xref: /linux/mm/slub.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
300 #endif
301 
302 /*
303  * Tracking user of a slab.
304  */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 	unsigned long addr;	/* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 	depot_stack_handle_t handle;
310 #endif
311 	int cpu;		/* Was running on cpu */
312 	int pid;		/* Pid context */
313 	unsigned long when;	/* When did the operation occur */
314 };
315 
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317 
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 							{ return 0; }
325 #endif
326 
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332 
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 	/*
337 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 	 * avoid this_cpu_add()'s irq-disable overhead.
339 	 */
340 	raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343 
344 /*
345  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347  * differ during memory hotplug/hotremove operations.
348  * Protected by slab_mutex.
349  */
350 static nodemask_t slab_nodes;
351 
352 #ifndef CONFIG_SLUB_TINY
353 /*
354  * Workqueue used for flush_cpu_slab().
355  */
356 static struct workqueue_struct *flushwq;
357 #endif
358 
359 /********************************************************************
360  * 			Core slab cache functions
361  *******************************************************************/
362 
363 /*
364  * freeptr_t represents a SLUB freelist pointer, which might be encoded
365  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366  */
367 typedef struct { unsigned long v; } freeptr_t;
368 
369 /*
370  * Returns freelist pointer (ptr). With hardening, this is obfuscated
371  * with an XOR of the address where the pointer is held and a per-cache
372  * random number.
373  */
374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 					    void *ptr, unsigned long ptr_addr)
376 {
377 	unsigned long encoded;
378 
379 #ifdef CONFIG_SLAB_FREELIST_HARDENED
380 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
381 #else
382 	encoded = (unsigned long)ptr;
383 #endif
384 	return (freeptr_t){.v = encoded};
385 }
386 
387 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 					freeptr_t ptr, unsigned long ptr_addr)
389 {
390 	void *decoded;
391 
392 #ifdef CONFIG_SLAB_FREELIST_HARDENED
393 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
394 #else
395 	decoded = (void *)ptr.v;
396 #endif
397 	return decoded;
398 }
399 
400 static inline void *get_freepointer(struct kmem_cache *s, void *object)
401 {
402 	unsigned long ptr_addr;
403 	freeptr_t p;
404 
405 	object = kasan_reset_tag(object);
406 	ptr_addr = (unsigned long)object + s->offset;
407 	p = *(freeptr_t *)(ptr_addr);
408 	return freelist_ptr_decode(s, p, ptr_addr);
409 }
410 
411 #ifndef CONFIG_SLUB_TINY
412 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
413 {
414 	prefetchw(object + s->offset);
415 }
416 #endif
417 
418 /*
419  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420  * pointer value in the case the current thread loses the race for the next
421  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423  * KMSAN will still check all arguments of cmpxchg because of imperfect
424  * handling of inline assembly.
425  * To work around this problem, we apply __no_kmsan_checks to ensure that
426  * get_freepointer_safe() returns initialized memory.
427  */
428 __no_kmsan_checks
429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
430 {
431 	unsigned long freepointer_addr;
432 	freeptr_t p;
433 
434 	if (!debug_pagealloc_enabled_static())
435 		return get_freepointer(s, object);
436 
437 	object = kasan_reset_tag(object);
438 	freepointer_addr = (unsigned long)object + s->offset;
439 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440 	return freelist_ptr_decode(s, p, freepointer_addr);
441 }
442 
443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
444 {
445 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
446 
447 #ifdef CONFIG_SLAB_FREELIST_HARDENED
448 	BUG_ON(object == fp); /* naive detection of double free or corruption */
449 #endif
450 
451 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
452 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
453 }
454 
455 /* Loop over all objects in a slab */
456 #define for_each_object(__p, __s, __addr, __objects) \
457 	for (__p = fixup_red_left(__s, __addr); \
458 		__p < (__addr) + (__objects) * (__s)->size; \
459 		__p += (__s)->size)
460 
461 static inline unsigned int order_objects(unsigned int order, unsigned int size)
462 {
463 	return ((unsigned int)PAGE_SIZE << order) / size;
464 }
465 
466 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
467 		unsigned int size)
468 {
469 	struct kmem_cache_order_objects x = {
470 		(order << OO_SHIFT) + order_objects(order, size)
471 	};
472 
473 	return x;
474 }
475 
476 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
477 {
478 	return x.x >> OO_SHIFT;
479 }
480 
481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
482 {
483 	return x.x & OO_MASK;
484 }
485 
486 #ifdef CONFIG_SLUB_CPU_PARTIAL
487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
488 {
489 	unsigned int nr_slabs;
490 
491 	s->cpu_partial = nr_objects;
492 
493 	/*
494 	 * We take the number of objects but actually limit the number of
495 	 * slabs on the per cpu partial list, in order to limit excessive
496 	 * growth of the list. For simplicity we assume that the slabs will
497 	 * be half-full.
498 	 */
499 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500 	s->cpu_partial_slabs = nr_slabs;
501 }
502 #else
503 static inline void
504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
505 {
506 }
507 #endif /* CONFIG_SLUB_CPU_PARTIAL */
508 
509 /*
510  * Per slab locking using the pagelock
511  */
512 static __always_inline void slab_lock(struct slab *slab)
513 {
514 	struct page *page = slab_page(slab);
515 
516 	VM_BUG_ON_PAGE(PageTail(page), page);
517 	bit_spin_lock(PG_locked, &page->flags);
518 }
519 
520 static __always_inline void slab_unlock(struct slab *slab)
521 {
522 	struct page *page = slab_page(slab);
523 
524 	VM_BUG_ON_PAGE(PageTail(page), page);
525 	__bit_spin_unlock(PG_locked, &page->flags);
526 }
527 
528 static inline bool
529 __update_freelist_fast(struct slab *slab,
530 		      void *freelist_old, unsigned long counters_old,
531 		      void *freelist_new, unsigned long counters_new)
532 {
533 #ifdef system_has_freelist_aba
534 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
536 
537 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
538 #else
539 	return false;
540 #endif
541 }
542 
543 static inline bool
544 __update_freelist_slow(struct slab *slab,
545 		      void *freelist_old, unsigned long counters_old,
546 		      void *freelist_new, unsigned long counters_new)
547 {
548 	bool ret = false;
549 
550 	slab_lock(slab);
551 	if (slab->freelist == freelist_old &&
552 	    slab->counters == counters_old) {
553 		slab->freelist = freelist_new;
554 		slab->counters = counters_new;
555 		ret = true;
556 	}
557 	slab_unlock(slab);
558 
559 	return ret;
560 }
561 
562 /*
563  * Interrupts must be disabled (for the fallback code to work right), typically
564  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566  * allocation/ free operation in hardirq context. Therefore nothing can
567  * interrupt the operation.
568  */
569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
570 		void *freelist_old, unsigned long counters_old,
571 		void *freelist_new, unsigned long counters_new,
572 		const char *n)
573 {
574 	bool ret;
575 
576 	if (USE_LOCKLESS_FAST_PATH())
577 		lockdep_assert_irqs_disabled();
578 
579 	if (s->flags & __CMPXCHG_DOUBLE) {
580 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
581 				            freelist_new, counters_new);
582 	} else {
583 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
584 				            freelist_new, counters_new);
585 	}
586 	if (likely(ret))
587 		return true;
588 
589 	cpu_relax();
590 	stat(s, CMPXCHG_DOUBLE_FAIL);
591 
592 #ifdef SLUB_DEBUG_CMPXCHG
593 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
594 #endif
595 
596 	return false;
597 }
598 
599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
600 		void *freelist_old, unsigned long counters_old,
601 		void *freelist_new, unsigned long counters_new,
602 		const char *n)
603 {
604 	bool ret;
605 
606 	if (s->flags & __CMPXCHG_DOUBLE) {
607 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
608 				            freelist_new, counters_new);
609 	} else {
610 		unsigned long flags;
611 
612 		local_irq_save(flags);
613 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
614 				            freelist_new, counters_new);
615 		local_irq_restore(flags);
616 	}
617 	if (likely(ret))
618 		return true;
619 
620 	cpu_relax();
621 	stat(s, CMPXCHG_DOUBLE_FAIL);
622 
623 #ifdef SLUB_DEBUG_CMPXCHG
624 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
625 #endif
626 
627 	return false;
628 }
629 
630 #ifdef CONFIG_SLUB_DEBUG
631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
632 static DEFINE_SPINLOCK(object_map_lock);
633 
634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
635 		       struct slab *slab)
636 {
637 	void *addr = slab_address(slab);
638 	void *p;
639 
640 	bitmap_zero(obj_map, slab->objects);
641 
642 	for (p = slab->freelist; p; p = get_freepointer(s, p))
643 		set_bit(__obj_to_index(s, addr, p), obj_map);
644 }
645 
646 #if IS_ENABLED(CONFIG_KUNIT)
647 static bool slab_add_kunit_errors(void)
648 {
649 	struct kunit_resource *resource;
650 
651 	if (!kunit_get_current_test())
652 		return false;
653 
654 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
655 	if (!resource)
656 		return false;
657 
658 	(*(int *)resource->data)++;
659 	kunit_put_resource(resource);
660 	return true;
661 }
662 #else
663 static inline bool slab_add_kunit_errors(void) { return false; }
664 #endif
665 
666 static inline unsigned int size_from_object(struct kmem_cache *s)
667 {
668 	if (s->flags & SLAB_RED_ZONE)
669 		return s->size - s->red_left_pad;
670 
671 	return s->size;
672 }
673 
674 static inline void *restore_red_left(struct kmem_cache *s, void *p)
675 {
676 	if (s->flags & SLAB_RED_ZONE)
677 		p -= s->red_left_pad;
678 
679 	return p;
680 }
681 
682 /*
683  * Debug settings:
684  */
685 #if defined(CONFIG_SLUB_DEBUG_ON)
686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
687 #else
688 static slab_flags_t slub_debug;
689 #endif
690 
691 static char *slub_debug_string;
692 static int disable_higher_order_debug;
693 
694 /*
695  * slub is about to manipulate internal object metadata.  This memory lies
696  * outside the range of the allocated object, so accessing it would normally
697  * be reported by kasan as a bounds error.  metadata_access_enable() is used
698  * to tell kasan that these accesses are OK.
699  */
700 static inline void metadata_access_enable(void)
701 {
702 	kasan_disable_current();
703 }
704 
705 static inline void metadata_access_disable(void)
706 {
707 	kasan_enable_current();
708 }
709 
710 /*
711  * Object debugging
712  */
713 
714 /* Verify that a pointer has an address that is valid within a slab page */
715 static inline int check_valid_pointer(struct kmem_cache *s,
716 				struct slab *slab, void *object)
717 {
718 	void *base;
719 
720 	if (!object)
721 		return 1;
722 
723 	base = slab_address(slab);
724 	object = kasan_reset_tag(object);
725 	object = restore_red_left(s, object);
726 	if (object < base || object >= base + slab->objects * s->size ||
727 		(object - base) % s->size) {
728 		return 0;
729 	}
730 
731 	return 1;
732 }
733 
734 static void print_section(char *level, char *text, u8 *addr,
735 			  unsigned int length)
736 {
737 	metadata_access_enable();
738 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739 			16, 1, kasan_reset_tag((void *)addr), length, 1);
740 	metadata_access_disable();
741 }
742 
743 /*
744  * See comment in calculate_sizes().
745  */
746 static inline bool freeptr_outside_object(struct kmem_cache *s)
747 {
748 	return s->offset >= s->inuse;
749 }
750 
751 /*
752  * Return offset of the end of info block which is inuse + free pointer if
753  * not overlapping with object.
754  */
755 static inline unsigned int get_info_end(struct kmem_cache *s)
756 {
757 	if (freeptr_outside_object(s))
758 		return s->inuse + sizeof(void *);
759 	else
760 		return s->inuse;
761 }
762 
763 static struct track *get_track(struct kmem_cache *s, void *object,
764 	enum track_item alloc)
765 {
766 	struct track *p;
767 
768 	p = object + get_info_end(s);
769 
770 	return kasan_reset_tag(p + alloc);
771 }
772 
773 #ifdef CONFIG_STACKDEPOT
774 static noinline depot_stack_handle_t set_track_prepare(void)
775 {
776 	depot_stack_handle_t handle;
777 	unsigned long entries[TRACK_ADDRS_COUNT];
778 	unsigned int nr_entries;
779 
780 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
781 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
782 
783 	return handle;
784 }
785 #else
786 static inline depot_stack_handle_t set_track_prepare(void)
787 {
788 	return 0;
789 }
790 #endif
791 
792 static void set_track_update(struct kmem_cache *s, void *object,
793 			     enum track_item alloc, unsigned long addr,
794 			     depot_stack_handle_t handle)
795 {
796 	struct track *p = get_track(s, object, alloc);
797 
798 #ifdef CONFIG_STACKDEPOT
799 	p->handle = handle;
800 #endif
801 	p->addr = addr;
802 	p->cpu = smp_processor_id();
803 	p->pid = current->pid;
804 	p->when = jiffies;
805 }
806 
807 static __always_inline void set_track(struct kmem_cache *s, void *object,
808 				      enum track_item alloc, unsigned long addr)
809 {
810 	depot_stack_handle_t handle = set_track_prepare();
811 
812 	set_track_update(s, object, alloc, addr, handle);
813 }
814 
815 static void init_tracking(struct kmem_cache *s, void *object)
816 {
817 	struct track *p;
818 
819 	if (!(s->flags & SLAB_STORE_USER))
820 		return;
821 
822 	p = get_track(s, object, TRACK_ALLOC);
823 	memset(p, 0, 2*sizeof(struct track));
824 }
825 
826 static void print_track(const char *s, struct track *t, unsigned long pr_time)
827 {
828 	depot_stack_handle_t handle __maybe_unused;
829 
830 	if (!t->addr)
831 		return;
832 
833 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
834 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
835 #ifdef CONFIG_STACKDEPOT
836 	handle = READ_ONCE(t->handle);
837 	if (handle)
838 		stack_depot_print(handle);
839 	else
840 		pr_err("object allocation/free stack trace missing\n");
841 #endif
842 }
843 
844 void print_tracking(struct kmem_cache *s, void *object)
845 {
846 	unsigned long pr_time = jiffies;
847 	if (!(s->flags & SLAB_STORE_USER))
848 		return;
849 
850 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
852 }
853 
854 static void print_slab_info(const struct slab *slab)
855 {
856 	struct folio *folio = (struct folio *)slab_folio(slab);
857 
858 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859 	       slab, slab->objects, slab->inuse, slab->freelist,
860 	       folio_flags(folio, 0));
861 }
862 
863 /*
864  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865  * family will round up the real request size to these fixed ones, so
866  * there could be an extra area than what is requested. Save the original
867  * request size in the meta data area, for better debug and sanity check.
868  */
869 static inline void set_orig_size(struct kmem_cache *s,
870 				void *object, unsigned int orig_size)
871 {
872 	void *p = kasan_reset_tag(object);
873 
874 	if (!slub_debug_orig_size(s))
875 		return;
876 
877 #ifdef CONFIG_KASAN_GENERIC
878 	/*
879 	 * KASAN could save its free meta data in object's data area at
880 	 * offset 0, if the size is larger than 'orig_size', it will
881 	 * overlap the data redzone in [orig_size+1, object_size], and
882 	 * the check should be skipped.
883 	 */
884 	if (kasan_metadata_size(s, true) > orig_size)
885 		orig_size = s->object_size;
886 #endif
887 
888 	p += get_info_end(s);
889 	p += sizeof(struct track) * 2;
890 
891 	*(unsigned int *)p = orig_size;
892 }
893 
894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
895 {
896 	void *p = kasan_reset_tag(object);
897 
898 	if (!slub_debug_orig_size(s))
899 		return s->object_size;
900 
901 	p += get_info_end(s);
902 	p += sizeof(struct track) * 2;
903 
904 	return *(unsigned int *)p;
905 }
906 
907 void skip_orig_size_check(struct kmem_cache *s, const void *object)
908 {
909 	set_orig_size(s, (void *)object, s->object_size);
910 }
911 
912 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
913 {
914 	struct va_format vaf;
915 	va_list args;
916 
917 	va_start(args, fmt);
918 	vaf.fmt = fmt;
919 	vaf.va = &args;
920 	pr_err("=============================================================================\n");
921 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
922 	pr_err("-----------------------------------------------------------------------------\n\n");
923 	va_end(args);
924 }
925 
926 __printf(2, 3)
927 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
928 {
929 	struct va_format vaf;
930 	va_list args;
931 
932 	if (slab_add_kunit_errors())
933 		return;
934 
935 	va_start(args, fmt);
936 	vaf.fmt = fmt;
937 	vaf.va = &args;
938 	pr_err("FIX %s: %pV\n", s->name, &vaf);
939 	va_end(args);
940 }
941 
942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
943 {
944 	unsigned int off;	/* Offset of last byte */
945 	u8 *addr = slab_address(slab);
946 
947 	print_tracking(s, p);
948 
949 	print_slab_info(slab);
950 
951 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
952 	       p, p - addr, get_freepointer(s, p));
953 
954 	if (s->flags & SLAB_RED_ZONE)
955 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
956 			      s->red_left_pad);
957 	else if (p > addr + 16)
958 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
959 
960 	print_section(KERN_ERR,         "Object   ", p,
961 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
962 	if (s->flags & SLAB_RED_ZONE)
963 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
964 			s->inuse - s->object_size);
965 
966 	off = get_info_end(s);
967 
968 	if (s->flags & SLAB_STORE_USER)
969 		off += 2 * sizeof(struct track);
970 
971 	if (slub_debug_orig_size(s))
972 		off += sizeof(unsigned int);
973 
974 	off += kasan_metadata_size(s, false);
975 
976 	if (off != size_from_object(s))
977 		/* Beginning of the filler is the free pointer */
978 		print_section(KERN_ERR, "Padding  ", p + off,
979 			      size_from_object(s) - off);
980 
981 	dump_stack();
982 }
983 
984 static void object_err(struct kmem_cache *s, struct slab *slab,
985 			u8 *object, char *reason)
986 {
987 	if (slab_add_kunit_errors())
988 		return;
989 
990 	slab_bug(s, "%s", reason);
991 	print_trailer(s, slab, object);
992 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
993 }
994 
995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
996 			       void **freelist, void *nextfree)
997 {
998 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
999 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1000 		object_err(s, slab, *freelist, "Freechain corrupt");
1001 		*freelist = NULL;
1002 		slab_fix(s, "Isolate corrupted freechain");
1003 		return true;
1004 	}
1005 
1006 	return false;
1007 }
1008 
1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1010 			const char *fmt, ...)
1011 {
1012 	va_list args;
1013 	char buf[100];
1014 
1015 	if (slab_add_kunit_errors())
1016 		return;
1017 
1018 	va_start(args, fmt);
1019 	vsnprintf(buf, sizeof(buf), fmt, args);
1020 	va_end(args);
1021 	slab_bug(s, "%s", buf);
1022 	print_slab_info(slab);
1023 	dump_stack();
1024 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1025 }
1026 
1027 static void init_object(struct kmem_cache *s, void *object, u8 val)
1028 {
1029 	u8 *p = kasan_reset_tag(object);
1030 	unsigned int poison_size = s->object_size;
1031 
1032 	if (s->flags & SLAB_RED_ZONE) {
1033 		memset(p - s->red_left_pad, val, s->red_left_pad);
1034 
1035 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1036 			/*
1037 			 * Redzone the extra allocated space by kmalloc than
1038 			 * requested, and the poison size will be limited to
1039 			 * the original request size accordingly.
1040 			 */
1041 			poison_size = get_orig_size(s, object);
1042 		}
1043 	}
1044 
1045 	if (s->flags & __OBJECT_POISON) {
1046 		memset(p, POISON_FREE, poison_size - 1);
1047 		p[poison_size - 1] = POISON_END;
1048 	}
1049 
1050 	if (s->flags & SLAB_RED_ZONE)
1051 		memset(p + poison_size, val, s->inuse - poison_size);
1052 }
1053 
1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055 						void *from, void *to)
1056 {
1057 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1058 	memset(from, data, to - from);
1059 }
1060 
1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1062 			u8 *object, char *what,
1063 			u8 *start, unsigned int value, unsigned int bytes)
1064 {
1065 	u8 *fault;
1066 	u8 *end;
1067 	u8 *addr = slab_address(slab);
1068 
1069 	metadata_access_enable();
1070 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1071 	metadata_access_disable();
1072 	if (!fault)
1073 		return 1;
1074 
1075 	end = start + bytes;
1076 	while (end > fault && end[-1] == value)
1077 		end--;
1078 
1079 	if (slab_add_kunit_errors())
1080 		goto skip_bug_print;
1081 
1082 	slab_bug(s, "%s overwritten", what);
1083 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1084 					fault, end - 1, fault - addr,
1085 					fault[0], value);
1086 	print_trailer(s, slab, object);
1087 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1088 
1089 skip_bug_print:
1090 	restore_bytes(s, what, value, fault, end);
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Object layout:
1096  *
1097  * object address
1098  * 	Bytes of the object to be managed.
1099  * 	If the freepointer may overlay the object then the free
1100  *	pointer is at the middle of the object.
1101  *
1102  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1103  * 	0xa5 (POISON_END)
1104  *
1105  * object + s->object_size
1106  * 	Padding to reach word boundary. This is also used for Redzoning.
1107  * 	Padding is extended by another word if Redzoning is enabled and
1108  * 	object_size == inuse.
1109  *
1110  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111  * 	0xcc (RED_ACTIVE) for objects in use.
1112  *
1113  * object + s->inuse
1114  * 	Meta data starts here.
1115  *
1116  * 	A. Free pointer (if we cannot overwrite object on free)
1117  * 	B. Tracking data for SLAB_STORE_USER
1118  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119  *	D. Padding to reach required alignment boundary or at minimum
1120  * 		one word if debugging is on to be able to detect writes
1121  * 		before the word boundary.
1122  *
1123  *	Padding is done using 0x5a (POISON_INUSE)
1124  *
1125  * object + s->size
1126  * 	Nothing is used beyond s->size.
1127  *
1128  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1129  * ignored. And therefore no slab options that rely on these boundaries
1130  * may be used with merged slabcaches.
1131  */
1132 
1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1134 {
1135 	unsigned long off = get_info_end(s);	/* The end of info */
1136 
1137 	if (s->flags & SLAB_STORE_USER) {
1138 		/* We also have user information there */
1139 		off += 2 * sizeof(struct track);
1140 
1141 		if (s->flags & SLAB_KMALLOC)
1142 			off += sizeof(unsigned int);
1143 	}
1144 
1145 	off += kasan_metadata_size(s, false);
1146 
1147 	if (size_from_object(s) == off)
1148 		return 1;
1149 
1150 	return check_bytes_and_report(s, slab, p, "Object padding",
1151 			p + off, POISON_INUSE, size_from_object(s) - off);
1152 }
1153 
1154 /* Check the pad bytes at the end of a slab page */
1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1156 {
1157 	u8 *start;
1158 	u8 *fault;
1159 	u8 *end;
1160 	u8 *pad;
1161 	int length;
1162 	int remainder;
1163 
1164 	if (!(s->flags & SLAB_POISON))
1165 		return;
1166 
1167 	start = slab_address(slab);
1168 	length = slab_size(slab);
1169 	end = start + length;
1170 	remainder = length % s->size;
1171 	if (!remainder)
1172 		return;
1173 
1174 	pad = end - remainder;
1175 	metadata_access_enable();
1176 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1177 	metadata_access_disable();
1178 	if (!fault)
1179 		return;
1180 	while (end > fault && end[-1] == POISON_INUSE)
1181 		end--;
1182 
1183 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1184 			fault, end - 1, fault - start);
1185 	print_section(KERN_ERR, "Padding ", pad, remainder);
1186 
1187 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1188 }
1189 
1190 static int check_object(struct kmem_cache *s, struct slab *slab,
1191 					void *object, u8 val)
1192 {
1193 	u8 *p = object;
1194 	u8 *endobject = object + s->object_size;
1195 	unsigned int orig_size;
1196 
1197 	if (s->flags & SLAB_RED_ZONE) {
1198 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1199 			object - s->red_left_pad, val, s->red_left_pad))
1200 			return 0;
1201 
1202 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1203 			endobject, val, s->inuse - s->object_size))
1204 			return 0;
1205 
1206 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207 			orig_size = get_orig_size(s, object);
1208 
1209 			if (s->object_size > orig_size  &&
1210 				!check_bytes_and_report(s, slab, object,
1211 					"kmalloc Redzone", p + orig_size,
1212 					val, s->object_size - orig_size)) {
1213 				return 0;
1214 			}
1215 		}
1216 	} else {
1217 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1218 			check_bytes_and_report(s, slab, p, "Alignment padding",
1219 				endobject, POISON_INUSE,
1220 				s->inuse - s->object_size);
1221 		}
1222 	}
1223 
1224 	if (s->flags & SLAB_POISON) {
1225 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1226 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1227 					POISON_FREE, s->object_size - 1) ||
1228 			 !check_bytes_and_report(s, slab, p, "End Poison",
1229 				p + s->object_size - 1, POISON_END, 1)))
1230 			return 0;
1231 		/*
1232 		 * check_pad_bytes cleans up on its own.
1233 		 */
1234 		check_pad_bytes(s, slab, p);
1235 	}
1236 
1237 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1238 		/*
1239 		 * Object and freepointer overlap. Cannot check
1240 		 * freepointer while object is allocated.
1241 		 */
1242 		return 1;
1243 
1244 	/* Check free pointer validity */
1245 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246 		object_err(s, slab, p, "Freepointer corrupt");
1247 		/*
1248 		 * No choice but to zap it and thus lose the remainder
1249 		 * of the free objects in this slab. May cause
1250 		 * another error because the object count is now wrong.
1251 		 */
1252 		set_freepointer(s, p, NULL);
1253 		return 0;
1254 	}
1255 	return 1;
1256 }
1257 
1258 static int check_slab(struct kmem_cache *s, struct slab *slab)
1259 {
1260 	int maxobj;
1261 
1262 	if (!folio_test_slab(slab_folio(slab))) {
1263 		slab_err(s, slab, "Not a valid slab page");
1264 		return 0;
1265 	}
1266 
1267 	maxobj = order_objects(slab_order(slab), s->size);
1268 	if (slab->objects > maxobj) {
1269 		slab_err(s, slab, "objects %u > max %u",
1270 			slab->objects, maxobj);
1271 		return 0;
1272 	}
1273 	if (slab->inuse > slab->objects) {
1274 		slab_err(s, slab, "inuse %u > max %u",
1275 			slab->inuse, slab->objects);
1276 		return 0;
1277 	}
1278 	/* Slab_pad_check fixes things up after itself */
1279 	slab_pad_check(s, slab);
1280 	return 1;
1281 }
1282 
1283 /*
1284  * Determine if a certain object in a slab is on the freelist. Must hold the
1285  * slab lock to guarantee that the chains are in a consistent state.
1286  */
1287 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1288 {
1289 	int nr = 0;
1290 	void *fp;
1291 	void *object = NULL;
1292 	int max_objects;
1293 
1294 	fp = slab->freelist;
1295 	while (fp && nr <= slab->objects) {
1296 		if (fp == search)
1297 			return 1;
1298 		if (!check_valid_pointer(s, slab, fp)) {
1299 			if (object) {
1300 				object_err(s, slab, object,
1301 					"Freechain corrupt");
1302 				set_freepointer(s, object, NULL);
1303 			} else {
1304 				slab_err(s, slab, "Freepointer corrupt");
1305 				slab->freelist = NULL;
1306 				slab->inuse = slab->objects;
1307 				slab_fix(s, "Freelist cleared");
1308 				return 0;
1309 			}
1310 			break;
1311 		}
1312 		object = fp;
1313 		fp = get_freepointer(s, object);
1314 		nr++;
1315 	}
1316 
1317 	max_objects = order_objects(slab_order(slab), s->size);
1318 	if (max_objects > MAX_OBJS_PER_PAGE)
1319 		max_objects = MAX_OBJS_PER_PAGE;
1320 
1321 	if (slab->objects != max_objects) {
1322 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1323 			 slab->objects, max_objects);
1324 		slab->objects = max_objects;
1325 		slab_fix(s, "Number of objects adjusted");
1326 	}
1327 	if (slab->inuse != slab->objects - nr) {
1328 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1329 			 slab->inuse, slab->objects - nr);
1330 		slab->inuse = slab->objects - nr;
1331 		slab_fix(s, "Object count adjusted");
1332 	}
1333 	return search == NULL;
1334 }
1335 
1336 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1337 								int alloc)
1338 {
1339 	if (s->flags & SLAB_TRACE) {
1340 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1341 			s->name,
1342 			alloc ? "alloc" : "free",
1343 			object, slab->inuse,
1344 			slab->freelist);
1345 
1346 		if (!alloc)
1347 			print_section(KERN_INFO, "Object ", (void *)object,
1348 					s->object_size);
1349 
1350 		dump_stack();
1351 	}
1352 }
1353 
1354 /*
1355  * Tracking of fully allocated slabs for debugging purposes.
1356  */
1357 static void add_full(struct kmem_cache *s,
1358 	struct kmem_cache_node *n, struct slab *slab)
1359 {
1360 	if (!(s->flags & SLAB_STORE_USER))
1361 		return;
1362 
1363 	lockdep_assert_held(&n->list_lock);
1364 	list_add(&slab->slab_list, &n->full);
1365 }
1366 
1367 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1368 {
1369 	if (!(s->flags & SLAB_STORE_USER))
1370 		return;
1371 
1372 	lockdep_assert_held(&n->list_lock);
1373 	list_del(&slab->slab_list);
1374 }
1375 
1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1377 {
1378 	return atomic_long_read(&n->nr_slabs);
1379 }
1380 
1381 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1382 {
1383 	struct kmem_cache_node *n = get_node(s, node);
1384 
1385 	/*
1386 	 * May be called early in order to allocate a slab for the
1387 	 * kmem_cache_node structure. Solve the chicken-egg
1388 	 * dilemma by deferring the increment of the count during
1389 	 * bootstrap (see early_kmem_cache_node_alloc).
1390 	 */
1391 	if (likely(n)) {
1392 		atomic_long_inc(&n->nr_slabs);
1393 		atomic_long_add(objects, &n->total_objects);
1394 	}
1395 }
1396 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1397 {
1398 	struct kmem_cache_node *n = get_node(s, node);
1399 
1400 	atomic_long_dec(&n->nr_slabs);
1401 	atomic_long_sub(objects, &n->total_objects);
1402 }
1403 
1404 /* Object debug checks for alloc/free paths */
1405 static void setup_object_debug(struct kmem_cache *s, void *object)
1406 {
1407 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1408 		return;
1409 
1410 	init_object(s, object, SLUB_RED_INACTIVE);
1411 	init_tracking(s, object);
1412 }
1413 
1414 static
1415 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1416 {
1417 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1418 		return;
1419 
1420 	metadata_access_enable();
1421 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1422 	metadata_access_disable();
1423 }
1424 
1425 static inline int alloc_consistency_checks(struct kmem_cache *s,
1426 					struct slab *slab, void *object)
1427 {
1428 	if (!check_slab(s, slab))
1429 		return 0;
1430 
1431 	if (!check_valid_pointer(s, slab, object)) {
1432 		object_err(s, slab, object, "Freelist Pointer check fails");
1433 		return 0;
1434 	}
1435 
1436 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1437 		return 0;
1438 
1439 	return 1;
1440 }
1441 
1442 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1443 			struct slab *slab, void *object, int orig_size)
1444 {
1445 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1446 		if (!alloc_consistency_checks(s, slab, object))
1447 			goto bad;
1448 	}
1449 
1450 	/* Success. Perform special debug activities for allocs */
1451 	trace(s, slab, object, 1);
1452 	set_orig_size(s, object, orig_size);
1453 	init_object(s, object, SLUB_RED_ACTIVE);
1454 	return true;
1455 
1456 bad:
1457 	if (folio_test_slab(slab_folio(slab))) {
1458 		/*
1459 		 * If this is a slab page then lets do the best we can
1460 		 * to avoid issues in the future. Marking all objects
1461 		 * as used avoids touching the remaining objects.
1462 		 */
1463 		slab_fix(s, "Marking all objects used");
1464 		slab->inuse = slab->objects;
1465 		slab->freelist = NULL;
1466 	}
1467 	return false;
1468 }
1469 
1470 static inline int free_consistency_checks(struct kmem_cache *s,
1471 		struct slab *slab, void *object, unsigned long addr)
1472 {
1473 	if (!check_valid_pointer(s, slab, object)) {
1474 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1475 		return 0;
1476 	}
1477 
1478 	if (on_freelist(s, slab, object)) {
1479 		object_err(s, slab, object, "Object already free");
1480 		return 0;
1481 	}
1482 
1483 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1484 		return 0;
1485 
1486 	if (unlikely(s != slab->slab_cache)) {
1487 		if (!folio_test_slab(slab_folio(slab))) {
1488 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1489 				 object);
1490 		} else if (!slab->slab_cache) {
1491 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1492 			       object);
1493 			dump_stack();
1494 		} else
1495 			object_err(s, slab, object,
1496 					"page slab pointer corrupt.");
1497 		return 0;
1498 	}
1499 	return 1;
1500 }
1501 
1502 /*
1503  * Parse a block of slub_debug options. Blocks are delimited by ';'
1504  *
1505  * @str:    start of block
1506  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507  * @slabs:  return start of list of slabs, or NULL when there's no list
1508  * @init:   assume this is initial parsing and not per-kmem-create parsing
1509  *
1510  * returns the start of next block if there's any, or NULL
1511  */
1512 static char *
1513 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1514 {
1515 	bool higher_order_disable = false;
1516 
1517 	/* Skip any completely empty blocks */
1518 	while (*str && *str == ';')
1519 		str++;
1520 
1521 	if (*str == ',') {
1522 		/*
1523 		 * No options but restriction on slabs. This means full
1524 		 * debugging for slabs matching a pattern.
1525 		 */
1526 		*flags = DEBUG_DEFAULT_FLAGS;
1527 		goto check_slabs;
1528 	}
1529 	*flags = 0;
1530 
1531 	/* Determine which debug features should be switched on */
1532 	for (; *str && *str != ',' && *str != ';'; str++) {
1533 		switch (tolower(*str)) {
1534 		case '-':
1535 			*flags = 0;
1536 			break;
1537 		case 'f':
1538 			*flags |= SLAB_CONSISTENCY_CHECKS;
1539 			break;
1540 		case 'z':
1541 			*flags |= SLAB_RED_ZONE;
1542 			break;
1543 		case 'p':
1544 			*flags |= SLAB_POISON;
1545 			break;
1546 		case 'u':
1547 			*flags |= SLAB_STORE_USER;
1548 			break;
1549 		case 't':
1550 			*flags |= SLAB_TRACE;
1551 			break;
1552 		case 'a':
1553 			*flags |= SLAB_FAILSLAB;
1554 			break;
1555 		case 'o':
1556 			/*
1557 			 * Avoid enabling debugging on caches if its minimum
1558 			 * order would increase as a result.
1559 			 */
1560 			higher_order_disable = true;
1561 			break;
1562 		default:
1563 			if (init)
1564 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1565 		}
1566 	}
1567 check_slabs:
1568 	if (*str == ',')
1569 		*slabs = ++str;
1570 	else
1571 		*slabs = NULL;
1572 
1573 	/* Skip over the slab list */
1574 	while (*str && *str != ';')
1575 		str++;
1576 
1577 	/* Skip any completely empty blocks */
1578 	while (*str && *str == ';')
1579 		str++;
1580 
1581 	if (init && higher_order_disable)
1582 		disable_higher_order_debug = 1;
1583 
1584 	if (*str)
1585 		return str;
1586 	else
1587 		return NULL;
1588 }
1589 
1590 static int __init setup_slub_debug(char *str)
1591 {
1592 	slab_flags_t flags;
1593 	slab_flags_t global_flags;
1594 	char *saved_str;
1595 	char *slab_list;
1596 	bool global_slub_debug_changed = false;
1597 	bool slab_list_specified = false;
1598 
1599 	global_flags = DEBUG_DEFAULT_FLAGS;
1600 	if (*str++ != '=' || !*str)
1601 		/*
1602 		 * No options specified. Switch on full debugging.
1603 		 */
1604 		goto out;
1605 
1606 	saved_str = str;
1607 	while (str) {
1608 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1609 
1610 		if (!slab_list) {
1611 			global_flags = flags;
1612 			global_slub_debug_changed = true;
1613 		} else {
1614 			slab_list_specified = true;
1615 			if (flags & SLAB_STORE_USER)
1616 				stack_depot_request_early_init();
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * For backwards compatibility, a single list of flags with list of
1622 	 * slabs means debugging is only changed for those slabs, so the global
1623 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1625 	 * long as there is no option specifying flags without a slab list.
1626 	 */
1627 	if (slab_list_specified) {
1628 		if (!global_slub_debug_changed)
1629 			global_flags = slub_debug;
1630 		slub_debug_string = saved_str;
1631 	}
1632 out:
1633 	slub_debug = global_flags;
1634 	if (slub_debug & SLAB_STORE_USER)
1635 		stack_depot_request_early_init();
1636 	if (slub_debug != 0 || slub_debug_string)
1637 		static_branch_enable(&slub_debug_enabled);
1638 	else
1639 		static_branch_disable(&slub_debug_enabled);
1640 	if ((static_branch_unlikely(&init_on_alloc) ||
1641 	     static_branch_unlikely(&init_on_free)) &&
1642 	    (slub_debug & SLAB_POISON))
1643 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1644 	return 1;
1645 }
1646 
1647 __setup("slub_debug", setup_slub_debug);
1648 
1649 /*
1650  * kmem_cache_flags - apply debugging options to the cache
1651  * @object_size:	the size of an object without meta data
1652  * @flags:		flags to set
1653  * @name:		name of the cache
1654  *
1655  * Debug option(s) are applied to @flags. In addition to the debug
1656  * option(s), if a slab name (or multiple) is specified i.e.
1657  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658  * then only the select slabs will receive the debug option(s).
1659  */
1660 slab_flags_t kmem_cache_flags(unsigned int object_size,
1661 	slab_flags_t flags, const char *name)
1662 {
1663 	char *iter;
1664 	size_t len;
1665 	char *next_block;
1666 	slab_flags_t block_flags;
1667 	slab_flags_t slub_debug_local = slub_debug;
1668 
1669 	if (flags & SLAB_NO_USER_FLAGS)
1670 		return flags;
1671 
1672 	/*
1673 	 * If the slab cache is for debugging (e.g. kmemleak) then
1674 	 * don't store user (stack trace) information by default,
1675 	 * but let the user enable it via the command line below.
1676 	 */
1677 	if (flags & SLAB_NOLEAKTRACE)
1678 		slub_debug_local &= ~SLAB_STORE_USER;
1679 
1680 	len = strlen(name);
1681 	next_block = slub_debug_string;
1682 	/* Go through all blocks of debug options, see if any matches our slab's name */
1683 	while (next_block) {
1684 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1685 		if (!iter)
1686 			continue;
1687 		/* Found a block that has a slab list, search it */
1688 		while (*iter) {
1689 			char *end, *glob;
1690 			size_t cmplen;
1691 
1692 			end = strchrnul(iter, ',');
1693 			if (next_block && next_block < end)
1694 				end = next_block - 1;
1695 
1696 			glob = strnchr(iter, end - iter, '*');
1697 			if (glob)
1698 				cmplen = glob - iter;
1699 			else
1700 				cmplen = max_t(size_t, len, (end - iter));
1701 
1702 			if (!strncmp(name, iter, cmplen)) {
1703 				flags |= block_flags;
1704 				return flags;
1705 			}
1706 
1707 			if (!*end || *end == ';')
1708 				break;
1709 			iter = end + 1;
1710 		}
1711 	}
1712 
1713 	return flags | slub_debug_local;
1714 }
1715 #else /* !CONFIG_SLUB_DEBUG */
1716 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1717 static inline
1718 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1719 
1720 static inline bool alloc_debug_processing(struct kmem_cache *s,
1721 	struct slab *slab, void *object, int orig_size) { return true; }
1722 
1723 static inline bool free_debug_processing(struct kmem_cache *s,
1724 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1726 
1727 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1728 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1729 			void *object, u8 val) { return 1; }
1730 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1731 static inline void set_track(struct kmem_cache *s, void *object,
1732 			     enum track_item alloc, unsigned long addr) {}
1733 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1734 					struct slab *slab) {}
1735 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1736 					struct slab *slab) {}
1737 slab_flags_t kmem_cache_flags(unsigned int object_size,
1738 	slab_flags_t flags, const char *name)
1739 {
1740 	return flags;
1741 }
1742 #define slub_debug 0
1743 
1744 #define disable_higher_order_debug 0
1745 
1746 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1747 							{ return 0; }
1748 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1749 							int objects) {}
1750 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1751 							int objects) {}
1752 
1753 #ifndef CONFIG_SLUB_TINY
1754 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1755 			       void **freelist, void *nextfree)
1756 {
1757 	return false;
1758 }
1759 #endif
1760 #endif /* CONFIG_SLUB_DEBUG */
1761 
1762 /*
1763  * Hooks for other subsystems that check memory allocations. In a typical
1764  * production configuration these hooks all should produce no code at all.
1765  */
1766 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1767 						void *x, bool init)
1768 {
1769 	kmemleak_free_recursive(x, s->flags);
1770 	kmsan_slab_free(s, x);
1771 
1772 	debug_check_no_locks_freed(x, s->object_size);
1773 
1774 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1775 		debug_check_no_obj_freed(x, s->object_size);
1776 
1777 	/* Use KCSAN to help debug racy use-after-free. */
1778 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1779 		__kcsan_check_access(x, s->object_size,
1780 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1781 
1782 	/*
1783 	 * As memory initialization might be integrated into KASAN,
1784 	 * kasan_slab_free and initialization memset's must be
1785 	 * kept together to avoid discrepancies in behavior.
1786 	 *
1787 	 * The initialization memset's clear the object and the metadata,
1788 	 * but don't touch the SLAB redzone.
1789 	 */
1790 	if (init) {
1791 		int rsize;
1792 
1793 		if (!kasan_has_integrated_init())
1794 			memset(kasan_reset_tag(x), 0, s->object_size);
1795 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1796 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1797 		       s->size - s->inuse - rsize);
1798 	}
1799 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1800 	return kasan_slab_free(s, x, init);
1801 }
1802 
1803 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1804 					   void **head, void **tail,
1805 					   int *cnt)
1806 {
1807 
1808 	void *object;
1809 	void *next = *head;
1810 	void *old_tail = *tail ? *tail : *head;
1811 
1812 	if (is_kfence_address(next)) {
1813 		slab_free_hook(s, next, false);
1814 		return true;
1815 	}
1816 
1817 	/* Head and tail of the reconstructed freelist */
1818 	*head = NULL;
1819 	*tail = NULL;
1820 
1821 	do {
1822 		object = next;
1823 		next = get_freepointer(s, object);
1824 
1825 		/* If object's reuse doesn't have to be delayed */
1826 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1827 			/* Move object to the new freelist */
1828 			set_freepointer(s, object, *head);
1829 			*head = object;
1830 			if (!*tail)
1831 				*tail = object;
1832 		} else {
1833 			/*
1834 			 * Adjust the reconstructed freelist depth
1835 			 * accordingly if object's reuse is delayed.
1836 			 */
1837 			--(*cnt);
1838 		}
1839 	} while (object != old_tail);
1840 
1841 	if (*head == *tail)
1842 		*tail = NULL;
1843 
1844 	return *head != NULL;
1845 }
1846 
1847 static void *setup_object(struct kmem_cache *s, void *object)
1848 {
1849 	setup_object_debug(s, object);
1850 	object = kasan_init_slab_obj(s, object);
1851 	if (unlikely(s->ctor)) {
1852 		kasan_unpoison_object_data(s, object);
1853 		s->ctor(object);
1854 		kasan_poison_object_data(s, object);
1855 	}
1856 	return object;
1857 }
1858 
1859 /*
1860  * Slab allocation and freeing
1861  */
1862 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1863 		struct kmem_cache_order_objects oo)
1864 {
1865 	struct folio *folio;
1866 	struct slab *slab;
1867 	unsigned int order = oo_order(oo);
1868 
1869 	if (node == NUMA_NO_NODE)
1870 		folio = (struct folio *)alloc_pages(flags, order);
1871 	else
1872 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1873 
1874 	if (!folio)
1875 		return NULL;
1876 
1877 	slab = folio_slab(folio);
1878 	__folio_set_slab(folio);
1879 	/* Make the flag visible before any changes to folio->mapping */
1880 	smp_wmb();
1881 	if (folio_is_pfmemalloc(folio))
1882 		slab_set_pfmemalloc(slab);
1883 
1884 	return slab;
1885 }
1886 
1887 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1888 /* Pre-initialize the random sequence cache */
1889 static int init_cache_random_seq(struct kmem_cache *s)
1890 {
1891 	unsigned int count = oo_objects(s->oo);
1892 	int err;
1893 
1894 	/* Bailout if already initialised */
1895 	if (s->random_seq)
1896 		return 0;
1897 
1898 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1899 	if (err) {
1900 		pr_err("SLUB: Unable to initialize free list for %s\n",
1901 			s->name);
1902 		return err;
1903 	}
1904 
1905 	/* Transform to an offset on the set of pages */
1906 	if (s->random_seq) {
1907 		unsigned int i;
1908 
1909 		for (i = 0; i < count; i++)
1910 			s->random_seq[i] *= s->size;
1911 	}
1912 	return 0;
1913 }
1914 
1915 /* Initialize each random sequence freelist per cache */
1916 static void __init init_freelist_randomization(void)
1917 {
1918 	struct kmem_cache *s;
1919 
1920 	mutex_lock(&slab_mutex);
1921 
1922 	list_for_each_entry(s, &slab_caches, list)
1923 		init_cache_random_seq(s);
1924 
1925 	mutex_unlock(&slab_mutex);
1926 }
1927 
1928 /* Get the next entry on the pre-computed freelist randomized */
1929 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1930 				unsigned long *pos, void *start,
1931 				unsigned long page_limit,
1932 				unsigned long freelist_count)
1933 {
1934 	unsigned int idx;
1935 
1936 	/*
1937 	 * If the target page allocation failed, the number of objects on the
1938 	 * page might be smaller than the usual size defined by the cache.
1939 	 */
1940 	do {
1941 		idx = s->random_seq[*pos];
1942 		*pos += 1;
1943 		if (*pos >= freelist_count)
1944 			*pos = 0;
1945 	} while (unlikely(idx >= page_limit));
1946 
1947 	return (char *)start + idx;
1948 }
1949 
1950 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1951 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1952 {
1953 	void *start;
1954 	void *cur;
1955 	void *next;
1956 	unsigned long idx, pos, page_limit, freelist_count;
1957 
1958 	if (slab->objects < 2 || !s->random_seq)
1959 		return false;
1960 
1961 	freelist_count = oo_objects(s->oo);
1962 	pos = get_random_u32_below(freelist_count);
1963 
1964 	page_limit = slab->objects * s->size;
1965 	start = fixup_red_left(s, slab_address(slab));
1966 
1967 	/* First entry is used as the base of the freelist */
1968 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1969 				freelist_count);
1970 	cur = setup_object(s, cur);
1971 	slab->freelist = cur;
1972 
1973 	for (idx = 1; idx < slab->objects; idx++) {
1974 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1975 			freelist_count);
1976 		next = setup_object(s, next);
1977 		set_freepointer(s, cur, next);
1978 		cur = next;
1979 	}
1980 	set_freepointer(s, cur, NULL);
1981 
1982 	return true;
1983 }
1984 #else
1985 static inline int init_cache_random_seq(struct kmem_cache *s)
1986 {
1987 	return 0;
1988 }
1989 static inline void init_freelist_randomization(void) { }
1990 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1991 {
1992 	return false;
1993 }
1994 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1995 
1996 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1997 {
1998 	struct slab *slab;
1999 	struct kmem_cache_order_objects oo = s->oo;
2000 	gfp_t alloc_gfp;
2001 	void *start, *p, *next;
2002 	int idx;
2003 	bool shuffle;
2004 
2005 	flags &= gfp_allowed_mask;
2006 
2007 	flags |= s->allocflags;
2008 
2009 	/*
2010 	 * Let the initial higher-order allocation fail under memory pressure
2011 	 * so we fall-back to the minimum order allocation.
2012 	 */
2013 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2014 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2015 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2016 
2017 	slab = alloc_slab_page(alloc_gfp, node, oo);
2018 	if (unlikely(!slab)) {
2019 		oo = s->min;
2020 		alloc_gfp = flags;
2021 		/*
2022 		 * Allocation may have failed due to fragmentation.
2023 		 * Try a lower order alloc if possible
2024 		 */
2025 		slab = alloc_slab_page(alloc_gfp, node, oo);
2026 		if (unlikely(!slab))
2027 			return NULL;
2028 		stat(s, ORDER_FALLBACK);
2029 	}
2030 
2031 	slab->objects = oo_objects(oo);
2032 	slab->inuse = 0;
2033 	slab->frozen = 0;
2034 
2035 	account_slab(slab, oo_order(oo), s, flags);
2036 
2037 	slab->slab_cache = s;
2038 
2039 	kasan_poison_slab(slab);
2040 
2041 	start = slab_address(slab);
2042 
2043 	setup_slab_debug(s, slab, start);
2044 
2045 	shuffle = shuffle_freelist(s, slab);
2046 
2047 	if (!shuffle) {
2048 		start = fixup_red_left(s, start);
2049 		start = setup_object(s, start);
2050 		slab->freelist = start;
2051 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2052 			next = p + s->size;
2053 			next = setup_object(s, next);
2054 			set_freepointer(s, p, next);
2055 			p = next;
2056 		}
2057 		set_freepointer(s, p, NULL);
2058 	}
2059 
2060 	return slab;
2061 }
2062 
2063 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2064 {
2065 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2066 		flags = kmalloc_fix_flags(flags);
2067 
2068 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2069 
2070 	return allocate_slab(s,
2071 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2072 }
2073 
2074 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2075 {
2076 	struct folio *folio = slab_folio(slab);
2077 	int order = folio_order(folio);
2078 	int pages = 1 << order;
2079 
2080 	__slab_clear_pfmemalloc(slab);
2081 	folio->mapping = NULL;
2082 	/* Make the mapping reset visible before clearing the flag */
2083 	smp_wmb();
2084 	__folio_clear_slab(folio);
2085 	mm_account_reclaimed_pages(pages);
2086 	unaccount_slab(slab, order, s);
2087 	__free_pages(&folio->page, order);
2088 }
2089 
2090 static void rcu_free_slab(struct rcu_head *h)
2091 {
2092 	struct slab *slab = container_of(h, struct slab, rcu_head);
2093 
2094 	__free_slab(slab->slab_cache, slab);
2095 }
2096 
2097 static void free_slab(struct kmem_cache *s, struct slab *slab)
2098 {
2099 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2100 		void *p;
2101 
2102 		slab_pad_check(s, slab);
2103 		for_each_object(p, s, slab_address(slab), slab->objects)
2104 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2105 	}
2106 
2107 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2108 		call_rcu(&slab->rcu_head, rcu_free_slab);
2109 	else
2110 		__free_slab(s, slab);
2111 }
2112 
2113 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2114 {
2115 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2116 	free_slab(s, slab);
2117 }
2118 
2119 /*
2120  * Management of partially allocated slabs.
2121  */
2122 static inline void
2123 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2124 {
2125 	n->nr_partial++;
2126 	if (tail == DEACTIVATE_TO_TAIL)
2127 		list_add_tail(&slab->slab_list, &n->partial);
2128 	else
2129 		list_add(&slab->slab_list, &n->partial);
2130 }
2131 
2132 static inline void add_partial(struct kmem_cache_node *n,
2133 				struct slab *slab, int tail)
2134 {
2135 	lockdep_assert_held(&n->list_lock);
2136 	__add_partial(n, slab, tail);
2137 }
2138 
2139 static inline void remove_partial(struct kmem_cache_node *n,
2140 					struct slab *slab)
2141 {
2142 	lockdep_assert_held(&n->list_lock);
2143 	list_del(&slab->slab_list);
2144 	n->nr_partial--;
2145 }
2146 
2147 /*
2148  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2149  * slab from the n->partial list. Remove only a single object from the slab, do
2150  * the alloc_debug_processing() checks and leave the slab on the list, or move
2151  * it to full list if it was the last free object.
2152  */
2153 static void *alloc_single_from_partial(struct kmem_cache *s,
2154 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2155 {
2156 	void *object;
2157 
2158 	lockdep_assert_held(&n->list_lock);
2159 
2160 	object = slab->freelist;
2161 	slab->freelist = get_freepointer(s, object);
2162 	slab->inuse++;
2163 
2164 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2165 		remove_partial(n, slab);
2166 		return NULL;
2167 	}
2168 
2169 	if (slab->inuse == slab->objects) {
2170 		remove_partial(n, slab);
2171 		add_full(s, n, slab);
2172 	}
2173 
2174 	return object;
2175 }
2176 
2177 /*
2178  * Called only for kmem_cache_debug() caches to allocate from a freshly
2179  * allocated slab. Allocate a single object instead of whole freelist
2180  * and put the slab to the partial (or full) list.
2181  */
2182 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2183 					struct slab *slab, int orig_size)
2184 {
2185 	int nid = slab_nid(slab);
2186 	struct kmem_cache_node *n = get_node(s, nid);
2187 	unsigned long flags;
2188 	void *object;
2189 
2190 
2191 	object = slab->freelist;
2192 	slab->freelist = get_freepointer(s, object);
2193 	slab->inuse = 1;
2194 
2195 	if (!alloc_debug_processing(s, slab, object, orig_size))
2196 		/*
2197 		 * It's not really expected that this would fail on a
2198 		 * freshly allocated slab, but a concurrent memory
2199 		 * corruption in theory could cause that.
2200 		 */
2201 		return NULL;
2202 
2203 	spin_lock_irqsave(&n->list_lock, flags);
2204 
2205 	if (slab->inuse == slab->objects)
2206 		add_full(s, n, slab);
2207 	else
2208 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2209 
2210 	inc_slabs_node(s, nid, slab->objects);
2211 	spin_unlock_irqrestore(&n->list_lock, flags);
2212 
2213 	return object;
2214 }
2215 
2216 /*
2217  * Remove slab from the partial list, freeze it and
2218  * return the pointer to the freelist.
2219  *
2220  * Returns a list of objects or NULL if it fails.
2221  */
2222 static inline void *acquire_slab(struct kmem_cache *s,
2223 		struct kmem_cache_node *n, struct slab *slab,
2224 		int mode)
2225 {
2226 	void *freelist;
2227 	unsigned long counters;
2228 	struct slab new;
2229 
2230 	lockdep_assert_held(&n->list_lock);
2231 
2232 	/*
2233 	 * Zap the freelist and set the frozen bit.
2234 	 * The old freelist is the list of objects for the
2235 	 * per cpu allocation list.
2236 	 */
2237 	freelist = slab->freelist;
2238 	counters = slab->counters;
2239 	new.counters = counters;
2240 	if (mode) {
2241 		new.inuse = slab->objects;
2242 		new.freelist = NULL;
2243 	} else {
2244 		new.freelist = freelist;
2245 	}
2246 
2247 	VM_BUG_ON(new.frozen);
2248 	new.frozen = 1;
2249 
2250 	if (!__slab_update_freelist(s, slab,
2251 			freelist, counters,
2252 			new.freelist, new.counters,
2253 			"acquire_slab"))
2254 		return NULL;
2255 
2256 	remove_partial(n, slab);
2257 	WARN_ON(!freelist);
2258 	return freelist;
2259 }
2260 
2261 #ifdef CONFIG_SLUB_CPU_PARTIAL
2262 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2263 #else
2264 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2265 				   int drain) { }
2266 #endif
2267 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2268 
2269 /*
2270  * Try to allocate a partial slab from a specific node.
2271  */
2272 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2273 			      struct partial_context *pc)
2274 {
2275 	struct slab *slab, *slab2;
2276 	void *object = NULL;
2277 	unsigned long flags;
2278 	unsigned int partial_slabs = 0;
2279 
2280 	/*
2281 	 * Racy check. If we mistakenly see no partial slabs then we
2282 	 * just allocate an empty slab. If we mistakenly try to get a
2283 	 * partial slab and there is none available then get_partial()
2284 	 * will return NULL.
2285 	 */
2286 	if (!n || !n->nr_partial)
2287 		return NULL;
2288 
2289 	spin_lock_irqsave(&n->list_lock, flags);
2290 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2291 		void *t;
2292 
2293 		if (!pfmemalloc_match(slab, pc->flags))
2294 			continue;
2295 
2296 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2297 			object = alloc_single_from_partial(s, n, slab,
2298 							pc->orig_size);
2299 			if (object)
2300 				break;
2301 			continue;
2302 		}
2303 
2304 		t = acquire_slab(s, n, slab, object == NULL);
2305 		if (!t)
2306 			break;
2307 
2308 		if (!object) {
2309 			*pc->slab = slab;
2310 			stat(s, ALLOC_FROM_PARTIAL);
2311 			object = t;
2312 		} else {
2313 			put_cpu_partial(s, slab, 0);
2314 			stat(s, CPU_PARTIAL_NODE);
2315 			partial_slabs++;
2316 		}
2317 #ifdef CONFIG_SLUB_CPU_PARTIAL
2318 		if (!kmem_cache_has_cpu_partial(s)
2319 			|| partial_slabs > s->cpu_partial_slabs / 2)
2320 			break;
2321 #else
2322 		break;
2323 #endif
2324 
2325 	}
2326 	spin_unlock_irqrestore(&n->list_lock, flags);
2327 	return object;
2328 }
2329 
2330 /*
2331  * Get a slab from somewhere. Search in increasing NUMA distances.
2332  */
2333 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2334 {
2335 #ifdef CONFIG_NUMA
2336 	struct zonelist *zonelist;
2337 	struct zoneref *z;
2338 	struct zone *zone;
2339 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2340 	void *object;
2341 	unsigned int cpuset_mems_cookie;
2342 
2343 	/*
2344 	 * The defrag ratio allows a configuration of the tradeoffs between
2345 	 * inter node defragmentation and node local allocations. A lower
2346 	 * defrag_ratio increases the tendency to do local allocations
2347 	 * instead of attempting to obtain partial slabs from other nodes.
2348 	 *
2349 	 * If the defrag_ratio is set to 0 then kmalloc() always
2350 	 * returns node local objects. If the ratio is higher then kmalloc()
2351 	 * may return off node objects because partial slabs are obtained
2352 	 * from other nodes and filled up.
2353 	 *
2354 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2355 	 * (which makes defrag_ratio = 1000) then every (well almost)
2356 	 * allocation will first attempt to defrag slab caches on other nodes.
2357 	 * This means scanning over all nodes to look for partial slabs which
2358 	 * may be expensive if we do it every time we are trying to find a slab
2359 	 * with available objects.
2360 	 */
2361 	if (!s->remote_node_defrag_ratio ||
2362 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2363 		return NULL;
2364 
2365 	do {
2366 		cpuset_mems_cookie = read_mems_allowed_begin();
2367 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2368 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2369 			struct kmem_cache_node *n;
2370 
2371 			n = get_node(s, zone_to_nid(zone));
2372 
2373 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2374 					n->nr_partial > s->min_partial) {
2375 				object = get_partial_node(s, n, pc);
2376 				if (object) {
2377 					/*
2378 					 * Don't check read_mems_allowed_retry()
2379 					 * here - if mems_allowed was updated in
2380 					 * parallel, that was a harmless race
2381 					 * between allocation and the cpuset
2382 					 * update
2383 					 */
2384 					return object;
2385 				}
2386 			}
2387 		}
2388 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2389 #endif	/* CONFIG_NUMA */
2390 	return NULL;
2391 }
2392 
2393 /*
2394  * Get a partial slab, lock it and return it.
2395  */
2396 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2397 {
2398 	void *object;
2399 	int searchnode = node;
2400 
2401 	if (node == NUMA_NO_NODE)
2402 		searchnode = numa_mem_id();
2403 
2404 	object = get_partial_node(s, get_node(s, searchnode), pc);
2405 	if (object || node != NUMA_NO_NODE)
2406 		return object;
2407 
2408 	return get_any_partial(s, pc);
2409 }
2410 
2411 #ifndef CONFIG_SLUB_TINY
2412 
2413 #ifdef CONFIG_PREEMPTION
2414 /*
2415  * Calculate the next globally unique transaction for disambiguation
2416  * during cmpxchg. The transactions start with the cpu number and are then
2417  * incremented by CONFIG_NR_CPUS.
2418  */
2419 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2420 #else
2421 /*
2422  * No preemption supported therefore also no need to check for
2423  * different cpus.
2424  */
2425 #define TID_STEP 1
2426 #endif /* CONFIG_PREEMPTION */
2427 
2428 static inline unsigned long next_tid(unsigned long tid)
2429 {
2430 	return tid + TID_STEP;
2431 }
2432 
2433 #ifdef SLUB_DEBUG_CMPXCHG
2434 static inline unsigned int tid_to_cpu(unsigned long tid)
2435 {
2436 	return tid % TID_STEP;
2437 }
2438 
2439 static inline unsigned long tid_to_event(unsigned long tid)
2440 {
2441 	return tid / TID_STEP;
2442 }
2443 #endif
2444 
2445 static inline unsigned int init_tid(int cpu)
2446 {
2447 	return cpu;
2448 }
2449 
2450 static inline void note_cmpxchg_failure(const char *n,
2451 		const struct kmem_cache *s, unsigned long tid)
2452 {
2453 #ifdef SLUB_DEBUG_CMPXCHG
2454 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2455 
2456 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2457 
2458 #ifdef CONFIG_PREEMPTION
2459 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2460 		pr_warn("due to cpu change %d -> %d\n",
2461 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2462 	else
2463 #endif
2464 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2465 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2466 			tid_to_event(tid), tid_to_event(actual_tid));
2467 	else
2468 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2469 			actual_tid, tid, next_tid(tid));
2470 #endif
2471 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2472 }
2473 
2474 static void init_kmem_cache_cpus(struct kmem_cache *s)
2475 {
2476 	int cpu;
2477 	struct kmem_cache_cpu *c;
2478 
2479 	for_each_possible_cpu(cpu) {
2480 		c = per_cpu_ptr(s->cpu_slab, cpu);
2481 		local_lock_init(&c->lock);
2482 		c->tid = init_tid(cpu);
2483 	}
2484 }
2485 
2486 /*
2487  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2488  * unfreezes the slabs and puts it on the proper list.
2489  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2490  * by the caller.
2491  */
2492 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2493 			    void *freelist)
2494 {
2495 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2496 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2497 	int free_delta = 0;
2498 	enum slab_modes mode = M_NONE;
2499 	void *nextfree, *freelist_iter, *freelist_tail;
2500 	int tail = DEACTIVATE_TO_HEAD;
2501 	unsigned long flags = 0;
2502 	struct slab new;
2503 	struct slab old;
2504 
2505 	if (slab->freelist) {
2506 		stat(s, DEACTIVATE_REMOTE_FREES);
2507 		tail = DEACTIVATE_TO_TAIL;
2508 	}
2509 
2510 	/*
2511 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2512 	 * remember the last object in freelist_tail for later splicing.
2513 	 */
2514 	freelist_tail = NULL;
2515 	freelist_iter = freelist;
2516 	while (freelist_iter) {
2517 		nextfree = get_freepointer(s, freelist_iter);
2518 
2519 		/*
2520 		 * If 'nextfree' is invalid, it is possible that the object at
2521 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2522 		 * starting at 'freelist_iter' by skipping them.
2523 		 */
2524 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2525 			break;
2526 
2527 		freelist_tail = freelist_iter;
2528 		free_delta++;
2529 
2530 		freelist_iter = nextfree;
2531 	}
2532 
2533 	/*
2534 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2535 	 * freelist to the head of slab's freelist.
2536 	 *
2537 	 * Ensure that the slab is unfrozen while the list presence
2538 	 * reflects the actual number of objects during unfreeze.
2539 	 *
2540 	 * We first perform cmpxchg holding lock and insert to list
2541 	 * when it succeed. If there is mismatch then the slab is not
2542 	 * unfrozen and number of objects in the slab may have changed.
2543 	 * Then release lock and retry cmpxchg again.
2544 	 */
2545 redo:
2546 
2547 	old.freelist = READ_ONCE(slab->freelist);
2548 	old.counters = READ_ONCE(slab->counters);
2549 	VM_BUG_ON(!old.frozen);
2550 
2551 	/* Determine target state of the slab */
2552 	new.counters = old.counters;
2553 	if (freelist_tail) {
2554 		new.inuse -= free_delta;
2555 		set_freepointer(s, freelist_tail, old.freelist);
2556 		new.freelist = freelist;
2557 	} else
2558 		new.freelist = old.freelist;
2559 
2560 	new.frozen = 0;
2561 
2562 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2563 		mode = M_FREE;
2564 	} else if (new.freelist) {
2565 		mode = M_PARTIAL;
2566 		/*
2567 		 * Taking the spinlock removes the possibility that
2568 		 * acquire_slab() will see a slab that is frozen
2569 		 */
2570 		spin_lock_irqsave(&n->list_lock, flags);
2571 	} else {
2572 		mode = M_FULL_NOLIST;
2573 	}
2574 
2575 
2576 	if (!slab_update_freelist(s, slab,
2577 				old.freelist, old.counters,
2578 				new.freelist, new.counters,
2579 				"unfreezing slab")) {
2580 		if (mode == M_PARTIAL)
2581 			spin_unlock_irqrestore(&n->list_lock, flags);
2582 		goto redo;
2583 	}
2584 
2585 
2586 	if (mode == M_PARTIAL) {
2587 		add_partial(n, slab, tail);
2588 		spin_unlock_irqrestore(&n->list_lock, flags);
2589 		stat(s, tail);
2590 	} else if (mode == M_FREE) {
2591 		stat(s, DEACTIVATE_EMPTY);
2592 		discard_slab(s, slab);
2593 		stat(s, FREE_SLAB);
2594 	} else if (mode == M_FULL_NOLIST) {
2595 		stat(s, DEACTIVATE_FULL);
2596 	}
2597 }
2598 
2599 #ifdef CONFIG_SLUB_CPU_PARTIAL
2600 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2601 {
2602 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2603 	struct slab *slab, *slab_to_discard = NULL;
2604 	unsigned long flags = 0;
2605 
2606 	while (partial_slab) {
2607 		struct slab new;
2608 		struct slab old;
2609 
2610 		slab = partial_slab;
2611 		partial_slab = slab->next;
2612 
2613 		n2 = get_node(s, slab_nid(slab));
2614 		if (n != n2) {
2615 			if (n)
2616 				spin_unlock_irqrestore(&n->list_lock, flags);
2617 
2618 			n = n2;
2619 			spin_lock_irqsave(&n->list_lock, flags);
2620 		}
2621 
2622 		do {
2623 
2624 			old.freelist = slab->freelist;
2625 			old.counters = slab->counters;
2626 			VM_BUG_ON(!old.frozen);
2627 
2628 			new.counters = old.counters;
2629 			new.freelist = old.freelist;
2630 
2631 			new.frozen = 0;
2632 
2633 		} while (!__slab_update_freelist(s, slab,
2634 				old.freelist, old.counters,
2635 				new.freelist, new.counters,
2636 				"unfreezing slab"));
2637 
2638 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2639 			slab->next = slab_to_discard;
2640 			slab_to_discard = slab;
2641 		} else {
2642 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2643 			stat(s, FREE_ADD_PARTIAL);
2644 		}
2645 	}
2646 
2647 	if (n)
2648 		spin_unlock_irqrestore(&n->list_lock, flags);
2649 
2650 	while (slab_to_discard) {
2651 		slab = slab_to_discard;
2652 		slab_to_discard = slab_to_discard->next;
2653 
2654 		stat(s, DEACTIVATE_EMPTY);
2655 		discard_slab(s, slab);
2656 		stat(s, FREE_SLAB);
2657 	}
2658 }
2659 
2660 /*
2661  * Unfreeze all the cpu partial slabs.
2662  */
2663 static void unfreeze_partials(struct kmem_cache *s)
2664 {
2665 	struct slab *partial_slab;
2666 	unsigned long flags;
2667 
2668 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2669 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2670 	this_cpu_write(s->cpu_slab->partial, NULL);
2671 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2672 
2673 	if (partial_slab)
2674 		__unfreeze_partials(s, partial_slab);
2675 }
2676 
2677 static void unfreeze_partials_cpu(struct kmem_cache *s,
2678 				  struct kmem_cache_cpu *c)
2679 {
2680 	struct slab *partial_slab;
2681 
2682 	partial_slab = slub_percpu_partial(c);
2683 	c->partial = NULL;
2684 
2685 	if (partial_slab)
2686 		__unfreeze_partials(s, partial_slab);
2687 }
2688 
2689 /*
2690  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2691  * partial slab slot if available.
2692  *
2693  * If we did not find a slot then simply move all the partials to the
2694  * per node partial list.
2695  */
2696 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2697 {
2698 	struct slab *oldslab;
2699 	struct slab *slab_to_unfreeze = NULL;
2700 	unsigned long flags;
2701 	int slabs = 0;
2702 
2703 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2704 
2705 	oldslab = this_cpu_read(s->cpu_slab->partial);
2706 
2707 	if (oldslab) {
2708 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2709 			/*
2710 			 * Partial array is full. Move the existing set to the
2711 			 * per node partial list. Postpone the actual unfreezing
2712 			 * outside of the critical section.
2713 			 */
2714 			slab_to_unfreeze = oldslab;
2715 			oldslab = NULL;
2716 		} else {
2717 			slabs = oldslab->slabs;
2718 		}
2719 	}
2720 
2721 	slabs++;
2722 
2723 	slab->slabs = slabs;
2724 	slab->next = oldslab;
2725 
2726 	this_cpu_write(s->cpu_slab->partial, slab);
2727 
2728 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2729 
2730 	if (slab_to_unfreeze) {
2731 		__unfreeze_partials(s, slab_to_unfreeze);
2732 		stat(s, CPU_PARTIAL_DRAIN);
2733 	}
2734 }
2735 
2736 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2737 
2738 static inline void unfreeze_partials(struct kmem_cache *s) { }
2739 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2740 				  struct kmem_cache_cpu *c) { }
2741 
2742 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2743 
2744 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2745 {
2746 	unsigned long flags;
2747 	struct slab *slab;
2748 	void *freelist;
2749 
2750 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2751 
2752 	slab = c->slab;
2753 	freelist = c->freelist;
2754 
2755 	c->slab = NULL;
2756 	c->freelist = NULL;
2757 	c->tid = next_tid(c->tid);
2758 
2759 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2760 
2761 	if (slab) {
2762 		deactivate_slab(s, slab, freelist);
2763 		stat(s, CPUSLAB_FLUSH);
2764 	}
2765 }
2766 
2767 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2768 {
2769 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2770 	void *freelist = c->freelist;
2771 	struct slab *slab = c->slab;
2772 
2773 	c->slab = NULL;
2774 	c->freelist = NULL;
2775 	c->tid = next_tid(c->tid);
2776 
2777 	if (slab) {
2778 		deactivate_slab(s, slab, freelist);
2779 		stat(s, CPUSLAB_FLUSH);
2780 	}
2781 
2782 	unfreeze_partials_cpu(s, c);
2783 }
2784 
2785 struct slub_flush_work {
2786 	struct work_struct work;
2787 	struct kmem_cache *s;
2788 	bool skip;
2789 };
2790 
2791 /*
2792  * Flush cpu slab.
2793  *
2794  * Called from CPU work handler with migration disabled.
2795  */
2796 static void flush_cpu_slab(struct work_struct *w)
2797 {
2798 	struct kmem_cache *s;
2799 	struct kmem_cache_cpu *c;
2800 	struct slub_flush_work *sfw;
2801 
2802 	sfw = container_of(w, struct slub_flush_work, work);
2803 
2804 	s = sfw->s;
2805 	c = this_cpu_ptr(s->cpu_slab);
2806 
2807 	if (c->slab)
2808 		flush_slab(s, c);
2809 
2810 	unfreeze_partials(s);
2811 }
2812 
2813 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2814 {
2815 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2816 
2817 	return c->slab || slub_percpu_partial(c);
2818 }
2819 
2820 static DEFINE_MUTEX(flush_lock);
2821 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2822 
2823 static void flush_all_cpus_locked(struct kmem_cache *s)
2824 {
2825 	struct slub_flush_work *sfw;
2826 	unsigned int cpu;
2827 
2828 	lockdep_assert_cpus_held();
2829 	mutex_lock(&flush_lock);
2830 
2831 	for_each_online_cpu(cpu) {
2832 		sfw = &per_cpu(slub_flush, cpu);
2833 		if (!has_cpu_slab(cpu, s)) {
2834 			sfw->skip = true;
2835 			continue;
2836 		}
2837 		INIT_WORK(&sfw->work, flush_cpu_slab);
2838 		sfw->skip = false;
2839 		sfw->s = s;
2840 		queue_work_on(cpu, flushwq, &sfw->work);
2841 	}
2842 
2843 	for_each_online_cpu(cpu) {
2844 		sfw = &per_cpu(slub_flush, cpu);
2845 		if (sfw->skip)
2846 			continue;
2847 		flush_work(&sfw->work);
2848 	}
2849 
2850 	mutex_unlock(&flush_lock);
2851 }
2852 
2853 static void flush_all(struct kmem_cache *s)
2854 {
2855 	cpus_read_lock();
2856 	flush_all_cpus_locked(s);
2857 	cpus_read_unlock();
2858 }
2859 
2860 /*
2861  * Use the cpu notifier to insure that the cpu slabs are flushed when
2862  * necessary.
2863  */
2864 static int slub_cpu_dead(unsigned int cpu)
2865 {
2866 	struct kmem_cache *s;
2867 
2868 	mutex_lock(&slab_mutex);
2869 	list_for_each_entry(s, &slab_caches, list)
2870 		__flush_cpu_slab(s, cpu);
2871 	mutex_unlock(&slab_mutex);
2872 	return 0;
2873 }
2874 
2875 #else /* CONFIG_SLUB_TINY */
2876 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2877 static inline void flush_all(struct kmem_cache *s) { }
2878 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2879 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2880 #endif /* CONFIG_SLUB_TINY */
2881 
2882 /*
2883  * Check if the objects in a per cpu structure fit numa
2884  * locality expectations.
2885  */
2886 static inline int node_match(struct slab *slab, int node)
2887 {
2888 #ifdef CONFIG_NUMA
2889 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2890 		return 0;
2891 #endif
2892 	return 1;
2893 }
2894 
2895 #ifdef CONFIG_SLUB_DEBUG
2896 static int count_free(struct slab *slab)
2897 {
2898 	return slab->objects - slab->inuse;
2899 }
2900 
2901 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2902 {
2903 	return atomic_long_read(&n->total_objects);
2904 }
2905 
2906 /* Supports checking bulk free of a constructed freelist */
2907 static inline bool free_debug_processing(struct kmem_cache *s,
2908 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2909 	unsigned long addr, depot_stack_handle_t handle)
2910 {
2911 	bool checks_ok = false;
2912 	void *object = head;
2913 	int cnt = 0;
2914 
2915 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2916 		if (!check_slab(s, slab))
2917 			goto out;
2918 	}
2919 
2920 	if (slab->inuse < *bulk_cnt) {
2921 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2922 			 slab->inuse, *bulk_cnt);
2923 		goto out;
2924 	}
2925 
2926 next_object:
2927 
2928 	if (++cnt > *bulk_cnt)
2929 		goto out_cnt;
2930 
2931 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2932 		if (!free_consistency_checks(s, slab, object, addr))
2933 			goto out;
2934 	}
2935 
2936 	if (s->flags & SLAB_STORE_USER)
2937 		set_track_update(s, object, TRACK_FREE, addr, handle);
2938 	trace(s, slab, object, 0);
2939 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2940 	init_object(s, object, SLUB_RED_INACTIVE);
2941 
2942 	/* Reached end of constructed freelist yet? */
2943 	if (object != tail) {
2944 		object = get_freepointer(s, object);
2945 		goto next_object;
2946 	}
2947 	checks_ok = true;
2948 
2949 out_cnt:
2950 	if (cnt != *bulk_cnt) {
2951 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2952 			 *bulk_cnt, cnt);
2953 		*bulk_cnt = cnt;
2954 	}
2955 
2956 out:
2957 
2958 	if (!checks_ok)
2959 		slab_fix(s, "Object at 0x%p not freed", object);
2960 
2961 	return checks_ok;
2962 }
2963 #endif /* CONFIG_SLUB_DEBUG */
2964 
2965 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2966 static unsigned long count_partial(struct kmem_cache_node *n,
2967 					int (*get_count)(struct slab *))
2968 {
2969 	unsigned long flags;
2970 	unsigned long x = 0;
2971 	struct slab *slab;
2972 
2973 	spin_lock_irqsave(&n->list_lock, flags);
2974 	list_for_each_entry(slab, &n->partial, slab_list)
2975 		x += get_count(slab);
2976 	spin_unlock_irqrestore(&n->list_lock, flags);
2977 	return x;
2978 }
2979 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2980 
2981 #ifdef CONFIG_SLUB_DEBUG
2982 static noinline void
2983 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2984 {
2985 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2986 				      DEFAULT_RATELIMIT_BURST);
2987 	int node;
2988 	struct kmem_cache_node *n;
2989 
2990 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2991 		return;
2992 
2993 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2994 		nid, gfpflags, &gfpflags);
2995 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2996 		s->name, s->object_size, s->size, oo_order(s->oo),
2997 		oo_order(s->min));
2998 
2999 	if (oo_order(s->min) > get_order(s->object_size))
3000 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3001 			s->name);
3002 
3003 	for_each_kmem_cache_node(s, node, n) {
3004 		unsigned long nr_slabs;
3005 		unsigned long nr_objs;
3006 		unsigned long nr_free;
3007 
3008 		nr_free  = count_partial(n, count_free);
3009 		nr_slabs = node_nr_slabs(n);
3010 		nr_objs  = node_nr_objs(n);
3011 
3012 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3013 			node, nr_slabs, nr_objs, nr_free);
3014 	}
3015 }
3016 #else /* CONFIG_SLUB_DEBUG */
3017 static inline void
3018 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3019 #endif
3020 
3021 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3022 {
3023 	if (unlikely(slab_test_pfmemalloc(slab)))
3024 		return gfp_pfmemalloc_allowed(gfpflags);
3025 
3026 	return true;
3027 }
3028 
3029 #ifndef CONFIG_SLUB_TINY
3030 static inline bool
3031 __update_cpu_freelist_fast(struct kmem_cache *s,
3032 			   void *freelist_old, void *freelist_new,
3033 			   unsigned long tid)
3034 {
3035 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3036 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3037 
3038 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3039 					     &old.full, new.full);
3040 }
3041 
3042 /*
3043  * Check the slab->freelist and either transfer the freelist to the
3044  * per cpu freelist or deactivate the slab.
3045  *
3046  * The slab is still frozen if the return value is not NULL.
3047  *
3048  * If this function returns NULL then the slab has been unfrozen.
3049  */
3050 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3051 {
3052 	struct slab new;
3053 	unsigned long counters;
3054 	void *freelist;
3055 
3056 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3057 
3058 	do {
3059 		freelist = slab->freelist;
3060 		counters = slab->counters;
3061 
3062 		new.counters = counters;
3063 		VM_BUG_ON(!new.frozen);
3064 
3065 		new.inuse = slab->objects;
3066 		new.frozen = freelist != NULL;
3067 
3068 	} while (!__slab_update_freelist(s, slab,
3069 		freelist, counters,
3070 		NULL, new.counters,
3071 		"get_freelist"));
3072 
3073 	return freelist;
3074 }
3075 
3076 /*
3077  * Slow path. The lockless freelist is empty or we need to perform
3078  * debugging duties.
3079  *
3080  * Processing is still very fast if new objects have been freed to the
3081  * regular freelist. In that case we simply take over the regular freelist
3082  * as the lockless freelist and zap the regular freelist.
3083  *
3084  * If that is not working then we fall back to the partial lists. We take the
3085  * first element of the freelist as the object to allocate now and move the
3086  * rest of the freelist to the lockless freelist.
3087  *
3088  * And if we were unable to get a new slab from the partial slab lists then
3089  * we need to allocate a new slab. This is the slowest path since it involves
3090  * a call to the page allocator and the setup of a new slab.
3091  *
3092  * Version of __slab_alloc to use when we know that preemption is
3093  * already disabled (which is the case for bulk allocation).
3094  */
3095 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3097 {
3098 	void *freelist;
3099 	struct slab *slab;
3100 	unsigned long flags;
3101 	struct partial_context pc;
3102 
3103 	stat(s, ALLOC_SLOWPATH);
3104 
3105 reread_slab:
3106 
3107 	slab = READ_ONCE(c->slab);
3108 	if (!slab) {
3109 		/*
3110 		 * if the node is not online or has no normal memory, just
3111 		 * ignore the node constraint
3112 		 */
3113 		if (unlikely(node != NUMA_NO_NODE &&
3114 			     !node_isset(node, slab_nodes)))
3115 			node = NUMA_NO_NODE;
3116 		goto new_slab;
3117 	}
3118 redo:
3119 
3120 	if (unlikely(!node_match(slab, node))) {
3121 		/*
3122 		 * same as above but node_match() being false already
3123 		 * implies node != NUMA_NO_NODE
3124 		 */
3125 		if (!node_isset(node, slab_nodes)) {
3126 			node = NUMA_NO_NODE;
3127 		} else {
3128 			stat(s, ALLOC_NODE_MISMATCH);
3129 			goto deactivate_slab;
3130 		}
3131 	}
3132 
3133 	/*
3134 	 * By rights, we should be searching for a slab page that was
3135 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3136 	 * information when the page leaves the per-cpu allocator
3137 	 */
3138 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3139 		goto deactivate_slab;
3140 
3141 	/* must check again c->slab in case we got preempted and it changed */
3142 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3143 	if (unlikely(slab != c->slab)) {
3144 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3145 		goto reread_slab;
3146 	}
3147 	freelist = c->freelist;
3148 	if (freelist)
3149 		goto load_freelist;
3150 
3151 	freelist = get_freelist(s, slab);
3152 
3153 	if (!freelist) {
3154 		c->slab = NULL;
3155 		c->tid = next_tid(c->tid);
3156 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3157 		stat(s, DEACTIVATE_BYPASS);
3158 		goto new_slab;
3159 	}
3160 
3161 	stat(s, ALLOC_REFILL);
3162 
3163 load_freelist:
3164 
3165 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3166 
3167 	/*
3168 	 * freelist is pointing to the list of objects to be used.
3169 	 * slab is pointing to the slab from which the objects are obtained.
3170 	 * That slab must be frozen for per cpu allocations to work.
3171 	 */
3172 	VM_BUG_ON(!c->slab->frozen);
3173 	c->freelist = get_freepointer(s, freelist);
3174 	c->tid = next_tid(c->tid);
3175 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3176 	return freelist;
3177 
3178 deactivate_slab:
3179 
3180 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3181 	if (slab != c->slab) {
3182 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3183 		goto reread_slab;
3184 	}
3185 	freelist = c->freelist;
3186 	c->slab = NULL;
3187 	c->freelist = NULL;
3188 	c->tid = next_tid(c->tid);
3189 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 	deactivate_slab(s, slab, freelist);
3191 
3192 new_slab:
3193 
3194 	if (slub_percpu_partial(c)) {
3195 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3196 		if (unlikely(c->slab)) {
3197 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3198 			goto reread_slab;
3199 		}
3200 		if (unlikely(!slub_percpu_partial(c))) {
3201 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202 			/* we were preempted and partial list got empty */
3203 			goto new_objects;
3204 		}
3205 
3206 		slab = c->slab = slub_percpu_partial(c);
3207 		slub_set_percpu_partial(c, slab);
3208 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3209 		stat(s, CPU_PARTIAL_ALLOC);
3210 		goto redo;
3211 	}
3212 
3213 new_objects:
3214 
3215 	pc.flags = gfpflags;
3216 	pc.slab = &slab;
3217 	pc.orig_size = orig_size;
3218 	freelist = get_partial(s, node, &pc);
3219 	if (freelist)
3220 		goto check_new_slab;
3221 
3222 	slub_put_cpu_ptr(s->cpu_slab);
3223 	slab = new_slab(s, gfpflags, node);
3224 	c = slub_get_cpu_ptr(s->cpu_slab);
3225 
3226 	if (unlikely(!slab)) {
3227 		slab_out_of_memory(s, gfpflags, node);
3228 		return NULL;
3229 	}
3230 
3231 	stat(s, ALLOC_SLAB);
3232 
3233 	if (kmem_cache_debug(s)) {
3234 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3235 
3236 		if (unlikely(!freelist))
3237 			goto new_objects;
3238 
3239 		if (s->flags & SLAB_STORE_USER)
3240 			set_track(s, freelist, TRACK_ALLOC, addr);
3241 
3242 		return freelist;
3243 	}
3244 
3245 	/*
3246 	 * No other reference to the slab yet so we can
3247 	 * muck around with it freely without cmpxchg
3248 	 */
3249 	freelist = slab->freelist;
3250 	slab->freelist = NULL;
3251 	slab->inuse = slab->objects;
3252 	slab->frozen = 1;
3253 
3254 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3255 
3256 check_new_slab:
3257 
3258 	if (kmem_cache_debug(s)) {
3259 		/*
3260 		 * For debug caches here we had to go through
3261 		 * alloc_single_from_partial() so just store the tracking info
3262 		 * and return the object
3263 		 */
3264 		if (s->flags & SLAB_STORE_USER)
3265 			set_track(s, freelist, TRACK_ALLOC, addr);
3266 
3267 		return freelist;
3268 	}
3269 
3270 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3271 		/*
3272 		 * For !pfmemalloc_match() case we don't load freelist so that
3273 		 * we don't make further mismatched allocations easier.
3274 		 */
3275 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3276 		return freelist;
3277 	}
3278 
3279 retry_load_slab:
3280 
3281 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3282 	if (unlikely(c->slab)) {
3283 		void *flush_freelist = c->freelist;
3284 		struct slab *flush_slab = c->slab;
3285 
3286 		c->slab = NULL;
3287 		c->freelist = NULL;
3288 		c->tid = next_tid(c->tid);
3289 
3290 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3291 
3292 		deactivate_slab(s, flush_slab, flush_freelist);
3293 
3294 		stat(s, CPUSLAB_FLUSH);
3295 
3296 		goto retry_load_slab;
3297 	}
3298 	c->slab = slab;
3299 
3300 	goto load_freelist;
3301 }
3302 
3303 /*
3304  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3305  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3306  * pointer.
3307  */
3308 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3309 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3310 {
3311 	void *p;
3312 
3313 #ifdef CONFIG_PREEMPT_COUNT
3314 	/*
3315 	 * We may have been preempted and rescheduled on a different
3316 	 * cpu before disabling preemption. Need to reload cpu area
3317 	 * pointer.
3318 	 */
3319 	c = slub_get_cpu_ptr(s->cpu_slab);
3320 #endif
3321 
3322 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3323 #ifdef CONFIG_PREEMPT_COUNT
3324 	slub_put_cpu_ptr(s->cpu_slab);
3325 #endif
3326 	return p;
3327 }
3328 
3329 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3330 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3331 {
3332 	struct kmem_cache_cpu *c;
3333 	struct slab *slab;
3334 	unsigned long tid;
3335 	void *object;
3336 
3337 redo:
3338 	/*
3339 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3340 	 * enabled. We may switch back and forth between cpus while
3341 	 * reading from one cpu area. That does not matter as long
3342 	 * as we end up on the original cpu again when doing the cmpxchg.
3343 	 *
3344 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3345 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3346 	 * the tid. If we are preempted and switched to another cpu between the
3347 	 * two reads, it's OK as the two are still associated with the same cpu
3348 	 * and cmpxchg later will validate the cpu.
3349 	 */
3350 	c = raw_cpu_ptr(s->cpu_slab);
3351 	tid = READ_ONCE(c->tid);
3352 
3353 	/*
3354 	 * Irqless object alloc/free algorithm used here depends on sequence
3355 	 * of fetching cpu_slab's data. tid should be fetched before anything
3356 	 * on c to guarantee that object and slab associated with previous tid
3357 	 * won't be used with current tid. If we fetch tid first, object and
3358 	 * slab could be one associated with next tid and our alloc/free
3359 	 * request will be failed. In this case, we will retry. So, no problem.
3360 	 */
3361 	barrier();
3362 
3363 	/*
3364 	 * The transaction ids are globally unique per cpu and per operation on
3365 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3366 	 * occurs on the right processor and that there was no operation on the
3367 	 * linked list in between.
3368 	 */
3369 
3370 	object = c->freelist;
3371 	slab = c->slab;
3372 
3373 	if (!USE_LOCKLESS_FAST_PATH() ||
3374 	    unlikely(!object || !slab || !node_match(slab, node))) {
3375 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3376 	} else {
3377 		void *next_object = get_freepointer_safe(s, object);
3378 
3379 		/*
3380 		 * The cmpxchg will only match if there was no additional
3381 		 * operation and if we are on the right processor.
3382 		 *
3383 		 * The cmpxchg does the following atomically (without lock
3384 		 * semantics!)
3385 		 * 1. Relocate first pointer to the current per cpu area.
3386 		 * 2. Verify that tid and freelist have not been changed
3387 		 * 3. If they were not changed replace tid and freelist
3388 		 *
3389 		 * Since this is without lock semantics the protection is only
3390 		 * against code executing on this cpu *not* from access by
3391 		 * other cpus.
3392 		 */
3393 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3394 			note_cmpxchg_failure("slab_alloc", s, tid);
3395 			goto redo;
3396 		}
3397 		prefetch_freepointer(s, next_object);
3398 		stat(s, ALLOC_FASTPATH);
3399 	}
3400 
3401 	return object;
3402 }
3403 #else /* CONFIG_SLUB_TINY */
3404 static void *__slab_alloc_node(struct kmem_cache *s,
3405 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3406 {
3407 	struct partial_context pc;
3408 	struct slab *slab;
3409 	void *object;
3410 
3411 	pc.flags = gfpflags;
3412 	pc.slab = &slab;
3413 	pc.orig_size = orig_size;
3414 	object = get_partial(s, node, &pc);
3415 
3416 	if (object)
3417 		return object;
3418 
3419 	slab = new_slab(s, gfpflags, node);
3420 	if (unlikely(!slab)) {
3421 		slab_out_of_memory(s, gfpflags, node);
3422 		return NULL;
3423 	}
3424 
3425 	object = alloc_single_from_new_slab(s, slab, orig_size);
3426 
3427 	return object;
3428 }
3429 #endif /* CONFIG_SLUB_TINY */
3430 
3431 /*
3432  * If the object has been wiped upon free, make sure it's fully initialized by
3433  * zeroing out freelist pointer.
3434  */
3435 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3436 						   void *obj)
3437 {
3438 	if (unlikely(slab_want_init_on_free(s)) && obj)
3439 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3440 			0, sizeof(void *));
3441 }
3442 
3443 /*
3444  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3445  * have the fastpath folded into their functions. So no function call
3446  * overhead for requests that can be satisfied on the fastpath.
3447  *
3448  * The fastpath works by first checking if the lockless freelist can be used.
3449  * If not then __slab_alloc is called for slow processing.
3450  *
3451  * Otherwise we can simply pick the next object from the lockless free list.
3452  */
3453 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3454 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3455 {
3456 	void *object;
3457 	struct obj_cgroup *objcg = NULL;
3458 	bool init = false;
3459 
3460 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3461 	if (!s)
3462 		return NULL;
3463 
3464 	object = kfence_alloc(s, orig_size, gfpflags);
3465 	if (unlikely(object))
3466 		goto out;
3467 
3468 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3469 
3470 	maybe_wipe_obj_freeptr(s, object);
3471 	init = slab_want_init_on_alloc(gfpflags, s);
3472 
3473 out:
3474 	/*
3475 	 * When init equals 'true', like for kzalloc() family, only
3476 	 * @orig_size bytes might be zeroed instead of s->object_size
3477 	 */
3478 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3479 
3480 	return object;
3481 }
3482 
3483 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3484 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3485 {
3486 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3487 }
3488 
3489 static __fastpath_inline
3490 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3491 			     gfp_t gfpflags)
3492 {
3493 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3494 
3495 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3496 
3497 	return ret;
3498 }
3499 
3500 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3501 {
3502 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3503 }
3504 EXPORT_SYMBOL(kmem_cache_alloc);
3505 
3506 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3507 			   gfp_t gfpflags)
3508 {
3509 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3510 }
3511 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3512 
3513 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3514 			      int node, size_t orig_size,
3515 			      unsigned long caller)
3516 {
3517 	return slab_alloc_node(s, NULL, gfpflags, node,
3518 			       caller, orig_size);
3519 }
3520 
3521 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3522 {
3523 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3524 
3525 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3526 
3527 	return ret;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc_node);
3530 
3531 static noinline void free_to_partial_list(
3532 	struct kmem_cache *s, struct slab *slab,
3533 	void *head, void *tail, int bulk_cnt,
3534 	unsigned long addr)
3535 {
3536 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3537 	struct slab *slab_free = NULL;
3538 	int cnt = bulk_cnt;
3539 	unsigned long flags;
3540 	depot_stack_handle_t handle = 0;
3541 
3542 	if (s->flags & SLAB_STORE_USER)
3543 		handle = set_track_prepare();
3544 
3545 	spin_lock_irqsave(&n->list_lock, flags);
3546 
3547 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3548 		void *prior = slab->freelist;
3549 
3550 		/* Perform the actual freeing while we still hold the locks */
3551 		slab->inuse -= cnt;
3552 		set_freepointer(s, tail, prior);
3553 		slab->freelist = head;
3554 
3555 		/*
3556 		 * If the slab is empty, and node's partial list is full,
3557 		 * it should be discarded anyway no matter it's on full or
3558 		 * partial list.
3559 		 */
3560 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3561 			slab_free = slab;
3562 
3563 		if (!prior) {
3564 			/* was on full list */
3565 			remove_full(s, n, slab);
3566 			if (!slab_free) {
3567 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3568 				stat(s, FREE_ADD_PARTIAL);
3569 			}
3570 		} else if (slab_free) {
3571 			remove_partial(n, slab);
3572 			stat(s, FREE_REMOVE_PARTIAL);
3573 		}
3574 	}
3575 
3576 	if (slab_free) {
3577 		/*
3578 		 * Update the counters while still holding n->list_lock to
3579 		 * prevent spurious validation warnings
3580 		 */
3581 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3582 	}
3583 
3584 	spin_unlock_irqrestore(&n->list_lock, flags);
3585 
3586 	if (slab_free) {
3587 		stat(s, FREE_SLAB);
3588 		free_slab(s, slab_free);
3589 	}
3590 }
3591 
3592 /*
3593  * Slow path handling. This may still be called frequently since objects
3594  * have a longer lifetime than the cpu slabs in most processing loads.
3595  *
3596  * So we still attempt to reduce cache line usage. Just take the slab
3597  * lock and free the item. If there is no additional partial slab
3598  * handling required then we can return immediately.
3599  */
3600 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3601 			void *head, void *tail, int cnt,
3602 			unsigned long addr)
3603 
3604 {
3605 	void *prior;
3606 	int was_frozen;
3607 	struct slab new;
3608 	unsigned long counters;
3609 	struct kmem_cache_node *n = NULL;
3610 	unsigned long flags;
3611 
3612 	stat(s, FREE_SLOWPATH);
3613 
3614 	if (kfence_free(head))
3615 		return;
3616 
3617 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3618 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3619 		return;
3620 	}
3621 
3622 	do {
3623 		if (unlikely(n)) {
3624 			spin_unlock_irqrestore(&n->list_lock, flags);
3625 			n = NULL;
3626 		}
3627 		prior = slab->freelist;
3628 		counters = slab->counters;
3629 		set_freepointer(s, tail, prior);
3630 		new.counters = counters;
3631 		was_frozen = new.frozen;
3632 		new.inuse -= cnt;
3633 		if ((!new.inuse || !prior) && !was_frozen) {
3634 
3635 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3636 
3637 				/*
3638 				 * Slab was on no list before and will be
3639 				 * partially empty
3640 				 * We can defer the list move and instead
3641 				 * freeze it.
3642 				 */
3643 				new.frozen = 1;
3644 
3645 			} else { /* Needs to be taken off a list */
3646 
3647 				n = get_node(s, slab_nid(slab));
3648 				/*
3649 				 * Speculatively acquire the list_lock.
3650 				 * If the cmpxchg does not succeed then we may
3651 				 * drop the list_lock without any processing.
3652 				 *
3653 				 * Otherwise the list_lock will synchronize with
3654 				 * other processors updating the list of slabs.
3655 				 */
3656 				spin_lock_irqsave(&n->list_lock, flags);
3657 
3658 			}
3659 		}
3660 
3661 	} while (!slab_update_freelist(s, slab,
3662 		prior, counters,
3663 		head, new.counters,
3664 		"__slab_free"));
3665 
3666 	if (likely(!n)) {
3667 
3668 		if (likely(was_frozen)) {
3669 			/*
3670 			 * The list lock was not taken therefore no list
3671 			 * activity can be necessary.
3672 			 */
3673 			stat(s, FREE_FROZEN);
3674 		} else if (new.frozen) {
3675 			/*
3676 			 * If we just froze the slab then put it onto the
3677 			 * per cpu partial list.
3678 			 */
3679 			put_cpu_partial(s, slab, 1);
3680 			stat(s, CPU_PARTIAL_FREE);
3681 		}
3682 
3683 		return;
3684 	}
3685 
3686 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3687 		goto slab_empty;
3688 
3689 	/*
3690 	 * Objects left in the slab. If it was not on the partial list before
3691 	 * then add it.
3692 	 */
3693 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3694 		remove_full(s, n, slab);
3695 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3696 		stat(s, FREE_ADD_PARTIAL);
3697 	}
3698 	spin_unlock_irqrestore(&n->list_lock, flags);
3699 	return;
3700 
3701 slab_empty:
3702 	if (prior) {
3703 		/*
3704 		 * Slab on the partial list.
3705 		 */
3706 		remove_partial(n, slab);
3707 		stat(s, FREE_REMOVE_PARTIAL);
3708 	} else {
3709 		/* Slab must be on the full list */
3710 		remove_full(s, n, slab);
3711 	}
3712 
3713 	spin_unlock_irqrestore(&n->list_lock, flags);
3714 	stat(s, FREE_SLAB);
3715 	discard_slab(s, slab);
3716 }
3717 
3718 #ifndef CONFIG_SLUB_TINY
3719 /*
3720  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3721  * can perform fastpath freeing without additional function calls.
3722  *
3723  * The fastpath is only possible if we are freeing to the current cpu slab
3724  * of this processor. This typically the case if we have just allocated
3725  * the item before.
3726  *
3727  * If fastpath is not possible then fall back to __slab_free where we deal
3728  * with all sorts of special processing.
3729  *
3730  * Bulk free of a freelist with several objects (all pointing to the
3731  * same slab) possible by specifying head and tail ptr, plus objects
3732  * count (cnt). Bulk free indicated by tail pointer being set.
3733  */
3734 static __always_inline void do_slab_free(struct kmem_cache *s,
3735 				struct slab *slab, void *head, void *tail,
3736 				int cnt, unsigned long addr)
3737 {
3738 	void *tail_obj = tail ? : head;
3739 	struct kmem_cache_cpu *c;
3740 	unsigned long tid;
3741 	void **freelist;
3742 
3743 redo:
3744 	/*
3745 	 * Determine the currently cpus per cpu slab.
3746 	 * The cpu may change afterward. However that does not matter since
3747 	 * data is retrieved via this pointer. If we are on the same cpu
3748 	 * during the cmpxchg then the free will succeed.
3749 	 */
3750 	c = raw_cpu_ptr(s->cpu_slab);
3751 	tid = READ_ONCE(c->tid);
3752 
3753 	/* Same with comment on barrier() in slab_alloc_node() */
3754 	barrier();
3755 
3756 	if (unlikely(slab != c->slab)) {
3757 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3758 		return;
3759 	}
3760 
3761 	if (USE_LOCKLESS_FAST_PATH()) {
3762 		freelist = READ_ONCE(c->freelist);
3763 
3764 		set_freepointer(s, tail_obj, freelist);
3765 
3766 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3767 			note_cmpxchg_failure("slab_free", s, tid);
3768 			goto redo;
3769 		}
3770 	} else {
3771 		/* Update the free list under the local lock */
3772 		local_lock(&s->cpu_slab->lock);
3773 		c = this_cpu_ptr(s->cpu_slab);
3774 		if (unlikely(slab != c->slab)) {
3775 			local_unlock(&s->cpu_slab->lock);
3776 			goto redo;
3777 		}
3778 		tid = c->tid;
3779 		freelist = c->freelist;
3780 
3781 		set_freepointer(s, tail_obj, freelist);
3782 		c->freelist = head;
3783 		c->tid = next_tid(tid);
3784 
3785 		local_unlock(&s->cpu_slab->lock);
3786 	}
3787 	stat(s, FREE_FASTPATH);
3788 }
3789 #else /* CONFIG_SLUB_TINY */
3790 static void do_slab_free(struct kmem_cache *s,
3791 				struct slab *slab, void *head, void *tail,
3792 				int cnt, unsigned long addr)
3793 {
3794 	void *tail_obj = tail ? : head;
3795 
3796 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3797 }
3798 #endif /* CONFIG_SLUB_TINY */
3799 
3800 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3801 				      void *head, void *tail, void **p, int cnt,
3802 				      unsigned long addr)
3803 {
3804 	memcg_slab_free_hook(s, slab, p, cnt);
3805 	/*
3806 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3807 	 * to remove objects, whose reuse must be delayed.
3808 	 */
3809 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3810 		do_slab_free(s, slab, head, tail, cnt, addr);
3811 }
3812 
3813 #ifdef CONFIG_KASAN_GENERIC
3814 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3815 {
3816 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3817 }
3818 #endif
3819 
3820 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3821 {
3822 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3823 }
3824 
3825 void kmem_cache_free(struct kmem_cache *s, void *x)
3826 {
3827 	s = cache_from_obj(s, x);
3828 	if (!s)
3829 		return;
3830 	trace_kmem_cache_free(_RET_IP_, x, s);
3831 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3832 }
3833 EXPORT_SYMBOL(kmem_cache_free);
3834 
3835 struct detached_freelist {
3836 	struct slab *slab;
3837 	void *tail;
3838 	void *freelist;
3839 	int cnt;
3840 	struct kmem_cache *s;
3841 };
3842 
3843 /*
3844  * This function progressively scans the array with free objects (with
3845  * a limited look ahead) and extract objects belonging to the same
3846  * slab.  It builds a detached freelist directly within the given
3847  * slab/objects.  This can happen without any need for
3848  * synchronization, because the objects are owned by running process.
3849  * The freelist is build up as a single linked list in the objects.
3850  * The idea is, that this detached freelist can then be bulk
3851  * transferred to the real freelist(s), but only requiring a single
3852  * synchronization primitive.  Look ahead in the array is limited due
3853  * to performance reasons.
3854  */
3855 static inline
3856 int build_detached_freelist(struct kmem_cache *s, size_t size,
3857 			    void **p, struct detached_freelist *df)
3858 {
3859 	int lookahead = 3;
3860 	void *object;
3861 	struct folio *folio;
3862 	size_t same;
3863 
3864 	object = p[--size];
3865 	folio = virt_to_folio(object);
3866 	if (!s) {
3867 		/* Handle kalloc'ed objects */
3868 		if (unlikely(!folio_test_slab(folio))) {
3869 			free_large_kmalloc(folio, object);
3870 			df->slab = NULL;
3871 			return size;
3872 		}
3873 		/* Derive kmem_cache from object */
3874 		df->slab = folio_slab(folio);
3875 		df->s = df->slab->slab_cache;
3876 	} else {
3877 		df->slab = folio_slab(folio);
3878 		df->s = cache_from_obj(s, object); /* Support for memcg */
3879 	}
3880 
3881 	/* Start new detached freelist */
3882 	df->tail = object;
3883 	df->freelist = object;
3884 	df->cnt = 1;
3885 
3886 	if (is_kfence_address(object))
3887 		return size;
3888 
3889 	set_freepointer(df->s, object, NULL);
3890 
3891 	same = size;
3892 	while (size) {
3893 		object = p[--size];
3894 		/* df->slab is always set at this point */
3895 		if (df->slab == virt_to_slab(object)) {
3896 			/* Opportunity build freelist */
3897 			set_freepointer(df->s, object, df->freelist);
3898 			df->freelist = object;
3899 			df->cnt++;
3900 			same--;
3901 			if (size != same)
3902 				swap(p[size], p[same]);
3903 			continue;
3904 		}
3905 
3906 		/* Limit look ahead search */
3907 		if (!--lookahead)
3908 			break;
3909 	}
3910 
3911 	return same;
3912 }
3913 
3914 /* Note that interrupts must be enabled when calling this function. */
3915 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3916 {
3917 	if (!size)
3918 		return;
3919 
3920 	do {
3921 		struct detached_freelist df;
3922 
3923 		size = build_detached_freelist(s, size, p, &df);
3924 		if (!df.slab)
3925 			continue;
3926 
3927 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3928 			  _RET_IP_);
3929 	} while (likely(size));
3930 }
3931 EXPORT_SYMBOL(kmem_cache_free_bulk);
3932 
3933 #ifndef CONFIG_SLUB_TINY
3934 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3935 			size_t size, void **p, struct obj_cgroup *objcg)
3936 {
3937 	struct kmem_cache_cpu *c;
3938 	unsigned long irqflags;
3939 	int i;
3940 
3941 	/*
3942 	 * Drain objects in the per cpu slab, while disabling local
3943 	 * IRQs, which protects against PREEMPT and interrupts
3944 	 * handlers invoking normal fastpath.
3945 	 */
3946 	c = slub_get_cpu_ptr(s->cpu_slab);
3947 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3948 
3949 	for (i = 0; i < size; i++) {
3950 		void *object = kfence_alloc(s, s->object_size, flags);
3951 
3952 		if (unlikely(object)) {
3953 			p[i] = object;
3954 			continue;
3955 		}
3956 
3957 		object = c->freelist;
3958 		if (unlikely(!object)) {
3959 			/*
3960 			 * We may have removed an object from c->freelist using
3961 			 * the fastpath in the previous iteration; in that case,
3962 			 * c->tid has not been bumped yet.
3963 			 * Since ___slab_alloc() may reenable interrupts while
3964 			 * allocating memory, we should bump c->tid now.
3965 			 */
3966 			c->tid = next_tid(c->tid);
3967 
3968 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3969 
3970 			/*
3971 			 * Invoking slow path likely have side-effect
3972 			 * of re-populating per CPU c->freelist
3973 			 */
3974 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3975 					    _RET_IP_, c, s->object_size);
3976 			if (unlikely(!p[i]))
3977 				goto error;
3978 
3979 			c = this_cpu_ptr(s->cpu_slab);
3980 			maybe_wipe_obj_freeptr(s, p[i]);
3981 
3982 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3983 
3984 			continue; /* goto for-loop */
3985 		}
3986 		c->freelist = get_freepointer(s, object);
3987 		p[i] = object;
3988 		maybe_wipe_obj_freeptr(s, p[i]);
3989 	}
3990 	c->tid = next_tid(c->tid);
3991 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3992 	slub_put_cpu_ptr(s->cpu_slab);
3993 
3994 	return i;
3995 
3996 error:
3997 	slub_put_cpu_ptr(s->cpu_slab);
3998 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3999 	kmem_cache_free_bulk(s, i, p);
4000 	return 0;
4001 
4002 }
4003 #else /* CONFIG_SLUB_TINY */
4004 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4005 			size_t size, void **p, struct obj_cgroup *objcg)
4006 {
4007 	int i;
4008 
4009 	for (i = 0; i < size; i++) {
4010 		void *object = kfence_alloc(s, s->object_size, flags);
4011 
4012 		if (unlikely(object)) {
4013 			p[i] = object;
4014 			continue;
4015 		}
4016 
4017 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4018 					 _RET_IP_, s->object_size);
4019 		if (unlikely(!p[i]))
4020 			goto error;
4021 
4022 		maybe_wipe_obj_freeptr(s, p[i]);
4023 	}
4024 
4025 	return i;
4026 
4027 error:
4028 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4029 	kmem_cache_free_bulk(s, i, p);
4030 	return 0;
4031 }
4032 #endif /* CONFIG_SLUB_TINY */
4033 
4034 /* Note that interrupts must be enabled when calling this function. */
4035 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4036 			  void **p)
4037 {
4038 	int i;
4039 	struct obj_cgroup *objcg = NULL;
4040 
4041 	if (!size)
4042 		return 0;
4043 
4044 	/* memcg and kmem_cache debug support */
4045 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4046 	if (unlikely(!s))
4047 		return 0;
4048 
4049 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4050 
4051 	/*
4052 	 * memcg and kmem_cache debug support and memory initialization.
4053 	 * Done outside of the IRQ disabled fastpath loop.
4054 	 */
4055 	if (i != 0)
4056 		slab_post_alloc_hook(s, objcg, flags, size, p,
4057 			slab_want_init_on_alloc(flags, s), s->object_size);
4058 	return i;
4059 }
4060 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4061 
4062 
4063 /*
4064  * Object placement in a slab is made very easy because we always start at
4065  * offset 0. If we tune the size of the object to the alignment then we can
4066  * get the required alignment by putting one properly sized object after
4067  * another.
4068  *
4069  * Notice that the allocation order determines the sizes of the per cpu
4070  * caches. Each processor has always one slab available for allocations.
4071  * Increasing the allocation order reduces the number of times that slabs
4072  * must be moved on and off the partial lists and is therefore a factor in
4073  * locking overhead.
4074  */
4075 
4076 /*
4077  * Minimum / Maximum order of slab pages. This influences locking overhead
4078  * and slab fragmentation. A higher order reduces the number of partial slabs
4079  * and increases the number of allocations possible without having to
4080  * take the list_lock.
4081  */
4082 static unsigned int slub_min_order;
4083 static unsigned int slub_max_order =
4084 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4085 static unsigned int slub_min_objects;
4086 
4087 /*
4088  * Calculate the order of allocation given an slab object size.
4089  *
4090  * The order of allocation has significant impact on performance and other
4091  * system components. Generally order 0 allocations should be preferred since
4092  * order 0 does not cause fragmentation in the page allocator. Larger objects
4093  * be problematic to put into order 0 slabs because there may be too much
4094  * unused space left. We go to a higher order if more than 1/16th of the slab
4095  * would be wasted.
4096  *
4097  * In order to reach satisfactory performance we must ensure that a minimum
4098  * number of objects is in one slab. Otherwise we may generate too much
4099  * activity on the partial lists which requires taking the list_lock. This is
4100  * less a concern for large slabs though which are rarely used.
4101  *
4102  * slub_max_order specifies the order where we begin to stop considering the
4103  * number of objects in a slab as critical. If we reach slub_max_order then
4104  * we try to keep the page order as low as possible. So we accept more waste
4105  * of space in favor of a small page order.
4106  *
4107  * Higher order allocations also allow the placement of more objects in a
4108  * slab and thereby reduce object handling overhead. If the user has
4109  * requested a higher minimum order then we start with that one instead of
4110  * the smallest order which will fit the object.
4111  */
4112 static inline unsigned int calc_slab_order(unsigned int size,
4113 		unsigned int min_objects, unsigned int max_order,
4114 		unsigned int fract_leftover)
4115 {
4116 	unsigned int min_order = slub_min_order;
4117 	unsigned int order;
4118 
4119 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4120 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4121 
4122 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4123 			order <= max_order; order++) {
4124 
4125 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4126 		unsigned int rem;
4127 
4128 		rem = slab_size % size;
4129 
4130 		if (rem <= slab_size / fract_leftover)
4131 			break;
4132 	}
4133 
4134 	return order;
4135 }
4136 
4137 static inline int calculate_order(unsigned int size)
4138 {
4139 	unsigned int order;
4140 	unsigned int min_objects;
4141 	unsigned int max_objects;
4142 	unsigned int nr_cpus;
4143 
4144 	/*
4145 	 * Attempt to find best configuration for a slab. This
4146 	 * works by first attempting to generate a layout with
4147 	 * the best configuration and backing off gradually.
4148 	 *
4149 	 * First we increase the acceptable waste in a slab. Then
4150 	 * we reduce the minimum objects required in a slab.
4151 	 */
4152 	min_objects = slub_min_objects;
4153 	if (!min_objects) {
4154 		/*
4155 		 * Some architectures will only update present cpus when
4156 		 * onlining them, so don't trust the number if it's just 1. But
4157 		 * we also don't want to use nr_cpu_ids always, as on some other
4158 		 * architectures, there can be many possible cpus, but never
4159 		 * onlined. Here we compromise between trying to avoid too high
4160 		 * order on systems that appear larger than they are, and too
4161 		 * low order on systems that appear smaller than they are.
4162 		 */
4163 		nr_cpus = num_present_cpus();
4164 		if (nr_cpus <= 1)
4165 			nr_cpus = nr_cpu_ids;
4166 		min_objects = 4 * (fls(nr_cpus) + 1);
4167 	}
4168 	max_objects = order_objects(slub_max_order, size);
4169 	min_objects = min(min_objects, max_objects);
4170 
4171 	while (min_objects > 1) {
4172 		unsigned int fraction;
4173 
4174 		fraction = 16;
4175 		while (fraction >= 4) {
4176 			order = calc_slab_order(size, min_objects,
4177 					slub_max_order, fraction);
4178 			if (order <= slub_max_order)
4179 				return order;
4180 			fraction /= 2;
4181 		}
4182 		min_objects--;
4183 	}
4184 
4185 	/*
4186 	 * We were unable to place multiple objects in a slab. Now
4187 	 * lets see if we can place a single object there.
4188 	 */
4189 	order = calc_slab_order(size, 1, slub_max_order, 1);
4190 	if (order <= slub_max_order)
4191 		return order;
4192 
4193 	/*
4194 	 * Doh this slab cannot be placed using slub_max_order.
4195 	 */
4196 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4197 	if (order <= MAX_ORDER)
4198 		return order;
4199 	return -ENOSYS;
4200 }
4201 
4202 static void
4203 init_kmem_cache_node(struct kmem_cache_node *n)
4204 {
4205 	n->nr_partial = 0;
4206 	spin_lock_init(&n->list_lock);
4207 	INIT_LIST_HEAD(&n->partial);
4208 #ifdef CONFIG_SLUB_DEBUG
4209 	atomic_long_set(&n->nr_slabs, 0);
4210 	atomic_long_set(&n->total_objects, 0);
4211 	INIT_LIST_HEAD(&n->full);
4212 #endif
4213 }
4214 
4215 #ifndef CONFIG_SLUB_TINY
4216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4217 {
4218 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4219 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4220 			sizeof(struct kmem_cache_cpu));
4221 
4222 	/*
4223 	 * Must align to double word boundary for the double cmpxchg
4224 	 * instructions to work; see __pcpu_double_call_return_bool().
4225 	 */
4226 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4227 				     2 * sizeof(void *));
4228 
4229 	if (!s->cpu_slab)
4230 		return 0;
4231 
4232 	init_kmem_cache_cpus(s);
4233 
4234 	return 1;
4235 }
4236 #else
4237 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4238 {
4239 	return 1;
4240 }
4241 #endif /* CONFIG_SLUB_TINY */
4242 
4243 static struct kmem_cache *kmem_cache_node;
4244 
4245 /*
4246  * No kmalloc_node yet so do it by hand. We know that this is the first
4247  * slab on the node for this slabcache. There are no concurrent accesses
4248  * possible.
4249  *
4250  * Note that this function only works on the kmem_cache_node
4251  * when allocating for the kmem_cache_node. This is used for bootstrapping
4252  * memory on a fresh node that has no slab structures yet.
4253  */
4254 static void early_kmem_cache_node_alloc(int node)
4255 {
4256 	struct slab *slab;
4257 	struct kmem_cache_node *n;
4258 
4259 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4260 
4261 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4262 
4263 	BUG_ON(!slab);
4264 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4265 	if (slab_nid(slab) != node) {
4266 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4267 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4268 	}
4269 
4270 	n = slab->freelist;
4271 	BUG_ON(!n);
4272 #ifdef CONFIG_SLUB_DEBUG
4273 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4274 	init_tracking(kmem_cache_node, n);
4275 #endif
4276 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4277 	slab->freelist = get_freepointer(kmem_cache_node, n);
4278 	slab->inuse = 1;
4279 	kmem_cache_node->node[node] = n;
4280 	init_kmem_cache_node(n);
4281 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4282 
4283 	/*
4284 	 * No locks need to be taken here as it has just been
4285 	 * initialized and there is no concurrent access.
4286 	 */
4287 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4288 }
4289 
4290 static void free_kmem_cache_nodes(struct kmem_cache *s)
4291 {
4292 	int node;
4293 	struct kmem_cache_node *n;
4294 
4295 	for_each_kmem_cache_node(s, node, n) {
4296 		s->node[node] = NULL;
4297 		kmem_cache_free(kmem_cache_node, n);
4298 	}
4299 }
4300 
4301 void __kmem_cache_release(struct kmem_cache *s)
4302 {
4303 	cache_random_seq_destroy(s);
4304 #ifndef CONFIG_SLUB_TINY
4305 	free_percpu(s->cpu_slab);
4306 #endif
4307 	free_kmem_cache_nodes(s);
4308 }
4309 
4310 static int init_kmem_cache_nodes(struct kmem_cache *s)
4311 {
4312 	int node;
4313 
4314 	for_each_node_mask(node, slab_nodes) {
4315 		struct kmem_cache_node *n;
4316 
4317 		if (slab_state == DOWN) {
4318 			early_kmem_cache_node_alloc(node);
4319 			continue;
4320 		}
4321 		n = kmem_cache_alloc_node(kmem_cache_node,
4322 						GFP_KERNEL, node);
4323 
4324 		if (!n) {
4325 			free_kmem_cache_nodes(s);
4326 			return 0;
4327 		}
4328 
4329 		init_kmem_cache_node(n);
4330 		s->node[node] = n;
4331 	}
4332 	return 1;
4333 }
4334 
4335 static void set_cpu_partial(struct kmem_cache *s)
4336 {
4337 #ifdef CONFIG_SLUB_CPU_PARTIAL
4338 	unsigned int nr_objects;
4339 
4340 	/*
4341 	 * cpu_partial determined the maximum number of objects kept in the
4342 	 * per cpu partial lists of a processor.
4343 	 *
4344 	 * Per cpu partial lists mainly contain slabs that just have one
4345 	 * object freed. If they are used for allocation then they can be
4346 	 * filled up again with minimal effort. The slab will never hit the
4347 	 * per node partial lists and therefore no locking will be required.
4348 	 *
4349 	 * For backwards compatibility reasons, this is determined as number
4350 	 * of objects, even though we now limit maximum number of pages, see
4351 	 * slub_set_cpu_partial()
4352 	 */
4353 	if (!kmem_cache_has_cpu_partial(s))
4354 		nr_objects = 0;
4355 	else if (s->size >= PAGE_SIZE)
4356 		nr_objects = 6;
4357 	else if (s->size >= 1024)
4358 		nr_objects = 24;
4359 	else if (s->size >= 256)
4360 		nr_objects = 52;
4361 	else
4362 		nr_objects = 120;
4363 
4364 	slub_set_cpu_partial(s, nr_objects);
4365 #endif
4366 }
4367 
4368 /*
4369  * calculate_sizes() determines the order and the distribution of data within
4370  * a slab object.
4371  */
4372 static int calculate_sizes(struct kmem_cache *s)
4373 {
4374 	slab_flags_t flags = s->flags;
4375 	unsigned int size = s->object_size;
4376 	unsigned int order;
4377 
4378 	/*
4379 	 * Round up object size to the next word boundary. We can only
4380 	 * place the free pointer at word boundaries and this determines
4381 	 * the possible location of the free pointer.
4382 	 */
4383 	size = ALIGN(size, sizeof(void *));
4384 
4385 #ifdef CONFIG_SLUB_DEBUG
4386 	/*
4387 	 * Determine if we can poison the object itself. If the user of
4388 	 * the slab may touch the object after free or before allocation
4389 	 * then we should never poison the object itself.
4390 	 */
4391 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4392 			!s->ctor)
4393 		s->flags |= __OBJECT_POISON;
4394 	else
4395 		s->flags &= ~__OBJECT_POISON;
4396 
4397 
4398 	/*
4399 	 * If we are Redzoning then check if there is some space between the
4400 	 * end of the object and the free pointer. If not then add an
4401 	 * additional word to have some bytes to store Redzone information.
4402 	 */
4403 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4404 		size += sizeof(void *);
4405 #endif
4406 
4407 	/*
4408 	 * With that we have determined the number of bytes in actual use
4409 	 * by the object and redzoning.
4410 	 */
4411 	s->inuse = size;
4412 
4413 	if (slub_debug_orig_size(s) ||
4414 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4415 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4416 	    s->ctor) {
4417 		/*
4418 		 * Relocate free pointer after the object if it is not
4419 		 * permitted to overwrite the first word of the object on
4420 		 * kmem_cache_free.
4421 		 *
4422 		 * This is the case if we do RCU, have a constructor or
4423 		 * destructor, are poisoning the objects, or are
4424 		 * redzoning an object smaller than sizeof(void *).
4425 		 *
4426 		 * The assumption that s->offset >= s->inuse means free
4427 		 * pointer is outside of the object is used in the
4428 		 * freeptr_outside_object() function. If that is no
4429 		 * longer true, the function needs to be modified.
4430 		 */
4431 		s->offset = size;
4432 		size += sizeof(void *);
4433 	} else {
4434 		/*
4435 		 * Store freelist pointer near middle of object to keep
4436 		 * it away from the edges of the object to avoid small
4437 		 * sized over/underflows from neighboring allocations.
4438 		 */
4439 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4440 	}
4441 
4442 #ifdef CONFIG_SLUB_DEBUG
4443 	if (flags & SLAB_STORE_USER) {
4444 		/*
4445 		 * Need to store information about allocs and frees after
4446 		 * the object.
4447 		 */
4448 		size += 2 * sizeof(struct track);
4449 
4450 		/* Save the original kmalloc request size */
4451 		if (flags & SLAB_KMALLOC)
4452 			size += sizeof(unsigned int);
4453 	}
4454 #endif
4455 
4456 	kasan_cache_create(s, &size, &s->flags);
4457 #ifdef CONFIG_SLUB_DEBUG
4458 	if (flags & SLAB_RED_ZONE) {
4459 		/*
4460 		 * Add some empty padding so that we can catch
4461 		 * overwrites from earlier objects rather than let
4462 		 * tracking information or the free pointer be
4463 		 * corrupted if a user writes before the start
4464 		 * of the object.
4465 		 */
4466 		size += sizeof(void *);
4467 
4468 		s->red_left_pad = sizeof(void *);
4469 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4470 		size += s->red_left_pad;
4471 	}
4472 #endif
4473 
4474 	/*
4475 	 * SLUB stores one object immediately after another beginning from
4476 	 * offset 0. In order to align the objects we have to simply size
4477 	 * each object to conform to the alignment.
4478 	 */
4479 	size = ALIGN(size, s->align);
4480 	s->size = size;
4481 	s->reciprocal_size = reciprocal_value(size);
4482 	order = calculate_order(size);
4483 
4484 	if ((int)order < 0)
4485 		return 0;
4486 
4487 	s->allocflags = 0;
4488 	if (order)
4489 		s->allocflags |= __GFP_COMP;
4490 
4491 	if (s->flags & SLAB_CACHE_DMA)
4492 		s->allocflags |= GFP_DMA;
4493 
4494 	if (s->flags & SLAB_CACHE_DMA32)
4495 		s->allocflags |= GFP_DMA32;
4496 
4497 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4498 		s->allocflags |= __GFP_RECLAIMABLE;
4499 
4500 	/*
4501 	 * Determine the number of objects per slab
4502 	 */
4503 	s->oo = oo_make(order, size);
4504 	s->min = oo_make(get_order(size), size);
4505 
4506 	return !!oo_objects(s->oo);
4507 }
4508 
4509 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4510 {
4511 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4512 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4513 	s->random = get_random_long();
4514 #endif
4515 
4516 	if (!calculate_sizes(s))
4517 		goto error;
4518 	if (disable_higher_order_debug) {
4519 		/*
4520 		 * Disable debugging flags that store metadata if the min slab
4521 		 * order increased.
4522 		 */
4523 		if (get_order(s->size) > get_order(s->object_size)) {
4524 			s->flags &= ~DEBUG_METADATA_FLAGS;
4525 			s->offset = 0;
4526 			if (!calculate_sizes(s))
4527 				goto error;
4528 		}
4529 	}
4530 
4531 #ifdef system_has_freelist_aba
4532 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4533 		/* Enable fast mode */
4534 		s->flags |= __CMPXCHG_DOUBLE;
4535 	}
4536 #endif
4537 
4538 	/*
4539 	 * The larger the object size is, the more slabs we want on the partial
4540 	 * list to avoid pounding the page allocator excessively.
4541 	 */
4542 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4543 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4544 
4545 	set_cpu_partial(s);
4546 
4547 #ifdef CONFIG_NUMA
4548 	s->remote_node_defrag_ratio = 1000;
4549 #endif
4550 
4551 	/* Initialize the pre-computed randomized freelist if slab is up */
4552 	if (slab_state >= UP) {
4553 		if (init_cache_random_seq(s))
4554 			goto error;
4555 	}
4556 
4557 	if (!init_kmem_cache_nodes(s))
4558 		goto error;
4559 
4560 	if (alloc_kmem_cache_cpus(s))
4561 		return 0;
4562 
4563 error:
4564 	__kmem_cache_release(s);
4565 	return -EINVAL;
4566 }
4567 
4568 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4569 			      const char *text)
4570 {
4571 #ifdef CONFIG_SLUB_DEBUG
4572 	void *addr = slab_address(slab);
4573 	void *p;
4574 
4575 	slab_err(s, slab, text, s->name);
4576 
4577 	spin_lock(&object_map_lock);
4578 	__fill_map(object_map, s, slab);
4579 
4580 	for_each_object(p, s, addr, slab->objects) {
4581 
4582 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4583 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4584 			print_tracking(s, p);
4585 		}
4586 	}
4587 	spin_unlock(&object_map_lock);
4588 #endif
4589 }
4590 
4591 /*
4592  * Attempt to free all partial slabs on a node.
4593  * This is called from __kmem_cache_shutdown(). We must take list_lock
4594  * because sysfs file might still access partial list after the shutdowning.
4595  */
4596 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4597 {
4598 	LIST_HEAD(discard);
4599 	struct slab *slab, *h;
4600 
4601 	BUG_ON(irqs_disabled());
4602 	spin_lock_irq(&n->list_lock);
4603 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4604 		if (!slab->inuse) {
4605 			remove_partial(n, slab);
4606 			list_add(&slab->slab_list, &discard);
4607 		} else {
4608 			list_slab_objects(s, slab,
4609 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4610 		}
4611 	}
4612 	spin_unlock_irq(&n->list_lock);
4613 
4614 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4615 		discard_slab(s, slab);
4616 }
4617 
4618 bool __kmem_cache_empty(struct kmem_cache *s)
4619 {
4620 	int node;
4621 	struct kmem_cache_node *n;
4622 
4623 	for_each_kmem_cache_node(s, node, n)
4624 		if (n->nr_partial || node_nr_slabs(n))
4625 			return false;
4626 	return true;
4627 }
4628 
4629 /*
4630  * Release all resources used by a slab cache.
4631  */
4632 int __kmem_cache_shutdown(struct kmem_cache *s)
4633 {
4634 	int node;
4635 	struct kmem_cache_node *n;
4636 
4637 	flush_all_cpus_locked(s);
4638 	/* Attempt to free all objects */
4639 	for_each_kmem_cache_node(s, node, n) {
4640 		free_partial(s, n);
4641 		if (n->nr_partial || node_nr_slabs(n))
4642 			return 1;
4643 	}
4644 	return 0;
4645 }
4646 
4647 #ifdef CONFIG_PRINTK
4648 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4649 {
4650 	void *base;
4651 	int __maybe_unused i;
4652 	unsigned int objnr;
4653 	void *objp;
4654 	void *objp0;
4655 	struct kmem_cache *s = slab->slab_cache;
4656 	struct track __maybe_unused *trackp;
4657 
4658 	kpp->kp_ptr = object;
4659 	kpp->kp_slab = slab;
4660 	kpp->kp_slab_cache = s;
4661 	base = slab_address(slab);
4662 	objp0 = kasan_reset_tag(object);
4663 #ifdef CONFIG_SLUB_DEBUG
4664 	objp = restore_red_left(s, objp0);
4665 #else
4666 	objp = objp0;
4667 #endif
4668 	objnr = obj_to_index(s, slab, objp);
4669 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4670 	objp = base + s->size * objnr;
4671 	kpp->kp_objp = objp;
4672 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4673 			 || (objp - base) % s->size) ||
4674 	    !(s->flags & SLAB_STORE_USER))
4675 		return;
4676 #ifdef CONFIG_SLUB_DEBUG
4677 	objp = fixup_red_left(s, objp);
4678 	trackp = get_track(s, objp, TRACK_ALLOC);
4679 	kpp->kp_ret = (void *)trackp->addr;
4680 #ifdef CONFIG_STACKDEPOT
4681 	{
4682 		depot_stack_handle_t handle;
4683 		unsigned long *entries;
4684 		unsigned int nr_entries;
4685 
4686 		handle = READ_ONCE(trackp->handle);
4687 		if (handle) {
4688 			nr_entries = stack_depot_fetch(handle, &entries);
4689 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 				kpp->kp_stack[i] = (void *)entries[i];
4691 		}
4692 
4693 		trackp = get_track(s, objp, TRACK_FREE);
4694 		handle = READ_ONCE(trackp->handle);
4695 		if (handle) {
4696 			nr_entries = stack_depot_fetch(handle, &entries);
4697 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4698 				kpp->kp_free_stack[i] = (void *)entries[i];
4699 		}
4700 	}
4701 #endif
4702 #endif
4703 }
4704 #endif
4705 
4706 /********************************************************************
4707  *		Kmalloc subsystem
4708  *******************************************************************/
4709 
4710 static int __init setup_slub_min_order(char *str)
4711 {
4712 	get_option(&str, (int *)&slub_min_order);
4713 
4714 	return 1;
4715 }
4716 
4717 __setup("slub_min_order=", setup_slub_min_order);
4718 
4719 static int __init setup_slub_max_order(char *str)
4720 {
4721 	get_option(&str, (int *)&slub_max_order);
4722 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4723 
4724 	return 1;
4725 }
4726 
4727 __setup("slub_max_order=", setup_slub_max_order);
4728 
4729 static int __init setup_slub_min_objects(char *str)
4730 {
4731 	get_option(&str, (int *)&slub_min_objects);
4732 
4733 	return 1;
4734 }
4735 
4736 __setup("slub_min_objects=", setup_slub_min_objects);
4737 
4738 #ifdef CONFIG_HARDENED_USERCOPY
4739 /*
4740  * Rejects incorrectly sized objects and objects that are to be copied
4741  * to/from userspace but do not fall entirely within the containing slab
4742  * cache's usercopy region.
4743  *
4744  * Returns NULL if check passes, otherwise const char * to name of cache
4745  * to indicate an error.
4746  */
4747 void __check_heap_object(const void *ptr, unsigned long n,
4748 			 const struct slab *slab, bool to_user)
4749 {
4750 	struct kmem_cache *s;
4751 	unsigned int offset;
4752 	bool is_kfence = is_kfence_address(ptr);
4753 
4754 	ptr = kasan_reset_tag(ptr);
4755 
4756 	/* Find object and usable object size. */
4757 	s = slab->slab_cache;
4758 
4759 	/* Reject impossible pointers. */
4760 	if (ptr < slab_address(slab))
4761 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4762 			       to_user, 0, n);
4763 
4764 	/* Find offset within object. */
4765 	if (is_kfence)
4766 		offset = ptr - kfence_object_start(ptr);
4767 	else
4768 		offset = (ptr - slab_address(slab)) % s->size;
4769 
4770 	/* Adjust for redzone and reject if within the redzone. */
4771 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4772 		if (offset < s->red_left_pad)
4773 			usercopy_abort("SLUB object in left red zone",
4774 				       s->name, to_user, offset, n);
4775 		offset -= s->red_left_pad;
4776 	}
4777 
4778 	/* Allow address range falling entirely within usercopy region. */
4779 	if (offset >= s->useroffset &&
4780 	    offset - s->useroffset <= s->usersize &&
4781 	    n <= s->useroffset - offset + s->usersize)
4782 		return;
4783 
4784 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4785 }
4786 #endif /* CONFIG_HARDENED_USERCOPY */
4787 
4788 #define SHRINK_PROMOTE_MAX 32
4789 
4790 /*
4791  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4792  * up most to the head of the partial lists. New allocations will then
4793  * fill those up and thus they can be removed from the partial lists.
4794  *
4795  * The slabs with the least items are placed last. This results in them
4796  * being allocated from last increasing the chance that the last objects
4797  * are freed in them.
4798  */
4799 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4800 {
4801 	int node;
4802 	int i;
4803 	struct kmem_cache_node *n;
4804 	struct slab *slab;
4805 	struct slab *t;
4806 	struct list_head discard;
4807 	struct list_head promote[SHRINK_PROMOTE_MAX];
4808 	unsigned long flags;
4809 	int ret = 0;
4810 
4811 	for_each_kmem_cache_node(s, node, n) {
4812 		INIT_LIST_HEAD(&discard);
4813 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4814 			INIT_LIST_HEAD(promote + i);
4815 
4816 		spin_lock_irqsave(&n->list_lock, flags);
4817 
4818 		/*
4819 		 * Build lists of slabs to discard or promote.
4820 		 *
4821 		 * Note that concurrent frees may occur while we hold the
4822 		 * list_lock. slab->inuse here is the upper limit.
4823 		 */
4824 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4825 			int free = slab->objects - slab->inuse;
4826 
4827 			/* Do not reread slab->inuse */
4828 			barrier();
4829 
4830 			/* We do not keep full slabs on the list */
4831 			BUG_ON(free <= 0);
4832 
4833 			if (free == slab->objects) {
4834 				list_move(&slab->slab_list, &discard);
4835 				n->nr_partial--;
4836 				dec_slabs_node(s, node, slab->objects);
4837 			} else if (free <= SHRINK_PROMOTE_MAX)
4838 				list_move(&slab->slab_list, promote + free - 1);
4839 		}
4840 
4841 		/*
4842 		 * Promote the slabs filled up most to the head of the
4843 		 * partial list.
4844 		 */
4845 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4846 			list_splice(promote + i, &n->partial);
4847 
4848 		spin_unlock_irqrestore(&n->list_lock, flags);
4849 
4850 		/* Release empty slabs */
4851 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4852 			free_slab(s, slab);
4853 
4854 		if (node_nr_slabs(n))
4855 			ret = 1;
4856 	}
4857 
4858 	return ret;
4859 }
4860 
4861 int __kmem_cache_shrink(struct kmem_cache *s)
4862 {
4863 	flush_all(s);
4864 	return __kmem_cache_do_shrink(s);
4865 }
4866 
4867 static int slab_mem_going_offline_callback(void *arg)
4868 {
4869 	struct kmem_cache *s;
4870 
4871 	mutex_lock(&slab_mutex);
4872 	list_for_each_entry(s, &slab_caches, list) {
4873 		flush_all_cpus_locked(s);
4874 		__kmem_cache_do_shrink(s);
4875 	}
4876 	mutex_unlock(&slab_mutex);
4877 
4878 	return 0;
4879 }
4880 
4881 static void slab_mem_offline_callback(void *arg)
4882 {
4883 	struct memory_notify *marg = arg;
4884 	int offline_node;
4885 
4886 	offline_node = marg->status_change_nid_normal;
4887 
4888 	/*
4889 	 * If the node still has available memory. we need kmem_cache_node
4890 	 * for it yet.
4891 	 */
4892 	if (offline_node < 0)
4893 		return;
4894 
4895 	mutex_lock(&slab_mutex);
4896 	node_clear(offline_node, slab_nodes);
4897 	/*
4898 	 * We no longer free kmem_cache_node structures here, as it would be
4899 	 * racy with all get_node() users, and infeasible to protect them with
4900 	 * slab_mutex.
4901 	 */
4902 	mutex_unlock(&slab_mutex);
4903 }
4904 
4905 static int slab_mem_going_online_callback(void *arg)
4906 {
4907 	struct kmem_cache_node *n;
4908 	struct kmem_cache *s;
4909 	struct memory_notify *marg = arg;
4910 	int nid = marg->status_change_nid_normal;
4911 	int ret = 0;
4912 
4913 	/*
4914 	 * If the node's memory is already available, then kmem_cache_node is
4915 	 * already created. Nothing to do.
4916 	 */
4917 	if (nid < 0)
4918 		return 0;
4919 
4920 	/*
4921 	 * We are bringing a node online. No memory is available yet. We must
4922 	 * allocate a kmem_cache_node structure in order to bring the node
4923 	 * online.
4924 	 */
4925 	mutex_lock(&slab_mutex);
4926 	list_for_each_entry(s, &slab_caches, list) {
4927 		/*
4928 		 * The structure may already exist if the node was previously
4929 		 * onlined and offlined.
4930 		 */
4931 		if (get_node(s, nid))
4932 			continue;
4933 		/*
4934 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4935 		 *      since memory is not yet available from the node that
4936 		 *      is brought up.
4937 		 */
4938 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4939 		if (!n) {
4940 			ret = -ENOMEM;
4941 			goto out;
4942 		}
4943 		init_kmem_cache_node(n);
4944 		s->node[nid] = n;
4945 	}
4946 	/*
4947 	 * Any cache created after this point will also have kmem_cache_node
4948 	 * initialized for the new node.
4949 	 */
4950 	node_set(nid, slab_nodes);
4951 out:
4952 	mutex_unlock(&slab_mutex);
4953 	return ret;
4954 }
4955 
4956 static int slab_memory_callback(struct notifier_block *self,
4957 				unsigned long action, void *arg)
4958 {
4959 	int ret = 0;
4960 
4961 	switch (action) {
4962 	case MEM_GOING_ONLINE:
4963 		ret = slab_mem_going_online_callback(arg);
4964 		break;
4965 	case MEM_GOING_OFFLINE:
4966 		ret = slab_mem_going_offline_callback(arg);
4967 		break;
4968 	case MEM_OFFLINE:
4969 	case MEM_CANCEL_ONLINE:
4970 		slab_mem_offline_callback(arg);
4971 		break;
4972 	case MEM_ONLINE:
4973 	case MEM_CANCEL_OFFLINE:
4974 		break;
4975 	}
4976 	if (ret)
4977 		ret = notifier_from_errno(ret);
4978 	else
4979 		ret = NOTIFY_OK;
4980 	return ret;
4981 }
4982 
4983 /********************************************************************
4984  *			Basic setup of slabs
4985  *******************************************************************/
4986 
4987 /*
4988  * Used for early kmem_cache structures that were allocated using
4989  * the page allocator. Allocate them properly then fix up the pointers
4990  * that may be pointing to the wrong kmem_cache structure.
4991  */
4992 
4993 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4994 {
4995 	int node;
4996 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4997 	struct kmem_cache_node *n;
4998 
4999 	memcpy(s, static_cache, kmem_cache->object_size);
5000 
5001 	/*
5002 	 * This runs very early, and only the boot processor is supposed to be
5003 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5004 	 * IPIs around.
5005 	 */
5006 	__flush_cpu_slab(s, smp_processor_id());
5007 	for_each_kmem_cache_node(s, node, n) {
5008 		struct slab *p;
5009 
5010 		list_for_each_entry(p, &n->partial, slab_list)
5011 			p->slab_cache = s;
5012 
5013 #ifdef CONFIG_SLUB_DEBUG
5014 		list_for_each_entry(p, &n->full, slab_list)
5015 			p->slab_cache = s;
5016 #endif
5017 	}
5018 	list_add(&s->list, &slab_caches);
5019 	return s;
5020 }
5021 
5022 void __init kmem_cache_init(void)
5023 {
5024 	static __initdata struct kmem_cache boot_kmem_cache,
5025 		boot_kmem_cache_node;
5026 	int node;
5027 
5028 	if (debug_guardpage_minorder())
5029 		slub_max_order = 0;
5030 
5031 	/* Print slub debugging pointers without hashing */
5032 	if (__slub_debug_enabled())
5033 		no_hash_pointers_enable(NULL);
5034 
5035 	kmem_cache_node = &boot_kmem_cache_node;
5036 	kmem_cache = &boot_kmem_cache;
5037 
5038 	/*
5039 	 * Initialize the nodemask for which we will allocate per node
5040 	 * structures. Here we don't need taking slab_mutex yet.
5041 	 */
5042 	for_each_node_state(node, N_NORMAL_MEMORY)
5043 		node_set(node, slab_nodes);
5044 
5045 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5046 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5047 
5048 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5049 
5050 	/* Able to allocate the per node structures */
5051 	slab_state = PARTIAL;
5052 
5053 	create_boot_cache(kmem_cache, "kmem_cache",
5054 			offsetof(struct kmem_cache, node) +
5055 				nr_node_ids * sizeof(struct kmem_cache_node *),
5056 		       SLAB_HWCACHE_ALIGN, 0, 0);
5057 
5058 	kmem_cache = bootstrap(&boot_kmem_cache);
5059 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5060 
5061 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5062 	setup_kmalloc_cache_index_table();
5063 	create_kmalloc_caches(0);
5064 
5065 	/* Setup random freelists for each cache */
5066 	init_freelist_randomization();
5067 
5068 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5069 				  slub_cpu_dead);
5070 
5071 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5072 		cache_line_size(),
5073 		slub_min_order, slub_max_order, slub_min_objects,
5074 		nr_cpu_ids, nr_node_ids);
5075 }
5076 
5077 void __init kmem_cache_init_late(void)
5078 {
5079 #ifndef CONFIG_SLUB_TINY
5080 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5081 	WARN_ON(!flushwq);
5082 #endif
5083 }
5084 
5085 struct kmem_cache *
5086 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5087 		   slab_flags_t flags, void (*ctor)(void *))
5088 {
5089 	struct kmem_cache *s;
5090 
5091 	s = find_mergeable(size, align, flags, name, ctor);
5092 	if (s) {
5093 		if (sysfs_slab_alias(s, name))
5094 			return NULL;
5095 
5096 		s->refcount++;
5097 
5098 		/*
5099 		 * Adjust the object sizes so that we clear
5100 		 * the complete object on kzalloc.
5101 		 */
5102 		s->object_size = max(s->object_size, size);
5103 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5104 	}
5105 
5106 	return s;
5107 }
5108 
5109 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5110 {
5111 	int err;
5112 
5113 	err = kmem_cache_open(s, flags);
5114 	if (err)
5115 		return err;
5116 
5117 	/* Mutex is not taken during early boot */
5118 	if (slab_state <= UP)
5119 		return 0;
5120 
5121 	err = sysfs_slab_add(s);
5122 	if (err) {
5123 		__kmem_cache_release(s);
5124 		return err;
5125 	}
5126 
5127 	if (s->flags & SLAB_STORE_USER)
5128 		debugfs_slab_add(s);
5129 
5130 	return 0;
5131 }
5132 
5133 #ifdef SLAB_SUPPORTS_SYSFS
5134 static int count_inuse(struct slab *slab)
5135 {
5136 	return slab->inuse;
5137 }
5138 
5139 static int count_total(struct slab *slab)
5140 {
5141 	return slab->objects;
5142 }
5143 #endif
5144 
5145 #ifdef CONFIG_SLUB_DEBUG
5146 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5147 			  unsigned long *obj_map)
5148 {
5149 	void *p;
5150 	void *addr = slab_address(slab);
5151 
5152 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5153 		return;
5154 
5155 	/* Now we know that a valid freelist exists */
5156 	__fill_map(obj_map, s, slab);
5157 	for_each_object(p, s, addr, slab->objects) {
5158 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5159 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5160 
5161 		if (!check_object(s, slab, p, val))
5162 			break;
5163 	}
5164 }
5165 
5166 static int validate_slab_node(struct kmem_cache *s,
5167 		struct kmem_cache_node *n, unsigned long *obj_map)
5168 {
5169 	unsigned long count = 0;
5170 	struct slab *slab;
5171 	unsigned long flags;
5172 
5173 	spin_lock_irqsave(&n->list_lock, flags);
5174 
5175 	list_for_each_entry(slab, &n->partial, slab_list) {
5176 		validate_slab(s, slab, obj_map);
5177 		count++;
5178 	}
5179 	if (count != n->nr_partial) {
5180 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5181 		       s->name, count, n->nr_partial);
5182 		slab_add_kunit_errors();
5183 	}
5184 
5185 	if (!(s->flags & SLAB_STORE_USER))
5186 		goto out;
5187 
5188 	list_for_each_entry(slab, &n->full, slab_list) {
5189 		validate_slab(s, slab, obj_map);
5190 		count++;
5191 	}
5192 	if (count != node_nr_slabs(n)) {
5193 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5194 		       s->name, count, node_nr_slabs(n));
5195 		slab_add_kunit_errors();
5196 	}
5197 
5198 out:
5199 	spin_unlock_irqrestore(&n->list_lock, flags);
5200 	return count;
5201 }
5202 
5203 long validate_slab_cache(struct kmem_cache *s)
5204 {
5205 	int node;
5206 	unsigned long count = 0;
5207 	struct kmem_cache_node *n;
5208 	unsigned long *obj_map;
5209 
5210 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5211 	if (!obj_map)
5212 		return -ENOMEM;
5213 
5214 	flush_all(s);
5215 	for_each_kmem_cache_node(s, node, n)
5216 		count += validate_slab_node(s, n, obj_map);
5217 
5218 	bitmap_free(obj_map);
5219 
5220 	return count;
5221 }
5222 EXPORT_SYMBOL(validate_slab_cache);
5223 
5224 #ifdef CONFIG_DEBUG_FS
5225 /*
5226  * Generate lists of code addresses where slabcache objects are allocated
5227  * and freed.
5228  */
5229 
5230 struct location {
5231 	depot_stack_handle_t handle;
5232 	unsigned long count;
5233 	unsigned long addr;
5234 	unsigned long waste;
5235 	long long sum_time;
5236 	long min_time;
5237 	long max_time;
5238 	long min_pid;
5239 	long max_pid;
5240 	DECLARE_BITMAP(cpus, NR_CPUS);
5241 	nodemask_t nodes;
5242 };
5243 
5244 struct loc_track {
5245 	unsigned long max;
5246 	unsigned long count;
5247 	struct location *loc;
5248 	loff_t idx;
5249 };
5250 
5251 static struct dentry *slab_debugfs_root;
5252 
5253 static void free_loc_track(struct loc_track *t)
5254 {
5255 	if (t->max)
5256 		free_pages((unsigned long)t->loc,
5257 			get_order(sizeof(struct location) * t->max));
5258 }
5259 
5260 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5261 {
5262 	struct location *l;
5263 	int order;
5264 
5265 	order = get_order(sizeof(struct location) * max);
5266 
5267 	l = (void *)__get_free_pages(flags, order);
5268 	if (!l)
5269 		return 0;
5270 
5271 	if (t->count) {
5272 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5273 		free_loc_track(t);
5274 	}
5275 	t->max = max;
5276 	t->loc = l;
5277 	return 1;
5278 }
5279 
5280 static int add_location(struct loc_track *t, struct kmem_cache *s,
5281 				const struct track *track,
5282 				unsigned int orig_size)
5283 {
5284 	long start, end, pos;
5285 	struct location *l;
5286 	unsigned long caddr, chandle, cwaste;
5287 	unsigned long age = jiffies - track->when;
5288 	depot_stack_handle_t handle = 0;
5289 	unsigned int waste = s->object_size - orig_size;
5290 
5291 #ifdef CONFIG_STACKDEPOT
5292 	handle = READ_ONCE(track->handle);
5293 #endif
5294 	start = -1;
5295 	end = t->count;
5296 
5297 	for ( ; ; ) {
5298 		pos = start + (end - start + 1) / 2;
5299 
5300 		/*
5301 		 * There is nothing at "end". If we end up there
5302 		 * we need to add something to before end.
5303 		 */
5304 		if (pos == end)
5305 			break;
5306 
5307 		l = &t->loc[pos];
5308 		caddr = l->addr;
5309 		chandle = l->handle;
5310 		cwaste = l->waste;
5311 		if ((track->addr == caddr) && (handle == chandle) &&
5312 			(waste == cwaste)) {
5313 
5314 			l->count++;
5315 			if (track->when) {
5316 				l->sum_time += age;
5317 				if (age < l->min_time)
5318 					l->min_time = age;
5319 				if (age > l->max_time)
5320 					l->max_time = age;
5321 
5322 				if (track->pid < l->min_pid)
5323 					l->min_pid = track->pid;
5324 				if (track->pid > l->max_pid)
5325 					l->max_pid = track->pid;
5326 
5327 				cpumask_set_cpu(track->cpu,
5328 						to_cpumask(l->cpus));
5329 			}
5330 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5331 			return 1;
5332 		}
5333 
5334 		if (track->addr < caddr)
5335 			end = pos;
5336 		else if (track->addr == caddr && handle < chandle)
5337 			end = pos;
5338 		else if (track->addr == caddr && handle == chandle &&
5339 				waste < cwaste)
5340 			end = pos;
5341 		else
5342 			start = pos;
5343 	}
5344 
5345 	/*
5346 	 * Not found. Insert new tracking element.
5347 	 */
5348 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5349 		return 0;
5350 
5351 	l = t->loc + pos;
5352 	if (pos < t->count)
5353 		memmove(l + 1, l,
5354 			(t->count - pos) * sizeof(struct location));
5355 	t->count++;
5356 	l->count = 1;
5357 	l->addr = track->addr;
5358 	l->sum_time = age;
5359 	l->min_time = age;
5360 	l->max_time = age;
5361 	l->min_pid = track->pid;
5362 	l->max_pid = track->pid;
5363 	l->handle = handle;
5364 	l->waste = waste;
5365 	cpumask_clear(to_cpumask(l->cpus));
5366 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5367 	nodes_clear(l->nodes);
5368 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5369 	return 1;
5370 }
5371 
5372 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5373 		struct slab *slab, enum track_item alloc,
5374 		unsigned long *obj_map)
5375 {
5376 	void *addr = slab_address(slab);
5377 	bool is_alloc = (alloc == TRACK_ALLOC);
5378 	void *p;
5379 
5380 	__fill_map(obj_map, s, slab);
5381 
5382 	for_each_object(p, s, addr, slab->objects)
5383 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5384 			add_location(t, s, get_track(s, p, alloc),
5385 				     is_alloc ? get_orig_size(s, p) :
5386 						s->object_size);
5387 }
5388 #endif  /* CONFIG_DEBUG_FS   */
5389 #endif	/* CONFIG_SLUB_DEBUG */
5390 
5391 #ifdef SLAB_SUPPORTS_SYSFS
5392 enum slab_stat_type {
5393 	SL_ALL,			/* All slabs */
5394 	SL_PARTIAL,		/* Only partially allocated slabs */
5395 	SL_CPU,			/* Only slabs used for cpu caches */
5396 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5397 	SL_TOTAL		/* Determine object capacity not slabs */
5398 };
5399 
5400 #define SO_ALL		(1 << SL_ALL)
5401 #define SO_PARTIAL	(1 << SL_PARTIAL)
5402 #define SO_CPU		(1 << SL_CPU)
5403 #define SO_OBJECTS	(1 << SL_OBJECTS)
5404 #define SO_TOTAL	(1 << SL_TOTAL)
5405 
5406 static ssize_t show_slab_objects(struct kmem_cache *s,
5407 				 char *buf, unsigned long flags)
5408 {
5409 	unsigned long total = 0;
5410 	int node;
5411 	int x;
5412 	unsigned long *nodes;
5413 	int len = 0;
5414 
5415 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5416 	if (!nodes)
5417 		return -ENOMEM;
5418 
5419 	if (flags & SO_CPU) {
5420 		int cpu;
5421 
5422 		for_each_possible_cpu(cpu) {
5423 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5424 							       cpu);
5425 			int node;
5426 			struct slab *slab;
5427 
5428 			slab = READ_ONCE(c->slab);
5429 			if (!slab)
5430 				continue;
5431 
5432 			node = slab_nid(slab);
5433 			if (flags & SO_TOTAL)
5434 				x = slab->objects;
5435 			else if (flags & SO_OBJECTS)
5436 				x = slab->inuse;
5437 			else
5438 				x = 1;
5439 
5440 			total += x;
5441 			nodes[node] += x;
5442 
5443 #ifdef CONFIG_SLUB_CPU_PARTIAL
5444 			slab = slub_percpu_partial_read_once(c);
5445 			if (slab) {
5446 				node = slab_nid(slab);
5447 				if (flags & SO_TOTAL)
5448 					WARN_ON_ONCE(1);
5449 				else if (flags & SO_OBJECTS)
5450 					WARN_ON_ONCE(1);
5451 				else
5452 					x = slab->slabs;
5453 				total += x;
5454 				nodes[node] += x;
5455 			}
5456 #endif
5457 		}
5458 	}
5459 
5460 	/*
5461 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5462 	 * already held which will conflict with an existing lock order:
5463 	 *
5464 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5465 	 *
5466 	 * We don't really need mem_hotplug_lock (to hold off
5467 	 * slab_mem_going_offline_callback) here because slab's memory hot
5468 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5469 	 */
5470 
5471 #ifdef CONFIG_SLUB_DEBUG
5472 	if (flags & SO_ALL) {
5473 		struct kmem_cache_node *n;
5474 
5475 		for_each_kmem_cache_node(s, node, n) {
5476 
5477 			if (flags & SO_TOTAL)
5478 				x = node_nr_objs(n);
5479 			else if (flags & SO_OBJECTS)
5480 				x = node_nr_objs(n) - count_partial(n, count_free);
5481 			else
5482 				x = node_nr_slabs(n);
5483 			total += x;
5484 			nodes[node] += x;
5485 		}
5486 
5487 	} else
5488 #endif
5489 	if (flags & SO_PARTIAL) {
5490 		struct kmem_cache_node *n;
5491 
5492 		for_each_kmem_cache_node(s, node, n) {
5493 			if (flags & SO_TOTAL)
5494 				x = count_partial(n, count_total);
5495 			else if (flags & SO_OBJECTS)
5496 				x = count_partial(n, count_inuse);
5497 			else
5498 				x = n->nr_partial;
5499 			total += x;
5500 			nodes[node] += x;
5501 		}
5502 	}
5503 
5504 	len += sysfs_emit_at(buf, len, "%lu", total);
5505 #ifdef CONFIG_NUMA
5506 	for (node = 0; node < nr_node_ids; node++) {
5507 		if (nodes[node])
5508 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5509 					     node, nodes[node]);
5510 	}
5511 #endif
5512 	len += sysfs_emit_at(buf, len, "\n");
5513 	kfree(nodes);
5514 
5515 	return len;
5516 }
5517 
5518 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5519 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5520 
5521 struct slab_attribute {
5522 	struct attribute attr;
5523 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5524 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5525 };
5526 
5527 #define SLAB_ATTR_RO(_name) \
5528 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5529 
5530 #define SLAB_ATTR(_name) \
5531 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5532 
5533 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5534 {
5535 	return sysfs_emit(buf, "%u\n", s->size);
5536 }
5537 SLAB_ATTR_RO(slab_size);
5538 
5539 static ssize_t align_show(struct kmem_cache *s, char *buf)
5540 {
5541 	return sysfs_emit(buf, "%u\n", s->align);
5542 }
5543 SLAB_ATTR_RO(align);
5544 
5545 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5546 {
5547 	return sysfs_emit(buf, "%u\n", s->object_size);
5548 }
5549 SLAB_ATTR_RO(object_size);
5550 
5551 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5552 {
5553 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5554 }
5555 SLAB_ATTR_RO(objs_per_slab);
5556 
5557 static ssize_t order_show(struct kmem_cache *s, char *buf)
5558 {
5559 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5560 }
5561 SLAB_ATTR_RO(order);
5562 
5563 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5564 {
5565 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5566 }
5567 
5568 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5569 				 size_t length)
5570 {
5571 	unsigned long min;
5572 	int err;
5573 
5574 	err = kstrtoul(buf, 10, &min);
5575 	if (err)
5576 		return err;
5577 
5578 	s->min_partial = min;
5579 	return length;
5580 }
5581 SLAB_ATTR(min_partial);
5582 
5583 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5584 {
5585 	unsigned int nr_partial = 0;
5586 #ifdef CONFIG_SLUB_CPU_PARTIAL
5587 	nr_partial = s->cpu_partial;
5588 #endif
5589 
5590 	return sysfs_emit(buf, "%u\n", nr_partial);
5591 }
5592 
5593 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5594 				 size_t length)
5595 {
5596 	unsigned int objects;
5597 	int err;
5598 
5599 	err = kstrtouint(buf, 10, &objects);
5600 	if (err)
5601 		return err;
5602 	if (objects && !kmem_cache_has_cpu_partial(s))
5603 		return -EINVAL;
5604 
5605 	slub_set_cpu_partial(s, objects);
5606 	flush_all(s);
5607 	return length;
5608 }
5609 SLAB_ATTR(cpu_partial);
5610 
5611 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5612 {
5613 	if (!s->ctor)
5614 		return 0;
5615 	return sysfs_emit(buf, "%pS\n", s->ctor);
5616 }
5617 SLAB_ATTR_RO(ctor);
5618 
5619 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5620 {
5621 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5622 }
5623 SLAB_ATTR_RO(aliases);
5624 
5625 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5626 {
5627 	return show_slab_objects(s, buf, SO_PARTIAL);
5628 }
5629 SLAB_ATTR_RO(partial);
5630 
5631 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5632 {
5633 	return show_slab_objects(s, buf, SO_CPU);
5634 }
5635 SLAB_ATTR_RO(cpu_slabs);
5636 
5637 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5638 {
5639 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5640 }
5641 SLAB_ATTR_RO(objects_partial);
5642 
5643 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5644 {
5645 	int objects = 0;
5646 	int slabs = 0;
5647 	int cpu __maybe_unused;
5648 	int len = 0;
5649 
5650 #ifdef CONFIG_SLUB_CPU_PARTIAL
5651 	for_each_online_cpu(cpu) {
5652 		struct slab *slab;
5653 
5654 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655 
5656 		if (slab)
5657 			slabs += slab->slabs;
5658 	}
5659 #endif
5660 
5661 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5662 	objects = (slabs * oo_objects(s->oo)) / 2;
5663 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5664 
5665 #ifdef CONFIG_SLUB_CPU_PARTIAL
5666 	for_each_online_cpu(cpu) {
5667 		struct slab *slab;
5668 
5669 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5670 		if (slab) {
5671 			slabs = READ_ONCE(slab->slabs);
5672 			objects = (slabs * oo_objects(s->oo)) / 2;
5673 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5674 					     cpu, objects, slabs);
5675 		}
5676 	}
5677 #endif
5678 	len += sysfs_emit_at(buf, len, "\n");
5679 
5680 	return len;
5681 }
5682 SLAB_ATTR_RO(slabs_cpu_partial);
5683 
5684 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5685 {
5686 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5687 }
5688 SLAB_ATTR_RO(reclaim_account);
5689 
5690 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5691 {
5692 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5693 }
5694 SLAB_ATTR_RO(hwcache_align);
5695 
5696 #ifdef CONFIG_ZONE_DMA
5697 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5698 {
5699 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5700 }
5701 SLAB_ATTR_RO(cache_dma);
5702 #endif
5703 
5704 #ifdef CONFIG_HARDENED_USERCOPY
5705 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5706 {
5707 	return sysfs_emit(buf, "%u\n", s->usersize);
5708 }
5709 SLAB_ATTR_RO(usersize);
5710 #endif
5711 
5712 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5713 {
5714 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5715 }
5716 SLAB_ATTR_RO(destroy_by_rcu);
5717 
5718 #ifdef CONFIG_SLUB_DEBUG
5719 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5720 {
5721 	return show_slab_objects(s, buf, SO_ALL);
5722 }
5723 SLAB_ATTR_RO(slabs);
5724 
5725 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5726 {
5727 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5728 }
5729 SLAB_ATTR_RO(total_objects);
5730 
5731 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5732 {
5733 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5734 }
5735 SLAB_ATTR_RO(objects);
5736 
5737 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5738 {
5739 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5740 }
5741 SLAB_ATTR_RO(sanity_checks);
5742 
5743 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5744 {
5745 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5746 }
5747 SLAB_ATTR_RO(trace);
5748 
5749 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5750 {
5751 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5752 }
5753 
5754 SLAB_ATTR_RO(red_zone);
5755 
5756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5757 {
5758 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5759 }
5760 
5761 SLAB_ATTR_RO(poison);
5762 
5763 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5764 {
5765 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5766 }
5767 
5768 SLAB_ATTR_RO(store_user);
5769 
5770 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5771 {
5772 	return 0;
5773 }
5774 
5775 static ssize_t validate_store(struct kmem_cache *s,
5776 			const char *buf, size_t length)
5777 {
5778 	int ret = -EINVAL;
5779 
5780 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5781 		ret = validate_slab_cache(s);
5782 		if (ret >= 0)
5783 			ret = length;
5784 	}
5785 	return ret;
5786 }
5787 SLAB_ATTR(validate);
5788 
5789 #endif /* CONFIG_SLUB_DEBUG */
5790 
5791 #ifdef CONFIG_FAILSLAB
5792 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5793 {
5794 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5795 }
5796 
5797 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5798 				size_t length)
5799 {
5800 	if (s->refcount > 1)
5801 		return -EINVAL;
5802 
5803 	if (buf[0] == '1')
5804 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5805 	else
5806 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5807 
5808 	return length;
5809 }
5810 SLAB_ATTR(failslab);
5811 #endif
5812 
5813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5814 {
5815 	return 0;
5816 }
5817 
5818 static ssize_t shrink_store(struct kmem_cache *s,
5819 			const char *buf, size_t length)
5820 {
5821 	if (buf[0] == '1')
5822 		kmem_cache_shrink(s);
5823 	else
5824 		return -EINVAL;
5825 	return length;
5826 }
5827 SLAB_ATTR(shrink);
5828 
5829 #ifdef CONFIG_NUMA
5830 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5831 {
5832 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5833 }
5834 
5835 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5836 				const char *buf, size_t length)
5837 {
5838 	unsigned int ratio;
5839 	int err;
5840 
5841 	err = kstrtouint(buf, 10, &ratio);
5842 	if (err)
5843 		return err;
5844 	if (ratio > 100)
5845 		return -ERANGE;
5846 
5847 	s->remote_node_defrag_ratio = ratio * 10;
5848 
5849 	return length;
5850 }
5851 SLAB_ATTR(remote_node_defrag_ratio);
5852 #endif
5853 
5854 #ifdef CONFIG_SLUB_STATS
5855 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5856 {
5857 	unsigned long sum  = 0;
5858 	int cpu;
5859 	int len = 0;
5860 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5861 
5862 	if (!data)
5863 		return -ENOMEM;
5864 
5865 	for_each_online_cpu(cpu) {
5866 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5867 
5868 		data[cpu] = x;
5869 		sum += x;
5870 	}
5871 
5872 	len += sysfs_emit_at(buf, len, "%lu", sum);
5873 
5874 #ifdef CONFIG_SMP
5875 	for_each_online_cpu(cpu) {
5876 		if (data[cpu])
5877 			len += sysfs_emit_at(buf, len, " C%d=%u",
5878 					     cpu, data[cpu]);
5879 	}
5880 #endif
5881 	kfree(data);
5882 	len += sysfs_emit_at(buf, len, "\n");
5883 
5884 	return len;
5885 }
5886 
5887 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5888 {
5889 	int cpu;
5890 
5891 	for_each_online_cpu(cpu)
5892 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5893 }
5894 
5895 #define STAT_ATTR(si, text) 					\
5896 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5897 {								\
5898 	return show_stat(s, buf, si);				\
5899 }								\
5900 static ssize_t text##_store(struct kmem_cache *s,		\
5901 				const char *buf, size_t length)	\
5902 {								\
5903 	if (buf[0] != '0')					\
5904 		return -EINVAL;					\
5905 	clear_stat(s, si);					\
5906 	return length;						\
5907 }								\
5908 SLAB_ATTR(text);						\
5909 
5910 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5911 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5912 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5913 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5914 STAT_ATTR(FREE_FROZEN, free_frozen);
5915 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5916 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5917 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5918 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5919 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5920 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5921 STAT_ATTR(FREE_SLAB, free_slab);
5922 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5923 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5924 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5925 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5926 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5927 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5928 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5929 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5930 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5931 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5932 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5933 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5934 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5935 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5936 #endif	/* CONFIG_SLUB_STATS */
5937 
5938 #ifdef CONFIG_KFENCE
5939 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5940 {
5941 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5942 }
5943 
5944 static ssize_t skip_kfence_store(struct kmem_cache *s,
5945 			const char *buf, size_t length)
5946 {
5947 	int ret = length;
5948 
5949 	if (buf[0] == '0')
5950 		s->flags &= ~SLAB_SKIP_KFENCE;
5951 	else if (buf[0] == '1')
5952 		s->flags |= SLAB_SKIP_KFENCE;
5953 	else
5954 		ret = -EINVAL;
5955 
5956 	return ret;
5957 }
5958 SLAB_ATTR(skip_kfence);
5959 #endif
5960 
5961 static struct attribute *slab_attrs[] = {
5962 	&slab_size_attr.attr,
5963 	&object_size_attr.attr,
5964 	&objs_per_slab_attr.attr,
5965 	&order_attr.attr,
5966 	&min_partial_attr.attr,
5967 	&cpu_partial_attr.attr,
5968 	&objects_partial_attr.attr,
5969 	&partial_attr.attr,
5970 	&cpu_slabs_attr.attr,
5971 	&ctor_attr.attr,
5972 	&aliases_attr.attr,
5973 	&align_attr.attr,
5974 	&hwcache_align_attr.attr,
5975 	&reclaim_account_attr.attr,
5976 	&destroy_by_rcu_attr.attr,
5977 	&shrink_attr.attr,
5978 	&slabs_cpu_partial_attr.attr,
5979 #ifdef CONFIG_SLUB_DEBUG
5980 	&total_objects_attr.attr,
5981 	&objects_attr.attr,
5982 	&slabs_attr.attr,
5983 	&sanity_checks_attr.attr,
5984 	&trace_attr.attr,
5985 	&red_zone_attr.attr,
5986 	&poison_attr.attr,
5987 	&store_user_attr.attr,
5988 	&validate_attr.attr,
5989 #endif
5990 #ifdef CONFIG_ZONE_DMA
5991 	&cache_dma_attr.attr,
5992 #endif
5993 #ifdef CONFIG_NUMA
5994 	&remote_node_defrag_ratio_attr.attr,
5995 #endif
5996 #ifdef CONFIG_SLUB_STATS
5997 	&alloc_fastpath_attr.attr,
5998 	&alloc_slowpath_attr.attr,
5999 	&free_fastpath_attr.attr,
6000 	&free_slowpath_attr.attr,
6001 	&free_frozen_attr.attr,
6002 	&free_add_partial_attr.attr,
6003 	&free_remove_partial_attr.attr,
6004 	&alloc_from_partial_attr.attr,
6005 	&alloc_slab_attr.attr,
6006 	&alloc_refill_attr.attr,
6007 	&alloc_node_mismatch_attr.attr,
6008 	&free_slab_attr.attr,
6009 	&cpuslab_flush_attr.attr,
6010 	&deactivate_full_attr.attr,
6011 	&deactivate_empty_attr.attr,
6012 	&deactivate_to_head_attr.attr,
6013 	&deactivate_to_tail_attr.attr,
6014 	&deactivate_remote_frees_attr.attr,
6015 	&deactivate_bypass_attr.attr,
6016 	&order_fallback_attr.attr,
6017 	&cmpxchg_double_fail_attr.attr,
6018 	&cmpxchg_double_cpu_fail_attr.attr,
6019 	&cpu_partial_alloc_attr.attr,
6020 	&cpu_partial_free_attr.attr,
6021 	&cpu_partial_node_attr.attr,
6022 	&cpu_partial_drain_attr.attr,
6023 #endif
6024 #ifdef CONFIG_FAILSLAB
6025 	&failslab_attr.attr,
6026 #endif
6027 #ifdef CONFIG_HARDENED_USERCOPY
6028 	&usersize_attr.attr,
6029 #endif
6030 #ifdef CONFIG_KFENCE
6031 	&skip_kfence_attr.attr,
6032 #endif
6033 
6034 	NULL
6035 };
6036 
6037 static const struct attribute_group slab_attr_group = {
6038 	.attrs = slab_attrs,
6039 };
6040 
6041 static ssize_t slab_attr_show(struct kobject *kobj,
6042 				struct attribute *attr,
6043 				char *buf)
6044 {
6045 	struct slab_attribute *attribute;
6046 	struct kmem_cache *s;
6047 
6048 	attribute = to_slab_attr(attr);
6049 	s = to_slab(kobj);
6050 
6051 	if (!attribute->show)
6052 		return -EIO;
6053 
6054 	return attribute->show(s, buf);
6055 }
6056 
6057 static ssize_t slab_attr_store(struct kobject *kobj,
6058 				struct attribute *attr,
6059 				const char *buf, size_t len)
6060 {
6061 	struct slab_attribute *attribute;
6062 	struct kmem_cache *s;
6063 
6064 	attribute = to_slab_attr(attr);
6065 	s = to_slab(kobj);
6066 
6067 	if (!attribute->store)
6068 		return -EIO;
6069 
6070 	return attribute->store(s, buf, len);
6071 }
6072 
6073 static void kmem_cache_release(struct kobject *k)
6074 {
6075 	slab_kmem_cache_release(to_slab(k));
6076 }
6077 
6078 static const struct sysfs_ops slab_sysfs_ops = {
6079 	.show = slab_attr_show,
6080 	.store = slab_attr_store,
6081 };
6082 
6083 static const struct kobj_type slab_ktype = {
6084 	.sysfs_ops = &slab_sysfs_ops,
6085 	.release = kmem_cache_release,
6086 };
6087 
6088 static struct kset *slab_kset;
6089 
6090 static inline struct kset *cache_kset(struct kmem_cache *s)
6091 {
6092 	return slab_kset;
6093 }
6094 
6095 #define ID_STR_LENGTH 32
6096 
6097 /* Create a unique string id for a slab cache:
6098  *
6099  * Format	:[flags-]size
6100  */
6101 static char *create_unique_id(struct kmem_cache *s)
6102 {
6103 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6104 	char *p = name;
6105 
6106 	if (!name)
6107 		return ERR_PTR(-ENOMEM);
6108 
6109 	*p++ = ':';
6110 	/*
6111 	 * First flags affecting slabcache operations. We will only
6112 	 * get here for aliasable slabs so we do not need to support
6113 	 * too many flags. The flags here must cover all flags that
6114 	 * are matched during merging to guarantee that the id is
6115 	 * unique.
6116 	 */
6117 	if (s->flags & SLAB_CACHE_DMA)
6118 		*p++ = 'd';
6119 	if (s->flags & SLAB_CACHE_DMA32)
6120 		*p++ = 'D';
6121 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6122 		*p++ = 'a';
6123 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6124 		*p++ = 'F';
6125 	if (s->flags & SLAB_ACCOUNT)
6126 		*p++ = 'A';
6127 	if (p != name + 1)
6128 		*p++ = '-';
6129 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6130 
6131 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6132 		kfree(name);
6133 		return ERR_PTR(-EINVAL);
6134 	}
6135 	kmsan_unpoison_memory(name, p - name);
6136 	return name;
6137 }
6138 
6139 static int sysfs_slab_add(struct kmem_cache *s)
6140 {
6141 	int err;
6142 	const char *name;
6143 	struct kset *kset = cache_kset(s);
6144 	int unmergeable = slab_unmergeable(s);
6145 
6146 	if (!unmergeable && disable_higher_order_debug &&
6147 			(slub_debug & DEBUG_METADATA_FLAGS))
6148 		unmergeable = 1;
6149 
6150 	if (unmergeable) {
6151 		/*
6152 		 * Slabcache can never be merged so we can use the name proper.
6153 		 * This is typically the case for debug situations. In that
6154 		 * case we can catch duplicate names easily.
6155 		 */
6156 		sysfs_remove_link(&slab_kset->kobj, s->name);
6157 		name = s->name;
6158 	} else {
6159 		/*
6160 		 * Create a unique name for the slab as a target
6161 		 * for the symlinks.
6162 		 */
6163 		name = create_unique_id(s);
6164 		if (IS_ERR(name))
6165 			return PTR_ERR(name);
6166 	}
6167 
6168 	s->kobj.kset = kset;
6169 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6170 	if (err)
6171 		goto out;
6172 
6173 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6174 	if (err)
6175 		goto out_del_kobj;
6176 
6177 	if (!unmergeable) {
6178 		/* Setup first alias */
6179 		sysfs_slab_alias(s, s->name);
6180 	}
6181 out:
6182 	if (!unmergeable)
6183 		kfree(name);
6184 	return err;
6185 out_del_kobj:
6186 	kobject_del(&s->kobj);
6187 	goto out;
6188 }
6189 
6190 void sysfs_slab_unlink(struct kmem_cache *s)
6191 {
6192 	if (slab_state >= FULL)
6193 		kobject_del(&s->kobj);
6194 }
6195 
6196 void sysfs_slab_release(struct kmem_cache *s)
6197 {
6198 	if (slab_state >= FULL)
6199 		kobject_put(&s->kobj);
6200 }
6201 
6202 /*
6203  * Need to buffer aliases during bootup until sysfs becomes
6204  * available lest we lose that information.
6205  */
6206 struct saved_alias {
6207 	struct kmem_cache *s;
6208 	const char *name;
6209 	struct saved_alias *next;
6210 };
6211 
6212 static struct saved_alias *alias_list;
6213 
6214 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6215 {
6216 	struct saved_alias *al;
6217 
6218 	if (slab_state == FULL) {
6219 		/*
6220 		 * If we have a leftover link then remove it.
6221 		 */
6222 		sysfs_remove_link(&slab_kset->kobj, name);
6223 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6224 	}
6225 
6226 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6227 	if (!al)
6228 		return -ENOMEM;
6229 
6230 	al->s = s;
6231 	al->name = name;
6232 	al->next = alias_list;
6233 	alias_list = al;
6234 	kmsan_unpoison_memory(al, sizeof(*al));
6235 	return 0;
6236 }
6237 
6238 static int __init slab_sysfs_init(void)
6239 {
6240 	struct kmem_cache *s;
6241 	int err;
6242 
6243 	mutex_lock(&slab_mutex);
6244 
6245 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6246 	if (!slab_kset) {
6247 		mutex_unlock(&slab_mutex);
6248 		pr_err("Cannot register slab subsystem.\n");
6249 		return -ENOMEM;
6250 	}
6251 
6252 	slab_state = FULL;
6253 
6254 	list_for_each_entry(s, &slab_caches, list) {
6255 		err = sysfs_slab_add(s);
6256 		if (err)
6257 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6258 			       s->name);
6259 	}
6260 
6261 	while (alias_list) {
6262 		struct saved_alias *al = alias_list;
6263 
6264 		alias_list = alias_list->next;
6265 		err = sysfs_slab_alias(al->s, al->name);
6266 		if (err)
6267 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6268 			       al->name);
6269 		kfree(al);
6270 	}
6271 
6272 	mutex_unlock(&slab_mutex);
6273 	return 0;
6274 }
6275 late_initcall(slab_sysfs_init);
6276 #endif /* SLAB_SUPPORTS_SYSFS */
6277 
6278 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6279 static int slab_debugfs_show(struct seq_file *seq, void *v)
6280 {
6281 	struct loc_track *t = seq->private;
6282 	struct location *l;
6283 	unsigned long idx;
6284 
6285 	idx = (unsigned long) t->idx;
6286 	if (idx < t->count) {
6287 		l = &t->loc[idx];
6288 
6289 		seq_printf(seq, "%7ld ", l->count);
6290 
6291 		if (l->addr)
6292 			seq_printf(seq, "%pS", (void *)l->addr);
6293 		else
6294 			seq_puts(seq, "<not-available>");
6295 
6296 		if (l->waste)
6297 			seq_printf(seq, " waste=%lu/%lu",
6298 				l->count * l->waste, l->waste);
6299 
6300 		if (l->sum_time != l->min_time) {
6301 			seq_printf(seq, " age=%ld/%llu/%ld",
6302 				l->min_time, div_u64(l->sum_time, l->count),
6303 				l->max_time);
6304 		} else
6305 			seq_printf(seq, " age=%ld", l->min_time);
6306 
6307 		if (l->min_pid != l->max_pid)
6308 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6309 		else
6310 			seq_printf(seq, " pid=%ld",
6311 				l->min_pid);
6312 
6313 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6314 			seq_printf(seq, " cpus=%*pbl",
6315 				 cpumask_pr_args(to_cpumask(l->cpus)));
6316 
6317 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6318 			seq_printf(seq, " nodes=%*pbl",
6319 				 nodemask_pr_args(&l->nodes));
6320 
6321 #ifdef CONFIG_STACKDEPOT
6322 		{
6323 			depot_stack_handle_t handle;
6324 			unsigned long *entries;
6325 			unsigned int nr_entries, j;
6326 
6327 			handle = READ_ONCE(l->handle);
6328 			if (handle) {
6329 				nr_entries = stack_depot_fetch(handle, &entries);
6330 				seq_puts(seq, "\n");
6331 				for (j = 0; j < nr_entries; j++)
6332 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6333 			}
6334 		}
6335 #endif
6336 		seq_puts(seq, "\n");
6337 	}
6338 
6339 	if (!idx && !t->count)
6340 		seq_puts(seq, "No data\n");
6341 
6342 	return 0;
6343 }
6344 
6345 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6346 {
6347 }
6348 
6349 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6350 {
6351 	struct loc_track *t = seq->private;
6352 
6353 	t->idx = ++(*ppos);
6354 	if (*ppos <= t->count)
6355 		return ppos;
6356 
6357 	return NULL;
6358 }
6359 
6360 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6361 {
6362 	struct location *loc1 = (struct location *)a;
6363 	struct location *loc2 = (struct location *)b;
6364 
6365 	if (loc1->count > loc2->count)
6366 		return -1;
6367 	else
6368 		return 1;
6369 }
6370 
6371 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6372 {
6373 	struct loc_track *t = seq->private;
6374 
6375 	t->idx = *ppos;
6376 	return ppos;
6377 }
6378 
6379 static const struct seq_operations slab_debugfs_sops = {
6380 	.start  = slab_debugfs_start,
6381 	.next   = slab_debugfs_next,
6382 	.stop   = slab_debugfs_stop,
6383 	.show   = slab_debugfs_show,
6384 };
6385 
6386 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6387 {
6388 
6389 	struct kmem_cache_node *n;
6390 	enum track_item alloc;
6391 	int node;
6392 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6393 						sizeof(struct loc_track));
6394 	struct kmem_cache *s = file_inode(filep)->i_private;
6395 	unsigned long *obj_map;
6396 
6397 	if (!t)
6398 		return -ENOMEM;
6399 
6400 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6401 	if (!obj_map) {
6402 		seq_release_private(inode, filep);
6403 		return -ENOMEM;
6404 	}
6405 
6406 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6407 		alloc = TRACK_ALLOC;
6408 	else
6409 		alloc = TRACK_FREE;
6410 
6411 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6412 		bitmap_free(obj_map);
6413 		seq_release_private(inode, filep);
6414 		return -ENOMEM;
6415 	}
6416 
6417 	for_each_kmem_cache_node(s, node, n) {
6418 		unsigned long flags;
6419 		struct slab *slab;
6420 
6421 		if (!node_nr_slabs(n))
6422 			continue;
6423 
6424 		spin_lock_irqsave(&n->list_lock, flags);
6425 		list_for_each_entry(slab, &n->partial, slab_list)
6426 			process_slab(t, s, slab, alloc, obj_map);
6427 		list_for_each_entry(slab, &n->full, slab_list)
6428 			process_slab(t, s, slab, alloc, obj_map);
6429 		spin_unlock_irqrestore(&n->list_lock, flags);
6430 	}
6431 
6432 	/* Sort locations by count */
6433 	sort_r(t->loc, t->count, sizeof(struct location),
6434 		cmp_loc_by_count, NULL, NULL);
6435 
6436 	bitmap_free(obj_map);
6437 	return 0;
6438 }
6439 
6440 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6441 {
6442 	struct seq_file *seq = file->private_data;
6443 	struct loc_track *t = seq->private;
6444 
6445 	free_loc_track(t);
6446 	return seq_release_private(inode, file);
6447 }
6448 
6449 static const struct file_operations slab_debugfs_fops = {
6450 	.open    = slab_debug_trace_open,
6451 	.read    = seq_read,
6452 	.llseek  = seq_lseek,
6453 	.release = slab_debug_trace_release,
6454 };
6455 
6456 static void debugfs_slab_add(struct kmem_cache *s)
6457 {
6458 	struct dentry *slab_cache_dir;
6459 
6460 	if (unlikely(!slab_debugfs_root))
6461 		return;
6462 
6463 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6464 
6465 	debugfs_create_file("alloc_traces", 0400,
6466 		slab_cache_dir, s, &slab_debugfs_fops);
6467 
6468 	debugfs_create_file("free_traces", 0400,
6469 		slab_cache_dir, s, &slab_debugfs_fops);
6470 }
6471 
6472 void debugfs_slab_release(struct kmem_cache *s)
6473 {
6474 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6475 }
6476 
6477 static int __init slab_debugfs_init(void)
6478 {
6479 	struct kmem_cache *s;
6480 
6481 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6482 
6483 	list_for_each_entry(s, &slab_caches, list)
6484 		if (s->flags & SLAB_STORE_USER)
6485 			debugfs_slab_add(s);
6486 
6487 	return 0;
6488 
6489 }
6490 __initcall(slab_debugfs_init);
6491 #endif
6492 /*
6493  * The /proc/slabinfo ABI
6494  */
6495 #ifdef CONFIG_SLUB_DEBUG
6496 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6497 {
6498 	unsigned long nr_slabs = 0;
6499 	unsigned long nr_objs = 0;
6500 	unsigned long nr_free = 0;
6501 	int node;
6502 	struct kmem_cache_node *n;
6503 
6504 	for_each_kmem_cache_node(s, node, n) {
6505 		nr_slabs += node_nr_slabs(n);
6506 		nr_objs += node_nr_objs(n);
6507 		nr_free += count_partial(n, count_free);
6508 	}
6509 
6510 	sinfo->active_objs = nr_objs - nr_free;
6511 	sinfo->num_objs = nr_objs;
6512 	sinfo->active_slabs = nr_slabs;
6513 	sinfo->num_slabs = nr_slabs;
6514 	sinfo->objects_per_slab = oo_objects(s->oo);
6515 	sinfo->cache_order = oo_order(s->oo);
6516 }
6517 
6518 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6519 {
6520 }
6521 
6522 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6523 		       size_t count, loff_t *ppos)
6524 {
6525 	return -EIO;
6526 }
6527 #endif /* CONFIG_SLUB_DEBUG */
6528