1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 /* 254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 255 * Normally, this doesn't cause any issues, as both set_freepointer() 256 * and get_freepointer() are called with a pointer with the same tag. 257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 258 * example, when __free_slub() iterates over objects in a cache, it 259 * passes untagged pointers to check_object(). check_object() in turns 260 * calls get_freepointer() with an untagged pointer, which causes the 261 * freepointer to be restored incorrectly. 262 */ 263 return (void *)((unsigned long)ptr ^ s->random ^ 264 (unsigned long)kasan_reset_tag((void *)ptr_addr)); 265 #else 266 return ptr; 267 #endif 268 } 269 270 /* Returns the freelist pointer recorded at location ptr_addr. */ 271 static inline void *freelist_dereference(const struct kmem_cache *s, 272 void *ptr_addr) 273 { 274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 275 (unsigned long)ptr_addr); 276 } 277 278 static inline void *get_freepointer(struct kmem_cache *s, void *object) 279 { 280 return freelist_dereference(s, object + s->offset); 281 } 282 283 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 284 { 285 prefetch(object + s->offset); 286 } 287 288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 289 { 290 unsigned long freepointer_addr; 291 void *p; 292 293 if (!debug_pagealloc_enabled()) 294 return get_freepointer(s, object); 295 296 freepointer_addr = (unsigned long)object + s->offset; 297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 298 return freelist_ptr(s, p, freepointer_addr); 299 } 300 301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 302 { 303 unsigned long freeptr_addr = (unsigned long)object + s->offset; 304 305 #ifdef CONFIG_SLAB_FREELIST_HARDENED 306 BUG_ON(object == fp); /* naive detection of double free or corruption */ 307 #endif 308 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 310 } 311 312 /* Loop over all objects in a slab */ 313 #define for_each_object(__p, __s, __addr, __objects) \ 314 for (__p = fixup_red_left(__s, __addr); \ 315 __p < (__addr) + (__objects) * (__s)->size; \ 316 __p += (__s)->size) 317 318 /* Determine object index from a given position */ 319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 320 { 321 return (kasan_reset_tag(p) - addr) / s->size; 322 } 323 324 static inline unsigned int order_objects(unsigned int order, unsigned int size) 325 { 326 return ((unsigned int)PAGE_SIZE << order) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 330 unsigned int size) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size) 334 }; 335 336 return x; 337 } 338 339 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 bit_spin_lock(PG_locked, &page->flags); 356 } 357 358 static __always_inline void slab_unlock(struct page *page) 359 { 360 VM_BUG_ON_PAGE(PageTail(page), page); 361 __bit_spin_unlock(PG_locked, &page->flags); 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 page->counters = counters_new; 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 page->counters = counters_new; 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 static inline unsigned int size_from_object(struct kmem_cache *s) 460 { 461 if (s->flags & SLAB_RED_ZONE) 462 return s->size - s->red_left_pad; 463 464 return s->size; 465 } 466 467 static inline void *restore_red_left(struct kmem_cache *s, void *p) 468 { 469 if (s->flags & SLAB_RED_ZONE) 470 p -= s->red_left_pad; 471 472 return p; 473 } 474 475 /* 476 * Debug settings: 477 */ 478 #if defined(CONFIG_SLUB_DEBUG_ON) 479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 480 #else 481 static slab_flags_t slub_debug; 482 #endif 483 484 static char *slub_debug_slabs; 485 static int disable_higher_order_debug; 486 487 /* 488 * slub is about to manipulate internal object metadata. This memory lies 489 * outside the range of the allocated object, so accessing it would normally 490 * be reported by kasan as a bounds error. metadata_access_enable() is used 491 * to tell kasan that these accesses are OK. 492 */ 493 static inline void metadata_access_enable(void) 494 { 495 kasan_disable_current(); 496 } 497 498 static inline void metadata_access_disable(void) 499 { 500 kasan_enable_current(); 501 } 502 503 /* 504 * Object debugging 505 */ 506 507 /* Verify that a pointer has an address that is valid within a slab page */ 508 static inline int check_valid_pointer(struct kmem_cache *s, 509 struct page *page, void *object) 510 { 511 void *base; 512 513 if (!object) 514 return 1; 515 516 base = page_address(page); 517 object = kasan_reset_tag(object); 518 object = restore_red_left(s, object); 519 if (object < base || object >= base + page->objects * s->size || 520 (object - base) % s->size) { 521 return 0; 522 } 523 524 return 1; 525 } 526 527 static void print_section(char *level, char *text, u8 *addr, 528 unsigned int length) 529 { 530 metadata_access_enable(); 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 532 length, 1); 533 metadata_access_disable(); 534 } 535 536 static struct track *get_track(struct kmem_cache *s, void *object, 537 enum track_item alloc) 538 { 539 struct track *p; 540 541 if (s->offset) 542 p = object + s->offset + sizeof(void *); 543 else 544 p = object + s->inuse; 545 546 return p + alloc; 547 } 548 549 static void set_track(struct kmem_cache *s, void *object, 550 enum track_item alloc, unsigned long addr) 551 { 552 struct track *p = get_track(s, object, alloc); 553 554 if (addr) { 555 #ifdef CONFIG_STACKTRACE 556 unsigned int nr_entries; 557 558 metadata_access_enable(); 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 560 metadata_access_disable(); 561 562 if (nr_entries < TRACK_ADDRS_COUNT) 563 p->addrs[nr_entries] = 0; 564 #endif 565 p->addr = addr; 566 p->cpu = smp_processor_id(); 567 p->pid = current->pid; 568 p->when = jiffies; 569 } else { 570 memset(p, 0, sizeof(struct track)); 571 } 572 } 573 574 static void init_tracking(struct kmem_cache *s, void *object) 575 { 576 if (!(s->flags & SLAB_STORE_USER)) 577 return; 578 579 set_track(s, object, TRACK_FREE, 0UL); 580 set_track(s, object, TRACK_ALLOC, 0UL); 581 } 582 583 static void print_track(const char *s, struct track *t, unsigned long pr_time) 584 { 585 if (!t->addr) 586 return; 587 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 590 #ifdef CONFIG_STACKTRACE 591 { 592 int i; 593 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 594 if (t->addrs[i]) 595 pr_err("\t%pS\n", (void *)t->addrs[i]); 596 else 597 break; 598 } 599 #endif 600 } 601 602 static void print_tracking(struct kmem_cache *s, void *object) 603 { 604 unsigned long pr_time = jiffies; 605 if (!(s->flags & SLAB_STORE_USER)) 606 return; 607 608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 610 } 611 612 static void print_page_info(struct page *page) 613 { 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 615 page, page->objects, page->inuse, page->freelist, page->flags); 616 617 } 618 619 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 620 { 621 struct va_format vaf; 622 va_list args; 623 624 va_start(args, fmt); 625 vaf.fmt = fmt; 626 vaf.va = &args; 627 pr_err("=============================================================================\n"); 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 629 pr_err("-----------------------------------------------------------------------------\n\n"); 630 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 632 va_end(args); 633 } 634 635 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 636 { 637 struct va_format vaf; 638 va_list args; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 pr_err("FIX %s: %pV\n", s->name, &vaf); 644 va_end(args); 645 } 646 647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 648 { 649 unsigned int off; /* Offset of last byte */ 650 u8 *addr = page_address(page); 651 652 print_tracking(s, p); 653 654 print_page_info(page); 655 656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 657 p, p - addr, get_freepointer(s, p)); 658 659 if (s->flags & SLAB_RED_ZONE) 660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 661 s->red_left_pad); 662 else if (p > addr + 16) 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 664 665 print_section(KERN_ERR, "Object ", p, 666 min_t(unsigned int, s->object_size, PAGE_SIZE)); 667 if (s->flags & SLAB_RED_ZONE) 668 print_section(KERN_ERR, "Redzone ", p + s->object_size, 669 s->inuse - s->object_size); 670 671 if (s->offset) 672 off = s->offset + sizeof(void *); 673 else 674 off = s->inuse; 675 676 if (s->flags & SLAB_STORE_USER) 677 off += 2 * sizeof(struct track); 678 679 off += kasan_metadata_size(s); 680 681 if (off != size_from_object(s)) 682 /* Beginning of the filler is the free pointer */ 683 print_section(KERN_ERR, "Padding ", p + off, 684 size_from_object(s) - off); 685 686 dump_stack(); 687 } 688 689 void object_err(struct kmem_cache *s, struct page *page, 690 u8 *object, char *reason) 691 { 692 slab_bug(s, "%s", reason); 693 print_trailer(s, page, object); 694 } 695 696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 697 const char *fmt, ...) 698 { 699 va_list args; 700 char buf[100]; 701 702 va_start(args, fmt); 703 vsnprintf(buf, sizeof(buf), fmt, args); 704 va_end(args); 705 slab_bug(s, "%s", buf); 706 print_page_info(page); 707 dump_stack(); 708 } 709 710 static void init_object(struct kmem_cache *s, void *object, u8 val) 711 { 712 u8 *p = object; 713 714 if (s->flags & SLAB_RED_ZONE) 715 memset(p - s->red_left_pad, val, s->red_left_pad); 716 717 if (s->flags & __OBJECT_POISON) { 718 memset(p, POISON_FREE, s->object_size - 1); 719 p[s->object_size - 1] = POISON_END; 720 } 721 722 if (s->flags & SLAB_RED_ZONE) 723 memset(p + s->object_size, val, s->inuse - s->object_size); 724 } 725 726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 727 void *from, void *to) 728 { 729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 730 memset(from, data, to - from); 731 } 732 733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 734 u8 *object, char *what, 735 u8 *start, unsigned int value, unsigned int bytes) 736 { 737 u8 *fault; 738 u8 *end; 739 740 metadata_access_enable(); 741 fault = memchr_inv(start, value, bytes); 742 metadata_access_disable(); 743 if (!fault) 744 return 1; 745 746 end = start + bytes; 747 while (end > fault && end[-1] == value) 748 end--; 749 750 slab_bug(s, "%s overwritten", what); 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 752 fault, end - 1, fault[0], value); 753 print_trailer(s, page, object); 754 755 restore_bytes(s, what, value, fault, end); 756 return 0; 757 } 758 759 /* 760 * Object layout: 761 * 762 * object address 763 * Bytes of the object to be managed. 764 * If the freepointer may overlay the object then the free 765 * pointer is the first word of the object. 766 * 767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 768 * 0xa5 (POISON_END) 769 * 770 * object + s->object_size 771 * Padding to reach word boundary. This is also used for Redzoning. 772 * Padding is extended by another word if Redzoning is enabled and 773 * object_size == inuse. 774 * 775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 776 * 0xcc (RED_ACTIVE) for objects in use. 777 * 778 * object + s->inuse 779 * Meta data starts here. 780 * 781 * A. Free pointer (if we cannot overwrite object on free) 782 * B. Tracking data for SLAB_STORE_USER 783 * C. Padding to reach required alignment boundary or at mininum 784 * one word if debugging is on to be able to detect writes 785 * before the word boundary. 786 * 787 * Padding is done using 0x5a (POISON_INUSE) 788 * 789 * object + s->size 790 * Nothing is used beyond s->size. 791 * 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly 793 * ignored. And therefore no slab options that rely on these boundaries 794 * may be used with merged slabcaches. 795 */ 796 797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 798 { 799 unsigned long off = s->inuse; /* The end of info */ 800 801 if (s->offset) 802 /* Freepointer is placed after the object. */ 803 off += sizeof(void *); 804 805 if (s->flags & SLAB_STORE_USER) 806 /* We also have user information there */ 807 off += 2 * sizeof(struct track); 808 809 off += kasan_metadata_size(s); 810 811 if (size_from_object(s) == off) 812 return 1; 813 814 return check_bytes_and_report(s, page, p, "Object padding", 815 p + off, POISON_INUSE, size_from_object(s) - off); 816 } 817 818 /* Check the pad bytes at the end of a slab page */ 819 static int slab_pad_check(struct kmem_cache *s, struct page *page) 820 { 821 u8 *start; 822 u8 *fault; 823 u8 *end; 824 u8 *pad; 825 int length; 826 int remainder; 827 828 if (!(s->flags & SLAB_POISON)) 829 return 1; 830 831 start = page_address(page); 832 length = page_size(page); 833 end = start + length; 834 remainder = length % s->size; 835 if (!remainder) 836 return 1; 837 838 pad = end - remainder; 839 metadata_access_enable(); 840 fault = memchr_inv(pad, POISON_INUSE, remainder); 841 metadata_access_disable(); 842 if (!fault) 843 return 1; 844 while (end > fault && end[-1] == POISON_INUSE) 845 end--; 846 847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 848 print_section(KERN_ERR, "Padding ", pad, remainder); 849 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 851 return 0; 852 } 853 854 static int check_object(struct kmem_cache *s, struct page *page, 855 void *object, u8 val) 856 { 857 u8 *p = object; 858 u8 *endobject = object + s->object_size; 859 860 if (s->flags & SLAB_RED_ZONE) { 861 if (!check_bytes_and_report(s, page, object, "Redzone", 862 object - s->red_left_pad, val, s->red_left_pad)) 863 return 0; 864 865 if (!check_bytes_and_report(s, page, object, "Redzone", 866 endobject, val, s->inuse - s->object_size)) 867 return 0; 868 } else { 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 870 check_bytes_and_report(s, page, p, "Alignment padding", 871 endobject, POISON_INUSE, 872 s->inuse - s->object_size); 873 } 874 } 875 876 if (s->flags & SLAB_POISON) { 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 878 (!check_bytes_and_report(s, page, p, "Poison", p, 879 POISON_FREE, s->object_size - 1) || 880 !check_bytes_and_report(s, page, p, "Poison", 881 p + s->object_size - 1, POISON_END, 1))) 882 return 0; 883 /* 884 * check_pad_bytes cleans up on its own. 885 */ 886 check_pad_bytes(s, page, p); 887 } 888 889 if (!s->offset && val == SLUB_RED_ACTIVE) 890 /* 891 * Object and freepointer overlap. Cannot check 892 * freepointer while object is allocated. 893 */ 894 return 1; 895 896 /* Check free pointer validity */ 897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 898 object_err(s, page, p, "Freepointer corrupt"); 899 /* 900 * No choice but to zap it and thus lose the remainder 901 * of the free objects in this slab. May cause 902 * another error because the object count is now wrong. 903 */ 904 set_freepointer(s, p, NULL); 905 return 0; 906 } 907 return 1; 908 } 909 910 static int check_slab(struct kmem_cache *s, struct page *page) 911 { 912 int maxobj; 913 914 VM_BUG_ON(!irqs_disabled()); 915 916 if (!PageSlab(page)) { 917 slab_err(s, page, "Not a valid slab page"); 918 return 0; 919 } 920 921 maxobj = order_objects(compound_order(page), s->size); 922 if (page->objects > maxobj) { 923 slab_err(s, page, "objects %u > max %u", 924 page->objects, maxobj); 925 return 0; 926 } 927 if (page->inuse > page->objects) { 928 slab_err(s, page, "inuse %u > max %u", 929 page->inuse, page->objects); 930 return 0; 931 } 932 /* Slab_pad_check fixes things up after itself */ 933 slab_pad_check(s, page); 934 return 1; 935 } 936 937 /* 938 * Determine if a certain object on a page is on the freelist. Must hold the 939 * slab lock to guarantee that the chains are in a consistent state. 940 */ 941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 942 { 943 int nr = 0; 944 void *fp; 945 void *object = NULL; 946 int max_objects; 947 948 fp = page->freelist; 949 while (fp && nr <= page->objects) { 950 if (fp == search) 951 return 1; 952 if (!check_valid_pointer(s, page, fp)) { 953 if (object) { 954 object_err(s, page, object, 955 "Freechain corrupt"); 956 set_freepointer(s, object, NULL); 957 } else { 958 slab_err(s, page, "Freepointer corrupt"); 959 page->freelist = NULL; 960 page->inuse = page->objects; 961 slab_fix(s, "Freelist cleared"); 962 return 0; 963 } 964 break; 965 } 966 object = fp; 967 fp = get_freepointer(s, object); 968 nr++; 969 } 970 971 max_objects = order_objects(compound_order(page), s->size); 972 if (max_objects > MAX_OBJS_PER_PAGE) 973 max_objects = MAX_OBJS_PER_PAGE; 974 975 if (page->objects != max_objects) { 976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 977 page->objects, max_objects); 978 page->objects = max_objects; 979 slab_fix(s, "Number of objects adjusted."); 980 } 981 if (page->inuse != page->objects - nr) { 982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 983 page->inuse, page->objects - nr); 984 page->inuse = page->objects - nr; 985 slab_fix(s, "Object count adjusted."); 986 } 987 return search == NULL; 988 } 989 990 static void trace(struct kmem_cache *s, struct page *page, void *object, 991 int alloc) 992 { 993 if (s->flags & SLAB_TRACE) { 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 995 s->name, 996 alloc ? "alloc" : "free", 997 object, page->inuse, 998 page->freelist); 999 1000 if (!alloc) 1001 print_section(KERN_INFO, "Object ", (void *)object, 1002 s->object_size); 1003 1004 dump_stack(); 1005 } 1006 } 1007 1008 /* 1009 * Tracking of fully allocated slabs for debugging purposes. 1010 */ 1011 static void add_full(struct kmem_cache *s, 1012 struct kmem_cache_node *n, struct page *page) 1013 { 1014 if (!(s->flags & SLAB_STORE_USER)) 1015 return; 1016 1017 lockdep_assert_held(&n->list_lock); 1018 list_add(&page->slab_list, &n->full); 1019 } 1020 1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1022 { 1023 if (!(s->flags & SLAB_STORE_USER)) 1024 return; 1025 1026 lockdep_assert_held(&n->list_lock); 1027 list_del(&page->slab_list); 1028 } 1029 1030 /* Tracking of the number of slabs for debugging purposes */ 1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1032 { 1033 struct kmem_cache_node *n = get_node(s, node); 1034 1035 return atomic_long_read(&n->nr_slabs); 1036 } 1037 1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1039 { 1040 return atomic_long_read(&n->nr_slabs); 1041 } 1042 1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1044 { 1045 struct kmem_cache_node *n = get_node(s, node); 1046 1047 /* 1048 * May be called early in order to allocate a slab for the 1049 * kmem_cache_node structure. Solve the chicken-egg 1050 * dilemma by deferring the increment of the count during 1051 * bootstrap (see early_kmem_cache_node_alloc). 1052 */ 1053 if (likely(n)) { 1054 atomic_long_inc(&n->nr_slabs); 1055 atomic_long_add(objects, &n->total_objects); 1056 } 1057 } 1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 atomic_long_dec(&n->nr_slabs); 1063 atomic_long_sub(objects, &n->total_objects); 1064 } 1065 1066 /* Object debug checks for alloc/free paths */ 1067 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1068 void *object) 1069 { 1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1071 return; 1072 1073 init_object(s, object, SLUB_RED_INACTIVE); 1074 init_tracking(s, object); 1075 } 1076 1077 static 1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1079 { 1080 if (!(s->flags & SLAB_POISON)) 1081 return; 1082 1083 metadata_access_enable(); 1084 memset(addr, POISON_INUSE, page_size(page)); 1085 metadata_access_disable(); 1086 } 1087 1088 static inline int alloc_consistency_checks(struct kmem_cache *s, 1089 struct page *page, void *object) 1090 { 1091 if (!check_slab(s, page)) 1092 return 0; 1093 1094 if (!check_valid_pointer(s, page, object)) { 1095 object_err(s, page, object, "Freelist Pointer check fails"); 1096 return 0; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1100 return 0; 1101 1102 return 1; 1103 } 1104 1105 static noinline int alloc_debug_processing(struct kmem_cache *s, 1106 struct page *page, 1107 void *object, unsigned long addr) 1108 { 1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1110 if (!alloc_consistency_checks(s, page, object)) 1111 goto bad; 1112 } 1113 1114 /* Success perform special debug activities for allocs */ 1115 if (s->flags & SLAB_STORE_USER) 1116 set_track(s, object, TRACK_ALLOC, addr); 1117 trace(s, page, object, 1); 1118 init_object(s, object, SLUB_RED_ACTIVE); 1119 return 1; 1120 1121 bad: 1122 if (PageSlab(page)) { 1123 /* 1124 * If this is a slab page then lets do the best we can 1125 * to avoid issues in the future. Marking all objects 1126 * as used avoids touching the remaining objects. 1127 */ 1128 slab_fix(s, "Marking all objects used"); 1129 page->inuse = page->objects; 1130 page->freelist = NULL; 1131 } 1132 return 0; 1133 } 1134 1135 static inline int free_consistency_checks(struct kmem_cache *s, 1136 struct page *page, void *object, unsigned long addr) 1137 { 1138 if (!check_valid_pointer(s, page, object)) { 1139 slab_err(s, page, "Invalid object pointer 0x%p", object); 1140 return 0; 1141 } 1142 1143 if (on_freelist(s, page, object)) { 1144 object_err(s, page, object, "Object already free"); 1145 return 0; 1146 } 1147 1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1149 return 0; 1150 1151 if (unlikely(s != page->slab_cache)) { 1152 if (!PageSlab(page)) { 1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1154 object); 1155 } else if (!page->slab_cache) { 1156 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1157 object); 1158 dump_stack(); 1159 } else 1160 object_err(s, page, object, 1161 "page slab pointer corrupt."); 1162 return 0; 1163 } 1164 return 1; 1165 } 1166 1167 /* Supports checking bulk free of a constructed freelist */ 1168 static noinline int free_debug_processing( 1169 struct kmem_cache *s, struct page *page, 1170 void *head, void *tail, int bulk_cnt, 1171 unsigned long addr) 1172 { 1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1174 void *object = head; 1175 int cnt = 0; 1176 unsigned long uninitialized_var(flags); 1177 int ret = 0; 1178 1179 spin_lock_irqsave(&n->list_lock, flags); 1180 slab_lock(page); 1181 1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1183 if (!check_slab(s, page)) 1184 goto out; 1185 } 1186 1187 next_object: 1188 cnt++; 1189 1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1191 if (!free_consistency_checks(s, page, object, addr)) 1192 goto out; 1193 } 1194 1195 if (s->flags & SLAB_STORE_USER) 1196 set_track(s, object, TRACK_FREE, addr); 1197 trace(s, page, object, 0); 1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1199 init_object(s, object, SLUB_RED_INACTIVE); 1200 1201 /* Reached end of constructed freelist yet? */ 1202 if (object != tail) { 1203 object = get_freepointer(s, object); 1204 goto next_object; 1205 } 1206 ret = 1; 1207 1208 out: 1209 if (cnt != bulk_cnt) 1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1211 bulk_cnt, cnt); 1212 1213 slab_unlock(page); 1214 spin_unlock_irqrestore(&n->list_lock, flags); 1215 if (!ret) 1216 slab_fix(s, "Object at 0x%p not freed", object); 1217 return ret; 1218 } 1219 1220 static int __init setup_slub_debug(char *str) 1221 { 1222 slub_debug = DEBUG_DEFAULT_FLAGS; 1223 if (*str++ != '=' || !*str) 1224 /* 1225 * No options specified. Switch on full debugging. 1226 */ 1227 goto out; 1228 1229 if (*str == ',') 1230 /* 1231 * No options but restriction on slabs. This means full 1232 * debugging for slabs matching a pattern. 1233 */ 1234 goto check_slabs; 1235 1236 slub_debug = 0; 1237 if (*str == '-') 1238 /* 1239 * Switch off all debugging measures. 1240 */ 1241 goto out; 1242 1243 /* 1244 * Determine which debug features should be switched on 1245 */ 1246 for (; *str && *str != ','; str++) { 1247 switch (tolower(*str)) { 1248 case 'f': 1249 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1250 break; 1251 case 'z': 1252 slub_debug |= SLAB_RED_ZONE; 1253 break; 1254 case 'p': 1255 slub_debug |= SLAB_POISON; 1256 break; 1257 case 'u': 1258 slub_debug |= SLAB_STORE_USER; 1259 break; 1260 case 't': 1261 slub_debug |= SLAB_TRACE; 1262 break; 1263 case 'a': 1264 slub_debug |= SLAB_FAILSLAB; 1265 break; 1266 case 'o': 1267 /* 1268 * Avoid enabling debugging on caches if its minimum 1269 * order would increase as a result. 1270 */ 1271 disable_higher_order_debug = 1; 1272 break; 1273 default: 1274 pr_err("slub_debug option '%c' unknown. skipped\n", 1275 *str); 1276 } 1277 } 1278 1279 check_slabs: 1280 if (*str == ',') 1281 slub_debug_slabs = str + 1; 1282 out: 1283 if ((static_branch_unlikely(&init_on_alloc) || 1284 static_branch_unlikely(&init_on_free)) && 1285 (slub_debug & SLAB_POISON)) 1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1287 return 1; 1288 } 1289 1290 __setup("slub_debug", setup_slub_debug); 1291 1292 /* 1293 * kmem_cache_flags - apply debugging options to the cache 1294 * @object_size: the size of an object without meta data 1295 * @flags: flags to set 1296 * @name: name of the cache 1297 * @ctor: constructor function 1298 * 1299 * Debug option(s) are applied to @flags. In addition to the debug 1300 * option(s), if a slab name (or multiple) is specified i.e. 1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1302 * then only the select slabs will receive the debug option(s). 1303 */ 1304 slab_flags_t kmem_cache_flags(unsigned int object_size, 1305 slab_flags_t flags, const char *name, 1306 void (*ctor)(void *)) 1307 { 1308 char *iter; 1309 size_t len; 1310 1311 /* If slub_debug = 0, it folds into the if conditional. */ 1312 if (!slub_debug_slabs) 1313 return flags | slub_debug; 1314 1315 len = strlen(name); 1316 iter = slub_debug_slabs; 1317 while (*iter) { 1318 char *end, *glob; 1319 size_t cmplen; 1320 1321 end = strchrnul(iter, ','); 1322 1323 glob = strnchr(iter, end - iter, '*'); 1324 if (glob) 1325 cmplen = glob - iter; 1326 else 1327 cmplen = max_t(size_t, len, (end - iter)); 1328 1329 if (!strncmp(name, iter, cmplen)) { 1330 flags |= slub_debug; 1331 break; 1332 } 1333 1334 if (!*end) 1335 break; 1336 iter = end + 1; 1337 } 1338 1339 return flags; 1340 } 1341 #else /* !CONFIG_SLUB_DEBUG */ 1342 static inline void setup_object_debug(struct kmem_cache *s, 1343 struct page *page, void *object) {} 1344 static inline 1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1346 1347 static inline int alloc_debug_processing(struct kmem_cache *s, 1348 struct page *page, void *object, unsigned long addr) { return 0; } 1349 1350 static inline int free_debug_processing( 1351 struct kmem_cache *s, struct page *page, 1352 void *head, void *tail, int bulk_cnt, 1353 unsigned long addr) { return 0; } 1354 1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1356 { return 1; } 1357 static inline int check_object(struct kmem_cache *s, struct page *page, 1358 void *object, u8 val) { return 1; } 1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1360 struct page *page) {} 1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1362 struct page *page) {} 1363 slab_flags_t kmem_cache_flags(unsigned int object_size, 1364 slab_flags_t flags, const char *name, 1365 void (*ctor)(void *)) 1366 { 1367 return flags; 1368 } 1369 #define slub_debug 0 1370 1371 #define disable_higher_order_debug 0 1372 1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1374 { return 0; } 1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1376 { return 0; } 1377 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1378 int objects) {} 1379 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1380 int objects) {} 1381 1382 #endif /* CONFIG_SLUB_DEBUG */ 1383 1384 /* 1385 * Hooks for other subsystems that check memory allocations. In a typical 1386 * production configuration these hooks all should produce no code at all. 1387 */ 1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1389 { 1390 ptr = kasan_kmalloc_large(ptr, size, flags); 1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1392 kmemleak_alloc(ptr, size, 1, flags); 1393 return ptr; 1394 } 1395 1396 static __always_inline void kfree_hook(void *x) 1397 { 1398 kmemleak_free(x); 1399 kasan_kfree_large(x, _RET_IP_); 1400 } 1401 1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1403 { 1404 kmemleak_free_recursive(x, s->flags); 1405 1406 /* 1407 * Trouble is that we may no longer disable interrupts in the fast path 1408 * So in order to make the debug calls that expect irqs to be 1409 * disabled we need to disable interrupts temporarily. 1410 */ 1411 #ifdef CONFIG_LOCKDEP 1412 { 1413 unsigned long flags; 1414 1415 local_irq_save(flags); 1416 debug_check_no_locks_freed(x, s->object_size); 1417 local_irq_restore(flags); 1418 } 1419 #endif 1420 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1421 debug_check_no_obj_freed(x, s->object_size); 1422 1423 /* KASAN might put x into memory quarantine, delaying its reuse */ 1424 return kasan_slab_free(s, x, _RET_IP_); 1425 } 1426 1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1428 void **head, void **tail) 1429 { 1430 1431 void *object; 1432 void *next = *head; 1433 void *old_tail = *tail ? *tail : *head; 1434 int rsize; 1435 1436 if (slab_want_init_on_free(s)) { 1437 void *p = NULL; 1438 1439 do { 1440 object = next; 1441 next = get_freepointer(s, object); 1442 /* 1443 * Clear the object and the metadata, but don't touch 1444 * the redzone. 1445 */ 1446 memset(object, 0, s->object_size); 1447 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1448 : 0; 1449 memset((char *)object + s->inuse, 0, 1450 s->size - s->inuse - rsize); 1451 set_freepointer(s, object, p); 1452 p = object; 1453 } while (object != old_tail); 1454 } 1455 1456 /* 1457 * Compiler cannot detect this function can be removed if slab_free_hook() 1458 * evaluates to nothing. Thus, catch all relevant config debug options here. 1459 */ 1460 #if defined(CONFIG_LOCKDEP) || \ 1461 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1462 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1463 defined(CONFIG_KASAN) 1464 1465 next = *head; 1466 1467 /* Head and tail of the reconstructed freelist */ 1468 *head = NULL; 1469 *tail = NULL; 1470 1471 do { 1472 object = next; 1473 next = get_freepointer(s, object); 1474 /* If object's reuse doesn't have to be delayed */ 1475 if (!slab_free_hook(s, object)) { 1476 /* Move object to the new freelist */ 1477 set_freepointer(s, object, *head); 1478 *head = object; 1479 if (!*tail) 1480 *tail = object; 1481 } 1482 } while (object != old_tail); 1483 1484 if (*head == *tail) 1485 *tail = NULL; 1486 1487 return *head != NULL; 1488 #else 1489 return true; 1490 #endif 1491 } 1492 1493 static void *setup_object(struct kmem_cache *s, struct page *page, 1494 void *object) 1495 { 1496 setup_object_debug(s, page, object); 1497 object = kasan_init_slab_obj(s, object); 1498 if (unlikely(s->ctor)) { 1499 kasan_unpoison_object_data(s, object); 1500 s->ctor(object); 1501 kasan_poison_object_data(s, object); 1502 } 1503 return object; 1504 } 1505 1506 /* 1507 * Slab allocation and freeing 1508 */ 1509 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1510 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1511 { 1512 struct page *page; 1513 unsigned int order = oo_order(oo); 1514 1515 if (node == NUMA_NO_NODE) 1516 page = alloc_pages(flags, order); 1517 else 1518 page = __alloc_pages_node(node, flags, order); 1519 1520 if (page && charge_slab_page(page, flags, order, s)) { 1521 __free_pages(page, order); 1522 page = NULL; 1523 } 1524 1525 return page; 1526 } 1527 1528 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1529 /* Pre-initialize the random sequence cache */ 1530 static int init_cache_random_seq(struct kmem_cache *s) 1531 { 1532 unsigned int count = oo_objects(s->oo); 1533 int err; 1534 1535 /* Bailout if already initialised */ 1536 if (s->random_seq) 1537 return 0; 1538 1539 err = cache_random_seq_create(s, count, GFP_KERNEL); 1540 if (err) { 1541 pr_err("SLUB: Unable to initialize free list for %s\n", 1542 s->name); 1543 return err; 1544 } 1545 1546 /* Transform to an offset on the set of pages */ 1547 if (s->random_seq) { 1548 unsigned int i; 1549 1550 for (i = 0; i < count; i++) 1551 s->random_seq[i] *= s->size; 1552 } 1553 return 0; 1554 } 1555 1556 /* Initialize each random sequence freelist per cache */ 1557 static void __init init_freelist_randomization(void) 1558 { 1559 struct kmem_cache *s; 1560 1561 mutex_lock(&slab_mutex); 1562 1563 list_for_each_entry(s, &slab_caches, list) 1564 init_cache_random_seq(s); 1565 1566 mutex_unlock(&slab_mutex); 1567 } 1568 1569 /* Get the next entry on the pre-computed freelist randomized */ 1570 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1571 unsigned long *pos, void *start, 1572 unsigned long page_limit, 1573 unsigned long freelist_count) 1574 { 1575 unsigned int idx; 1576 1577 /* 1578 * If the target page allocation failed, the number of objects on the 1579 * page might be smaller than the usual size defined by the cache. 1580 */ 1581 do { 1582 idx = s->random_seq[*pos]; 1583 *pos += 1; 1584 if (*pos >= freelist_count) 1585 *pos = 0; 1586 } while (unlikely(idx >= page_limit)); 1587 1588 return (char *)start + idx; 1589 } 1590 1591 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1592 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1593 { 1594 void *start; 1595 void *cur; 1596 void *next; 1597 unsigned long idx, pos, page_limit, freelist_count; 1598 1599 if (page->objects < 2 || !s->random_seq) 1600 return false; 1601 1602 freelist_count = oo_objects(s->oo); 1603 pos = get_random_int() % freelist_count; 1604 1605 page_limit = page->objects * s->size; 1606 start = fixup_red_left(s, page_address(page)); 1607 1608 /* First entry is used as the base of the freelist */ 1609 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1610 freelist_count); 1611 cur = setup_object(s, page, cur); 1612 page->freelist = cur; 1613 1614 for (idx = 1; idx < page->objects; idx++) { 1615 next = next_freelist_entry(s, page, &pos, start, page_limit, 1616 freelist_count); 1617 next = setup_object(s, page, next); 1618 set_freepointer(s, cur, next); 1619 cur = next; 1620 } 1621 set_freepointer(s, cur, NULL); 1622 1623 return true; 1624 } 1625 #else 1626 static inline int init_cache_random_seq(struct kmem_cache *s) 1627 { 1628 return 0; 1629 } 1630 static inline void init_freelist_randomization(void) { } 1631 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1632 { 1633 return false; 1634 } 1635 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1636 1637 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1638 { 1639 struct page *page; 1640 struct kmem_cache_order_objects oo = s->oo; 1641 gfp_t alloc_gfp; 1642 void *start, *p, *next; 1643 int idx; 1644 bool shuffle; 1645 1646 flags &= gfp_allowed_mask; 1647 1648 if (gfpflags_allow_blocking(flags)) 1649 local_irq_enable(); 1650 1651 flags |= s->allocflags; 1652 1653 /* 1654 * Let the initial higher-order allocation fail under memory pressure 1655 * so we fall-back to the minimum order allocation. 1656 */ 1657 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1658 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1659 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1660 1661 page = alloc_slab_page(s, alloc_gfp, node, oo); 1662 if (unlikely(!page)) { 1663 oo = s->min; 1664 alloc_gfp = flags; 1665 /* 1666 * Allocation may have failed due to fragmentation. 1667 * Try a lower order alloc if possible 1668 */ 1669 page = alloc_slab_page(s, alloc_gfp, node, oo); 1670 if (unlikely(!page)) 1671 goto out; 1672 stat(s, ORDER_FALLBACK); 1673 } 1674 1675 page->objects = oo_objects(oo); 1676 1677 page->slab_cache = s; 1678 __SetPageSlab(page); 1679 if (page_is_pfmemalloc(page)) 1680 SetPageSlabPfmemalloc(page); 1681 1682 kasan_poison_slab(page); 1683 1684 start = page_address(page); 1685 1686 setup_page_debug(s, page, start); 1687 1688 shuffle = shuffle_freelist(s, page); 1689 1690 if (!shuffle) { 1691 start = fixup_red_left(s, start); 1692 start = setup_object(s, page, start); 1693 page->freelist = start; 1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1695 next = p + s->size; 1696 next = setup_object(s, page, next); 1697 set_freepointer(s, p, next); 1698 p = next; 1699 } 1700 set_freepointer(s, p, NULL); 1701 } 1702 1703 page->inuse = page->objects; 1704 page->frozen = 1; 1705 1706 out: 1707 if (gfpflags_allow_blocking(flags)) 1708 local_irq_disable(); 1709 if (!page) 1710 return NULL; 1711 1712 inc_slabs_node(s, page_to_nid(page), page->objects); 1713 1714 return page; 1715 } 1716 1717 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1718 { 1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1721 flags &= ~GFP_SLAB_BUG_MASK; 1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1723 invalid_mask, &invalid_mask, flags, &flags); 1724 dump_stack(); 1725 } 1726 1727 return allocate_slab(s, 1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1729 } 1730 1731 static void __free_slab(struct kmem_cache *s, struct page *page) 1732 { 1733 int order = compound_order(page); 1734 int pages = 1 << order; 1735 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1737 void *p; 1738 1739 slab_pad_check(s, page); 1740 for_each_object(p, s, page_address(page), 1741 page->objects) 1742 check_object(s, page, p, SLUB_RED_INACTIVE); 1743 } 1744 1745 __ClearPageSlabPfmemalloc(page); 1746 __ClearPageSlab(page); 1747 1748 page->mapping = NULL; 1749 if (current->reclaim_state) 1750 current->reclaim_state->reclaimed_slab += pages; 1751 uncharge_slab_page(page, order, s); 1752 __free_pages(page, order); 1753 } 1754 1755 static void rcu_free_slab(struct rcu_head *h) 1756 { 1757 struct page *page = container_of(h, struct page, rcu_head); 1758 1759 __free_slab(page->slab_cache, page); 1760 } 1761 1762 static void free_slab(struct kmem_cache *s, struct page *page) 1763 { 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1765 call_rcu(&page->rcu_head, rcu_free_slab); 1766 } else 1767 __free_slab(s, page); 1768 } 1769 1770 static void discard_slab(struct kmem_cache *s, struct page *page) 1771 { 1772 dec_slabs_node(s, page_to_nid(page), page->objects); 1773 free_slab(s, page); 1774 } 1775 1776 /* 1777 * Management of partially allocated slabs. 1778 */ 1779 static inline void 1780 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1781 { 1782 n->nr_partial++; 1783 if (tail == DEACTIVATE_TO_TAIL) 1784 list_add_tail(&page->slab_list, &n->partial); 1785 else 1786 list_add(&page->slab_list, &n->partial); 1787 } 1788 1789 static inline void add_partial(struct kmem_cache_node *n, 1790 struct page *page, int tail) 1791 { 1792 lockdep_assert_held(&n->list_lock); 1793 __add_partial(n, page, tail); 1794 } 1795 1796 static inline void remove_partial(struct kmem_cache_node *n, 1797 struct page *page) 1798 { 1799 lockdep_assert_held(&n->list_lock); 1800 list_del(&page->slab_list); 1801 n->nr_partial--; 1802 } 1803 1804 /* 1805 * Remove slab from the partial list, freeze it and 1806 * return the pointer to the freelist. 1807 * 1808 * Returns a list of objects or NULL if it fails. 1809 */ 1810 static inline void *acquire_slab(struct kmem_cache *s, 1811 struct kmem_cache_node *n, struct page *page, 1812 int mode, int *objects) 1813 { 1814 void *freelist; 1815 unsigned long counters; 1816 struct page new; 1817 1818 lockdep_assert_held(&n->list_lock); 1819 1820 /* 1821 * Zap the freelist and set the frozen bit. 1822 * The old freelist is the list of objects for the 1823 * per cpu allocation list. 1824 */ 1825 freelist = page->freelist; 1826 counters = page->counters; 1827 new.counters = counters; 1828 *objects = new.objects - new.inuse; 1829 if (mode) { 1830 new.inuse = page->objects; 1831 new.freelist = NULL; 1832 } else { 1833 new.freelist = freelist; 1834 } 1835 1836 VM_BUG_ON(new.frozen); 1837 new.frozen = 1; 1838 1839 if (!__cmpxchg_double_slab(s, page, 1840 freelist, counters, 1841 new.freelist, new.counters, 1842 "acquire_slab")) 1843 return NULL; 1844 1845 remove_partial(n, page); 1846 WARN_ON(!freelist); 1847 return freelist; 1848 } 1849 1850 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1851 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1852 1853 /* 1854 * Try to allocate a partial slab from a specific node. 1855 */ 1856 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1857 struct kmem_cache_cpu *c, gfp_t flags) 1858 { 1859 struct page *page, *page2; 1860 void *object = NULL; 1861 unsigned int available = 0; 1862 int objects; 1863 1864 /* 1865 * Racy check. If we mistakenly see no partial slabs then we 1866 * just allocate an empty slab. If we mistakenly try to get a 1867 * partial slab and there is none available then get_partials() 1868 * will return NULL. 1869 */ 1870 if (!n || !n->nr_partial) 1871 return NULL; 1872 1873 spin_lock(&n->list_lock); 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1875 void *t; 1876 1877 if (!pfmemalloc_match(page, flags)) 1878 continue; 1879 1880 t = acquire_slab(s, n, page, object == NULL, &objects); 1881 if (!t) 1882 break; 1883 1884 available += objects; 1885 if (!object) { 1886 c->page = page; 1887 stat(s, ALLOC_FROM_PARTIAL); 1888 object = t; 1889 } else { 1890 put_cpu_partial(s, page, 0); 1891 stat(s, CPU_PARTIAL_NODE); 1892 } 1893 if (!kmem_cache_has_cpu_partial(s) 1894 || available > slub_cpu_partial(s) / 2) 1895 break; 1896 1897 } 1898 spin_unlock(&n->list_lock); 1899 return object; 1900 } 1901 1902 /* 1903 * Get a page from somewhere. Search in increasing NUMA distances. 1904 */ 1905 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1906 struct kmem_cache_cpu *c) 1907 { 1908 #ifdef CONFIG_NUMA 1909 struct zonelist *zonelist; 1910 struct zoneref *z; 1911 struct zone *zone; 1912 enum zone_type high_zoneidx = gfp_zone(flags); 1913 void *object; 1914 unsigned int cpuset_mems_cookie; 1915 1916 /* 1917 * The defrag ratio allows a configuration of the tradeoffs between 1918 * inter node defragmentation and node local allocations. A lower 1919 * defrag_ratio increases the tendency to do local allocations 1920 * instead of attempting to obtain partial slabs from other nodes. 1921 * 1922 * If the defrag_ratio is set to 0 then kmalloc() always 1923 * returns node local objects. If the ratio is higher then kmalloc() 1924 * may return off node objects because partial slabs are obtained 1925 * from other nodes and filled up. 1926 * 1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1928 * (which makes defrag_ratio = 1000) then every (well almost) 1929 * allocation will first attempt to defrag slab caches on other nodes. 1930 * This means scanning over all nodes to look for partial slabs which 1931 * may be expensive if we do it every time we are trying to find a slab 1932 * with available objects. 1933 */ 1934 if (!s->remote_node_defrag_ratio || 1935 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1936 return NULL; 1937 1938 do { 1939 cpuset_mems_cookie = read_mems_allowed_begin(); 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1942 struct kmem_cache_node *n; 1943 1944 n = get_node(s, zone_to_nid(zone)); 1945 1946 if (n && cpuset_zone_allowed(zone, flags) && 1947 n->nr_partial > s->min_partial) { 1948 object = get_partial_node(s, n, c, flags); 1949 if (object) { 1950 /* 1951 * Don't check read_mems_allowed_retry() 1952 * here - if mems_allowed was updated in 1953 * parallel, that was a harmless race 1954 * between allocation and the cpuset 1955 * update 1956 */ 1957 return object; 1958 } 1959 } 1960 } 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1962 #endif /* CONFIG_NUMA */ 1963 return NULL; 1964 } 1965 1966 /* 1967 * Get a partial page, lock it and return it. 1968 */ 1969 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1970 struct kmem_cache_cpu *c) 1971 { 1972 void *object; 1973 int searchnode = node; 1974 1975 if (node == NUMA_NO_NODE) 1976 searchnode = numa_mem_id(); 1977 else if (!node_present_pages(node)) 1978 searchnode = node_to_mem_node(node); 1979 1980 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1981 if (object || node != NUMA_NO_NODE) 1982 return object; 1983 1984 return get_any_partial(s, flags, c); 1985 } 1986 1987 #ifdef CONFIG_PREEMPT 1988 /* 1989 * Calculate the next globally unique transaction for disambiguiation 1990 * during cmpxchg. The transactions start with the cpu number and are then 1991 * incremented by CONFIG_NR_CPUS. 1992 */ 1993 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1994 #else 1995 /* 1996 * No preemption supported therefore also no need to check for 1997 * different cpus. 1998 */ 1999 #define TID_STEP 1 2000 #endif 2001 2002 static inline unsigned long next_tid(unsigned long tid) 2003 { 2004 return tid + TID_STEP; 2005 } 2006 2007 #ifdef SLUB_DEBUG_CMPXCHG 2008 static inline unsigned int tid_to_cpu(unsigned long tid) 2009 { 2010 return tid % TID_STEP; 2011 } 2012 2013 static inline unsigned long tid_to_event(unsigned long tid) 2014 { 2015 return tid / TID_STEP; 2016 } 2017 #endif 2018 2019 static inline unsigned int init_tid(int cpu) 2020 { 2021 return cpu; 2022 } 2023 2024 static inline void note_cmpxchg_failure(const char *n, 2025 const struct kmem_cache *s, unsigned long tid) 2026 { 2027 #ifdef SLUB_DEBUG_CMPXCHG 2028 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2029 2030 pr_info("%s %s: cmpxchg redo ", n, s->name); 2031 2032 #ifdef CONFIG_PREEMPT 2033 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2034 pr_warn("due to cpu change %d -> %d\n", 2035 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2036 else 2037 #endif 2038 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2039 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2040 tid_to_event(tid), tid_to_event(actual_tid)); 2041 else 2042 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2043 actual_tid, tid, next_tid(tid)); 2044 #endif 2045 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2046 } 2047 2048 static void init_kmem_cache_cpus(struct kmem_cache *s) 2049 { 2050 int cpu; 2051 2052 for_each_possible_cpu(cpu) 2053 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2054 } 2055 2056 /* 2057 * Remove the cpu slab 2058 */ 2059 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2060 void *freelist, struct kmem_cache_cpu *c) 2061 { 2062 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2063 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2064 int lock = 0; 2065 enum slab_modes l = M_NONE, m = M_NONE; 2066 void *nextfree; 2067 int tail = DEACTIVATE_TO_HEAD; 2068 struct page new; 2069 struct page old; 2070 2071 if (page->freelist) { 2072 stat(s, DEACTIVATE_REMOTE_FREES); 2073 tail = DEACTIVATE_TO_TAIL; 2074 } 2075 2076 /* 2077 * Stage one: Free all available per cpu objects back 2078 * to the page freelist while it is still frozen. Leave the 2079 * last one. 2080 * 2081 * There is no need to take the list->lock because the page 2082 * is still frozen. 2083 */ 2084 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2085 void *prior; 2086 unsigned long counters; 2087 2088 do { 2089 prior = page->freelist; 2090 counters = page->counters; 2091 set_freepointer(s, freelist, prior); 2092 new.counters = counters; 2093 new.inuse--; 2094 VM_BUG_ON(!new.frozen); 2095 2096 } while (!__cmpxchg_double_slab(s, page, 2097 prior, counters, 2098 freelist, new.counters, 2099 "drain percpu freelist")); 2100 2101 freelist = nextfree; 2102 } 2103 2104 /* 2105 * Stage two: Ensure that the page is unfrozen while the 2106 * list presence reflects the actual number of objects 2107 * during unfreeze. 2108 * 2109 * We setup the list membership and then perform a cmpxchg 2110 * with the count. If there is a mismatch then the page 2111 * is not unfrozen but the page is on the wrong list. 2112 * 2113 * Then we restart the process which may have to remove 2114 * the page from the list that we just put it on again 2115 * because the number of objects in the slab may have 2116 * changed. 2117 */ 2118 redo: 2119 2120 old.freelist = page->freelist; 2121 old.counters = page->counters; 2122 VM_BUG_ON(!old.frozen); 2123 2124 /* Determine target state of the slab */ 2125 new.counters = old.counters; 2126 if (freelist) { 2127 new.inuse--; 2128 set_freepointer(s, freelist, old.freelist); 2129 new.freelist = freelist; 2130 } else 2131 new.freelist = old.freelist; 2132 2133 new.frozen = 0; 2134 2135 if (!new.inuse && n->nr_partial >= s->min_partial) 2136 m = M_FREE; 2137 else if (new.freelist) { 2138 m = M_PARTIAL; 2139 if (!lock) { 2140 lock = 1; 2141 /* 2142 * Taking the spinlock removes the possibility 2143 * that acquire_slab() will see a slab page that 2144 * is frozen 2145 */ 2146 spin_lock(&n->list_lock); 2147 } 2148 } else { 2149 m = M_FULL; 2150 if (kmem_cache_debug(s) && !lock) { 2151 lock = 1; 2152 /* 2153 * This also ensures that the scanning of full 2154 * slabs from diagnostic functions will not see 2155 * any frozen slabs. 2156 */ 2157 spin_lock(&n->list_lock); 2158 } 2159 } 2160 2161 if (l != m) { 2162 if (l == M_PARTIAL) 2163 remove_partial(n, page); 2164 else if (l == M_FULL) 2165 remove_full(s, n, page); 2166 2167 if (m == M_PARTIAL) 2168 add_partial(n, page, tail); 2169 else if (m == M_FULL) 2170 add_full(s, n, page); 2171 } 2172 2173 l = m; 2174 if (!__cmpxchg_double_slab(s, page, 2175 old.freelist, old.counters, 2176 new.freelist, new.counters, 2177 "unfreezing slab")) 2178 goto redo; 2179 2180 if (lock) 2181 spin_unlock(&n->list_lock); 2182 2183 if (m == M_PARTIAL) 2184 stat(s, tail); 2185 else if (m == M_FULL) 2186 stat(s, DEACTIVATE_FULL); 2187 else if (m == M_FREE) { 2188 stat(s, DEACTIVATE_EMPTY); 2189 discard_slab(s, page); 2190 stat(s, FREE_SLAB); 2191 } 2192 2193 c->page = NULL; 2194 c->freelist = NULL; 2195 } 2196 2197 /* 2198 * Unfreeze all the cpu partial slabs. 2199 * 2200 * This function must be called with interrupts disabled 2201 * for the cpu using c (or some other guarantee must be there 2202 * to guarantee no concurrent accesses). 2203 */ 2204 static void unfreeze_partials(struct kmem_cache *s, 2205 struct kmem_cache_cpu *c) 2206 { 2207 #ifdef CONFIG_SLUB_CPU_PARTIAL 2208 struct kmem_cache_node *n = NULL, *n2 = NULL; 2209 struct page *page, *discard_page = NULL; 2210 2211 while ((page = c->partial)) { 2212 struct page new; 2213 struct page old; 2214 2215 c->partial = page->next; 2216 2217 n2 = get_node(s, page_to_nid(page)); 2218 if (n != n2) { 2219 if (n) 2220 spin_unlock(&n->list_lock); 2221 2222 n = n2; 2223 spin_lock(&n->list_lock); 2224 } 2225 2226 do { 2227 2228 old.freelist = page->freelist; 2229 old.counters = page->counters; 2230 VM_BUG_ON(!old.frozen); 2231 2232 new.counters = old.counters; 2233 new.freelist = old.freelist; 2234 2235 new.frozen = 0; 2236 2237 } while (!__cmpxchg_double_slab(s, page, 2238 old.freelist, old.counters, 2239 new.freelist, new.counters, 2240 "unfreezing slab")); 2241 2242 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2243 page->next = discard_page; 2244 discard_page = page; 2245 } else { 2246 add_partial(n, page, DEACTIVATE_TO_TAIL); 2247 stat(s, FREE_ADD_PARTIAL); 2248 } 2249 } 2250 2251 if (n) 2252 spin_unlock(&n->list_lock); 2253 2254 while (discard_page) { 2255 page = discard_page; 2256 discard_page = discard_page->next; 2257 2258 stat(s, DEACTIVATE_EMPTY); 2259 discard_slab(s, page); 2260 stat(s, FREE_SLAB); 2261 } 2262 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2263 } 2264 2265 /* 2266 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2267 * partial page slot if available. 2268 * 2269 * If we did not find a slot then simply move all the partials to the 2270 * per node partial list. 2271 */ 2272 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2273 { 2274 #ifdef CONFIG_SLUB_CPU_PARTIAL 2275 struct page *oldpage; 2276 int pages; 2277 int pobjects; 2278 2279 preempt_disable(); 2280 do { 2281 pages = 0; 2282 pobjects = 0; 2283 oldpage = this_cpu_read(s->cpu_slab->partial); 2284 2285 if (oldpage) { 2286 pobjects = oldpage->pobjects; 2287 pages = oldpage->pages; 2288 if (drain && pobjects > s->cpu_partial) { 2289 unsigned long flags; 2290 /* 2291 * partial array is full. Move the existing 2292 * set to the per node partial list. 2293 */ 2294 local_irq_save(flags); 2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2296 local_irq_restore(flags); 2297 oldpage = NULL; 2298 pobjects = 0; 2299 pages = 0; 2300 stat(s, CPU_PARTIAL_DRAIN); 2301 } 2302 } 2303 2304 pages++; 2305 pobjects += page->objects - page->inuse; 2306 2307 page->pages = pages; 2308 page->pobjects = pobjects; 2309 page->next = oldpage; 2310 2311 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2312 != oldpage); 2313 if (unlikely(!s->cpu_partial)) { 2314 unsigned long flags; 2315 2316 local_irq_save(flags); 2317 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2318 local_irq_restore(flags); 2319 } 2320 preempt_enable(); 2321 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2322 } 2323 2324 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2325 { 2326 stat(s, CPUSLAB_FLUSH); 2327 deactivate_slab(s, c->page, c->freelist, c); 2328 2329 c->tid = next_tid(c->tid); 2330 } 2331 2332 /* 2333 * Flush cpu slab. 2334 * 2335 * Called from IPI handler with interrupts disabled. 2336 */ 2337 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2338 { 2339 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2340 2341 if (c->page) 2342 flush_slab(s, c); 2343 2344 unfreeze_partials(s, c); 2345 } 2346 2347 static void flush_cpu_slab(void *d) 2348 { 2349 struct kmem_cache *s = d; 2350 2351 __flush_cpu_slab(s, smp_processor_id()); 2352 } 2353 2354 static bool has_cpu_slab(int cpu, void *info) 2355 { 2356 struct kmem_cache *s = info; 2357 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2358 2359 return c->page || slub_percpu_partial(c); 2360 } 2361 2362 static void flush_all(struct kmem_cache *s) 2363 { 2364 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2365 } 2366 2367 /* 2368 * Use the cpu notifier to insure that the cpu slabs are flushed when 2369 * necessary. 2370 */ 2371 static int slub_cpu_dead(unsigned int cpu) 2372 { 2373 struct kmem_cache *s; 2374 unsigned long flags; 2375 2376 mutex_lock(&slab_mutex); 2377 list_for_each_entry(s, &slab_caches, list) { 2378 local_irq_save(flags); 2379 __flush_cpu_slab(s, cpu); 2380 local_irq_restore(flags); 2381 } 2382 mutex_unlock(&slab_mutex); 2383 return 0; 2384 } 2385 2386 /* 2387 * Check if the objects in a per cpu structure fit numa 2388 * locality expectations. 2389 */ 2390 static inline int node_match(struct page *page, int node) 2391 { 2392 #ifdef CONFIG_NUMA 2393 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2394 return 0; 2395 #endif 2396 return 1; 2397 } 2398 2399 #ifdef CONFIG_SLUB_DEBUG 2400 static int count_free(struct page *page) 2401 { 2402 return page->objects - page->inuse; 2403 } 2404 2405 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2406 { 2407 return atomic_long_read(&n->total_objects); 2408 } 2409 #endif /* CONFIG_SLUB_DEBUG */ 2410 2411 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2412 static unsigned long count_partial(struct kmem_cache_node *n, 2413 int (*get_count)(struct page *)) 2414 { 2415 unsigned long flags; 2416 unsigned long x = 0; 2417 struct page *page; 2418 2419 spin_lock_irqsave(&n->list_lock, flags); 2420 list_for_each_entry(page, &n->partial, slab_list) 2421 x += get_count(page); 2422 spin_unlock_irqrestore(&n->list_lock, flags); 2423 return x; 2424 } 2425 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2426 2427 static noinline void 2428 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2429 { 2430 #ifdef CONFIG_SLUB_DEBUG 2431 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2432 DEFAULT_RATELIMIT_BURST); 2433 int node; 2434 struct kmem_cache_node *n; 2435 2436 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2437 return; 2438 2439 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2440 nid, gfpflags, &gfpflags); 2441 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2442 s->name, s->object_size, s->size, oo_order(s->oo), 2443 oo_order(s->min)); 2444 2445 if (oo_order(s->min) > get_order(s->object_size)) 2446 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2447 s->name); 2448 2449 for_each_kmem_cache_node(s, node, n) { 2450 unsigned long nr_slabs; 2451 unsigned long nr_objs; 2452 unsigned long nr_free; 2453 2454 nr_free = count_partial(n, count_free); 2455 nr_slabs = node_nr_slabs(n); 2456 nr_objs = node_nr_objs(n); 2457 2458 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2459 node, nr_slabs, nr_objs, nr_free); 2460 } 2461 #endif 2462 } 2463 2464 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2465 int node, struct kmem_cache_cpu **pc) 2466 { 2467 void *freelist; 2468 struct kmem_cache_cpu *c = *pc; 2469 struct page *page; 2470 2471 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2472 2473 freelist = get_partial(s, flags, node, c); 2474 2475 if (freelist) 2476 return freelist; 2477 2478 page = new_slab(s, flags, node); 2479 if (page) { 2480 c = raw_cpu_ptr(s->cpu_slab); 2481 if (c->page) 2482 flush_slab(s, c); 2483 2484 /* 2485 * No other reference to the page yet so we can 2486 * muck around with it freely without cmpxchg 2487 */ 2488 freelist = page->freelist; 2489 page->freelist = NULL; 2490 2491 stat(s, ALLOC_SLAB); 2492 c->page = page; 2493 *pc = c; 2494 } 2495 2496 return freelist; 2497 } 2498 2499 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2500 { 2501 if (unlikely(PageSlabPfmemalloc(page))) 2502 return gfp_pfmemalloc_allowed(gfpflags); 2503 2504 return true; 2505 } 2506 2507 /* 2508 * Check the page->freelist of a page and either transfer the freelist to the 2509 * per cpu freelist or deactivate the page. 2510 * 2511 * The page is still frozen if the return value is not NULL. 2512 * 2513 * If this function returns NULL then the page has been unfrozen. 2514 * 2515 * This function must be called with interrupt disabled. 2516 */ 2517 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2518 { 2519 struct page new; 2520 unsigned long counters; 2521 void *freelist; 2522 2523 do { 2524 freelist = page->freelist; 2525 counters = page->counters; 2526 2527 new.counters = counters; 2528 VM_BUG_ON(!new.frozen); 2529 2530 new.inuse = page->objects; 2531 new.frozen = freelist != NULL; 2532 2533 } while (!__cmpxchg_double_slab(s, page, 2534 freelist, counters, 2535 NULL, new.counters, 2536 "get_freelist")); 2537 2538 return freelist; 2539 } 2540 2541 /* 2542 * Slow path. The lockless freelist is empty or we need to perform 2543 * debugging duties. 2544 * 2545 * Processing is still very fast if new objects have been freed to the 2546 * regular freelist. In that case we simply take over the regular freelist 2547 * as the lockless freelist and zap the regular freelist. 2548 * 2549 * If that is not working then we fall back to the partial lists. We take the 2550 * first element of the freelist as the object to allocate now and move the 2551 * rest of the freelist to the lockless freelist. 2552 * 2553 * And if we were unable to get a new slab from the partial slab lists then 2554 * we need to allocate a new slab. This is the slowest path since it involves 2555 * a call to the page allocator and the setup of a new slab. 2556 * 2557 * Version of __slab_alloc to use when we know that interrupts are 2558 * already disabled (which is the case for bulk allocation). 2559 */ 2560 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2561 unsigned long addr, struct kmem_cache_cpu *c) 2562 { 2563 void *freelist; 2564 struct page *page; 2565 2566 page = c->page; 2567 if (!page) 2568 goto new_slab; 2569 redo: 2570 2571 if (unlikely(!node_match(page, node))) { 2572 int searchnode = node; 2573 2574 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2575 searchnode = node_to_mem_node(node); 2576 2577 if (unlikely(!node_match(page, searchnode))) { 2578 stat(s, ALLOC_NODE_MISMATCH); 2579 deactivate_slab(s, page, c->freelist, c); 2580 goto new_slab; 2581 } 2582 } 2583 2584 /* 2585 * By rights, we should be searching for a slab page that was 2586 * PFMEMALLOC but right now, we are losing the pfmemalloc 2587 * information when the page leaves the per-cpu allocator 2588 */ 2589 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2590 deactivate_slab(s, page, c->freelist, c); 2591 goto new_slab; 2592 } 2593 2594 /* must check again c->freelist in case of cpu migration or IRQ */ 2595 freelist = c->freelist; 2596 if (freelist) 2597 goto load_freelist; 2598 2599 freelist = get_freelist(s, page); 2600 2601 if (!freelist) { 2602 c->page = NULL; 2603 stat(s, DEACTIVATE_BYPASS); 2604 goto new_slab; 2605 } 2606 2607 stat(s, ALLOC_REFILL); 2608 2609 load_freelist: 2610 /* 2611 * freelist is pointing to the list of objects to be used. 2612 * page is pointing to the page from which the objects are obtained. 2613 * That page must be frozen for per cpu allocations to work. 2614 */ 2615 VM_BUG_ON(!c->page->frozen); 2616 c->freelist = get_freepointer(s, freelist); 2617 c->tid = next_tid(c->tid); 2618 return freelist; 2619 2620 new_slab: 2621 2622 if (slub_percpu_partial(c)) { 2623 page = c->page = slub_percpu_partial(c); 2624 slub_set_percpu_partial(c, page); 2625 stat(s, CPU_PARTIAL_ALLOC); 2626 goto redo; 2627 } 2628 2629 freelist = new_slab_objects(s, gfpflags, node, &c); 2630 2631 if (unlikely(!freelist)) { 2632 slab_out_of_memory(s, gfpflags, node); 2633 return NULL; 2634 } 2635 2636 page = c->page; 2637 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2638 goto load_freelist; 2639 2640 /* Only entered in the debug case */ 2641 if (kmem_cache_debug(s) && 2642 !alloc_debug_processing(s, page, freelist, addr)) 2643 goto new_slab; /* Slab failed checks. Next slab needed */ 2644 2645 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2646 return freelist; 2647 } 2648 2649 /* 2650 * Another one that disabled interrupt and compensates for possible 2651 * cpu changes by refetching the per cpu area pointer. 2652 */ 2653 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2654 unsigned long addr, struct kmem_cache_cpu *c) 2655 { 2656 void *p; 2657 unsigned long flags; 2658 2659 local_irq_save(flags); 2660 #ifdef CONFIG_PREEMPT 2661 /* 2662 * We may have been preempted and rescheduled on a different 2663 * cpu before disabling interrupts. Need to reload cpu area 2664 * pointer. 2665 */ 2666 c = this_cpu_ptr(s->cpu_slab); 2667 #endif 2668 2669 p = ___slab_alloc(s, gfpflags, node, addr, c); 2670 local_irq_restore(flags); 2671 return p; 2672 } 2673 2674 /* 2675 * If the object has been wiped upon free, make sure it's fully initialized by 2676 * zeroing out freelist pointer. 2677 */ 2678 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2679 void *obj) 2680 { 2681 if (unlikely(slab_want_init_on_free(s)) && obj) 2682 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2683 } 2684 2685 /* 2686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2687 * have the fastpath folded into their functions. So no function call 2688 * overhead for requests that can be satisfied on the fastpath. 2689 * 2690 * The fastpath works by first checking if the lockless freelist can be used. 2691 * If not then __slab_alloc is called for slow processing. 2692 * 2693 * Otherwise we can simply pick the next object from the lockless free list. 2694 */ 2695 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2696 gfp_t gfpflags, int node, unsigned long addr) 2697 { 2698 void *object; 2699 struct kmem_cache_cpu *c; 2700 struct page *page; 2701 unsigned long tid; 2702 2703 s = slab_pre_alloc_hook(s, gfpflags); 2704 if (!s) 2705 return NULL; 2706 redo: 2707 /* 2708 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2709 * enabled. We may switch back and forth between cpus while 2710 * reading from one cpu area. That does not matter as long 2711 * as we end up on the original cpu again when doing the cmpxchg. 2712 * 2713 * We should guarantee that tid and kmem_cache are retrieved on 2714 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2715 * to check if it is matched or not. 2716 */ 2717 do { 2718 tid = this_cpu_read(s->cpu_slab->tid); 2719 c = raw_cpu_ptr(s->cpu_slab); 2720 } while (IS_ENABLED(CONFIG_PREEMPT) && 2721 unlikely(tid != READ_ONCE(c->tid))); 2722 2723 /* 2724 * Irqless object alloc/free algorithm used here depends on sequence 2725 * of fetching cpu_slab's data. tid should be fetched before anything 2726 * on c to guarantee that object and page associated with previous tid 2727 * won't be used with current tid. If we fetch tid first, object and 2728 * page could be one associated with next tid and our alloc/free 2729 * request will be failed. In this case, we will retry. So, no problem. 2730 */ 2731 barrier(); 2732 2733 /* 2734 * The transaction ids are globally unique per cpu and per operation on 2735 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2736 * occurs on the right processor and that there was no operation on the 2737 * linked list in between. 2738 */ 2739 2740 object = c->freelist; 2741 page = c->page; 2742 if (unlikely(!object || !node_match(page, node))) { 2743 object = __slab_alloc(s, gfpflags, node, addr, c); 2744 stat(s, ALLOC_SLOWPATH); 2745 } else { 2746 void *next_object = get_freepointer_safe(s, object); 2747 2748 /* 2749 * The cmpxchg will only match if there was no additional 2750 * operation and if we are on the right processor. 2751 * 2752 * The cmpxchg does the following atomically (without lock 2753 * semantics!) 2754 * 1. Relocate first pointer to the current per cpu area. 2755 * 2. Verify that tid and freelist have not been changed 2756 * 3. If they were not changed replace tid and freelist 2757 * 2758 * Since this is without lock semantics the protection is only 2759 * against code executing on this cpu *not* from access by 2760 * other cpus. 2761 */ 2762 if (unlikely(!this_cpu_cmpxchg_double( 2763 s->cpu_slab->freelist, s->cpu_slab->tid, 2764 object, tid, 2765 next_object, next_tid(tid)))) { 2766 2767 note_cmpxchg_failure("slab_alloc", s, tid); 2768 goto redo; 2769 } 2770 prefetch_freepointer(s, next_object); 2771 stat(s, ALLOC_FASTPATH); 2772 } 2773 2774 maybe_wipe_obj_freeptr(s, object); 2775 2776 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2777 memset(object, 0, s->object_size); 2778 2779 slab_post_alloc_hook(s, gfpflags, 1, &object); 2780 2781 return object; 2782 } 2783 2784 static __always_inline void *slab_alloc(struct kmem_cache *s, 2785 gfp_t gfpflags, unsigned long addr) 2786 { 2787 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2788 } 2789 2790 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2791 { 2792 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2793 2794 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2795 s->size, gfpflags); 2796 2797 return ret; 2798 } 2799 EXPORT_SYMBOL(kmem_cache_alloc); 2800 2801 #ifdef CONFIG_TRACING 2802 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2803 { 2804 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2805 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2806 ret = kasan_kmalloc(s, ret, size, gfpflags); 2807 return ret; 2808 } 2809 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2810 #endif 2811 2812 #ifdef CONFIG_NUMA 2813 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2814 { 2815 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2816 2817 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2818 s->object_size, s->size, gfpflags, node); 2819 2820 return ret; 2821 } 2822 EXPORT_SYMBOL(kmem_cache_alloc_node); 2823 2824 #ifdef CONFIG_TRACING 2825 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2826 gfp_t gfpflags, 2827 int node, size_t size) 2828 { 2829 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2830 2831 trace_kmalloc_node(_RET_IP_, ret, 2832 size, s->size, gfpflags, node); 2833 2834 ret = kasan_kmalloc(s, ret, size, gfpflags); 2835 return ret; 2836 } 2837 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2838 #endif 2839 #endif /* CONFIG_NUMA */ 2840 2841 /* 2842 * Slow path handling. This may still be called frequently since objects 2843 * have a longer lifetime than the cpu slabs in most processing loads. 2844 * 2845 * So we still attempt to reduce cache line usage. Just take the slab 2846 * lock and free the item. If there is no additional partial page 2847 * handling required then we can return immediately. 2848 */ 2849 static void __slab_free(struct kmem_cache *s, struct page *page, 2850 void *head, void *tail, int cnt, 2851 unsigned long addr) 2852 2853 { 2854 void *prior; 2855 int was_frozen; 2856 struct page new; 2857 unsigned long counters; 2858 struct kmem_cache_node *n = NULL; 2859 unsigned long uninitialized_var(flags); 2860 2861 stat(s, FREE_SLOWPATH); 2862 2863 if (kmem_cache_debug(s) && 2864 !free_debug_processing(s, page, head, tail, cnt, addr)) 2865 return; 2866 2867 do { 2868 if (unlikely(n)) { 2869 spin_unlock_irqrestore(&n->list_lock, flags); 2870 n = NULL; 2871 } 2872 prior = page->freelist; 2873 counters = page->counters; 2874 set_freepointer(s, tail, prior); 2875 new.counters = counters; 2876 was_frozen = new.frozen; 2877 new.inuse -= cnt; 2878 if ((!new.inuse || !prior) && !was_frozen) { 2879 2880 if (kmem_cache_has_cpu_partial(s) && !prior) { 2881 2882 /* 2883 * Slab was on no list before and will be 2884 * partially empty 2885 * We can defer the list move and instead 2886 * freeze it. 2887 */ 2888 new.frozen = 1; 2889 2890 } else { /* Needs to be taken off a list */ 2891 2892 n = get_node(s, page_to_nid(page)); 2893 /* 2894 * Speculatively acquire the list_lock. 2895 * If the cmpxchg does not succeed then we may 2896 * drop the list_lock without any processing. 2897 * 2898 * Otherwise the list_lock will synchronize with 2899 * other processors updating the list of slabs. 2900 */ 2901 spin_lock_irqsave(&n->list_lock, flags); 2902 2903 } 2904 } 2905 2906 } while (!cmpxchg_double_slab(s, page, 2907 prior, counters, 2908 head, new.counters, 2909 "__slab_free")); 2910 2911 if (likely(!n)) { 2912 2913 /* 2914 * If we just froze the page then put it onto the 2915 * per cpu partial list. 2916 */ 2917 if (new.frozen && !was_frozen) { 2918 put_cpu_partial(s, page, 1); 2919 stat(s, CPU_PARTIAL_FREE); 2920 } 2921 /* 2922 * The list lock was not taken therefore no list 2923 * activity can be necessary. 2924 */ 2925 if (was_frozen) 2926 stat(s, FREE_FROZEN); 2927 return; 2928 } 2929 2930 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2931 goto slab_empty; 2932 2933 /* 2934 * Objects left in the slab. If it was not on the partial list before 2935 * then add it. 2936 */ 2937 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2938 remove_full(s, n, page); 2939 add_partial(n, page, DEACTIVATE_TO_TAIL); 2940 stat(s, FREE_ADD_PARTIAL); 2941 } 2942 spin_unlock_irqrestore(&n->list_lock, flags); 2943 return; 2944 2945 slab_empty: 2946 if (prior) { 2947 /* 2948 * Slab on the partial list. 2949 */ 2950 remove_partial(n, page); 2951 stat(s, FREE_REMOVE_PARTIAL); 2952 } else { 2953 /* Slab must be on the full list */ 2954 remove_full(s, n, page); 2955 } 2956 2957 spin_unlock_irqrestore(&n->list_lock, flags); 2958 stat(s, FREE_SLAB); 2959 discard_slab(s, page); 2960 } 2961 2962 /* 2963 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2964 * can perform fastpath freeing without additional function calls. 2965 * 2966 * The fastpath is only possible if we are freeing to the current cpu slab 2967 * of this processor. This typically the case if we have just allocated 2968 * the item before. 2969 * 2970 * If fastpath is not possible then fall back to __slab_free where we deal 2971 * with all sorts of special processing. 2972 * 2973 * Bulk free of a freelist with several objects (all pointing to the 2974 * same page) possible by specifying head and tail ptr, plus objects 2975 * count (cnt). Bulk free indicated by tail pointer being set. 2976 */ 2977 static __always_inline void do_slab_free(struct kmem_cache *s, 2978 struct page *page, void *head, void *tail, 2979 int cnt, unsigned long addr) 2980 { 2981 void *tail_obj = tail ? : head; 2982 struct kmem_cache_cpu *c; 2983 unsigned long tid; 2984 redo: 2985 /* 2986 * Determine the currently cpus per cpu slab. 2987 * The cpu may change afterward. However that does not matter since 2988 * data is retrieved via this pointer. If we are on the same cpu 2989 * during the cmpxchg then the free will succeed. 2990 */ 2991 do { 2992 tid = this_cpu_read(s->cpu_slab->tid); 2993 c = raw_cpu_ptr(s->cpu_slab); 2994 } while (IS_ENABLED(CONFIG_PREEMPT) && 2995 unlikely(tid != READ_ONCE(c->tid))); 2996 2997 /* Same with comment on barrier() in slab_alloc_node() */ 2998 barrier(); 2999 3000 if (likely(page == c->page)) { 3001 set_freepointer(s, tail_obj, c->freelist); 3002 3003 if (unlikely(!this_cpu_cmpxchg_double( 3004 s->cpu_slab->freelist, s->cpu_slab->tid, 3005 c->freelist, tid, 3006 head, next_tid(tid)))) { 3007 3008 note_cmpxchg_failure("slab_free", s, tid); 3009 goto redo; 3010 } 3011 stat(s, FREE_FASTPATH); 3012 } else 3013 __slab_free(s, page, head, tail_obj, cnt, addr); 3014 3015 } 3016 3017 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3018 void *head, void *tail, int cnt, 3019 unsigned long addr) 3020 { 3021 /* 3022 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3023 * to remove objects, whose reuse must be delayed. 3024 */ 3025 if (slab_free_freelist_hook(s, &head, &tail)) 3026 do_slab_free(s, page, head, tail, cnt, addr); 3027 } 3028 3029 #ifdef CONFIG_KASAN_GENERIC 3030 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3031 { 3032 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3033 } 3034 #endif 3035 3036 void kmem_cache_free(struct kmem_cache *s, void *x) 3037 { 3038 s = cache_from_obj(s, x); 3039 if (!s) 3040 return; 3041 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3042 trace_kmem_cache_free(_RET_IP_, x); 3043 } 3044 EXPORT_SYMBOL(kmem_cache_free); 3045 3046 struct detached_freelist { 3047 struct page *page; 3048 void *tail; 3049 void *freelist; 3050 int cnt; 3051 struct kmem_cache *s; 3052 }; 3053 3054 /* 3055 * This function progressively scans the array with free objects (with 3056 * a limited look ahead) and extract objects belonging to the same 3057 * page. It builds a detached freelist directly within the given 3058 * page/objects. This can happen without any need for 3059 * synchronization, because the objects are owned by running process. 3060 * The freelist is build up as a single linked list in the objects. 3061 * The idea is, that this detached freelist can then be bulk 3062 * transferred to the real freelist(s), but only requiring a single 3063 * synchronization primitive. Look ahead in the array is limited due 3064 * to performance reasons. 3065 */ 3066 static inline 3067 int build_detached_freelist(struct kmem_cache *s, size_t size, 3068 void **p, struct detached_freelist *df) 3069 { 3070 size_t first_skipped_index = 0; 3071 int lookahead = 3; 3072 void *object; 3073 struct page *page; 3074 3075 /* Always re-init detached_freelist */ 3076 df->page = NULL; 3077 3078 do { 3079 object = p[--size]; 3080 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3081 } while (!object && size); 3082 3083 if (!object) 3084 return 0; 3085 3086 page = virt_to_head_page(object); 3087 if (!s) { 3088 /* Handle kalloc'ed objects */ 3089 if (unlikely(!PageSlab(page))) { 3090 BUG_ON(!PageCompound(page)); 3091 kfree_hook(object); 3092 __free_pages(page, compound_order(page)); 3093 p[size] = NULL; /* mark object processed */ 3094 return size; 3095 } 3096 /* Derive kmem_cache from object */ 3097 df->s = page->slab_cache; 3098 } else { 3099 df->s = cache_from_obj(s, object); /* Support for memcg */ 3100 } 3101 3102 /* Start new detached freelist */ 3103 df->page = page; 3104 set_freepointer(df->s, object, NULL); 3105 df->tail = object; 3106 df->freelist = object; 3107 p[size] = NULL; /* mark object processed */ 3108 df->cnt = 1; 3109 3110 while (size) { 3111 object = p[--size]; 3112 if (!object) 3113 continue; /* Skip processed objects */ 3114 3115 /* df->page is always set at this point */ 3116 if (df->page == virt_to_head_page(object)) { 3117 /* Opportunity build freelist */ 3118 set_freepointer(df->s, object, df->freelist); 3119 df->freelist = object; 3120 df->cnt++; 3121 p[size] = NULL; /* mark object processed */ 3122 3123 continue; 3124 } 3125 3126 /* Limit look ahead search */ 3127 if (!--lookahead) 3128 break; 3129 3130 if (!first_skipped_index) 3131 first_skipped_index = size + 1; 3132 } 3133 3134 return first_skipped_index; 3135 } 3136 3137 /* Note that interrupts must be enabled when calling this function. */ 3138 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3139 { 3140 if (WARN_ON(!size)) 3141 return; 3142 3143 do { 3144 struct detached_freelist df; 3145 3146 size = build_detached_freelist(s, size, p, &df); 3147 if (!df.page) 3148 continue; 3149 3150 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3151 } while (likely(size)); 3152 } 3153 EXPORT_SYMBOL(kmem_cache_free_bulk); 3154 3155 /* Note that interrupts must be enabled when calling this function. */ 3156 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3157 void **p) 3158 { 3159 struct kmem_cache_cpu *c; 3160 int i; 3161 3162 /* memcg and kmem_cache debug support */ 3163 s = slab_pre_alloc_hook(s, flags); 3164 if (unlikely(!s)) 3165 return false; 3166 /* 3167 * Drain objects in the per cpu slab, while disabling local 3168 * IRQs, which protects against PREEMPT and interrupts 3169 * handlers invoking normal fastpath. 3170 */ 3171 local_irq_disable(); 3172 c = this_cpu_ptr(s->cpu_slab); 3173 3174 for (i = 0; i < size; i++) { 3175 void *object = c->freelist; 3176 3177 if (unlikely(!object)) { 3178 /* 3179 * Invoking slow path likely have side-effect 3180 * of re-populating per CPU c->freelist 3181 */ 3182 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3183 _RET_IP_, c); 3184 if (unlikely(!p[i])) 3185 goto error; 3186 3187 c = this_cpu_ptr(s->cpu_slab); 3188 maybe_wipe_obj_freeptr(s, p[i]); 3189 3190 continue; /* goto for-loop */ 3191 } 3192 c->freelist = get_freepointer(s, object); 3193 p[i] = object; 3194 maybe_wipe_obj_freeptr(s, p[i]); 3195 } 3196 c->tid = next_tid(c->tid); 3197 local_irq_enable(); 3198 3199 /* Clear memory outside IRQ disabled fastpath loop */ 3200 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3201 int j; 3202 3203 for (j = 0; j < i; j++) 3204 memset(p[j], 0, s->object_size); 3205 } 3206 3207 /* memcg and kmem_cache debug support */ 3208 slab_post_alloc_hook(s, flags, size, p); 3209 return i; 3210 error: 3211 local_irq_enable(); 3212 slab_post_alloc_hook(s, flags, i, p); 3213 __kmem_cache_free_bulk(s, i, p); 3214 return 0; 3215 } 3216 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3217 3218 3219 /* 3220 * Object placement in a slab is made very easy because we always start at 3221 * offset 0. If we tune the size of the object to the alignment then we can 3222 * get the required alignment by putting one properly sized object after 3223 * another. 3224 * 3225 * Notice that the allocation order determines the sizes of the per cpu 3226 * caches. Each processor has always one slab available for allocations. 3227 * Increasing the allocation order reduces the number of times that slabs 3228 * must be moved on and off the partial lists and is therefore a factor in 3229 * locking overhead. 3230 */ 3231 3232 /* 3233 * Mininum / Maximum order of slab pages. This influences locking overhead 3234 * and slab fragmentation. A higher order reduces the number of partial slabs 3235 * and increases the number of allocations possible without having to 3236 * take the list_lock. 3237 */ 3238 static unsigned int slub_min_order; 3239 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3240 static unsigned int slub_min_objects; 3241 3242 /* 3243 * Calculate the order of allocation given an slab object size. 3244 * 3245 * The order of allocation has significant impact on performance and other 3246 * system components. Generally order 0 allocations should be preferred since 3247 * order 0 does not cause fragmentation in the page allocator. Larger objects 3248 * be problematic to put into order 0 slabs because there may be too much 3249 * unused space left. We go to a higher order if more than 1/16th of the slab 3250 * would be wasted. 3251 * 3252 * In order to reach satisfactory performance we must ensure that a minimum 3253 * number of objects is in one slab. Otherwise we may generate too much 3254 * activity on the partial lists which requires taking the list_lock. This is 3255 * less a concern for large slabs though which are rarely used. 3256 * 3257 * slub_max_order specifies the order where we begin to stop considering the 3258 * number of objects in a slab as critical. If we reach slub_max_order then 3259 * we try to keep the page order as low as possible. So we accept more waste 3260 * of space in favor of a small page order. 3261 * 3262 * Higher order allocations also allow the placement of more objects in a 3263 * slab and thereby reduce object handling overhead. If the user has 3264 * requested a higher mininum order then we start with that one instead of 3265 * the smallest order which will fit the object. 3266 */ 3267 static inline unsigned int slab_order(unsigned int size, 3268 unsigned int min_objects, unsigned int max_order, 3269 unsigned int fract_leftover) 3270 { 3271 unsigned int min_order = slub_min_order; 3272 unsigned int order; 3273 3274 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3275 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3276 3277 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3278 order <= max_order; order++) { 3279 3280 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3281 unsigned int rem; 3282 3283 rem = slab_size % size; 3284 3285 if (rem <= slab_size / fract_leftover) 3286 break; 3287 } 3288 3289 return order; 3290 } 3291 3292 static inline int calculate_order(unsigned int size) 3293 { 3294 unsigned int order; 3295 unsigned int min_objects; 3296 unsigned int max_objects; 3297 3298 /* 3299 * Attempt to find best configuration for a slab. This 3300 * works by first attempting to generate a layout with 3301 * the best configuration and backing off gradually. 3302 * 3303 * First we increase the acceptable waste in a slab. Then 3304 * we reduce the minimum objects required in a slab. 3305 */ 3306 min_objects = slub_min_objects; 3307 if (!min_objects) 3308 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3309 max_objects = order_objects(slub_max_order, size); 3310 min_objects = min(min_objects, max_objects); 3311 3312 while (min_objects > 1) { 3313 unsigned int fraction; 3314 3315 fraction = 16; 3316 while (fraction >= 4) { 3317 order = slab_order(size, min_objects, 3318 slub_max_order, fraction); 3319 if (order <= slub_max_order) 3320 return order; 3321 fraction /= 2; 3322 } 3323 min_objects--; 3324 } 3325 3326 /* 3327 * We were unable to place multiple objects in a slab. Now 3328 * lets see if we can place a single object there. 3329 */ 3330 order = slab_order(size, 1, slub_max_order, 1); 3331 if (order <= slub_max_order) 3332 return order; 3333 3334 /* 3335 * Doh this slab cannot be placed using slub_max_order. 3336 */ 3337 order = slab_order(size, 1, MAX_ORDER, 1); 3338 if (order < MAX_ORDER) 3339 return order; 3340 return -ENOSYS; 3341 } 3342 3343 static void 3344 init_kmem_cache_node(struct kmem_cache_node *n) 3345 { 3346 n->nr_partial = 0; 3347 spin_lock_init(&n->list_lock); 3348 INIT_LIST_HEAD(&n->partial); 3349 #ifdef CONFIG_SLUB_DEBUG 3350 atomic_long_set(&n->nr_slabs, 0); 3351 atomic_long_set(&n->total_objects, 0); 3352 INIT_LIST_HEAD(&n->full); 3353 #endif 3354 } 3355 3356 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3357 { 3358 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3359 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3360 3361 /* 3362 * Must align to double word boundary for the double cmpxchg 3363 * instructions to work; see __pcpu_double_call_return_bool(). 3364 */ 3365 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3366 2 * sizeof(void *)); 3367 3368 if (!s->cpu_slab) 3369 return 0; 3370 3371 init_kmem_cache_cpus(s); 3372 3373 return 1; 3374 } 3375 3376 static struct kmem_cache *kmem_cache_node; 3377 3378 /* 3379 * No kmalloc_node yet so do it by hand. We know that this is the first 3380 * slab on the node for this slabcache. There are no concurrent accesses 3381 * possible. 3382 * 3383 * Note that this function only works on the kmem_cache_node 3384 * when allocating for the kmem_cache_node. This is used for bootstrapping 3385 * memory on a fresh node that has no slab structures yet. 3386 */ 3387 static void early_kmem_cache_node_alloc(int node) 3388 { 3389 struct page *page; 3390 struct kmem_cache_node *n; 3391 3392 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3393 3394 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3395 3396 BUG_ON(!page); 3397 if (page_to_nid(page) != node) { 3398 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3399 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3400 } 3401 3402 n = page->freelist; 3403 BUG_ON(!n); 3404 #ifdef CONFIG_SLUB_DEBUG 3405 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3406 init_tracking(kmem_cache_node, n); 3407 #endif 3408 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3409 GFP_KERNEL); 3410 page->freelist = get_freepointer(kmem_cache_node, n); 3411 page->inuse = 1; 3412 page->frozen = 0; 3413 kmem_cache_node->node[node] = n; 3414 init_kmem_cache_node(n); 3415 inc_slabs_node(kmem_cache_node, node, page->objects); 3416 3417 /* 3418 * No locks need to be taken here as it has just been 3419 * initialized and there is no concurrent access. 3420 */ 3421 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3422 } 3423 3424 static void free_kmem_cache_nodes(struct kmem_cache *s) 3425 { 3426 int node; 3427 struct kmem_cache_node *n; 3428 3429 for_each_kmem_cache_node(s, node, n) { 3430 s->node[node] = NULL; 3431 kmem_cache_free(kmem_cache_node, n); 3432 } 3433 } 3434 3435 void __kmem_cache_release(struct kmem_cache *s) 3436 { 3437 cache_random_seq_destroy(s); 3438 free_percpu(s->cpu_slab); 3439 free_kmem_cache_nodes(s); 3440 } 3441 3442 static int init_kmem_cache_nodes(struct kmem_cache *s) 3443 { 3444 int node; 3445 3446 for_each_node_state(node, N_NORMAL_MEMORY) { 3447 struct kmem_cache_node *n; 3448 3449 if (slab_state == DOWN) { 3450 early_kmem_cache_node_alloc(node); 3451 continue; 3452 } 3453 n = kmem_cache_alloc_node(kmem_cache_node, 3454 GFP_KERNEL, node); 3455 3456 if (!n) { 3457 free_kmem_cache_nodes(s); 3458 return 0; 3459 } 3460 3461 init_kmem_cache_node(n); 3462 s->node[node] = n; 3463 } 3464 return 1; 3465 } 3466 3467 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3468 { 3469 if (min < MIN_PARTIAL) 3470 min = MIN_PARTIAL; 3471 else if (min > MAX_PARTIAL) 3472 min = MAX_PARTIAL; 3473 s->min_partial = min; 3474 } 3475 3476 static void set_cpu_partial(struct kmem_cache *s) 3477 { 3478 #ifdef CONFIG_SLUB_CPU_PARTIAL 3479 /* 3480 * cpu_partial determined the maximum number of objects kept in the 3481 * per cpu partial lists of a processor. 3482 * 3483 * Per cpu partial lists mainly contain slabs that just have one 3484 * object freed. If they are used for allocation then they can be 3485 * filled up again with minimal effort. The slab will never hit the 3486 * per node partial lists and therefore no locking will be required. 3487 * 3488 * This setting also determines 3489 * 3490 * A) The number of objects from per cpu partial slabs dumped to the 3491 * per node list when we reach the limit. 3492 * B) The number of objects in cpu partial slabs to extract from the 3493 * per node list when we run out of per cpu objects. We only fetch 3494 * 50% to keep some capacity around for frees. 3495 */ 3496 if (!kmem_cache_has_cpu_partial(s)) 3497 s->cpu_partial = 0; 3498 else if (s->size >= PAGE_SIZE) 3499 s->cpu_partial = 2; 3500 else if (s->size >= 1024) 3501 s->cpu_partial = 6; 3502 else if (s->size >= 256) 3503 s->cpu_partial = 13; 3504 else 3505 s->cpu_partial = 30; 3506 #endif 3507 } 3508 3509 /* 3510 * calculate_sizes() determines the order and the distribution of data within 3511 * a slab object. 3512 */ 3513 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3514 { 3515 slab_flags_t flags = s->flags; 3516 unsigned int size = s->object_size; 3517 unsigned int order; 3518 3519 /* 3520 * Round up object size to the next word boundary. We can only 3521 * place the free pointer at word boundaries and this determines 3522 * the possible location of the free pointer. 3523 */ 3524 size = ALIGN(size, sizeof(void *)); 3525 3526 #ifdef CONFIG_SLUB_DEBUG 3527 /* 3528 * Determine if we can poison the object itself. If the user of 3529 * the slab may touch the object after free or before allocation 3530 * then we should never poison the object itself. 3531 */ 3532 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3533 !s->ctor) 3534 s->flags |= __OBJECT_POISON; 3535 else 3536 s->flags &= ~__OBJECT_POISON; 3537 3538 3539 /* 3540 * If we are Redzoning then check if there is some space between the 3541 * end of the object and the free pointer. If not then add an 3542 * additional word to have some bytes to store Redzone information. 3543 */ 3544 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3545 size += sizeof(void *); 3546 #endif 3547 3548 /* 3549 * With that we have determined the number of bytes in actual use 3550 * by the object. This is the potential offset to the free pointer. 3551 */ 3552 s->inuse = size; 3553 3554 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3555 s->ctor)) { 3556 /* 3557 * Relocate free pointer after the object if it is not 3558 * permitted to overwrite the first word of the object on 3559 * kmem_cache_free. 3560 * 3561 * This is the case if we do RCU, have a constructor or 3562 * destructor or are poisoning the objects. 3563 */ 3564 s->offset = size; 3565 size += sizeof(void *); 3566 } 3567 3568 #ifdef CONFIG_SLUB_DEBUG 3569 if (flags & SLAB_STORE_USER) 3570 /* 3571 * Need to store information about allocs and frees after 3572 * the object. 3573 */ 3574 size += 2 * sizeof(struct track); 3575 #endif 3576 3577 kasan_cache_create(s, &size, &s->flags); 3578 #ifdef CONFIG_SLUB_DEBUG 3579 if (flags & SLAB_RED_ZONE) { 3580 /* 3581 * Add some empty padding so that we can catch 3582 * overwrites from earlier objects rather than let 3583 * tracking information or the free pointer be 3584 * corrupted if a user writes before the start 3585 * of the object. 3586 */ 3587 size += sizeof(void *); 3588 3589 s->red_left_pad = sizeof(void *); 3590 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3591 size += s->red_left_pad; 3592 } 3593 #endif 3594 3595 /* 3596 * SLUB stores one object immediately after another beginning from 3597 * offset 0. In order to align the objects we have to simply size 3598 * each object to conform to the alignment. 3599 */ 3600 size = ALIGN(size, s->align); 3601 s->size = size; 3602 if (forced_order >= 0) 3603 order = forced_order; 3604 else 3605 order = calculate_order(size); 3606 3607 if ((int)order < 0) 3608 return 0; 3609 3610 s->allocflags = 0; 3611 if (order) 3612 s->allocflags |= __GFP_COMP; 3613 3614 if (s->flags & SLAB_CACHE_DMA) 3615 s->allocflags |= GFP_DMA; 3616 3617 if (s->flags & SLAB_CACHE_DMA32) 3618 s->allocflags |= GFP_DMA32; 3619 3620 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3621 s->allocflags |= __GFP_RECLAIMABLE; 3622 3623 /* 3624 * Determine the number of objects per slab 3625 */ 3626 s->oo = oo_make(order, size); 3627 s->min = oo_make(get_order(size), size); 3628 if (oo_objects(s->oo) > oo_objects(s->max)) 3629 s->max = s->oo; 3630 3631 return !!oo_objects(s->oo); 3632 } 3633 3634 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3635 { 3636 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3637 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3638 s->random = get_random_long(); 3639 #endif 3640 3641 if (!calculate_sizes(s, -1)) 3642 goto error; 3643 if (disable_higher_order_debug) { 3644 /* 3645 * Disable debugging flags that store metadata if the min slab 3646 * order increased. 3647 */ 3648 if (get_order(s->size) > get_order(s->object_size)) { 3649 s->flags &= ~DEBUG_METADATA_FLAGS; 3650 s->offset = 0; 3651 if (!calculate_sizes(s, -1)) 3652 goto error; 3653 } 3654 } 3655 3656 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3657 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3658 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3659 /* Enable fast mode */ 3660 s->flags |= __CMPXCHG_DOUBLE; 3661 #endif 3662 3663 /* 3664 * The larger the object size is, the more pages we want on the partial 3665 * list to avoid pounding the page allocator excessively. 3666 */ 3667 set_min_partial(s, ilog2(s->size) / 2); 3668 3669 set_cpu_partial(s); 3670 3671 #ifdef CONFIG_NUMA 3672 s->remote_node_defrag_ratio = 1000; 3673 #endif 3674 3675 /* Initialize the pre-computed randomized freelist if slab is up */ 3676 if (slab_state >= UP) { 3677 if (init_cache_random_seq(s)) 3678 goto error; 3679 } 3680 3681 if (!init_kmem_cache_nodes(s)) 3682 goto error; 3683 3684 if (alloc_kmem_cache_cpus(s)) 3685 return 0; 3686 3687 free_kmem_cache_nodes(s); 3688 error: 3689 return -EINVAL; 3690 } 3691 3692 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3693 const char *text) 3694 { 3695 #ifdef CONFIG_SLUB_DEBUG 3696 void *addr = page_address(page); 3697 void *p; 3698 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC); 3699 if (!map) 3700 return; 3701 slab_err(s, page, text, s->name); 3702 slab_lock(page); 3703 3704 get_map(s, page, map); 3705 for_each_object(p, s, addr, page->objects) { 3706 3707 if (!test_bit(slab_index(p, s, addr), map)) { 3708 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3709 print_tracking(s, p); 3710 } 3711 } 3712 slab_unlock(page); 3713 bitmap_free(map); 3714 #endif 3715 } 3716 3717 /* 3718 * Attempt to free all partial slabs on a node. 3719 * This is called from __kmem_cache_shutdown(). We must take list_lock 3720 * because sysfs file might still access partial list after the shutdowning. 3721 */ 3722 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3723 { 3724 LIST_HEAD(discard); 3725 struct page *page, *h; 3726 3727 BUG_ON(irqs_disabled()); 3728 spin_lock_irq(&n->list_lock); 3729 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3730 if (!page->inuse) { 3731 remove_partial(n, page); 3732 list_add(&page->slab_list, &discard); 3733 } else { 3734 list_slab_objects(s, page, 3735 "Objects remaining in %s on __kmem_cache_shutdown()"); 3736 } 3737 } 3738 spin_unlock_irq(&n->list_lock); 3739 3740 list_for_each_entry_safe(page, h, &discard, slab_list) 3741 discard_slab(s, page); 3742 } 3743 3744 bool __kmem_cache_empty(struct kmem_cache *s) 3745 { 3746 int node; 3747 struct kmem_cache_node *n; 3748 3749 for_each_kmem_cache_node(s, node, n) 3750 if (n->nr_partial || slabs_node(s, node)) 3751 return false; 3752 return true; 3753 } 3754 3755 /* 3756 * Release all resources used by a slab cache. 3757 */ 3758 int __kmem_cache_shutdown(struct kmem_cache *s) 3759 { 3760 int node; 3761 struct kmem_cache_node *n; 3762 3763 flush_all(s); 3764 /* Attempt to free all objects */ 3765 for_each_kmem_cache_node(s, node, n) { 3766 free_partial(s, n); 3767 if (n->nr_partial || slabs_node(s, node)) 3768 return 1; 3769 } 3770 sysfs_slab_remove(s); 3771 return 0; 3772 } 3773 3774 /******************************************************************** 3775 * Kmalloc subsystem 3776 *******************************************************************/ 3777 3778 static int __init setup_slub_min_order(char *str) 3779 { 3780 get_option(&str, (int *)&slub_min_order); 3781 3782 return 1; 3783 } 3784 3785 __setup("slub_min_order=", setup_slub_min_order); 3786 3787 static int __init setup_slub_max_order(char *str) 3788 { 3789 get_option(&str, (int *)&slub_max_order); 3790 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3791 3792 return 1; 3793 } 3794 3795 __setup("slub_max_order=", setup_slub_max_order); 3796 3797 static int __init setup_slub_min_objects(char *str) 3798 { 3799 get_option(&str, (int *)&slub_min_objects); 3800 3801 return 1; 3802 } 3803 3804 __setup("slub_min_objects=", setup_slub_min_objects); 3805 3806 void *__kmalloc(size_t size, gfp_t flags) 3807 { 3808 struct kmem_cache *s; 3809 void *ret; 3810 3811 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3812 return kmalloc_large(size, flags); 3813 3814 s = kmalloc_slab(size, flags); 3815 3816 if (unlikely(ZERO_OR_NULL_PTR(s))) 3817 return s; 3818 3819 ret = slab_alloc(s, flags, _RET_IP_); 3820 3821 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3822 3823 ret = kasan_kmalloc(s, ret, size, flags); 3824 3825 return ret; 3826 } 3827 EXPORT_SYMBOL(__kmalloc); 3828 3829 #ifdef CONFIG_NUMA 3830 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3831 { 3832 struct page *page; 3833 void *ptr = NULL; 3834 unsigned int order = get_order(size); 3835 3836 flags |= __GFP_COMP; 3837 page = alloc_pages_node(node, flags, order); 3838 if (page) { 3839 ptr = page_address(page); 3840 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3841 1 << order); 3842 } 3843 3844 return kmalloc_large_node_hook(ptr, size, flags); 3845 } 3846 3847 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3848 { 3849 struct kmem_cache *s; 3850 void *ret; 3851 3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3853 ret = kmalloc_large_node(size, flags, node); 3854 3855 trace_kmalloc_node(_RET_IP_, ret, 3856 size, PAGE_SIZE << get_order(size), 3857 flags, node); 3858 3859 return ret; 3860 } 3861 3862 s = kmalloc_slab(size, flags); 3863 3864 if (unlikely(ZERO_OR_NULL_PTR(s))) 3865 return s; 3866 3867 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3868 3869 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3870 3871 ret = kasan_kmalloc(s, ret, size, flags); 3872 3873 return ret; 3874 } 3875 EXPORT_SYMBOL(__kmalloc_node); 3876 #endif /* CONFIG_NUMA */ 3877 3878 #ifdef CONFIG_HARDENED_USERCOPY 3879 /* 3880 * Rejects incorrectly sized objects and objects that are to be copied 3881 * to/from userspace but do not fall entirely within the containing slab 3882 * cache's usercopy region. 3883 * 3884 * Returns NULL if check passes, otherwise const char * to name of cache 3885 * to indicate an error. 3886 */ 3887 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3888 bool to_user) 3889 { 3890 struct kmem_cache *s; 3891 unsigned int offset; 3892 size_t object_size; 3893 3894 ptr = kasan_reset_tag(ptr); 3895 3896 /* Find object and usable object size. */ 3897 s = page->slab_cache; 3898 3899 /* Reject impossible pointers. */ 3900 if (ptr < page_address(page)) 3901 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3902 to_user, 0, n); 3903 3904 /* Find offset within object. */ 3905 offset = (ptr - page_address(page)) % s->size; 3906 3907 /* Adjust for redzone and reject if within the redzone. */ 3908 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3909 if (offset < s->red_left_pad) 3910 usercopy_abort("SLUB object in left red zone", 3911 s->name, to_user, offset, n); 3912 offset -= s->red_left_pad; 3913 } 3914 3915 /* Allow address range falling entirely within usercopy region. */ 3916 if (offset >= s->useroffset && 3917 offset - s->useroffset <= s->usersize && 3918 n <= s->useroffset - offset + s->usersize) 3919 return; 3920 3921 /* 3922 * If the copy is still within the allocated object, produce 3923 * a warning instead of rejecting the copy. This is intended 3924 * to be a temporary method to find any missing usercopy 3925 * whitelists. 3926 */ 3927 object_size = slab_ksize(s); 3928 if (usercopy_fallback && 3929 offset <= object_size && n <= object_size - offset) { 3930 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3931 return; 3932 } 3933 3934 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3935 } 3936 #endif /* CONFIG_HARDENED_USERCOPY */ 3937 3938 size_t __ksize(const void *object) 3939 { 3940 struct page *page; 3941 3942 if (unlikely(object == ZERO_SIZE_PTR)) 3943 return 0; 3944 3945 page = virt_to_head_page(object); 3946 3947 if (unlikely(!PageSlab(page))) { 3948 WARN_ON(!PageCompound(page)); 3949 return page_size(page); 3950 } 3951 3952 return slab_ksize(page->slab_cache); 3953 } 3954 EXPORT_SYMBOL(__ksize); 3955 3956 void kfree(const void *x) 3957 { 3958 struct page *page; 3959 void *object = (void *)x; 3960 3961 trace_kfree(_RET_IP_, x); 3962 3963 if (unlikely(ZERO_OR_NULL_PTR(x))) 3964 return; 3965 3966 page = virt_to_head_page(x); 3967 if (unlikely(!PageSlab(page))) { 3968 unsigned int order = compound_order(page); 3969 3970 BUG_ON(!PageCompound(page)); 3971 kfree_hook(object); 3972 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3973 -(1 << order)); 3974 __free_pages(page, order); 3975 return; 3976 } 3977 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3978 } 3979 EXPORT_SYMBOL(kfree); 3980 3981 #define SHRINK_PROMOTE_MAX 32 3982 3983 /* 3984 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3985 * up most to the head of the partial lists. New allocations will then 3986 * fill those up and thus they can be removed from the partial lists. 3987 * 3988 * The slabs with the least items are placed last. This results in them 3989 * being allocated from last increasing the chance that the last objects 3990 * are freed in them. 3991 */ 3992 int __kmem_cache_shrink(struct kmem_cache *s) 3993 { 3994 int node; 3995 int i; 3996 struct kmem_cache_node *n; 3997 struct page *page; 3998 struct page *t; 3999 struct list_head discard; 4000 struct list_head promote[SHRINK_PROMOTE_MAX]; 4001 unsigned long flags; 4002 int ret = 0; 4003 4004 flush_all(s); 4005 for_each_kmem_cache_node(s, node, n) { 4006 INIT_LIST_HEAD(&discard); 4007 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4008 INIT_LIST_HEAD(promote + i); 4009 4010 spin_lock_irqsave(&n->list_lock, flags); 4011 4012 /* 4013 * Build lists of slabs to discard or promote. 4014 * 4015 * Note that concurrent frees may occur while we hold the 4016 * list_lock. page->inuse here is the upper limit. 4017 */ 4018 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4019 int free = page->objects - page->inuse; 4020 4021 /* Do not reread page->inuse */ 4022 barrier(); 4023 4024 /* We do not keep full slabs on the list */ 4025 BUG_ON(free <= 0); 4026 4027 if (free == page->objects) { 4028 list_move(&page->slab_list, &discard); 4029 n->nr_partial--; 4030 } else if (free <= SHRINK_PROMOTE_MAX) 4031 list_move(&page->slab_list, promote + free - 1); 4032 } 4033 4034 /* 4035 * Promote the slabs filled up most to the head of the 4036 * partial list. 4037 */ 4038 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4039 list_splice(promote + i, &n->partial); 4040 4041 spin_unlock_irqrestore(&n->list_lock, flags); 4042 4043 /* Release empty slabs */ 4044 list_for_each_entry_safe(page, t, &discard, slab_list) 4045 discard_slab(s, page); 4046 4047 if (slabs_node(s, node)) 4048 ret = 1; 4049 } 4050 4051 return ret; 4052 } 4053 4054 #ifdef CONFIG_MEMCG 4055 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4056 { 4057 /* 4058 * Called with all the locks held after a sched RCU grace period. 4059 * Even if @s becomes empty after shrinking, we can't know that @s 4060 * doesn't have allocations already in-flight and thus can't 4061 * destroy @s until the associated memcg is released. 4062 * 4063 * However, let's remove the sysfs files for empty caches here. 4064 * Each cache has a lot of interface files which aren't 4065 * particularly useful for empty draining caches; otherwise, we can 4066 * easily end up with millions of unnecessary sysfs files on 4067 * systems which have a lot of memory and transient cgroups. 4068 */ 4069 if (!__kmem_cache_shrink(s)) 4070 sysfs_slab_remove(s); 4071 } 4072 4073 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4074 { 4075 /* 4076 * Disable empty slabs caching. Used to avoid pinning offline 4077 * memory cgroups by kmem pages that can be freed. 4078 */ 4079 slub_set_cpu_partial(s, 0); 4080 s->min_partial = 0; 4081 } 4082 #endif /* CONFIG_MEMCG */ 4083 4084 static int slab_mem_going_offline_callback(void *arg) 4085 { 4086 struct kmem_cache *s; 4087 4088 mutex_lock(&slab_mutex); 4089 list_for_each_entry(s, &slab_caches, list) 4090 __kmem_cache_shrink(s); 4091 mutex_unlock(&slab_mutex); 4092 4093 return 0; 4094 } 4095 4096 static void slab_mem_offline_callback(void *arg) 4097 { 4098 struct kmem_cache_node *n; 4099 struct kmem_cache *s; 4100 struct memory_notify *marg = arg; 4101 int offline_node; 4102 4103 offline_node = marg->status_change_nid_normal; 4104 4105 /* 4106 * If the node still has available memory. we need kmem_cache_node 4107 * for it yet. 4108 */ 4109 if (offline_node < 0) 4110 return; 4111 4112 mutex_lock(&slab_mutex); 4113 list_for_each_entry(s, &slab_caches, list) { 4114 n = get_node(s, offline_node); 4115 if (n) { 4116 /* 4117 * if n->nr_slabs > 0, slabs still exist on the node 4118 * that is going down. We were unable to free them, 4119 * and offline_pages() function shouldn't call this 4120 * callback. So, we must fail. 4121 */ 4122 BUG_ON(slabs_node(s, offline_node)); 4123 4124 s->node[offline_node] = NULL; 4125 kmem_cache_free(kmem_cache_node, n); 4126 } 4127 } 4128 mutex_unlock(&slab_mutex); 4129 } 4130 4131 static int slab_mem_going_online_callback(void *arg) 4132 { 4133 struct kmem_cache_node *n; 4134 struct kmem_cache *s; 4135 struct memory_notify *marg = arg; 4136 int nid = marg->status_change_nid_normal; 4137 int ret = 0; 4138 4139 /* 4140 * If the node's memory is already available, then kmem_cache_node is 4141 * already created. Nothing to do. 4142 */ 4143 if (nid < 0) 4144 return 0; 4145 4146 /* 4147 * We are bringing a node online. No memory is available yet. We must 4148 * allocate a kmem_cache_node structure in order to bring the node 4149 * online. 4150 */ 4151 mutex_lock(&slab_mutex); 4152 list_for_each_entry(s, &slab_caches, list) { 4153 /* 4154 * XXX: kmem_cache_alloc_node will fallback to other nodes 4155 * since memory is not yet available from the node that 4156 * is brought up. 4157 */ 4158 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4159 if (!n) { 4160 ret = -ENOMEM; 4161 goto out; 4162 } 4163 init_kmem_cache_node(n); 4164 s->node[nid] = n; 4165 } 4166 out: 4167 mutex_unlock(&slab_mutex); 4168 return ret; 4169 } 4170 4171 static int slab_memory_callback(struct notifier_block *self, 4172 unsigned long action, void *arg) 4173 { 4174 int ret = 0; 4175 4176 switch (action) { 4177 case MEM_GOING_ONLINE: 4178 ret = slab_mem_going_online_callback(arg); 4179 break; 4180 case MEM_GOING_OFFLINE: 4181 ret = slab_mem_going_offline_callback(arg); 4182 break; 4183 case MEM_OFFLINE: 4184 case MEM_CANCEL_ONLINE: 4185 slab_mem_offline_callback(arg); 4186 break; 4187 case MEM_ONLINE: 4188 case MEM_CANCEL_OFFLINE: 4189 break; 4190 } 4191 if (ret) 4192 ret = notifier_from_errno(ret); 4193 else 4194 ret = NOTIFY_OK; 4195 return ret; 4196 } 4197 4198 static struct notifier_block slab_memory_callback_nb = { 4199 .notifier_call = slab_memory_callback, 4200 .priority = SLAB_CALLBACK_PRI, 4201 }; 4202 4203 /******************************************************************** 4204 * Basic setup of slabs 4205 *******************************************************************/ 4206 4207 /* 4208 * Used for early kmem_cache structures that were allocated using 4209 * the page allocator. Allocate them properly then fix up the pointers 4210 * that may be pointing to the wrong kmem_cache structure. 4211 */ 4212 4213 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4214 { 4215 int node; 4216 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4217 struct kmem_cache_node *n; 4218 4219 memcpy(s, static_cache, kmem_cache->object_size); 4220 4221 /* 4222 * This runs very early, and only the boot processor is supposed to be 4223 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4224 * IPIs around. 4225 */ 4226 __flush_cpu_slab(s, smp_processor_id()); 4227 for_each_kmem_cache_node(s, node, n) { 4228 struct page *p; 4229 4230 list_for_each_entry(p, &n->partial, slab_list) 4231 p->slab_cache = s; 4232 4233 #ifdef CONFIG_SLUB_DEBUG 4234 list_for_each_entry(p, &n->full, slab_list) 4235 p->slab_cache = s; 4236 #endif 4237 } 4238 slab_init_memcg_params(s); 4239 list_add(&s->list, &slab_caches); 4240 memcg_link_cache(s, NULL); 4241 return s; 4242 } 4243 4244 void __init kmem_cache_init(void) 4245 { 4246 static __initdata struct kmem_cache boot_kmem_cache, 4247 boot_kmem_cache_node; 4248 4249 if (debug_guardpage_minorder()) 4250 slub_max_order = 0; 4251 4252 kmem_cache_node = &boot_kmem_cache_node; 4253 kmem_cache = &boot_kmem_cache; 4254 4255 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4256 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4257 4258 register_hotmemory_notifier(&slab_memory_callback_nb); 4259 4260 /* Able to allocate the per node structures */ 4261 slab_state = PARTIAL; 4262 4263 create_boot_cache(kmem_cache, "kmem_cache", 4264 offsetof(struct kmem_cache, node) + 4265 nr_node_ids * sizeof(struct kmem_cache_node *), 4266 SLAB_HWCACHE_ALIGN, 0, 0); 4267 4268 kmem_cache = bootstrap(&boot_kmem_cache); 4269 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4270 4271 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4272 setup_kmalloc_cache_index_table(); 4273 create_kmalloc_caches(0); 4274 4275 /* Setup random freelists for each cache */ 4276 init_freelist_randomization(); 4277 4278 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4279 slub_cpu_dead); 4280 4281 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4282 cache_line_size(), 4283 slub_min_order, slub_max_order, slub_min_objects, 4284 nr_cpu_ids, nr_node_ids); 4285 } 4286 4287 void __init kmem_cache_init_late(void) 4288 { 4289 } 4290 4291 struct kmem_cache * 4292 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4293 slab_flags_t flags, void (*ctor)(void *)) 4294 { 4295 struct kmem_cache *s, *c; 4296 4297 s = find_mergeable(size, align, flags, name, ctor); 4298 if (s) { 4299 s->refcount++; 4300 4301 /* 4302 * Adjust the object sizes so that we clear 4303 * the complete object on kzalloc. 4304 */ 4305 s->object_size = max(s->object_size, size); 4306 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4307 4308 for_each_memcg_cache(c, s) { 4309 c->object_size = s->object_size; 4310 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4311 } 4312 4313 if (sysfs_slab_alias(s, name)) { 4314 s->refcount--; 4315 s = NULL; 4316 } 4317 } 4318 4319 return s; 4320 } 4321 4322 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4323 { 4324 int err; 4325 4326 err = kmem_cache_open(s, flags); 4327 if (err) 4328 return err; 4329 4330 /* Mutex is not taken during early boot */ 4331 if (slab_state <= UP) 4332 return 0; 4333 4334 memcg_propagate_slab_attrs(s); 4335 err = sysfs_slab_add(s); 4336 if (err) 4337 __kmem_cache_release(s); 4338 4339 return err; 4340 } 4341 4342 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4343 { 4344 struct kmem_cache *s; 4345 void *ret; 4346 4347 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4348 return kmalloc_large(size, gfpflags); 4349 4350 s = kmalloc_slab(size, gfpflags); 4351 4352 if (unlikely(ZERO_OR_NULL_PTR(s))) 4353 return s; 4354 4355 ret = slab_alloc(s, gfpflags, caller); 4356 4357 /* Honor the call site pointer we received. */ 4358 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4359 4360 return ret; 4361 } 4362 4363 #ifdef CONFIG_NUMA 4364 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4365 int node, unsigned long caller) 4366 { 4367 struct kmem_cache *s; 4368 void *ret; 4369 4370 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4371 ret = kmalloc_large_node(size, gfpflags, node); 4372 4373 trace_kmalloc_node(caller, ret, 4374 size, PAGE_SIZE << get_order(size), 4375 gfpflags, node); 4376 4377 return ret; 4378 } 4379 4380 s = kmalloc_slab(size, gfpflags); 4381 4382 if (unlikely(ZERO_OR_NULL_PTR(s))) 4383 return s; 4384 4385 ret = slab_alloc_node(s, gfpflags, node, caller); 4386 4387 /* Honor the call site pointer we received. */ 4388 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4389 4390 return ret; 4391 } 4392 #endif 4393 4394 #ifdef CONFIG_SYSFS 4395 static int count_inuse(struct page *page) 4396 { 4397 return page->inuse; 4398 } 4399 4400 static int count_total(struct page *page) 4401 { 4402 return page->objects; 4403 } 4404 #endif 4405 4406 #ifdef CONFIG_SLUB_DEBUG 4407 static int validate_slab(struct kmem_cache *s, struct page *page, 4408 unsigned long *map) 4409 { 4410 void *p; 4411 void *addr = page_address(page); 4412 4413 if (!check_slab(s, page) || 4414 !on_freelist(s, page, NULL)) 4415 return 0; 4416 4417 /* Now we know that a valid freelist exists */ 4418 bitmap_zero(map, page->objects); 4419 4420 get_map(s, page, map); 4421 for_each_object(p, s, addr, page->objects) { 4422 if (test_bit(slab_index(p, s, addr), map)) 4423 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4424 return 0; 4425 } 4426 4427 for_each_object(p, s, addr, page->objects) 4428 if (!test_bit(slab_index(p, s, addr), map)) 4429 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4430 return 0; 4431 return 1; 4432 } 4433 4434 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4435 unsigned long *map) 4436 { 4437 slab_lock(page); 4438 validate_slab(s, page, map); 4439 slab_unlock(page); 4440 } 4441 4442 static int validate_slab_node(struct kmem_cache *s, 4443 struct kmem_cache_node *n, unsigned long *map) 4444 { 4445 unsigned long count = 0; 4446 struct page *page; 4447 unsigned long flags; 4448 4449 spin_lock_irqsave(&n->list_lock, flags); 4450 4451 list_for_each_entry(page, &n->partial, slab_list) { 4452 validate_slab_slab(s, page, map); 4453 count++; 4454 } 4455 if (count != n->nr_partial) 4456 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4457 s->name, count, n->nr_partial); 4458 4459 if (!(s->flags & SLAB_STORE_USER)) 4460 goto out; 4461 4462 list_for_each_entry(page, &n->full, slab_list) { 4463 validate_slab_slab(s, page, map); 4464 count++; 4465 } 4466 if (count != atomic_long_read(&n->nr_slabs)) 4467 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4468 s->name, count, atomic_long_read(&n->nr_slabs)); 4469 4470 out: 4471 spin_unlock_irqrestore(&n->list_lock, flags); 4472 return count; 4473 } 4474 4475 static long validate_slab_cache(struct kmem_cache *s) 4476 { 4477 int node; 4478 unsigned long count = 0; 4479 struct kmem_cache_node *n; 4480 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4481 4482 if (!map) 4483 return -ENOMEM; 4484 4485 flush_all(s); 4486 for_each_kmem_cache_node(s, node, n) 4487 count += validate_slab_node(s, n, map); 4488 bitmap_free(map); 4489 return count; 4490 } 4491 /* 4492 * Generate lists of code addresses where slabcache objects are allocated 4493 * and freed. 4494 */ 4495 4496 struct location { 4497 unsigned long count; 4498 unsigned long addr; 4499 long long sum_time; 4500 long min_time; 4501 long max_time; 4502 long min_pid; 4503 long max_pid; 4504 DECLARE_BITMAP(cpus, NR_CPUS); 4505 nodemask_t nodes; 4506 }; 4507 4508 struct loc_track { 4509 unsigned long max; 4510 unsigned long count; 4511 struct location *loc; 4512 }; 4513 4514 static void free_loc_track(struct loc_track *t) 4515 { 4516 if (t->max) 4517 free_pages((unsigned long)t->loc, 4518 get_order(sizeof(struct location) * t->max)); 4519 } 4520 4521 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4522 { 4523 struct location *l; 4524 int order; 4525 4526 order = get_order(sizeof(struct location) * max); 4527 4528 l = (void *)__get_free_pages(flags, order); 4529 if (!l) 4530 return 0; 4531 4532 if (t->count) { 4533 memcpy(l, t->loc, sizeof(struct location) * t->count); 4534 free_loc_track(t); 4535 } 4536 t->max = max; 4537 t->loc = l; 4538 return 1; 4539 } 4540 4541 static int add_location(struct loc_track *t, struct kmem_cache *s, 4542 const struct track *track) 4543 { 4544 long start, end, pos; 4545 struct location *l; 4546 unsigned long caddr; 4547 unsigned long age = jiffies - track->when; 4548 4549 start = -1; 4550 end = t->count; 4551 4552 for ( ; ; ) { 4553 pos = start + (end - start + 1) / 2; 4554 4555 /* 4556 * There is nothing at "end". If we end up there 4557 * we need to add something to before end. 4558 */ 4559 if (pos == end) 4560 break; 4561 4562 caddr = t->loc[pos].addr; 4563 if (track->addr == caddr) { 4564 4565 l = &t->loc[pos]; 4566 l->count++; 4567 if (track->when) { 4568 l->sum_time += age; 4569 if (age < l->min_time) 4570 l->min_time = age; 4571 if (age > l->max_time) 4572 l->max_time = age; 4573 4574 if (track->pid < l->min_pid) 4575 l->min_pid = track->pid; 4576 if (track->pid > l->max_pid) 4577 l->max_pid = track->pid; 4578 4579 cpumask_set_cpu(track->cpu, 4580 to_cpumask(l->cpus)); 4581 } 4582 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4583 return 1; 4584 } 4585 4586 if (track->addr < caddr) 4587 end = pos; 4588 else 4589 start = pos; 4590 } 4591 4592 /* 4593 * Not found. Insert new tracking element. 4594 */ 4595 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4596 return 0; 4597 4598 l = t->loc + pos; 4599 if (pos < t->count) 4600 memmove(l + 1, l, 4601 (t->count - pos) * sizeof(struct location)); 4602 t->count++; 4603 l->count = 1; 4604 l->addr = track->addr; 4605 l->sum_time = age; 4606 l->min_time = age; 4607 l->max_time = age; 4608 l->min_pid = track->pid; 4609 l->max_pid = track->pid; 4610 cpumask_clear(to_cpumask(l->cpus)); 4611 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4612 nodes_clear(l->nodes); 4613 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4614 return 1; 4615 } 4616 4617 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4618 struct page *page, enum track_item alloc, 4619 unsigned long *map) 4620 { 4621 void *addr = page_address(page); 4622 void *p; 4623 4624 bitmap_zero(map, page->objects); 4625 get_map(s, page, map); 4626 4627 for_each_object(p, s, addr, page->objects) 4628 if (!test_bit(slab_index(p, s, addr), map)) 4629 add_location(t, s, get_track(s, p, alloc)); 4630 } 4631 4632 static int list_locations(struct kmem_cache *s, char *buf, 4633 enum track_item alloc) 4634 { 4635 int len = 0; 4636 unsigned long i; 4637 struct loc_track t = { 0, 0, NULL }; 4638 int node; 4639 struct kmem_cache_node *n; 4640 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 4641 4642 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4643 GFP_KERNEL)) { 4644 bitmap_free(map); 4645 return sprintf(buf, "Out of memory\n"); 4646 } 4647 /* Push back cpu slabs */ 4648 flush_all(s); 4649 4650 for_each_kmem_cache_node(s, node, n) { 4651 unsigned long flags; 4652 struct page *page; 4653 4654 if (!atomic_long_read(&n->nr_slabs)) 4655 continue; 4656 4657 spin_lock_irqsave(&n->list_lock, flags); 4658 list_for_each_entry(page, &n->partial, slab_list) 4659 process_slab(&t, s, page, alloc, map); 4660 list_for_each_entry(page, &n->full, slab_list) 4661 process_slab(&t, s, page, alloc, map); 4662 spin_unlock_irqrestore(&n->list_lock, flags); 4663 } 4664 4665 for (i = 0; i < t.count; i++) { 4666 struct location *l = &t.loc[i]; 4667 4668 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4669 break; 4670 len += sprintf(buf + len, "%7ld ", l->count); 4671 4672 if (l->addr) 4673 len += sprintf(buf + len, "%pS", (void *)l->addr); 4674 else 4675 len += sprintf(buf + len, "<not-available>"); 4676 4677 if (l->sum_time != l->min_time) { 4678 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4679 l->min_time, 4680 (long)div_u64(l->sum_time, l->count), 4681 l->max_time); 4682 } else 4683 len += sprintf(buf + len, " age=%ld", 4684 l->min_time); 4685 4686 if (l->min_pid != l->max_pid) 4687 len += sprintf(buf + len, " pid=%ld-%ld", 4688 l->min_pid, l->max_pid); 4689 else 4690 len += sprintf(buf + len, " pid=%ld", 4691 l->min_pid); 4692 4693 if (num_online_cpus() > 1 && 4694 !cpumask_empty(to_cpumask(l->cpus)) && 4695 len < PAGE_SIZE - 60) 4696 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4697 " cpus=%*pbl", 4698 cpumask_pr_args(to_cpumask(l->cpus))); 4699 4700 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4701 len < PAGE_SIZE - 60) 4702 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4703 " nodes=%*pbl", 4704 nodemask_pr_args(&l->nodes)); 4705 4706 len += sprintf(buf + len, "\n"); 4707 } 4708 4709 free_loc_track(&t); 4710 bitmap_free(map); 4711 if (!t.count) 4712 len += sprintf(buf, "No data\n"); 4713 return len; 4714 } 4715 #endif /* CONFIG_SLUB_DEBUG */ 4716 4717 #ifdef SLUB_RESILIENCY_TEST 4718 static void __init resiliency_test(void) 4719 { 4720 u8 *p; 4721 int type = KMALLOC_NORMAL; 4722 4723 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4724 4725 pr_err("SLUB resiliency testing\n"); 4726 pr_err("-----------------------\n"); 4727 pr_err("A. Corruption after allocation\n"); 4728 4729 p = kzalloc(16, GFP_KERNEL); 4730 p[16] = 0x12; 4731 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4732 p + 16); 4733 4734 validate_slab_cache(kmalloc_caches[type][4]); 4735 4736 /* Hmmm... The next two are dangerous */ 4737 p = kzalloc(32, GFP_KERNEL); 4738 p[32 + sizeof(void *)] = 0x34; 4739 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4740 p); 4741 pr_err("If allocated object is overwritten then not detectable\n\n"); 4742 4743 validate_slab_cache(kmalloc_caches[type][5]); 4744 p = kzalloc(64, GFP_KERNEL); 4745 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4746 *p = 0x56; 4747 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4748 p); 4749 pr_err("If allocated object is overwritten then not detectable\n\n"); 4750 validate_slab_cache(kmalloc_caches[type][6]); 4751 4752 pr_err("\nB. Corruption after free\n"); 4753 p = kzalloc(128, GFP_KERNEL); 4754 kfree(p); 4755 *p = 0x78; 4756 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4757 validate_slab_cache(kmalloc_caches[type][7]); 4758 4759 p = kzalloc(256, GFP_KERNEL); 4760 kfree(p); 4761 p[50] = 0x9a; 4762 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4763 validate_slab_cache(kmalloc_caches[type][8]); 4764 4765 p = kzalloc(512, GFP_KERNEL); 4766 kfree(p); 4767 p[512] = 0xab; 4768 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4769 validate_slab_cache(kmalloc_caches[type][9]); 4770 } 4771 #else 4772 #ifdef CONFIG_SYSFS 4773 static void resiliency_test(void) {}; 4774 #endif 4775 #endif /* SLUB_RESILIENCY_TEST */ 4776 4777 #ifdef CONFIG_SYSFS 4778 enum slab_stat_type { 4779 SL_ALL, /* All slabs */ 4780 SL_PARTIAL, /* Only partially allocated slabs */ 4781 SL_CPU, /* Only slabs used for cpu caches */ 4782 SL_OBJECTS, /* Determine allocated objects not slabs */ 4783 SL_TOTAL /* Determine object capacity not slabs */ 4784 }; 4785 4786 #define SO_ALL (1 << SL_ALL) 4787 #define SO_PARTIAL (1 << SL_PARTIAL) 4788 #define SO_CPU (1 << SL_CPU) 4789 #define SO_OBJECTS (1 << SL_OBJECTS) 4790 #define SO_TOTAL (1 << SL_TOTAL) 4791 4792 #ifdef CONFIG_MEMCG 4793 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4794 4795 static int __init setup_slub_memcg_sysfs(char *str) 4796 { 4797 int v; 4798 4799 if (get_option(&str, &v) > 0) 4800 memcg_sysfs_enabled = v; 4801 4802 return 1; 4803 } 4804 4805 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4806 #endif 4807 4808 static ssize_t show_slab_objects(struct kmem_cache *s, 4809 char *buf, unsigned long flags) 4810 { 4811 unsigned long total = 0; 4812 int node; 4813 int x; 4814 unsigned long *nodes; 4815 4816 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4817 if (!nodes) 4818 return -ENOMEM; 4819 4820 if (flags & SO_CPU) { 4821 int cpu; 4822 4823 for_each_possible_cpu(cpu) { 4824 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4825 cpu); 4826 int node; 4827 struct page *page; 4828 4829 page = READ_ONCE(c->page); 4830 if (!page) 4831 continue; 4832 4833 node = page_to_nid(page); 4834 if (flags & SO_TOTAL) 4835 x = page->objects; 4836 else if (flags & SO_OBJECTS) 4837 x = page->inuse; 4838 else 4839 x = 1; 4840 4841 total += x; 4842 nodes[node] += x; 4843 4844 page = slub_percpu_partial_read_once(c); 4845 if (page) { 4846 node = page_to_nid(page); 4847 if (flags & SO_TOTAL) 4848 WARN_ON_ONCE(1); 4849 else if (flags & SO_OBJECTS) 4850 WARN_ON_ONCE(1); 4851 else 4852 x = page->pages; 4853 total += x; 4854 nodes[node] += x; 4855 } 4856 } 4857 } 4858 4859 /* 4860 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4861 * already held which will conflict with an existing lock order: 4862 * 4863 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4864 * 4865 * We don't really need mem_hotplug_lock (to hold off 4866 * slab_mem_going_offline_callback) here because slab's memory hot 4867 * unplug code doesn't destroy the kmem_cache->node[] data. 4868 */ 4869 4870 #ifdef CONFIG_SLUB_DEBUG 4871 if (flags & SO_ALL) { 4872 struct kmem_cache_node *n; 4873 4874 for_each_kmem_cache_node(s, node, n) { 4875 4876 if (flags & SO_TOTAL) 4877 x = atomic_long_read(&n->total_objects); 4878 else if (flags & SO_OBJECTS) 4879 x = atomic_long_read(&n->total_objects) - 4880 count_partial(n, count_free); 4881 else 4882 x = atomic_long_read(&n->nr_slabs); 4883 total += x; 4884 nodes[node] += x; 4885 } 4886 4887 } else 4888 #endif 4889 if (flags & SO_PARTIAL) { 4890 struct kmem_cache_node *n; 4891 4892 for_each_kmem_cache_node(s, node, n) { 4893 if (flags & SO_TOTAL) 4894 x = count_partial(n, count_total); 4895 else if (flags & SO_OBJECTS) 4896 x = count_partial(n, count_inuse); 4897 else 4898 x = n->nr_partial; 4899 total += x; 4900 nodes[node] += x; 4901 } 4902 } 4903 x = sprintf(buf, "%lu", total); 4904 #ifdef CONFIG_NUMA 4905 for (node = 0; node < nr_node_ids; node++) 4906 if (nodes[node]) 4907 x += sprintf(buf + x, " N%d=%lu", 4908 node, nodes[node]); 4909 #endif 4910 kfree(nodes); 4911 return x + sprintf(buf + x, "\n"); 4912 } 4913 4914 #ifdef CONFIG_SLUB_DEBUG 4915 static int any_slab_objects(struct kmem_cache *s) 4916 { 4917 int node; 4918 struct kmem_cache_node *n; 4919 4920 for_each_kmem_cache_node(s, node, n) 4921 if (atomic_long_read(&n->total_objects)) 4922 return 1; 4923 4924 return 0; 4925 } 4926 #endif 4927 4928 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4929 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4930 4931 struct slab_attribute { 4932 struct attribute attr; 4933 ssize_t (*show)(struct kmem_cache *s, char *buf); 4934 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4935 }; 4936 4937 #define SLAB_ATTR_RO(_name) \ 4938 static struct slab_attribute _name##_attr = \ 4939 __ATTR(_name, 0400, _name##_show, NULL) 4940 4941 #define SLAB_ATTR(_name) \ 4942 static struct slab_attribute _name##_attr = \ 4943 __ATTR(_name, 0600, _name##_show, _name##_store) 4944 4945 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4946 { 4947 return sprintf(buf, "%u\n", s->size); 4948 } 4949 SLAB_ATTR_RO(slab_size); 4950 4951 static ssize_t align_show(struct kmem_cache *s, char *buf) 4952 { 4953 return sprintf(buf, "%u\n", s->align); 4954 } 4955 SLAB_ATTR_RO(align); 4956 4957 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%u\n", s->object_size); 4960 } 4961 SLAB_ATTR_RO(object_size); 4962 4963 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4964 { 4965 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4966 } 4967 SLAB_ATTR_RO(objs_per_slab); 4968 4969 static ssize_t order_store(struct kmem_cache *s, 4970 const char *buf, size_t length) 4971 { 4972 unsigned int order; 4973 int err; 4974 4975 err = kstrtouint(buf, 10, &order); 4976 if (err) 4977 return err; 4978 4979 if (order > slub_max_order || order < slub_min_order) 4980 return -EINVAL; 4981 4982 calculate_sizes(s, order); 4983 return length; 4984 } 4985 4986 static ssize_t order_show(struct kmem_cache *s, char *buf) 4987 { 4988 return sprintf(buf, "%u\n", oo_order(s->oo)); 4989 } 4990 SLAB_ATTR(order); 4991 4992 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4993 { 4994 return sprintf(buf, "%lu\n", s->min_partial); 4995 } 4996 4997 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4998 size_t length) 4999 { 5000 unsigned long min; 5001 int err; 5002 5003 err = kstrtoul(buf, 10, &min); 5004 if (err) 5005 return err; 5006 5007 set_min_partial(s, min); 5008 return length; 5009 } 5010 SLAB_ATTR(min_partial); 5011 5012 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5013 { 5014 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 5015 } 5016 5017 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5018 size_t length) 5019 { 5020 unsigned int objects; 5021 int err; 5022 5023 err = kstrtouint(buf, 10, &objects); 5024 if (err) 5025 return err; 5026 if (objects && !kmem_cache_has_cpu_partial(s)) 5027 return -EINVAL; 5028 5029 slub_set_cpu_partial(s, objects); 5030 flush_all(s); 5031 return length; 5032 } 5033 SLAB_ATTR(cpu_partial); 5034 5035 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5036 { 5037 if (!s->ctor) 5038 return 0; 5039 return sprintf(buf, "%pS\n", s->ctor); 5040 } 5041 SLAB_ATTR_RO(ctor); 5042 5043 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5044 { 5045 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5046 } 5047 SLAB_ATTR_RO(aliases); 5048 5049 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5050 { 5051 return show_slab_objects(s, buf, SO_PARTIAL); 5052 } 5053 SLAB_ATTR_RO(partial); 5054 5055 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5056 { 5057 return show_slab_objects(s, buf, SO_CPU); 5058 } 5059 SLAB_ATTR_RO(cpu_slabs); 5060 5061 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5062 { 5063 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5064 } 5065 SLAB_ATTR_RO(objects); 5066 5067 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5068 { 5069 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5070 } 5071 SLAB_ATTR_RO(objects_partial); 5072 5073 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5074 { 5075 int objects = 0; 5076 int pages = 0; 5077 int cpu; 5078 int len; 5079 5080 for_each_online_cpu(cpu) { 5081 struct page *page; 5082 5083 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5084 5085 if (page) { 5086 pages += page->pages; 5087 objects += page->pobjects; 5088 } 5089 } 5090 5091 len = sprintf(buf, "%d(%d)", objects, pages); 5092 5093 #ifdef CONFIG_SMP 5094 for_each_online_cpu(cpu) { 5095 struct page *page; 5096 5097 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5098 5099 if (page && len < PAGE_SIZE - 20) 5100 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5101 page->pobjects, page->pages); 5102 } 5103 #endif 5104 return len + sprintf(buf + len, "\n"); 5105 } 5106 SLAB_ATTR_RO(slabs_cpu_partial); 5107 5108 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5109 { 5110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5111 } 5112 5113 static ssize_t reclaim_account_store(struct kmem_cache *s, 5114 const char *buf, size_t length) 5115 { 5116 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5117 if (buf[0] == '1') 5118 s->flags |= SLAB_RECLAIM_ACCOUNT; 5119 return length; 5120 } 5121 SLAB_ATTR(reclaim_account); 5122 5123 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5124 { 5125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5126 } 5127 SLAB_ATTR_RO(hwcache_align); 5128 5129 #ifdef CONFIG_ZONE_DMA 5130 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5131 { 5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5133 } 5134 SLAB_ATTR_RO(cache_dma); 5135 #endif 5136 5137 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5138 { 5139 return sprintf(buf, "%u\n", s->usersize); 5140 } 5141 SLAB_ATTR_RO(usersize); 5142 5143 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5144 { 5145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5146 } 5147 SLAB_ATTR_RO(destroy_by_rcu); 5148 5149 #ifdef CONFIG_SLUB_DEBUG 5150 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5151 { 5152 return show_slab_objects(s, buf, SO_ALL); 5153 } 5154 SLAB_ATTR_RO(slabs); 5155 5156 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5157 { 5158 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5159 } 5160 SLAB_ATTR_RO(total_objects); 5161 5162 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5163 { 5164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5165 } 5166 5167 static ssize_t sanity_checks_store(struct kmem_cache *s, 5168 const char *buf, size_t length) 5169 { 5170 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5171 if (buf[0] == '1') { 5172 s->flags &= ~__CMPXCHG_DOUBLE; 5173 s->flags |= SLAB_CONSISTENCY_CHECKS; 5174 } 5175 return length; 5176 } 5177 SLAB_ATTR(sanity_checks); 5178 5179 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5180 { 5181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5182 } 5183 5184 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5185 size_t length) 5186 { 5187 /* 5188 * Tracing a merged cache is going to give confusing results 5189 * as well as cause other issues like converting a mergeable 5190 * cache into an umergeable one. 5191 */ 5192 if (s->refcount > 1) 5193 return -EINVAL; 5194 5195 s->flags &= ~SLAB_TRACE; 5196 if (buf[0] == '1') { 5197 s->flags &= ~__CMPXCHG_DOUBLE; 5198 s->flags |= SLAB_TRACE; 5199 } 5200 return length; 5201 } 5202 SLAB_ATTR(trace); 5203 5204 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5205 { 5206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5207 } 5208 5209 static ssize_t red_zone_store(struct kmem_cache *s, 5210 const char *buf, size_t length) 5211 { 5212 if (any_slab_objects(s)) 5213 return -EBUSY; 5214 5215 s->flags &= ~SLAB_RED_ZONE; 5216 if (buf[0] == '1') { 5217 s->flags |= SLAB_RED_ZONE; 5218 } 5219 calculate_sizes(s, -1); 5220 return length; 5221 } 5222 SLAB_ATTR(red_zone); 5223 5224 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5225 { 5226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5227 } 5228 5229 static ssize_t poison_store(struct kmem_cache *s, 5230 const char *buf, size_t length) 5231 { 5232 if (any_slab_objects(s)) 5233 return -EBUSY; 5234 5235 s->flags &= ~SLAB_POISON; 5236 if (buf[0] == '1') { 5237 s->flags |= SLAB_POISON; 5238 } 5239 calculate_sizes(s, -1); 5240 return length; 5241 } 5242 SLAB_ATTR(poison); 5243 5244 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5245 { 5246 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5247 } 5248 5249 static ssize_t store_user_store(struct kmem_cache *s, 5250 const char *buf, size_t length) 5251 { 5252 if (any_slab_objects(s)) 5253 return -EBUSY; 5254 5255 s->flags &= ~SLAB_STORE_USER; 5256 if (buf[0] == '1') { 5257 s->flags &= ~__CMPXCHG_DOUBLE; 5258 s->flags |= SLAB_STORE_USER; 5259 } 5260 calculate_sizes(s, -1); 5261 return length; 5262 } 5263 SLAB_ATTR(store_user); 5264 5265 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5266 { 5267 return 0; 5268 } 5269 5270 static ssize_t validate_store(struct kmem_cache *s, 5271 const char *buf, size_t length) 5272 { 5273 int ret = -EINVAL; 5274 5275 if (buf[0] == '1') { 5276 ret = validate_slab_cache(s); 5277 if (ret >= 0) 5278 ret = length; 5279 } 5280 return ret; 5281 } 5282 SLAB_ATTR(validate); 5283 5284 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5285 { 5286 if (!(s->flags & SLAB_STORE_USER)) 5287 return -ENOSYS; 5288 return list_locations(s, buf, TRACK_ALLOC); 5289 } 5290 SLAB_ATTR_RO(alloc_calls); 5291 5292 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5293 { 5294 if (!(s->flags & SLAB_STORE_USER)) 5295 return -ENOSYS; 5296 return list_locations(s, buf, TRACK_FREE); 5297 } 5298 SLAB_ATTR_RO(free_calls); 5299 #endif /* CONFIG_SLUB_DEBUG */ 5300 5301 #ifdef CONFIG_FAILSLAB 5302 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5303 { 5304 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5305 } 5306 5307 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5308 size_t length) 5309 { 5310 if (s->refcount > 1) 5311 return -EINVAL; 5312 5313 s->flags &= ~SLAB_FAILSLAB; 5314 if (buf[0] == '1') 5315 s->flags |= SLAB_FAILSLAB; 5316 return length; 5317 } 5318 SLAB_ATTR(failslab); 5319 #endif 5320 5321 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5322 { 5323 return 0; 5324 } 5325 5326 static ssize_t shrink_store(struct kmem_cache *s, 5327 const char *buf, size_t length) 5328 { 5329 if (buf[0] == '1') 5330 kmem_cache_shrink_all(s); 5331 else 5332 return -EINVAL; 5333 return length; 5334 } 5335 SLAB_ATTR(shrink); 5336 5337 #ifdef CONFIG_NUMA 5338 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5339 { 5340 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5341 } 5342 5343 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5344 const char *buf, size_t length) 5345 { 5346 unsigned int ratio; 5347 int err; 5348 5349 err = kstrtouint(buf, 10, &ratio); 5350 if (err) 5351 return err; 5352 if (ratio > 100) 5353 return -ERANGE; 5354 5355 s->remote_node_defrag_ratio = ratio * 10; 5356 5357 return length; 5358 } 5359 SLAB_ATTR(remote_node_defrag_ratio); 5360 #endif 5361 5362 #ifdef CONFIG_SLUB_STATS 5363 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5364 { 5365 unsigned long sum = 0; 5366 int cpu; 5367 int len; 5368 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5369 5370 if (!data) 5371 return -ENOMEM; 5372 5373 for_each_online_cpu(cpu) { 5374 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5375 5376 data[cpu] = x; 5377 sum += x; 5378 } 5379 5380 len = sprintf(buf, "%lu", sum); 5381 5382 #ifdef CONFIG_SMP 5383 for_each_online_cpu(cpu) { 5384 if (data[cpu] && len < PAGE_SIZE - 20) 5385 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5386 } 5387 #endif 5388 kfree(data); 5389 return len + sprintf(buf + len, "\n"); 5390 } 5391 5392 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5393 { 5394 int cpu; 5395 5396 for_each_online_cpu(cpu) 5397 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5398 } 5399 5400 #define STAT_ATTR(si, text) \ 5401 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5402 { \ 5403 return show_stat(s, buf, si); \ 5404 } \ 5405 static ssize_t text##_store(struct kmem_cache *s, \ 5406 const char *buf, size_t length) \ 5407 { \ 5408 if (buf[0] != '0') \ 5409 return -EINVAL; \ 5410 clear_stat(s, si); \ 5411 return length; \ 5412 } \ 5413 SLAB_ATTR(text); \ 5414 5415 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5416 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5417 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5418 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5419 STAT_ATTR(FREE_FROZEN, free_frozen); 5420 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5421 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5422 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5423 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5424 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5425 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5426 STAT_ATTR(FREE_SLAB, free_slab); 5427 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5428 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5429 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5430 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5431 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5432 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5433 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5434 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5435 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5436 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5437 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5438 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5439 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5440 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5441 #endif /* CONFIG_SLUB_STATS */ 5442 5443 static struct attribute *slab_attrs[] = { 5444 &slab_size_attr.attr, 5445 &object_size_attr.attr, 5446 &objs_per_slab_attr.attr, 5447 &order_attr.attr, 5448 &min_partial_attr.attr, 5449 &cpu_partial_attr.attr, 5450 &objects_attr.attr, 5451 &objects_partial_attr.attr, 5452 &partial_attr.attr, 5453 &cpu_slabs_attr.attr, 5454 &ctor_attr.attr, 5455 &aliases_attr.attr, 5456 &align_attr.attr, 5457 &hwcache_align_attr.attr, 5458 &reclaim_account_attr.attr, 5459 &destroy_by_rcu_attr.attr, 5460 &shrink_attr.attr, 5461 &slabs_cpu_partial_attr.attr, 5462 #ifdef CONFIG_SLUB_DEBUG 5463 &total_objects_attr.attr, 5464 &slabs_attr.attr, 5465 &sanity_checks_attr.attr, 5466 &trace_attr.attr, 5467 &red_zone_attr.attr, 5468 &poison_attr.attr, 5469 &store_user_attr.attr, 5470 &validate_attr.attr, 5471 &alloc_calls_attr.attr, 5472 &free_calls_attr.attr, 5473 #endif 5474 #ifdef CONFIG_ZONE_DMA 5475 &cache_dma_attr.attr, 5476 #endif 5477 #ifdef CONFIG_NUMA 5478 &remote_node_defrag_ratio_attr.attr, 5479 #endif 5480 #ifdef CONFIG_SLUB_STATS 5481 &alloc_fastpath_attr.attr, 5482 &alloc_slowpath_attr.attr, 5483 &free_fastpath_attr.attr, 5484 &free_slowpath_attr.attr, 5485 &free_frozen_attr.attr, 5486 &free_add_partial_attr.attr, 5487 &free_remove_partial_attr.attr, 5488 &alloc_from_partial_attr.attr, 5489 &alloc_slab_attr.attr, 5490 &alloc_refill_attr.attr, 5491 &alloc_node_mismatch_attr.attr, 5492 &free_slab_attr.attr, 5493 &cpuslab_flush_attr.attr, 5494 &deactivate_full_attr.attr, 5495 &deactivate_empty_attr.attr, 5496 &deactivate_to_head_attr.attr, 5497 &deactivate_to_tail_attr.attr, 5498 &deactivate_remote_frees_attr.attr, 5499 &deactivate_bypass_attr.attr, 5500 &order_fallback_attr.attr, 5501 &cmpxchg_double_fail_attr.attr, 5502 &cmpxchg_double_cpu_fail_attr.attr, 5503 &cpu_partial_alloc_attr.attr, 5504 &cpu_partial_free_attr.attr, 5505 &cpu_partial_node_attr.attr, 5506 &cpu_partial_drain_attr.attr, 5507 #endif 5508 #ifdef CONFIG_FAILSLAB 5509 &failslab_attr.attr, 5510 #endif 5511 &usersize_attr.attr, 5512 5513 NULL 5514 }; 5515 5516 static const struct attribute_group slab_attr_group = { 5517 .attrs = slab_attrs, 5518 }; 5519 5520 static ssize_t slab_attr_show(struct kobject *kobj, 5521 struct attribute *attr, 5522 char *buf) 5523 { 5524 struct slab_attribute *attribute; 5525 struct kmem_cache *s; 5526 int err; 5527 5528 attribute = to_slab_attr(attr); 5529 s = to_slab(kobj); 5530 5531 if (!attribute->show) 5532 return -EIO; 5533 5534 err = attribute->show(s, buf); 5535 5536 return err; 5537 } 5538 5539 static ssize_t slab_attr_store(struct kobject *kobj, 5540 struct attribute *attr, 5541 const char *buf, size_t len) 5542 { 5543 struct slab_attribute *attribute; 5544 struct kmem_cache *s; 5545 int err; 5546 5547 attribute = to_slab_attr(attr); 5548 s = to_slab(kobj); 5549 5550 if (!attribute->store) 5551 return -EIO; 5552 5553 err = attribute->store(s, buf, len); 5554 #ifdef CONFIG_MEMCG 5555 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5556 struct kmem_cache *c; 5557 5558 mutex_lock(&slab_mutex); 5559 if (s->max_attr_size < len) 5560 s->max_attr_size = len; 5561 5562 /* 5563 * This is a best effort propagation, so this function's return 5564 * value will be determined by the parent cache only. This is 5565 * basically because not all attributes will have a well 5566 * defined semantics for rollbacks - most of the actions will 5567 * have permanent effects. 5568 * 5569 * Returning the error value of any of the children that fail 5570 * is not 100 % defined, in the sense that users seeing the 5571 * error code won't be able to know anything about the state of 5572 * the cache. 5573 * 5574 * Only returning the error code for the parent cache at least 5575 * has well defined semantics. The cache being written to 5576 * directly either failed or succeeded, in which case we loop 5577 * through the descendants with best-effort propagation. 5578 */ 5579 for_each_memcg_cache(c, s) 5580 attribute->store(c, buf, len); 5581 mutex_unlock(&slab_mutex); 5582 } 5583 #endif 5584 return err; 5585 } 5586 5587 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5588 { 5589 #ifdef CONFIG_MEMCG 5590 int i; 5591 char *buffer = NULL; 5592 struct kmem_cache *root_cache; 5593 5594 if (is_root_cache(s)) 5595 return; 5596 5597 root_cache = s->memcg_params.root_cache; 5598 5599 /* 5600 * This mean this cache had no attribute written. Therefore, no point 5601 * in copying default values around 5602 */ 5603 if (!root_cache->max_attr_size) 5604 return; 5605 5606 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5607 char mbuf[64]; 5608 char *buf; 5609 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5610 ssize_t len; 5611 5612 if (!attr || !attr->store || !attr->show) 5613 continue; 5614 5615 /* 5616 * It is really bad that we have to allocate here, so we will 5617 * do it only as a fallback. If we actually allocate, though, 5618 * we can just use the allocated buffer until the end. 5619 * 5620 * Most of the slub attributes will tend to be very small in 5621 * size, but sysfs allows buffers up to a page, so they can 5622 * theoretically happen. 5623 */ 5624 if (buffer) 5625 buf = buffer; 5626 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5627 buf = mbuf; 5628 else { 5629 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5630 if (WARN_ON(!buffer)) 5631 continue; 5632 buf = buffer; 5633 } 5634 5635 len = attr->show(root_cache, buf); 5636 if (len > 0) 5637 attr->store(s, buf, len); 5638 } 5639 5640 if (buffer) 5641 free_page((unsigned long)buffer); 5642 #endif /* CONFIG_MEMCG */ 5643 } 5644 5645 static void kmem_cache_release(struct kobject *k) 5646 { 5647 slab_kmem_cache_release(to_slab(k)); 5648 } 5649 5650 static const struct sysfs_ops slab_sysfs_ops = { 5651 .show = slab_attr_show, 5652 .store = slab_attr_store, 5653 }; 5654 5655 static struct kobj_type slab_ktype = { 5656 .sysfs_ops = &slab_sysfs_ops, 5657 .release = kmem_cache_release, 5658 }; 5659 5660 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5661 { 5662 struct kobj_type *ktype = get_ktype(kobj); 5663 5664 if (ktype == &slab_ktype) 5665 return 1; 5666 return 0; 5667 } 5668 5669 static const struct kset_uevent_ops slab_uevent_ops = { 5670 .filter = uevent_filter, 5671 }; 5672 5673 static struct kset *slab_kset; 5674 5675 static inline struct kset *cache_kset(struct kmem_cache *s) 5676 { 5677 #ifdef CONFIG_MEMCG 5678 if (!is_root_cache(s)) 5679 return s->memcg_params.root_cache->memcg_kset; 5680 #endif 5681 return slab_kset; 5682 } 5683 5684 #define ID_STR_LENGTH 64 5685 5686 /* Create a unique string id for a slab cache: 5687 * 5688 * Format :[flags-]size 5689 */ 5690 static char *create_unique_id(struct kmem_cache *s) 5691 { 5692 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5693 char *p = name; 5694 5695 BUG_ON(!name); 5696 5697 *p++ = ':'; 5698 /* 5699 * First flags affecting slabcache operations. We will only 5700 * get here for aliasable slabs so we do not need to support 5701 * too many flags. The flags here must cover all flags that 5702 * are matched during merging to guarantee that the id is 5703 * unique. 5704 */ 5705 if (s->flags & SLAB_CACHE_DMA) 5706 *p++ = 'd'; 5707 if (s->flags & SLAB_CACHE_DMA32) 5708 *p++ = 'D'; 5709 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5710 *p++ = 'a'; 5711 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5712 *p++ = 'F'; 5713 if (s->flags & SLAB_ACCOUNT) 5714 *p++ = 'A'; 5715 if (p != name + 1) 5716 *p++ = '-'; 5717 p += sprintf(p, "%07u", s->size); 5718 5719 BUG_ON(p > name + ID_STR_LENGTH - 1); 5720 return name; 5721 } 5722 5723 static void sysfs_slab_remove_workfn(struct work_struct *work) 5724 { 5725 struct kmem_cache *s = 5726 container_of(work, struct kmem_cache, kobj_remove_work); 5727 5728 if (!s->kobj.state_in_sysfs) 5729 /* 5730 * For a memcg cache, this may be called during 5731 * deactivation and again on shutdown. Remove only once. 5732 * A cache is never shut down before deactivation is 5733 * complete, so no need to worry about synchronization. 5734 */ 5735 goto out; 5736 5737 #ifdef CONFIG_MEMCG 5738 kset_unregister(s->memcg_kset); 5739 #endif 5740 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5741 out: 5742 kobject_put(&s->kobj); 5743 } 5744 5745 static int sysfs_slab_add(struct kmem_cache *s) 5746 { 5747 int err; 5748 const char *name; 5749 struct kset *kset = cache_kset(s); 5750 int unmergeable = slab_unmergeable(s); 5751 5752 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5753 5754 if (!kset) { 5755 kobject_init(&s->kobj, &slab_ktype); 5756 return 0; 5757 } 5758 5759 if (!unmergeable && disable_higher_order_debug && 5760 (slub_debug & DEBUG_METADATA_FLAGS)) 5761 unmergeable = 1; 5762 5763 if (unmergeable) { 5764 /* 5765 * Slabcache can never be merged so we can use the name proper. 5766 * This is typically the case for debug situations. In that 5767 * case we can catch duplicate names easily. 5768 */ 5769 sysfs_remove_link(&slab_kset->kobj, s->name); 5770 name = s->name; 5771 } else { 5772 /* 5773 * Create a unique name for the slab as a target 5774 * for the symlinks. 5775 */ 5776 name = create_unique_id(s); 5777 } 5778 5779 s->kobj.kset = kset; 5780 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5781 if (err) 5782 goto out; 5783 5784 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5785 if (err) 5786 goto out_del_kobj; 5787 5788 #ifdef CONFIG_MEMCG 5789 if (is_root_cache(s) && memcg_sysfs_enabled) { 5790 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5791 if (!s->memcg_kset) { 5792 err = -ENOMEM; 5793 goto out_del_kobj; 5794 } 5795 } 5796 #endif 5797 5798 kobject_uevent(&s->kobj, KOBJ_ADD); 5799 if (!unmergeable) { 5800 /* Setup first alias */ 5801 sysfs_slab_alias(s, s->name); 5802 } 5803 out: 5804 if (!unmergeable) 5805 kfree(name); 5806 return err; 5807 out_del_kobj: 5808 kobject_del(&s->kobj); 5809 goto out; 5810 } 5811 5812 static void sysfs_slab_remove(struct kmem_cache *s) 5813 { 5814 if (slab_state < FULL) 5815 /* 5816 * Sysfs has not been setup yet so no need to remove the 5817 * cache from sysfs. 5818 */ 5819 return; 5820 5821 kobject_get(&s->kobj); 5822 schedule_work(&s->kobj_remove_work); 5823 } 5824 5825 void sysfs_slab_unlink(struct kmem_cache *s) 5826 { 5827 if (slab_state >= FULL) 5828 kobject_del(&s->kobj); 5829 } 5830 5831 void sysfs_slab_release(struct kmem_cache *s) 5832 { 5833 if (slab_state >= FULL) 5834 kobject_put(&s->kobj); 5835 } 5836 5837 /* 5838 * Need to buffer aliases during bootup until sysfs becomes 5839 * available lest we lose that information. 5840 */ 5841 struct saved_alias { 5842 struct kmem_cache *s; 5843 const char *name; 5844 struct saved_alias *next; 5845 }; 5846 5847 static struct saved_alias *alias_list; 5848 5849 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5850 { 5851 struct saved_alias *al; 5852 5853 if (slab_state == FULL) { 5854 /* 5855 * If we have a leftover link then remove it. 5856 */ 5857 sysfs_remove_link(&slab_kset->kobj, name); 5858 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5859 } 5860 5861 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5862 if (!al) 5863 return -ENOMEM; 5864 5865 al->s = s; 5866 al->name = name; 5867 al->next = alias_list; 5868 alias_list = al; 5869 return 0; 5870 } 5871 5872 static int __init slab_sysfs_init(void) 5873 { 5874 struct kmem_cache *s; 5875 int err; 5876 5877 mutex_lock(&slab_mutex); 5878 5879 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5880 if (!slab_kset) { 5881 mutex_unlock(&slab_mutex); 5882 pr_err("Cannot register slab subsystem.\n"); 5883 return -ENOSYS; 5884 } 5885 5886 slab_state = FULL; 5887 5888 list_for_each_entry(s, &slab_caches, list) { 5889 err = sysfs_slab_add(s); 5890 if (err) 5891 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5892 s->name); 5893 } 5894 5895 while (alias_list) { 5896 struct saved_alias *al = alias_list; 5897 5898 alias_list = alias_list->next; 5899 err = sysfs_slab_alias(al->s, al->name); 5900 if (err) 5901 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5902 al->name); 5903 kfree(al); 5904 } 5905 5906 mutex_unlock(&slab_mutex); 5907 resiliency_test(); 5908 return 0; 5909 } 5910 5911 __initcall(slab_sysfs_init); 5912 #endif /* CONFIG_SYSFS */ 5913 5914 /* 5915 * The /proc/slabinfo ABI 5916 */ 5917 #ifdef CONFIG_SLUB_DEBUG 5918 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5919 { 5920 unsigned long nr_slabs = 0; 5921 unsigned long nr_objs = 0; 5922 unsigned long nr_free = 0; 5923 int node; 5924 struct kmem_cache_node *n; 5925 5926 for_each_kmem_cache_node(s, node, n) { 5927 nr_slabs += node_nr_slabs(n); 5928 nr_objs += node_nr_objs(n); 5929 nr_free += count_partial(n, count_free); 5930 } 5931 5932 sinfo->active_objs = nr_objs - nr_free; 5933 sinfo->num_objs = nr_objs; 5934 sinfo->active_slabs = nr_slabs; 5935 sinfo->num_slabs = nr_slabs; 5936 sinfo->objects_per_slab = oo_objects(s->oo); 5937 sinfo->cache_order = oo_order(s->oo); 5938 } 5939 5940 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5941 { 5942 } 5943 5944 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5945 size_t count, loff_t *ppos) 5946 { 5947 return -EIO; 5948 } 5949 #endif /* CONFIG_SLUB_DEBUG */ 5950