 436 } 437 438 /* 439 * The slab lists for all objects. 440 */ 441 struct kmem_cache_node { 442 spinlock_t list_lock; 443 unsigned long nr_partial; 444 struct list_head partial; 445 #ifdef CONFIG_SLUB_DEBUG 446 atomic_long_t nr_slabs; 447 atomic_long_t total_objects; 448 struct list_head full; 449 #endif 450 }; 451 452 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 453 { 454 return s->node[node]; 455 } 456 457 /* 458 * Iterator over all nodes. The body will be executed for each node that has 459 * a kmem_cache_node structure allocated (which is true for all online nodes) 460 */ 461 #define for_each_kmem_cache_node(__s, __node, __n) \ 462 for (__node = 0; __node < nr_node_ids; __node++) \ 463 if ((__n = get_node(__s, __node))) 464 465 /* 466 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 467 * Corresponds to node_state[N_MEMORY], but can temporarily 468 * differ during memory hotplug/hotremove operations. 469 * Protected by slab_mutex. 470 */ 471 static nodemask_t slab_nodes; 472 473 #ifndef CONFIG_SLUB_TINY 474 /* 475 * Workqueue used for flush_cpu_slab(). 476 */ 477 static struct workqueue_struct *flushwq; 478 #endif 479 480 /******************************************************************** 481 * Core slab cache functions 482 *******************************************************************/ 483 484 /* 485 * Returns freelist pointer (ptr). With hardening, this is obfuscated 486 * with an XOR of the address where the pointer is held and a per-cache 487 * random number. 488 */ 489 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 490 void *ptr, unsigned long ptr_addr) 491 { 492 unsigned long encoded; 493 494 #ifdef CONFIG_SLAB_FREELIST_HARDENED 495 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 496 #else 497 encoded = (unsigned long)ptr; 498 #endif 499 return (freeptr_t){.v = encoded}; 500 } 501 502 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 503 freeptr_t ptr, unsigned long ptr_addr) 504 { 505 void *decoded; 506 507 #ifdef CONFIG_SLAB_FREELIST_HARDENED 508 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 509 #else 510 decoded = (void *)ptr.v; 511 #endif 512 return decoded; 513 } 514 515 static inline void *get_freepointer(struct kmem_cache *s, void *object) 516 { 517 unsigned long ptr_addr; 518 freeptr_t p; 519 520 object = kasan_reset_tag(object); 521 ptr_addr = (unsigned long)object + s->offset; 522 p = *(freeptr_t *)(ptr_addr); 523 return freelist_ptr_decode(s, p, ptr_addr); 524 } 525 526 #ifndef CONFIG_SLUB_TINY 527 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 528 { 529 prefetchw(object + s->offset); 530 } 531 #endif 532 533 /* 534 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 535 * pointer value in the case the current thread loses the race for the next 536 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 537 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 538 * KMSAN will still check all arguments of cmpxchg because of imperfect 539 * handling of inline assembly. 540 * To work around this problem, we apply __no_kmsan_checks to ensure that 541 * get_freepointer_safe() returns initialized memory. 542 */ 543 __no_kmsan_checks 544 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 545 { 546 unsigned long freepointer_addr; 547 freeptr_t p; 548 549 if (!debug_pagealloc_enabled_static()) 550 return get_freepointer(s, object); 551 552 object = kasan_reset_tag(object); 553 freepointer_addr = (unsigned long)object + s->offset; 554 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 555 return freelist_ptr_decode(s, p, freepointer_addr); 556 } 557 558 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 559 { 560 unsigned long freeptr_addr = (unsigned long)object + s->offset; 561 562 #ifdef CONFIG_SLAB_FREELIST_HARDENED 563 BUG_ON(object == fp); /* naive detection of double free or corruption */ 564 #endif 565 566 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 567 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 568 } 569 570 /* 571 * See comment in calculate_sizes(). 572 */ 573 static inline bool freeptr_outside_object(struct kmem_cache *s) 574 { 575 return s->offset >= s->inuse; 576 } 577 578 /* 579 * Return offset of the end of info block which is inuse + free pointer if 580 * not overlapping with object. 581 */ 582 static inline unsigned int get_info_end(struct kmem_cache *s) 583 { 584 if (freeptr_outside_object(s)) 585 return s->inuse + sizeof(void *); 586 else 587 return s->inuse; 588 } 589 590 /* Loop over all objects in a slab */ 591 #define for_each_object(__p, __s, __addr, __objects) \ 592 for (__p = fixup_red_left(__s, __addr); \ 593 __p < (__addr) + (__objects) * (__s)->size; \ 594 __p += (__s)->size) 595 596 static inline unsigned int order_objects(unsigned int order, unsigned int size) 597 { 598 return ((unsigned int)PAGE_SIZE << order) / size; 599 } 600 601 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 602 unsigned int size) 603 { 604 struct kmem_cache_order_objects x = { 605 (order << OO_SHIFT) + order_objects(order, size) 606 }; 607 608 return x; 609 } 610 611 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 612 { 613 return x.x >> OO_SHIFT; 614 } 615 616 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 617 { 618 return x.x & OO_MASK; 619 } 620 621 #ifdef CONFIG_SLUB_CPU_PARTIAL 622 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 623 { 624 unsigned int nr_slabs; 625 626 s->cpu_partial = nr_objects; 627 628 /* 629 * We take the number of objects but actually limit the number of 630 * slabs on the per cpu partial list, in order to limit excessive 631 * growth of the list. For simplicity we assume that the slabs will 632 * be half-full. 633 */ 634 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 635 s->cpu_partial_slabs = nr_slabs; 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return s->cpu_partial_slabs; 641 } 642 #else 643 static inline void 644 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 645 { 646 } 647 648 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 649 { 650 return 0; 651 } 652 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 653 654 /* 655 * If network-based swap is enabled, slub must keep track of whether memory 656 * were allocated from pfmemalloc reserves. 657 */ 658 static inline bool slab_test_pfmemalloc(const struct slab *slab) 659 { 660 return test_bit(SL_pfmemalloc, &slab->flags); 661 } 662 663 static inline void slab_set_pfmemalloc(struct slab *slab) 664 { 665 set_bit(SL_pfmemalloc, &slab->flags); 666 } 667 668 static inline void __slab_clear_pfmemalloc(struct slab *slab) 669 { 670 __clear_bit(SL_pfmemalloc, &slab->flags); 671 } 672 673 /* 674 * Per slab locking using the pagelock 675 */ 676 static __always_inline void slab_lock(struct slab *slab) 677 { 678 bit_spin_lock(SL_locked, &slab->flags); 679 } 680 681 static __always_inline void slab_unlock(struct slab *slab) 682 { 683 bit_spin_unlock(SL_locked, &slab->flags); 684 } 685 686 static inline bool 687 __update_freelist_fast(struct slab *slab, 688 void *freelist_old, unsigned long counters_old, 689 void *freelist_new, unsigned long counters_new) 690 { 691 #ifdef system_has_freelist_aba 692 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 693 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 694 695 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 696 #else 697 return false; 698 #endif 699 } 700 701 static inline bool 702 __update_freelist_slow(struct slab *slab, 703 void *freelist_old, unsigned long counters_old, 704 void *freelist_new, unsigned long counters_new) 705 { 706 bool ret = false; 707 708 slab_lock(slab); 709 if (slab->freelist == freelist_old && 710 slab->counters == counters_old) { 711 slab->freelist = freelist_new; 712 slab->counters = counters_new; 713 ret = true; 714 } 715 slab_unlock(slab); 716 717 return ret; 718 } 719 720 /* 721 * Interrupts must be disabled (for the fallback code to work right), typically 722 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 723 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 724 * allocation/ free operation in hardirq context. Therefore nothing can 725 * interrupt the operation. 726 */ 727 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 728 void *freelist_old, unsigned long counters_old, 729 void *freelist_new, unsigned long counters_new, 730 const char *n) 731 { 732 bool ret; 733 734 if (USE_LOCKLESS_FAST_PATH()) 735 lockdep_assert_irqs_disabled(); 736 737 if (s->flags & __CMPXCHG_DOUBLE) { 738 ret = __update_freelist_fast(slab, freelist_old, counters_old, 739 freelist_new, counters_new); 740 } else { 741 ret = __update_freelist_slow(slab, freelist_old, counters_old, 742 freelist_new, counters_new); 743 } 744 if (likely(ret)) 745 return true; 746 747 cpu_relax(); 748 stat(s, CMPXCHG_DOUBLE_FAIL); 749 750 #ifdef SLUB_DEBUG_CMPXCHG 751 pr_info("%s %s: cmpxchg double redo ", n, s->name); 752 #endif 753 754 return false; 755 } 756 757 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 758 void *freelist_old, unsigned long counters_old, 759 void *freelist_new, unsigned long counters_new, 760 const char *n) 761 { 762 bool ret; 763 764 if (s->flags & __CMPXCHG_DOUBLE) { 765 ret = __update_freelist_fast(slab, freelist_old, counters_old, 766 freelist_new, counters_new); 767 } else { 768 unsigned long flags; 769 770 local_irq_save(flags); 771 ret = __update_freelist_slow(slab, freelist_old, counters_old, 772 freelist_new, counters_new); 773 local_irq_restore(flags); 774 } 775 if (likely(ret)) 776 return true; 777 778 cpu_relax(); 779 stat(s, CMPXCHG_DOUBLE_FAIL); 780 781 #ifdef SLUB_DEBUG_CMPXCHG 782 pr_info("%s %s: cmpxchg double redo ", n, s->name); 783 #endif 784 785 return false; 786 } 787 788 /* 789 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 790 * family will round up the real request size to these fixed ones, so 791 * there could be an extra area than what is requested. Save the original 792 * request size in the meta data area, for better debug and sanity check. 793 */ 794 static inline void set_orig_size(struct kmem_cache *s, 795 void *object, unsigned int orig_size) 796 { 797 void *p = kasan_reset_tag(object); 798 799 if (!slub_debug_orig_size(s)) 800 return; 801 802 p += get_info_end(s); 803 p += sizeof(struct track) * 2; 804 805 *(unsigned int *)p = orig_size; 806 } 807 808 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 809 { 810 void *p = kasan_reset_tag(object); 811 812 if (is_kfence_address(object)) 813 return kfence_ksize(object); 814 815 if (!slub_debug_orig_size(s)) 816 return s->object_size; 817 818 p += get_info_end(s); 819 p += sizeof(struct track) * 2; 820 821 return *(unsigned int *)p; 822 } 823 824 #ifdef CONFIG_SLUB_DEBUG 825 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 826 static DEFINE_SPINLOCK(object_map_lock); 827 828 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 829 struct slab *slab) 830 { 831 void *addr = slab_address(slab); 832 void *p; 833 834 bitmap_zero(obj_map, slab->objects); 835 836 for (p = slab->freelist; p; p = get_freepointer(s, p)) 837 set_bit(__obj_to_index(s, addr, p), obj_map); 838 } 839 840 #if IS_ENABLED(CONFIG_KUNIT) 841 static bool slab_add_kunit_errors(void) 842 { 843 struct kunit_resource *resource; 844 845 if (!kunit_get_current_test()) 846 return false; 847 848 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 849 if (!resource) 850 return false; 851 852 (*(int *)resource->data)++; 853 kunit_put_resource(resource); 854 return true; 855 } 856 857 bool slab_in_kunit_test(void) 858 { 859 struct kunit_resource *resource; 860 861 if (!kunit_get_current_test()) 862 return false; 863 864 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 865 if (!resource) 866 return false; 867 868 kunit_put_resource(resource); 869 return true; 870 } 871 #else 872 static inline bool slab_add_kunit_errors(void) { return false; } 873 #endif 874 875 static inline unsigned int size_from_object(struct kmem_cache *s) 876 { 877 if (s->flags & SLAB_RED_ZONE) 878 return s->size - s->red_left_pad; 879 880 return s->size; 881 } 882 883 static inline void *restore_red_left(struct kmem_cache *s, void *p) 884 { 885 if (s->flags & SLAB_RED_ZONE) 886 p -= s->red_left_pad; 887 888 return p; 889 } 890 891 /* 892 * Debug settings: 893 */ 894 #if defined(CONFIG_SLUB_DEBUG_ON) 895 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 896 #else 897 static slab_flags_t slub_debug; 898 #endif 899 900 static char *slub_debug_string; 901 static int disable_higher_order_debug; 902 903 /* 904 * slub is about to manipulate internal object metadata. This memory lies 905 * outside the range of the allocated object, so accessing it would normally 906 * be reported by kasan as a bounds error. metadata_access_enable() is used 907 * to tell kasan that these accesses are OK. 908 */ 909 static inline void metadata_access_enable(void) 910 { 911 kasan_disable_current(); 912 kmsan_disable_current(); 913 } 914 915 static inline void metadata_access_disable(void) 916 { 917 kmsan_enable_current(); 918 kasan_enable_current(); 919 } 920 921 /* 922 * Object debugging 923 */ 924 925 /* Verify that a pointer has an address that is valid within a slab page */ 926 static inline int check_valid_pointer(struct kmem_cache *s, 927 struct slab *slab, void *object) 928 { 929 void *base; 930 931 if (!object) 932 return 1; 933 934 base = slab_address(slab); 935 object = kasan_reset_tag(object); 936 object = restore_red_left(s, object); 937 if (object < base || object >= base + slab->objects * s->size || 938 (object - base) % s->size) { 939 return 0; 940 } 941 942 return 1; 943 } 944 945 static void print_section(char *level, char *text, u8 *addr, 946 unsigned int length) 947 { 948 metadata_access_enable(); 949 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 950 16, 1, kasan_reset_tag((void *)addr), length, 1); 951 metadata_access_disable(); 952 } 953 954 static struct track *get_track(struct kmem_cache *s, void *object, 955 enum track_item alloc) 956 { 957 struct track *p; 958 959 p = object + get_info_end(s); 960 961 return kasan_reset_tag(p + alloc); 962 } 963 964 #ifdef CONFIG_STACKDEPOT 965 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 966 { 967 depot_stack_handle_t handle; 968 unsigned long entries[TRACK_ADDRS_COUNT]; 969 unsigned int nr_entries; 970 971 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 972 handle = stack_depot_save(entries, nr_entries, gfp_flags); 973 974 return handle; 975 } 976 #else 977 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 978 { 979 return 0; 980 } 981 #endif 982 983 static void set_track_update(struct kmem_cache *s, void *object, 984 enum track_item alloc, unsigned long addr, 985 depot_stack_handle_t handle) 986 { 987 struct track *p = get_track(s, object, alloc); 988 989 #ifdef CONFIG_STACKDEPOT 990 p->handle = handle; 991 #endif 992 p->addr = addr; 993 p->cpu = smp_processor_id(); 994 p->pid = current->pid; 995 p->when = jiffies; 996 } 997 998 static __always_inline void set_track(struct kmem_cache *s, void *object, 999 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) 1000 { 1001 depot_stack_handle_t handle = set_track_prepare(gfp_flags); 1002 1003 set_track_update(s, object, alloc, addr, handle); 1004 } 1005 1006 static void init_tracking(struct kmem_cache *s, void *object) 1007 { 1008 struct track *p; 1009 1010 if (!(s->flags & SLAB_STORE_USER)) 1011 return; 1012 1013 p = get_track(s, object, TRACK_ALLOC); 1014 memset(p, 0, 2*sizeof(struct track)); 1015 } 1016 1017 static void print_track(const char *s, struct track *t, unsigned long pr_time) 1018 { 1019 depot_stack_handle_t handle __maybe_unused; 1020 1021 if (!t->addr) 1022 return; 1023 1024 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 1025 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 1026 #ifdef CONFIG_STACKDEPOT 1027 handle = READ_ONCE(t->handle); 1028 if (handle) 1029 stack_depot_print(handle); 1030 else 1031 pr_err("object allocation/free stack trace missing\n"); 1032 #endif 1033 } 1034 1035 void print_tracking(struct kmem_cache *s, void *object) 1036 { 1037 unsigned long pr_time = jiffies; 1038 if (!(s->flags & SLAB_STORE_USER)) 1039 return; 1040 1041 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1042 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1043 } 1044 1045 static void print_slab_info(const struct slab *slab) 1046 { 1047 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1048 slab, slab->objects, slab->inuse, slab->freelist, 1049 &slab->flags); 1050 } 1051 1052 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1053 { 1054 set_orig_size(s, (void *)object, s->object_size); 1055 } 1056 1057 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1058 { 1059 struct va_format vaf; 1060 va_list args; 1061 1062 va_copy(args, argsp); 1063 vaf.fmt = fmt; 1064 vaf.va = &args; 1065 pr_err("=============================================================================\n"); 1066 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1067 pr_err("-----------------------------------------------------------------------------\n\n"); 1068 va_end(args); 1069 } 1070 1071 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1072 { 1073 va_list args; 1074 1075 va_start(args, fmt); 1076 __slab_bug(s, fmt, args); 1077 va_end(args); 1078 } 1079 1080 __printf(2, 3) 1081 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1082 { 1083 struct va_format vaf; 1084 va_list args; 1085 1086 if (slab_add_kunit_errors()) 1087 return; 1088 1089 va_start(args, fmt); 1090 vaf.fmt = fmt; 1091 vaf.va = &args; 1092 pr_err("FIX %s: %pV\n", s->name, &vaf); 1093 va_end(args); 1094 } 1095 1096 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1097 { 1098 unsigned int off; /* Offset of last byte */ 1099 u8 *addr = slab_address(slab); 1100 1101 print_tracking(s, p); 1102 1103 print_slab_info(slab); 1104 1105 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1106 p, p - addr, get_freepointer(s, p)); 1107 1108 if (s->flags & SLAB_RED_ZONE) 1109 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1110 s->red_left_pad); 1111 else if (p > addr + 16) 1112 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1113 1114 print_section(KERN_ERR, "Object ", p, 1115 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1116 if (s->flags & SLAB_RED_ZONE) 1117 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1118 s->inuse - s->object_size); 1119 1120 off = get_info_end(s); 1121 1122 if (s->flags & SLAB_STORE_USER) 1123 off += 2 * sizeof(struct track); 1124 1125 if (slub_debug_orig_size(s)) 1126 off += sizeof(unsigned int); 1127 1128 off += kasan_metadata_size(s, false); 1129 1130 if (off != size_from_object(s)) 1131 /* Beginning of the filler is the free pointer */ 1132 print_section(KERN_ERR, "Padding ", p + off, 1133 size_from_object(s) - off); 1134 } 1135 1136 static void object_err(struct kmem_cache *s, struct slab *slab, 1137 u8 *object, const char *reason) 1138 { 1139 if (slab_add_kunit_errors()) 1140 return; 1141 1142 slab_bug(s, reason); 1143 if (!object || !check_valid_pointer(s, slab, object)) { 1144 print_slab_info(slab); 1145 pr_err("Invalid pointer 0x%p\n", object); 1146 } else { 1147 print_trailer(s, slab, object); 1148 } 1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1150 1151 WARN_ON(1); 1152 } 1153 1154 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1155 void **freelist, void *nextfree) 1156 { 1157 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1158 !check_valid_pointer(s, slab, nextfree) && freelist) { 1159 object_err(s, slab, *freelist, "Freechain corrupt"); 1160 *freelist = NULL; 1161 slab_fix(s, "Isolate corrupted freechain"); 1162 return true; 1163 } 1164 1165 return false; 1166 } 1167 1168 static void __slab_err(struct slab *slab) 1169 { 1170 if (slab_in_kunit_test()) 1171 return; 1172 1173 print_slab_info(slab); 1174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1175 1176 WARN_ON(1); 1177 } 1178 1179 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1180 const char *fmt, ...) 1181 { 1182 va_list args; 1183 1184 if (slab_add_kunit_errors()) 1185 return; 1186 1187 va_start(args, fmt); 1188 __slab_bug(s, fmt, args); 1189 va_end(args); 1190 1191 __slab_err(slab); 1192 } 1193 1194 static void init_object(struct kmem_cache *s, void *object, u8 val) 1195 { 1196 u8 *p = kasan_reset_tag(object); 1197 unsigned int poison_size = s->object_size; 1198 1199 if (s->flags & SLAB_RED_ZONE) { 1200 /* 1201 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1202 * the shadow makes it possible to distinguish uninit-value 1203 * from use-after-free. 1204 */ 1205 memset_no_sanitize_memory(p - s->red_left_pad, val, 1206 s->red_left_pad); 1207 1208 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1209 /* 1210 * Redzone the extra allocated space by kmalloc than 1211 * requested, and the poison size will be limited to 1212 * the original request size accordingly. 1213 */ 1214 poison_size = get_orig_size(s, object); 1215 } 1216 } 1217 1218 if (s->flags & __OBJECT_POISON) { 1219 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1220 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1221 } 1222 1223 if (s->flags & SLAB_RED_ZONE) 1224 memset_no_sanitize_memory(p + poison_size, val, 1225 s->inuse - poison_size); 1226 } 1227 1228 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1229 void *from, void *to) 1230 { 1231 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1232 memset(from, data, to - from); 1233 } 1234 1235 #ifdef CONFIG_KMSAN 1236 #define pad_check_attributes noinline __no_kmsan_checks 1237 #else 1238 #define pad_check_attributes 1239 #endif 1240 1241 static pad_check_attributes int 1242 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1243 u8 *object, const char *what, u8 *start, unsigned int value, 1244 unsigned int bytes, bool slab_obj_print) 1245 { 1246 u8 *fault; 1247 u8 *end; 1248 u8 *addr = slab_address(slab); 1249 1250 metadata_access_enable(); 1251 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1252 metadata_access_disable(); 1253 if (!fault) 1254 return 1; 1255 1256 end = start + bytes; 1257 while (end > fault && end[-1] == value) 1258 end--; 1259 1260 if (slab_add_kunit_errors()) 1261 goto skip_bug_print; 1262 1263 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1264 what, fault, end - 1, fault - addr, fault[0], value); 1265 1266 if (slab_obj_print) 1267 object_err(s, slab, object, "Object corrupt"); 1268 1269 skip_bug_print: 1270 restore_bytes(s, what, value, fault, end); 1271 return 0; 1272 } 1273 1274 /* 1275 * Object layout: 1276 * 1277 * object address 1278 * Bytes of the object to be managed. 1279 * If the freepointer may overlay the object then the free 1280 * pointer is at the middle of the object. 1281 * 1282 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1283 * 0xa5 (POISON_END) 1284 * 1285 * object + s->object_size 1286 * Padding to reach word boundary. This is also used for Redzoning. 1287 * Padding is extended by another word if Redzoning is enabled and 1288 * object_size == inuse. 1289 * 1290 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1291 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1292 * 1293 * object + s->inuse 1294 * Meta data starts here. 1295 * 1296 * A. Free pointer (if we cannot overwrite object on free) 1297 * B. Tracking data for SLAB_STORE_USER 1298 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1299 * D. Padding to reach required alignment boundary or at minimum 1300 * one word if debugging is on to be able to detect writes 1301 * before the word boundary. 1302 * 1303 * Padding is done using 0x5a (POISON_INUSE) 1304 * 1305 * object + s->size 1306 * Nothing is used beyond s->size. 1307 * 1308 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1309 * ignored. And therefore no slab options that rely on these boundaries 1310 * may be used with merged slabcaches. 1311 */ 1312 1313 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1314 { 1315 unsigned long off = get_info_end(s); /* The end of info */ 1316 1317 if (s->flags & SLAB_STORE_USER) { 1318 /* We also have user information there */ 1319 off += 2 * sizeof(struct track); 1320 1321 if (s->flags & SLAB_KMALLOC) 1322 off += sizeof(unsigned int); 1323 } 1324 1325 off += kasan_metadata_size(s, false); 1326 1327 if (size_from_object(s) == off) 1328 return 1; 1329 1330 return check_bytes_and_report(s, slab, p, "Object padding", 1331 p + off, POISON_INUSE, size_from_object(s) - off, true); 1332 } 1333 1334 /* Check the pad bytes at the end of a slab page */ 1335 static pad_check_attributes void 1336 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1337 { 1338 u8 *start; 1339 u8 *fault; 1340 u8 *end; 1341 u8 *pad; 1342 int length; 1343 int remainder; 1344 1345 if (!(s->flags & SLAB_POISON)) 1346 return; 1347 1348 start = slab_address(slab); 1349 length = slab_size(slab); 1350 end = start + length; 1351 remainder = length % s->size; 1352 if (!remainder) 1353 return; 1354 1355 pad = end - remainder; 1356 metadata_access_enable(); 1357 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1358 metadata_access_disable(); 1359 if (!fault) 1360 return; 1361 while (end > fault && end[-1] == POISON_INUSE) 1362 end--; 1363 1364 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1365 fault, end - 1, fault - start); 1366 print_section(KERN_ERR, "Padding ", pad, remainder); 1367 __slab_err(slab); 1368 1369 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1370 } 1371 1372 static int check_object(struct kmem_cache *s, struct slab *slab, 1373 void *object, u8 val) 1374 { 1375 u8 *p = object; 1376 u8 *endobject = object + s->object_size; 1377 unsigned int orig_size, kasan_meta_size; 1378 int ret = 1; 1379 1380 if (s->flags & SLAB_RED_ZONE) { 1381 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1382 object - s->red_left_pad, val, s->red_left_pad, ret)) 1383 ret = 0; 1384 1385 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1386 endobject, val, s->inuse - s->object_size, ret)) 1387 ret = 0; 1388 1389 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1390 orig_size = get_orig_size(s, object); 1391 1392 if (s->object_size > orig_size && 1393 !check_bytes_and_report(s, slab, object, 1394 "kmalloc Redzone", p + orig_size, 1395 val, s->object_size - orig_size, ret)) { 1396 ret = 0; 1397 } 1398 } 1399 } else { 1400 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1401 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1402 endobject, POISON_INUSE, 1403 s->inuse - s->object_size, ret)) 1404 ret = 0; 1405 } 1406 } 1407 1408 if (s->flags & SLAB_POISON) { 1409 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1410 /* 1411 * KASAN can save its free meta data inside of the 1412 * object at offset 0. Thus, skip checking the part of 1413 * the redzone that overlaps with the meta data. 1414 */ 1415 kasan_meta_size = kasan_metadata_size(s, true); 1416 if (kasan_meta_size < s->object_size - 1 && 1417 !check_bytes_and_report(s, slab, p, "Poison", 1418 p + kasan_meta_size, POISON_FREE, 1419 s->object_size - kasan_meta_size - 1, ret)) 1420 ret = 0; 1421 if (kasan_meta_size < s->object_size && 1422 !check_bytes_and_report(s, slab, p, "End Poison", 1423 p + s->object_size - 1, POISON_END, 1, ret)) 1424 ret = 0; 1425 } 1426 /* 1427 * check_pad_bytes cleans up on its own. 1428 */ 1429 if (!check_pad_bytes(s, slab, p)) 1430 ret = 0; 1431 } 1432 1433 /* 1434 * Cannot check freepointer while object is allocated if 1435 * object and freepointer overlap. 1436 */ 1437 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1438 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1439 object_err(s, slab, p, "Freepointer corrupt"); 1440 /* 1441 * No choice but to zap it and thus lose the remainder 1442 * of the free objects in this slab. May cause 1443 * another error because the object count is now wrong. 1444 */ 1445 set_freepointer(s, p, NULL); 1446 ret = 0; 1447 } 1448 1449 return ret; 1450 } 1451 1452 static int check_slab(struct kmem_cache *s, struct slab *slab) 1453 { 1454 int maxobj; 1455 1456 if (!folio_test_slab(slab_folio(slab))) { 1457 slab_err(s, slab, "Not a valid slab page"); 1458 return 0; 1459 } 1460 1461 maxobj = order_objects(slab_order(slab), s->size); 1462 if (slab->objects > maxobj) { 1463 slab_err(s, slab, "objects %u > max %u", 1464 slab->objects, maxobj); 1465 return 0; 1466 } 1467 if (slab->inuse > slab->objects) { 1468 slab_err(s, slab, "inuse %u > max %u", 1469 slab->inuse, slab->objects); 1470 return 0; 1471 } 1472 if (slab->frozen) { 1473 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1474 return 0; 1475 } 1476 1477 /* Slab_pad_check fixes things up after itself */ 1478 slab_pad_check(s, slab); 1479 return 1; 1480 } 1481 1482 /* 1483 * Determine if a certain object in a slab is on the freelist. Must hold the 1484 * slab lock to guarantee that the chains are in a consistent state. 1485 */ 1486 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1487 { 1488 int nr = 0; 1489 void *fp; 1490 void *object = NULL; 1491 int max_objects; 1492 1493 fp = slab->freelist; 1494 while (fp && nr <= slab->objects) { 1495 if (fp == search) 1496 return true; 1497 if (!check_valid_pointer(s, slab, fp)) { 1498 if (object) { 1499 object_err(s, slab, object, 1500 "Freechain corrupt"); 1501 set_freepointer(s, object, NULL); 1502 break; 1503 } else { 1504 slab_err(s, slab, "Freepointer corrupt"); 1505 slab->freelist = NULL; 1506 slab->inuse = slab->objects; 1507 slab_fix(s, "Freelist cleared"); 1508 return false; 1509 } 1510 } 1511 object = fp; 1512 fp = get_freepointer(s, object); 1513 nr++; 1514 } 1515 1516 if (nr > slab->objects) { 1517 slab_err(s, slab, "Freelist cycle detected"); 1518 slab->freelist = NULL; 1519 slab->inuse = slab->objects; 1520 slab_fix(s, "Freelist cleared"); 1521 return false; 1522 } 1523 1524 max_objects = order_objects(slab_order(slab), s->size); 1525 if (max_objects > MAX_OBJS_PER_PAGE) 1526 max_objects = MAX_OBJS_PER_PAGE; 1527 1528 if (slab->objects != max_objects) { 1529 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1530 slab->objects, max_objects); 1531 slab->objects = max_objects; 1532 slab_fix(s, "Number of objects adjusted"); 1533 } 1534 if (slab->inuse != slab->objects - nr) { 1535 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1536 slab->inuse, slab->objects - nr); 1537 slab->inuse = slab->objects - nr; 1538 slab_fix(s, "Object count adjusted"); 1539 } 1540 return search == NULL; 1541 } 1542 1543 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1544 int alloc) 1545 { 1546 if (s->flags & SLAB_TRACE) { 1547 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1548 s->name, 1549 alloc ? "alloc" : "free", 1550 object, slab->inuse, 1551 slab->freelist); 1552 1553 if (!alloc) 1554 print_section(KERN_INFO, "Object ", (void *)object, 1555 s->object_size); 1556 1557 dump_stack(); 1558 } 1559 } 1560 1561 /* 1562 * Tracking of fully allocated slabs for debugging purposes. 1563 */ 1564 static void add_full(struct kmem_cache *s, 1565 struct kmem_cache_node *n, struct slab *slab) 1566 { 1567 if (!(s->flags & SLAB_STORE_USER)) 1568 return; 1569 1570 lockdep_assert_held(&n->list_lock); 1571 list_add(&slab->slab_list, &n->full); 1572 } 1573 1574 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1575 { 1576 if (!(s->flags & SLAB_STORE_USER)) 1577 return; 1578 1579 lockdep_assert_held(&n->list_lock); 1580 list_del(&slab->slab_list); 1581 } 1582 1583 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1584 { 1585 return atomic_long_read(&n->nr_slabs); 1586 } 1587 1588 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1589 { 1590 struct kmem_cache_node *n = get_node(s, node); 1591 1592 atomic_long_inc(&n->nr_slabs); 1593 atomic_long_add(objects, &n->total_objects); 1594 } 1595 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1596 { 1597 struct kmem_cache_node *n = get_node(s, node); 1598 1599 atomic_long_dec(&n->nr_slabs); 1600 atomic_long_sub(objects, &n->total_objects); 1601 } 1602 1603 /* Object debug checks for alloc/free paths */ 1604 static void setup_object_debug(struct kmem_cache *s, void *object) 1605 { 1606 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1607 return; 1608 1609 init_object(s, object, SLUB_RED_INACTIVE); 1610 init_tracking(s, object); 1611 } 1612 1613 static 1614 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1615 { 1616 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1617 return; 1618 1619 metadata_access_enable(); 1620 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1621 metadata_access_disable(); 1622 } 1623 1624 static inline int alloc_consistency_checks(struct kmem_cache *s, 1625 struct slab *slab, void *object) 1626 { 1627 if (!check_slab(s, slab)) 1628 return 0; 1629 1630 if (!check_valid_pointer(s, slab, object)) { 1631 object_err(s, slab, object, "Freelist Pointer check fails"); 1632 return 0; 1633 } 1634 1635 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1636 return 0; 1637 1638 return 1; 1639 } 1640 1641 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1642 struct slab *slab, void *object, int orig_size) 1643 { 1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1645 if (!alloc_consistency_checks(s, slab, object)) 1646 goto bad; 1647 } 1648 1649 /* Success. Perform special debug activities for allocs */ 1650 trace(s, slab, object, 1); 1651 set_orig_size(s, object, orig_size); 1652 init_object(s, object, SLUB_RED_ACTIVE); 1653 return true; 1654 1655 bad: 1656 if (folio_test_slab(slab_folio(slab))) { 1657 /* 1658 * If this is a slab page then lets do the best we can 1659 * to avoid issues in the future. Marking all objects 1660 * as used avoids touching the remaining objects. 1661 */ 1662 slab_fix(s, "Marking all objects used"); 1663 slab->inuse = slab->objects; 1664 slab->freelist = NULL; 1665 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1666 } 1667 return false; 1668 } 1669 1670 static inline int free_consistency_checks(struct kmem_cache *s, 1671 struct slab *slab, void *object, unsigned long addr) 1672 { 1673 if (!check_valid_pointer(s, slab, object)) { 1674 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1675 return 0; 1676 } 1677 1678 if (on_freelist(s, slab, object)) { 1679 object_err(s, slab, object, "Object already free"); 1680 return 0; 1681 } 1682 1683 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1684 return 0; 1685 1686 if (unlikely(s != slab->slab_cache)) { 1687 if (!folio_test_slab(slab_folio(slab))) { 1688 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1689 object); 1690 } else if (!slab->slab_cache) { 1691 slab_err(NULL, slab, "No slab cache for object 0x%p", 1692 object); 1693 } else { 1694 object_err(s, slab, object, 1695 "page slab pointer corrupt."); 1696 } 1697 return 0; 1698 } 1699 return 1; 1700 } 1701 1702 /* 1703 * Parse a block of slab_debug options. Blocks are delimited by ';' 1704 * 1705 * @str: start of block 1706 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1707 * @slabs: return start of list of slabs, or NULL when there's no list 1708 * @init: assume this is initial parsing and not per-kmem-create parsing 1709 * 1710 * returns the start of next block if there's any, or NULL 1711 */ 1712 static char * 1713 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1714 { 1715 bool higher_order_disable = false; 1716 1717 /* Skip any completely empty blocks */ 1718 while (*str && *str == ';') 1719 str++; 1720 1721 if (*str == ',') { 1722 /* 1723 * No options but restriction on slabs. This means full 1724 * debugging for slabs matching a pattern. 1725 */ 1726 *flags = DEBUG_DEFAULT_FLAGS; 1727 goto check_slabs; 1728 } 1729 *flags = 0; 1730 1731 /* Determine which debug features should be switched on */ 1732 for (; *str && *str != ',' && *str != ';'; str++) { 1733 switch (tolower(*str)) { 1734 case '-': 1735 *flags = 0; 1736 break; 1737 case 'f': 1738 *flags |= SLAB_CONSISTENCY_CHECKS; 1739 break; 1740 case 'z': 1741 *flags |= SLAB_RED_ZONE; 1742 break; 1743 case 'p': 1744 *flags |= SLAB_POISON; 1745 break; 1746 case 'u': 1747 *flags |= SLAB_STORE_USER; 1748 break; 1749 case 't': 1750 *flags |= SLAB_TRACE; 1751 break; 1752 case 'a': 1753 *flags |= SLAB_FAILSLAB; 1754 break; 1755 case 'o': 1756 /* 1757 * Avoid enabling debugging on caches if its minimum 1758 * order would increase as a result. 1759 */ 1760 higher_order_disable = true; 1761 break; 1762 default: 1763 if (init) 1764 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1765 } 1766 } 1767 check_slabs: 1768 if (*str == ',') 1769 *slabs = ++str; 1770 else 1771 *slabs = NULL; 1772 1773 /* Skip over the slab list */ 1774 while (*str && *str != ';') 1775 str++; 1776 1777 /* Skip any completely empty blocks */ 1778 while (*str && *str == ';') 1779 str++; 1780 1781 if (init && higher_order_disable) 1782 disable_higher_order_debug = 1; 1783 1784 if (*str) 1785 return str; 1786 else 1787 return NULL; 1788 } 1789 1790 static int __init setup_slub_debug(char *str) 1791 { 1792 slab_flags_t flags; 1793 slab_flags_t global_flags; 1794 char *saved_str; 1795 char *slab_list; 1796 bool global_slub_debug_changed = false; 1797 bool slab_list_specified = false; 1798 1799 global_flags = DEBUG_DEFAULT_FLAGS; 1800 if (*str++ != '=' || !*str) 1801 /* 1802 * No options specified. Switch on full debugging. 1803 */ 1804 goto out; 1805 1806 saved_str = str; 1807 while (str) { 1808 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1809 1810 if (!slab_list) { 1811 global_flags = flags; 1812 global_slub_debug_changed = true; 1813 } else { 1814 slab_list_specified = true; 1815 if (flags & SLAB_STORE_USER) 1816 stack_depot_request_early_init(); 1817 } 1818 } 1819 1820 /* 1821 * For backwards compatibility, a single list of flags with list of 1822 * slabs means debugging is only changed for those slabs, so the global 1823 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1824 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1825 * long as there is no option specifying flags without a slab list. 1826 */ 1827 if (slab_list_specified) { 1828 if (!global_slub_debug_changed) 1829 global_flags = slub_debug; 1830 slub_debug_string = saved_str; 1831 } 1832 out: 1833 slub_debug = global_flags; 1834 if (slub_debug & SLAB_STORE_USER) 1835 stack_depot_request_early_init(); 1836 if (slub_debug != 0 || slub_debug_string) 1837 static_branch_enable(&slub_debug_enabled); 1838 else 1839 static_branch_disable(&slub_debug_enabled); 1840 if ((static_branch_unlikely(&init_on_alloc) || 1841 static_branch_unlikely(&init_on_free)) && 1842 (slub_debug & SLAB_POISON)) 1843 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1844 return 1; 1845 } 1846 1847 __setup("slab_debug", setup_slub_debug); 1848 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1849 1850 /* 1851 * kmem_cache_flags - apply debugging options to the cache 1852 * @flags: flags to set 1853 * @name: name of the cache 1854 * 1855 * Debug option(s) are applied to @flags. In addition to the debug 1856 * option(s), if a slab name (or multiple) is specified i.e. 1857 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1858 * then only the select slabs will receive the debug option(s). 1859 */ 1860 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1861 { 1862 char *iter; 1863 size_t len; 1864 char *next_block; 1865 slab_flags_t block_flags; 1866 slab_flags_t slub_debug_local = slub_debug; 1867 1868 if (flags & SLAB_NO_USER_FLAGS) 1869 return flags; 1870 1871 /* 1872 * If the slab cache is for debugging (e.g. kmemleak) then 1873 * don't store user (stack trace) information by default, 1874 * but let the user enable it via the command line below. 1875 */ 1876 if (flags & SLAB_NOLEAKTRACE) 1877 slub_debug_local &= ~SLAB_STORE_USER; 1878 1879 len = strlen(name); 1880 next_block = slub_debug_string; 1881 /* Go through all blocks of debug options, see if any matches our slab's name */ 1882 while (next_block) { 1883 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1884 if (!iter) 1885 continue; 1886 /* Found a block that has a slab list, search it */ 1887 while (*iter) { 1888 char *end, *glob; 1889 size_t cmplen; 1890 1891 end = strchrnul(iter, ','); 1892 if (next_block && next_block < end) 1893 end = next_block - 1; 1894 1895 glob = strnchr(iter, end - iter, '*'); 1896 if (glob) 1897 cmplen = glob - iter; 1898 else 1899 cmplen = max_t(size_t, len, (end - iter)); 1900 1901 if (!strncmp(name, iter, cmplen)) { 1902 flags |= block_flags; 1903 return flags; 1904 } 1905 1906 if (!*end || *end == ';') 1907 break; 1908 iter = end + 1; 1909 } 1910 } 1911 1912 return flags | slub_debug_local; 1913 } 1914 #else /* !CONFIG_SLUB_DEBUG */ 1915 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1916 static inline 1917 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1918 1919 static inline bool alloc_debug_processing(struct kmem_cache *s, 1920 struct slab *slab, void *object, int orig_size) { return true; } 1921 1922 static inline bool free_debug_processing(struct kmem_cache *s, 1923 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1924 unsigned long addr, depot_stack_handle_t handle) { return true; } 1925 1926 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1927 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1928 void *object, u8 val) { return 1; } 1929 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; } 1930 static inline void set_track(struct kmem_cache *s, void *object, 1931 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {} 1932 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1933 struct slab *slab) {} 1934 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1935 struct slab *slab) {} 1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1937 { 1938 return flags; 1939 } 1940 #define slub_debug 0 1941 1942 #define disable_higher_order_debug 0 1943 1944 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1945 { return 0; } 1946 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1947 int objects) {} 1948 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1949 int objects) {} 1950 #ifndef CONFIG_SLUB_TINY 1951 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1952 void **freelist, void *nextfree) 1953 { 1954 return false; 1955 } 1956 #endif 1957 #endif /* CONFIG_SLUB_DEBUG */ 1958 1959 #ifdef CONFIG_SLAB_OBJ_EXT 1960 1961 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1962 1963 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1964 { 1965 struct slabobj_ext *slab_exts; 1966 struct slab *obj_exts_slab; 1967 1968 obj_exts_slab = virt_to_slab(obj_exts); 1969 slab_exts = slab_obj_exts(obj_exts_slab); 1970 if (slab_exts) { 1971 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1972 obj_exts_slab, obj_exts); 1973 /* codetag should be NULL */ 1974 WARN_ON(slab_exts[offs].ref.ct); 1975 set_codetag_empty(&slab_exts[offs].ref); 1976 } 1977 } 1978 1979 static inline void mark_failed_objexts_alloc(struct slab *slab) 1980 { 1981 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1982 } 1983 1984 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1985 struct slabobj_ext *vec, unsigned int objects) 1986 { 1987 /* 1988 * If vector previously failed to allocate then we have live 1989 * objects with no tag reference. Mark all references in this 1990 * vector as empty to avoid warnings later on. 1991 */ 1992 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1993 unsigned int i; 1994 1995 for (i = 0; i < objects; i++) 1996 set_codetag_empty(&vec[i].ref); 1997 } 1998 } 1999 2000 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2001 2002 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 2003 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 2004 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2005 struct slabobj_ext *vec, unsigned int objects) {} 2006 2007 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2008 2009 /* 2010 * The allocated objcg pointers array is not accounted directly. 2011 * Moreover, it should not come from DMA buffer and is not readily 2012 * reclaimable. So those GFP bits should be masked off. 2013 */ 2014 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2015 __GFP_ACCOUNT | __GFP_NOFAIL) 2016 2017 static inline void init_slab_obj_exts(struct slab *slab) 2018 { 2019 slab->obj_exts = 0; 2020 } 2021 2022 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2023 gfp_t gfp, bool new_slab) 2024 { 2025 unsigned int objects = objs_per_slab(s, slab); 2026 unsigned long new_exts; 2027 unsigned long old_exts; 2028 struct slabobj_ext *vec; 2029 2030 gfp &= ~OBJCGS_CLEAR_MASK; 2031 /* Prevent recursive extension vector allocation */ 2032 gfp |= __GFP_NO_OBJ_EXT; 2033 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 2034 slab_nid(slab)); 2035 if (!vec) { 2036 /* Mark vectors which failed to allocate */ 2037 if (new_slab) 2038 mark_failed_objexts_alloc(slab); 2039 2040 return -ENOMEM; 2041 } 2042 2043 new_exts = (unsigned long)vec; 2044 #ifdef CONFIG_MEMCG 2045 new_exts |= MEMCG_DATA_OBJEXTS; 2046 #endif 2047 old_exts = READ_ONCE(slab->obj_exts); 2048 handle_failed_objexts_alloc(old_exts, vec, objects); 2049 if (new_slab) { 2050 /* 2051 * If the slab is brand new and nobody can yet access its 2052 * obj_exts, no synchronization is required and obj_exts can 2053 * be simply assigned. 2054 */ 2055 slab->obj_exts = new_exts; 2056 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2057 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2058 /* 2059 * If the slab is already in use, somebody can allocate and 2060 * assign slabobj_exts in parallel. In this case the existing 2061 * objcg vector should be reused. 2062 */ 2063 mark_objexts_empty(vec); 2064 kfree(vec); 2065 return 0; 2066 } 2067 2068 kmemleak_not_leak(vec); 2069 return 0; 2070 } 2071 2072 static inline void free_slab_obj_exts(struct slab *slab) 2073 { 2074 struct slabobj_ext *obj_exts; 2075 2076 obj_exts = slab_obj_exts(slab); 2077 if (!obj_exts) 2078 return; 2079 2080 /* 2081 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2082 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2083 * warning if slab has extensions but the extension of an object is 2084 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2085 * the extension for obj_exts is expected to be NULL. 2086 */ 2087 mark_objexts_empty(obj_exts); 2088 kfree(obj_exts); 2089 slab->obj_exts = 0; 2090 } 2091 2092 #else /* CONFIG_SLAB_OBJ_EXT */ 2093 2094 static inline void init_slab_obj_exts(struct slab *slab) 2095 { 2096 } 2097 2098 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2099 gfp_t gfp, bool new_slab) 2100 { 2101 return 0; 2102 } 2103 2104 static inline void free_slab_obj_exts(struct slab *slab) 2105 { 2106 } 2107 2108 #endif /* CONFIG_SLAB_OBJ_EXT */ 2109 2110 #ifdef CONFIG_MEM_ALLOC_PROFILING 2111 2112 static inline struct slabobj_ext * 2113 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2114 { 2115 struct slab *slab; 2116 2117 if (!p) 2118 return NULL; 2119 2120 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2121 return NULL; 2122 2123 if (flags & __GFP_NO_OBJ_EXT) 2124 return NULL; 2125 2126 slab = virt_to_slab(p); 2127 if (!slab_obj_exts(slab) && 2128 alloc_slab_obj_exts(slab, s, flags, false)) { 2129 pr_warn_once("%s, %s: Failed to create slab extension vector!\n", 2130 __func__, s->name); 2131 return NULL; 2132 } 2133 2134 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2135 } 2136 2137 /* Should be called only if mem_alloc_profiling_enabled() */ 2138 static noinline void 2139 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2140 { 2141 struct slabobj_ext *obj_exts; 2142 2143 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2144 /* 2145 * Currently obj_exts is used only for allocation profiling. 2146 * If other users appear then mem_alloc_profiling_enabled() 2147 * check should be added before alloc_tag_add(). 2148 */ 2149 if (likely(obj_exts)) 2150 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2151 } 2152 2153 static inline void 2154 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2155 { 2156 if (mem_alloc_profiling_enabled()) 2157 __alloc_tagging_slab_alloc_hook(s, object, flags); 2158 } 2159 2160 /* Should be called only if mem_alloc_profiling_enabled() */ 2161 static noinline void 2162 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2163 int objects) 2164 { 2165 struct slabobj_ext *obj_exts; 2166 int i; 2167 2168 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2169 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2170 return; 2171 2172 obj_exts = slab_obj_exts(slab); 2173 if (!obj_exts) 2174 return; 2175 2176 for (i = 0; i < objects; i++) { 2177 unsigned int off = obj_to_index(s, slab, p[i]); 2178 2179 alloc_tag_sub(&obj_exts[off].ref, s->size); 2180 } 2181 } 2182 2183 static inline void 2184 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2185 int objects) 2186 { 2187 if (mem_alloc_profiling_enabled()) 2188 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2189 } 2190 2191 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2192 2193 static inline void 2194 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2195 { 2196 } 2197 2198 static inline void 2199 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2200 int objects) 2201 { 2202 } 2203 2204 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2205 2206 2207 #ifdef CONFIG_MEMCG 2208 2209 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2210 2211 static __fastpath_inline 2212 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2213 gfp_t flags, size_t size, void **p) 2214 { 2215 if (likely(!memcg_kmem_online())) 2216 return true; 2217 2218 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2219 return true; 2220 2221 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2222 return true; 2223 2224 if (likely(size == 1)) { 2225 memcg_alloc_abort_single(s, *p); 2226 *p = NULL; 2227 } else { 2228 kmem_cache_free_bulk(s, size, p); 2229 } 2230 2231 return false; 2232 } 2233 2234 static __fastpath_inline 2235 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2236 int objects) 2237 { 2238 struct slabobj_ext *obj_exts; 2239 2240 if (!memcg_kmem_online()) 2241 return; 2242 2243 obj_exts = slab_obj_exts(slab); 2244 if (likely(!obj_exts)) 2245 return; 2246 2247 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2248 } 2249 2250 static __fastpath_inline 2251 bool memcg_slab_post_charge(void *p, gfp_t flags) 2252 { 2253 struct slabobj_ext *slab_exts; 2254 struct kmem_cache *s; 2255 struct folio *folio; 2256 struct slab *slab; 2257 unsigned long off; 2258 2259 folio = virt_to_folio(p); 2260 if (!folio_test_slab(folio)) { 2261 int size; 2262 2263 if (folio_memcg_kmem(folio)) 2264 return true; 2265 2266 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2267 folio_order(folio))) 2268 return false; 2269 2270 /* 2271 * This folio has already been accounted in the global stats but 2272 * not in the memcg stats. So, subtract from the global and use 2273 * the interface which adds to both global and memcg stats. 2274 */ 2275 size = folio_size(folio); 2276 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2277 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2278 return true; 2279 } 2280 2281 slab = folio_slab(folio); 2282 s = slab->slab_cache; 2283 2284 /* 2285 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2286 * of slab_obj_exts being allocated from the same slab and thus the slab 2287 * becoming effectively unfreeable. 2288 */ 2289 if (is_kmalloc_normal(s)) 2290 return true; 2291 2292 /* Ignore already charged objects. */ 2293 slab_exts = slab_obj_exts(slab); 2294 if (slab_exts) { 2295 off = obj_to_index(s, slab, p); 2296 if (unlikely(slab_exts[off].objcg)) 2297 return true; 2298 } 2299 2300 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2301 } 2302 2303 #else /* CONFIG_MEMCG */ 2304 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2305 struct list_lru *lru, 2306 gfp_t flags, size_t size, 2307 void **p) 2308 { 2309 return true; 2310 } 2311 2312 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2313 void **p, int objects) 2314 { 2315 } 2316 2317 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2318 { 2319 return true; 2320 } 2321 #endif /* CONFIG_MEMCG */ 2322 2323 #ifdef CONFIG_SLUB_RCU_DEBUG 2324 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2325 2326 struct rcu_delayed_free { 2327 struct rcu_head head; 2328 void *object; 2329 }; 2330 #endif 2331 2332 /* 2333 * Hooks for other subsystems that check memory allocations. In a typical 2334 * production configuration these hooks all should produce no code at all. 2335 * 2336 * Returns true if freeing of the object can proceed, false if its reuse 2337 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2338 * to KFENCE. 2339 */ 2340 static __always_inline 2341 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2342 bool after_rcu_delay) 2343 { 2344 /* Are the object contents still accessible? */ 2345 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2346 2347 kmemleak_free_recursive(x, s->flags); 2348 kmsan_slab_free(s, x); 2349 2350 debug_check_no_locks_freed(x, s->object_size); 2351 2352 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2353 debug_check_no_obj_freed(x, s->object_size); 2354 2355 /* Use KCSAN to help debug racy use-after-free. */ 2356 if (!still_accessible) 2357 __kcsan_check_access(x, s->object_size, 2358 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2359 2360 if (kfence_free(x)) 2361 return false; 2362 2363 /* 2364 * Give KASAN a chance to notice an invalid free operation before we 2365 * modify the object. 2366 */ 2367 if (kasan_slab_pre_free(s, x)) 2368 return false; 2369 2370 #ifdef CONFIG_SLUB_RCU_DEBUG 2371 if (still_accessible) { 2372 struct rcu_delayed_free *delayed_free; 2373 2374 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2375 if (delayed_free) { 2376 /* 2377 * Let KASAN track our call stack as a "related work 2378 * creation", just like if the object had been freed 2379 * normally via kfree_rcu(). 2380 * We have to do this manually because the rcu_head is 2381 * not located inside the object. 2382 */ 2383 kasan_record_aux_stack(x); 2384 2385 delayed_free->object = x; 2386 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2387 return false; 2388 } 2389 } 2390 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2391 2392 /* 2393 * As memory initialization might be integrated into KASAN, 2394 * kasan_slab_free and initialization memset's must be 2395 * kept together to avoid discrepancies in behavior. 2396 * 2397 * The initialization memset's clear the object and the metadata, 2398 * but don't touch the SLAB redzone. 2399 * 2400 * The object's freepointer is also avoided if stored outside the 2401 * object. 2402 */ 2403 if (unlikely(init)) { 2404 int rsize; 2405 unsigned int inuse, orig_size; 2406 2407 inuse = get_info_end(s); 2408 orig_size = get_orig_size(s, x); 2409 if (!kasan_has_integrated_init()) 2410 memset(kasan_reset_tag(x), 0, orig_size); 2411 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2412 memset((char *)kasan_reset_tag(x) + inuse, 0, 2413 s->size - inuse - rsize); 2414 /* 2415 * Restore orig_size, otherwize kmalloc redzone overwritten 2416 * would be reported 2417 */ 2418 set_orig_size(s, x, orig_size); 2419 2420 } 2421 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2422 return !kasan_slab_free(s, x, init, still_accessible); 2423 } 2424 2425 static __fastpath_inline 2426 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2427 int *cnt) 2428 { 2429 2430 void *object; 2431 void *next = *head; 2432 void *old_tail = *tail; 2433 bool init; 2434 2435 if (is_kfence_address(next)) { 2436 slab_free_hook(s, next, false, false); 2437 return false; 2438 } 2439 2440 /* Head and tail of the reconstructed freelist */ 2441 *head = NULL; 2442 *tail = NULL; 2443 2444 init = slab_want_init_on_free(s); 2445 2446 do { 2447 object = next; 2448 next = get_freepointer(s, object); 2449 2450 /* If object's reuse doesn't have to be delayed */ 2451 if (likely(slab_free_hook(s, object, init, false))) { 2452 /* Move object to the new freelist */ 2453 set_freepointer(s, object, *head); 2454 *head = object; 2455 if (!*tail) 2456 *tail = object; 2457 } else { 2458 /* 2459 * Adjust the reconstructed freelist depth 2460 * accordingly if object's reuse is delayed. 2461 */ 2462 --(*cnt); 2463 } 2464 } while (object != old_tail); 2465 2466 return *head != NULL; 2467 } 2468 2469 static void *setup_object(struct kmem_cache *s, void *object) 2470 { 2471 setup_object_debug(s, object); 2472 object = kasan_init_slab_obj(s, object); 2473 if (unlikely(s->ctor)) { 2474 kasan_unpoison_new_object(s, object); 2475 s->ctor(object); 2476 kasan_poison_new_object(s, object); 2477 } 2478 return object; 2479 } 2480 2481 /* 2482 * Slab allocation and freeing 2483 */ 2484 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2485 struct kmem_cache_order_objects oo) 2486 { 2487 struct folio *folio; 2488 struct slab *slab; 2489 unsigned int order = oo_order(oo); 2490 2491 if (node == NUMA_NO_NODE) 2492 folio = (struct folio *)alloc_frozen_pages(flags, order); 2493 else 2494 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2495 2496 if (!folio) 2497 return NULL; 2498 2499 slab = folio_slab(folio); 2500 __folio_set_slab(folio); 2501 if (folio_is_pfmemalloc(folio)) 2502 slab_set_pfmemalloc(slab); 2503 2504 return slab; 2505 } 2506 2507 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2508 /* Pre-initialize the random sequence cache */ 2509 static int init_cache_random_seq(struct kmem_cache *s) 2510 { 2511 unsigned int count = oo_objects(s->oo); 2512 int err; 2513 2514 /* Bailout if already initialised */ 2515 if (s->random_seq) 2516 return 0; 2517 2518 err = cache_random_seq_create(s, count, GFP_KERNEL); 2519 if (err) { 2520 pr_err("SLUB: Unable to initialize free list for %s\n", 2521 s->name); 2522 return err; 2523 } 2524 2525 /* Transform to an offset on the set of pages */ 2526 if (s->random_seq) { 2527 unsigned int i; 2528 2529 for (i = 0; i < count; i++) 2530 s->random_seq[i] *= s->size; 2531 } 2532 return 0; 2533 } 2534 2535 /* Initialize each random sequence freelist per cache */ 2536 static void __init init_freelist_randomization(void) 2537 { 2538 struct kmem_cache *s; 2539 2540 mutex_lock(&slab_mutex); 2541 2542 list_for_each_entry(s, &slab_caches, list) 2543 init_cache_random_seq(s); 2544 2545 mutex_unlock(&slab_mutex); 2546 } 2547 2548 /* Get the next entry on the pre-computed freelist randomized */ 2549 static void *next_freelist_entry(struct kmem_cache *s, 2550 unsigned long *pos, void *start, 2551 unsigned long page_limit, 2552 unsigned long freelist_count) 2553 { 2554 unsigned int idx; 2555 2556 /* 2557 * If the target page allocation failed, the number of objects on the 2558 * page might be smaller than the usual size defined by the cache. 2559 */ 2560 do { 2561 idx = s->random_seq[*pos]; 2562 *pos += 1; 2563 if (*pos >= freelist_count) 2564 *pos = 0; 2565 } while (unlikely(idx >= page_limit)); 2566 2567 return (char *)start + idx; 2568 } 2569 2570 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2571 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2572 { 2573 void *start; 2574 void *cur; 2575 void *next; 2576 unsigned long idx, pos, page_limit, freelist_count; 2577 2578 if (slab->objects < 2 || !s->random_seq) 2579 return false; 2580 2581 freelist_count = oo_objects(s->oo); 2582 pos = get_random_u32_below(freelist_count); 2583 2584 page_limit = slab->objects * s->size; 2585 start = fixup_red_left(s, slab_address(slab)); 2586 2587 /* First entry is used as the base of the freelist */ 2588 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2589 cur = setup_object(s, cur); 2590 slab->freelist = cur; 2591 2592 for (idx = 1; idx < slab->objects; idx++) { 2593 next = next_freelist_entry(s, &pos, start, page_limit, 2594 freelist_count); 2595 next = setup_object(s, next); 2596 set_freepointer(s, cur, next); 2597 cur = next; 2598 } 2599 set_freepointer(s, cur, NULL); 2600 2601 return true; 2602 } 2603 #else 2604 static inline int init_cache_random_seq(struct kmem_cache *s) 2605 { 2606 return 0; 2607 } 2608 static inline void init_freelist_randomization(void) { } 2609 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2610 { 2611 return false; 2612 } 2613 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2614 2615 static __always_inline void account_slab(struct slab *slab, int order, 2616 struct kmem_cache *s, gfp_t gfp) 2617 { 2618 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2619 alloc_slab_obj_exts(slab, s, gfp, true); 2620 2621 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2622 PAGE_SIZE << order); 2623 } 2624 2625 static __always_inline void unaccount_slab(struct slab *slab, int order, 2626 struct kmem_cache *s) 2627 { 2628 /* 2629 * The slab object extensions should now be freed regardless of 2630 * whether mem_alloc_profiling_enabled() or not because profiling 2631 * might have been disabled after slab->obj_exts got allocated. 2632 */ 2633 free_slab_obj_exts(slab); 2634 2635 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2636 -(PAGE_SIZE << order)); 2637 } 2638 2639 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2640 { 2641 struct slab *slab; 2642 struct kmem_cache_order_objects oo = s->oo; 2643 gfp_t alloc_gfp; 2644 void *start, *p, *next; 2645 int idx; 2646 bool shuffle; 2647 2648 flags &= gfp_allowed_mask; 2649 2650 flags |= s->allocflags; 2651 2652 /* 2653 * Let the initial higher-order allocation fail under memory pressure 2654 * so we fall-back to the minimum order allocation. 2655 */ 2656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2659 2660 slab = alloc_slab_page(alloc_gfp, node, oo); 2661 if (unlikely(!slab)) { 2662 oo = s->min; 2663 alloc_gfp = flags; 2664 /* 2665 * Allocation may have failed due to fragmentation. 2666 * Try a lower order alloc if possible 2667 */ 2668 slab = alloc_slab_page(alloc_gfp, node, oo); 2669 if (unlikely(!slab)) 2670 return NULL; 2671 stat(s, ORDER_FALLBACK); 2672 } 2673 2674 slab->objects = oo_objects(oo); 2675 slab->inuse = 0; 2676 slab->frozen = 0; 2677 init_slab_obj_exts(slab); 2678 2679 account_slab(slab, oo_order(oo), s, flags); 2680 2681 slab->slab_cache = s; 2682 2683 kasan_poison_slab(slab); 2684 2685 start = slab_address(slab); 2686 2687 setup_slab_debug(s, slab, start); 2688 2689 shuffle = shuffle_freelist(s, slab); 2690 2691 if (!shuffle) { 2692 start = fixup_red_left(s, start); 2693 start = setup_object(s, start); 2694 slab->freelist = start; 2695 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2696 next = p + s->size; 2697 next = setup_object(s, next); 2698 set_freepointer(s, p, next); 2699 p = next; 2700 } 2701 set_freepointer(s, p, NULL); 2702 } 2703 2704 return slab; 2705 } 2706 2707 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2708 { 2709 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2710 flags = kmalloc_fix_flags(flags); 2711 2712 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2713 2714 return allocate_slab(s, 2715 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2716 } 2717 2718 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2719 { 2720 struct folio *folio = slab_folio(slab); 2721 int order = folio_order(folio); 2722 int pages = 1 << order; 2723 2724 __slab_clear_pfmemalloc(slab); 2725 folio->mapping = NULL; 2726 __folio_clear_slab(folio); 2727 mm_account_reclaimed_pages(pages); 2728 unaccount_slab(slab, order, s); 2729 free_frozen_pages(&folio->page, order); 2730 } 2731 2732 static void rcu_free_slab(struct rcu_head *h) 2733 { 2734 struct slab *slab = container_of(h, struct slab, rcu_head); 2735 2736 __free_slab(slab->slab_cache, slab); 2737 } 2738 2739 static void free_slab(struct kmem_cache *s, struct slab *slab) 2740 { 2741 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2742 void *p; 2743 2744 slab_pad_check(s, slab); 2745 for_each_object(p, s, slab_address(slab), slab->objects) 2746 check_object(s, slab, p, SLUB_RED_INACTIVE); 2747 } 2748 2749 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2750 call_rcu(&slab->rcu_head, rcu_free_slab); 2751 else 2752 __free_slab(s, slab); 2753 } 2754 2755 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2756 { 2757 dec_slabs_node(s, slab_nid(slab), slab->objects); 2758 free_slab(s, slab); 2759 } 2760 2761 static inline bool slab_test_node_partial(const struct slab *slab) 2762 { 2763 return test_bit(SL_partial, &slab->flags); 2764 } 2765 2766 static inline void slab_set_node_partial(struct slab *slab) 2767 { 2768 set_bit(SL_partial, &slab->flags); 2769 } 2770 2771 static inline void slab_clear_node_partial(struct slab *slab) 2772 { 2773 clear_bit(SL_partial, &slab->flags); 2774 } 2775 2776 /* 2777 * Management of partially allocated slabs. 2778 */ 2779 static inline void 2780 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2781 { 2782 n->nr_partial++; 2783 if (tail == DEACTIVATE_TO_TAIL) 2784 list_add_tail(&slab->slab_list, &n->partial); 2785 else 2786 list_add(&slab->slab_list, &n->partial); 2787 slab_set_node_partial(slab); 2788 } 2789 2790 static inline void add_partial(struct kmem_cache_node *n, 2791 struct slab *slab, int tail) 2792 { 2793 lockdep_assert_held(&n->list_lock); 2794 __add_partial(n, slab, tail); 2795 } 2796 2797 static inline void remove_partial(struct kmem_cache_node *n, 2798 struct slab *slab) 2799 { 2800 lockdep_assert_held(&n->list_lock); 2801 list_del(&slab->slab_list); 2802 slab_clear_node_partial(slab); 2803 n->nr_partial--; 2804 } 2805 2806 /* 2807 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2808 * slab from the n->partial list. Remove only a single object from the slab, do 2809 * the alloc_debug_processing() checks and leave the slab on the list, or move 2810 * it to full list if it was the last free object. 2811 */ 2812 static void *alloc_single_from_partial(struct kmem_cache *s, 2813 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2814 { 2815 void *object; 2816 2817 lockdep_assert_held(&n->list_lock); 2818 2819 object = slab->freelist; 2820 slab->freelist = get_freepointer(s, object); 2821 slab->inuse++; 2822 2823 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2824 if (folio_test_slab(slab_folio(slab))) 2825 remove_partial(n, slab); 2826 return NULL; 2827 } 2828 2829 if (slab->inuse == slab->objects) { 2830 remove_partial(n, slab); 2831 add_full(s, n, slab); 2832 } 2833 2834 return object; 2835 } 2836 2837 /* 2838 * Called only for kmem_cache_debug() caches to allocate from a freshly 2839 * allocated slab. Allocate a single object instead of whole freelist 2840 * and put the slab to the partial (or full) list. 2841 */ 2842 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2843 struct slab *slab, int orig_size) 2844 { 2845 int nid = slab_nid(slab); 2846 struct kmem_cache_node *n = get_node(s, nid); 2847 unsigned long flags; 2848 void *object; 2849 2850 2851 object = slab->freelist; 2852 slab->freelist = get_freepointer(s, object); 2853 slab->inuse = 1; 2854 2855 if (!alloc_debug_processing(s, slab, object, orig_size)) 2856 /* 2857 * It's not really expected that this would fail on a 2858 * freshly allocated slab, but a concurrent memory 2859 * corruption in theory could cause that. 2860 */ 2861 return NULL; 2862 2863 spin_lock_irqsave(&n->list_lock, flags); 2864 2865 if (slab->inuse == slab->objects) 2866 add_full(s, n, slab); 2867 else 2868 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2869 2870 inc_slabs_node(s, nid, slab->objects); 2871 spin_unlock_irqrestore(&n->list_lock, flags); 2872 2873 return object; 2874 } 2875 2876 #ifdef CONFIG_SLUB_CPU_PARTIAL 2877 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2878 #else 2879 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2880 int drain) { } 2881 #endif 2882 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2883 2884 /* 2885 * Try to allocate a partial slab from a specific node. 2886 */ 2887 static struct slab *get_partial_node(struct kmem_cache *s, 2888 struct kmem_cache_node *n, 2889 struct partial_context *pc) 2890 { 2891 struct slab *slab, *slab2, *partial = NULL; 2892 unsigned long flags; 2893 unsigned int partial_slabs = 0; 2894 2895 /* 2896 * Racy check. If we mistakenly see no partial slabs then we 2897 * just allocate an empty slab. If we mistakenly try to get a 2898 * partial slab and there is none available then get_partial() 2899 * will return NULL. 2900 */ 2901 if (!n || !n->nr_partial) 2902 return NULL; 2903 2904 spin_lock_irqsave(&n->list_lock, flags); 2905 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2906 if (!pfmemalloc_match(slab, pc->flags)) 2907 continue; 2908 2909 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2910 void *object = alloc_single_from_partial(s, n, slab, 2911 pc->orig_size); 2912 if (object) { 2913 partial = slab; 2914 pc->object = object; 2915 break; 2916 } 2917 continue; 2918 } 2919 2920 remove_partial(n, slab); 2921 2922 if (!partial) { 2923 partial = slab; 2924 stat(s, ALLOC_FROM_PARTIAL); 2925 2926 if ((slub_get_cpu_partial(s) == 0)) { 2927 break; 2928 } 2929 } else { 2930 put_cpu_partial(s, slab, 0); 2931 stat(s, CPU_PARTIAL_NODE); 2932 2933 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2934 break; 2935 } 2936 } 2937 } 2938 spin_unlock_irqrestore(&n->list_lock, flags); 2939 return partial; 2940 } 2941 2942 /* 2943 * Get a slab from somewhere. Search in increasing NUMA distances. 2944 */ 2945 static struct slab *get_any_partial(struct kmem_cache *s, 2946 struct partial_context *pc) 2947 { 2948 #ifdef CONFIG_NUMA 2949 struct zonelist *zonelist; 2950 struct zoneref *z; 2951 struct zone *zone; 2952 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2953 struct slab *slab; 2954 unsigned int cpuset_mems_cookie; 2955 2956 /* 2957 * The defrag ratio allows a configuration of the tradeoffs between 2958 * inter node defragmentation and node local allocations. A lower 2959 * defrag_ratio increases the tendency to do local allocations 2960 * instead of attempting to obtain partial slabs from other nodes. 2961 * 2962 * If the defrag_ratio is set to 0 then kmalloc() always 2963 * returns node local objects. If the ratio is higher then kmalloc() 2964 * may return off node objects because partial slabs are obtained 2965 * from other nodes and filled up. 2966 * 2967 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2968 * (which makes defrag_ratio = 1000) then every (well almost) 2969 * allocation will first attempt to defrag slab caches on other nodes. 2970 * This means scanning over all nodes to look for partial slabs which 2971 * may be expensive if we do it every time we are trying to find a slab 2972 * with available objects. 2973 */ 2974 if (!s->remote_node_defrag_ratio || 2975 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2976 return NULL; 2977 2978 do { 2979 cpuset_mems_cookie = read_mems_allowed_begin(); 2980 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2981 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2982 struct kmem_cache_node *n; 2983 2984 n = get_node(s, zone_to_nid(zone)); 2985 2986 if (n && cpuset_zone_allowed(zone, pc->flags) && 2987 n->nr_partial > s->min_partial) { 2988 slab = get_partial_node(s, n, pc); 2989 if (slab) { 2990 /* 2991 * Don't check read_mems_allowed_retry() 2992 * here - if mems_allowed was updated in 2993 * parallel, that was a harmless race 2994 * between allocation and the cpuset 2995 * update 2996 */ 2997 return slab; 2998 } 2999 } 3000 } 3001 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3002 #endif /* CONFIG_NUMA */ 3003 return NULL; 3004 } 3005 3006 /* 3007 * Get a partial slab, lock it and return it. 3008 */ 3009 static struct slab *get_partial(struct kmem_cache *s, int node, 3010 struct partial_context *pc) 3011 { 3012 struct slab *slab; 3013 int searchnode = node; 3014 3015 if (node == NUMA_NO_NODE) 3016 searchnode = numa_mem_id(); 3017 3018 slab = get_partial_node(s, get_node(s, searchnode), pc); 3019 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 3020 return slab; 3021 3022 return get_any_partial(s, pc); 3023 } 3024 3025 #ifndef CONFIG_SLUB_TINY 3026 3027 #ifdef CONFIG_PREEMPTION 3028 /* 3029 * Calculate the next globally unique transaction for disambiguation 3030 * during cmpxchg. The transactions start with the cpu number and are then 3031 * incremented by CONFIG_NR_CPUS. 3032 */ 3033 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 3034 #else 3035 /* 3036 * No preemption supported therefore also no need to check for 3037 * different cpus. 3038 */ 3039 #define TID_STEP 1 3040 #endif /* CONFIG_PREEMPTION */ 3041 3042 static inline unsigned long next_tid(unsigned long tid) 3043 { 3044 return tid + TID_STEP; 3045 } 3046 3047 #ifdef SLUB_DEBUG_CMPXCHG 3048 static inline unsigned int tid_to_cpu(unsigned long tid) 3049 { 3050 return tid % TID_STEP; 3051 } 3052 3053 static inline unsigned long tid_to_event(unsigned long tid) 3054 { 3055 return tid / TID_STEP; 3056 } 3057 #endif 3058 3059 static inline unsigned int init_tid(int cpu) 3060 { 3061 return cpu; 3062 } 3063 3064 static inline void note_cmpxchg_failure(const char *n, 3065 const struct kmem_cache *s, unsigned long tid) 3066 { 3067 #ifdef SLUB_DEBUG_CMPXCHG 3068 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3069 3070 pr_info("%s %s: cmpxchg redo ", n, s->name); 3071 3072 #ifdef CONFIG_PREEMPTION 3073 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3074 pr_warn("due to cpu change %d -> %d\n", 3075 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3076 else 3077 #endif 3078 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3079 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3080 tid_to_event(tid), tid_to_event(actual_tid)); 3081 else 3082 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3083 actual_tid, tid, next_tid(tid)); 3084 #endif 3085 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3086 } 3087 3088 static void init_kmem_cache_cpus(struct kmem_cache *s) 3089 { 3090 int cpu; 3091 struct kmem_cache_cpu *c; 3092 3093 for_each_possible_cpu(cpu) { 3094 c = per_cpu_ptr(s->cpu_slab, cpu); 3095 local_lock_init(&c->lock); 3096 c->tid = init_tid(cpu); 3097 } 3098 } 3099 3100 /* 3101 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3102 * unfreezes the slabs and puts it on the proper list. 3103 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3104 * by the caller. 3105 */ 3106 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3107 void *freelist) 3108 { 3109 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3110 int free_delta = 0; 3111 void *nextfree, *freelist_iter, *freelist_tail; 3112 int tail = DEACTIVATE_TO_HEAD; 3113 unsigned long flags = 0; 3114 struct slab new; 3115 struct slab old; 3116 3117 if (READ_ONCE(slab->freelist)) { 3118 stat(s, DEACTIVATE_REMOTE_FREES); 3119 tail = DEACTIVATE_TO_TAIL; 3120 } 3121 3122 /* 3123 * Stage one: Count the objects on cpu's freelist as free_delta and 3124 * remember the last object in freelist_tail for later splicing. 3125 */ 3126 freelist_tail = NULL; 3127 freelist_iter = freelist; 3128 while (freelist_iter) { 3129 nextfree = get_freepointer(s, freelist_iter); 3130 3131 /* 3132 * If 'nextfree' is invalid, it is possible that the object at 3133 * 'freelist_iter' is already corrupted. So isolate all objects 3134 * starting at 'freelist_iter' by skipping them. 3135 */ 3136 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3137 break; 3138 3139 freelist_tail = freelist_iter; 3140 free_delta++; 3141 3142 freelist_iter = nextfree; 3143 } 3144 3145 /* 3146 * Stage two: Unfreeze the slab while splicing the per-cpu 3147 * freelist to the head of slab's freelist. 3148 */ 3149 do { 3150 old.freelist = READ_ONCE(slab->freelist); 3151 old.counters = READ_ONCE(slab->counters); 3152 VM_BUG_ON(!old.frozen); 3153 3154 /* Determine target state of the slab */ 3155 new.counters = old.counters; 3156 new.frozen = 0; 3157 if (freelist_tail) { 3158 new.inuse -= free_delta; 3159 set_freepointer(s, freelist_tail, old.freelist); 3160 new.freelist = freelist; 3161 } else { 3162 new.freelist = old.freelist; 3163 } 3164 } while (!slab_update_freelist(s, slab, 3165 old.freelist, old.counters, 3166 new.freelist, new.counters, 3167 "unfreezing slab")); 3168 3169 /* 3170 * Stage three: Manipulate the slab list based on the updated state. 3171 */ 3172 if (!new.inuse && n->nr_partial >= s->min_partial) { 3173 stat(s, DEACTIVATE_EMPTY); 3174 discard_slab(s, slab); 3175 stat(s, FREE_SLAB); 3176 } else if (new.freelist) { 3177 spin_lock_irqsave(&n->list_lock, flags); 3178 add_partial(n, slab, tail); 3179 spin_unlock_irqrestore(&n->list_lock, flags); 3180 stat(s, tail); 3181 } else { 3182 stat(s, DEACTIVATE_FULL); 3183 } 3184 } 3185 3186 #ifdef CONFIG_SLUB_CPU_PARTIAL 3187 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3188 { 3189 struct kmem_cache_node *n = NULL, *n2 = NULL; 3190 struct slab *slab, *slab_to_discard = NULL; 3191 unsigned long flags = 0; 3192 3193 while (partial_slab) { 3194 slab = partial_slab; 3195 partial_slab = slab->next; 3196 3197 n2 = get_node(s, slab_nid(slab)); 3198 if (n != n2) { 3199 if (n) 3200 spin_unlock_irqrestore(&n->list_lock, flags); 3201 3202 n = n2; 3203 spin_lock_irqsave(&n->list_lock, flags); 3204 } 3205 3206 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3207 slab->next = slab_to_discard; 3208 slab_to_discard = slab; 3209 } else { 3210 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3211 stat(s, FREE_ADD_PARTIAL); 3212 } 3213 } 3214 3215 if (n) 3216 spin_unlock_irqrestore(&n->list_lock, flags); 3217 3218 while (slab_to_discard) { 3219 slab = slab_to_discard; 3220 slab_to_discard = slab_to_discard->next; 3221 3222 stat(s, DEACTIVATE_EMPTY); 3223 discard_slab(s, slab); 3224 stat(s, FREE_SLAB); 3225 } 3226 } 3227 3228 /* 3229 * Put all the cpu partial slabs to the node partial list. 3230 */ 3231 static void put_partials(struct kmem_cache *s) 3232 { 3233 struct slab *partial_slab; 3234 unsigned long flags; 3235 3236 local_lock_irqsave(&s->cpu_slab->lock, flags); 3237 partial_slab = this_cpu_read(s->cpu_slab->partial); 3238 this_cpu_write(s->cpu_slab->partial, NULL); 3239 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3240 3241 if (partial_slab) 3242 __put_partials(s, partial_slab); 3243 } 3244 3245 static void put_partials_cpu(struct kmem_cache *s, 3246 struct kmem_cache_cpu *c) 3247 { 3248 struct slab *partial_slab; 3249 3250 partial_slab = slub_percpu_partial(c); 3251 c->partial = NULL; 3252 3253 if (partial_slab) 3254 __put_partials(s, partial_slab); 3255 } 3256 3257 /* 3258 * Put a slab into a partial slab slot if available. 3259 * 3260 * If we did not find a slot then simply move all the partials to the 3261 * per node partial list. 3262 */ 3263 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3264 { 3265 struct slab *oldslab; 3266 struct slab *slab_to_put = NULL; 3267 unsigned long flags; 3268 int slabs = 0; 3269 3270 local_lock_irqsave(&s->cpu_slab->lock, flags); 3271 3272 oldslab = this_cpu_read(s->cpu_slab->partial); 3273 3274 if (oldslab) { 3275 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3276 /* 3277 * Partial array is full. Move the existing set to the 3278 * per node partial list. Postpone the actual unfreezing 3279 * outside of the critical section. 3280 */ 3281 slab_to_put = oldslab; 3282 oldslab = NULL; 3283 } else { 3284 slabs = oldslab->slabs; 3285 } 3286 } 3287 3288 slabs++; 3289 3290 slab->slabs = slabs; 3291 slab->next = oldslab; 3292 3293 this_cpu_write(s->cpu_slab->partial, slab); 3294 3295 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3296 3297 if (slab_to_put) { 3298 __put_partials(s, slab_to_put); 3299 stat(s, CPU_PARTIAL_DRAIN); 3300 } 3301 } 3302 3303 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3304 3305 static inline void put_partials(struct kmem_cache *s) { } 3306 static inline void put_partials_cpu(struct kmem_cache *s, 3307 struct kmem_cache_cpu *c) { } 3308 3309 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3310 3311 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3312 { 3313 unsigned long flags; 3314 struct slab *slab; 3315 void *freelist; 3316 3317 local_lock_irqsave(&s->cpu_slab->lock, flags); 3318 3319 slab = c->slab; 3320 freelist = c->freelist; 3321 3322 c->slab = NULL; 3323 c->freelist = NULL; 3324 c->tid = next_tid(c->tid); 3325 3326 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3327 3328 if (slab) { 3329 deactivate_slab(s, slab, freelist); 3330 stat(s, CPUSLAB_FLUSH); 3331 } 3332 } 3333 3334 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3335 { 3336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3337 void *freelist = c->freelist; 3338 struct slab *slab = c->slab; 3339 3340 c->slab = NULL; 3341 c->freelist = NULL; 3342 c->tid = next_tid(c->tid); 3343 3344 if (slab) { 3345 deactivate_slab(s, slab, freelist); 3346 stat(s, CPUSLAB_FLUSH); 3347 } 3348 3349 put_partials_cpu(s, c); 3350 } 3351 3352 struct slub_flush_work { 3353 struct work_struct work; 3354 struct kmem_cache *s; 3355 bool skip; 3356 }; 3357 3358 /* 3359 * Flush cpu slab. 3360 * 3361 * Called from CPU work handler with migration disabled. 3362 */ 3363 static void flush_cpu_slab(struct work_struct *w) 3364 { 3365 struct kmem_cache *s; 3366 struct kmem_cache_cpu *c; 3367 struct slub_flush_work *sfw; 3368 3369 sfw = container_of(w, struct slub_flush_work, work); 3370 3371 s = sfw->s; 3372 c = this_cpu_ptr(s->cpu_slab); 3373 3374 if (c->slab) 3375 flush_slab(s, c); 3376 3377 put_partials(s); 3378 } 3379 3380 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3381 { 3382 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3383 3384 return c->slab || slub_percpu_partial(c); 3385 } 3386 3387 static DEFINE_MUTEX(flush_lock); 3388 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3389 3390 static void flush_all_cpus_locked(struct kmem_cache *s) 3391 { 3392 struct slub_flush_work *sfw; 3393 unsigned int cpu; 3394 3395 lockdep_assert_cpus_held(); 3396 mutex_lock(&flush_lock); 3397 3398 for_each_online_cpu(cpu) { 3399 sfw = &per_cpu(slub_flush, cpu); 3400 if (!has_cpu_slab(cpu, s)) { 3401 sfw->skip = true; 3402 continue; 3403 } 3404 INIT_WORK(&sfw->work, flush_cpu_slab); 3405 sfw->skip = false; 3406 sfw->s = s; 3407 queue_work_on(cpu, flushwq, &sfw->work); 3408 } 3409 3410 for_each_online_cpu(cpu) { 3411 sfw = &per_cpu(slub_flush, cpu); 3412 if (sfw->skip) 3413 continue; 3414 flush_work(&sfw->work); 3415 } 3416 3417 mutex_unlock(&flush_lock); 3418 } 3419 3420 static void flush_all(struct kmem_cache *s) 3421 { 3422 cpus_read_lock(); 3423 flush_all_cpus_locked(s); 3424 cpus_read_unlock(); 3425 } 3426 3427 /* 3428 * Use the cpu notifier to insure that the cpu slabs are flushed when 3429 * necessary. 3430 */ 3431 static int slub_cpu_dead(unsigned int cpu) 3432 { 3433 struct kmem_cache *s; 3434 3435 mutex_lock(&slab_mutex); 3436 list_for_each_entry(s, &slab_caches, list) 3437 __flush_cpu_slab(s, cpu); 3438 mutex_unlock(&slab_mutex); 3439 return 0; 3440 } 3441 3442 #else /* CONFIG_SLUB_TINY */ 3443 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3444 static inline void flush_all(struct kmem_cache *s) { } 3445 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3446 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3447 #endif /* CONFIG_SLUB_TINY */ 3448 3449 /* 3450 * Check if the objects in a per cpu structure fit numa 3451 * locality expectations. 3452 */ 3453 static inline int node_match(struct slab *slab, int node) 3454 { 3455 #ifdef CONFIG_NUMA 3456 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3457 return 0; 3458 #endif 3459 return 1; 3460 } 3461 3462 #ifdef CONFIG_SLUB_DEBUG 3463 static int count_free(struct slab *slab) 3464 { 3465 return slab->objects - slab->inuse; 3466 } 3467 3468 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3469 { 3470 return atomic_long_read(&n->total_objects); 3471 } 3472 3473 /* Supports checking bulk free of a constructed freelist */ 3474 static inline bool free_debug_processing(struct kmem_cache *s, 3475 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3476 unsigned long addr, depot_stack_handle_t handle) 3477 { 3478 bool checks_ok = false; 3479 void *object = head; 3480 int cnt = 0; 3481 3482 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3483 if (!check_slab(s, slab)) 3484 goto out; 3485 } 3486 3487 if (slab->inuse < *bulk_cnt) { 3488 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3489 slab->inuse, *bulk_cnt); 3490 goto out; 3491 } 3492 3493 next_object: 3494 3495 if (++cnt > *bulk_cnt) 3496 goto out_cnt; 3497 3498 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3499 if (!free_consistency_checks(s, slab, object, addr)) 3500 goto out; 3501 } 3502 3503 if (s->flags & SLAB_STORE_USER) 3504 set_track_update(s, object, TRACK_FREE, addr, handle); 3505 trace(s, slab, object, 0); 3506 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3507 init_object(s, object, SLUB_RED_INACTIVE); 3508 3509 /* Reached end of constructed freelist yet? */ 3510 if (object != tail) { 3511 object = get_freepointer(s, object); 3512 goto next_object; 3513 } 3514 checks_ok = true; 3515 3516 out_cnt: 3517 if (cnt != *bulk_cnt) { 3518 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3519 *bulk_cnt, cnt); 3520 *bulk_cnt = cnt; 3521 } 3522 3523 out: 3524 3525 if (!checks_ok) 3526 slab_fix(s, "Object at 0x%p not freed", object); 3527 3528 return checks_ok; 3529 } 3530 #endif /* CONFIG_SLUB_DEBUG */ 3531 3532 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3533 static unsigned long count_partial(struct kmem_cache_node *n, 3534 int (*get_count)(struct slab *)) 3535 { 3536 unsigned long flags; 3537 unsigned long x = 0; 3538 struct slab *slab; 3539 3540 spin_lock_irqsave(&n->list_lock, flags); 3541 list_for_each_entry(slab, &n->partial, slab_list) 3542 x += get_count(slab); 3543 spin_unlock_irqrestore(&n->list_lock, flags); 3544 return x; 3545 } 3546 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3547 3548 #ifdef CONFIG_SLUB_DEBUG 3549 #define MAX_PARTIAL_TO_SCAN 10000 3550 3551 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3552 { 3553 unsigned long flags; 3554 unsigned long x = 0; 3555 struct slab *slab; 3556 3557 spin_lock_irqsave(&n->list_lock, flags); 3558 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3559 list_for_each_entry(slab, &n->partial, slab_list) 3560 x += slab->objects - slab->inuse; 3561 } else { 3562 /* 3563 * For a long list, approximate the total count of objects in 3564 * it to meet the limit on the number of slabs to scan. 3565 * Scan from both the list's head and tail for better accuracy. 3566 */ 3567 unsigned long scanned = 0; 3568 3569 list_for_each_entry(slab, &n->partial, slab_list) { 3570 x += slab->objects - slab->inuse; 3571 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3572 break; 3573 } 3574 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3575 x += slab->objects - slab->inuse; 3576 if (++scanned == MAX_PARTIAL_TO_SCAN) 3577 break; 3578 } 3579 x = mult_frac(x, n->nr_partial, scanned); 3580 x = min(x, node_nr_objs(n)); 3581 } 3582 spin_unlock_irqrestore(&n->list_lock, flags); 3583 return x; 3584 } 3585 3586 static noinline void 3587 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3588 { 3589 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3590 DEFAULT_RATELIMIT_BURST); 3591 int cpu = raw_smp_processor_id(); 3592 int node; 3593 struct kmem_cache_node *n; 3594 3595 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3596 return; 3597 3598 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3599 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3600 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3601 s->name, s->object_size, s->size, oo_order(s->oo), 3602 oo_order(s->min)); 3603 3604 if (oo_order(s->min) > get_order(s->object_size)) 3605 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3606 s->name); 3607 3608 for_each_kmem_cache_node(s, node, n) { 3609 unsigned long nr_slabs; 3610 unsigned long nr_objs; 3611 unsigned long nr_free; 3612 3613 nr_free = count_partial_free_approx(n); 3614 nr_slabs = node_nr_slabs(n); 3615 nr_objs = node_nr_objs(n); 3616 3617 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3618 node, nr_slabs, nr_objs, nr_free); 3619 } 3620 } 3621 #else /* CONFIG_SLUB_DEBUG */ 3622 static inline void 3623 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3624 #endif 3625 3626 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3627 { 3628 if (unlikely(slab_test_pfmemalloc(slab))) 3629 return gfp_pfmemalloc_allowed(gfpflags); 3630 3631 return true; 3632 } 3633 3634 #ifndef CONFIG_SLUB_TINY 3635 static inline bool 3636 __update_cpu_freelist_fast(struct kmem_cache *s, 3637 void *freelist_old, void *freelist_new, 3638 unsigned long tid) 3639 { 3640 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3641 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3642 3643 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3644 &old.full, new.full); 3645 } 3646 3647 /* 3648 * Check the slab->freelist and either transfer the freelist to the 3649 * per cpu freelist or deactivate the slab. 3650 * 3651 * The slab is still frozen if the return value is not NULL. 3652 * 3653 * If this function returns NULL then the slab has been unfrozen. 3654 */ 3655 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3656 { 3657 struct slab new; 3658 unsigned long counters; 3659 void *freelist; 3660 3661 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3662 3663 do { 3664 freelist = slab->freelist; 3665 counters = slab->counters; 3666 3667 new.counters = counters; 3668 3669 new.inuse = slab->objects; 3670 new.frozen = freelist != NULL; 3671 3672 } while (!__slab_update_freelist(s, slab, 3673 freelist, counters, 3674 NULL, new.counters, 3675 "get_freelist")); 3676 3677 return freelist; 3678 } 3679 3680 /* 3681 * Freeze the partial slab and return the pointer to the freelist. 3682 */ 3683 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3684 { 3685 struct slab new; 3686 unsigned long counters; 3687 void *freelist; 3688 3689 do { 3690 freelist = slab->freelist; 3691 counters = slab->counters; 3692 3693 new.counters = counters; 3694 VM_BUG_ON(new.frozen); 3695 3696 new.inuse = slab->objects; 3697 new.frozen = 1; 3698 3699 } while (!slab_update_freelist(s, slab, 3700 freelist, counters, 3701 NULL, new.counters, 3702 "freeze_slab")); 3703 3704 return freelist; 3705 } 3706 3707 /* 3708 * Slow path. The lockless freelist is empty or we need to perform 3709 * debugging duties. 3710 * 3711 * Processing is still very fast if new objects have been freed to the 3712 * regular freelist. In that case we simply take over the regular freelist 3713 * as the lockless freelist and zap the regular freelist. 3714 * 3715 * If that is not working then we fall back to the partial lists. We take the 3716 * first element of the freelist as the object to allocate now and move the 3717 * rest of the freelist to the lockless freelist. 3718 * 3719 * And if we were unable to get a new slab from the partial slab lists then 3720 * we need to allocate a new slab. This is the slowest path since it involves 3721 * a call to the page allocator and the setup of a new slab. 3722 * 3723 * Version of __slab_alloc to use when we know that preemption is 3724 * already disabled (which is the case for bulk allocation). 3725 */ 3726 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3727 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3728 { 3729 void *freelist; 3730 struct slab *slab; 3731 unsigned long flags; 3732 struct partial_context pc; 3733 bool try_thisnode = true; 3734 3735 stat(s, ALLOC_SLOWPATH); 3736 3737 reread_slab: 3738 3739 slab = READ_ONCE(c->slab); 3740 if (!slab) { 3741 /* 3742 * if the node is not online or has no normal memory, just 3743 * ignore the node constraint 3744 */ 3745 if (unlikely(node != NUMA_NO_NODE && 3746 !node_isset(node, slab_nodes))) 3747 node = NUMA_NO_NODE; 3748 goto new_slab; 3749 } 3750 3751 if (unlikely(!node_match(slab, node))) { 3752 /* 3753 * same as above but node_match() being false already 3754 * implies node != NUMA_NO_NODE 3755 */ 3756 if (!node_isset(node, slab_nodes)) { 3757 node = NUMA_NO_NODE; 3758 } else { 3759 stat(s, ALLOC_NODE_MISMATCH); 3760 goto deactivate_slab; 3761 } 3762 } 3763 3764 /* 3765 * By rights, we should be searching for a slab page that was 3766 * PFMEMALLOC but right now, we are losing the pfmemalloc 3767 * information when the page leaves the per-cpu allocator 3768 */ 3769 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3770 goto deactivate_slab; 3771 3772 /* must check again c->slab in case we got preempted and it changed */ 3773 local_lock_irqsave(&s->cpu_slab->lock, flags); 3774 if (unlikely(slab != c->slab)) { 3775 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3776 goto reread_slab; 3777 } 3778 freelist = c->freelist; 3779 if (freelist) 3780 goto load_freelist; 3781 3782 freelist = get_freelist(s, slab); 3783 3784 if (!freelist) { 3785 c->slab = NULL; 3786 c->tid = next_tid(c->tid); 3787 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3788 stat(s, DEACTIVATE_BYPASS); 3789 goto new_slab; 3790 } 3791 3792 stat(s, ALLOC_REFILL); 3793 3794 load_freelist: 3795 3796 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3797 3798 /* 3799 * freelist is pointing to the list of objects to be used. 3800 * slab is pointing to the slab from which the objects are obtained. 3801 * That slab must be frozen for per cpu allocations to work. 3802 */ 3803 VM_BUG_ON(!c->slab->frozen); 3804 c->freelist = get_freepointer(s, freelist); 3805 c->tid = next_tid(c->tid); 3806 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3807 return freelist; 3808 3809 deactivate_slab: 3810 3811 local_lock_irqsave(&s->cpu_slab->lock, flags); 3812 if (slab != c->slab) { 3813 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3814 goto reread_slab; 3815 } 3816 freelist = c->freelist; 3817 c->slab = NULL; 3818 c->freelist = NULL; 3819 c->tid = next_tid(c->tid); 3820 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3821 deactivate_slab(s, slab, freelist); 3822 3823 new_slab: 3824 3825 #ifdef CONFIG_SLUB_CPU_PARTIAL 3826 while (slub_percpu_partial(c)) { 3827 local_lock_irqsave(&s->cpu_slab->lock, flags); 3828 if (unlikely(c->slab)) { 3829 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3830 goto reread_slab; 3831 } 3832 if (unlikely(!slub_percpu_partial(c))) { 3833 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3834 /* we were preempted and partial list got empty */ 3835 goto new_objects; 3836 } 3837 3838 slab = slub_percpu_partial(c); 3839 slub_set_percpu_partial(c, slab); 3840 3841 if (likely(node_match(slab, node) && 3842 pfmemalloc_match(slab, gfpflags))) { 3843 c->slab = slab; 3844 freelist = get_freelist(s, slab); 3845 VM_BUG_ON(!freelist); 3846 stat(s, CPU_PARTIAL_ALLOC); 3847 goto load_freelist; 3848 } 3849 3850 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3851 3852 slab->next = NULL; 3853 __put_partials(s, slab); 3854 } 3855 #endif 3856 3857 new_objects: 3858 3859 pc.flags = gfpflags; 3860 /* 3861 * When a preferred node is indicated but no __GFP_THISNODE 3862 * 3863 * 1) try to get a partial slab from target node only by having 3864 * __GFP_THISNODE in pc.flags for get_partial() 3865 * 2) if 1) failed, try to allocate a new slab from target node with 3866 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3867 * 3) if 2) failed, retry with original gfpflags which will allow 3868 * get_partial() try partial lists of other nodes before potentially 3869 * allocating new page from other nodes 3870 */ 3871 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3872 && try_thisnode)) 3873 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3874 3875 pc.orig_size = orig_size; 3876 slab = get_partial(s, node, &pc); 3877 if (slab) { 3878 if (kmem_cache_debug(s)) { 3879 freelist = pc.object; 3880 /* 3881 * For debug caches here we had to go through 3882 * alloc_single_from_partial() so just store the 3883 * tracking info and return the object. 3884 * 3885 * Due to disabled preemption we need to disallow 3886 * blocking. The flags are further adjusted by 3887 * gfp_nested_mask() in stack_depot itself. 3888 */ 3889 if (s->flags & SLAB_STORE_USER) 3890 set_track(s, freelist, TRACK_ALLOC, addr, 3891 gfpflags & ~(__GFP_DIRECT_RECLAIM)); 3892 3893 return freelist; 3894 } 3895 3896 freelist = freeze_slab(s, slab); 3897 goto retry_load_slab; 3898 } 3899 3900 slub_put_cpu_ptr(s->cpu_slab); 3901 slab = new_slab(s, pc.flags, node); 3902 c = slub_get_cpu_ptr(s->cpu_slab); 3903 3904 if (unlikely(!slab)) { 3905 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3906 && try_thisnode) { 3907 try_thisnode = false; 3908 goto new_objects; 3909 } 3910 slab_out_of_memory(s, gfpflags, node); 3911 return NULL; 3912 } 3913 3914 stat(s, ALLOC_SLAB); 3915 3916 if (kmem_cache_debug(s)) { 3917 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3918 3919 if (unlikely(!freelist)) 3920 goto new_objects; 3921 3922 if (s->flags & SLAB_STORE_USER) 3923 set_track(s, freelist, TRACK_ALLOC, addr, 3924 gfpflags & ~(__GFP_DIRECT_RECLAIM)); 3925 3926 return freelist; 3927 } 3928 3929 /* 3930 * No other reference to the slab yet so we can 3931 * muck around with it freely without cmpxchg 3932 */ 3933 freelist = slab->freelist; 3934 slab->freelist = NULL; 3935 slab->inuse = slab->objects; 3936 slab->frozen = 1; 3937 3938 inc_slabs_node(s, slab_nid(slab), slab->objects); 3939 3940 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3941 /* 3942 * For !pfmemalloc_match() case we don't load freelist so that 3943 * we don't make further mismatched allocations easier. 3944 */ 3945 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3946 return freelist; 3947 } 3948 3949 retry_load_slab: 3950 3951 local_lock_irqsave(&s->cpu_slab->lock, flags); 3952 if (unlikely(c->slab)) { 3953 void *flush_freelist = c->freelist; 3954 struct slab *flush_slab = c->slab; 3955 3956 c->slab = NULL; 3957 c->freelist = NULL; 3958 c->tid = next_tid(c->tid); 3959 3960 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3961 3962 deactivate_slab(s, flush_slab, flush_freelist); 3963 3964 stat(s, CPUSLAB_FLUSH); 3965 3966 goto retry_load_slab; 3967 } 3968 c->slab = slab; 3969 3970 goto load_freelist; 3971 } 3972 3973 /* 3974 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3975 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3976 * pointer. 3977 */ 3978 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3979 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3980 { 3981 void *p; 3982 3983 #ifdef CONFIG_PREEMPT_COUNT 3984 /* 3985 * We may have been preempted and rescheduled on a different 3986 * cpu before disabling preemption. Need to reload cpu area 3987 * pointer. 3988 */ 3989 c = slub_get_cpu_ptr(s->cpu_slab); 3990 #endif 3991 3992 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3993 #ifdef CONFIG_PREEMPT_COUNT 3994 slub_put_cpu_ptr(s->cpu_slab); 3995 #endif 3996 return p; 3997 } 3998 3999 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 4000 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4001 { 4002 struct kmem_cache_cpu *c; 4003 struct slab *slab; 4004 unsigned long tid; 4005 void *object; 4006 4007 redo: 4008 /* 4009 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 4010 * enabled. We may switch back and forth between cpus while 4011 * reading from one cpu area. That does not matter as long 4012 * as we end up on the original cpu again when doing the cmpxchg. 4013 * 4014 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 4015 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 4016 * the tid. If we are preempted and switched to another cpu between the 4017 * two reads, it's OK as the two are still associated with the same cpu 4018 * and cmpxchg later will validate the cpu. 4019 */ 4020 c = raw_cpu_ptr(s->cpu_slab); 4021 tid = READ_ONCE(c->tid); 4022 4023 /* 4024 * Irqless object alloc/free algorithm used here depends on sequence 4025 * of fetching cpu_slab's data. tid should be fetched before anything 4026 * on c to guarantee that object and slab associated with previous tid 4027 * won't be used with current tid. If we fetch tid first, object and 4028 * slab could be one associated with next tid and our alloc/free 4029 * request will be failed. In this case, we will retry. So, no problem. 4030 */ 4031 barrier(); 4032 4033 /* 4034 * The transaction ids are globally unique per cpu and per operation on 4035 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 4036 * occurs on the right processor and that there was no operation on the 4037 * linked list in between. 4038 */ 4039 4040 object = c->freelist; 4041 slab = c->slab; 4042 4043 #ifdef CONFIG_NUMA 4044 if (static_branch_unlikely(&strict_numa) && 4045 node == NUMA_NO_NODE) { 4046 4047 struct mempolicy *mpol = current->mempolicy; 4048 4049 if (mpol) { 4050 /* 4051 * Special BIND rule support. If existing slab 4052 * is in permitted set then do not redirect 4053 * to a particular node. 4054 * Otherwise we apply the memory policy to get 4055 * the node we need to allocate on. 4056 */ 4057 if (mpol->mode != MPOL_BIND || !slab || 4058 !node_isset(slab_nid(slab), mpol->nodes)) 4059 4060 node = mempolicy_slab_node(); 4061 } 4062 } 4063 #endif 4064 4065 if (!USE_LOCKLESS_FAST_PATH() || 4066 unlikely(!object || !slab || !node_match(slab, node))) { 4067 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4068 } else { 4069 void *next_object = get_freepointer_safe(s, object); 4070 4071 /* 4072 * The cmpxchg will only match if there was no additional 4073 * operation and if we are on the right processor. 4074 * 4075 * The cmpxchg does the following atomically (without lock 4076 * semantics!) 4077 * 1. Relocate first pointer to the current per cpu area. 4078 * 2. Verify that tid and freelist have not been changed 4079 * 3. If they were not changed replace tid and freelist 4080 * 4081 * Since this is without lock semantics the protection is only 4082 * against code executing on this cpu *not* from access by 4083 * other cpus. 4084 */ 4085 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4086 note_cmpxchg_failure("slab_alloc", s, tid); 4087 goto redo; 4088 } 4089 prefetch_freepointer(s, next_object); 4090 stat(s, ALLOC_FASTPATH); 4091 } 4092 4093 return object; 4094 } 4095 #else /* CONFIG_SLUB_TINY */ 4096 static void *__slab_alloc_node(struct kmem_cache *s, 4097 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4098 { 4099 struct partial_context pc; 4100 struct slab *slab; 4101 void *object; 4102 4103 pc.flags = gfpflags; 4104 pc.orig_size = orig_size; 4105 slab = get_partial(s, node, &pc); 4106 4107 if (slab) 4108 return pc.object; 4109 4110 slab = new_slab(s, gfpflags, node); 4111 if (unlikely(!slab)) { 4112 slab_out_of_memory(s, gfpflags, node); 4113 return NULL; 4114 } 4115 4116 object = alloc_single_from_new_slab(s, slab, orig_size); 4117 4118 return object; 4119 } 4120 #endif /* CONFIG_SLUB_TINY */ 4121 4122 /* 4123 * If the object has been wiped upon free, make sure it's fully initialized by 4124 * zeroing out freelist pointer. 4125 * 4126 * Note that we also wipe custom freelist pointers. 4127 */ 4128 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4129 void *obj) 4130 { 4131 if (unlikely(slab_want_init_on_free(s)) && obj && 4132 !freeptr_outside_object(s)) 4133 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4134 0, sizeof(void *)); 4135 } 4136 4137 static __fastpath_inline 4138 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4139 { 4140 flags &= gfp_allowed_mask; 4141 4142 might_alloc(flags); 4143 4144 if (unlikely(should_failslab(s, flags))) 4145 return NULL; 4146 4147 return s; 4148 } 4149 4150 static __fastpath_inline 4151 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4152 gfp_t flags, size_t size, void **p, bool init, 4153 unsigned int orig_size) 4154 { 4155 unsigned int zero_size = s->object_size; 4156 bool kasan_init = init; 4157 size_t i; 4158 gfp_t init_flags = flags & gfp_allowed_mask; 4159 4160 /* 4161 * For kmalloc object, the allocated memory size(object_size) is likely 4162 * larger than the requested size(orig_size). If redzone check is 4163 * enabled for the extra space, don't zero it, as it will be redzoned 4164 * soon. The redzone operation for this extra space could be seen as a 4165 * replacement of current poisoning under certain debug option, and 4166 * won't break other sanity checks. 4167 */ 4168 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4169 (s->flags & SLAB_KMALLOC)) 4170 zero_size = orig_size; 4171 4172 /* 4173 * When slab_debug is enabled, avoid memory initialization integrated 4174 * into KASAN and instead zero out the memory via the memset below with 4175 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4176 * cause false-positive reports. This does not lead to a performance 4177 * penalty on production builds, as slab_debug is not intended to be 4178 * enabled there. 4179 */ 4180 if (__slub_debug_enabled()) 4181 kasan_init = false; 4182 4183 /* 4184 * As memory initialization might be integrated into KASAN, 4185 * kasan_slab_alloc and initialization memset must be 4186 * kept together to avoid discrepancies in behavior. 4187 * 4188 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4189 */ 4190 for (i = 0; i < size; i++) { 4191 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4192 if (p[i] && init && (!kasan_init || 4193 !kasan_has_integrated_init())) 4194 memset(p[i], 0, zero_size); 4195 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4196 s->flags, init_flags); 4197 kmsan_slab_alloc(s, p[i], init_flags); 4198 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4199 } 4200 4201 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4202 } 4203 4204 /* 4205 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4206 * have the fastpath folded into their functions. So no function call 4207 * overhead for requests that can be satisfied on the fastpath. 4208 * 4209 * The fastpath works by first checking if the lockless freelist can be used. 4210 * If not then __slab_alloc is called for slow processing. 4211 * 4212 * Otherwise we can simply pick the next object from the lockless free list. 4213 */ 4214 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4215 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4216 { 4217 void *object; 4218 bool init = false; 4219 4220 s = slab_pre_alloc_hook(s, gfpflags); 4221 if (unlikely(!s)) 4222 return NULL; 4223 4224 object = kfence_alloc(s, orig_size, gfpflags); 4225 if (unlikely(object)) 4226 goto out; 4227 4228 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4229 4230 maybe_wipe_obj_freeptr(s, object); 4231 init = slab_want_init_on_alloc(gfpflags, s); 4232 4233 out: 4234 /* 4235 * When init equals 'true', like for kzalloc() family, only 4236 * @orig_size bytes might be zeroed instead of s->object_size 4237 * In case this fails due to memcg_slab_post_alloc_hook(), 4238 * object is set to NULL 4239 */ 4240 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4241 4242 return object; 4243 } 4244 4245 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4246 { 4247 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4248 s->object_size); 4249 4250 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4251 4252 return ret; 4253 } 4254 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4255 4256 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4257 gfp_t gfpflags) 4258 { 4259 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4260 s->object_size); 4261 4262 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4263 4264 return ret; 4265 } 4266 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4267 4268 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4269 { 4270 if (!memcg_kmem_online()) 4271 return true; 4272 4273 return memcg_slab_post_charge(objp, gfpflags); 4274 } 4275 EXPORT_SYMBOL(kmem_cache_charge); 4276 4277 /** 4278 * kmem_cache_alloc_node - Allocate an object on the specified node 4279 * @s: The cache to allocate from. 4280 * @gfpflags: See kmalloc(). 4281 * @node: node number of the target node. 4282 * 4283 * Identical to kmem_cache_alloc but it will allocate memory on the given 4284 * node, which can improve the performance for cpu bound structures. 4285 * 4286 * Fallback to other node is possible if __GFP_THISNODE is not set. 4287 * 4288 * Return: pointer to the new object or %NULL in case of error 4289 */ 4290 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4291 { 4292 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4293 4294 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4295 4296 return ret; 4297 } 4298 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4299 4300 /* 4301 * To avoid unnecessary overhead, we pass through large allocation requests 4302 * directly to the page allocator. We use __GFP_COMP, because we will need to 4303 * know the allocation order to free the pages properly in kfree. 4304 */ 4305 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4306 { 4307 struct folio *folio; 4308 void *ptr = NULL; 4309 unsigned int order = get_order(size); 4310 4311 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4312 flags = kmalloc_fix_flags(flags); 4313 4314 flags |= __GFP_COMP; 4315 4316 if (node == NUMA_NO_NODE) 4317 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order); 4318 else 4319 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL); 4320 4321 if (folio) { 4322 ptr = folio_address(folio); 4323 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4324 PAGE_SIZE << order); 4325 __folio_set_large_kmalloc(folio); 4326 } 4327 4328 ptr = kasan_kmalloc_large(ptr, size, flags); 4329 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4330 kmemleak_alloc(ptr, size, 1, flags); 4331 kmsan_kmalloc_large(ptr, size, flags); 4332 4333 return ptr; 4334 } 4335 4336 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4337 { 4338 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4339 4340 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4341 flags, NUMA_NO_NODE); 4342 return ret; 4343 } 4344 EXPORT_SYMBOL(__kmalloc_large_noprof); 4345 4346 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4347 { 4348 void *ret = ___kmalloc_large_node(size, flags, node); 4349 4350 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4351 flags, node); 4352 return ret; 4353 } 4354 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4355 4356 static __always_inline 4357 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4358 unsigned long caller) 4359 { 4360 struct kmem_cache *s; 4361 void *ret; 4362 4363 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4364 ret = __kmalloc_large_node_noprof(size, flags, node); 4365 trace_kmalloc(caller, ret, size, 4366 PAGE_SIZE << get_order(size), flags, node); 4367 return ret; 4368 } 4369 4370 if (unlikely(!size)) 4371 return ZERO_SIZE_PTR; 4372 4373 s = kmalloc_slab(size, b, flags, caller); 4374 4375 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4376 ret = kasan_kmalloc(s, ret, size, flags); 4377 trace_kmalloc(caller, ret, size, s->size, flags, node); 4378 return ret; 4379 } 4380 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4381 { 4382 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4383 } 4384 EXPORT_SYMBOL(__kmalloc_node_noprof); 4385 4386 void *__kmalloc_noprof(size_t size, gfp_t flags) 4387 { 4388 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4389 } 4390 EXPORT_SYMBOL(__kmalloc_noprof); 4391 4392 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4393 int node, unsigned long caller) 4394 { 4395 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4396 4397 } 4398 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4399 4400 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4401 { 4402 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4403 _RET_IP_, size); 4404 4405 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4406 4407 ret = kasan_kmalloc(s, ret, size, gfpflags); 4408 return ret; 4409 } 4410 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4411 4412 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4413 int node, size_t size) 4414 { 4415 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4416 4417 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4418 4419 ret = kasan_kmalloc(s, ret, size, gfpflags); 4420 return ret; 4421 } 4422 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4423 4424 static noinline void free_to_partial_list( 4425 struct kmem_cache *s, struct slab *slab, 4426 void *head, void *tail, int bulk_cnt, 4427 unsigned long addr) 4428 { 4429 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4430 struct slab *slab_free = NULL; 4431 int cnt = bulk_cnt; 4432 unsigned long flags; 4433 depot_stack_handle_t handle = 0; 4434 4435 /* 4436 * We cannot use GFP_NOWAIT as there are callsites where waking up 4437 * kswapd could deadlock 4438 */ 4439 if (s->flags & SLAB_STORE_USER) 4440 handle = set_track_prepare(__GFP_NOWARN); 4441 4442 spin_lock_irqsave(&n->list_lock, flags); 4443 4444 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4445 void *prior = slab->freelist; 4446 4447 /* Perform the actual freeing while we still hold the locks */ 4448 slab->inuse -= cnt; 4449 set_freepointer(s, tail, prior); 4450 slab->freelist = head; 4451 4452 /* 4453 * If the slab is empty, and node's partial list is full, 4454 * it should be discarded anyway no matter it's on full or 4455 * partial list. 4456 */ 4457 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4458 slab_free = slab; 4459 4460 if (!prior) { 4461 /* was on full list */ 4462 remove_full(s, n, slab); 4463 if (!slab_free) { 4464 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4465 stat(s, FREE_ADD_PARTIAL); 4466 } 4467 } else if (slab_free) { 4468 remove_partial(n, slab); 4469 stat(s, FREE_REMOVE_PARTIAL); 4470 } 4471 } 4472 4473 if (slab_free) { 4474 /* 4475 * Update the counters while still holding n->list_lock to 4476 * prevent spurious validation warnings 4477 */ 4478 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4479 } 4480 4481 spin_unlock_irqrestore(&n->list_lock, flags); 4482 4483 if (slab_free) { 4484 stat(s, FREE_SLAB); 4485 free_slab(s, slab_free); 4486 } 4487 } 4488 4489 /* 4490 * Slow path handling. This may still be called frequently since objects 4491 * have a longer lifetime than the cpu slabs in most processing loads. 4492 * 4493 * So we still attempt to reduce cache line usage. Just take the slab 4494 * lock and free the item. If there is no additional partial slab 4495 * handling required then we can return immediately. 4496 */ 4497 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4498 void *head, void *tail, int cnt, 4499 unsigned long addr) 4500 4501 { 4502 void *prior; 4503 int was_frozen; 4504 struct slab new; 4505 unsigned long counters; 4506 struct kmem_cache_node *n = NULL; 4507 unsigned long flags; 4508 bool on_node_partial; 4509 4510 stat(s, FREE_SLOWPATH); 4511 4512 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4513 free_to_partial_list(s, slab, head, tail, cnt, addr); 4514 return; 4515 } 4516 4517 do { 4518 if (unlikely(n)) { 4519 spin_unlock_irqrestore(&n->list_lock, flags); 4520 n = NULL; 4521 } 4522 prior = slab->freelist; 4523 counters = slab->counters; 4524 set_freepointer(s, tail, prior); 4525 new.counters = counters; 4526 was_frozen = new.frozen; 4527 new.inuse -= cnt; 4528 if ((!new.inuse || !prior) && !was_frozen) { 4529 /* Needs to be taken off a list */ 4530 if (!kmem_cache_has_cpu_partial(s) || prior) { 4531 4532 n = get_node(s, slab_nid(slab)); 4533 /* 4534 * Speculatively acquire the list_lock. 4535 * If the cmpxchg does not succeed then we may 4536 * drop the list_lock without any processing. 4537 * 4538 * Otherwise the list_lock will synchronize with 4539 * other processors updating the list of slabs. 4540 */ 4541 spin_lock_irqsave(&n->list_lock, flags); 4542 4543 on_node_partial = slab_test_node_partial(slab); 4544 } 4545 } 4546 4547 } while (!slab_update_freelist(s, slab, 4548 prior, counters, 4549 head, new.counters, 4550 "__slab_free")); 4551 4552 if (likely(!n)) { 4553 4554 if (likely(was_frozen)) { 4555 /* 4556 * The list lock was not taken therefore no list 4557 * activity can be necessary. 4558 */ 4559 stat(s, FREE_FROZEN); 4560 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4561 /* 4562 * If we started with a full slab then put it onto the 4563 * per cpu partial list. 4564 */ 4565 put_cpu_partial(s, slab, 1); 4566 stat(s, CPU_PARTIAL_FREE); 4567 } 4568 4569 return; 4570 } 4571 4572 /* 4573 * This slab was partially empty but not on the per-node partial list, 4574 * in which case we shouldn't manipulate its list, just return. 4575 */ 4576 if (prior && !on_node_partial) { 4577 spin_unlock_irqrestore(&n->list_lock, flags); 4578 return; 4579 } 4580 4581 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4582 goto slab_empty; 4583 4584 /* 4585 * Objects left in the slab. If it was not on the partial list before 4586 * then add it. 4587 */ 4588 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4589 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4590 stat(s, FREE_ADD_PARTIAL); 4591 } 4592 spin_unlock_irqrestore(&n->list_lock, flags); 4593 return; 4594 4595 slab_empty: 4596 if (prior) { 4597 /* 4598 * Slab on the partial list. 4599 */ 4600 remove_partial(n, slab); 4601 stat(s, FREE_REMOVE_PARTIAL); 4602 } 4603 4604 spin_unlock_irqrestore(&n->list_lock, flags); 4605 stat(s, FREE_SLAB); 4606 discard_slab(s, slab); 4607 } 4608 4609 #ifndef CONFIG_SLUB_TINY 4610 /* 4611 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4612 * can perform fastpath freeing without additional function calls. 4613 * 4614 * The fastpath is only possible if we are freeing to the current cpu slab 4615 * of this processor. This typically the case if we have just allocated 4616 * the item before. 4617 * 4618 * If fastpath is not possible then fall back to __slab_free where we deal 4619 * with all sorts of special processing. 4620 * 4621 * Bulk free of a freelist with several objects (all pointing to the 4622 * same slab) possible by specifying head and tail ptr, plus objects 4623 * count (cnt). Bulk free indicated by tail pointer being set. 4624 */ 4625 static __always_inline void do_slab_free(struct kmem_cache *s, 4626 struct slab *slab, void *head, void *tail, 4627 int cnt, unsigned long addr) 4628 { 4629 struct kmem_cache_cpu *c; 4630 unsigned long tid; 4631 void **freelist; 4632 4633 redo: 4634 /* 4635 * Determine the currently cpus per cpu slab. 4636 * The cpu may change afterward. However that does not matter since 4637 * data is retrieved via this pointer. If we are on the same cpu 4638 * during the cmpxchg then the free will succeed. 4639 */ 4640 c = raw_cpu_ptr(s->cpu_slab); 4641 tid = READ_ONCE(c->tid); 4642 4643 /* Same with comment on barrier() in __slab_alloc_node() */ 4644 barrier(); 4645 4646 if (unlikely(slab != c->slab)) { 4647 __slab_free(s, slab, head, tail, cnt, addr); 4648 return; 4649 } 4650 4651 if (USE_LOCKLESS_FAST_PATH()) { 4652 freelist = READ_ONCE(c->freelist); 4653 4654 set_freepointer(s, tail, freelist); 4655 4656 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4657 note_cmpxchg_failure("slab_free", s, tid); 4658 goto redo; 4659 } 4660 } else { 4661 /* Update the free list under the local lock */ 4662 local_lock(&s->cpu_slab->lock); 4663 c = this_cpu_ptr(s->cpu_slab); 4664 if (unlikely(slab != c->slab)) { 4665 local_unlock(&s->cpu_slab->lock); 4666 goto redo; 4667 } 4668 tid = c->tid; 4669 freelist = c->freelist; 4670 4671 set_freepointer(s, tail, freelist); 4672 c->freelist = head; 4673 c->tid = next_tid(tid); 4674 4675 local_unlock(&s->cpu_slab->lock); 4676 } 4677 stat_add(s, FREE_FASTPATH, cnt); 4678 } 4679 #else /* CONFIG_SLUB_TINY */ 4680 static void do_slab_free(struct kmem_cache *s, 4681 struct slab *slab, void *head, void *tail, 4682 int cnt, unsigned long addr) 4683 { 4684 __slab_free(s, slab, head, tail, cnt, addr); 4685 } 4686 #endif /* CONFIG_SLUB_TINY */ 4687 4688 static __fastpath_inline 4689 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4690 unsigned long addr) 4691 { 4692 memcg_slab_free_hook(s, slab, &object, 1); 4693 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4694 4695 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4696 do_slab_free(s, slab, object, object, 1, addr); 4697 } 4698 4699 #ifdef CONFIG_MEMCG 4700 /* Do not inline the rare memcg charging failed path into the allocation path */ 4701 static noinline 4702 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4703 { 4704 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4705 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4706 } 4707 #endif 4708 4709 static __fastpath_inline 4710 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4711 void *tail, void **p, int cnt, unsigned long addr) 4712 { 4713 memcg_slab_free_hook(s, slab, p, cnt); 4714 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4715 /* 4716 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4717 * to remove objects, whose reuse must be delayed. 4718 */ 4719 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4720 do_slab_free(s, slab, head, tail, cnt, addr); 4721 } 4722 4723 #ifdef CONFIG_SLUB_RCU_DEBUG 4724 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4725 { 4726 struct rcu_delayed_free *delayed_free = 4727 container_of(rcu_head, struct rcu_delayed_free, head); 4728 void *object = delayed_free->object; 4729 struct slab *slab = virt_to_slab(object); 4730 struct kmem_cache *s; 4731 4732 kfree(delayed_free); 4733 4734 if (WARN_ON(is_kfence_address(object))) 4735 return; 4736 4737 /* find the object and the cache again */ 4738 if (WARN_ON(!slab)) 4739 return; 4740 s = slab->slab_cache; 4741 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4742 return; 4743 4744 /* resume freeing */ 4745 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4746 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4747 } 4748 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4749 4750 #ifdef CONFIG_KASAN_GENERIC 4751 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4752 { 4753 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4754 } 4755 #endif 4756 4757 static inline struct kmem_cache *virt_to_cache(const void *obj) 4758 { 4759 struct slab *slab; 4760 4761 slab = virt_to_slab(obj); 4762 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4763 return NULL; 4764 return slab->slab_cache; 4765 } 4766 4767 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4768 { 4769 struct kmem_cache *cachep; 4770 4771 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4772 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4773 return s; 4774 4775 cachep = virt_to_cache(x); 4776 if (WARN(cachep && cachep != s, 4777 "%s: Wrong slab cache. %s but object is from %s\n", 4778 __func__, s->name, cachep->name)) 4779 print_tracking(cachep, x); 4780 return cachep; 4781 } 4782 4783 /** 4784 * kmem_cache_free - Deallocate an object 4785 * @s: The cache the allocation was from. 4786 * @x: The previously allocated object. 4787 * 4788 * Free an object which was previously allocated from this 4789 * cache. 4790 */ 4791 void kmem_cache_free(struct kmem_cache *s, void *x) 4792 { 4793 s = cache_from_obj(s, x); 4794 if (!s) 4795 return; 4796 trace_kmem_cache_free(_RET_IP_, x, s); 4797 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4798 } 4799 EXPORT_SYMBOL(kmem_cache_free); 4800 4801 static void free_large_kmalloc(struct folio *folio, void *object) 4802 { 4803 unsigned int order = folio_order(folio); 4804 4805 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { 4806 dump_page(&folio->page, "Not a kmalloc allocation"); 4807 return; 4808 } 4809 4810 if (WARN_ON_ONCE(order == 0)) 4811 pr_warn_once("object pointer: 0x%p\n", object); 4812 4813 kmemleak_free(object); 4814 kasan_kfree_large(object); 4815 kmsan_kfree_large(object); 4816 4817 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4818 -(PAGE_SIZE << order)); 4819 __folio_clear_large_kmalloc(folio); 4820 free_frozen_pages(&folio->page, order); 4821 } 4822 4823 /* 4824 * Given an rcu_head embedded within an object obtained from kvmalloc at an 4825 * offset < 4k, free the object in question. 4826 */ 4827 void kvfree_rcu_cb(struct rcu_head *head) 4828 { 4829 void *obj = head; 4830 struct folio *folio; 4831 struct slab *slab; 4832 struct kmem_cache *s; 4833 void *slab_addr; 4834 4835 if (is_vmalloc_addr(obj)) { 4836 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4837 vfree(obj); 4838 return; 4839 } 4840 4841 folio = virt_to_folio(obj); 4842 if (!folio_test_slab(folio)) { 4843 /* 4844 * rcu_head offset can be only less than page size so no need to 4845 * consider folio order 4846 */ 4847 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4848 free_large_kmalloc(folio, obj); 4849 return; 4850 } 4851 4852 slab = folio_slab(folio); 4853 s = slab->slab_cache; 4854 slab_addr = folio_address(folio); 4855 4856 if (is_kfence_address(obj)) { 4857 obj = kfence_object_start(obj); 4858 } else { 4859 unsigned int idx = __obj_to_index(s, slab_addr, obj); 4860 4861 obj = slab_addr + s->size * idx; 4862 obj = fixup_red_left(s, obj); 4863 } 4864 4865 slab_free(s, slab, obj, _RET_IP_); 4866 } 4867 4868 /** 4869 * kfree - free previously allocated memory 4870 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4871 * 4872 * If @object is NULL, no operation is performed. 4873 */ 4874 void kfree(const void *object) 4875 { 4876 struct folio *folio; 4877 struct slab *slab; 4878 struct kmem_cache *s; 4879 void *x = (void *)object; 4880 4881 trace_kfree(_RET_IP_, object); 4882 4883 if (unlikely(ZERO_OR_NULL_PTR(object))) 4884 return; 4885 4886 folio = virt_to_folio(object); 4887 if (unlikely(!folio_test_slab(folio))) { 4888 free_large_kmalloc(folio, (void *)object); 4889 return; 4890 } 4891 4892 slab = folio_slab(folio); 4893 s = slab->slab_cache; 4894 slab_free(s, slab, x, _RET_IP_); 4895 } 4896 EXPORT_SYMBOL(kfree); 4897 4898 static __always_inline __realloc_size(2) void * 4899 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4900 { 4901 void *ret; 4902 size_t ks = 0; 4903 int orig_size = 0; 4904 struct kmem_cache *s = NULL; 4905 4906 if (unlikely(ZERO_OR_NULL_PTR(p))) 4907 goto alloc_new; 4908 4909 /* Check for double-free. */ 4910 if (!kasan_check_byte(p)) 4911 return NULL; 4912 4913 if (is_kfence_address(p)) { 4914 ks = orig_size = kfence_ksize(p); 4915 } else { 4916 struct folio *folio; 4917 4918 folio = virt_to_folio(p); 4919 if (unlikely(!folio_test_slab(folio))) { 4920 /* Big kmalloc object */ 4921 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4922 WARN_ON(p != folio_address(folio)); 4923 ks = folio_size(folio); 4924 } else { 4925 s = folio_slab(folio)->slab_cache; 4926 orig_size = get_orig_size(s, (void *)p); 4927 ks = s->object_size; 4928 } 4929 } 4930 4931 /* If the old object doesn't fit, allocate a bigger one */ 4932 if (new_size > ks) 4933 goto alloc_new; 4934 4935 /* Zero out spare memory. */ 4936 if (want_init_on_alloc(flags)) { 4937 kasan_disable_current(); 4938 if (orig_size && orig_size < new_size) 4939 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4940 else 4941 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4942 kasan_enable_current(); 4943 } 4944 4945 /* Setup kmalloc redzone when needed */ 4946 if (s && slub_debug_orig_size(s)) { 4947 set_orig_size(s, (void *)p, new_size); 4948 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4949 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4950 SLUB_RED_ACTIVE, ks - new_size); 4951 } 4952 4953 p = kasan_krealloc(p, new_size, flags); 4954 return (void *)p; 4955 4956 alloc_new: 4957 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4958 if (ret && p) { 4959 /* Disable KASAN checks as the object's redzone is accessed. */ 4960 kasan_disable_current(); 4961 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4962 kasan_enable_current(); 4963 } 4964 4965 return ret; 4966 } 4967 4968 /** 4969 * krealloc - reallocate memory. The contents will remain unchanged. 4970 * @p: object to reallocate memory for. 4971 * @new_size: how many bytes of memory are required. 4972 * @flags: the type of memory to allocate. 4973 * 4974 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4975 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4976 * 4977 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4978 * initial memory allocation, every subsequent call to this API for the same 4979 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4980 * __GFP_ZERO is not fully honored by this API. 4981 * 4982 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4983 * size of an allocation (but not the exact size it was allocated with) and 4984 * hence implements the following semantics for shrinking and growing buffers 4985 * with __GFP_ZERO:: 4986 * 4987 * new bucket 4988 * 0 size size 4989 * |--------|----------------| 4990 * | keep | zero | 4991 * 4992 * Otherwise, the original allocation size 'orig_size' could be used to 4993 * precisely clear the requested size, and the new size will also be stored 4994 * as the new 'orig_size'. 4995 * 4996 * In any case, the contents of the object pointed to are preserved up to the 4997 * lesser of the new and old sizes. 4998 * 4999 * Return: pointer to the allocated memory or %NULL in case of error 5000 */ 5001 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 5002 { 5003 void *ret; 5004 5005 if (unlikely(!new_size)) { 5006 kfree(p); 5007 return ZERO_SIZE_PTR; 5008 } 5009 5010 ret = __do_krealloc(p, new_size, flags); 5011 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 5012 kfree(p); 5013 5014 return ret; 5015 } 5016 EXPORT_SYMBOL(krealloc_noprof); 5017 5018 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 5019 { 5020 /* 5021 * We want to attempt a large physically contiguous block first because 5022 * it is less likely to fragment multiple larger blocks and therefore 5023 * contribute to a long term fragmentation less than vmalloc fallback. 5024 * However make sure that larger requests are not too disruptive - i.e. 5025 * do not direct reclaim unless physically continuous memory is preferred 5026 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to 5027 * start working in the background 5028 */ 5029 if (size > PAGE_SIZE) { 5030 flags |= __GFP_NOWARN; 5031 5032 if (!(flags & __GFP_RETRY_MAYFAIL)) 5033 flags &= ~__GFP_DIRECT_RECLAIM; 5034 5035 /* nofail semantic is implemented by the vmalloc fallback */ 5036 flags &= ~__GFP_NOFAIL; 5037 } 5038 5039 return flags; 5040 } 5041 5042 /** 5043 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 5044 * failure, fall back to non-contiguous (vmalloc) allocation. 5045 * @size: size of the request. 5046 * @b: which set of kmalloc buckets to allocate from. 5047 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 5048 * @node: numa node to allocate from 5049 * 5050 * Uses kmalloc to get the memory but if the allocation fails then falls back 5051 * to the vmalloc allocator. Use kvfree for freeing the memory. 5052 * 5053 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 5054 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 5055 * preferable to the vmalloc fallback, due to visible performance drawbacks. 5056 * 5057 * Return: pointer to the allocated memory of %NULL in case of failure 5058 */ 5059 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 5060 { 5061 void *ret; 5062 5063 /* 5064 * It doesn't really make sense to fallback to vmalloc for sub page 5065 * requests 5066 */ 5067 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 5068 kmalloc_gfp_adjust(flags, size), 5069 node, _RET_IP_); 5070 if (ret || size <= PAGE_SIZE) 5071 return ret; 5072 5073 /* non-sleeping allocations are not supported by vmalloc */ 5074 if (!gfpflags_allow_blocking(flags)) 5075 return NULL; 5076 5077 /* Don't even allow crazy sizes */ 5078 if (unlikely(size > INT_MAX)) { 5079 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 5080 return NULL; 5081 } 5082 5083 /* 5084 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 5085 * since the callers already cannot assume anything 5086 * about the resulting pointer, and cannot play 5087 * protection games. 5088 */ 5089 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 5090 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 5091 node, __builtin_return_address(0)); 5092 } 5093 EXPORT_SYMBOL(__kvmalloc_node_noprof); 5094 5095 /** 5096 * kvfree() - Free memory. 5097 * @addr: Pointer to allocated memory. 5098 * 5099 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 5100 * It is slightly more efficient to use kfree() or vfree() if you are certain 5101 * that you know which one to use. 5102 * 5103 * Context: Either preemptible task context or not-NMI interrupt. 5104 */ 5105 void kvfree(const void *addr) 5106 { 5107 if (is_vmalloc_addr(addr)) 5108 vfree(addr); 5109 else 5110 kfree(addr); 5111 } 5112 EXPORT_SYMBOL(kvfree); 5113 5114 /** 5115 * kvfree_sensitive - Free a data object containing sensitive information. 5116 * @addr: address of the data object to be freed. 5117 * @len: length of the data object. 5118 * 5119 * Use the special memzero_explicit() function to clear the content of a 5120 * kvmalloc'ed object containing sensitive data to make sure that the 5121 * compiler won't optimize out the data clearing. 5122 */ 5123 void kvfree_sensitive(const void *addr, size_t len) 5124 { 5125 if (likely(!ZERO_OR_NULL_PTR(addr))) { 5126 memzero_explicit((void *)addr, len); 5127 kvfree(addr); 5128 } 5129 } 5130 EXPORT_SYMBOL(kvfree_sensitive); 5131 5132 /** 5133 * kvrealloc - reallocate memory; contents remain unchanged 5134 * @p: object to reallocate memory for 5135 * @size: the size to reallocate 5136 * @flags: the flags for the page level allocator 5137 * 5138 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 5139 * and @p is not a %NULL pointer, the object pointed to is freed. 5140 * 5141 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 5142 * initial memory allocation, every subsequent call to this API for the same 5143 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 5144 * __GFP_ZERO is not fully honored by this API. 5145 * 5146 * In any case, the contents of the object pointed to are preserved up to the 5147 * lesser of the new and old sizes. 5148 * 5149 * This function must not be called concurrently with itself or kvfree() for the 5150 * same memory allocation. 5151 * 5152 * Return: pointer to the allocated memory or %NULL in case of error 5153 */ 5154 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 5155 { 5156 void *n; 5157 5158 if (is_vmalloc_addr(p)) 5159 return vrealloc_noprof(p, size, flags); 5160 5161 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 5162 if (!n) { 5163 /* We failed to krealloc(), fall back to kvmalloc(). */ 5164 n = kvmalloc_noprof(size, flags); 5165 if (!n) 5166 return NULL; 5167 5168 if (p) { 5169 /* We already know that `p` is not a vmalloc address. */ 5170 kasan_disable_current(); 5171 memcpy(n, kasan_reset_tag(p), ksize(p)); 5172 kasan_enable_current(); 5173 5174 kfree(p); 5175 } 5176 } 5177 5178 return n; 5179 } 5180 EXPORT_SYMBOL(kvrealloc_noprof); 5181 5182 struct detached_freelist { 5183 struct slab *slab; 5184 void *tail; 5185 void *freelist; 5186 int cnt; 5187 struct kmem_cache *s; 5188 }; 5189 5190 /* 5191 * This function progressively scans the array with free objects (with 5192 * a limited look ahead) and extract objects belonging to the same 5193 * slab. It builds a detached freelist directly within the given 5194 * slab/objects. This can happen without any need for 5195 * synchronization, because the objects are owned by running process. 5196 * The freelist is build up as a single linked list in the objects. 5197 * The idea is, that this detached freelist can then be bulk 5198 * transferred to the real freelist(s), but only requiring a single 5199 * synchronization primitive. Look ahead in the array is limited due 5200 * to performance reasons. 5201 */ 5202 static inline 5203 int build_detached_freelist(struct kmem_cache *s, size_t size, 5204 void **p, struct detached_freelist *df) 5205 { 5206 int lookahead = 3; 5207 void *object; 5208 struct folio *folio; 5209 size_t same; 5210 5211 object = p[--size]; 5212 folio = virt_to_folio(object); 5213 if (!s) { 5214 /* Handle kalloc'ed objects */ 5215 if (unlikely(!folio_test_slab(folio))) { 5216 free_large_kmalloc(folio, object); 5217 df->slab = NULL; 5218 return size; 5219 } 5220 /* Derive kmem_cache from object */ 5221 df->slab = folio_slab(folio); 5222 df->s = df->slab->slab_cache; 5223 } else { 5224 df->slab = folio_slab(folio); 5225 df->s = cache_from_obj(s, object); /* Support for memcg */ 5226 } 5227 5228 /* Start new detached freelist */ 5229 df->tail = object; 5230 df->freelist = object; 5231 df->cnt = 1; 5232 5233 if (is_kfence_address(object)) 5234 return size; 5235 5236 set_freepointer(df->s, object, NULL); 5237 5238 same = size; 5239 while (size) { 5240 object = p[--size]; 5241 /* df->slab is always set at this point */ 5242 if (df->slab == virt_to_slab(object)) { 5243 /* Opportunity build freelist */ 5244 set_freepointer(df->s, object, df->freelist); 5245 df->freelist = object; 5246 df->cnt++; 5247 same--; 5248 if (size != same) 5249 swap(p[size], p[same]); 5250 continue; 5251 } 5252 5253 /* Limit look ahead search */ 5254 if (!--lookahead) 5255 break; 5256 } 5257 5258 return same; 5259 } 5260 5261 /* 5262 * Internal bulk free of objects that were not initialised by the post alloc 5263 * hooks and thus should not be processed by the free hooks 5264 */ 5265 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5266 { 5267 if (!size) 5268 return; 5269 5270 do { 5271 struct detached_freelist df; 5272 5273 size = build_detached_freelist(s, size, p, &df); 5274 if (!df.slab) 5275 continue; 5276 5277 if (kfence_free(df.freelist)) 5278 continue; 5279 5280 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 5281 _RET_IP_); 5282 } while (likely(size)); 5283 } 5284 5285 /* Note that interrupts must be enabled when calling this function. */ 5286 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5287 { 5288 if (!size) 5289 return; 5290 5291 do { 5292 struct detached_freelist df; 5293 5294 size = build_detached_freelist(s, size, p, &df); 5295 if (!df.slab) 5296 continue; 5297 5298 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 5299 df.cnt, _RET_IP_); 5300 } while (likely(size)); 5301 } 5302 EXPORT_SYMBOL(kmem_cache_free_bulk); 5303 5304 #ifndef CONFIG_SLUB_TINY 5305 static inline 5306 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5307 void **p) 5308 { 5309 struct kmem_cache_cpu *c; 5310 unsigned long irqflags; 5311 int i; 5312 5313 /* 5314 * Drain objects in the per cpu slab, while disabling local 5315 * IRQs, which protects against PREEMPT and interrupts 5316 * handlers invoking normal fastpath. 5317 */ 5318 c = slub_get_cpu_ptr(s->cpu_slab); 5319 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5320 5321 for (i = 0; i < size; i++) { 5322 void *object = kfence_alloc(s, s->object_size, flags); 5323 5324 if (unlikely(object)) { 5325 p[i] = object; 5326 continue; 5327 } 5328 5329 object = c->freelist; 5330 if (unlikely(!object)) { 5331 /* 5332 * We may have removed an object from c->freelist using 5333 * the fastpath in the previous iteration; in that case, 5334 * c->tid has not been bumped yet. 5335 * Since ___slab_alloc() may reenable interrupts while 5336 * allocating memory, we should bump c->tid now. 5337 */ 5338 c->tid = next_tid(c->tid); 5339 5340 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5341 5342 /* 5343 * Invoking slow path likely have side-effect 5344 * of re-populating per CPU c->freelist 5345 */ 5346 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5347 _RET_IP_, c, s->object_size); 5348 if (unlikely(!p[i])) 5349 goto error; 5350 5351 c = this_cpu_ptr(s->cpu_slab); 5352 maybe_wipe_obj_freeptr(s, p[i]); 5353 5354 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5355 5356 continue; /* goto for-loop */ 5357 } 5358 c->freelist = get_freepointer(s, object); 5359 p[i] = object; 5360 maybe_wipe_obj_freeptr(s, p[i]); 5361 stat(s, ALLOC_FASTPATH); 5362 } 5363 c->tid = next_tid(c->tid); 5364 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5365 slub_put_cpu_ptr(s->cpu_slab); 5366 5367 return i; 5368 5369 error: 5370 slub_put_cpu_ptr(s->cpu_slab); 5371 __kmem_cache_free_bulk(s, i, p); 5372 return 0; 5373 5374 } 5375 #else /* CONFIG_SLUB_TINY */ 5376 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5377 size_t size, void **p) 5378 { 5379 int i; 5380 5381 for (i = 0; i < size; i++) { 5382 void *object = kfence_alloc(s, s->object_size, flags); 5383 5384 if (unlikely(object)) { 5385 p[i] = object; 5386 continue; 5387 } 5388 5389 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5390 _RET_IP_, s->object_size); 5391 if (unlikely(!p[i])) 5392 goto error; 5393 5394 maybe_wipe_obj_freeptr(s, p[i]); 5395 } 5396 5397 return i; 5398 5399 error: 5400 __kmem_cache_free_bulk(s, i, p); 5401 return 0; 5402 } 5403 #endif /* CONFIG_SLUB_TINY */ 5404 5405 /* Note that interrupts must be enabled when calling this function. */ 5406 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5407 void **p) 5408 { 5409 int i; 5410 5411 if (!size) 5412 return 0; 5413 5414 s = slab_pre_alloc_hook(s, flags); 5415 if (unlikely(!s)) 5416 return 0; 5417 5418 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5419 if (unlikely(i == 0)) 5420 return 0; 5421 5422 /* 5423 * memcg and kmem_cache debug support and memory initialization. 5424 * Done outside of the IRQ disabled fastpath loop. 5425 */ 5426 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5427 slab_want_init_on_alloc(flags, s), s->object_size))) { 5428 return 0; 5429 } 5430 return i; 5431 } 5432 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5433 5434 5435 /* 5436 * Object placement in a slab is made very easy because we always start at 5437 * offset 0. If we tune the size of the object to the alignment then we can 5438 * get the required alignment by putting one properly sized object after 5439 * another. 5440 * 5441 * Notice that the allocation order determines the sizes of the per cpu 5442 * caches. Each processor has always one slab available for allocations. 5443 * Increasing the allocation order reduces the number of times that slabs 5444 * must be moved on and off the partial lists and is therefore a factor in 5445 * locking overhead. 5446 */ 5447 5448 /* 5449 * Minimum / Maximum order of slab pages. This influences locking overhead 5450 * and slab fragmentation. A higher order reduces the number of partial slabs 5451 * and increases the number of allocations possible without having to 5452 * take the list_lock. 5453 */ 5454 static unsigned int slub_min_order; 5455 static unsigned int slub_max_order = 5456 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5457 static unsigned int slub_min_objects; 5458 5459 /* 5460 * Calculate the order of allocation given an slab object size. 5461 * 5462 * The order of allocation has significant impact on performance and other 5463 * system components. Generally order 0 allocations should be preferred since 5464 * order 0 does not cause fragmentation in the page allocator. Larger objects 5465 * be problematic to put into order 0 slabs because there may be too much 5466 * unused space left. We go to a higher order if more than 1/16th of the slab 5467 * would be wasted. 5468 * 5469 * In order to reach satisfactory performance we must ensure that a minimum 5470 * number of objects is in one slab. Otherwise we may generate too much 5471 * activity on the partial lists which requires taking the list_lock. This is 5472 * less a concern for large slabs though which are rarely used. 5473 * 5474 * slab_max_order specifies the order where we begin to stop considering the 5475 * number of objects in a slab as critical. If we reach slab_max_order then 5476 * we try to keep the page order as low as possible. So we accept more waste 5477 * of space in favor of a small page order. 5478 * 5479 * Higher order allocations also allow the placement of more objects in a 5480 * slab and thereby reduce object handling overhead. If the user has 5481 * requested a higher minimum order then we start with that one instead of 5482 * the smallest order which will fit the object. 5483 */ 5484 static inline unsigned int calc_slab_order(unsigned int size, 5485 unsigned int min_order, unsigned int max_order, 5486 unsigned int fract_leftover) 5487 { 5488 unsigned int order; 5489 5490 for (order = min_order; order <= max_order; order++) { 5491 5492 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5493 unsigned int rem; 5494 5495 rem = slab_size % size; 5496 5497 if (rem <= slab_size / fract_leftover) 5498 break; 5499 } 5500 5501 return order; 5502 } 5503 5504 static inline int calculate_order(unsigned int size) 5505 { 5506 unsigned int order; 5507 unsigned int min_objects; 5508 unsigned int max_objects; 5509 unsigned int min_order; 5510 5511 min_objects = slub_min_objects; 5512 if (!min_objects) { 5513 /* 5514 * Some architectures will only update present cpus when 5515 * onlining them, so don't trust the number if it's just 1. But 5516 * we also don't want to use nr_cpu_ids always, as on some other 5517 * architectures, there can be many possible cpus, but never 5518 * onlined. Here we compromise between trying to avoid too high 5519 * order on systems that appear larger than they are, and too 5520 * low order on systems that appear smaller than they are. 5521 */ 5522 unsigned int nr_cpus = num_present_cpus(); 5523 if (nr_cpus <= 1) 5524 nr_cpus = nr_cpu_ids; 5525 min_objects = 4 * (fls(nr_cpus) + 1); 5526 } 5527 /* min_objects can't be 0 because get_order(0) is undefined */ 5528 max_objects = max(order_objects(slub_max_order, size), 1U); 5529 min_objects = min(min_objects, max_objects); 5530 5531 min_order = max_t(unsigned int, slub_min_order, 5532 get_order(min_objects * size)); 5533 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5534 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5535 5536 /* 5537 * Attempt to find best configuration for a slab. This works by first 5538 * attempting to generate a layout with the best possible configuration 5539 * and backing off gradually. 5540 * 5541 * We start with accepting at most 1/16 waste and try to find the 5542 * smallest order from min_objects-derived/slab_min_order up to 5543 * slab_max_order that will satisfy the constraint. Note that increasing 5544 * the order can only result in same or less fractional waste, not more. 5545 * 5546 * If that fails, we increase the acceptable fraction of waste and try 5547 * again. The last iteration with fraction of 1/2 would effectively 5548 * accept any waste and give us the order determined by min_objects, as 5549 * long as at least single object fits within slab_max_order. 5550 */ 5551 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5552 order = calc_slab_order(size, min_order, slub_max_order, 5553 fraction); 5554 if (order <= slub_max_order) 5555 return order; 5556 } 5557 5558 /* 5559 * Doh this slab cannot be placed using slab_max_order. 5560 */ 5561 order = get_order(size); 5562 if (order <= MAX_PAGE_ORDER) 5563 return order; 5564 return -ENOSYS; 5565 } 5566 5567 static void 5568 init_kmem_cache_node(struct kmem_cache_node *n) 5569 { 5570 n->nr_partial = 0; 5571 spin_lock_init(&n->list_lock); 5572 INIT_LIST_HEAD(&n->partial); 5573 #ifdef CONFIG_SLUB_DEBUG 5574 atomic_long_set(&n->nr_slabs, 0); 5575 atomic_long_set(&n->total_objects, 0); 5576 INIT_LIST_HEAD(&n->full); 5577 #endif 5578 } 5579 5580 #ifndef CONFIG_SLUB_TINY 5581 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5582 { 5583 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5584 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5585 sizeof(struct kmem_cache_cpu)); 5586 5587 /* 5588 * Must align to double word boundary for the double cmpxchg 5589 * instructions to work; see __pcpu_double_call_return_bool(). 5590 */ 5591 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5592 2 * sizeof(void *)); 5593 5594 if (!s->cpu_slab) 5595 return 0; 5596 5597 init_kmem_cache_cpus(s); 5598 5599 return 1; 5600 } 5601 #else 5602 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5603 { 5604 return 1; 5605 } 5606 #endif /* CONFIG_SLUB_TINY */ 5607 5608 static struct kmem_cache *kmem_cache_node; 5609 5610 /* 5611 * No kmalloc_node yet so do it by hand. We know that this is the first 5612 * slab on the node for this slabcache. There are no concurrent accesses 5613 * possible. 5614 * 5615 * Note that this function only works on the kmem_cache_node 5616 * when allocating for the kmem_cache_node. This is used for bootstrapping 5617 * memory on a fresh node that has no slab structures yet. 5618 */ 5619 static void early_kmem_cache_node_alloc(int node) 5620 { 5621 struct slab *slab; 5622 struct kmem_cache_node *n; 5623 5624 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5625 5626 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5627 5628 BUG_ON(!slab); 5629 if (slab_nid(slab) != node) { 5630 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5631 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5632 } 5633 5634 n = slab->freelist; 5635 BUG_ON(!n); 5636 #ifdef CONFIG_SLUB_DEBUG 5637 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5638 #endif 5639 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5640 slab->freelist = get_freepointer(kmem_cache_node, n); 5641 slab->inuse = 1; 5642 kmem_cache_node->node[node] = n; 5643 init_kmem_cache_node(n); 5644 inc_slabs_node(kmem_cache_node, node, slab->objects); 5645 5646 /* 5647 * No locks need to be taken here as it has just been 5648 * initialized and there is no concurrent access. 5649 */ 5650 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5651 } 5652 5653 static void free_kmem_cache_nodes(struct kmem_cache *s) 5654 { 5655 int node; 5656 struct kmem_cache_node *n; 5657 5658 for_each_kmem_cache_node(s, node, n) { 5659 s->node[node] = NULL; 5660 kmem_cache_free(kmem_cache_node, n); 5661 } 5662 } 5663 5664 void __kmem_cache_release(struct kmem_cache *s) 5665 { 5666 cache_random_seq_destroy(s); 5667 #ifndef CONFIG_SLUB_TINY 5668 free_percpu(s->cpu_slab); 5669 #endif 5670 free_kmem_cache_nodes(s); 5671 } 5672 5673 static int init_kmem_cache_nodes(struct kmem_cache *s) 5674 { 5675 int node; 5676 5677 for_each_node_mask(node, slab_nodes) { 5678 struct kmem_cache_node *n; 5679 5680 if (slab_state == DOWN) { 5681 early_kmem_cache_node_alloc(node); 5682 continue; 5683 } 5684 n = kmem_cache_alloc_node(kmem_cache_node, 5685 GFP_KERNEL, node); 5686 5687 if (!n) { 5688 free_kmem_cache_nodes(s); 5689 return 0; 5690 } 5691 5692 init_kmem_cache_node(n); 5693 s->node[node] = n; 5694 } 5695 return 1; 5696 } 5697 5698 static void set_cpu_partial(struct kmem_cache *s) 5699 { 5700 #ifdef CONFIG_SLUB_CPU_PARTIAL 5701 unsigned int nr_objects; 5702 5703 /* 5704 * cpu_partial determined the maximum number of objects kept in the 5705 * per cpu partial lists of a processor. 5706 * 5707 * Per cpu partial lists mainly contain slabs that just have one 5708 * object freed. If they are used for allocation then they can be 5709 * filled up again with minimal effort. The slab will never hit the 5710 * per node partial lists and therefore no locking will be required. 5711 * 5712 * For backwards compatibility reasons, this is determined as number 5713 * of objects, even though we now limit maximum number of pages, see 5714 * slub_set_cpu_partial() 5715 */ 5716 if (!kmem_cache_has_cpu_partial(s)) 5717 nr_objects = 0; 5718 else if (s->size >= PAGE_SIZE) 5719 nr_objects = 6; 5720 else if (s->size >= 1024) 5721 nr_objects = 24; 5722 else if (s->size >= 256) 5723 nr_objects = 52; 5724 else 5725 nr_objects = 120; 5726 5727 slub_set_cpu_partial(s, nr_objects); 5728 #endif 5729 } 5730 5731 /* 5732 * calculate_sizes() determines the order and the distribution of data within 5733 * a slab object. 5734 */ 5735 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5736 { 5737 slab_flags_t flags = s->flags; 5738 unsigned int size = s->object_size; 5739 unsigned int order; 5740 5741 /* 5742 * Round up object size to the next word boundary. We can only 5743 * place the free pointer at word boundaries and this determines 5744 * the possible location of the free pointer. 5745 */ 5746 size = ALIGN(size, sizeof(void *)); 5747 5748 #ifdef CONFIG_SLUB_DEBUG 5749 /* 5750 * Determine if we can poison the object itself. If the user of 5751 * the slab may touch the object after free or before allocation 5752 * then we should never poison the object itself. 5753 */ 5754 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5755 !s->ctor) 5756 s->flags |= __OBJECT_POISON; 5757 else 5758 s->flags &= ~__OBJECT_POISON; 5759 5760 5761 /* 5762 * If we are Redzoning then check if there is some space between the 5763 * end of the object and the free pointer. If not then add an 5764 * additional word to have some bytes to store Redzone information. 5765 */ 5766 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5767 size += sizeof(void *); 5768 #endif 5769 5770 /* 5771 * With that we have determined the number of bytes in actual use 5772 * by the object and redzoning. 5773 */ 5774 s->inuse = size; 5775 5776 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5777 (flags & SLAB_POISON) || s->ctor || 5778 ((flags & SLAB_RED_ZONE) && 5779 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5780 /* 5781 * Relocate free pointer after the object if it is not 5782 * permitted to overwrite the first word of the object on 5783 * kmem_cache_free. 5784 * 5785 * This is the case if we do RCU, have a constructor or 5786 * destructor, are poisoning the objects, or are 5787 * redzoning an object smaller than sizeof(void *) or are 5788 * redzoning an object with slub_debug_orig_size() enabled, 5789 * in which case the right redzone may be extended. 5790 * 5791 * The assumption that s->offset >= s->inuse means free 5792 * pointer is outside of the object is used in the 5793 * freeptr_outside_object() function. If that is no 5794 * longer true, the function needs to be modified. 5795 */ 5796 s->offset = size; 5797 size += sizeof(void *); 5798 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5799 s->offset = args->freeptr_offset; 5800 } else { 5801 /* 5802 * Store freelist pointer near middle of object to keep 5803 * it away from the edges of the object to avoid small 5804 * sized over/underflows from neighboring allocations. 5805 */ 5806 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5807 } 5808 5809 #ifdef CONFIG_SLUB_DEBUG 5810 if (flags & SLAB_STORE_USER) { 5811 /* 5812 * Need to store information about allocs and frees after 5813 * the object. 5814 */ 5815 size += 2 * sizeof(struct track); 5816 5817 /* Save the original kmalloc request size */ 5818 if (flags & SLAB_KMALLOC) 5819 size += sizeof(unsigned int); 5820 } 5821 #endif 5822 5823 kasan_cache_create(s, &size, &s->flags); 5824 #ifdef CONFIG_SLUB_DEBUG 5825 if (flags & SLAB_RED_ZONE) { 5826 /* 5827 * Add some empty padding so that we can catch 5828 * overwrites from earlier objects rather than let 5829 * tracking information or the free pointer be 5830 * corrupted if a user writes before the start 5831 * of the object. 5832 */ 5833 size += sizeof(void *); 5834 5835 s->red_left_pad = sizeof(void *); 5836 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5837 size += s->red_left_pad; 5838 } 5839 #endif 5840 5841 /* 5842 * SLUB stores one object immediately after another beginning from 5843 * offset 0. In order to align the objects we have to simply size 5844 * each object to conform to the alignment. 5845 */ 5846 size = ALIGN(size, s->align); 5847 s->size = size; 5848 s->reciprocal_size = reciprocal_value(size); 5849 order = calculate_order(size); 5850 5851 if ((int)order < 0) 5852 return 0; 5853 5854 s->allocflags = __GFP_COMP; 5855 5856 if (s->flags & SLAB_CACHE_DMA) 5857 s->allocflags |= GFP_DMA; 5858 5859 if (s->flags & SLAB_CACHE_DMA32) 5860 s->allocflags |= GFP_DMA32; 5861 5862 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5863 s->allocflags |= __GFP_RECLAIMABLE; 5864 5865 /* 5866 * Determine the number of objects per slab 5867 */ 5868 s->oo = oo_make(order, size); 5869 s->min = oo_make(get_order(size), size); 5870 5871 return !!oo_objects(s->oo); 5872 } 5873 5874 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 5875 { 5876 #ifdef CONFIG_SLUB_DEBUG 5877 void *addr = slab_address(slab); 5878 void *p; 5879 5880 if (!slab_add_kunit_errors()) 5881 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 5882 5883 spin_lock(&object_map_lock); 5884 __fill_map(object_map, s, slab); 5885 5886 for_each_object(p, s, addr, slab->objects) { 5887 5888 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5889 if (slab_add_kunit_errors()) 5890 continue; 5891 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5892 print_tracking(s, p); 5893 } 5894 } 5895 spin_unlock(&object_map_lock); 5896 5897 __slab_err(slab); 5898 #endif 5899 } 5900 5901 /* 5902 * Attempt to free all partial slabs on a node. 5903 * This is called from __kmem_cache_shutdown(). We must take list_lock 5904 * because sysfs file might still access partial list after the shutdowning. 5905 */ 5906 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5907 { 5908 LIST_HEAD(discard); 5909 struct slab *slab, *h; 5910 5911 BUG_ON(irqs_disabled()); 5912 spin_lock_irq(&n->list_lock); 5913 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5914 if (!slab->inuse) { 5915 remove_partial(n, slab); 5916 list_add(&slab->slab_list, &discard); 5917 } else { 5918 list_slab_objects(s, slab); 5919 } 5920 } 5921 spin_unlock_irq(&n->list_lock); 5922 5923 list_for_each_entry_safe(slab, h, &discard, slab_list) 5924 discard_slab(s, slab); 5925 } 5926 5927 bool __kmem_cache_empty(struct kmem_cache *s) 5928 { 5929 int node; 5930 struct kmem_cache_node *n; 5931 5932 for_each_kmem_cache_node(s, node, n) 5933 if (n->nr_partial || node_nr_slabs(n)) 5934 return false; 5935 return true; 5936 } 5937 5938 /* 5939 * Release all resources used by a slab cache. 5940 */ 5941 int __kmem_cache_shutdown(struct kmem_cache *s) 5942 { 5943 int node; 5944 struct kmem_cache_node *n; 5945 5946 flush_all_cpus_locked(s); 5947 /* Attempt to free all objects */ 5948 for_each_kmem_cache_node(s, node, n) { 5949 free_partial(s, n); 5950 if (n->nr_partial || node_nr_slabs(n)) 5951 return 1; 5952 } 5953 return 0; 5954 } 5955 5956 #ifdef CONFIG_PRINTK 5957 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5958 { 5959 void *base; 5960 int __maybe_unused i; 5961 unsigned int objnr; 5962 void *objp; 5963 void *objp0; 5964 struct kmem_cache *s = slab->slab_cache; 5965 struct track __maybe_unused *trackp; 5966 5967 kpp->kp_ptr = object; 5968 kpp->kp_slab = slab; 5969 kpp->kp_slab_cache = s; 5970 base = slab_address(slab); 5971 objp0 = kasan_reset_tag(object); 5972 #ifdef CONFIG_SLUB_DEBUG 5973 objp = restore_red_left(s, objp0); 5974 #else 5975 objp = objp0; 5976 #endif 5977 objnr = obj_to_index(s, slab, objp); 5978 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5979 objp = base + s->size * objnr; 5980 kpp->kp_objp = objp; 5981 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5982 || (objp - base) % s->size) || 5983 !(s->flags & SLAB_STORE_USER)) 5984 return; 5985 #ifdef CONFIG_SLUB_DEBUG 5986 objp = fixup_red_left(s, objp); 5987 trackp = get_track(s, objp, TRACK_ALLOC); 5988 kpp->kp_ret = (void *)trackp->addr; 5989 #ifdef CONFIG_STACKDEPOT 5990 { 5991 depot_stack_handle_t handle; 5992 unsigned long *entries; 5993 unsigned int nr_entries; 5994 5995 handle = READ_ONCE(trackp->handle); 5996 if (handle) { 5997 nr_entries = stack_depot_fetch(handle, &entries); 5998 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5999 kpp->kp_stack[i] = (void *)entries[i]; 6000 } 6001 6002 trackp = get_track(s, objp, TRACK_FREE); 6003 handle = READ_ONCE(trackp->handle); 6004 if (handle) { 6005 nr_entries = stack_depot_fetch(handle, &entries); 6006 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 6007 kpp->kp_free_stack[i] = (void *)entries[i]; 6008 } 6009 } 6010 #endif 6011 #endif 6012 } 6013 #endif 6014 6015 /******************************************************************** 6016 * Kmalloc subsystem 6017 *******************************************************************/ 6018 6019 static int __init setup_slub_min_order(char *str) 6020 { 6021 get_option(&str, (int *)&slub_min_order); 6022 6023 if (slub_min_order > slub_max_order) 6024 slub_max_order = slub_min_order; 6025 6026 return 1; 6027 } 6028 6029 __setup("slab_min_order=", setup_slub_min_order); 6030 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 6031 6032 6033 static int __init setup_slub_max_order(char *str) 6034 { 6035 get_option(&str, (int *)&slub_max_order); 6036 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 6037 6038 if (slub_min_order > slub_max_order) 6039 slub_min_order = slub_max_order; 6040 6041 return 1; 6042 } 6043 6044 __setup("slab_max_order=", setup_slub_max_order); 6045 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 6046 6047 static int __init setup_slub_min_objects(char *str) 6048 { 6049 get_option(&str, (int *)&slub_min_objects); 6050 6051 return 1; 6052 } 6053 6054 __setup("slab_min_objects=", setup_slub_min_objects); 6055 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 6056 6057 #ifdef CONFIG_NUMA 6058 static int __init setup_slab_strict_numa(char *str) 6059 { 6060 if (nr_node_ids > 1) { 6061 static_branch_enable(&strict_numa); 6062 pr_info("SLUB: Strict NUMA enabled.\n"); 6063 } else { 6064 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 6065 } 6066 6067 return 1; 6068 } 6069 6070 __setup("slab_strict_numa", setup_slab_strict_numa); 6071 #endif 6072 6073 6074 #ifdef CONFIG_HARDENED_USERCOPY 6075 /* 6076 * Rejects incorrectly sized objects and objects that are to be copied 6077 * to/from userspace but do not fall entirely within the containing slab 6078 * cache's usercopy region. 6079 * 6080 * Returns NULL if check passes, otherwise const char * to name of cache 6081 * to indicate an error. 6082 */ 6083 void __check_heap_object(const void *ptr, unsigned long n, 6084 const struct slab *slab, bool to_user) 6085 { 6086 struct kmem_cache *s; 6087 unsigned int offset; 6088 bool is_kfence = is_kfence_address(ptr); 6089 6090 ptr = kasan_reset_tag(ptr); 6091 6092 /* Find object and usable object size. */ 6093 s = slab->slab_cache; 6094 6095 /* Reject impossible pointers. */ 6096 if (ptr < slab_address(slab)) 6097 usercopy_abort("SLUB object not in SLUB page?!", NULL, 6098 to_user, 0, n); 6099 6100 /* Find offset within object. */ 6101 if (is_kfence) 6102 offset = ptr - kfence_object_start(ptr); 6103 else 6104 offset = (ptr - slab_address(slab)) % s->size; 6105 6106 /* Adjust for redzone and reject if within the redzone. */ 6107 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 6108 if (offset < s->red_left_pad) 6109 usercopy_abort("SLUB object in left red zone", 6110 s->name, to_user, offset, n); 6111 offset -= s->red_left_pad; 6112 } 6113 6114 /* Allow address range falling entirely within usercopy region. */ 6115 if (offset >= s->useroffset && 6116 offset - s->useroffset <= s->usersize && 6117 n <= s->useroffset - offset + s->usersize) 6118 return; 6119 6120 usercopy_abort("SLUB object", s->name, to_user, offset, n); 6121 } 6122 #endif /* CONFIG_HARDENED_USERCOPY */ 6123 6124 #define SHRINK_PROMOTE_MAX 32 6125 6126 /* 6127 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 6128 * up most to the head of the partial lists. New allocations will then 6129 * fill those up and thus they can be removed from the partial lists. 6130 * 6131 * The slabs with the least items are placed last. This results in them 6132 * being allocated from last increasing the chance that the last objects 6133 * are freed in them. 6134 */ 6135 static int __kmem_cache_do_shrink(struct kmem_cache *s) 6136 { 6137 int node; 6138 int i; 6139 struct kmem_cache_node *n; 6140 struct slab *slab; 6141 struct slab *t; 6142 struct list_head discard; 6143 struct list_head promote[SHRINK_PROMOTE_MAX]; 6144 unsigned long flags; 6145 int ret = 0; 6146 6147 for_each_kmem_cache_node(s, node, n) { 6148 INIT_LIST_HEAD(&discard); 6149 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 6150 INIT_LIST_HEAD(promote + i); 6151 6152 spin_lock_irqsave(&n->list_lock, flags); 6153 6154 /* 6155 * Build lists of slabs to discard or promote. 6156 * 6157 * Note that concurrent frees may occur while we hold the 6158 * list_lock. slab->inuse here is the upper limit. 6159 */ 6160 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 6161 int free = slab->objects - slab->inuse; 6162 6163 /* Do not reread slab->inuse */ 6164 barrier(); 6165 6166 /* We do not keep full slabs on the list */ 6167 BUG_ON(free <= 0); 6168 6169 if (free == slab->objects) { 6170 list_move(&slab->slab_list, &discard); 6171 slab_clear_node_partial(slab); 6172 n->nr_partial--; 6173 dec_slabs_node(s, node, slab->objects); 6174 } else if (free <= SHRINK_PROMOTE_MAX) 6175 list_move(&slab->slab_list, promote + free - 1); 6176 } 6177 6178 /* 6179 * Promote the slabs filled up most to the head of the 6180 * partial list. 6181 */ 6182 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 6183 list_splice(promote + i, &n->partial); 6184 6185 spin_unlock_irqrestore(&n->list_lock, flags); 6186 6187 /* Release empty slabs */ 6188 list_for_each_entry_safe(slab, t, &discard, slab_list) 6189 free_slab(s, slab); 6190 6191 if (node_nr_slabs(n)) 6192 ret = 1; 6193 } 6194 6195 return ret; 6196 } 6197 6198 int __kmem_cache_shrink(struct kmem_cache *s) 6199 { 6200 flush_all(s); 6201 return __kmem_cache_do_shrink(s); 6202 } 6203 6204 static int slab_mem_going_offline_callback(void) 6205 { 6206 struct kmem_cache *s; 6207 6208 mutex_lock(&slab_mutex); 6209 list_for_each_entry(s, &slab_caches, list) { 6210 flush_all_cpus_locked(s); 6211 __kmem_cache_do_shrink(s); 6212 } 6213 mutex_unlock(&slab_mutex); 6214 6215 return 0; 6216 } 6217 6218 static int slab_mem_going_online_callback(int nid) 6219 { 6220 struct kmem_cache_node *n; 6221 struct kmem_cache *s; 6222 int ret = 0; 6223 6224 /* 6225 * We are bringing a node online. No memory is available yet. We must 6226 * allocate a kmem_cache_node structure in order to bring the node 6227 * online. 6228 */ 6229 mutex_lock(&slab_mutex); 6230 list_for_each_entry(s, &slab_caches, list) { 6231 /* 6232 * The structure may already exist if the node was previously 6233 * onlined and offlined. 6234 */ 6235 if (get_node(s, nid)) 6236 continue; 6237 /* 6238 * XXX: kmem_cache_alloc_node will fallback to other nodes 6239 * since memory is not yet available from the node that 6240 * is brought up. 6241 */ 6242 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 6243 if (!n) { 6244 ret = -ENOMEM; 6245 goto out; 6246 } 6247 init_kmem_cache_node(n); 6248 s->node[nid] = n; 6249 } 6250 /* 6251 * Any cache created after this point will also have kmem_cache_node 6252 * initialized for the new node. 6253 */ 6254 node_set(nid, slab_nodes); 6255 out: 6256 mutex_unlock(&slab_mutex); 6257 return ret; 6258 } 6259 6260 static int slab_memory_callback(struct notifier_block *self, 6261 unsigned long action, void *arg) 6262 { 6263 struct node_notify *nn = arg; 6264 int nid = nn->nid; 6265 int ret = 0; 6266 6267 switch (action) { 6268 case NODE_ADDING_FIRST_MEMORY: 6269 ret = slab_mem_going_online_callback(nid); 6270 break; 6271 case NODE_REMOVING_LAST_MEMORY: 6272 ret = slab_mem_going_offline_callback(); 6273 break; 6274 } 6275 if (ret) 6276 ret = notifier_from_errno(ret); 6277 else 6278 ret = NOTIFY_OK; 6279 return ret; 6280 } 6281 6282 /******************************************************************** 6283 * Basic setup of slabs 6284 *******************************************************************/ 6285 6286 /* 6287 * Used for early kmem_cache structures that were allocated using 6288 * the page allocator. Allocate them properly then fix up the pointers 6289 * that may be pointing to the wrong kmem_cache structure. 6290 */ 6291 6292 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6293 { 6294 int node; 6295 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6296 struct kmem_cache_node *n; 6297 6298 memcpy(s, static_cache, kmem_cache->object_size); 6299 6300 /* 6301 * This runs very early, and only the boot processor is supposed to be 6302 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6303 * IPIs around. 6304 */ 6305 __flush_cpu_slab(s, smp_processor_id()); 6306 for_each_kmem_cache_node(s, node, n) { 6307 struct slab *p; 6308 6309 list_for_each_entry(p, &n->partial, slab_list) 6310 p->slab_cache = s; 6311 6312 #ifdef CONFIG_SLUB_DEBUG 6313 list_for_each_entry(p, &n->full, slab_list) 6314 p->slab_cache = s; 6315 #endif 6316 } 6317 list_add(&s->list, &slab_caches); 6318 return s; 6319 } 6320 6321 void __init kmem_cache_init(void) 6322 { 6323 static __initdata struct kmem_cache boot_kmem_cache, 6324 boot_kmem_cache_node; 6325 int node; 6326 6327 if (debug_guardpage_minorder()) 6328 slub_max_order = 0; 6329 6330 /* Inform pointer hashing choice about slub debugging state. */ 6331 hash_pointers_finalize(__slub_debug_enabled()); 6332 6333 kmem_cache_node = &boot_kmem_cache_node; 6334 kmem_cache = &boot_kmem_cache; 6335 6336 /* 6337 * Initialize the nodemask for which we will allocate per node 6338 * structures. Here we don't need taking slab_mutex yet. 6339 */ 6340 for_each_node_state(node, N_MEMORY) 6341 node_set(node, slab_nodes); 6342 6343 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6344 sizeof(struct kmem_cache_node), 6345 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6346 6347 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6348 6349 /* Able to allocate the per node structures */ 6350 slab_state = PARTIAL; 6351 6352 create_boot_cache(kmem_cache, "kmem_cache", 6353 offsetof(struct kmem_cache, node) + 6354 nr_node_ids * sizeof(struct kmem_cache_node *), 6355 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6356 6357 kmem_cache = bootstrap(&boot_kmem_cache); 6358 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6359 6360 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6361 setup_kmalloc_cache_index_table(); 6362 create_kmalloc_caches(); 6363 6364 /* Setup random freelists for each cache */ 6365 init_freelist_randomization(); 6366 6367 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6368 slub_cpu_dead); 6369 6370 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6371 cache_line_size(), 6372 slub_min_order, slub_max_order, slub_min_objects, 6373 nr_cpu_ids, nr_node_ids); 6374 } 6375 6376 void __init kmem_cache_init_late(void) 6377 { 6378 #ifndef CONFIG_SLUB_TINY 6379 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6380 WARN_ON(!flushwq); 6381 #endif 6382 } 6383 6384 struct kmem_cache * 6385 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6386 slab_flags_t flags, void (*ctor)(void *)) 6387 { 6388 struct kmem_cache *s; 6389 6390 s = find_mergeable(size, align, flags, name, ctor); 6391 if (s) { 6392 if (sysfs_slab_alias(s, name)) 6393 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6394 name); 6395 6396 s->refcount++; 6397 6398 /* 6399 * Adjust the object sizes so that we clear 6400 * the complete object on kzalloc. 6401 */ 6402 s->object_size = max(s->object_size, size); 6403 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6404 } 6405 6406 return s; 6407 } 6408 6409 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6410 unsigned int size, struct kmem_cache_args *args, 6411 slab_flags_t flags) 6412 { 6413 int err = -EINVAL; 6414 6415 s->name = name; 6416 s->size = s->object_size = size; 6417 6418 s->flags = kmem_cache_flags(flags, s->name); 6419 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6420 s->random = get_random_long(); 6421 #endif 6422 s->align = args->align; 6423 s->ctor = args->ctor; 6424 #ifdef CONFIG_HARDENED_USERCOPY 6425 s->useroffset = args->useroffset; 6426 s->usersize = args->usersize; 6427 #endif 6428 6429 if (!calculate_sizes(args, s)) 6430 goto out; 6431 if (disable_higher_order_debug) { 6432 /* 6433 * Disable debugging flags that store metadata if the min slab 6434 * order increased. 6435 */ 6436 if (get_order(s->size) > get_order(s->object_size)) { 6437 s->flags &= ~DEBUG_METADATA_FLAGS; 6438 s->offset = 0; 6439 if (!calculate_sizes(args, s)) 6440 goto out; 6441 } 6442 } 6443 6444 #ifdef system_has_freelist_aba 6445 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6446 /* Enable fast mode */ 6447 s->flags |= __CMPXCHG_DOUBLE; 6448 } 6449 #endif 6450 6451 /* 6452 * The larger the object size is, the more slabs we want on the partial 6453 * list to avoid pounding the page allocator excessively. 6454 */ 6455 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6456 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6457 6458 set_cpu_partial(s); 6459 6460 #ifdef CONFIG_NUMA 6461 s->remote_node_defrag_ratio = 1000; 6462 #endif 6463 6464 /* Initialize the pre-computed randomized freelist if slab is up */ 6465 if (slab_state >= UP) { 6466 if (init_cache_random_seq(s)) 6467 goto out; 6468 } 6469 6470 if (!init_kmem_cache_nodes(s)) 6471 goto out; 6472 6473 if (!alloc_kmem_cache_cpus(s)) 6474 goto out; 6475 6476 err = 0; 6477 6478 /* Mutex is not taken during early boot */ 6479 if (slab_state <= UP) 6480 goto out; 6481 6482 /* 6483 * Failing to create sysfs files is not critical to SLUB functionality. 6484 * If it fails, proceed with cache creation without these files. 6485 */ 6486 if (sysfs_slab_add(s)) 6487 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6488 6489 if (s->flags & SLAB_STORE_USER) 6490 debugfs_slab_add(s); 6491 6492 out: 6493 if (err) 6494 __kmem_cache_release(s); 6495 return err; 6496 } 6497 6498 #ifdef SLAB_SUPPORTS_SYSFS 6499 static int count_inuse(struct slab *slab) 6500 { 6501 return slab->inuse; 6502 } 6503 6504 static int count_total(struct slab *slab) 6505 { 6506 return slab->objects; 6507 } 6508 #endif 6509 6510 #ifdef CONFIG_SLUB_DEBUG 6511 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6512 unsigned long *obj_map) 6513 { 6514 void *p; 6515 void *addr = slab_address(slab); 6516 6517 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6518 return; 6519 6520 /* Now we know that a valid freelist exists */ 6521 __fill_map(obj_map, s, slab); 6522 for_each_object(p, s, addr, slab->objects) { 6523 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6524 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6525 6526 if (!check_object(s, slab, p, val)) 6527 break; 6528 } 6529 } 6530 6531 static int validate_slab_node(struct kmem_cache *s, 6532 struct kmem_cache_node *n, unsigned long *obj_map) 6533 { 6534 unsigned long count = 0; 6535 struct slab *slab; 6536 unsigned long flags; 6537 6538 spin_lock_irqsave(&n->list_lock, flags); 6539 6540 list_for_each_entry(slab, &n->partial, slab_list) { 6541 validate_slab(s, slab, obj_map); 6542 count++; 6543 } 6544 if (count != n->nr_partial) { 6545 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6546 s->name, count, n->nr_partial); 6547 slab_add_kunit_errors(); 6548 } 6549 6550 if (!(s->flags & SLAB_STORE_USER)) 6551 goto out; 6552 6553 list_for_each_entry(slab, &n->full, slab_list) { 6554 validate_slab(s, slab, obj_map); 6555 count++; 6556 } 6557 if (count != node_nr_slabs(n)) { 6558 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6559 s->name, count, node_nr_slabs(n)); 6560 slab_add_kunit_errors(); 6561 } 6562 6563 out: 6564 spin_unlock_irqrestore(&n->list_lock, flags); 6565 return count; 6566 } 6567 6568 long validate_slab_cache(struct kmem_cache *s) 6569 { 6570 int node; 6571 unsigned long count = 0; 6572 struct kmem_cache_node *n; 6573 unsigned long *obj_map; 6574 6575 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6576 if (!obj_map) 6577 return -ENOMEM; 6578 6579 flush_all(s); 6580 for_each_kmem_cache_node(s, node, n) 6581 count += validate_slab_node(s, n, obj_map); 6582 6583 bitmap_free(obj_map); 6584 6585 return count; 6586 } 6587 EXPORT_SYMBOL(validate_slab_cache); 6588 6589 #ifdef CONFIG_DEBUG_FS 6590 /* 6591 * Generate lists of code addresses where slabcache objects are allocated 6592 * and freed. 6593 */ 6594 6595 struct location { 6596 depot_stack_handle_t handle; 6597 unsigned long count; 6598 unsigned long addr; 6599 unsigned long waste; 6600 long long sum_time; 6601 long min_time; 6602 long max_time; 6603 long min_pid; 6604 long max_pid; 6605 DECLARE_BITMAP(cpus, NR_CPUS); 6606 nodemask_t nodes; 6607 }; 6608 6609 struct loc_track { 6610 unsigned long max; 6611 unsigned long count; 6612 struct location *loc; 6613 loff_t idx; 6614 }; 6615 6616 static struct dentry *slab_debugfs_root; 6617 6618 static void free_loc_track(struct loc_track *t) 6619 { 6620 if (t->max) 6621 free_pages((unsigned long)t->loc, 6622 get_order(sizeof(struct location) * t->max)); 6623 } 6624 6625 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6626 { 6627 struct location *l; 6628 int order; 6629 6630 order = get_order(sizeof(struct location) * max); 6631 6632 l = (void *)__get_free_pages(flags, order); 6633 if (!l) 6634 return 0; 6635 6636 if (t->count) { 6637 memcpy(l, t->loc, sizeof(struct location) * t->count); 6638 free_loc_track(t); 6639 } 6640 t->max = max; 6641 t->loc = l; 6642 return 1; 6643 } 6644 6645 static int add_location(struct loc_track *t, struct kmem_cache *s, 6646 const struct track *track, 6647 unsigned int orig_size) 6648 { 6649 long start, end, pos; 6650 struct location *l; 6651 unsigned long caddr, chandle, cwaste; 6652 unsigned long age = jiffies - track->when; 6653 depot_stack_handle_t handle = 0; 6654 unsigned int waste = s->object_size - orig_size; 6655 6656 #ifdef CONFIG_STACKDEPOT 6657 handle = READ_ONCE(track->handle); 6658 #endif 6659 start = -1; 6660 end = t->count; 6661 6662 for ( ; ; ) { 6663 pos = start + (end - start + 1) / 2; 6664 6665 /* 6666 * There is nothing at "end". If we end up there 6667 * we need to add something to before end. 6668 */ 6669 if (pos == end) 6670 break; 6671 6672 l = &t->loc[pos]; 6673 caddr = l->addr; 6674 chandle = l->handle; 6675 cwaste = l->waste; 6676 if ((track->addr == caddr) && (handle == chandle) && 6677 (waste == cwaste)) { 6678 6679 l->count++; 6680 if (track->when) { 6681 l->sum_time += age; 6682 if (age < l->min_time) 6683 l->min_time = age; 6684 if (age > l->max_time) 6685 l->max_time = age; 6686 6687 if (track->pid < l->min_pid) 6688 l->min_pid = track->pid; 6689 if (track->pid > l->max_pid) 6690 l->max_pid = track->pid; 6691 6692 cpumask_set_cpu(track->cpu, 6693 to_cpumask(l->cpus)); 6694 } 6695 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6696 return 1; 6697 } 6698 6699 if (track->addr < caddr) 6700 end = pos; 6701 else if (track->addr == caddr && handle < chandle) 6702 end = pos; 6703 else if (track->addr == caddr && handle == chandle && 6704 waste < cwaste) 6705 end = pos; 6706 else 6707 start = pos; 6708 } 6709 6710 /* 6711 * Not found. Insert new tracking element. 6712 */ 6713 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6714 return 0; 6715 6716 l = t->loc + pos; 6717 if (pos < t->count) 6718 memmove(l + 1, l, 6719 (t->count - pos) * sizeof(struct location)); 6720 t->count++; 6721 l->count = 1; 6722 l->addr = track->addr; 6723 l->sum_time = age; 6724 l->min_time = age; 6725 l->max_time = age; 6726 l->min_pid = track->pid; 6727 l->max_pid = track->pid; 6728 l->handle = handle; 6729 l->waste = waste; 6730 cpumask_clear(to_cpumask(l->cpus)); 6731 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6732 nodes_clear(l->nodes); 6733 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6734 return 1; 6735 } 6736 6737 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6738 struct slab *slab, enum track_item alloc, 6739 unsigned long *obj_map) 6740 { 6741 void *addr = slab_address(slab); 6742 bool is_alloc = (alloc == TRACK_ALLOC); 6743 void *p; 6744 6745 __fill_map(obj_map, s, slab); 6746 6747 for_each_object(p, s, addr, slab->objects) 6748 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6749 add_location(t, s, get_track(s, p, alloc), 6750 is_alloc ? get_orig_size(s, p) : 6751 s->object_size); 6752 } 6753 #endif /* CONFIG_DEBUG_FS */ 6754 #endif /* CONFIG_SLUB_DEBUG */ 6755 6756 #ifdef SLAB_SUPPORTS_SYSFS 6757 enum slab_stat_type { 6758 SL_ALL, /* All slabs */ 6759 SL_PARTIAL, /* Only partially allocated slabs */ 6760 SL_CPU, /* Only slabs used for cpu caches */ 6761 SL_OBJECTS, /* Determine allocated objects not slabs */ 6762 SL_TOTAL /* Determine object capacity not slabs */ 6763 }; 6764 6765 #define SO_ALL (1 << SL_ALL) 6766 #define SO_PARTIAL (1 << SL_PARTIAL) 6767 #define SO_CPU (1 << SL_CPU) 6768 #define SO_OBJECTS (1 << SL_OBJECTS) 6769 #define SO_TOTAL (1 << SL_TOTAL) 6770 6771 static ssize_t show_slab_objects(struct kmem_cache *s, 6772 char *buf, unsigned long flags) 6773 { 6774 unsigned long total = 0; 6775 int node; 6776 int x; 6777 unsigned long *nodes; 6778 int len = 0; 6779 6780 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6781 if (!nodes) 6782 return -ENOMEM; 6783 6784 if (flags & SO_CPU) { 6785 int cpu; 6786 6787 for_each_possible_cpu(cpu) { 6788 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6789 cpu); 6790 int node; 6791 struct slab *slab; 6792 6793 slab = READ_ONCE(c->slab); 6794 if (!slab) 6795 continue; 6796 6797 node = slab_nid(slab); 6798 if (flags & SO_TOTAL) 6799 x = slab->objects; 6800 else if (flags & SO_OBJECTS) 6801 x = slab->inuse; 6802 else 6803 x = 1; 6804 6805 total += x; 6806 nodes[node] += x; 6807 6808 #ifdef CONFIG_SLUB_CPU_PARTIAL 6809 slab = slub_percpu_partial_read_once(c); 6810 if (slab) { 6811 node = slab_nid(slab); 6812 if (flags & SO_TOTAL) 6813 WARN_ON_ONCE(1); 6814 else if (flags & SO_OBJECTS) 6815 WARN_ON_ONCE(1); 6816 else 6817 x = data_race(slab->slabs); 6818 total += x; 6819 nodes[node] += x; 6820 } 6821 #endif 6822 } 6823 } 6824 6825 /* 6826 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6827 * already held which will conflict with an existing lock order: 6828 * 6829 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6830 * 6831 * We don't really need mem_hotplug_lock (to hold off 6832 * slab_mem_going_offline_callback) here because slab's memory hot 6833 * unplug code doesn't destroy the kmem_cache->node[] data. 6834 */ 6835 6836 #ifdef CONFIG_SLUB_DEBUG 6837 if (flags & SO_ALL) { 6838 struct kmem_cache_node *n; 6839 6840 for_each_kmem_cache_node(s, node, n) { 6841 6842 if (flags & SO_TOTAL) 6843 x = node_nr_objs(n); 6844 else if (flags & SO_OBJECTS) 6845 x = node_nr_objs(n) - count_partial(n, count_free); 6846 else 6847 x = node_nr_slabs(n); 6848 total += x; 6849 nodes[node] += x; 6850 } 6851 6852 } else 6853 #endif 6854 if (flags & SO_PARTIAL) { 6855 struct kmem_cache_node *n; 6856 6857 for_each_kmem_cache_node(s, node, n) { 6858 if (flags & SO_TOTAL) 6859 x = count_partial(n, count_total); 6860 else if (flags & SO_OBJECTS) 6861 x = count_partial(n, count_inuse); 6862 else 6863 x = n->nr_partial; 6864 total += x; 6865 nodes[node] += x; 6866 } 6867 } 6868 6869 len += sysfs_emit_at(buf, len, "%lu", total); 6870 #ifdef CONFIG_NUMA 6871 for (node = 0; node < nr_node_ids; node++) { 6872 if (nodes[node]) 6873 len += sysfs_emit_at(buf, len, " N%d=%lu", 6874 node, nodes[node]); 6875 } 6876 #endif 6877 len += sysfs_emit_at(buf, len, "\n"); 6878 kfree(nodes); 6879 6880 return len; 6881 } 6882 6883 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6884 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6885 6886 struct slab_attribute { 6887 struct attribute attr; 6888 ssize_t (*show)(struct kmem_cache *s, char *buf); 6889 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6890 }; 6891 6892 #define SLAB_ATTR_RO(_name) \ 6893 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6894 6895 #define SLAB_ATTR(_name) \ 6896 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6897 6898 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6899 { 6900 return sysfs_emit(buf, "%u\n", s->size); 6901 } 6902 SLAB_ATTR_RO(slab_size); 6903 6904 static ssize_t align_show(struct kmem_cache *s, char *buf) 6905 { 6906 return sysfs_emit(buf, "%u\n", s->align); 6907 } 6908 SLAB_ATTR_RO(align); 6909 6910 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6911 { 6912 return sysfs_emit(buf, "%u\n", s->object_size); 6913 } 6914 SLAB_ATTR_RO(object_size); 6915 6916 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6917 { 6918 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6919 } 6920 SLAB_ATTR_RO(objs_per_slab); 6921 6922 static ssize_t order_show(struct kmem_cache *s, char *buf) 6923 { 6924 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6925 } 6926 SLAB_ATTR_RO(order); 6927 6928 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6929 { 6930 return sysfs_emit(buf, "%lu\n", s->min_partial); 6931 } 6932 6933 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6934 size_t length) 6935 { 6936 unsigned long min; 6937 int err; 6938 6939 err = kstrtoul(buf, 10, &min); 6940 if (err) 6941 return err; 6942 6943 s->min_partial = min; 6944 return length; 6945 } 6946 SLAB_ATTR(min_partial); 6947 6948 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6949 { 6950 unsigned int nr_partial = 0; 6951 #ifdef CONFIG_SLUB_CPU_PARTIAL 6952 nr_partial = s->cpu_partial; 6953 #endif 6954 6955 return sysfs_emit(buf, "%u\n", nr_partial); 6956 } 6957 6958 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6959 size_t length) 6960 { 6961 unsigned int objects; 6962 int err; 6963 6964 err = kstrtouint(buf, 10, &objects); 6965 if (err) 6966 return err; 6967 if (objects && !kmem_cache_has_cpu_partial(s)) 6968 return -EINVAL; 6969 6970 slub_set_cpu_partial(s, objects); 6971 flush_all(s); 6972 return length; 6973 } 6974 SLAB_ATTR(cpu_partial); 6975 6976 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6977 { 6978 if (!s->ctor) 6979 return 0; 6980 return sysfs_emit(buf, "%pS\n", s->ctor); 6981 } 6982 SLAB_ATTR_RO(ctor); 6983 6984 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6985 { 6986 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6987 } 6988 SLAB_ATTR_RO(aliases); 6989 6990 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6991 { 6992 return show_slab_objects(s, buf, SO_PARTIAL); 6993 } 6994 SLAB_ATTR_RO(partial); 6995 6996 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6997 { 6998 return show_slab_objects(s, buf, SO_CPU); 6999 } 7000 SLAB_ATTR_RO(cpu_slabs); 7001 7002 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 7003 { 7004 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 7005 } 7006 SLAB_ATTR_RO(objects_partial); 7007 7008 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 7009 { 7010 int objects = 0; 7011 int slabs = 0; 7012 int cpu __maybe_unused; 7013 int len = 0; 7014 7015 #ifdef CONFIG_SLUB_CPU_PARTIAL 7016 for_each_online_cpu(cpu) { 7017 struct slab *slab; 7018 7019 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7020 7021 if (slab) 7022 slabs += data_race(slab->slabs); 7023 } 7024 #endif 7025 7026 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 7027 objects = (slabs * oo_objects(s->oo)) / 2; 7028 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 7029 7030 #ifdef CONFIG_SLUB_CPU_PARTIAL 7031 for_each_online_cpu(cpu) { 7032 struct slab *slab; 7033 7034 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7035 if (slab) { 7036 slabs = data_race(slab->slabs); 7037 objects = (slabs * oo_objects(s->oo)) / 2; 7038 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 7039 cpu, objects, slabs); 7040 } 7041 } 7042 #endif 7043 len += sysfs_emit_at(buf, len, "\n"); 7044 7045 return len; 7046 } 7047 SLAB_ATTR_RO(slabs_cpu_partial); 7048 7049 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 7050 { 7051 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 7052 } 7053 SLAB_ATTR_RO(reclaim_account); 7054 7055 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 7056 { 7057 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 7058 } 7059 SLAB_ATTR_RO(hwcache_align); 7060 7061 #ifdef CONFIG_ZONE_DMA 7062 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 7063 { 7064 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 7065 } 7066 SLAB_ATTR_RO(cache_dma); 7067 #endif 7068 7069 #ifdef CONFIG_HARDENED_USERCOPY 7070 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 7071 { 7072 return sysfs_emit(buf, "%u\n", s->usersize); 7073 } 7074 SLAB_ATTR_RO(usersize); 7075 #endif 7076 7077 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 7078 { 7079 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 7080 } 7081 SLAB_ATTR_RO(destroy_by_rcu); 7082 7083 #ifdef CONFIG_SLUB_DEBUG 7084 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 7085 { 7086 return show_slab_objects(s, buf, SO_ALL); 7087 } 7088 SLAB_ATTR_RO(slabs); 7089 7090 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 7091 { 7092 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 7093 } 7094 SLAB_ATTR_RO(total_objects); 7095 7096 static ssize_t objects_show(struct kmem_cache *s, char *buf) 7097 { 7098 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 7099 } 7100 SLAB_ATTR_RO(objects); 7101 7102 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 7103 { 7104 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 7105 } 7106 SLAB_ATTR_RO(sanity_checks); 7107 7108 static ssize_t trace_show(struct kmem_cache *s, char *buf) 7109 { 7110 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 7111 } 7112 SLAB_ATTR_RO(trace); 7113 7114 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 7115 { 7116 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 7117 } 7118 7119 SLAB_ATTR_RO(red_zone); 7120 7121 static ssize_t poison_show(struct kmem_cache *s, char *buf) 7122 { 7123 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 7124 } 7125 7126 SLAB_ATTR_RO(poison); 7127 7128 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 7129 { 7130 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 7131 } 7132 7133 SLAB_ATTR_RO(store_user); 7134 7135 static ssize_t validate_show(struct kmem_cache *s, char *buf) 7136 { 7137 return 0; 7138 } 7139 7140 static ssize_t validate_store(struct kmem_cache *s, 7141 const char *buf, size_t length) 7142 { 7143 int ret = -EINVAL; 7144 7145 if (buf[0] == '1' && kmem_cache_debug(s)) { 7146 ret = validate_slab_cache(s); 7147 if (ret >= 0) 7148 ret = length; 7149 } 7150 return ret; 7151 } 7152 SLAB_ATTR(validate); 7153 7154 #endif /* CONFIG_SLUB_DEBUG */ 7155 7156 #ifdef CONFIG_FAILSLAB 7157 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 7158 { 7159 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 7160 } 7161 7162 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 7163 size_t length) 7164 { 7165 if (s->refcount > 1) 7166 return -EINVAL; 7167 7168 if (buf[0] == '1') 7169 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 7170 else 7171 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 7172 7173 return length; 7174 } 7175 SLAB_ATTR(failslab); 7176 #endif 7177 7178 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 7179 { 7180 return 0; 7181 } 7182 7183 static ssize_t shrink_store(struct kmem_cache *s, 7184 const char *buf, size_t length) 7185 { 7186 if (buf[0] == '1') 7187 kmem_cache_shrink(s); 7188 else 7189 return -EINVAL; 7190 return length; 7191 } 7192 SLAB_ATTR(shrink); 7193 7194 #ifdef CONFIG_NUMA 7195 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 7196 { 7197 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 7198 } 7199 7200 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 7201 const char *buf, size_t length) 7202 { 7203 unsigned int ratio; 7204 int err; 7205 7206 err = kstrtouint(buf, 10, &ratio); 7207 if (err) 7208 return err; 7209 if (ratio > 100) 7210 return -ERANGE; 7211 7212 s->remote_node_defrag_ratio = ratio * 10; 7213 7214 return length; 7215 } 7216 SLAB_ATTR(remote_node_defrag_ratio); 7217 #endif 7218 7219 #ifdef CONFIG_SLUB_STATS 7220 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 7221 { 7222 unsigned long sum = 0; 7223 int cpu; 7224 int len = 0; 7225 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 7226 7227 if (!data) 7228 return -ENOMEM; 7229 7230 for_each_online_cpu(cpu) { 7231 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 7232 7233 data[cpu] = x; 7234 sum += x; 7235 } 7236 7237 len += sysfs_emit_at(buf, len, "%lu", sum); 7238 7239 #ifdef CONFIG_SMP 7240 for_each_online_cpu(cpu) { 7241 if (data[cpu]) 7242 len += sysfs_emit_at(buf, len, " C%d=%u", 7243 cpu, data[cpu]); 7244 } 7245 #endif 7246 kfree(data); 7247 len += sysfs_emit_at(buf, len, "\n"); 7248 7249 return len; 7250 } 7251 7252 static void clear_stat(struct kmem_cache *s, enum stat_item si) 7253 { 7254 int cpu; 7255 7256 for_each_online_cpu(cpu) 7257 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 7258 } 7259 7260 #define STAT_ATTR(si, text) \ 7261 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 7262 { \ 7263 return show_stat(s, buf, si); \ 7264 } \ 7265 static ssize_t text##_store(struct kmem_cache *s, \ 7266 const char *buf, size_t length) \ 7267 { \ 7268 if (buf[0] != '0') \ 7269 return -EINVAL; \ 7270 clear_stat(s, si); \ 7271 return length; \ 7272 } \ 7273 SLAB_ATTR(text); \ 7274 7275 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7276 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7277 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7278 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7279 STAT_ATTR(FREE_FROZEN, free_frozen); 7280 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7281 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7282 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7283 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7284 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7285 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7286 STAT_ATTR(FREE_SLAB, free_slab); 7287 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7288 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7289 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7290 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7291 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7292 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7293 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7294 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7295 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7296 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7297 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7298 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7299 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7300 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7301 #endif /* CONFIG_SLUB_STATS */ 7302 7303 #ifdef CONFIG_KFENCE 7304 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7305 { 7306 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7307 } 7308 7309 static ssize_t skip_kfence_store(struct kmem_cache *s, 7310 const char *buf, size_t length) 7311 { 7312 int ret = length; 7313 7314 if (buf[0] == '0') 7315 s->flags &= ~SLAB_SKIP_KFENCE; 7316 else if (buf[0] == '1') 7317 s->flags |= SLAB_SKIP_KFENCE; 7318 else 7319 ret = -EINVAL; 7320 7321 return ret; 7322 } 7323 SLAB_ATTR(skip_kfence); 7324 #endif 7325 7326 static struct attribute *slab_attrs[] = { 7327 &slab_size_attr.attr, 7328 &object_size_attr.attr, 7329 &objs_per_slab_attr.attr, 7330 &order_attr.attr, 7331 &min_partial_attr.attr, 7332 &cpu_partial_attr.attr, 7333 &objects_partial_attr.attr, 7334 &partial_attr.attr, 7335 &cpu_slabs_attr.attr, 7336 &ctor_attr.attr, 7337 &aliases_attr.attr, 7338 &align_attr.attr, 7339 &hwcache_align_attr.attr, 7340 &reclaim_account_attr.attr, 7341 &destroy_by_rcu_attr.attr, 7342 &shrink_attr.attr, 7343 &slabs_cpu_partial_attr.attr, 7344 #ifdef CONFIG_SLUB_DEBUG 7345 &total_objects_attr.attr, 7346 &objects_attr.attr, 7347 &slabs_attr.attr, 7348 &sanity_checks_attr.attr, 7349 &trace_attr.attr, 7350 &red_zone_attr.attr, 7351 &poison_attr.attr, 7352 &store_user_attr.attr, 7353 &validate_attr.attr, 7354 #endif 7355 #ifdef CONFIG_ZONE_DMA 7356 &cache_dma_attr.attr, 7357 #endif 7358 #ifdef CONFIG_NUMA 7359 &remote_node_defrag_ratio_attr.attr, 7360 #endif 7361 #ifdef CONFIG_SLUB_STATS 7362 &alloc_fastpath_attr.attr, 7363 &alloc_slowpath_attr.attr, 7364 &free_fastpath_attr.attr, 7365 &free_slowpath_attr.attr, 7366 &free_frozen_attr.attr, 7367 &free_add_partial_attr.attr, 7368 &free_remove_partial_attr.attr, 7369 &alloc_from_partial_attr.attr, 7370 &alloc_slab_attr.attr, 7371 &alloc_refill_attr.attr, 7372 &alloc_node_mismatch_attr.attr, 7373 &free_slab_attr.attr, 7374 &cpuslab_flush_attr.attr, 7375 &deactivate_full_attr.attr, 7376 &deactivate_empty_attr.attr, 7377 &deactivate_to_head_attr.attr, 7378 &deactivate_to_tail_attr.attr, 7379 &deactivate_remote_frees_attr.attr, 7380 &deactivate_bypass_attr.attr, 7381 &order_fallback_attr.attr, 7382 &cmpxchg_double_fail_attr.attr, 7383 &cmpxchg_double_cpu_fail_attr.attr, 7384 &cpu_partial_alloc_attr.attr, 7385 &cpu_partial_free_attr.attr, 7386 &cpu_partial_node_attr.attr, 7387 &cpu_partial_drain_attr.attr, 7388 #endif 7389 #ifdef CONFIG_FAILSLAB 7390 &failslab_attr.attr, 7391 #endif 7392 #ifdef CONFIG_HARDENED_USERCOPY 7393 &usersize_attr.attr, 7394 #endif 7395 #ifdef CONFIG_KFENCE 7396 &skip_kfence_attr.attr, 7397 #endif 7398 7399 NULL 7400 }; 7401 7402 static const struct attribute_group slab_attr_group = { 7403 .attrs = slab_attrs, 7404 }; 7405 7406 static ssize_t slab_attr_show(struct kobject *kobj, 7407 struct attribute *attr, 7408 char *buf) 7409 { 7410 struct slab_attribute *attribute; 7411 struct kmem_cache *s; 7412 7413 attribute = to_slab_attr(attr); 7414 s = to_slab(kobj); 7415 7416 if (!attribute->show) 7417 return -EIO; 7418 7419 return attribute->show(s, buf); 7420 } 7421 7422 static ssize_t slab_attr_store(struct kobject *kobj, 7423 struct attribute *attr, 7424 const char *buf, size_t len) 7425 { 7426 struct slab_attribute *attribute; 7427 struct kmem_cache *s; 7428 7429 attribute = to_slab_attr(attr); 7430 s = to_slab(kobj); 7431 7432 if (!attribute->store) 7433 return -EIO; 7434 7435 return attribute->store(s, buf, len); 7436 } 7437 7438 static void kmem_cache_release(struct kobject *k) 7439 { 7440 slab_kmem_cache_release(to_slab(k)); 7441 } 7442 7443 static const struct sysfs_ops slab_sysfs_ops = { 7444 .show = slab_attr_show, 7445 .store = slab_attr_store, 7446 }; 7447 7448 static const struct kobj_type slab_ktype = { 7449 .sysfs_ops = &slab_sysfs_ops, 7450 .release = kmem_cache_release, 7451 }; 7452 7453 static struct kset *slab_kset; 7454 7455 static inline struct kset *cache_kset(struct kmem_cache *s) 7456 { 7457 return slab_kset; 7458 } 7459 7460 #define ID_STR_LENGTH 32 7461 7462 /* Create a unique string id for a slab cache: 7463 * 7464 * Format :[flags-]size 7465 */ 7466 static char *create_unique_id(struct kmem_cache *s) 7467 { 7468 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7469 char *p = name; 7470 7471 if (!name) 7472 return ERR_PTR(-ENOMEM); 7473 7474 *p++ = ':'; 7475 /* 7476 * First flags affecting slabcache operations. We will only 7477 * get here for aliasable slabs so we do not need to support 7478 * too many flags. The flags here must cover all flags that 7479 * are matched during merging to guarantee that the id is 7480 * unique. 7481 */ 7482 if (s->flags & SLAB_CACHE_DMA) 7483 *p++ = 'd'; 7484 if (s->flags & SLAB_CACHE_DMA32) 7485 *p++ = 'D'; 7486 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7487 *p++ = 'a'; 7488 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7489 *p++ = 'F'; 7490 if (s->flags & SLAB_ACCOUNT) 7491 *p++ = 'A'; 7492 if (p != name + 1) 7493 *p++ = '-'; 7494 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7495 7496 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7497 kfree(name); 7498 return ERR_PTR(-EINVAL); 7499 } 7500 kmsan_unpoison_memory(name, p - name); 7501 return name; 7502 } 7503 7504 static int sysfs_slab_add(struct kmem_cache *s) 7505 { 7506 int err; 7507 const char *name; 7508 struct kset *kset = cache_kset(s); 7509 int unmergeable = slab_unmergeable(s); 7510 7511 if (!unmergeable && disable_higher_order_debug && 7512 (slub_debug & DEBUG_METADATA_FLAGS)) 7513 unmergeable = 1; 7514 7515 if (unmergeable) { 7516 /* 7517 * Slabcache can never be merged so we can use the name proper. 7518 * This is typically the case for debug situations. In that 7519 * case we can catch duplicate names easily. 7520 */ 7521 sysfs_remove_link(&slab_kset->kobj, s->name); 7522 name = s->name; 7523 } else { 7524 /* 7525 * Create a unique name for the slab as a target 7526 * for the symlinks. 7527 */ 7528 name = create_unique_id(s); 7529 if (IS_ERR(name)) 7530 return PTR_ERR(name); 7531 } 7532 7533 s->kobj.kset = kset; 7534 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7535 if (err) 7536 goto out; 7537 7538 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7539 if (err) 7540 goto out_del_kobj; 7541 7542 if (!unmergeable) { 7543 /* Setup first alias */ 7544 sysfs_slab_alias(s, s->name); 7545 } 7546 out: 7547 if (!unmergeable) 7548 kfree(name); 7549 return err; 7550 out_del_kobj: 7551 kobject_del(&s->kobj); 7552 goto out; 7553 } 7554 7555 void sysfs_slab_unlink(struct kmem_cache *s) 7556 { 7557 if (s->kobj.state_in_sysfs) 7558 kobject_del(&s->kobj); 7559 } 7560 7561 void sysfs_slab_release(struct kmem_cache *s) 7562 { 7563 kobject_put(&s->kobj); 7564 } 7565 7566 /* 7567 * Need to buffer aliases during bootup until sysfs becomes 7568 * available lest we lose that information. 7569 */ 7570 struct saved_alias { 7571 struct kmem_cache *s; 7572 const char *name; 7573 struct saved_alias *next; 7574 }; 7575 7576 static struct saved_alias *alias_list; 7577 7578 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7579 { 7580 struct saved_alias *al; 7581 7582 if (slab_state == FULL) { 7583 /* 7584 * If we have a leftover link then remove it. 7585 */ 7586 sysfs_remove_link(&slab_kset->kobj, name); 7587 /* 7588 * The original cache may have failed to generate sysfs file. 7589 * In that case, sysfs_create_link() returns -ENOENT and 7590 * symbolic link creation is skipped. 7591 */ 7592 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7593 } 7594 7595 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7596 if (!al) 7597 return -ENOMEM; 7598 7599 al->s = s; 7600 al->name = name; 7601 al->next = alias_list; 7602 alias_list = al; 7603 kmsan_unpoison_memory(al, sizeof(*al)); 7604 return 0; 7605 } 7606 7607 static int __init slab_sysfs_init(void) 7608 { 7609 struct kmem_cache *s; 7610 int err; 7611 7612 mutex_lock(&slab_mutex); 7613 7614 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7615 if (!slab_kset) { 7616 mutex_unlock(&slab_mutex); 7617 pr_err("Cannot register slab subsystem.\n"); 7618 return -ENOMEM; 7619 } 7620 7621 slab_state = FULL; 7622 7623 list_for_each_entry(s, &slab_caches, list) { 7624 err = sysfs_slab_add(s); 7625 if (err) 7626 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7627 s->name); 7628 } 7629 7630 while (alias_list) { 7631 struct saved_alias *al = alias_list; 7632 7633 alias_list = alias_list->next; 7634 err = sysfs_slab_alias(al->s, al->name); 7635 if (err) 7636 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7637 al->name); 7638 kfree(al); 7639 } 7640 7641 mutex_unlock(&slab_mutex); 7642 return 0; 7643 } 7644 late_initcall(slab_sysfs_init); 7645 #endif /* SLAB_SUPPORTS_SYSFS */ 7646 7647 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7648 static int slab_debugfs_show(struct seq_file *seq, void *v) 7649 { 7650 struct loc_track *t = seq->private; 7651 struct location *l; 7652 unsigned long idx; 7653 7654 idx = (unsigned long) t->idx; 7655 if (idx < t->count) { 7656 l = &t->loc[idx]; 7657 7658 seq_printf(seq, "%7ld ", l->count); 7659 7660 if (l->addr) 7661 seq_printf(seq, "%pS", (void *)l->addr); 7662 else 7663 seq_puts(seq, "<not-available>"); 7664 7665 if (l->waste) 7666 seq_printf(seq, " waste=%lu/%lu", 7667 l->count * l->waste, l->waste); 7668 7669 if (l->sum_time != l->min_time) { 7670 seq_printf(seq, " age=%ld/%llu/%ld", 7671 l->min_time, div_u64(l->sum_time, l->count), 7672 l->max_time); 7673 } else 7674 seq_printf(seq, " age=%ld", l->min_time); 7675 7676 if (l->min_pid != l->max_pid) 7677 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7678 else 7679 seq_printf(seq, " pid=%ld", 7680 l->min_pid); 7681 7682 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7683 seq_printf(seq, " cpus=%*pbl", 7684 cpumask_pr_args(to_cpumask(l->cpus))); 7685 7686 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7687 seq_printf(seq, " nodes=%*pbl", 7688 nodemask_pr_args(&l->nodes)); 7689 7690 #ifdef CONFIG_STACKDEPOT 7691 { 7692 depot_stack_handle_t handle; 7693 unsigned long *entries; 7694 unsigned int nr_entries, j; 7695 7696 handle = READ_ONCE(l->handle); 7697 if (handle) { 7698 nr_entries = stack_depot_fetch(handle, &entries); 7699 seq_puts(seq, "\n"); 7700 for (j = 0; j < nr_entries; j++) 7701 seq_printf(seq, " %pS\n", (void *)entries[j]); 7702 } 7703 } 7704 #endif 7705 seq_puts(seq, "\n"); 7706 } 7707 7708 if (!idx && !t->count) 7709 seq_puts(seq, "No data\n"); 7710 7711 return 0; 7712 } 7713 7714 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7715 { 7716 } 7717 7718 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7719 { 7720 struct loc_track *t = seq->private; 7721 7722 t->idx = ++(*ppos); 7723 if (*ppos <= t->count) 7724 return ppos; 7725 7726 return NULL; 7727 } 7728 7729 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7730 { 7731 struct location *loc1 = (struct location *)a; 7732 struct location *loc2 = (struct location *)b; 7733 7734 if (loc1->count > loc2->count) 7735 return -1; 7736 else 7737 return 1; 7738 } 7739 7740 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7741 { 7742 struct loc_track *t = seq->private; 7743 7744 t->idx = *ppos; 7745 return ppos; 7746 } 7747 7748 static const struct seq_operations slab_debugfs_sops = { 7749 .start = slab_debugfs_start, 7750 .next = slab_debugfs_next, 7751 .stop = slab_debugfs_stop, 7752 .show = slab_debugfs_show, 7753 }; 7754 7755 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7756 { 7757 7758 struct kmem_cache_node *n; 7759 enum track_item alloc; 7760 int node; 7761 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7762 sizeof(struct loc_track)); 7763 struct kmem_cache *s = file_inode(filep)->i_private; 7764 unsigned long *obj_map; 7765 7766 if (!t) 7767 return -ENOMEM; 7768 7769 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7770 if (!obj_map) { 7771 seq_release_private(inode, filep); 7772 return -ENOMEM; 7773 } 7774 7775 alloc = debugfs_get_aux_num(filep); 7776 7777 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7778 bitmap_free(obj_map); 7779 seq_release_private(inode, filep); 7780 return -ENOMEM; 7781 } 7782 7783 for_each_kmem_cache_node(s, node, n) { 7784 unsigned long flags; 7785 struct slab *slab; 7786 7787 if (!node_nr_slabs(n)) 7788 continue; 7789 7790 spin_lock_irqsave(&n->list_lock, flags); 7791 list_for_each_entry(slab, &n->partial, slab_list) 7792 process_slab(t, s, slab, alloc, obj_map); 7793 list_for_each_entry(slab, &n->full, slab_list) 7794 process_slab(t, s, slab, alloc, obj_map); 7795 spin_unlock_irqrestore(&n->list_lock, flags); 7796 } 7797 7798 /* Sort locations by count */ 7799 sort_r(t->loc, t->count, sizeof(struct location), 7800 cmp_loc_by_count, NULL, NULL); 7801 7802 bitmap_free(obj_map); 7803 return 0; 7804 } 7805 7806 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7807 { 7808 struct seq_file *seq = file->private_data; 7809 struct loc_track *t = seq->private; 7810 7811 free_loc_track(t); 7812 return seq_release_private(inode, file); 7813 } 7814 7815 static const struct file_operations slab_debugfs_fops = { 7816 .open = slab_debug_trace_open, 7817 .read = seq_read, 7818 .llseek = seq_lseek, 7819 .release = slab_debug_trace_release, 7820 }; 7821 7822 static void debugfs_slab_add(struct kmem_cache *s) 7823 { 7824 struct dentry *slab_cache_dir; 7825 7826 if (unlikely(!slab_debugfs_root)) 7827 return; 7828 7829 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7830 7831 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7832 TRACK_ALLOC, &slab_debugfs_fops); 7833 7834 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7835 TRACK_FREE, &slab_debugfs_fops); 7836 } 7837 7838 void debugfs_slab_release(struct kmem_cache *s) 7839 { 7840 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7841 } 7842 7843 static int __init slab_debugfs_init(void) 7844 { 7845 struct kmem_cache *s; 7846 7847 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7848 7849 list_for_each_entry(s, &slab_caches, list) 7850 if (s->flags & SLAB_STORE_USER) 7851 debugfs_slab_add(s); 7852 7853 return 0; 7854 7855 } 7856 __initcall(slab_debugfs_init); 7857 #endif 7858 /* 7859 * The /proc/slabinfo ABI 7860 */ 7861 #ifdef CONFIG_SLUB_DEBUG 7862 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7863 { 7864 unsigned long nr_slabs = 0; 7865 unsigned long nr_objs = 0; 7866 unsigned long nr_free = 0; 7867 int node; 7868 struct kmem_cache_node *n; 7869 7870 for_each_kmem_cache_node(s, node, n) { 7871 nr_slabs += node_nr_slabs(n); 7872 nr_objs += node_nr_objs(n); 7873 nr_free += count_partial_free_approx(n); 7874 } 7875 7876 sinfo->active_objs = nr_objs - nr_free; 7877 sinfo->num_objs = nr_objs; 7878 sinfo->active_slabs = nr_slabs; 7879 sinfo->num_slabs = nr_slabs; 7880 sinfo->objects_per_slab = oo_objects(s->oo); 7881 sinfo->cache_order = oo_order(s->oo); 7882 } 7883 #endif /* CONFIG_SLUB_DEBUG */ 7884