xref: /linux/mm/slub.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30 
31 /*
32  * Lock order:
33  *   1. slab_lock(page)
34  *   2. slab->list_lock
35  *
36  *   The slab_lock protects operations on the object of a particular
37  *   slab and its metadata in the page struct. If the slab lock
38  *   has been taken then no allocations nor frees can be performed
39  *   on the objects in the slab nor can the slab be added or removed
40  *   from the partial or full lists since this would mean modifying
41  *   the page_struct of the slab.
42  *
43  *   The list_lock protects the partial and full list on each node and
44  *   the partial slab counter. If taken then no new slabs may be added or
45  *   removed from the lists nor make the number of partial slabs be modified.
46  *   (Note that the total number of slabs is an atomic value that may be
47  *   modified without taking the list lock).
48  *
49  *   The list_lock is a centralized lock and thus we avoid taking it as
50  *   much as possible. As long as SLUB does not have to handle partial
51  *   slabs, operations can continue without any centralized lock. F.e.
52  *   allocating a long series of objects that fill up slabs does not require
53  *   the list lock.
54  *
55  *   The lock order is sometimes inverted when we are trying to get a slab
56  *   off a list. We take the list_lock and then look for a page on the list
57  *   to use. While we do that objects in the slabs may be freed. We can
58  *   only operate on the slab if we have also taken the slab_lock. So we use
59  *   a slab_trylock() on the slab. If trylock was successful then no frees
60  *   can occur anymore and we can use the slab for allocations etc. If the
61  *   slab_trylock() does not succeed then frees are in progress in the slab and
62  *   we must stay away from it for a while since we may cause a bouncing
63  *   cacheline if we try to acquire the lock. So go onto the next slab.
64  *   If all pages are busy then we may allocate a new slab instead of reusing
65  *   a partial slab. A new slab has noone operating on it and thus there is
66  *   no danger of cacheline contention.
67  *
68  *   Interrupts are disabled during allocation and deallocation in order to
69  *   make the slab allocator safe to use in the context of an irq. In addition
70  *   interrupts are disabled to ensure that the processor does not change
71  *   while handling per_cpu slabs, due to kernel preemption.
72  *
73  * SLUB assigns one slab for allocation to each processor.
74  * Allocations only occur from these slabs called cpu slabs.
75  *
76  * Slabs with free elements are kept on a partial list and during regular
77  * operations no list for full slabs is used. If an object in a full slab is
78  * freed then the slab will show up again on the partial lists.
79  * We track full slabs for debugging purposes though because otherwise we
80  * cannot scan all objects.
81  *
82  * Slabs are freed when they become empty. Teardown and setup is
83  * minimal so we rely on the page allocators per cpu caches for
84  * fast frees and allocs.
85  *
86  * Overloading of page flags that are otherwise used for LRU management.
87  *
88  * PageActive 		The slab is frozen and exempt from list processing.
89  * 			This means that the slab is dedicated to a purpose
90  * 			such as satisfying allocations for a specific
91  * 			processor. Objects may be freed in the slab while
92  * 			it is frozen but slab_free will then skip the usual
93  * 			list operations. It is up to the processor holding
94  * 			the slab to integrate the slab into the slab lists
95  * 			when the slab is no longer needed.
96  *
97  * 			One use of this flag is to mark slabs that are
98  * 			used for allocations. Then such a slab becomes a cpu
99  * 			slab. The cpu slab may be equipped with an additional
100  * 			freelist that allows lockless access to
101  * 			free objects in addition to the regular freelist
102  * 			that requires the slab lock.
103  *
104  * PageError		Slab requires special handling due to debug
105  * 			options set. This moves	slab handling out of
106  * 			the fast path and disables lockless freelists.
107  */
108 
109 #ifdef CONFIG_SLUB_DEBUG
110 #define SLABDEBUG 1
111 #else
112 #define SLABDEBUG 0
113 #endif
114 
115 /*
116  * Issues still to be resolved:
117  *
118  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119  *
120  * - Variable sizing of the per node arrays
121  */
122 
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
125 
126 /*
127  * Mininum number of partial slabs. These will be left on the partial
128  * lists even if they are empty. kmem_cache_shrink may reclaim them.
129  */
130 #define MIN_PARTIAL 5
131 
132 /*
133  * Maximum number of desirable partial slabs.
134  * The existence of more partial slabs makes kmem_cache_shrink
135  * sort the partial list by the number of objects in the.
136  */
137 #define MAX_PARTIAL 10
138 
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 				SLAB_POISON | SLAB_STORE_USER)
141 
142 /*
143  * Debugging flags that require metadata to be stored in the slab.  These get
144  * disabled when slub_debug=O is used and a cache's min order increases with
145  * metadata.
146  */
147 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
148 
149 /*
150  * Set of flags that will prevent slab merging
151  */
152 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
153 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
154 		SLAB_FAILSLAB)
155 
156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
157 		SLAB_CACHE_DMA | SLAB_NOTRACK)
158 
159 #define OO_SHIFT	16
160 #define OO_MASK		((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
162 
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON		0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
166 
167 static int kmem_size = sizeof(struct kmem_cache);
168 
169 #ifdef CONFIG_SMP
170 static struct notifier_block slab_notifier;
171 #endif
172 
173 static enum {
174 	DOWN,		/* No slab functionality available */
175 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
176 	UP,		/* Everything works but does not show up in sysfs */
177 	SYSFS		/* Sysfs up */
178 } slab_state = DOWN;
179 
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock);
182 static LIST_HEAD(slab_caches);
183 
184 /*
185  * Tracking user of a slab.
186  */
187 struct track {
188 	unsigned long addr;	/* Called from address */
189 	int cpu;		/* Was running on cpu */
190 	int pid;		/* Pid context */
191 	unsigned long when;	/* When did the operation occur */
192 };
193 
194 enum track_item { TRACK_ALLOC, TRACK_FREE };
195 
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache *);
198 static int sysfs_slab_alias(struct kmem_cache *, const char *);
199 static void sysfs_slab_remove(struct kmem_cache *);
200 
201 #else
202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 							{ return 0; }
205 static inline void sysfs_slab_remove(struct kmem_cache *s)
206 {
207 	kfree(s);
208 }
209 
210 #endif
211 
212 static inline void stat(struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 	__this_cpu_inc(s->cpu_slab->stat[si]);
216 #endif
217 }
218 
219 /********************************************************************
220  * 			Core slab cache functions
221  *******************************************************************/
222 
223 int slab_is_available(void)
224 {
225 	return slab_state >= UP;
226 }
227 
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 {
230 #ifdef CONFIG_NUMA
231 	return s->node[node];
232 #else
233 	return &s->local_node;
234 #endif
235 }
236 
237 /* Verify that a pointer has an address that is valid within a slab page */
238 static inline int check_valid_pointer(struct kmem_cache *s,
239 				struct page *page, const void *object)
240 {
241 	void *base;
242 
243 	if (!object)
244 		return 1;
245 
246 	base = page_address(page);
247 	if (object < base || object >= base + page->objects * s->size ||
248 		(object - base) % s->size) {
249 		return 0;
250 	}
251 
252 	return 1;
253 }
254 
255 static inline void *get_freepointer(struct kmem_cache *s, void *object)
256 {
257 	return *(void **)(object + s->offset);
258 }
259 
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
261 {
262 	*(void **)(object + s->offset) = fp;
263 }
264 
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
268 			__p += (__s)->size)
269 
270 /* Scan freelist */
271 #define for_each_free_object(__p, __s, __free) \
272 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
273 
274 /* Determine object index from a given position */
275 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
276 {
277 	return (p - addr) / s->size;
278 }
279 
280 static inline struct kmem_cache_order_objects oo_make(int order,
281 						unsigned long size)
282 {
283 	struct kmem_cache_order_objects x = {
284 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
285 	};
286 
287 	return x;
288 }
289 
290 static inline int oo_order(struct kmem_cache_order_objects x)
291 {
292 	return x.x >> OO_SHIFT;
293 }
294 
295 static inline int oo_objects(struct kmem_cache_order_objects x)
296 {
297 	return x.x & OO_MASK;
298 }
299 
300 #ifdef CONFIG_SLUB_DEBUG
301 /*
302  * Debug settings:
303  */
304 #ifdef CONFIG_SLUB_DEBUG_ON
305 static int slub_debug = DEBUG_DEFAULT_FLAGS;
306 #else
307 static int slub_debug;
308 #endif
309 
310 static char *slub_debug_slabs;
311 static int disable_higher_order_debug;
312 
313 /*
314  * Object debugging
315  */
316 static void print_section(char *text, u8 *addr, unsigned int length)
317 {
318 	int i, offset;
319 	int newline = 1;
320 	char ascii[17];
321 
322 	ascii[16] = 0;
323 
324 	for (i = 0; i < length; i++) {
325 		if (newline) {
326 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
327 			newline = 0;
328 		}
329 		printk(KERN_CONT " %02x", addr[i]);
330 		offset = i % 16;
331 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
332 		if (offset == 15) {
333 			printk(KERN_CONT " %s\n", ascii);
334 			newline = 1;
335 		}
336 	}
337 	if (!newline) {
338 		i %= 16;
339 		while (i < 16) {
340 			printk(KERN_CONT "   ");
341 			ascii[i] = ' ';
342 			i++;
343 		}
344 		printk(KERN_CONT " %s\n", ascii);
345 	}
346 }
347 
348 static struct track *get_track(struct kmem_cache *s, void *object,
349 	enum track_item alloc)
350 {
351 	struct track *p;
352 
353 	if (s->offset)
354 		p = object + s->offset + sizeof(void *);
355 	else
356 		p = object + s->inuse;
357 
358 	return p + alloc;
359 }
360 
361 static void set_track(struct kmem_cache *s, void *object,
362 			enum track_item alloc, unsigned long addr)
363 {
364 	struct track *p = get_track(s, object, alloc);
365 
366 	if (addr) {
367 		p->addr = addr;
368 		p->cpu = smp_processor_id();
369 		p->pid = current->pid;
370 		p->when = jiffies;
371 	} else
372 		memset(p, 0, sizeof(struct track));
373 }
374 
375 static void init_tracking(struct kmem_cache *s, void *object)
376 {
377 	if (!(s->flags & SLAB_STORE_USER))
378 		return;
379 
380 	set_track(s, object, TRACK_FREE, 0UL);
381 	set_track(s, object, TRACK_ALLOC, 0UL);
382 }
383 
384 static void print_track(const char *s, struct track *t)
385 {
386 	if (!t->addr)
387 		return;
388 
389 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
390 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
391 }
392 
393 static void print_tracking(struct kmem_cache *s, void *object)
394 {
395 	if (!(s->flags & SLAB_STORE_USER))
396 		return;
397 
398 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
399 	print_track("Freed", get_track(s, object, TRACK_FREE));
400 }
401 
402 static void print_page_info(struct page *page)
403 {
404 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
405 		page, page->objects, page->inuse, page->freelist, page->flags);
406 
407 }
408 
409 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
410 {
411 	va_list args;
412 	char buf[100];
413 
414 	va_start(args, fmt);
415 	vsnprintf(buf, sizeof(buf), fmt, args);
416 	va_end(args);
417 	printk(KERN_ERR "========================================"
418 			"=====================================\n");
419 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
420 	printk(KERN_ERR "----------------------------------------"
421 			"-------------------------------------\n\n");
422 }
423 
424 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
425 {
426 	va_list args;
427 	char buf[100];
428 
429 	va_start(args, fmt);
430 	vsnprintf(buf, sizeof(buf), fmt, args);
431 	va_end(args);
432 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
433 }
434 
435 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
436 {
437 	unsigned int off;	/* Offset of last byte */
438 	u8 *addr = page_address(page);
439 
440 	print_tracking(s, p);
441 
442 	print_page_info(page);
443 
444 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
445 			p, p - addr, get_freepointer(s, p));
446 
447 	if (p > addr + 16)
448 		print_section("Bytes b4", p - 16, 16);
449 
450 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
451 
452 	if (s->flags & SLAB_RED_ZONE)
453 		print_section("Redzone", p + s->objsize,
454 			s->inuse - s->objsize);
455 
456 	if (s->offset)
457 		off = s->offset + sizeof(void *);
458 	else
459 		off = s->inuse;
460 
461 	if (s->flags & SLAB_STORE_USER)
462 		off += 2 * sizeof(struct track);
463 
464 	if (off != s->size)
465 		/* Beginning of the filler is the free pointer */
466 		print_section("Padding", p + off, s->size - off);
467 
468 	dump_stack();
469 }
470 
471 static void object_err(struct kmem_cache *s, struct page *page,
472 			u8 *object, char *reason)
473 {
474 	slab_bug(s, "%s", reason);
475 	print_trailer(s, page, object);
476 }
477 
478 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
479 {
480 	va_list args;
481 	char buf[100];
482 
483 	va_start(args, fmt);
484 	vsnprintf(buf, sizeof(buf), fmt, args);
485 	va_end(args);
486 	slab_bug(s, "%s", buf);
487 	print_page_info(page);
488 	dump_stack();
489 }
490 
491 static void init_object(struct kmem_cache *s, void *object, int active)
492 {
493 	u8 *p = object;
494 
495 	if (s->flags & __OBJECT_POISON) {
496 		memset(p, POISON_FREE, s->objsize - 1);
497 		p[s->objsize - 1] = POISON_END;
498 	}
499 
500 	if (s->flags & SLAB_RED_ZONE)
501 		memset(p + s->objsize,
502 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
503 			s->inuse - s->objsize);
504 }
505 
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507 {
508 	while (bytes) {
509 		if (*start != (u8)value)
510 			return start;
511 		start++;
512 		bytes--;
513 	}
514 	return NULL;
515 }
516 
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 						void *from, void *to)
519 {
520 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 	memset(from, data, to - from);
522 }
523 
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 			u8 *object, char *what,
526 			u8 *start, unsigned int value, unsigned int bytes)
527 {
528 	u8 *fault;
529 	u8 *end;
530 
531 	fault = check_bytes(start, value, bytes);
532 	if (!fault)
533 		return 1;
534 
535 	end = start + bytes;
536 	while (end > fault && end[-1] == value)
537 		end--;
538 
539 	slab_bug(s, "%s overwritten", what);
540 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 					fault, end - 1, fault[0], value);
542 	print_trailer(s, page, object);
543 
544 	restore_bytes(s, what, value, fault, end);
545 	return 0;
546 }
547 
548 /*
549  * Object layout:
550  *
551  * object address
552  * 	Bytes of the object to be managed.
553  * 	If the freepointer may overlay the object then the free
554  * 	pointer is the first word of the object.
555  *
556  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
557  * 	0xa5 (POISON_END)
558  *
559  * object + s->objsize
560  * 	Padding to reach word boundary. This is also used for Redzoning.
561  * 	Padding is extended by another word if Redzoning is enabled and
562  * 	objsize == inuse.
563  *
564  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565  * 	0xcc (RED_ACTIVE) for objects in use.
566  *
567  * object + s->inuse
568  * 	Meta data starts here.
569  *
570  * 	A. Free pointer (if we cannot overwrite object on free)
571  * 	B. Tracking data for SLAB_STORE_USER
572  * 	C. Padding to reach required alignment boundary or at mininum
573  * 		one word if debugging is on to be able to detect writes
574  * 		before the word boundary.
575  *
576  *	Padding is done using 0x5a (POISON_INUSE)
577  *
578  * object + s->size
579  * 	Nothing is used beyond s->size.
580  *
581  * If slabcaches are merged then the objsize and inuse boundaries are mostly
582  * ignored. And therefore no slab options that rely on these boundaries
583  * may be used with merged slabcaches.
584  */
585 
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 	unsigned long off = s->inuse;	/* The end of info */
589 
590 	if (s->offset)
591 		/* Freepointer is placed after the object. */
592 		off += sizeof(void *);
593 
594 	if (s->flags & SLAB_STORE_USER)
595 		/* We also have user information there */
596 		off += 2 * sizeof(struct track);
597 
598 	if (s->size == off)
599 		return 1;
600 
601 	return check_bytes_and_report(s, page, p, "Object padding",
602 				p + off, POISON_INUSE, s->size - off);
603 }
604 
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
607 {
608 	u8 *start;
609 	u8 *fault;
610 	u8 *end;
611 	int length;
612 	int remainder;
613 
614 	if (!(s->flags & SLAB_POISON))
615 		return 1;
616 
617 	start = page_address(page);
618 	length = (PAGE_SIZE << compound_order(page));
619 	end = start + length;
620 	remainder = length % s->size;
621 	if (!remainder)
622 		return 1;
623 
624 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 	if (!fault)
626 		return 1;
627 	while (end > fault && end[-1] == POISON_INUSE)
628 		end--;
629 
630 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 	print_section("Padding", end - remainder, remainder);
632 
633 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 	return 0;
635 }
636 
637 static int check_object(struct kmem_cache *s, struct page *page,
638 					void *object, int active)
639 {
640 	u8 *p = object;
641 	u8 *endobject = object + s->objsize;
642 
643 	if (s->flags & SLAB_RED_ZONE) {
644 		unsigned int red =
645 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
646 
647 		if (!check_bytes_and_report(s, page, object, "Redzone",
648 			endobject, red, s->inuse - s->objsize))
649 			return 0;
650 	} else {
651 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
652 			check_bytes_and_report(s, page, p, "Alignment padding",
653 				endobject, POISON_INUSE, s->inuse - s->objsize);
654 		}
655 	}
656 
657 	if (s->flags & SLAB_POISON) {
658 		if (!active && (s->flags & __OBJECT_POISON) &&
659 			(!check_bytes_and_report(s, page, p, "Poison", p,
660 					POISON_FREE, s->objsize - 1) ||
661 			 !check_bytes_and_report(s, page, p, "Poison",
662 				p + s->objsize - 1, POISON_END, 1)))
663 			return 0;
664 		/*
665 		 * check_pad_bytes cleans up on its own.
666 		 */
667 		check_pad_bytes(s, page, p);
668 	}
669 
670 	if (!s->offset && active)
671 		/*
672 		 * Object and freepointer overlap. Cannot check
673 		 * freepointer while object is allocated.
674 		 */
675 		return 1;
676 
677 	/* Check free pointer validity */
678 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
679 		object_err(s, page, p, "Freepointer corrupt");
680 		/*
681 		 * No choice but to zap it and thus lose the remainder
682 		 * of the free objects in this slab. May cause
683 		 * another error because the object count is now wrong.
684 		 */
685 		set_freepointer(s, p, NULL);
686 		return 0;
687 	}
688 	return 1;
689 }
690 
691 static int check_slab(struct kmem_cache *s, struct page *page)
692 {
693 	int maxobj;
694 
695 	VM_BUG_ON(!irqs_disabled());
696 
697 	if (!PageSlab(page)) {
698 		slab_err(s, page, "Not a valid slab page");
699 		return 0;
700 	}
701 
702 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
703 	if (page->objects > maxobj) {
704 		slab_err(s, page, "objects %u > max %u",
705 			s->name, page->objects, maxobj);
706 		return 0;
707 	}
708 	if (page->inuse > page->objects) {
709 		slab_err(s, page, "inuse %u > max %u",
710 			s->name, page->inuse, page->objects);
711 		return 0;
712 	}
713 	/* Slab_pad_check fixes things up after itself */
714 	slab_pad_check(s, page);
715 	return 1;
716 }
717 
718 /*
719  * Determine if a certain object on a page is on the freelist. Must hold the
720  * slab lock to guarantee that the chains are in a consistent state.
721  */
722 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
723 {
724 	int nr = 0;
725 	void *fp = page->freelist;
726 	void *object = NULL;
727 	unsigned long max_objects;
728 
729 	while (fp && nr <= page->objects) {
730 		if (fp == search)
731 			return 1;
732 		if (!check_valid_pointer(s, page, fp)) {
733 			if (object) {
734 				object_err(s, page, object,
735 					"Freechain corrupt");
736 				set_freepointer(s, object, NULL);
737 				break;
738 			} else {
739 				slab_err(s, page, "Freepointer corrupt");
740 				page->freelist = NULL;
741 				page->inuse = page->objects;
742 				slab_fix(s, "Freelist cleared");
743 				return 0;
744 			}
745 			break;
746 		}
747 		object = fp;
748 		fp = get_freepointer(s, object);
749 		nr++;
750 	}
751 
752 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
753 	if (max_objects > MAX_OBJS_PER_PAGE)
754 		max_objects = MAX_OBJS_PER_PAGE;
755 
756 	if (page->objects != max_objects) {
757 		slab_err(s, page, "Wrong number of objects. Found %d but "
758 			"should be %d", page->objects, max_objects);
759 		page->objects = max_objects;
760 		slab_fix(s, "Number of objects adjusted.");
761 	}
762 	if (page->inuse != page->objects - nr) {
763 		slab_err(s, page, "Wrong object count. Counter is %d but "
764 			"counted were %d", page->inuse, page->objects - nr);
765 		page->inuse = page->objects - nr;
766 		slab_fix(s, "Object count adjusted.");
767 	}
768 	return search == NULL;
769 }
770 
771 static void trace(struct kmem_cache *s, struct page *page, void *object,
772 								int alloc)
773 {
774 	if (s->flags & SLAB_TRACE) {
775 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
776 			s->name,
777 			alloc ? "alloc" : "free",
778 			object, page->inuse,
779 			page->freelist);
780 
781 		if (!alloc)
782 			print_section("Object", (void *)object, s->objsize);
783 
784 		dump_stack();
785 	}
786 }
787 
788 /*
789  * Tracking of fully allocated slabs for debugging purposes.
790  */
791 static void add_full(struct kmem_cache_node *n, struct page *page)
792 {
793 	spin_lock(&n->list_lock);
794 	list_add(&page->lru, &n->full);
795 	spin_unlock(&n->list_lock);
796 }
797 
798 static void remove_full(struct kmem_cache *s, struct page *page)
799 {
800 	struct kmem_cache_node *n;
801 
802 	if (!(s->flags & SLAB_STORE_USER))
803 		return;
804 
805 	n = get_node(s, page_to_nid(page));
806 
807 	spin_lock(&n->list_lock);
808 	list_del(&page->lru);
809 	spin_unlock(&n->list_lock);
810 }
811 
812 /* Tracking of the number of slabs for debugging purposes */
813 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
814 {
815 	struct kmem_cache_node *n = get_node(s, node);
816 
817 	return atomic_long_read(&n->nr_slabs);
818 }
819 
820 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
821 {
822 	return atomic_long_read(&n->nr_slabs);
823 }
824 
825 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
826 {
827 	struct kmem_cache_node *n = get_node(s, node);
828 
829 	/*
830 	 * May be called early in order to allocate a slab for the
831 	 * kmem_cache_node structure. Solve the chicken-egg
832 	 * dilemma by deferring the increment of the count during
833 	 * bootstrap (see early_kmem_cache_node_alloc).
834 	 */
835 	if (!NUMA_BUILD || n) {
836 		atomic_long_inc(&n->nr_slabs);
837 		atomic_long_add(objects, &n->total_objects);
838 	}
839 }
840 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
841 {
842 	struct kmem_cache_node *n = get_node(s, node);
843 
844 	atomic_long_dec(&n->nr_slabs);
845 	atomic_long_sub(objects, &n->total_objects);
846 }
847 
848 /* Object debug checks for alloc/free paths */
849 static void setup_object_debug(struct kmem_cache *s, struct page *page,
850 								void *object)
851 {
852 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
853 		return;
854 
855 	init_object(s, object, 0);
856 	init_tracking(s, object);
857 }
858 
859 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
860 					void *object, unsigned long addr)
861 {
862 	if (!check_slab(s, page))
863 		goto bad;
864 
865 	if (!on_freelist(s, page, object)) {
866 		object_err(s, page, object, "Object already allocated");
867 		goto bad;
868 	}
869 
870 	if (!check_valid_pointer(s, page, object)) {
871 		object_err(s, page, object, "Freelist Pointer check fails");
872 		goto bad;
873 	}
874 
875 	if (!check_object(s, page, object, 0))
876 		goto bad;
877 
878 	/* Success perform special debug activities for allocs */
879 	if (s->flags & SLAB_STORE_USER)
880 		set_track(s, object, TRACK_ALLOC, addr);
881 	trace(s, page, object, 1);
882 	init_object(s, object, 1);
883 	return 1;
884 
885 bad:
886 	if (PageSlab(page)) {
887 		/*
888 		 * If this is a slab page then lets do the best we can
889 		 * to avoid issues in the future. Marking all objects
890 		 * as used avoids touching the remaining objects.
891 		 */
892 		slab_fix(s, "Marking all objects used");
893 		page->inuse = page->objects;
894 		page->freelist = NULL;
895 	}
896 	return 0;
897 }
898 
899 static int free_debug_processing(struct kmem_cache *s, struct page *page,
900 					void *object, unsigned long addr)
901 {
902 	if (!check_slab(s, page))
903 		goto fail;
904 
905 	if (!check_valid_pointer(s, page, object)) {
906 		slab_err(s, page, "Invalid object pointer 0x%p", object);
907 		goto fail;
908 	}
909 
910 	if (on_freelist(s, page, object)) {
911 		object_err(s, page, object, "Object already free");
912 		goto fail;
913 	}
914 
915 	if (!check_object(s, page, object, 1))
916 		return 0;
917 
918 	if (unlikely(s != page->slab)) {
919 		if (!PageSlab(page)) {
920 			slab_err(s, page, "Attempt to free object(0x%p) "
921 				"outside of slab", object);
922 		} else if (!page->slab) {
923 			printk(KERN_ERR
924 				"SLUB <none>: no slab for object 0x%p.\n",
925 						object);
926 			dump_stack();
927 		} else
928 			object_err(s, page, object,
929 					"page slab pointer corrupt.");
930 		goto fail;
931 	}
932 
933 	/* Special debug activities for freeing objects */
934 	if (!PageSlubFrozen(page) && !page->freelist)
935 		remove_full(s, page);
936 	if (s->flags & SLAB_STORE_USER)
937 		set_track(s, object, TRACK_FREE, addr);
938 	trace(s, page, object, 0);
939 	init_object(s, object, 0);
940 	return 1;
941 
942 fail:
943 	slab_fix(s, "Object at 0x%p not freed", object);
944 	return 0;
945 }
946 
947 static int __init setup_slub_debug(char *str)
948 {
949 	slub_debug = DEBUG_DEFAULT_FLAGS;
950 	if (*str++ != '=' || !*str)
951 		/*
952 		 * No options specified. Switch on full debugging.
953 		 */
954 		goto out;
955 
956 	if (*str == ',')
957 		/*
958 		 * No options but restriction on slabs. This means full
959 		 * debugging for slabs matching a pattern.
960 		 */
961 		goto check_slabs;
962 
963 	if (tolower(*str) == 'o') {
964 		/*
965 		 * Avoid enabling debugging on caches if its minimum order
966 		 * would increase as a result.
967 		 */
968 		disable_higher_order_debug = 1;
969 		goto out;
970 	}
971 
972 	slub_debug = 0;
973 	if (*str == '-')
974 		/*
975 		 * Switch off all debugging measures.
976 		 */
977 		goto out;
978 
979 	/*
980 	 * Determine which debug features should be switched on
981 	 */
982 	for (; *str && *str != ','; str++) {
983 		switch (tolower(*str)) {
984 		case 'f':
985 			slub_debug |= SLAB_DEBUG_FREE;
986 			break;
987 		case 'z':
988 			slub_debug |= SLAB_RED_ZONE;
989 			break;
990 		case 'p':
991 			slub_debug |= SLAB_POISON;
992 			break;
993 		case 'u':
994 			slub_debug |= SLAB_STORE_USER;
995 			break;
996 		case 't':
997 			slub_debug |= SLAB_TRACE;
998 			break;
999 		case 'a':
1000 			slub_debug |= SLAB_FAILSLAB;
1001 			break;
1002 		default:
1003 			printk(KERN_ERR "slub_debug option '%c' "
1004 				"unknown. skipped\n", *str);
1005 		}
1006 	}
1007 
1008 check_slabs:
1009 	if (*str == ',')
1010 		slub_debug_slabs = str + 1;
1011 out:
1012 	return 1;
1013 }
1014 
1015 __setup("slub_debug", setup_slub_debug);
1016 
1017 static unsigned long kmem_cache_flags(unsigned long objsize,
1018 	unsigned long flags, const char *name,
1019 	void (*ctor)(void *))
1020 {
1021 	/*
1022 	 * Enable debugging if selected on the kernel commandline.
1023 	 */
1024 	if (slub_debug && (!slub_debug_slabs ||
1025 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1026 		flags |= slub_debug;
1027 
1028 	return flags;
1029 }
1030 #else
1031 static inline void setup_object_debug(struct kmem_cache *s,
1032 			struct page *page, void *object) {}
1033 
1034 static inline int alloc_debug_processing(struct kmem_cache *s,
1035 	struct page *page, void *object, unsigned long addr) { return 0; }
1036 
1037 static inline int free_debug_processing(struct kmem_cache *s,
1038 	struct page *page, void *object, unsigned long addr) { return 0; }
1039 
1040 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1041 			{ return 1; }
1042 static inline int check_object(struct kmem_cache *s, struct page *page,
1043 			void *object, int active) { return 1; }
1044 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1045 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1046 	unsigned long flags, const char *name,
1047 	void (*ctor)(void *))
1048 {
1049 	return flags;
1050 }
1051 #define slub_debug 0
1052 
1053 #define disable_higher_order_debug 0
1054 
1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 							{ return 0; }
1057 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1058 							{ return 0; }
1059 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1060 							int objects) {}
1061 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1062 							int objects) {}
1063 #endif
1064 
1065 /*
1066  * Slab allocation and freeing
1067  */
1068 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1069 					struct kmem_cache_order_objects oo)
1070 {
1071 	int order = oo_order(oo);
1072 
1073 	flags |= __GFP_NOTRACK;
1074 
1075 	if (node == -1)
1076 		return alloc_pages(flags, order);
1077 	else
1078 		return alloc_pages_exact_node(node, flags, order);
1079 }
1080 
1081 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1082 {
1083 	struct page *page;
1084 	struct kmem_cache_order_objects oo = s->oo;
1085 	gfp_t alloc_gfp;
1086 
1087 	flags |= s->allocflags;
1088 
1089 	/*
1090 	 * Let the initial higher-order allocation fail under memory pressure
1091 	 * so we fall-back to the minimum order allocation.
1092 	 */
1093 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1094 
1095 	page = alloc_slab_page(alloc_gfp, node, oo);
1096 	if (unlikely(!page)) {
1097 		oo = s->min;
1098 		/*
1099 		 * Allocation may have failed due to fragmentation.
1100 		 * Try a lower order alloc if possible
1101 		 */
1102 		page = alloc_slab_page(flags, node, oo);
1103 		if (!page)
1104 			return NULL;
1105 
1106 		stat(s, ORDER_FALLBACK);
1107 	}
1108 
1109 	if (kmemcheck_enabled
1110 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1111 		int pages = 1 << oo_order(oo);
1112 
1113 		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1114 
1115 		/*
1116 		 * Objects from caches that have a constructor don't get
1117 		 * cleared when they're allocated, so we need to do it here.
1118 		 */
1119 		if (s->ctor)
1120 			kmemcheck_mark_uninitialized_pages(page, pages);
1121 		else
1122 			kmemcheck_mark_unallocated_pages(page, pages);
1123 	}
1124 
1125 	page->objects = oo_objects(oo);
1126 	mod_zone_page_state(page_zone(page),
1127 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1129 		1 << oo_order(oo));
1130 
1131 	return page;
1132 }
1133 
1134 static void setup_object(struct kmem_cache *s, struct page *page,
1135 				void *object)
1136 {
1137 	setup_object_debug(s, page, object);
1138 	if (unlikely(s->ctor))
1139 		s->ctor(object);
1140 }
1141 
1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143 {
1144 	struct page *page;
1145 	void *start;
1146 	void *last;
1147 	void *p;
1148 
1149 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1150 
1151 	page = allocate_slab(s,
1152 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1153 	if (!page)
1154 		goto out;
1155 
1156 	inc_slabs_node(s, page_to_nid(page), page->objects);
1157 	page->slab = s;
1158 	page->flags |= 1 << PG_slab;
1159 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 			SLAB_STORE_USER | SLAB_TRACE))
1161 		__SetPageSlubDebug(page);
1162 
1163 	start = page_address(page);
1164 
1165 	if (unlikely(s->flags & SLAB_POISON))
1166 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1167 
1168 	last = start;
1169 	for_each_object(p, s, start, page->objects) {
1170 		setup_object(s, page, last);
1171 		set_freepointer(s, last, p);
1172 		last = p;
1173 	}
1174 	setup_object(s, page, last);
1175 	set_freepointer(s, last, NULL);
1176 
1177 	page->freelist = start;
1178 	page->inuse = 0;
1179 out:
1180 	return page;
1181 }
1182 
1183 static void __free_slab(struct kmem_cache *s, struct page *page)
1184 {
1185 	int order = compound_order(page);
1186 	int pages = 1 << order;
1187 
1188 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1189 		void *p;
1190 
1191 		slab_pad_check(s, page);
1192 		for_each_object(p, s, page_address(page),
1193 						page->objects)
1194 			check_object(s, page, p, 0);
1195 		__ClearPageSlubDebug(page);
1196 	}
1197 
1198 	kmemcheck_free_shadow(page, compound_order(page));
1199 
1200 	mod_zone_page_state(page_zone(page),
1201 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1202 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1203 		-pages);
1204 
1205 	__ClearPageSlab(page);
1206 	reset_page_mapcount(page);
1207 	if (current->reclaim_state)
1208 		current->reclaim_state->reclaimed_slab += pages;
1209 	__free_pages(page, order);
1210 }
1211 
1212 static void rcu_free_slab(struct rcu_head *h)
1213 {
1214 	struct page *page;
1215 
1216 	page = container_of((struct list_head *)h, struct page, lru);
1217 	__free_slab(page->slab, page);
1218 }
1219 
1220 static void free_slab(struct kmem_cache *s, struct page *page)
1221 {
1222 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1223 		/*
1224 		 * RCU free overloads the RCU head over the LRU
1225 		 */
1226 		struct rcu_head *head = (void *)&page->lru;
1227 
1228 		call_rcu(head, rcu_free_slab);
1229 	} else
1230 		__free_slab(s, page);
1231 }
1232 
1233 static void discard_slab(struct kmem_cache *s, struct page *page)
1234 {
1235 	dec_slabs_node(s, page_to_nid(page), page->objects);
1236 	free_slab(s, page);
1237 }
1238 
1239 /*
1240  * Per slab locking using the pagelock
1241  */
1242 static __always_inline void slab_lock(struct page *page)
1243 {
1244 	bit_spin_lock(PG_locked, &page->flags);
1245 }
1246 
1247 static __always_inline void slab_unlock(struct page *page)
1248 {
1249 	__bit_spin_unlock(PG_locked, &page->flags);
1250 }
1251 
1252 static __always_inline int slab_trylock(struct page *page)
1253 {
1254 	int rc = 1;
1255 
1256 	rc = bit_spin_trylock(PG_locked, &page->flags);
1257 	return rc;
1258 }
1259 
1260 /*
1261  * Management of partially allocated slabs
1262  */
1263 static void add_partial(struct kmem_cache_node *n,
1264 				struct page *page, int tail)
1265 {
1266 	spin_lock(&n->list_lock);
1267 	n->nr_partial++;
1268 	if (tail)
1269 		list_add_tail(&page->lru, &n->partial);
1270 	else
1271 		list_add(&page->lru, &n->partial);
1272 	spin_unlock(&n->list_lock);
1273 }
1274 
1275 static void remove_partial(struct kmem_cache *s, struct page *page)
1276 {
1277 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1278 
1279 	spin_lock(&n->list_lock);
1280 	list_del(&page->lru);
1281 	n->nr_partial--;
1282 	spin_unlock(&n->list_lock);
1283 }
1284 
1285 /*
1286  * Lock slab and remove from the partial list.
1287  *
1288  * Must hold list_lock.
1289  */
1290 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1291 							struct page *page)
1292 {
1293 	if (slab_trylock(page)) {
1294 		list_del(&page->lru);
1295 		n->nr_partial--;
1296 		__SetPageSlubFrozen(page);
1297 		return 1;
1298 	}
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Try to allocate a partial slab from a specific node.
1304  */
1305 static struct page *get_partial_node(struct kmem_cache_node *n)
1306 {
1307 	struct page *page;
1308 
1309 	/*
1310 	 * Racy check. If we mistakenly see no partial slabs then we
1311 	 * just allocate an empty slab. If we mistakenly try to get a
1312 	 * partial slab and there is none available then get_partials()
1313 	 * will return NULL.
1314 	 */
1315 	if (!n || !n->nr_partial)
1316 		return NULL;
1317 
1318 	spin_lock(&n->list_lock);
1319 	list_for_each_entry(page, &n->partial, lru)
1320 		if (lock_and_freeze_slab(n, page))
1321 			goto out;
1322 	page = NULL;
1323 out:
1324 	spin_unlock(&n->list_lock);
1325 	return page;
1326 }
1327 
1328 /*
1329  * Get a page from somewhere. Search in increasing NUMA distances.
1330  */
1331 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1332 {
1333 #ifdef CONFIG_NUMA
1334 	struct zonelist *zonelist;
1335 	struct zoneref *z;
1336 	struct zone *zone;
1337 	enum zone_type high_zoneidx = gfp_zone(flags);
1338 	struct page *page;
1339 
1340 	/*
1341 	 * The defrag ratio allows a configuration of the tradeoffs between
1342 	 * inter node defragmentation and node local allocations. A lower
1343 	 * defrag_ratio increases the tendency to do local allocations
1344 	 * instead of attempting to obtain partial slabs from other nodes.
1345 	 *
1346 	 * If the defrag_ratio is set to 0 then kmalloc() always
1347 	 * returns node local objects. If the ratio is higher then kmalloc()
1348 	 * may return off node objects because partial slabs are obtained
1349 	 * from other nodes and filled up.
1350 	 *
1351 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1352 	 * defrag_ratio = 1000) then every (well almost) allocation will
1353 	 * first attempt to defrag slab caches on other nodes. This means
1354 	 * scanning over all nodes to look for partial slabs which may be
1355 	 * expensive if we do it every time we are trying to find a slab
1356 	 * with available objects.
1357 	 */
1358 	if (!s->remote_node_defrag_ratio ||
1359 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1360 		return NULL;
1361 
1362 	get_mems_allowed();
1363 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1364 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1365 		struct kmem_cache_node *n;
1366 
1367 		n = get_node(s, zone_to_nid(zone));
1368 
1369 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1370 				n->nr_partial > s->min_partial) {
1371 			page = get_partial_node(n);
1372 			if (page) {
1373 				put_mems_allowed();
1374 				return page;
1375 			}
1376 		}
1377 	}
1378 	put_mems_allowed();
1379 #endif
1380 	return NULL;
1381 }
1382 
1383 /*
1384  * Get a partial page, lock it and return it.
1385  */
1386 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1387 {
1388 	struct page *page;
1389 	int searchnode = (node == -1) ? numa_node_id() : node;
1390 
1391 	page = get_partial_node(get_node(s, searchnode));
1392 	if (page || (flags & __GFP_THISNODE))
1393 		return page;
1394 
1395 	return get_any_partial(s, flags);
1396 }
1397 
1398 /*
1399  * Move a page back to the lists.
1400  *
1401  * Must be called with the slab lock held.
1402  *
1403  * On exit the slab lock will have been dropped.
1404  */
1405 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1406 {
1407 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1408 
1409 	__ClearPageSlubFrozen(page);
1410 	if (page->inuse) {
1411 
1412 		if (page->freelist) {
1413 			add_partial(n, page, tail);
1414 			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1415 		} else {
1416 			stat(s, DEACTIVATE_FULL);
1417 			if (SLABDEBUG && PageSlubDebug(page) &&
1418 						(s->flags & SLAB_STORE_USER))
1419 				add_full(n, page);
1420 		}
1421 		slab_unlock(page);
1422 	} else {
1423 		stat(s, DEACTIVATE_EMPTY);
1424 		if (n->nr_partial < s->min_partial) {
1425 			/*
1426 			 * Adding an empty slab to the partial slabs in order
1427 			 * to avoid page allocator overhead. This slab needs
1428 			 * to come after the other slabs with objects in
1429 			 * so that the others get filled first. That way the
1430 			 * size of the partial list stays small.
1431 			 *
1432 			 * kmem_cache_shrink can reclaim any empty slabs from
1433 			 * the partial list.
1434 			 */
1435 			add_partial(n, page, 1);
1436 			slab_unlock(page);
1437 		} else {
1438 			slab_unlock(page);
1439 			stat(s, FREE_SLAB);
1440 			discard_slab(s, page);
1441 		}
1442 	}
1443 }
1444 
1445 /*
1446  * Remove the cpu slab
1447  */
1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449 {
1450 	struct page *page = c->page;
1451 	int tail = 1;
1452 
1453 	if (page->freelist)
1454 		stat(s, DEACTIVATE_REMOTE_FREES);
1455 	/*
1456 	 * Merge cpu freelist into slab freelist. Typically we get here
1457 	 * because both freelists are empty. So this is unlikely
1458 	 * to occur.
1459 	 */
1460 	while (unlikely(c->freelist)) {
1461 		void **object;
1462 
1463 		tail = 0;	/* Hot objects. Put the slab first */
1464 
1465 		/* Retrieve object from cpu_freelist */
1466 		object = c->freelist;
1467 		c->freelist = get_freepointer(s, c->freelist);
1468 
1469 		/* And put onto the regular freelist */
1470 		set_freepointer(s, object, page->freelist);
1471 		page->freelist = object;
1472 		page->inuse--;
1473 	}
1474 	c->page = NULL;
1475 	unfreeze_slab(s, page, tail);
1476 }
1477 
1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1479 {
1480 	stat(s, CPUSLAB_FLUSH);
1481 	slab_lock(c->page);
1482 	deactivate_slab(s, c);
1483 }
1484 
1485 /*
1486  * Flush cpu slab.
1487  *
1488  * Called from IPI handler with interrupts disabled.
1489  */
1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1491 {
1492 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1493 
1494 	if (likely(c && c->page))
1495 		flush_slab(s, c);
1496 }
1497 
1498 static void flush_cpu_slab(void *d)
1499 {
1500 	struct kmem_cache *s = d;
1501 
1502 	__flush_cpu_slab(s, smp_processor_id());
1503 }
1504 
1505 static void flush_all(struct kmem_cache *s)
1506 {
1507 	on_each_cpu(flush_cpu_slab, s, 1);
1508 }
1509 
1510 /*
1511  * Check if the objects in a per cpu structure fit numa
1512  * locality expectations.
1513  */
1514 static inline int node_match(struct kmem_cache_cpu *c, int node)
1515 {
1516 #ifdef CONFIG_NUMA
1517 	if (node != -1 && c->node != node)
1518 		return 0;
1519 #endif
1520 	return 1;
1521 }
1522 
1523 static int count_free(struct page *page)
1524 {
1525 	return page->objects - page->inuse;
1526 }
1527 
1528 static unsigned long count_partial(struct kmem_cache_node *n,
1529 					int (*get_count)(struct page *))
1530 {
1531 	unsigned long flags;
1532 	unsigned long x = 0;
1533 	struct page *page;
1534 
1535 	spin_lock_irqsave(&n->list_lock, flags);
1536 	list_for_each_entry(page, &n->partial, lru)
1537 		x += get_count(page);
1538 	spin_unlock_irqrestore(&n->list_lock, flags);
1539 	return x;
1540 }
1541 
1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1543 {
1544 #ifdef CONFIG_SLUB_DEBUG
1545 	return atomic_long_read(&n->total_objects);
1546 #else
1547 	return 0;
1548 #endif
1549 }
1550 
1551 static noinline void
1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1553 {
1554 	int node;
1555 
1556 	printk(KERN_WARNING
1557 		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1558 		nid, gfpflags);
1559 	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1560 		"default order: %d, min order: %d\n", s->name, s->objsize,
1561 		s->size, oo_order(s->oo), oo_order(s->min));
1562 
1563 	if (oo_order(s->min) > get_order(s->objsize))
1564 		printk(KERN_WARNING "  %s debugging increased min order, use "
1565 		       "slub_debug=O to disable.\n", s->name);
1566 
1567 	for_each_online_node(node) {
1568 		struct kmem_cache_node *n = get_node(s, node);
1569 		unsigned long nr_slabs;
1570 		unsigned long nr_objs;
1571 		unsigned long nr_free;
1572 
1573 		if (!n)
1574 			continue;
1575 
1576 		nr_free  = count_partial(n, count_free);
1577 		nr_slabs = node_nr_slabs(n);
1578 		nr_objs  = node_nr_objs(n);
1579 
1580 		printk(KERN_WARNING
1581 			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1582 			node, nr_slabs, nr_objs, nr_free);
1583 	}
1584 }
1585 
1586 /*
1587  * Slow path. The lockless freelist is empty or we need to perform
1588  * debugging duties.
1589  *
1590  * Interrupts are disabled.
1591  *
1592  * Processing is still very fast if new objects have been freed to the
1593  * regular freelist. In that case we simply take over the regular freelist
1594  * as the lockless freelist and zap the regular freelist.
1595  *
1596  * If that is not working then we fall back to the partial lists. We take the
1597  * first element of the freelist as the object to allocate now and move the
1598  * rest of the freelist to the lockless freelist.
1599  *
1600  * And if we were unable to get a new slab from the partial slab lists then
1601  * we need to allocate a new slab. This is the slowest path since it involves
1602  * a call to the page allocator and the setup of a new slab.
1603  */
1604 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1605 			  unsigned long addr, struct kmem_cache_cpu *c)
1606 {
1607 	void **object;
1608 	struct page *new;
1609 
1610 	/* We handle __GFP_ZERO in the caller */
1611 	gfpflags &= ~__GFP_ZERO;
1612 
1613 	if (!c->page)
1614 		goto new_slab;
1615 
1616 	slab_lock(c->page);
1617 	if (unlikely(!node_match(c, node)))
1618 		goto another_slab;
1619 
1620 	stat(s, ALLOC_REFILL);
1621 
1622 load_freelist:
1623 	object = c->page->freelist;
1624 	if (unlikely(!object))
1625 		goto another_slab;
1626 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1627 		goto debug;
1628 
1629 	c->freelist = get_freepointer(s, object);
1630 	c->page->inuse = c->page->objects;
1631 	c->page->freelist = NULL;
1632 	c->node = page_to_nid(c->page);
1633 unlock_out:
1634 	slab_unlock(c->page);
1635 	stat(s, ALLOC_SLOWPATH);
1636 	return object;
1637 
1638 another_slab:
1639 	deactivate_slab(s, c);
1640 
1641 new_slab:
1642 	new = get_partial(s, gfpflags, node);
1643 	if (new) {
1644 		c->page = new;
1645 		stat(s, ALLOC_FROM_PARTIAL);
1646 		goto load_freelist;
1647 	}
1648 
1649 	if (gfpflags & __GFP_WAIT)
1650 		local_irq_enable();
1651 
1652 	new = new_slab(s, gfpflags, node);
1653 
1654 	if (gfpflags & __GFP_WAIT)
1655 		local_irq_disable();
1656 
1657 	if (new) {
1658 		c = __this_cpu_ptr(s->cpu_slab);
1659 		stat(s, ALLOC_SLAB);
1660 		if (c->page)
1661 			flush_slab(s, c);
1662 		slab_lock(new);
1663 		__SetPageSlubFrozen(new);
1664 		c->page = new;
1665 		goto load_freelist;
1666 	}
1667 	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1668 		slab_out_of_memory(s, gfpflags, node);
1669 	return NULL;
1670 debug:
1671 	if (!alloc_debug_processing(s, c->page, object, addr))
1672 		goto another_slab;
1673 
1674 	c->page->inuse++;
1675 	c->page->freelist = get_freepointer(s, object);
1676 	c->node = -1;
1677 	goto unlock_out;
1678 }
1679 
1680 /*
1681  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1682  * have the fastpath folded into their functions. So no function call
1683  * overhead for requests that can be satisfied on the fastpath.
1684  *
1685  * The fastpath works by first checking if the lockless freelist can be used.
1686  * If not then __slab_alloc is called for slow processing.
1687  *
1688  * Otherwise we can simply pick the next object from the lockless free list.
1689  */
1690 static __always_inline void *slab_alloc(struct kmem_cache *s,
1691 		gfp_t gfpflags, int node, unsigned long addr)
1692 {
1693 	void **object;
1694 	struct kmem_cache_cpu *c;
1695 	unsigned long flags;
1696 
1697 	gfpflags &= gfp_allowed_mask;
1698 
1699 	lockdep_trace_alloc(gfpflags);
1700 	might_sleep_if(gfpflags & __GFP_WAIT);
1701 
1702 	if (should_failslab(s->objsize, gfpflags, s->flags))
1703 		return NULL;
1704 
1705 	local_irq_save(flags);
1706 	c = __this_cpu_ptr(s->cpu_slab);
1707 	object = c->freelist;
1708 	if (unlikely(!object || !node_match(c, node)))
1709 
1710 		object = __slab_alloc(s, gfpflags, node, addr, c);
1711 
1712 	else {
1713 		c->freelist = get_freepointer(s, object);
1714 		stat(s, ALLOC_FASTPATH);
1715 	}
1716 	local_irq_restore(flags);
1717 
1718 	if (unlikely(gfpflags & __GFP_ZERO) && object)
1719 		memset(object, 0, s->objsize);
1720 
1721 	kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1722 	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1723 
1724 	return object;
1725 }
1726 
1727 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1728 {
1729 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1730 
1731 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1732 
1733 	return ret;
1734 }
1735 EXPORT_SYMBOL(kmem_cache_alloc);
1736 
1737 #ifdef CONFIG_TRACING
1738 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1739 {
1740 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1741 }
1742 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1743 #endif
1744 
1745 #ifdef CONFIG_NUMA
1746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1747 {
1748 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1749 
1750 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1751 				    s->objsize, s->size, gfpflags, node);
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL(kmem_cache_alloc_node);
1756 #endif
1757 
1758 #ifdef CONFIG_TRACING
1759 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1760 				    gfp_t gfpflags,
1761 				    int node)
1762 {
1763 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1764 }
1765 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1766 #endif
1767 
1768 /*
1769  * Slow patch handling. This may still be called frequently since objects
1770  * have a longer lifetime than the cpu slabs in most processing loads.
1771  *
1772  * So we still attempt to reduce cache line usage. Just take the slab
1773  * lock and free the item. If there is no additional partial page
1774  * handling required then we can return immediately.
1775  */
1776 static void __slab_free(struct kmem_cache *s, struct page *page,
1777 			void *x, unsigned long addr)
1778 {
1779 	void *prior;
1780 	void **object = (void *)x;
1781 
1782 	stat(s, FREE_SLOWPATH);
1783 	slab_lock(page);
1784 
1785 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1786 		goto debug;
1787 
1788 checks_ok:
1789 	prior = page->freelist;
1790 	set_freepointer(s, object, prior);
1791 	page->freelist = object;
1792 	page->inuse--;
1793 
1794 	if (unlikely(PageSlubFrozen(page))) {
1795 		stat(s, FREE_FROZEN);
1796 		goto out_unlock;
1797 	}
1798 
1799 	if (unlikely(!page->inuse))
1800 		goto slab_empty;
1801 
1802 	/*
1803 	 * Objects left in the slab. If it was not on the partial list before
1804 	 * then add it.
1805 	 */
1806 	if (unlikely(!prior)) {
1807 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1808 		stat(s, FREE_ADD_PARTIAL);
1809 	}
1810 
1811 out_unlock:
1812 	slab_unlock(page);
1813 	return;
1814 
1815 slab_empty:
1816 	if (prior) {
1817 		/*
1818 		 * Slab still on the partial list.
1819 		 */
1820 		remove_partial(s, page);
1821 		stat(s, FREE_REMOVE_PARTIAL);
1822 	}
1823 	slab_unlock(page);
1824 	stat(s, FREE_SLAB);
1825 	discard_slab(s, page);
1826 	return;
1827 
1828 debug:
1829 	if (!free_debug_processing(s, page, x, addr))
1830 		goto out_unlock;
1831 	goto checks_ok;
1832 }
1833 
1834 /*
1835  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836  * can perform fastpath freeing without additional function calls.
1837  *
1838  * The fastpath is only possible if we are freeing to the current cpu slab
1839  * of this processor. This typically the case if we have just allocated
1840  * the item before.
1841  *
1842  * If fastpath is not possible then fall back to __slab_free where we deal
1843  * with all sorts of special processing.
1844  */
1845 static __always_inline void slab_free(struct kmem_cache *s,
1846 			struct page *page, void *x, unsigned long addr)
1847 {
1848 	void **object = (void *)x;
1849 	struct kmem_cache_cpu *c;
1850 	unsigned long flags;
1851 
1852 	kmemleak_free_recursive(x, s->flags);
1853 	local_irq_save(flags);
1854 	c = __this_cpu_ptr(s->cpu_slab);
1855 	kmemcheck_slab_free(s, object, s->objsize);
1856 	debug_check_no_locks_freed(object, s->objsize);
1857 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1858 		debug_check_no_obj_freed(object, s->objsize);
1859 	if (likely(page == c->page && c->node >= 0)) {
1860 		set_freepointer(s, object, c->freelist);
1861 		c->freelist = object;
1862 		stat(s, FREE_FASTPATH);
1863 	} else
1864 		__slab_free(s, page, x, addr);
1865 
1866 	local_irq_restore(flags);
1867 }
1868 
1869 void kmem_cache_free(struct kmem_cache *s, void *x)
1870 {
1871 	struct page *page;
1872 
1873 	page = virt_to_head_page(x);
1874 
1875 	slab_free(s, page, x, _RET_IP_);
1876 
1877 	trace_kmem_cache_free(_RET_IP_, x);
1878 }
1879 EXPORT_SYMBOL(kmem_cache_free);
1880 
1881 /* Figure out on which slab page the object resides */
1882 static struct page *get_object_page(const void *x)
1883 {
1884 	struct page *page = virt_to_head_page(x);
1885 
1886 	if (!PageSlab(page))
1887 		return NULL;
1888 
1889 	return page;
1890 }
1891 
1892 /*
1893  * Object placement in a slab is made very easy because we always start at
1894  * offset 0. If we tune the size of the object to the alignment then we can
1895  * get the required alignment by putting one properly sized object after
1896  * another.
1897  *
1898  * Notice that the allocation order determines the sizes of the per cpu
1899  * caches. Each processor has always one slab available for allocations.
1900  * Increasing the allocation order reduces the number of times that slabs
1901  * must be moved on and off the partial lists and is therefore a factor in
1902  * locking overhead.
1903  */
1904 
1905 /*
1906  * Mininum / Maximum order of slab pages. This influences locking overhead
1907  * and slab fragmentation. A higher order reduces the number of partial slabs
1908  * and increases the number of allocations possible without having to
1909  * take the list_lock.
1910  */
1911 static int slub_min_order;
1912 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1913 static int slub_min_objects;
1914 
1915 /*
1916  * Merge control. If this is set then no merging of slab caches will occur.
1917  * (Could be removed. This was introduced to pacify the merge skeptics.)
1918  */
1919 static int slub_nomerge;
1920 
1921 /*
1922  * Calculate the order of allocation given an slab object size.
1923  *
1924  * The order of allocation has significant impact on performance and other
1925  * system components. Generally order 0 allocations should be preferred since
1926  * order 0 does not cause fragmentation in the page allocator. Larger objects
1927  * be problematic to put into order 0 slabs because there may be too much
1928  * unused space left. We go to a higher order if more than 1/16th of the slab
1929  * would be wasted.
1930  *
1931  * In order to reach satisfactory performance we must ensure that a minimum
1932  * number of objects is in one slab. Otherwise we may generate too much
1933  * activity on the partial lists which requires taking the list_lock. This is
1934  * less a concern for large slabs though which are rarely used.
1935  *
1936  * slub_max_order specifies the order where we begin to stop considering the
1937  * number of objects in a slab as critical. If we reach slub_max_order then
1938  * we try to keep the page order as low as possible. So we accept more waste
1939  * of space in favor of a small page order.
1940  *
1941  * Higher order allocations also allow the placement of more objects in a
1942  * slab and thereby reduce object handling overhead. If the user has
1943  * requested a higher mininum order then we start with that one instead of
1944  * the smallest order which will fit the object.
1945  */
1946 static inline int slab_order(int size, int min_objects,
1947 				int max_order, int fract_leftover)
1948 {
1949 	int order;
1950 	int rem;
1951 	int min_order = slub_min_order;
1952 
1953 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1955 
1956 	for (order = max(min_order,
1957 				fls(min_objects * size - 1) - PAGE_SHIFT);
1958 			order <= max_order; order++) {
1959 
1960 		unsigned long slab_size = PAGE_SIZE << order;
1961 
1962 		if (slab_size < min_objects * size)
1963 			continue;
1964 
1965 		rem = slab_size % size;
1966 
1967 		if (rem <= slab_size / fract_leftover)
1968 			break;
1969 
1970 	}
1971 
1972 	return order;
1973 }
1974 
1975 static inline int calculate_order(int size)
1976 {
1977 	int order;
1978 	int min_objects;
1979 	int fraction;
1980 	int max_objects;
1981 
1982 	/*
1983 	 * Attempt to find best configuration for a slab. This
1984 	 * works by first attempting to generate a layout with
1985 	 * the best configuration and backing off gradually.
1986 	 *
1987 	 * First we reduce the acceptable waste in a slab. Then
1988 	 * we reduce the minimum objects required in a slab.
1989 	 */
1990 	min_objects = slub_min_objects;
1991 	if (!min_objects)
1992 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1993 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 	min_objects = min(min_objects, max_objects);
1995 
1996 	while (min_objects > 1) {
1997 		fraction = 16;
1998 		while (fraction >= 4) {
1999 			order = slab_order(size, min_objects,
2000 						slub_max_order, fraction);
2001 			if (order <= slub_max_order)
2002 				return order;
2003 			fraction /= 2;
2004 		}
2005 		min_objects--;
2006 	}
2007 
2008 	/*
2009 	 * We were unable to place multiple objects in a slab. Now
2010 	 * lets see if we can place a single object there.
2011 	 */
2012 	order = slab_order(size, 1, slub_max_order, 1);
2013 	if (order <= slub_max_order)
2014 		return order;
2015 
2016 	/*
2017 	 * Doh this slab cannot be placed using slub_max_order.
2018 	 */
2019 	order = slab_order(size, 1, MAX_ORDER, 1);
2020 	if (order < MAX_ORDER)
2021 		return order;
2022 	return -ENOSYS;
2023 }
2024 
2025 /*
2026  * Figure out what the alignment of the objects will be.
2027  */
2028 static unsigned long calculate_alignment(unsigned long flags,
2029 		unsigned long align, unsigned long size)
2030 {
2031 	/*
2032 	 * If the user wants hardware cache aligned objects then follow that
2033 	 * suggestion if the object is sufficiently large.
2034 	 *
2035 	 * The hardware cache alignment cannot override the specified
2036 	 * alignment though. If that is greater then use it.
2037 	 */
2038 	if (flags & SLAB_HWCACHE_ALIGN) {
2039 		unsigned long ralign = cache_line_size();
2040 		while (size <= ralign / 2)
2041 			ralign /= 2;
2042 		align = max(align, ralign);
2043 	}
2044 
2045 	if (align < ARCH_SLAB_MINALIGN)
2046 		align = ARCH_SLAB_MINALIGN;
2047 
2048 	return ALIGN(align, sizeof(void *));
2049 }
2050 
2051 static void
2052 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2053 {
2054 	n->nr_partial = 0;
2055 	spin_lock_init(&n->list_lock);
2056 	INIT_LIST_HEAD(&n->partial);
2057 #ifdef CONFIG_SLUB_DEBUG
2058 	atomic_long_set(&n->nr_slabs, 0);
2059 	atomic_long_set(&n->total_objects, 0);
2060 	INIT_LIST_HEAD(&n->full);
2061 #endif
2062 }
2063 
2064 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2065 
2066 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2067 {
2068 	if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2069 		/*
2070 		 * Boot time creation of the kmalloc array. Use static per cpu data
2071 		 * since the per cpu allocator is not available yet.
2072 		 */
2073 		s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2074 	else
2075 		s->cpu_slab =  alloc_percpu(struct kmem_cache_cpu);
2076 
2077 	if (!s->cpu_slab)
2078 		return 0;
2079 
2080 	return 1;
2081 }
2082 
2083 #ifdef CONFIG_NUMA
2084 /*
2085  * No kmalloc_node yet so do it by hand. We know that this is the first
2086  * slab on the node for this slabcache. There are no concurrent accesses
2087  * possible.
2088  *
2089  * Note that this function only works on the kmalloc_node_cache
2090  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2091  * memory on a fresh node that has no slab structures yet.
2092  */
2093 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2094 {
2095 	struct page *page;
2096 	struct kmem_cache_node *n;
2097 	unsigned long flags;
2098 
2099 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2100 
2101 	page = new_slab(kmalloc_caches, gfpflags, node);
2102 
2103 	BUG_ON(!page);
2104 	if (page_to_nid(page) != node) {
2105 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2106 				"node %d\n", node);
2107 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2108 				"in order to be able to continue\n");
2109 	}
2110 
2111 	n = page->freelist;
2112 	BUG_ON(!n);
2113 	page->freelist = get_freepointer(kmalloc_caches, n);
2114 	page->inuse++;
2115 	kmalloc_caches->node[node] = n;
2116 #ifdef CONFIG_SLUB_DEBUG
2117 	init_object(kmalloc_caches, n, 1);
2118 	init_tracking(kmalloc_caches, n);
2119 #endif
2120 	init_kmem_cache_node(n, kmalloc_caches);
2121 	inc_slabs_node(kmalloc_caches, node, page->objects);
2122 
2123 	/*
2124 	 * lockdep requires consistent irq usage for each lock
2125 	 * so even though there cannot be a race this early in
2126 	 * the boot sequence, we still disable irqs.
2127 	 */
2128 	local_irq_save(flags);
2129 	add_partial(n, page, 0);
2130 	local_irq_restore(flags);
2131 }
2132 
2133 static void free_kmem_cache_nodes(struct kmem_cache *s)
2134 {
2135 	int node;
2136 
2137 	for_each_node_state(node, N_NORMAL_MEMORY) {
2138 		struct kmem_cache_node *n = s->node[node];
2139 		if (n)
2140 			kmem_cache_free(kmalloc_caches, n);
2141 		s->node[node] = NULL;
2142 	}
2143 }
2144 
2145 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2146 {
2147 	int node;
2148 
2149 	for_each_node_state(node, N_NORMAL_MEMORY) {
2150 		struct kmem_cache_node *n;
2151 
2152 		if (slab_state == DOWN) {
2153 			early_kmem_cache_node_alloc(gfpflags, node);
2154 			continue;
2155 		}
2156 		n = kmem_cache_alloc_node(kmalloc_caches,
2157 						gfpflags, node);
2158 
2159 		if (!n) {
2160 			free_kmem_cache_nodes(s);
2161 			return 0;
2162 		}
2163 
2164 		s->node[node] = n;
2165 		init_kmem_cache_node(n, s);
2166 	}
2167 	return 1;
2168 }
2169 #else
2170 static void free_kmem_cache_nodes(struct kmem_cache *s)
2171 {
2172 }
2173 
2174 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2175 {
2176 	init_kmem_cache_node(&s->local_node, s);
2177 	return 1;
2178 }
2179 #endif
2180 
2181 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2182 {
2183 	if (min < MIN_PARTIAL)
2184 		min = MIN_PARTIAL;
2185 	else if (min > MAX_PARTIAL)
2186 		min = MAX_PARTIAL;
2187 	s->min_partial = min;
2188 }
2189 
2190 /*
2191  * calculate_sizes() determines the order and the distribution of data within
2192  * a slab object.
2193  */
2194 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2195 {
2196 	unsigned long flags = s->flags;
2197 	unsigned long size = s->objsize;
2198 	unsigned long align = s->align;
2199 	int order;
2200 
2201 	/*
2202 	 * Round up object size to the next word boundary. We can only
2203 	 * place the free pointer at word boundaries and this determines
2204 	 * the possible location of the free pointer.
2205 	 */
2206 	size = ALIGN(size, sizeof(void *));
2207 
2208 #ifdef CONFIG_SLUB_DEBUG
2209 	/*
2210 	 * Determine if we can poison the object itself. If the user of
2211 	 * the slab may touch the object after free or before allocation
2212 	 * then we should never poison the object itself.
2213 	 */
2214 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2215 			!s->ctor)
2216 		s->flags |= __OBJECT_POISON;
2217 	else
2218 		s->flags &= ~__OBJECT_POISON;
2219 
2220 
2221 	/*
2222 	 * If we are Redzoning then check if there is some space between the
2223 	 * end of the object and the free pointer. If not then add an
2224 	 * additional word to have some bytes to store Redzone information.
2225 	 */
2226 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2227 		size += sizeof(void *);
2228 #endif
2229 
2230 	/*
2231 	 * With that we have determined the number of bytes in actual use
2232 	 * by the object. This is the potential offset to the free pointer.
2233 	 */
2234 	s->inuse = size;
2235 
2236 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2237 		s->ctor)) {
2238 		/*
2239 		 * Relocate free pointer after the object if it is not
2240 		 * permitted to overwrite the first word of the object on
2241 		 * kmem_cache_free.
2242 		 *
2243 		 * This is the case if we do RCU, have a constructor or
2244 		 * destructor or are poisoning the objects.
2245 		 */
2246 		s->offset = size;
2247 		size += sizeof(void *);
2248 	}
2249 
2250 #ifdef CONFIG_SLUB_DEBUG
2251 	if (flags & SLAB_STORE_USER)
2252 		/*
2253 		 * Need to store information about allocs and frees after
2254 		 * the object.
2255 		 */
2256 		size += 2 * sizeof(struct track);
2257 
2258 	if (flags & SLAB_RED_ZONE)
2259 		/*
2260 		 * Add some empty padding so that we can catch
2261 		 * overwrites from earlier objects rather than let
2262 		 * tracking information or the free pointer be
2263 		 * corrupted if a user writes before the start
2264 		 * of the object.
2265 		 */
2266 		size += sizeof(void *);
2267 #endif
2268 
2269 	/*
2270 	 * Determine the alignment based on various parameters that the
2271 	 * user specified and the dynamic determination of cache line size
2272 	 * on bootup.
2273 	 */
2274 	align = calculate_alignment(flags, align, s->objsize);
2275 	s->align = align;
2276 
2277 	/*
2278 	 * SLUB stores one object immediately after another beginning from
2279 	 * offset 0. In order to align the objects we have to simply size
2280 	 * each object to conform to the alignment.
2281 	 */
2282 	size = ALIGN(size, align);
2283 	s->size = size;
2284 	if (forced_order >= 0)
2285 		order = forced_order;
2286 	else
2287 		order = calculate_order(size);
2288 
2289 	if (order < 0)
2290 		return 0;
2291 
2292 	s->allocflags = 0;
2293 	if (order)
2294 		s->allocflags |= __GFP_COMP;
2295 
2296 	if (s->flags & SLAB_CACHE_DMA)
2297 		s->allocflags |= SLUB_DMA;
2298 
2299 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2300 		s->allocflags |= __GFP_RECLAIMABLE;
2301 
2302 	/*
2303 	 * Determine the number of objects per slab
2304 	 */
2305 	s->oo = oo_make(order, size);
2306 	s->min = oo_make(get_order(size), size);
2307 	if (oo_objects(s->oo) > oo_objects(s->max))
2308 		s->max = s->oo;
2309 
2310 	return !!oo_objects(s->oo);
2311 
2312 }
2313 
2314 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2315 		const char *name, size_t size,
2316 		size_t align, unsigned long flags,
2317 		void (*ctor)(void *))
2318 {
2319 	memset(s, 0, kmem_size);
2320 	s->name = name;
2321 	s->ctor = ctor;
2322 	s->objsize = size;
2323 	s->align = align;
2324 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2325 
2326 	if (!calculate_sizes(s, -1))
2327 		goto error;
2328 	if (disable_higher_order_debug) {
2329 		/*
2330 		 * Disable debugging flags that store metadata if the min slab
2331 		 * order increased.
2332 		 */
2333 		if (get_order(s->size) > get_order(s->objsize)) {
2334 			s->flags &= ~DEBUG_METADATA_FLAGS;
2335 			s->offset = 0;
2336 			if (!calculate_sizes(s, -1))
2337 				goto error;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * The larger the object size is, the more pages we want on the partial
2343 	 * list to avoid pounding the page allocator excessively.
2344 	 */
2345 	set_min_partial(s, ilog2(s->size));
2346 	s->refcount = 1;
2347 #ifdef CONFIG_NUMA
2348 	s->remote_node_defrag_ratio = 1000;
2349 #endif
2350 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2351 		goto error;
2352 
2353 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2354 		return 1;
2355 
2356 	free_kmem_cache_nodes(s);
2357 error:
2358 	if (flags & SLAB_PANIC)
2359 		panic("Cannot create slab %s size=%lu realsize=%u "
2360 			"order=%u offset=%u flags=%lx\n",
2361 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2362 			s->offset, flags);
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Check if a given pointer is valid
2368  */
2369 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2370 {
2371 	struct page *page;
2372 
2373 	if (!kern_ptr_validate(object, s->size))
2374 		return 0;
2375 
2376 	page = get_object_page(object);
2377 
2378 	if (!page || s != page->slab)
2379 		/* No slab or wrong slab */
2380 		return 0;
2381 
2382 	if (!check_valid_pointer(s, page, object))
2383 		return 0;
2384 
2385 	/*
2386 	 * We could also check if the object is on the slabs freelist.
2387 	 * But this would be too expensive and it seems that the main
2388 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2389 	 * to a certain slab.
2390 	 */
2391 	return 1;
2392 }
2393 EXPORT_SYMBOL(kmem_ptr_validate);
2394 
2395 /*
2396  * Determine the size of a slab object
2397  */
2398 unsigned int kmem_cache_size(struct kmem_cache *s)
2399 {
2400 	return s->objsize;
2401 }
2402 EXPORT_SYMBOL(kmem_cache_size);
2403 
2404 const char *kmem_cache_name(struct kmem_cache *s)
2405 {
2406 	return s->name;
2407 }
2408 EXPORT_SYMBOL(kmem_cache_name);
2409 
2410 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2411 							const char *text)
2412 {
2413 #ifdef CONFIG_SLUB_DEBUG
2414 	void *addr = page_address(page);
2415 	void *p;
2416 	long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2417 			    GFP_ATOMIC);
2418 
2419 	if (!map)
2420 		return;
2421 	slab_err(s, page, "%s", text);
2422 	slab_lock(page);
2423 	for_each_free_object(p, s, page->freelist)
2424 		set_bit(slab_index(p, s, addr), map);
2425 
2426 	for_each_object(p, s, addr, page->objects) {
2427 
2428 		if (!test_bit(slab_index(p, s, addr), map)) {
2429 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2430 							p, p - addr);
2431 			print_tracking(s, p);
2432 		}
2433 	}
2434 	slab_unlock(page);
2435 	kfree(map);
2436 #endif
2437 }
2438 
2439 /*
2440  * Attempt to free all partial slabs on a node.
2441  */
2442 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2443 {
2444 	unsigned long flags;
2445 	struct page *page, *h;
2446 
2447 	spin_lock_irqsave(&n->list_lock, flags);
2448 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2449 		if (!page->inuse) {
2450 			list_del(&page->lru);
2451 			discard_slab(s, page);
2452 			n->nr_partial--;
2453 		} else {
2454 			list_slab_objects(s, page,
2455 				"Objects remaining on kmem_cache_close()");
2456 		}
2457 	}
2458 	spin_unlock_irqrestore(&n->list_lock, flags);
2459 }
2460 
2461 /*
2462  * Release all resources used by a slab cache.
2463  */
2464 static inline int kmem_cache_close(struct kmem_cache *s)
2465 {
2466 	int node;
2467 
2468 	flush_all(s);
2469 	free_percpu(s->cpu_slab);
2470 	/* Attempt to free all objects */
2471 	for_each_node_state(node, N_NORMAL_MEMORY) {
2472 		struct kmem_cache_node *n = get_node(s, node);
2473 
2474 		free_partial(s, n);
2475 		if (n->nr_partial || slabs_node(s, node))
2476 			return 1;
2477 	}
2478 	free_kmem_cache_nodes(s);
2479 	return 0;
2480 }
2481 
2482 /*
2483  * Close a cache and release the kmem_cache structure
2484  * (must be used for caches created using kmem_cache_create)
2485  */
2486 void kmem_cache_destroy(struct kmem_cache *s)
2487 {
2488 	down_write(&slub_lock);
2489 	s->refcount--;
2490 	if (!s->refcount) {
2491 		list_del(&s->list);
2492 		up_write(&slub_lock);
2493 		if (kmem_cache_close(s)) {
2494 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 				"still has objects.\n", s->name, __func__);
2496 			dump_stack();
2497 		}
2498 		if (s->flags & SLAB_DESTROY_BY_RCU)
2499 			rcu_barrier();
2500 		sysfs_slab_remove(s);
2501 	} else
2502 		up_write(&slub_lock);
2503 }
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2505 
2506 /********************************************************************
2507  *		Kmalloc subsystem
2508  *******************************************************************/
2509 
2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2512 
2513 static int __init setup_slub_min_order(char *str)
2514 {
2515 	get_option(&str, &slub_min_order);
2516 
2517 	return 1;
2518 }
2519 
2520 __setup("slub_min_order=", setup_slub_min_order);
2521 
2522 static int __init setup_slub_max_order(char *str)
2523 {
2524 	get_option(&str, &slub_max_order);
2525 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2526 
2527 	return 1;
2528 }
2529 
2530 __setup("slub_max_order=", setup_slub_max_order);
2531 
2532 static int __init setup_slub_min_objects(char *str)
2533 {
2534 	get_option(&str, &slub_min_objects);
2535 
2536 	return 1;
2537 }
2538 
2539 __setup("slub_min_objects=", setup_slub_min_objects);
2540 
2541 static int __init setup_slub_nomerge(char *str)
2542 {
2543 	slub_nomerge = 1;
2544 	return 1;
2545 }
2546 
2547 __setup("slub_nomerge", setup_slub_nomerge);
2548 
2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 		const char *name, int size, gfp_t gfp_flags)
2551 {
2552 	unsigned int flags = 0;
2553 
2554 	if (gfp_flags & SLUB_DMA)
2555 		flags = SLAB_CACHE_DMA;
2556 
2557 	/*
2558 	 * This function is called with IRQs disabled during early-boot on
2559 	 * single CPU so there's no need to take slub_lock here.
2560 	 */
2561 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2562 								flags, NULL))
2563 		goto panic;
2564 
2565 	list_add(&s->list, &slab_caches);
2566 
2567 	if (sysfs_slab_add(s))
2568 		goto panic;
2569 	return s;
2570 
2571 panic:
2572 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2573 }
2574 
2575 #ifdef CONFIG_ZONE_DMA
2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2577 
2578 static void sysfs_add_func(struct work_struct *w)
2579 {
2580 	struct kmem_cache *s;
2581 
2582 	down_write(&slub_lock);
2583 	list_for_each_entry(s, &slab_caches, list) {
2584 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2585 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2586 			sysfs_slab_add(s);
2587 		}
2588 	}
2589 	up_write(&slub_lock);
2590 }
2591 
2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2593 
2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2595 {
2596 	struct kmem_cache *s;
2597 	char *text;
2598 	size_t realsize;
2599 	unsigned long slabflags;
2600 	int i;
2601 
2602 	s = kmalloc_caches_dma[index];
2603 	if (s)
2604 		return s;
2605 
2606 	/* Dynamically create dma cache */
2607 	if (flags & __GFP_WAIT)
2608 		down_write(&slub_lock);
2609 	else {
2610 		if (!down_write_trylock(&slub_lock))
2611 			goto out;
2612 	}
2613 
2614 	if (kmalloc_caches_dma[index])
2615 		goto unlock_out;
2616 
2617 	realsize = kmalloc_caches[index].objsize;
2618 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2619 			 (unsigned int)realsize);
2620 
2621 	s = NULL;
2622 	for (i = 0; i < KMALLOC_CACHES; i++)
2623 		if (!kmalloc_caches[i].size)
2624 			break;
2625 
2626 	BUG_ON(i >= KMALLOC_CACHES);
2627 	s = kmalloc_caches + i;
2628 
2629 	/*
2630 	 * Must defer sysfs creation to a workqueue because we don't know
2631 	 * what context we are called from. Before sysfs comes up, we don't
2632 	 * need to do anything because our sysfs initcall will start by
2633 	 * adding all existing slabs to sysfs.
2634 	 */
2635 	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2636 	if (slab_state >= SYSFS)
2637 		slabflags |= __SYSFS_ADD_DEFERRED;
2638 
2639 	if (!text || !kmem_cache_open(s, flags, text,
2640 			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2641 		s->size = 0;
2642 		kfree(text);
2643 		goto unlock_out;
2644 	}
2645 
2646 	list_add(&s->list, &slab_caches);
2647 	kmalloc_caches_dma[index] = s;
2648 
2649 	if (slab_state >= SYSFS)
2650 		schedule_work(&sysfs_add_work);
2651 
2652 unlock_out:
2653 	up_write(&slub_lock);
2654 out:
2655 	return kmalloc_caches_dma[index];
2656 }
2657 #endif
2658 
2659 /*
2660  * Conversion table for small slabs sizes / 8 to the index in the
2661  * kmalloc array. This is necessary for slabs < 192 since we have non power
2662  * of two cache sizes there. The size of larger slabs can be determined using
2663  * fls.
2664  */
2665 static s8 size_index[24] = {
2666 	3,	/* 8 */
2667 	4,	/* 16 */
2668 	5,	/* 24 */
2669 	5,	/* 32 */
2670 	6,	/* 40 */
2671 	6,	/* 48 */
2672 	6,	/* 56 */
2673 	6,	/* 64 */
2674 	1,	/* 72 */
2675 	1,	/* 80 */
2676 	1,	/* 88 */
2677 	1,	/* 96 */
2678 	7,	/* 104 */
2679 	7,	/* 112 */
2680 	7,	/* 120 */
2681 	7,	/* 128 */
2682 	2,	/* 136 */
2683 	2,	/* 144 */
2684 	2,	/* 152 */
2685 	2,	/* 160 */
2686 	2,	/* 168 */
2687 	2,	/* 176 */
2688 	2,	/* 184 */
2689 	2	/* 192 */
2690 };
2691 
2692 static inline int size_index_elem(size_t bytes)
2693 {
2694 	return (bytes - 1) / 8;
2695 }
2696 
2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2698 {
2699 	int index;
2700 
2701 	if (size <= 192) {
2702 		if (!size)
2703 			return ZERO_SIZE_PTR;
2704 
2705 		index = size_index[size_index_elem(size)];
2706 	} else
2707 		index = fls(size - 1);
2708 
2709 #ifdef CONFIG_ZONE_DMA
2710 	if (unlikely((flags & SLUB_DMA)))
2711 		return dma_kmalloc_cache(index, flags);
2712 
2713 #endif
2714 	return &kmalloc_caches[index];
2715 }
2716 
2717 void *__kmalloc(size_t size, gfp_t flags)
2718 {
2719 	struct kmem_cache *s;
2720 	void *ret;
2721 
2722 	if (unlikely(size > SLUB_MAX_SIZE))
2723 		return kmalloc_large(size, flags);
2724 
2725 	s = get_slab(size, flags);
2726 
2727 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2728 		return s;
2729 
2730 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2731 
2732 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2733 
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(__kmalloc);
2737 
2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2739 {
2740 	struct page *page;
2741 	void *ptr = NULL;
2742 
2743 	flags |= __GFP_COMP | __GFP_NOTRACK;
2744 	page = alloc_pages_node(node, flags, get_order(size));
2745 	if (page)
2746 		ptr = page_address(page);
2747 
2748 	kmemleak_alloc(ptr, size, 1, flags);
2749 	return ptr;
2750 }
2751 
2752 #ifdef CONFIG_NUMA
2753 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2754 {
2755 	struct kmem_cache *s;
2756 	void *ret;
2757 
2758 	if (unlikely(size > SLUB_MAX_SIZE)) {
2759 		ret = kmalloc_large_node(size, flags, node);
2760 
2761 		trace_kmalloc_node(_RET_IP_, ret,
2762 				   size, PAGE_SIZE << get_order(size),
2763 				   flags, node);
2764 
2765 		return ret;
2766 	}
2767 
2768 	s = get_slab(size, flags);
2769 
2770 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2771 		return s;
2772 
2773 	ret = slab_alloc(s, flags, node, _RET_IP_);
2774 
2775 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2776 
2777 	return ret;
2778 }
2779 EXPORT_SYMBOL(__kmalloc_node);
2780 #endif
2781 
2782 size_t ksize(const void *object)
2783 {
2784 	struct page *page;
2785 	struct kmem_cache *s;
2786 
2787 	if (unlikely(object == ZERO_SIZE_PTR))
2788 		return 0;
2789 
2790 	page = virt_to_head_page(object);
2791 
2792 	if (unlikely(!PageSlab(page))) {
2793 		WARN_ON(!PageCompound(page));
2794 		return PAGE_SIZE << compound_order(page);
2795 	}
2796 	s = page->slab;
2797 
2798 #ifdef CONFIG_SLUB_DEBUG
2799 	/*
2800 	 * Debugging requires use of the padding between object
2801 	 * and whatever may come after it.
2802 	 */
2803 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2804 		return s->objsize;
2805 
2806 #endif
2807 	/*
2808 	 * If we have the need to store the freelist pointer
2809 	 * back there or track user information then we can
2810 	 * only use the space before that information.
2811 	 */
2812 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2813 		return s->inuse;
2814 	/*
2815 	 * Else we can use all the padding etc for the allocation
2816 	 */
2817 	return s->size;
2818 }
2819 EXPORT_SYMBOL(ksize);
2820 
2821 void kfree(const void *x)
2822 {
2823 	struct page *page;
2824 	void *object = (void *)x;
2825 
2826 	trace_kfree(_RET_IP_, x);
2827 
2828 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2829 		return;
2830 
2831 	page = virt_to_head_page(x);
2832 	if (unlikely(!PageSlab(page))) {
2833 		BUG_ON(!PageCompound(page));
2834 		kmemleak_free(x);
2835 		put_page(page);
2836 		return;
2837 	}
2838 	slab_free(page->slab, page, object, _RET_IP_);
2839 }
2840 EXPORT_SYMBOL(kfree);
2841 
2842 /*
2843  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2844  * the remaining slabs by the number of items in use. The slabs with the
2845  * most items in use come first. New allocations will then fill those up
2846  * and thus they can be removed from the partial lists.
2847  *
2848  * The slabs with the least items are placed last. This results in them
2849  * being allocated from last increasing the chance that the last objects
2850  * are freed in them.
2851  */
2852 int kmem_cache_shrink(struct kmem_cache *s)
2853 {
2854 	int node;
2855 	int i;
2856 	struct kmem_cache_node *n;
2857 	struct page *page;
2858 	struct page *t;
2859 	int objects = oo_objects(s->max);
2860 	struct list_head *slabs_by_inuse =
2861 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2862 	unsigned long flags;
2863 
2864 	if (!slabs_by_inuse)
2865 		return -ENOMEM;
2866 
2867 	flush_all(s);
2868 	for_each_node_state(node, N_NORMAL_MEMORY) {
2869 		n = get_node(s, node);
2870 
2871 		if (!n->nr_partial)
2872 			continue;
2873 
2874 		for (i = 0; i < objects; i++)
2875 			INIT_LIST_HEAD(slabs_by_inuse + i);
2876 
2877 		spin_lock_irqsave(&n->list_lock, flags);
2878 
2879 		/*
2880 		 * Build lists indexed by the items in use in each slab.
2881 		 *
2882 		 * Note that concurrent frees may occur while we hold the
2883 		 * list_lock. page->inuse here is the upper limit.
2884 		 */
2885 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2886 			if (!page->inuse && slab_trylock(page)) {
2887 				/*
2888 				 * Must hold slab lock here because slab_free
2889 				 * may have freed the last object and be
2890 				 * waiting to release the slab.
2891 				 */
2892 				list_del(&page->lru);
2893 				n->nr_partial--;
2894 				slab_unlock(page);
2895 				discard_slab(s, page);
2896 			} else {
2897 				list_move(&page->lru,
2898 				slabs_by_inuse + page->inuse);
2899 			}
2900 		}
2901 
2902 		/*
2903 		 * Rebuild the partial list with the slabs filled up most
2904 		 * first and the least used slabs at the end.
2905 		 */
2906 		for (i = objects - 1; i >= 0; i--)
2907 			list_splice(slabs_by_inuse + i, n->partial.prev);
2908 
2909 		spin_unlock_irqrestore(&n->list_lock, flags);
2910 	}
2911 
2912 	kfree(slabs_by_inuse);
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL(kmem_cache_shrink);
2916 
2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2918 static int slab_mem_going_offline_callback(void *arg)
2919 {
2920 	struct kmem_cache *s;
2921 
2922 	down_read(&slub_lock);
2923 	list_for_each_entry(s, &slab_caches, list)
2924 		kmem_cache_shrink(s);
2925 	up_read(&slub_lock);
2926 
2927 	return 0;
2928 }
2929 
2930 static void slab_mem_offline_callback(void *arg)
2931 {
2932 	struct kmem_cache_node *n;
2933 	struct kmem_cache *s;
2934 	struct memory_notify *marg = arg;
2935 	int offline_node;
2936 
2937 	offline_node = marg->status_change_nid;
2938 
2939 	/*
2940 	 * If the node still has available memory. we need kmem_cache_node
2941 	 * for it yet.
2942 	 */
2943 	if (offline_node < 0)
2944 		return;
2945 
2946 	down_read(&slub_lock);
2947 	list_for_each_entry(s, &slab_caches, list) {
2948 		n = get_node(s, offline_node);
2949 		if (n) {
2950 			/*
2951 			 * if n->nr_slabs > 0, slabs still exist on the node
2952 			 * that is going down. We were unable to free them,
2953 			 * and offline_pages() function shouldn't call this
2954 			 * callback. So, we must fail.
2955 			 */
2956 			BUG_ON(slabs_node(s, offline_node));
2957 
2958 			s->node[offline_node] = NULL;
2959 			kmem_cache_free(kmalloc_caches, n);
2960 		}
2961 	}
2962 	up_read(&slub_lock);
2963 }
2964 
2965 static int slab_mem_going_online_callback(void *arg)
2966 {
2967 	struct kmem_cache_node *n;
2968 	struct kmem_cache *s;
2969 	struct memory_notify *marg = arg;
2970 	int nid = marg->status_change_nid;
2971 	int ret = 0;
2972 
2973 	/*
2974 	 * If the node's memory is already available, then kmem_cache_node is
2975 	 * already created. Nothing to do.
2976 	 */
2977 	if (nid < 0)
2978 		return 0;
2979 
2980 	/*
2981 	 * We are bringing a node online. No memory is available yet. We must
2982 	 * allocate a kmem_cache_node structure in order to bring the node
2983 	 * online.
2984 	 */
2985 	down_read(&slub_lock);
2986 	list_for_each_entry(s, &slab_caches, list) {
2987 		/*
2988 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2989 		 *      since memory is not yet available from the node that
2990 		 *      is brought up.
2991 		 */
2992 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2993 		if (!n) {
2994 			ret = -ENOMEM;
2995 			goto out;
2996 		}
2997 		init_kmem_cache_node(n, s);
2998 		s->node[nid] = n;
2999 	}
3000 out:
3001 	up_read(&slub_lock);
3002 	return ret;
3003 }
3004 
3005 static int slab_memory_callback(struct notifier_block *self,
3006 				unsigned long action, void *arg)
3007 {
3008 	int ret = 0;
3009 
3010 	switch (action) {
3011 	case MEM_GOING_ONLINE:
3012 		ret = slab_mem_going_online_callback(arg);
3013 		break;
3014 	case MEM_GOING_OFFLINE:
3015 		ret = slab_mem_going_offline_callback(arg);
3016 		break;
3017 	case MEM_OFFLINE:
3018 	case MEM_CANCEL_ONLINE:
3019 		slab_mem_offline_callback(arg);
3020 		break;
3021 	case MEM_ONLINE:
3022 	case MEM_CANCEL_OFFLINE:
3023 		break;
3024 	}
3025 	if (ret)
3026 		ret = notifier_from_errno(ret);
3027 	else
3028 		ret = NOTIFY_OK;
3029 	return ret;
3030 }
3031 
3032 #endif /* CONFIG_MEMORY_HOTPLUG */
3033 
3034 /********************************************************************
3035  *			Basic setup of slabs
3036  *******************************************************************/
3037 
3038 void __init kmem_cache_init(void)
3039 {
3040 	int i;
3041 	int caches = 0;
3042 
3043 #ifdef CONFIG_NUMA
3044 	/*
3045 	 * Must first have the slab cache available for the allocations of the
3046 	 * struct kmem_cache_node's. There is special bootstrap code in
3047 	 * kmem_cache_open for slab_state == DOWN.
3048 	 */
3049 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3050 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3051 	kmalloc_caches[0].refcount = -1;
3052 	caches++;
3053 
3054 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3055 #endif
3056 
3057 	/* Able to allocate the per node structures */
3058 	slab_state = PARTIAL;
3059 
3060 	/* Caches that are not of the two-to-the-power-of size */
3061 	if (KMALLOC_MIN_SIZE <= 32) {
3062 		create_kmalloc_cache(&kmalloc_caches[1],
3063 				"kmalloc-96", 96, GFP_NOWAIT);
3064 		caches++;
3065 	}
3066 	if (KMALLOC_MIN_SIZE <= 64) {
3067 		create_kmalloc_cache(&kmalloc_caches[2],
3068 				"kmalloc-192", 192, GFP_NOWAIT);
3069 		caches++;
3070 	}
3071 
3072 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3073 		create_kmalloc_cache(&kmalloc_caches[i],
3074 			"kmalloc", 1 << i, GFP_NOWAIT);
3075 		caches++;
3076 	}
3077 
3078 
3079 	/*
3080 	 * Patch up the size_index table if we have strange large alignment
3081 	 * requirements for the kmalloc array. This is only the case for
3082 	 * MIPS it seems. The standard arches will not generate any code here.
3083 	 *
3084 	 * Largest permitted alignment is 256 bytes due to the way we
3085 	 * handle the index determination for the smaller caches.
3086 	 *
3087 	 * Make sure that nothing crazy happens if someone starts tinkering
3088 	 * around with ARCH_KMALLOC_MINALIGN
3089 	 */
3090 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3091 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3092 
3093 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3094 		int elem = size_index_elem(i);
3095 		if (elem >= ARRAY_SIZE(size_index))
3096 			break;
3097 		size_index[elem] = KMALLOC_SHIFT_LOW;
3098 	}
3099 
3100 	if (KMALLOC_MIN_SIZE == 64) {
3101 		/*
3102 		 * The 96 byte size cache is not used if the alignment
3103 		 * is 64 byte.
3104 		 */
3105 		for (i = 64 + 8; i <= 96; i += 8)
3106 			size_index[size_index_elem(i)] = 7;
3107 	} else if (KMALLOC_MIN_SIZE == 128) {
3108 		/*
3109 		 * The 192 byte sized cache is not used if the alignment
3110 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3111 		 * instead.
3112 		 */
3113 		for (i = 128 + 8; i <= 192; i += 8)
3114 			size_index[size_index_elem(i)] = 8;
3115 	}
3116 
3117 	slab_state = UP;
3118 
3119 	/* Provide the correct kmalloc names now that the caches are up */
3120 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3121 		kmalloc_caches[i]. name =
3122 			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3123 
3124 #ifdef CONFIG_SMP
3125 	register_cpu_notifier(&slab_notifier);
3126 #endif
3127 #ifdef CONFIG_NUMA
3128 	kmem_size = offsetof(struct kmem_cache, node) +
3129 				nr_node_ids * sizeof(struct kmem_cache_node *);
3130 #else
3131 	kmem_size = sizeof(struct kmem_cache);
3132 #endif
3133 
3134 	printk(KERN_INFO
3135 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3136 		" CPUs=%d, Nodes=%d\n",
3137 		caches, cache_line_size(),
3138 		slub_min_order, slub_max_order, slub_min_objects,
3139 		nr_cpu_ids, nr_node_ids);
3140 }
3141 
3142 void __init kmem_cache_init_late(void)
3143 {
3144 }
3145 
3146 /*
3147  * Find a mergeable slab cache
3148  */
3149 static int slab_unmergeable(struct kmem_cache *s)
3150 {
3151 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3152 		return 1;
3153 
3154 	if (s->ctor)
3155 		return 1;
3156 
3157 	/*
3158 	 * We may have set a slab to be unmergeable during bootstrap.
3159 	 */
3160 	if (s->refcount < 0)
3161 		return 1;
3162 
3163 	return 0;
3164 }
3165 
3166 static struct kmem_cache *find_mergeable(size_t size,
3167 		size_t align, unsigned long flags, const char *name,
3168 		void (*ctor)(void *))
3169 {
3170 	struct kmem_cache *s;
3171 
3172 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3173 		return NULL;
3174 
3175 	if (ctor)
3176 		return NULL;
3177 
3178 	size = ALIGN(size, sizeof(void *));
3179 	align = calculate_alignment(flags, align, size);
3180 	size = ALIGN(size, align);
3181 	flags = kmem_cache_flags(size, flags, name, NULL);
3182 
3183 	list_for_each_entry(s, &slab_caches, list) {
3184 		if (slab_unmergeable(s))
3185 			continue;
3186 
3187 		if (size > s->size)
3188 			continue;
3189 
3190 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3191 				continue;
3192 		/*
3193 		 * Check if alignment is compatible.
3194 		 * Courtesy of Adrian Drzewiecki
3195 		 */
3196 		if ((s->size & ~(align - 1)) != s->size)
3197 			continue;
3198 
3199 		if (s->size - size >= sizeof(void *))
3200 			continue;
3201 
3202 		return s;
3203 	}
3204 	return NULL;
3205 }
3206 
3207 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3208 		size_t align, unsigned long flags, void (*ctor)(void *))
3209 {
3210 	struct kmem_cache *s;
3211 
3212 	if (WARN_ON(!name))
3213 		return NULL;
3214 
3215 	down_write(&slub_lock);
3216 	s = find_mergeable(size, align, flags, name, ctor);
3217 	if (s) {
3218 		s->refcount++;
3219 		/*
3220 		 * Adjust the object sizes so that we clear
3221 		 * the complete object on kzalloc.
3222 		 */
3223 		s->objsize = max(s->objsize, (int)size);
3224 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3225 		up_write(&slub_lock);
3226 
3227 		if (sysfs_slab_alias(s, name)) {
3228 			down_write(&slub_lock);
3229 			s->refcount--;
3230 			up_write(&slub_lock);
3231 			goto err;
3232 		}
3233 		return s;
3234 	}
3235 
3236 	s = kmalloc(kmem_size, GFP_KERNEL);
3237 	if (s) {
3238 		if (kmem_cache_open(s, GFP_KERNEL, name,
3239 				size, align, flags, ctor)) {
3240 			list_add(&s->list, &slab_caches);
3241 			up_write(&slub_lock);
3242 			if (sysfs_slab_add(s)) {
3243 				down_write(&slub_lock);
3244 				list_del(&s->list);
3245 				up_write(&slub_lock);
3246 				kfree(s);
3247 				goto err;
3248 			}
3249 			return s;
3250 		}
3251 		kfree(s);
3252 	}
3253 	up_write(&slub_lock);
3254 
3255 err:
3256 	if (flags & SLAB_PANIC)
3257 		panic("Cannot create slabcache %s\n", name);
3258 	else
3259 		s = NULL;
3260 	return s;
3261 }
3262 EXPORT_SYMBOL(kmem_cache_create);
3263 
3264 #ifdef CONFIG_SMP
3265 /*
3266  * Use the cpu notifier to insure that the cpu slabs are flushed when
3267  * necessary.
3268  */
3269 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3270 		unsigned long action, void *hcpu)
3271 {
3272 	long cpu = (long)hcpu;
3273 	struct kmem_cache *s;
3274 	unsigned long flags;
3275 
3276 	switch (action) {
3277 	case CPU_UP_CANCELED:
3278 	case CPU_UP_CANCELED_FROZEN:
3279 	case CPU_DEAD:
3280 	case CPU_DEAD_FROZEN:
3281 		down_read(&slub_lock);
3282 		list_for_each_entry(s, &slab_caches, list) {
3283 			local_irq_save(flags);
3284 			__flush_cpu_slab(s, cpu);
3285 			local_irq_restore(flags);
3286 		}
3287 		up_read(&slub_lock);
3288 		break;
3289 	default:
3290 		break;
3291 	}
3292 	return NOTIFY_OK;
3293 }
3294 
3295 static struct notifier_block __cpuinitdata slab_notifier = {
3296 	.notifier_call = slab_cpuup_callback
3297 };
3298 
3299 #endif
3300 
3301 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3302 {
3303 	struct kmem_cache *s;
3304 	void *ret;
3305 
3306 	if (unlikely(size > SLUB_MAX_SIZE))
3307 		return kmalloc_large(size, gfpflags);
3308 
3309 	s = get_slab(size, gfpflags);
3310 
3311 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3312 		return s;
3313 
3314 	ret = slab_alloc(s, gfpflags, -1, caller);
3315 
3316 	/* Honor the call site pointer we recieved. */
3317 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3318 
3319 	return ret;
3320 }
3321 
3322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3323 					int node, unsigned long caller)
3324 {
3325 	struct kmem_cache *s;
3326 	void *ret;
3327 
3328 	if (unlikely(size > SLUB_MAX_SIZE)) {
3329 		ret = kmalloc_large_node(size, gfpflags, node);
3330 
3331 		trace_kmalloc_node(caller, ret,
3332 				   size, PAGE_SIZE << get_order(size),
3333 				   gfpflags, node);
3334 
3335 		return ret;
3336 	}
3337 
3338 	s = get_slab(size, gfpflags);
3339 
3340 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3341 		return s;
3342 
3343 	ret = slab_alloc(s, gfpflags, node, caller);
3344 
3345 	/* Honor the call site pointer we recieved. */
3346 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3347 
3348 	return ret;
3349 }
3350 
3351 #ifdef CONFIG_SLUB_DEBUG
3352 static int count_inuse(struct page *page)
3353 {
3354 	return page->inuse;
3355 }
3356 
3357 static int count_total(struct page *page)
3358 {
3359 	return page->objects;
3360 }
3361 
3362 static int validate_slab(struct kmem_cache *s, struct page *page,
3363 						unsigned long *map)
3364 {
3365 	void *p;
3366 	void *addr = page_address(page);
3367 
3368 	if (!check_slab(s, page) ||
3369 			!on_freelist(s, page, NULL))
3370 		return 0;
3371 
3372 	/* Now we know that a valid freelist exists */
3373 	bitmap_zero(map, page->objects);
3374 
3375 	for_each_free_object(p, s, page->freelist) {
3376 		set_bit(slab_index(p, s, addr), map);
3377 		if (!check_object(s, page, p, 0))
3378 			return 0;
3379 	}
3380 
3381 	for_each_object(p, s, addr, page->objects)
3382 		if (!test_bit(slab_index(p, s, addr), map))
3383 			if (!check_object(s, page, p, 1))
3384 				return 0;
3385 	return 1;
3386 }
3387 
3388 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3389 						unsigned long *map)
3390 {
3391 	if (slab_trylock(page)) {
3392 		validate_slab(s, page, map);
3393 		slab_unlock(page);
3394 	} else
3395 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3396 			s->name, page);
3397 
3398 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3399 		if (!PageSlubDebug(page))
3400 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3401 				"on slab 0x%p\n", s->name, page);
3402 	} else {
3403 		if (PageSlubDebug(page))
3404 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3405 				"slab 0x%p\n", s->name, page);
3406 	}
3407 }
3408 
3409 static int validate_slab_node(struct kmem_cache *s,
3410 		struct kmem_cache_node *n, unsigned long *map)
3411 {
3412 	unsigned long count = 0;
3413 	struct page *page;
3414 	unsigned long flags;
3415 
3416 	spin_lock_irqsave(&n->list_lock, flags);
3417 
3418 	list_for_each_entry(page, &n->partial, lru) {
3419 		validate_slab_slab(s, page, map);
3420 		count++;
3421 	}
3422 	if (count != n->nr_partial)
3423 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3424 			"counter=%ld\n", s->name, count, n->nr_partial);
3425 
3426 	if (!(s->flags & SLAB_STORE_USER))
3427 		goto out;
3428 
3429 	list_for_each_entry(page, &n->full, lru) {
3430 		validate_slab_slab(s, page, map);
3431 		count++;
3432 	}
3433 	if (count != atomic_long_read(&n->nr_slabs))
3434 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3435 			"counter=%ld\n", s->name, count,
3436 			atomic_long_read(&n->nr_slabs));
3437 
3438 out:
3439 	spin_unlock_irqrestore(&n->list_lock, flags);
3440 	return count;
3441 }
3442 
3443 static long validate_slab_cache(struct kmem_cache *s)
3444 {
3445 	int node;
3446 	unsigned long count = 0;
3447 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3448 				sizeof(unsigned long), GFP_KERNEL);
3449 
3450 	if (!map)
3451 		return -ENOMEM;
3452 
3453 	flush_all(s);
3454 	for_each_node_state(node, N_NORMAL_MEMORY) {
3455 		struct kmem_cache_node *n = get_node(s, node);
3456 
3457 		count += validate_slab_node(s, n, map);
3458 	}
3459 	kfree(map);
3460 	return count;
3461 }
3462 
3463 #ifdef SLUB_RESILIENCY_TEST
3464 static void resiliency_test(void)
3465 {
3466 	u8 *p;
3467 
3468 	printk(KERN_ERR "SLUB resiliency testing\n");
3469 	printk(KERN_ERR "-----------------------\n");
3470 	printk(KERN_ERR "A. Corruption after allocation\n");
3471 
3472 	p = kzalloc(16, GFP_KERNEL);
3473 	p[16] = 0x12;
3474 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3475 			" 0x12->0x%p\n\n", p + 16);
3476 
3477 	validate_slab_cache(kmalloc_caches + 4);
3478 
3479 	/* Hmmm... The next two are dangerous */
3480 	p = kzalloc(32, GFP_KERNEL);
3481 	p[32 + sizeof(void *)] = 0x34;
3482 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3483 			" 0x34 -> -0x%p\n", p);
3484 	printk(KERN_ERR
3485 		"If allocated object is overwritten then not detectable\n\n");
3486 
3487 	validate_slab_cache(kmalloc_caches + 5);
3488 	p = kzalloc(64, GFP_KERNEL);
3489 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3490 	*p = 0x56;
3491 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3492 									p);
3493 	printk(KERN_ERR
3494 		"If allocated object is overwritten then not detectable\n\n");
3495 	validate_slab_cache(kmalloc_caches + 6);
3496 
3497 	printk(KERN_ERR "\nB. Corruption after free\n");
3498 	p = kzalloc(128, GFP_KERNEL);
3499 	kfree(p);
3500 	*p = 0x78;
3501 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3502 	validate_slab_cache(kmalloc_caches + 7);
3503 
3504 	p = kzalloc(256, GFP_KERNEL);
3505 	kfree(p);
3506 	p[50] = 0x9a;
3507 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3508 			p);
3509 	validate_slab_cache(kmalloc_caches + 8);
3510 
3511 	p = kzalloc(512, GFP_KERNEL);
3512 	kfree(p);
3513 	p[512] = 0xab;
3514 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3515 	validate_slab_cache(kmalloc_caches + 9);
3516 }
3517 #else
3518 static void resiliency_test(void) {};
3519 #endif
3520 
3521 /*
3522  * Generate lists of code addresses where slabcache objects are allocated
3523  * and freed.
3524  */
3525 
3526 struct location {
3527 	unsigned long count;
3528 	unsigned long addr;
3529 	long long sum_time;
3530 	long min_time;
3531 	long max_time;
3532 	long min_pid;
3533 	long max_pid;
3534 	DECLARE_BITMAP(cpus, NR_CPUS);
3535 	nodemask_t nodes;
3536 };
3537 
3538 struct loc_track {
3539 	unsigned long max;
3540 	unsigned long count;
3541 	struct location *loc;
3542 };
3543 
3544 static void free_loc_track(struct loc_track *t)
3545 {
3546 	if (t->max)
3547 		free_pages((unsigned long)t->loc,
3548 			get_order(sizeof(struct location) * t->max));
3549 }
3550 
3551 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3552 {
3553 	struct location *l;
3554 	int order;
3555 
3556 	order = get_order(sizeof(struct location) * max);
3557 
3558 	l = (void *)__get_free_pages(flags, order);
3559 	if (!l)
3560 		return 0;
3561 
3562 	if (t->count) {
3563 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3564 		free_loc_track(t);
3565 	}
3566 	t->max = max;
3567 	t->loc = l;
3568 	return 1;
3569 }
3570 
3571 static int add_location(struct loc_track *t, struct kmem_cache *s,
3572 				const struct track *track)
3573 {
3574 	long start, end, pos;
3575 	struct location *l;
3576 	unsigned long caddr;
3577 	unsigned long age = jiffies - track->when;
3578 
3579 	start = -1;
3580 	end = t->count;
3581 
3582 	for ( ; ; ) {
3583 		pos = start + (end - start + 1) / 2;
3584 
3585 		/*
3586 		 * There is nothing at "end". If we end up there
3587 		 * we need to add something to before end.
3588 		 */
3589 		if (pos == end)
3590 			break;
3591 
3592 		caddr = t->loc[pos].addr;
3593 		if (track->addr == caddr) {
3594 
3595 			l = &t->loc[pos];
3596 			l->count++;
3597 			if (track->when) {
3598 				l->sum_time += age;
3599 				if (age < l->min_time)
3600 					l->min_time = age;
3601 				if (age > l->max_time)
3602 					l->max_time = age;
3603 
3604 				if (track->pid < l->min_pid)
3605 					l->min_pid = track->pid;
3606 				if (track->pid > l->max_pid)
3607 					l->max_pid = track->pid;
3608 
3609 				cpumask_set_cpu(track->cpu,
3610 						to_cpumask(l->cpus));
3611 			}
3612 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3613 			return 1;
3614 		}
3615 
3616 		if (track->addr < caddr)
3617 			end = pos;
3618 		else
3619 			start = pos;
3620 	}
3621 
3622 	/*
3623 	 * Not found. Insert new tracking element.
3624 	 */
3625 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3626 		return 0;
3627 
3628 	l = t->loc + pos;
3629 	if (pos < t->count)
3630 		memmove(l + 1, l,
3631 			(t->count - pos) * sizeof(struct location));
3632 	t->count++;
3633 	l->count = 1;
3634 	l->addr = track->addr;
3635 	l->sum_time = age;
3636 	l->min_time = age;
3637 	l->max_time = age;
3638 	l->min_pid = track->pid;
3639 	l->max_pid = track->pid;
3640 	cpumask_clear(to_cpumask(l->cpus));
3641 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3642 	nodes_clear(l->nodes);
3643 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3644 	return 1;
3645 }
3646 
3647 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3648 		struct page *page, enum track_item alloc,
3649 		long *map)
3650 {
3651 	void *addr = page_address(page);
3652 	void *p;
3653 
3654 	bitmap_zero(map, page->objects);
3655 	for_each_free_object(p, s, page->freelist)
3656 		set_bit(slab_index(p, s, addr), map);
3657 
3658 	for_each_object(p, s, addr, page->objects)
3659 		if (!test_bit(slab_index(p, s, addr), map))
3660 			add_location(t, s, get_track(s, p, alloc));
3661 }
3662 
3663 static int list_locations(struct kmem_cache *s, char *buf,
3664 					enum track_item alloc)
3665 {
3666 	int len = 0;
3667 	unsigned long i;
3668 	struct loc_track t = { 0, 0, NULL };
3669 	int node;
3670 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3671 				     sizeof(unsigned long), GFP_KERNEL);
3672 
3673 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3674 				     GFP_TEMPORARY)) {
3675 		kfree(map);
3676 		return sprintf(buf, "Out of memory\n");
3677 	}
3678 	/* Push back cpu slabs */
3679 	flush_all(s);
3680 
3681 	for_each_node_state(node, N_NORMAL_MEMORY) {
3682 		struct kmem_cache_node *n = get_node(s, node);
3683 		unsigned long flags;
3684 		struct page *page;
3685 
3686 		if (!atomic_long_read(&n->nr_slabs))
3687 			continue;
3688 
3689 		spin_lock_irqsave(&n->list_lock, flags);
3690 		list_for_each_entry(page, &n->partial, lru)
3691 			process_slab(&t, s, page, alloc, map);
3692 		list_for_each_entry(page, &n->full, lru)
3693 			process_slab(&t, s, page, alloc, map);
3694 		spin_unlock_irqrestore(&n->list_lock, flags);
3695 	}
3696 
3697 	for (i = 0; i < t.count; i++) {
3698 		struct location *l = &t.loc[i];
3699 
3700 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3701 			break;
3702 		len += sprintf(buf + len, "%7ld ", l->count);
3703 
3704 		if (l->addr)
3705 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3706 		else
3707 			len += sprintf(buf + len, "<not-available>");
3708 
3709 		if (l->sum_time != l->min_time) {
3710 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3711 				l->min_time,
3712 				(long)div_u64(l->sum_time, l->count),
3713 				l->max_time);
3714 		} else
3715 			len += sprintf(buf + len, " age=%ld",
3716 				l->min_time);
3717 
3718 		if (l->min_pid != l->max_pid)
3719 			len += sprintf(buf + len, " pid=%ld-%ld",
3720 				l->min_pid, l->max_pid);
3721 		else
3722 			len += sprintf(buf + len, " pid=%ld",
3723 				l->min_pid);
3724 
3725 		if (num_online_cpus() > 1 &&
3726 				!cpumask_empty(to_cpumask(l->cpus)) &&
3727 				len < PAGE_SIZE - 60) {
3728 			len += sprintf(buf + len, " cpus=");
3729 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3730 						 to_cpumask(l->cpus));
3731 		}
3732 
3733 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3734 				len < PAGE_SIZE - 60) {
3735 			len += sprintf(buf + len, " nodes=");
3736 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3737 					l->nodes);
3738 		}
3739 
3740 		len += sprintf(buf + len, "\n");
3741 	}
3742 
3743 	free_loc_track(&t);
3744 	kfree(map);
3745 	if (!t.count)
3746 		len += sprintf(buf, "No data\n");
3747 	return len;
3748 }
3749 
3750 enum slab_stat_type {
3751 	SL_ALL,			/* All slabs */
3752 	SL_PARTIAL,		/* Only partially allocated slabs */
3753 	SL_CPU,			/* Only slabs used for cpu caches */
3754 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3755 	SL_TOTAL		/* Determine object capacity not slabs */
3756 };
3757 
3758 #define SO_ALL		(1 << SL_ALL)
3759 #define SO_PARTIAL	(1 << SL_PARTIAL)
3760 #define SO_CPU		(1 << SL_CPU)
3761 #define SO_OBJECTS	(1 << SL_OBJECTS)
3762 #define SO_TOTAL	(1 << SL_TOTAL)
3763 
3764 static ssize_t show_slab_objects(struct kmem_cache *s,
3765 			    char *buf, unsigned long flags)
3766 {
3767 	unsigned long total = 0;
3768 	int node;
3769 	int x;
3770 	unsigned long *nodes;
3771 	unsigned long *per_cpu;
3772 
3773 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3774 	if (!nodes)
3775 		return -ENOMEM;
3776 	per_cpu = nodes + nr_node_ids;
3777 
3778 	if (flags & SO_CPU) {
3779 		int cpu;
3780 
3781 		for_each_possible_cpu(cpu) {
3782 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3783 
3784 			if (!c || c->node < 0)
3785 				continue;
3786 
3787 			if (c->page) {
3788 					if (flags & SO_TOTAL)
3789 						x = c->page->objects;
3790 				else if (flags & SO_OBJECTS)
3791 					x = c->page->inuse;
3792 				else
3793 					x = 1;
3794 
3795 				total += x;
3796 				nodes[c->node] += x;
3797 			}
3798 			per_cpu[c->node]++;
3799 		}
3800 	}
3801 
3802 	if (flags & SO_ALL) {
3803 		for_each_node_state(node, N_NORMAL_MEMORY) {
3804 			struct kmem_cache_node *n = get_node(s, node);
3805 
3806 		if (flags & SO_TOTAL)
3807 			x = atomic_long_read(&n->total_objects);
3808 		else if (flags & SO_OBJECTS)
3809 			x = atomic_long_read(&n->total_objects) -
3810 				count_partial(n, count_free);
3811 
3812 			else
3813 				x = atomic_long_read(&n->nr_slabs);
3814 			total += x;
3815 			nodes[node] += x;
3816 		}
3817 
3818 	} else if (flags & SO_PARTIAL) {
3819 		for_each_node_state(node, N_NORMAL_MEMORY) {
3820 			struct kmem_cache_node *n = get_node(s, node);
3821 
3822 			if (flags & SO_TOTAL)
3823 				x = count_partial(n, count_total);
3824 			else if (flags & SO_OBJECTS)
3825 				x = count_partial(n, count_inuse);
3826 			else
3827 				x = n->nr_partial;
3828 			total += x;
3829 			nodes[node] += x;
3830 		}
3831 	}
3832 	x = sprintf(buf, "%lu", total);
3833 #ifdef CONFIG_NUMA
3834 	for_each_node_state(node, N_NORMAL_MEMORY)
3835 		if (nodes[node])
3836 			x += sprintf(buf + x, " N%d=%lu",
3837 					node, nodes[node]);
3838 #endif
3839 	kfree(nodes);
3840 	return x + sprintf(buf + x, "\n");
3841 }
3842 
3843 static int any_slab_objects(struct kmem_cache *s)
3844 {
3845 	int node;
3846 
3847 	for_each_online_node(node) {
3848 		struct kmem_cache_node *n = get_node(s, node);
3849 
3850 		if (!n)
3851 			continue;
3852 
3853 		if (atomic_long_read(&n->total_objects))
3854 			return 1;
3855 	}
3856 	return 0;
3857 }
3858 
3859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3860 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3861 
3862 struct slab_attribute {
3863 	struct attribute attr;
3864 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3865 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3866 };
3867 
3868 #define SLAB_ATTR_RO(_name) \
3869 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3870 
3871 #define SLAB_ATTR(_name) \
3872 	static struct slab_attribute _name##_attr =  \
3873 	__ATTR(_name, 0644, _name##_show, _name##_store)
3874 
3875 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3876 {
3877 	return sprintf(buf, "%d\n", s->size);
3878 }
3879 SLAB_ATTR_RO(slab_size);
3880 
3881 static ssize_t align_show(struct kmem_cache *s, char *buf)
3882 {
3883 	return sprintf(buf, "%d\n", s->align);
3884 }
3885 SLAB_ATTR_RO(align);
3886 
3887 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3888 {
3889 	return sprintf(buf, "%d\n", s->objsize);
3890 }
3891 SLAB_ATTR_RO(object_size);
3892 
3893 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3894 {
3895 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3896 }
3897 SLAB_ATTR_RO(objs_per_slab);
3898 
3899 static ssize_t order_store(struct kmem_cache *s,
3900 				const char *buf, size_t length)
3901 {
3902 	unsigned long order;
3903 	int err;
3904 
3905 	err = strict_strtoul(buf, 10, &order);
3906 	if (err)
3907 		return err;
3908 
3909 	if (order > slub_max_order || order < slub_min_order)
3910 		return -EINVAL;
3911 
3912 	calculate_sizes(s, order);
3913 	return length;
3914 }
3915 
3916 static ssize_t order_show(struct kmem_cache *s, char *buf)
3917 {
3918 	return sprintf(buf, "%d\n", oo_order(s->oo));
3919 }
3920 SLAB_ATTR(order);
3921 
3922 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3923 {
3924 	return sprintf(buf, "%lu\n", s->min_partial);
3925 }
3926 
3927 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3928 				 size_t length)
3929 {
3930 	unsigned long min;
3931 	int err;
3932 
3933 	err = strict_strtoul(buf, 10, &min);
3934 	if (err)
3935 		return err;
3936 
3937 	set_min_partial(s, min);
3938 	return length;
3939 }
3940 SLAB_ATTR(min_partial);
3941 
3942 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3943 {
3944 	if (s->ctor) {
3945 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3946 
3947 		return n + sprintf(buf + n, "\n");
3948 	}
3949 	return 0;
3950 }
3951 SLAB_ATTR_RO(ctor);
3952 
3953 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3954 {
3955 	return sprintf(buf, "%d\n", s->refcount - 1);
3956 }
3957 SLAB_ATTR_RO(aliases);
3958 
3959 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3960 {
3961 	return show_slab_objects(s, buf, SO_ALL);
3962 }
3963 SLAB_ATTR_RO(slabs);
3964 
3965 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3966 {
3967 	return show_slab_objects(s, buf, SO_PARTIAL);
3968 }
3969 SLAB_ATTR_RO(partial);
3970 
3971 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3972 {
3973 	return show_slab_objects(s, buf, SO_CPU);
3974 }
3975 SLAB_ATTR_RO(cpu_slabs);
3976 
3977 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3978 {
3979 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3980 }
3981 SLAB_ATTR_RO(objects);
3982 
3983 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3984 {
3985 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3986 }
3987 SLAB_ATTR_RO(objects_partial);
3988 
3989 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3990 {
3991 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3992 }
3993 SLAB_ATTR_RO(total_objects);
3994 
3995 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3996 {
3997 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3998 }
3999 
4000 static ssize_t sanity_checks_store(struct kmem_cache *s,
4001 				const char *buf, size_t length)
4002 {
4003 	s->flags &= ~SLAB_DEBUG_FREE;
4004 	if (buf[0] == '1')
4005 		s->flags |= SLAB_DEBUG_FREE;
4006 	return length;
4007 }
4008 SLAB_ATTR(sanity_checks);
4009 
4010 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4011 {
4012 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4013 }
4014 
4015 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4016 							size_t length)
4017 {
4018 	s->flags &= ~SLAB_TRACE;
4019 	if (buf[0] == '1')
4020 		s->flags |= SLAB_TRACE;
4021 	return length;
4022 }
4023 SLAB_ATTR(trace);
4024 
4025 #ifdef CONFIG_FAILSLAB
4026 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4027 {
4028 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4029 }
4030 
4031 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4032 							size_t length)
4033 {
4034 	s->flags &= ~SLAB_FAILSLAB;
4035 	if (buf[0] == '1')
4036 		s->flags |= SLAB_FAILSLAB;
4037 	return length;
4038 }
4039 SLAB_ATTR(failslab);
4040 #endif
4041 
4042 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4043 {
4044 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4045 }
4046 
4047 static ssize_t reclaim_account_store(struct kmem_cache *s,
4048 				const char *buf, size_t length)
4049 {
4050 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4051 	if (buf[0] == '1')
4052 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4053 	return length;
4054 }
4055 SLAB_ATTR(reclaim_account);
4056 
4057 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4058 {
4059 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4060 }
4061 SLAB_ATTR_RO(hwcache_align);
4062 
4063 #ifdef CONFIG_ZONE_DMA
4064 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4065 {
4066 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4067 }
4068 SLAB_ATTR_RO(cache_dma);
4069 #endif
4070 
4071 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4072 {
4073 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4074 }
4075 SLAB_ATTR_RO(destroy_by_rcu);
4076 
4077 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4078 {
4079 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4080 }
4081 
4082 static ssize_t red_zone_store(struct kmem_cache *s,
4083 				const char *buf, size_t length)
4084 {
4085 	if (any_slab_objects(s))
4086 		return -EBUSY;
4087 
4088 	s->flags &= ~SLAB_RED_ZONE;
4089 	if (buf[0] == '1')
4090 		s->flags |= SLAB_RED_ZONE;
4091 	calculate_sizes(s, -1);
4092 	return length;
4093 }
4094 SLAB_ATTR(red_zone);
4095 
4096 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4097 {
4098 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4099 }
4100 
4101 static ssize_t poison_store(struct kmem_cache *s,
4102 				const char *buf, size_t length)
4103 {
4104 	if (any_slab_objects(s))
4105 		return -EBUSY;
4106 
4107 	s->flags &= ~SLAB_POISON;
4108 	if (buf[0] == '1')
4109 		s->flags |= SLAB_POISON;
4110 	calculate_sizes(s, -1);
4111 	return length;
4112 }
4113 SLAB_ATTR(poison);
4114 
4115 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4116 {
4117 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4118 }
4119 
4120 static ssize_t store_user_store(struct kmem_cache *s,
4121 				const char *buf, size_t length)
4122 {
4123 	if (any_slab_objects(s))
4124 		return -EBUSY;
4125 
4126 	s->flags &= ~SLAB_STORE_USER;
4127 	if (buf[0] == '1')
4128 		s->flags |= SLAB_STORE_USER;
4129 	calculate_sizes(s, -1);
4130 	return length;
4131 }
4132 SLAB_ATTR(store_user);
4133 
4134 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4135 {
4136 	return 0;
4137 }
4138 
4139 static ssize_t validate_store(struct kmem_cache *s,
4140 			const char *buf, size_t length)
4141 {
4142 	int ret = -EINVAL;
4143 
4144 	if (buf[0] == '1') {
4145 		ret = validate_slab_cache(s);
4146 		if (ret >= 0)
4147 			ret = length;
4148 	}
4149 	return ret;
4150 }
4151 SLAB_ATTR(validate);
4152 
4153 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4154 {
4155 	return 0;
4156 }
4157 
4158 static ssize_t shrink_store(struct kmem_cache *s,
4159 			const char *buf, size_t length)
4160 {
4161 	if (buf[0] == '1') {
4162 		int rc = kmem_cache_shrink(s);
4163 
4164 		if (rc)
4165 			return rc;
4166 	} else
4167 		return -EINVAL;
4168 	return length;
4169 }
4170 SLAB_ATTR(shrink);
4171 
4172 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4173 {
4174 	if (!(s->flags & SLAB_STORE_USER))
4175 		return -ENOSYS;
4176 	return list_locations(s, buf, TRACK_ALLOC);
4177 }
4178 SLAB_ATTR_RO(alloc_calls);
4179 
4180 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4181 {
4182 	if (!(s->flags & SLAB_STORE_USER))
4183 		return -ENOSYS;
4184 	return list_locations(s, buf, TRACK_FREE);
4185 }
4186 SLAB_ATTR_RO(free_calls);
4187 
4188 #ifdef CONFIG_NUMA
4189 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4190 {
4191 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4192 }
4193 
4194 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4195 				const char *buf, size_t length)
4196 {
4197 	unsigned long ratio;
4198 	int err;
4199 
4200 	err = strict_strtoul(buf, 10, &ratio);
4201 	if (err)
4202 		return err;
4203 
4204 	if (ratio <= 100)
4205 		s->remote_node_defrag_ratio = ratio * 10;
4206 
4207 	return length;
4208 }
4209 SLAB_ATTR(remote_node_defrag_ratio);
4210 #endif
4211 
4212 #ifdef CONFIG_SLUB_STATS
4213 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4214 {
4215 	unsigned long sum  = 0;
4216 	int cpu;
4217 	int len;
4218 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4219 
4220 	if (!data)
4221 		return -ENOMEM;
4222 
4223 	for_each_online_cpu(cpu) {
4224 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4225 
4226 		data[cpu] = x;
4227 		sum += x;
4228 	}
4229 
4230 	len = sprintf(buf, "%lu", sum);
4231 
4232 #ifdef CONFIG_SMP
4233 	for_each_online_cpu(cpu) {
4234 		if (data[cpu] && len < PAGE_SIZE - 20)
4235 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4236 	}
4237 #endif
4238 	kfree(data);
4239 	return len + sprintf(buf + len, "\n");
4240 }
4241 
4242 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4243 {
4244 	int cpu;
4245 
4246 	for_each_online_cpu(cpu)
4247 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4248 }
4249 
4250 #define STAT_ATTR(si, text) 					\
4251 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4252 {								\
4253 	return show_stat(s, buf, si);				\
4254 }								\
4255 static ssize_t text##_store(struct kmem_cache *s,		\
4256 				const char *buf, size_t length)	\
4257 {								\
4258 	if (buf[0] != '0')					\
4259 		return -EINVAL;					\
4260 	clear_stat(s, si);					\
4261 	return length;						\
4262 }								\
4263 SLAB_ATTR(text);						\
4264 
4265 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4266 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4267 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4268 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4269 STAT_ATTR(FREE_FROZEN, free_frozen);
4270 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4271 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4272 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4273 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4274 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4275 STAT_ATTR(FREE_SLAB, free_slab);
4276 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4277 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4278 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4279 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4280 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4281 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4282 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4283 #endif
4284 
4285 static struct attribute *slab_attrs[] = {
4286 	&slab_size_attr.attr,
4287 	&object_size_attr.attr,
4288 	&objs_per_slab_attr.attr,
4289 	&order_attr.attr,
4290 	&min_partial_attr.attr,
4291 	&objects_attr.attr,
4292 	&objects_partial_attr.attr,
4293 	&total_objects_attr.attr,
4294 	&slabs_attr.attr,
4295 	&partial_attr.attr,
4296 	&cpu_slabs_attr.attr,
4297 	&ctor_attr.attr,
4298 	&aliases_attr.attr,
4299 	&align_attr.attr,
4300 	&sanity_checks_attr.attr,
4301 	&trace_attr.attr,
4302 	&hwcache_align_attr.attr,
4303 	&reclaim_account_attr.attr,
4304 	&destroy_by_rcu_attr.attr,
4305 	&red_zone_attr.attr,
4306 	&poison_attr.attr,
4307 	&store_user_attr.attr,
4308 	&validate_attr.attr,
4309 	&shrink_attr.attr,
4310 	&alloc_calls_attr.attr,
4311 	&free_calls_attr.attr,
4312 #ifdef CONFIG_ZONE_DMA
4313 	&cache_dma_attr.attr,
4314 #endif
4315 #ifdef CONFIG_NUMA
4316 	&remote_node_defrag_ratio_attr.attr,
4317 #endif
4318 #ifdef CONFIG_SLUB_STATS
4319 	&alloc_fastpath_attr.attr,
4320 	&alloc_slowpath_attr.attr,
4321 	&free_fastpath_attr.attr,
4322 	&free_slowpath_attr.attr,
4323 	&free_frozen_attr.attr,
4324 	&free_add_partial_attr.attr,
4325 	&free_remove_partial_attr.attr,
4326 	&alloc_from_partial_attr.attr,
4327 	&alloc_slab_attr.attr,
4328 	&alloc_refill_attr.attr,
4329 	&free_slab_attr.attr,
4330 	&cpuslab_flush_attr.attr,
4331 	&deactivate_full_attr.attr,
4332 	&deactivate_empty_attr.attr,
4333 	&deactivate_to_head_attr.attr,
4334 	&deactivate_to_tail_attr.attr,
4335 	&deactivate_remote_frees_attr.attr,
4336 	&order_fallback_attr.attr,
4337 #endif
4338 #ifdef CONFIG_FAILSLAB
4339 	&failslab_attr.attr,
4340 #endif
4341 
4342 	NULL
4343 };
4344 
4345 static struct attribute_group slab_attr_group = {
4346 	.attrs = slab_attrs,
4347 };
4348 
4349 static ssize_t slab_attr_show(struct kobject *kobj,
4350 				struct attribute *attr,
4351 				char *buf)
4352 {
4353 	struct slab_attribute *attribute;
4354 	struct kmem_cache *s;
4355 	int err;
4356 
4357 	attribute = to_slab_attr(attr);
4358 	s = to_slab(kobj);
4359 
4360 	if (!attribute->show)
4361 		return -EIO;
4362 
4363 	err = attribute->show(s, buf);
4364 
4365 	return err;
4366 }
4367 
4368 static ssize_t slab_attr_store(struct kobject *kobj,
4369 				struct attribute *attr,
4370 				const char *buf, size_t len)
4371 {
4372 	struct slab_attribute *attribute;
4373 	struct kmem_cache *s;
4374 	int err;
4375 
4376 	attribute = to_slab_attr(attr);
4377 	s = to_slab(kobj);
4378 
4379 	if (!attribute->store)
4380 		return -EIO;
4381 
4382 	err = attribute->store(s, buf, len);
4383 
4384 	return err;
4385 }
4386 
4387 static void kmem_cache_release(struct kobject *kobj)
4388 {
4389 	struct kmem_cache *s = to_slab(kobj);
4390 
4391 	kfree(s);
4392 }
4393 
4394 static const struct sysfs_ops slab_sysfs_ops = {
4395 	.show = slab_attr_show,
4396 	.store = slab_attr_store,
4397 };
4398 
4399 static struct kobj_type slab_ktype = {
4400 	.sysfs_ops = &slab_sysfs_ops,
4401 	.release = kmem_cache_release
4402 };
4403 
4404 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4405 {
4406 	struct kobj_type *ktype = get_ktype(kobj);
4407 
4408 	if (ktype == &slab_ktype)
4409 		return 1;
4410 	return 0;
4411 }
4412 
4413 static const struct kset_uevent_ops slab_uevent_ops = {
4414 	.filter = uevent_filter,
4415 };
4416 
4417 static struct kset *slab_kset;
4418 
4419 #define ID_STR_LENGTH 64
4420 
4421 /* Create a unique string id for a slab cache:
4422  *
4423  * Format	:[flags-]size
4424  */
4425 static char *create_unique_id(struct kmem_cache *s)
4426 {
4427 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4428 	char *p = name;
4429 
4430 	BUG_ON(!name);
4431 
4432 	*p++ = ':';
4433 	/*
4434 	 * First flags affecting slabcache operations. We will only
4435 	 * get here for aliasable slabs so we do not need to support
4436 	 * too many flags. The flags here must cover all flags that
4437 	 * are matched during merging to guarantee that the id is
4438 	 * unique.
4439 	 */
4440 	if (s->flags & SLAB_CACHE_DMA)
4441 		*p++ = 'd';
4442 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4443 		*p++ = 'a';
4444 	if (s->flags & SLAB_DEBUG_FREE)
4445 		*p++ = 'F';
4446 	if (!(s->flags & SLAB_NOTRACK))
4447 		*p++ = 't';
4448 	if (p != name + 1)
4449 		*p++ = '-';
4450 	p += sprintf(p, "%07d", s->size);
4451 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4452 	return name;
4453 }
4454 
4455 static int sysfs_slab_add(struct kmem_cache *s)
4456 {
4457 	int err;
4458 	const char *name;
4459 	int unmergeable;
4460 
4461 	if (slab_state < SYSFS)
4462 		/* Defer until later */
4463 		return 0;
4464 
4465 	unmergeable = slab_unmergeable(s);
4466 	if (unmergeable) {
4467 		/*
4468 		 * Slabcache can never be merged so we can use the name proper.
4469 		 * This is typically the case for debug situations. In that
4470 		 * case we can catch duplicate names easily.
4471 		 */
4472 		sysfs_remove_link(&slab_kset->kobj, s->name);
4473 		name = s->name;
4474 	} else {
4475 		/*
4476 		 * Create a unique name for the slab as a target
4477 		 * for the symlinks.
4478 		 */
4479 		name = create_unique_id(s);
4480 	}
4481 
4482 	s->kobj.kset = slab_kset;
4483 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4484 	if (err) {
4485 		kobject_put(&s->kobj);
4486 		return err;
4487 	}
4488 
4489 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4490 	if (err) {
4491 		kobject_del(&s->kobj);
4492 		kobject_put(&s->kobj);
4493 		return err;
4494 	}
4495 	kobject_uevent(&s->kobj, KOBJ_ADD);
4496 	if (!unmergeable) {
4497 		/* Setup first alias */
4498 		sysfs_slab_alias(s, s->name);
4499 		kfree(name);
4500 	}
4501 	return 0;
4502 }
4503 
4504 static void sysfs_slab_remove(struct kmem_cache *s)
4505 {
4506 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4507 	kobject_del(&s->kobj);
4508 	kobject_put(&s->kobj);
4509 }
4510 
4511 /*
4512  * Need to buffer aliases during bootup until sysfs becomes
4513  * available lest we lose that information.
4514  */
4515 struct saved_alias {
4516 	struct kmem_cache *s;
4517 	const char *name;
4518 	struct saved_alias *next;
4519 };
4520 
4521 static struct saved_alias *alias_list;
4522 
4523 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4524 {
4525 	struct saved_alias *al;
4526 
4527 	if (slab_state == SYSFS) {
4528 		/*
4529 		 * If we have a leftover link then remove it.
4530 		 */
4531 		sysfs_remove_link(&slab_kset->kobj, name);
4532 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4533 	}
4534 
4535 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4536 	if (!al)
4537 		return -ENOMEM;
4538 
4539 	al->s = s;
4540 	al->name = name;
4541 	al->next = alias_list;
4542 	alias_list = al;
4543 	return 0;
4544 }
4545 
4546 static int __init slab_sysfs_init(void)
4547 {
4548 	struct kmem_cache *s;
4549 	int err;
4550 
4551 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4552 	if (!slab_kset) {
4553 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4554 		return -ENOSYS;
4555 	}
4556 
4557 	slab_state = SYSFS;
4558 
4559 	list_for_each_entry(s, &slab_caches, list) {
4560 		err = sysfs_slab_add(s);
4561 		if (err)
4562 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4563 						" to sysfs\n", s->name);
4564 	}
4565 
4566 	while (alias_list) {
4567 		struct saved_alias *al = alias_list;
4568 
4569 		alias_list = alias_list->next;
4570 		err = sysfs_slab_alias(al->s, al->name);
4571 		if (err)
4572 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4573 					" %s to sysfs\n", s->name);
4574 		kfree(al);
4575 	}
4576 
4577 	resiliency_test();
4578 	return 0;
4579 }
4580 
4581 __initcall(slab_sysfs_init);
4582 #endif
4583 
4584 /*
4585  * The /proc/slabinfo ABI
4586  */
4587 #ifdef CONFIG_SLABINFO
4588 static void print_slabinfo_header(struct seq_file *m)
4589 {
4590 	seq_puts(m, "slabinfo - version: 2.1\n");
4591 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4592 		 "<objperslab> <pagesperslab>");
4593 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4594 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4595 	seq_putc(m, '\n');
4596 }
4597 
4598 static void *s_start(struct seq_file *m, loff_t *pos)
4599 {
4600 	loff_t n = *pos;
4601 
4602 	down_read(&slub_lock);
4603 	if (!n)
4604 		print_slabinfo_header(m);
4605 
4606 	return seq_list_start(&slab_caches, *pos);
4607 }
4608 
4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4610 {
4611 	return seq_list_next(p, &slab_caches, pos);
4612 }
4613 
4614 static void s_stop(struct seq_file *m, void *p)
4615 {
4616 	up_read(&slub_lock);
4617 }
4618 
4619 static int s_show(struct seq_file *m, void *p)
4620 {
4621 	unsigned long nr_partials = 0;
4622 	unsigned long nr_slabs = 0;
4623 	unsigned long nr_inuse = 0;
4624 	unsigned long nr_objs = 0;
4625 	unsigned long nr_free = 0;
4626 	struct kmem_cache *s;
4627 	int node;
4628 
4629 	s = list_entry(p, struct kmem_cache, list);
4630 
4631 	for_each_online_node(node) {
4632 		struct kmem_cache_node *n = get_node(s, node);
4633 
4634 		if (!n)
4635 			continue;
4636 
4637 		nr_partials += n->nr_partial;
4638 		nr_slabs += atomic_long_read(&n->nr_slabs);
4639 		nr_objs += atomic_long_read(&n->total_objects);
4640 		nr_free += count_partial(n, count_free);
4641 	}
4642 
4643 	nr_inuse = nr_objs - nr_free;
4644 
4645 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4646 		   nr_objs, s->size, oo_objects(s->oo),
4647 		   (1 << oo_order(s->oo)));
4648 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4649 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4650 		   0UL);
4651 	seq_putc(m, '\n');
4652 	return 0;
4653 }
4654 
4655 static const struct seq_operations slabinfo_op = {
4656 	.start = s_start,
4657 	.next = s_next,
4658 	.stop = s_stop,
4659 	.show = s_show,
4660 };
4661 
4662 static int slabinfo_open(struct inode *inode, struct file *file)
4663 {
4664 	return seq_open(file, &slabinfo_op);
4665 }
4666 
4667 static const struct file_operations proc_slabinfo_operations = {
4668 	.open		= slabinfo_open,
4669 	.read		= seq_read,
4670 	.llseek		= seq_lseek,
4671 	.release	= seq_release,
4672 };
4673 
4674 static int __init slab_proc_init(void)
4675 {
4676 	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4677 	return 0;
4678 }
4679 module_init(slab_proc_init);
4680 #endif /* CONFIG_SLABINFO */
4681