1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/swap.h> /* struct reclaim_state */ 13 #include <linux/module.h> 14 #include <linux/bit_spinlock.h> 15 #include <linux/interrupt.h> 16 #include <linux/bitops.h> 17 #include <linux/slab.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/kmemcheck.h> 21 #include <linux/cpu.h> 22 #include <linux/cpuset.h> 23 #include <linux/mempolicy.h> 24 #include <linux/ctype.h> 25 #include <linux/debugobjects.h> 26 #include <linux/kallsyms.h> 27 #include <linux/memory.h> 28 #include <linux/math64.h> 29 #include <linux/fault-inject.h> 30 31 /* 32 * Lock order: 33 * 1. slab_lock(page) 34 * 2. slab->list_lock 35 * 36 * The slab_lock protects operations on the object of a particular 37 * slab and its metadata in the page struct. If the slab lock 38 * has been taken then no allocations nor frees can be performed 39 * on the objects in the slab nor can the slab be added or removed 40 * from the partial or full lists since this would mean modifying 41 * the page_struct of the slab. 42 * 43 * The list_lock protects the partial and full list on each node and 44 * the partial slab counter. If taken then no new slabs may be added or 45 * removed from the lists nor make the number of partial slabs be modified. 46 * (Note that the total number of slabs is an atomic value that may be 47 * modified without taking the list lock). 48 * 49 * The list_lock is a centralized lock and thus we avoid taking it as 50 * much as possible. As long as SLUB does not have to handle partial 51 * slabs, operations can continue without any centralized lock. F.e. 52 * allocating a long series of objects that fill up slabs does not require 53 * the list lock. 54 * 55 * The lock order is sometimes inverted when we are trying to get a slab 56 * off a list. We take the list_lock and then look for a page on the list 57 * to use. While we do that objects in the slabs may be freed. We can 58 * only operate on the slab if we have also taken the slab_lock. So we use 59 * a slab_trylock() on the slab. If trylock was successful then no frees 60 * can occur anymore and we can use the slab for allocations etc. If the 61 * slab_trylock() does not succeed then frees are in progress in the slab and 62 * we must stay away from it for a while since we may cause a bouncing 63 * cacheline if we try to acquire the lock. So go onto the next slab. 64 * If all pages are busy then we may allocate a new slab instead of reusing 65 * a partial slab. A new slab has noone operating on it and thus there is 66 * no danger of cacheline contention. 67 * 68 * Interrupts are disabled during allocation and deallocation in order to 69 * make the slab allocator safe to use in the context of an irq. In addition 70 * interrupts are disabled to ensure that the processor does not change 71 * while handling per_cpu slabs, due to kernel preemption. 72 * 73 * SLUB assigns one slab for allocation to each processor. 74 * Allocations only occur from these slabs called cpu slabs. 75 * 76 * Slabs with free elements are kept on a partial list and during regular 77 * operations no list for full slabs is used. If an object in a full slab is 78 * freed then the slab will show up again on the partial lists. 79 * We track full slabs for debugging purposes though because otherwise we 80 * cannot scan all objects. 81 * 82 * Slabs are freed when they become empty. Teardown and setup is 83 * minimal so we rely on the page allocators per cpu caches for 84 * fast frees and allocs. 85 * 86 * Overloading of page flags that are otherwise used for LRU management. 87 * 88 * PageActive The slab is frozen and exempt from list processing. 89 * This means that the slab is dedicated to a purpose 90 * such as satisfying allocations for a specific 91 * processor. Objects may be freed in the slab while 92 * it is frozen but slab_free will then skip the usual 93 * list operations. It is up to the processor holding 94 * the slab to integrate the slab into the slab lists 95 * when the slab is no longer needed. 96 * 97 * One use of this flag is to mark slabs that are 98 * used for allocations. Then such a slab becomes a cpu 99 * slab. The cpu slab may be equipped with an additional 100 * freelist that allows lockless access to 101 * free objects in addition to the regular freelist 102 * that requires the slab lock. 103 * 104 * PageError Slab requires special handling due to debug 105 * options set. This moves slab handling out of 106 * the fast path and disables lockless freelists. 107 */ 108 109 #ifdef CONFIG_SLUB_DEBUG 110 #define SLABDEBUG 1 111 #else 112 #define SLABDEBUG 0 113 #endif 114 115 /* 116 * Issues still to be resolved: 117 * 118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 119 * 120 * - Variable sizing of the per node arrays 121 */ 122 123 /* Enable to test recovery from slab corruption on boot */ 124 #undef SLUB_RESILIENCY_TEST 125 126 /* 127 * Mininum number of partial slabs. These will be left on the partial 128 * lists even if they are empty. kmem_cache_shrink may reclaim them. 129 */ 130 #define MIN_PARTIAL 5 131 132 /* 133 * Maximum number of desirable partial slabs. 134 * The existence of more partial slabs makes kmem_cache_shrink 135 * sort the partial list by the number of objects in the. 136 */ 137 #define MAX_PARTIAL 10 138 139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 140 SLAB_POISON | SLAB_STORE_USER) 141 142 /* 143 * Debugging flags that require metadata to be stored in the slab. These get 144 * disabled when slub_debug=O is used and a cache's min order increases with 145 * metadata. 146 */ 147 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 148 149 /* 150 * Set of flags that will prevent slab merging 151 */ 152 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 153 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 154 SLAB_FAILSLAB) 155 156 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 157 SLAB_CACHE_DMA | SLAB_NOTRACK) 158 159 #define OO_SHIFT 16 160 #define OO_MASK ((1 << OO_SHIFT) - 1) 161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 162 163 /* Internal SLUB flags */ 164 #define __OBJECT_POISON 0x80000000 /* Poison object */ 165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 166 167 static int kmem_size = sizeof(struct kmem_cache); 168 169 #ifdef CONFIG_SMP 170 static struct notifier_block slab_notifier; 171 #endif 172 173 static enum { 174 DOWN, /* No slab functionality available */ 175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 176 UP, /* Everything works but does not show up in sysfs */ 177 SYSFS /* Sysfs up */ 178 } slab_state = DOWN; 179 180 /* A list of all slab caches on the system */ 181 static DECLARE_RWSEM(slub_lock); 182 static LIST_HEAD(slab_caches); 183 184 /* 185 * Tracking user of a slab. 186 */ 187 struct track { 188 unsigned long addr; /* Called from address */ 189 int cpu; /* Was running on cpu */ 190 int pid; /* Pid context */ 191 unsigned long when; /* When did the operation occur */ 192 }; 193 194 enum track_item { TRACK_ALLOC, TRACK_FREE }; 195 196 #ifdef CONFIG_SLUB_DEBUG 197 static int sysfs_slab_add(struct kmem_cache *); 198 static int sysfs_slab_alias(struct kmem_cache *, const char *); 199 static void sysfs_slab_remove(struct kmem_cache *); 200 201 #else 202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 204 { return 0; } 205 static inline void sysfs_slab_remove(struct kmem_cache *s) 206 { 207 kfree(s); 208 } 209 210 #endif 211 212 static inline void stat(struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 __this_cpu_inc(s->cpu_slab->stat[si]); 216 #endif 217 } 218 219 /******************************************************************** 220 * Core slab cache functions 221 *******************************************************************/ 222 223 int slab_is_available(void) 224 { 225 return slab_state >= UP; 226 } 227 228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 229 { 230 #ifdef CONFIG_NUMA 231 return s->node[node]; 232 #else 233 return &s->local_node; 234 #endif 235 } 236 237 /* Verify that a pointer has an address that is valid within a slab page */ 238 static inline int check_valid_pointer(struct kmem_cache *s, 239 struct page *page, const void *object) 240 { 241 void *base; 242 243 if (!object) 244 return 1; 245 246 base = page_address(page); 247 if (object < base || object >= base + page->objects * s->size || 248 (object - base) % s->size) { 249 return 0; 250 } 251 252 return 1; 253 } 254 255 static inline void *get_freepointer(struct kmem_cache *s, void *object) 256 { 257 return *(void **)(object + s->offset); 258 } 259 260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 261 { 262 *(void **)(object + s->offset) = fp; 263 } 264 265 /* Loop over all objects in a slab */ 266 #define for_each_object(__p, __s, __addr, __objects) \ 267 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 268 __p += (__s)->size) 269 270 /* Scan freelist */ 271 #define for_each_free_object(__p, __s, __free) \ 272 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 273 274 /* Determine object index from a given position */ 275 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 276 { 277 return (p - addr) / s->size; 278 } 279 280 static inline struct kmem_cache_order_objects oo_make(int order, 281 unsigned long size) 282 { 283 struct kmem_cache_order_objects x = { 284 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 285 }; 286 287 return x; 288 } 289 290 static inline int oo_order(struct kmem_cache_order_objects x) 291 { 292 return x.x >> OO_SHIFT; 293 } 294 295 static inline int oo_objects(struct kmem_cache_order_objects x) 296 { 297 return x.x & OO_MASK; 298 } 299 300 #ifdef CONFIG_SLUB_DEBUG 301 /* 302 * Debug settings: 303 */ 304 #ifdef CONFIG_SLUB_DEBUG_ON 305 static int slub_debug = DEBUG_DEFAULT_FLAGS; 306 #else 307 static int slub_debug; 308 #endif 309 310 static char *slub_debug_slabs; 311 static int disable_higher_order_debug; 312 313 /* 314 * Object debugging 315 */ 316 static void print_section(char *text, u8 *addr, unsigned int length) 317 { 318 int i, offset; 319 int newline = 1; 320 char ascii[17]; 321 322 ascii[16] = 0; 323 324 for (i = 0; i < length; i++) { 325 if (newline) { 326 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 327 newline = 0; 328 } 329 printk(KERN_CONT " %02x", addr[i]); 330 offset = i % 16; 331 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 332 if (offset == 15) { 333 printk(KERN_CONT " %s\n", ascii); 334 newline = 1; 335 } 336 } 337 if (!newline) { 338 i %= 16; 339 while (i < 16) { 340 printk(KERN_CONT " "); 341 ascii[i] = ' '; 342 i++; 343 } 344 printk(KERN_CONT " %s\n", ascii); 345 } 346 } 347 348 static struct track *get_track(struct kmem_cache *s, void *object, 349 enum track_item alloc) 350 { 351 struct track *p; 352 353 if (s->offset) 354 p = object + s->offset + sizeof(void *); 355 else 356 p = object + s->inuse; 357 358 return p + alloc; 359 } 360 361 static void set_track(struct kmem_cache *s, void *object, 362 enum track_item alloc, unsigned long addr) 363 { 364 struct track *p = get_track(s, object, alloc); 365 366 if (addr) { 367 p->addr = addr; 368 p->cpu = smp_processor_id(); 369 p->pid = current->pid; 370 p->when = jiffies; 371 } else 372 memset(p, 0, sizeof(struct track)); 373 } 374 375 static void init_tracking(struct kmem_cache *s, void *object) 376 { 377 if (!(s->flags & SLAB_STORE_USER)) 378 return; 379 380 set_track(s, object, TRACK_FREE, 0UL); 381 set_track(s, object, TRACK_ALLOC, 0UL); 382 } 383 384 static void print_track(const char *s, struct track *t) 385 { 386 if (!t->addr) 387 return; 388 389 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 390 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 391 } 392 393 static void print_tracking(struct kmem_cache *s, void *object) 394 { 395 if (!(s->flags & SLAB_STORE_USER)) 396 return; 397 398 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 399 print_track("Freed", get_track(s, object, TRACK_FREE)); 400 } 401 402 static void print_page_info(struct page *page) 403 { 404 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 405 page, page->objects, page->inuse, page->freelist, page->flags); 406 407 } 408 409 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 410 { 411 va_list args; 412 char buf[100]; 413 414 va_start(args, fmt); 415 vsnprintf(buf, sizeof(buf), fmt, args); 416 va_end(args); 417 printk(KERN_ERR "========================================" 418 "=====================================\n"); 419 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 420 printk(KERN_ERR "----------------------------------------" 421 "-------------------------------------\n\n"); 422 } 423 424 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 425 { 426 va_list args; 427 char buf[100]; 428 429 va_start(args, fmt); 430 vsnprintf(buf, sizeof(buf), fmt, args); 431 va_end(args); 432 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 433 } 434 435 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 436 { 437 unsigned int off; /* Offset of last byte */ 438 u8 *addr = page_address(page); 439 440 print_tracking(s, p); 441 442 print_page_info(page); 443 444 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 445 p, p - addr, get_freepointer(s, p)); 446 447 if (p > addr + 16) 448 print_section("Bytes b4", p - 16, 16); 449 450 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 451 452 if (s->flags & SLAB_RED_ZONE) 453 print_section("Redzone", p + s->objsize, 454 s->inuse - s->objsize); 455 456 if (s->offset) 457 off = s->offset + sizeof(void *); 458 else 459 off = s->inuse; 460 461 if (s->flags & SLAB_STORE_USER) 462 off += 2 * sizeof(struct track); 463 464 if (off != s->size) 465 /* Beginning of the filler is the free pointer */ 466 print_section("Padding", p + off, s->size - off); 467 468 dump_stack(); 469 } 470 471 static void object_err(struct kmem_cache *s, struct page *page, 472 u8 *object, char *reason) 473 { 474 slab_bug(s, "%s", reason); 475 print_trailer(s, page, object); 476 } 477 478 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 479 { 480 va_list args; 481 char buf[100]; 482 483 va_start(args, fmt); 484 vsnprintf(buf, sizeof(buf), fmt, args); 485 va_end(args); 486 slab_bug(s, "%s", buf); 487 print_page_info(page); 488 dump_stack(); 489 } 490 491 static void init_object(struct kmem_cache *s, void *object, int active) 492 { 493 u8 *p = object; 494 495 if (s->flags & __OBJECT_POISON) { 496 memset(p, POISON_FREE, s->objsize - 1); 497 p[s->objsize - 1] = POISON_END; 498 } 499 500 if (s->flags & SLAB_RED_ZONE) 501 memset(p + s->objsize, 502 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 503 s->inuse - s->objsize); 504 } 505 506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 507 { 508 while (bytes) { 509 if (*start != (u8)value) 510 return start; 511 start++; 512 bytes--; 513 } 514 return NULL; 515 } 516 517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 518 void *from, void *to) 519 { 520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 521 memset(from, data, to - from); 522 } 523 524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 525 u8 *object, char *what, 526 u8 *start, unsigned int value, unsigned int bytes) 527 { 528 u8 *fault; 529 u8 *end; 530 531 fault = check_bytes(start, value, bytes); 532 if (!fault) 533 return 1; 534 535 end = start + bytes; 536 while (end > fault && end[-1] == value) 537 end--; 538 539 slab_bug(s, "%s overwritten", what); 540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 541 fault, end - 1, fault[0], value); 542 print_trailer(s, page, object); 543 544 restore_bytes(s, what, value, fault, end); 545 return 0; 546 } 547 548 /* 549 * Object layout: 550 * 551 * object address 552 * Bytes of the object to be managed. 553 * If the freepointer may overlay the object then the free 554 * pointer is the first word of the object. 555 * 556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 557 * 0xa5 (POISON_END) 558 * 559 * object + s->objsize 560 * Padding to reach word boundary. This is also used for Redzoning. 561 * Padding is extended by another word if Redzoning is enabled and 562 * objsize == inuse. 563 * 564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 565 * 0xcc (RED_ACTIVE) for objects in use. 566 * 567 * object + s->inuse 568 * Meta data starts here. 569 * 570 * A. Free pointer (if we cannot overwrite object on free) 571 * B. Tracking data for SLAB_STORE_USER 572 * C. Padding to reach required alignment boundary or at mininum 573 * one word if debugging is on to be able to detect writes 574 * before the word boundary. 575 * 576 * Padding is done using 0x5a (POISON_INUSE) 577 * 578 * object + s->size 579 * Nothing is used beyond s->size. 580 * 581 * If slabcaches are merged then the objsize and inuse boundaries are mostly 582 * ignored. And therefore no slab options that rely on these boundaries 583 * may be used with merged slabcaches. 584 */ 585 586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 587 { 588 unsigned long off = s->inuse; /* The end of info */ 589 590 if (s->offset) 591 /* Freepointer is placed after the object. */ 592 off += sizeof(void *); 593 594 if (s->flags & SLAB_STORE_USER) 595 /* We also have user information there */ 596 off += 2 * sizeof(struct track); 597 598 if (s->size == off) 599 return 1; 600 601 return check_bytes_and_report(s, page, p, "Object padding", 602 p + off, POISON_INUSE, s->size - off); 603 } 604 605 /* Check the pad bytes at the end of a slab page */ 606 static int slab_pad_check(struct kmem_cache *s, struct page *page) 607 { 608 u8 *start; 609 u8 *fault; 610 u8 *end; 611 int length; 612 int remainder; 613 614 if (!(s->flags & SLAB_POISON)) 615 return 1; 616 617 start = page_address(page); 618 length = (PAGE_SIZE << compound_order(page)); 619 end = start + length; 620 remainder = length % s->size; 621 if (!remainder) 622 return 1; 623 624 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 625 if (!fault) 626 return 1; 627 while (end > fault && end[-1] == POISON_INUSE) 628 end--; 629 630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 631 print_section("Padding", end - remainder, remainder); 632 633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 634 return 0; 635 } 636 637 static int check_object(struct kmem_cache *s, struct page *page, 638 void *object, int active) 639 { 640 u8 *p = object; 641 u8 *endobject = object + s->objsize; 642 643 if (s->flags & SLAB_RED_ZONE) { 644 unsigned int red = 645 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 646 647 if (!check_bytes_and_report(s, page, object, "Redzone", 648 endobject, red, s->inuse - s->objsize)) 649 return 0; 650 } else { 651 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 652 check_bytes_and_report(s, page, p, "Alignment padding", 653 endobject, POISON_INUSE, s->inuse - s->objsize); 654 } 655 } 656 657 if (s->flags & SLAB_POISON) { 658 if (!active && (s->flags & __OBJECT_POISON) && 659 (!check_bytes_and_report(s, page, p, "Poison", p, 660 POISON_FREE, s->objsize - 1) || 661 !check_bytes_and_report(s, page, p, "Poison", 662 p + s->objsize - 1, POISON_END, 1))) 663 return 0; 664 /* 665 * check_pad_bytes cleans up on its own. 666 */ 667 check_pad_bytes(s, page, p); 668 } 669 670 if (!s->offset && active) 671 /* 672 * Object and freepointer overlap. Cannot check 673 * freepointer while object is allocated. 674 */ 675 return 1; 676 677 /* Check free pointer validity */ 678 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 679 object_err(s, page, p, "Freepointer corrupt"); 680 /* 681 * No choice but to zap it and thus lose the remainder 682 * of the free objects in this slab. May cause 683 * another error because the object count is now wrong. 684 */ 685 set_freepointer(s, p, NULL); 686 return 0; 687 } 688 return 1; 689 } 690 691 static int check_slab(struct kmem_cache *s, struct page *page) 692 { 693 int maxobj; 694 695 VM_BUG_ON(!irqs_disabled()); 696 697 if (!PageSlab(page)) { 698 slab_err(s, page, "Not a valid slab page"); 699 return 0; 700 } 701 702 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 703 if (page->objects > maxobj) { 704 slab_err(s, page, "objects %u > max %u", 705 s->name, page->objects, maxobj); 706 return 0; 707 } 708 if (page->inuse > page->objects) { 709 slab_err(s, page, "inuse %u > max %u", 710 s->name, page->inuse, page->objects); 711 return 0; 712 } 713 /* Slab_pad_check fixes things up after itself */ 714 slab_pad_check(s, page); 715 return 1; 716 } 717 718 /* 719 * Determine if a certain object on a page is on the freelist. Must hold the 720 * slab lock to guarantee that the chains are in a consistent state. 721 */ 722 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 723 { 724 int nr = 0; 725 void *fp = page->freelist; 726 void *object = NULL; 727 unsigned long max_objects; 728 729 while (fp && nr <= page->objects) { 730 if (fp == search) 731 return 1; 732 if (!check_valid_pointer(s, page, fp)) { 733 if (object) { 734 object_err(s, page, object, 735 "Freechain corrupt"); 736 set_freepointer(s, object, NULL); 737 break; 738 } else { 739 slab_err(s, page, "Freepointer corrupt"); 740 page->freelist = NULL; 741 page->inuse = page->objects; 742 slab_fix(s, "Freelist cleared"); 743 return 0; 744 } 745 break; 746 } 747 object = fp; 748 fp = get_freepointer(s, object); 749 nr++; 750 } 751 752 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 753 if (max_objects > MAX_OBJS_PER_PAGE) 754 max_objects = MAX_OBJS_PER_PAGE; 755 756 if (page->objects != max_objects) { 757 slab_err(s, page, "Wrong number of objects. Found %d but " 758 "should be %d", page->objects, max_objects); 759 page->objects = max_objects; 760 slab_fix(s, "Number of objects adjusted."); 761 } 762 if (page->inuse != page->objects - nr) { 763 slab_err(s, page, "Wrong object count. Counter is %d but " 764 "counted were %d", page->inuse, page->objects - nr); 765 page->inuse = page->objects - nr; 766 slab_fix(s, "Object count adjusted."); 767 } 768 return search == NULL; 769 } 770 771 static void trace(struct kmem_cache *s, struct page *page, void *object, 772 int alloc) 773 { 774 if (s->flags & SLAB_TRACE) { 775 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 776 s->name, 777 alloc ? "alloc" : "free", 778 object, page->inuse, 779 page->freelist); 780 781 if (!alloc) 782 print_section("Object", (void *)object, s->objsize); 783 784 dump_stack(); 785 } 786 } 787 788 /* 789 * Tracking of fully allocated slabs for debugging purposes. 790 */ 791 static void add_full(struct kmem_cache_node *n, struct page *page) 792 { 793 spin_lock(&n->list_lock); 794 list_add(&page->lru, &n->full); 795 spin_unlock(&n->list_lock); 796 } 797 798 static void remove_full(struct kmem_cache *s, struct page *page) 799 { 800 struct kmem_cache_node *n; 801 802 if (!(s->flags & SLAB_STORE_USER)) 803 return; 804 805 n = get_node(s, page_to_nid(page)); 806 807 spin_lock(&n->list_lock); 808 list_del(&page->lru); 809 spin_unlock(&n->list_lock); 810 } 811 812 /* Tracking of the number of slabs for debugging purposes */ 813 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 814 { 815 struct kmem_cache_node *n = get_node(s, node); 816 817 return atomic_long_read(&n->nr_slabs); 818 } 819 820 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 821 { 822 return atomic_long_read(&n->nr_slabs); 823 } 824 825 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 826 { 827 struct kmem_cache_node *n = get_node(s, node); 828 829 /* 830 * May be called early in order to allocate a slab for the 831 * kmem_cache_node structure. Solve the chicken-egg 832 * dilemma by deferring the increment of the count during 833 * bootstrap (see early_kmem_cache_node_alloc). 834 */ 835 if (!NUMA_BUILD || n) { 836 atomic_long_inc(&n->nr_slabs); 837 atomic_long_add(objects, &n->total_objects); 838 } 839 } 840 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 841 { 842 struct kmem_cache_node *n = get_node(s, node); 843 844 atomic_long_dec(&n->nr_slabs); 845 atomic_long_sub(objects, &n->total_objects); 846 } 847 848 /* Object debug checks for alloc/free paths */ 849 static void setup_object_debug(struct kmem_cache *s, struct page *page, 850 void *object) 851 { 852 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 853 return; 854 855 init_object(s, object, 0); 856 init_tracking(s, object); 857 } 858 859 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 860 void *object, unsigned long addr) 861 { 862 if (!check_slab(s, page)) 863 goto bad; 864 865 if (!on_freelist(s, page, object)) { 866 object_err(s, page, object, "Object already allocated"); 867 goto bad; 868 } 869 870 if (!check_valid_pointer(s, page, object)) { 871 object_err(s, page, object, "Freelist Pointer check fails"); 872 goto bad; 873 } 874 875 if (!check_object(s, page, object, 0)) 876 goto bad; 877 878 /* Success perform special debug activities for allocs */ 879 if (s->flags & SLAB_STORE_USER) 880 set_track(s, object, TRACK_ALLOC, addr); 881 trace(s, page, object, 1); 882 init_object(s, object, 1); 883 return 1; 884 885 bad: 886 if (PageSlab(page)) { 887 /* 888 * If this is a slab page then lets do the best we can 889 * to avoid issues in the future. Marking all objects 890 * as used avoids touching the remaining objects. 891 */ 892 slab_fix(s, "Marking all objects used"); 893 page->inuse = page->objects; 894 page->freelist = NULL; 895 } 896 return 0; 897 } 898 899 static int free_debug_processing(struct kmem_cache *s, struct page *page, 900 void *object, unsigned long addr) 901 { 902 if (!check_slab(s, page)) 903 goto fail; 904 905 if (!check_valid_pointer(s, page, object)) { 906 slab_err(s, page, "Invalid object pointer 0x%p", object); 907 goto fail; 908 } 909 910 if (on_freelist(s, page, object)) { 911 object_err(s, page, object, "Object already free"); 912 goto fail; 913 } 914 915 if (!check_object(s, page, object, 1)) 916 return 0; 917 918 if (unlikely(s != page->slab)) { 919 if (!PageSlab(page)) { 920 slab_err(s, page, "Attempt to free object(0x%p) " 921 "outside of slab", object); 922 } else if (!page->slab) { 923 printk(KERN_ERR 924 "SLUB <none>: no slab for object 0x%p.\n", 925 object); 926 dump_stack(); 927 } else 928 object_err(s, page, object, 929 "page slab pointer corrupt."); 930 goto fail; 931 } 932 933 /* Special debug activities for freeing objects */ 934 if (!PageSlubFrozen(page) && !page->freelist) 935 remove_full(s, page); 936 if (s->flags & SLAB_STORE_USER) 937 set_track(s, object, TRACK_FREE, addr); 938 trace(s, page, object, 0); 939 init_object(s, object, 0); 940 return 1; 941 942 fail: 943 slab_fix(s, "Object at 0x%p not freed", object); 944 return 0; 945 } 946 947 static int __init setup_slub_debug(char *str) 948 { 949 slub_debug = DEBUG_DEFAULT_FLAGS; 950 if (*str++ != '=' || !*str) 951 /* 952 * No options specified. Switch on full debugging. 953 */ 954 goto out; 955 956 if (*str == ',') 957 /* 958 * No options but restriction on slabs. This means full 959 * debugging for slabs matching a pattern. 960 */ 961 goto check_slabs; 962 963 if (tolower(*str) == 'o') { 964 /* 965 * Avoid enabling debugging on caches if its minimum order 966 * would increase as a result. 967 */ 968 disable_higher_order_debug = 1; 969 goto out; 970 } 971 972 slub_debug = 0; 973 if (*str == '-') 974 /* 975 * Switch off all debugging measures. 976 */ 977 goto out; 978 979 /* 980 * Determine which debug features should be switched on 981 */ 982 for (; *str && *str != ','; str++) { 983 switch (tolower(*str)) { 984 case 'f': 985 slub_debug |= SLAB_DEBUG_FREE; 986 break; 987 case 'z': 988 slub_debug |= SLAB_RED_ZONE; 989 break; 990 case 'p': 991 slub_debug |= SLAB_POISON; 992 break; 993 case 'u': 994 slub_debug |= SLAB_STORE_USER; 995 break; 996 case 't': 997 slub_debug |= SLAB_TRACE; 998 break; 999 case 'a': 1000 slub_debug |= SLAB_FAILSLAB; 1001 break; 1002 default: 1003 printk(KERN_ERR "slub_debug option '%c' " 1004 "unknown. skipped\n", *str); 1005 } 1006 } 1007 1008 check_slabs: 1009 if (*str == ',') 1010 slub_debug_slabs = str + 1; 1011 out: 1012 return 1; 1013 } 1014 1015 __setup("slub_debug", setup_slub_debug); 1016 1017 static unsigned long kmem_cache_flags(unsigned long objsize, 1018 unsigned long flags, const char *name, 1019 void (*ctor)(void *)) 1020 { 1021 /* 1022 * Enable debugging if selected on the kernel commandline. 1023 */ 1024 if (slub_debug && (!slub_debug_slabs || 1025 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1026 flags |= slub_debug; 1027 1028 return flags; 1029 } 1030 #else 1031 static inline void setup_object_debug(struct kmem_cache *s, 1032 struct page *page, void *object) {} 1033 1034 static inline int alloc_debug_processing(struct kmem_cache *s, 1035 struct page *page, void *object, unsigned long addr) { return 0; } 1036 1037 static inline int free_debug_processing(struct kmem_cache *s, 1038 struct page *page, void *object, unsigned long addr) { return 0; } 1039 1040 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1041 { return 1; } 1042 static inline int check_object(struct kmem_cache *s, struct page *page, 1043 void *object, int active) { return 1; } 1044 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1045 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1046 unsigned long flags, const char *name, 1047 void (*ctor)(void *)) 1048 { 1049 return flags; 1050 } 1051 #define slub_debug 0 1052 1053 #define disable_higher_order_debug 0 1054 1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1056 { return 0; } 1057 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1058 { return 0; } 1059 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1060 int objects) {} 1061 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1062 int objects) {} 1063 #endif 1064 1065 /* 1066 * Slab allocation and freeing 1067 */ 1068 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1069 struct kmem_cache_order_objects oo) 1070 { 1071 int order = oo_order(oo); 1072 1073 flags |= __GFP_NOTRACK; 1074 1075 if (node == -1) 1076 return alloc_pages(flags, order); 1077 else 1078 return alloc_pages_exact_node(node, flags, order); 1079 } 1080 1081 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1082 { 1083 struct page *page; 1084 struct kmem_cache_order_objects oo = s->oo; 1085 gfp_t alloc_gfp; 1086 1087 flags |= s->allocflags; 1088 1089 /* 1090 * Let the initial higher-order allocation fail under memory pressure 1091 * so we fall-back to the minimum order allocation. 1092 */ 1093 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1094 1095 page = alloc_slab_page(alloc_gfp, node, oo); 1096 if (unlikely(!page)) { 1097 oo = s->min; 1098 /* 1099 * Allocation may have failed due to fragmentation. 1100 * Try a lower order alloc if possible 1101 */ 1102 page = alloc_slab_page(flags, node, oo); 1103 if (!page) 1104 return NULL; 1105 1106 stat(s, ORDER_FALLBACK); 1107 } 1108 1109 if (kmemcheck_enabled 1110 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1111 int pages = 1 << oo_order(oo); 1112 1113 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1114 1115 /* 1116 * Objects from caches that have a constructor don't get 1117 * cleared when they're allocated, so we need to do it here. 1118 */ 1119 if (s->ctor) 1120 kmemcheck_mark_uninitialized_pages(page, pages); 1121 else 1122 kmemcheck_mark_unallocated_pages(page, pages); 1123 } 1124 1125 page->objects = oo_objects(oo); 1126 mod_zone_page_state(page_zone(page), 1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1129 1 << oo_order(oo)); 1130 1131 return page; 1132 } 1133 1134 static void setup_object(struct kmem_cache *s, struct page *page, 1135 void *object) 1136 { 1137 setup_object_debug(s, page, object); 1138 if (unlikely(s->ctor)) 1139 s->ctor(object); 1140 } 1141 1142 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1143 { 1144 struct page *page; 1145 void *start; 1146 void *last; 1147 void *p; 1148 1149 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1150 1151 page = allocate_slab(s, 1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1153 if (!page) 1154 goto out; 1155 1156 inc_slabs_node(s, page_to_nid(page), page->objects); 1157 page->slab = s; 1158 page->flags |= 1 << PG_slab; 1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1160 SLAB_STORE_USER | SLAB_TRACE)) 1161 __SetPageSlubDebug(page); 1162 1163 start = page_address(page); 1164 1165 if (unlikely(s->flags & SLAB_POISON)) 1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1167 1168 last = start; 1169 for_each_object(p, s, start, page->objects) { 1170 setup_object(s, page, last); 1171 set_freepointer(s, last, p); 1172 last = p; 1173 } 1174 setup_object(s, page, last); 1175 set_freepointer(s, last, NULL); 1176 1177 page->freelist = start; 1178 page->inuse = 0; 1179 out: 1180 return page; 1181 } 1182 1183 static void __free_slab(struct kmem_cache *s, struct page *page) 1184 { 1185 int order = compound_order(page); 1186 int pages = 1 << order; 1187 1188 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1189 void *p; 1190 1191 slab_pad_check(s, page); 1192 for_each_object(p, s, page_address(page), 1193 page->objects) 1194 check_object(s, page, p, 0); 1195 __ClearPageSlubDebug(page); 1196 } 1197 1198 kmemcheck_free_shadow(page, compound_order(page)); 1199 1200 mod_zone_page_state(page_zone(page), 1201 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1202 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1203 -pages); 1204 1205 __ClearPageSlab(page); 1206 reset_page_mapcount(page); 1207 if (current->reclaim_state) 1208 current->reclaim_state->reclaimed_slab += pages; 1209 __free_pages(page, order); 1210 } 1211 1212 static void rcu_free_slab(struct rcu_head *h) 1213 { 1214 struct page *page; 1215 1216 page = container_of((struct list_head *)h, struct page, lru); 1217 __free_slab(page->slab, page); 1218 } 1219 1220 static void free_slab(struct kmem_cache *s, struct page *page) 1221 { 1222 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1223 /* 1224 * RCU free overloads the RCU head over the LRU 1225 */ 1226 struct rcu_head *head = (void *)&page->lru; 1227 1228 call_rcu(head, rcu_free_slab); 1229 } else 1230 __free_slab(s, page); 1231 } 1232 1233 static void discard_slab(struct kmem_cache *s, struct page *page) 1234 { 1235 dec_slabs_node(s, page_to_nid(page), page->objects); 1236 free_slab(s, page); 1237 } 1238 1239 /* 1240 * Per slab locking using the pagelock 1241 */ 1242 static __always_inline void slab_lock(struct page *page) 1243 { 1244 bit_spin_lock(PG_locked, &page->flags); 1245 } 1246 1247 static __always_inline void slab_unlock(struct page *page) 1248 { 1249 __bit_spin_unlock(PG_locked, &page->flags); 1250 } 1251 1252 static __always_inline int slab_trylock(struct page *page) 1253 { 1254 int rc = 1; 1255 1256 rc = bit_spin_trylock(PG_locked, &page->flags); 1257 return rc; 1258 } 1259 1260 /* 1261 * Management of partially allocated slabs 1262 */ 1263 static void add_partial(struct kmem_cache_node *n, 1264 struct page *page, int tail) 1265 { 1266 spin_lock(&n->list_lock); 1267 n->nr_partial++; 1268 if (tail) 1269 list_add_tail(&page->lru, &n->partial); 1270 else 1271 list_add(&page->lru, &n->partial); 1272 spin_unlock(&n->list_lock); 1273 } 1274 1275 static void remove_partial(struct kmem_cache *s, struct page *page) 1276 { 1277 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1278 1279 spin_lock(&n->list_lock); 1280 list_del(&page->lru); 1281 n->nr_partial--; 1282 spin_unlock(&n->list_lock); 1283 } 1284 1285 /* 1286 * Lock slab and remove from the partial list. 1287 * 1288 * Must hold list_lock. 1289 */ 1290 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1291 struct page *page) 1292 { 1293 if (slab_trylock(page)) { 1294 list_del(&page->lru); 1295 n->nr_partial--; 1296 __SetPageSlubFrozen(page); 1297 return 1; 1298 } 1299 return 0; 1300 } 1301 1302 /* 1303 * Try to allocate a partial slab from a specific node. 1304 */ 1305 static struct page *get_partial_node(struct kmem_cache_node *n) 1306 { 1307 struct page *page; 1308 1309 /* 1310 * Racy check. If we mistakenly see no partial slabs then we 1311 * just allocate an empty slab. If we mistakenly try to get a 1312 * partial slab and there is none available then get_partials() 1313 * will return NULL. 1314 */ 1315 if (!n || !n->nr_partial) 1316 return NULL; 1317 1318 spin_lock(&n->list_lock); 1319 list_for_each_entry(page, &n->partial, lru) 1320 if (lock_and_freeze_slab(n, page)) 1321 goto out; 1322 page = NULL; 1323 out: 1324 spin_unlock(&n->list_lock); 1325 return page; 1326 } 1327 1328 /* 1329 * Get a page from somewhere. Search in increasing NUMA distances. 1330 */ 1331 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1332 { 1333 #ifdef CONFIG_NUMA 1334 struct zonelist *zonelist; 1335 struct zoneref *z; 1336 struct zone *zone; 1337 enum zone_type high_zoneidx = gfp_zone(flags); 1338 struct page *page; 1339 1340 /* 1341 * The defrag ratio allows a configuration of the tradeoffs between 1342 * inter node defragmentation and node local allocations. A lower 1343 * defrag_ratio increases the tendency to do local allocations 1344 * instead of attempting to obtain partial slabs from other nodes. 1345 * 1346 * If the defrag_ratio is set to 0 then kmalloc() always 1347 * returns node local objects. If the ratio is higher then kmalloc() 1348 * may return off node objects because partial slabs are obtained 1349 * from other nodes and filled up. 1350 * 1351 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1352 * defrag_ratio = 1000) then every (well almost) allocation will 1353 * first attempt to defrag slab caches on other nodes. This means 1354 * scanning over all nodes to look for partial slabs which may be 1355 * expensive if we do it every time we are trying to find a slab 1356 * with available objects. 1357 */ 1358 if (!s->remote_node_defrag_ratio || 1359 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1360 return NULL; 1361 1362 get_mems_allowed(); 1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1365 struct kmem_cache_node *n; 1366 1367 n = get_node(s, zone_to_nid(zone)); 1368 1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1370 n->nr_partial > s->min_partial) { 1371 page = get_partial_node(n); 1372 if (page) { 1373 put_mems_allowed(); 1374 return page; 1375 } 1376 } 1377 } 1378 put_mems_allowed(); 1379 #endif 1380 return NULL; 1381 } 1382 1383 /* 1384 * Get a partial page, lock it and return it. 1385 */ 1386 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1387 { 1388 struct page *page; 1389 int searchnode = (node == -1) ? numa_node_id() : node; 1390 1391 page = get_partial_node(get_node(s, searchnode)); 1392 if (page || (flags & __GFP_THISNODE)) 1393 return page; 1394 1395 return get_any_partial(s, flags); 1396 } 1397 1398 /* 1399 * Move a page back to the lists. 1400 * 1401 * Must be called with the slab lock held. 1402 * 1403 * On exit the slab lock will have been dropped. 1404 */ 1405 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1406 { 1407 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1408 1409 __ClearPageSlubFrozen(page); 1410 if (page->inuse) { 1411 1412 if (page->freelist) { 1413 add_partial(n, page, tail); 1414 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1415 } else { 1416 stat(s, DEACTIVATE_FULL); 1417 if (SLABDEBUG && PageSlubDebug(page) && 1418 (s->flags & SLAB_STORE_USER)) 1419 add_full(n, page); 1420 } 1421 slab_unlock(page); 1422 } else { 1423 stat(s, DEACTIVATE_EMPTY); 1424 if (n->nr_partial < s->min_partial) { 1425 /* 1426 * Adding an empty slab to the partial slabs in order 1427 * to avoid page allocator overhead. This slab needs 1428 * to come after the other slabs with objects in 1429 * so that the others get filled first. That way the 1430 * size of the partial list stays small. 1431 * 1432 * kmem_cache_shrink can reclaim any empty slabs from 1433 * the partial list. 1434 */ 1435 add_partial(n, page, 1); 1436 slab_unlock(page); 1437 } else { 1438 slab_unlock(page); 1439 stat(s, FREE_SLAB); 1440 discard_slab(s, page); 1441 } 1442 } 1443 } 1444 1445 /* 1446 * Remove the cpu slab 1447 */ 1448 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1449 { 1450 struct page *page = c->page; 1451 int tail = 1; 1452 1453 if (page->freelist) 1454 stat(s, DEACTIVATE_REMOTE_FREES); 1455 /* 1456 * Merge cpu freelist into slab freelist. Typically we get here 1457 * because both freelists are empty. So this is unlikely 1458 * to occur. 1459 */ 1460 while (unlikely(c->freelist)) { 1461 void **object; 1462 1463 tail = 0; /* Hot objects. Put the slab first */ 1464 1465 /* Retrieve object from cpu_freelist */ 1466 object = c->freelist; 1467 c->freelist = get_freepointer(s, c->freelist); 1468 1469 /* And put onto the regular freelist */ 1470 set_freepointer(s, object, page->freelist); 1471 page->freelist = object; 1472 page->inuse--; 1473 } 1474 c->page = NULL; 1475 unfreeze_slab(s, page, tail); 1476 } 1477 1478 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1479 { 1480 stat(s, CPUSLAB_FLUSH); 1481 slab_lock(c->page); 1482 deactivate_slab(s, c); 1483 } 1484 1485 /* 1486 * Flush cpu slab. 1487 * 1488 * Called from IPI handler with interrupts disabled. 1489 */ 1490 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1491 { 1492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 1493 1494 if (likely(c && c->page)) 1495 flush_slab(s, c); 1496 } 1497 1498 static void flush_cpu_slab(void *d) 1499 { 1500 struct kmem_cache *s = d; 1501 1502 __flush_cpu_slab(s, smp_processor_id()); 1503 } 1504 1505 static void flush_all(struct kmem_cache *s) 1506 { 1507 on_each_cpu(flush_cpu_slab, s, 1); 1508 } 1509 1510 /* 1511 * Check if the objects in a per cpu structure fit numa 1512 * locality expectations. 1513 */ 1514 static inline int node_match(struct kmem_cache_cpu *c, int node) 1515 { 1516 #ifdef CONFIG_NUMA 1517 if (node != -1 && c->node != node) 1518 return 0; 1519 #endif 1520 return 1; 1521 } 1522 1523 static int count_free(struct page *page) 1524 { 1525 return page->objects - page->inuse; 1526 } 1527 1528 static unsigned long count_partial(struct kmem_cache_node *n, 1529 int (*get_count)(struct page *)) 1530 { 1531 unsigned long flags; 1532 unsigned long x = 0; 1533 struct page *page; 1534 1535 spin_lock_irqsave(&n->list_lock, flags); 1536 list_for_each_entry(page, &n->partial, lru) 1537 x += get_count(page); 1538 spin_unlock_irqrestore(&n->list_lock, flags); 1539 return x; 1540 } 1541 1542 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 1543 { 1544 #ifdef CONFIG_SLUB_DEBUG 1545 return atomic_long_read(&n->total_objects); 1546 #else 1547 return 0; 1548 #endif 1549 } 1550 1551 static noinline void 1552 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 1553 { 1554 int node; 1555 1556 printk(KERN_WARNING 1557 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 1558 nid, gfpflags); 1559 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 1560 "default order: %d, min order: %d\n", s->name, s->objsize, 1561 s->size, oo_order(s->oo), oo_order(s->min)); 1562 1563 if (oo_order(s->min) > get_order(s->objsize)) 1564 printk(KERN_WARNING " %s debugging increased min order, use " 1565 "slub_debug=O to disable.\n", s->name); 1566 1567 for_each_online_node(node) { 1568 struct kmem_cache_node *n = get_node(s, node); 1569 unsigned long nr_slabs; 1570 unsigned long nr_objs; 1571 unsigned long nr_free; 1572 1573 if (!n) 1574 continue; 1575 1576 nr_free = count_partial(n, count_free); 1577 nr_slabs = node_nr_slabs(n); 1578 nr_objs = node_nr_objs(n); 1579 1580 printk(KERN_WARNING 1581 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 1582 node, nr_slabs, nr_objs, nr_free); 1583 } 1584 } 1585 1586 /* 1587 * Slow path. The lockless freelist is empty or we need to perform 1588 * debugging duties. 1589 * 1590 * Interrupts are disabled. 1591 * 1592 * Processing is still very fast if new objects have been freed to the 1593 * regular freelist. In that case we simply take over the regular freelist 1594 * as the lockless freelist and zap the regular freelist. 1595 * 1596 * If that is not working then we fall back to the partial lists. We take the 1597 * first element of the freelist as the object to allocate now and move the 1598 * rest of the freelist to the lockless freelist. 1599 * 1600 * And if we were unable to get a new slab from the partial slab lists then 1601 * we need to allocate a new slab. This is the slowest path since it involves 1602 * a call to the page allocator and the setup of a new slab. 1603 */ 1604 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1605 unsigned long addr, struct kmem_cache_cpu *c) 1606 { 1607 void **object; 1608 struct page *new; 1609 1610 /* We handle __GFP_ZERO in the caller */ 1611 gfpflags &= ~__GFP_ZERO; 1612 1613 if (!c->page) 1614 goto new_slab; 1615 1616 slab_lock(c->page); 1617 if (unlikely(!node_match(c, node))) 1618 goto another_slab; 1619 1620 stat(s, ALLOC_REFILL); 1621 1622 load_freelist: 1623 object = c->page->freelist; 1624 if (unlikely(!object)) 1625 goto another_slab; 1626 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1627 goto debug; 1628 1629 c->freelist = get_freepointer(s, object); 1630 c->page->inuse = c->page->objects; 1631 c->page->freelist = NULL; 1632 c->node = page_to_nid(c->page); 1633 unlock_out: 1634 slab_unlock(c->page); 1635 stat(s, ALLOC_SLOWPATH); 1636 return object; 1637 1638 another_slab: 1639 deactivate_slab(s, c); 1640 1641 new_slab: 1642 new = get_partial(s, gfpflags, node); 1643 if (new) { 1644 c->page = new; 1645 stat(s, ALLOC_FROM_PARTIAL); 1646 goto load_freelist; 1647 } 1648 1649 if (gfpflags & __GFP_WAIT) 1650 local_irq_enable(); 1651 1652 new = new_slab(s, gfpflags, node); 1653 1654 if (gfpflags & __GFP_WAIT) 1655 local_irq_disable(); 1656 1657 if (new) { 1658 c = __this_cpu_ptr(s->cpu_slab); 1659 stat(s, ALLOC_SLAB); 1660 if (c->page) 1661 flush_slab(s, c); 1662 slab_lock(new); 1663 __SetPageSlubFrozen(new); 1664 c->page = new; 1665 goto load_freelist; 1666 } 1667 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 1668 slab_out_of_memory(s, gfpflags, node); 1669 return NULL; 1670 debug: 1671 if (!alloc_debug_processing(s, c->page, object, addr)) 1672 goto another_slab; 1673 1674 c->page->inuse++; 1675 c->page->freelist = get_freepointer(s, object); 1676 c->node = -1; 1677 goto unlock_out; 1678 } 1679 1680 /* 1681 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1682 * have the fastpath folded into their functions. So no function call 1683 * overhead for requests that can be satisfied on the fastpath. 1684 * 1685 * The fastpath works by first checking if the lockless freelist can be used. 1686 * If not then __slab_alloc is called for slow processing. 1687 * 1688 * Otherwise we can simply pick the next object from the lockless free list. 1689 */ 1690 static __always_inline void *slab_alloc(struct kmem_cache *s, 1691 gfp_t gfpflags, int node, unsigned long addr) 1692 { 1693 void **object; 1694 struct kmem_cache_cpu *c; 1695 unsigned long flags; 1696 1697 gfpflags &= gfp_allowed_mask; 1698 1699 lockdep_trace_alloc(gfpflags); 1700 might_sleep_if(gfpflags & __GFP_WAIT); 1701 1702 if (should_failslab(s->objsize, gfpflags, s->flags)) 1703 return NULL; 1704 1705 local_irq_save(flags); 1706 c = __this_cpu_ptr(s->cpu_slab); 1707 object = c->freelist; 1708 if (unlikely(!object || !node_match(c, node))) 1709 1710 object = __slab_alloc(s, gfpflags, node, addr, c); 1711 1712 else { 1713 c->freelist = get_freepointer(s, object); 1714 stat(s, ALLOC_FASTPATH); 1715 } 1716 local_irq_restore(flags); 1717 1718 if (unlikely(gfpflags & __GFP_ZERO) && object) 1719 memset(object, 0, s->objsize); 1720 1721 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize); 1722 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags); 1723 1724 return object; 1725 } 1726 1727 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1728 { 1729 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1730 1731 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1732 1733 return ret; 1734 } 1735 EXPORT_SYMBOL(kmem_cache_alloc); 1736 1737 #ifdef CONFIG_TRACING 1738 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1739 { 1740 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1741 } 1742 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1743 #endif 1744 1745 #ifdef CONFIG_NUMA 1746 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1747 { 1748 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1749 1750 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1751 s->objsize, s->size, gfpflags, node); 1752 1753 return ret; 1754 } 1755 EXPORT_SYMBOL(kmem_cache_alloc_node); 1756 #endif 1757 1758 #ifdef CONFIG_TRACING 1759 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1760 gfp_t gfpflags, 1761 int node) 1762 { 1763 return slab_alloc(s, gfpflags, node, _RET_IP_); 1764 } 1765 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1766 #endif 1767 1768 /* 1769 * Slow patch handling. This may still be called frequently since objects 1770 * have a longer lifetime than the cpu slabs in most processing loads. 1771 * 1772 * So we still attempt to reduce cache line usage. Just take the slab 1773 * lock and free the item. If there is no additional partial page 1774 * handling required then we can return immediately. 1775 */ 1776 static void __slab_free(struct kmem_cache *s, struct page *page, 1777 void *x, unsigned long addr) 1778 { 1779 void *prior; 1780 void **object = (void *)x; 1781 1782 stat(s, FREE_SLOWPATH); 1783 slab_lock(page); 1784 1785 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1786 goto debug; 1787 1788 checks_ok: 1789 prior = page->freelist; 1790 set_freepointer(s, object, prior); 1791 page->freelist = object; 1792 page->inuse--; 1793 1794 if (unlikely(PageSlubFrozen(page))) { 1795 stat(s, FREE_FROZEN); 1796 goto out_unlock; 1797 } 1798 1799 if (unlikely(!page->inuse)) 1800 goto slab_empty; 1801 1802 /* 1803 * Objects left in the slab. If it was not on the partial list before 1804 * then add it. 1805 */ 1806 if (unlikely(!prior)) { 1807 add_partial(get_node(s, page_to_nid(page)), page, 1); 1808 stat(s, FREE_ADD_PARTIAL); 1809 } 1810 1811 out_unlock: 1812 slab_unlock(page); 1813 return; 1814 1815 slab_empty: 1816 if (prior) { 1817 /* 1818 * Slab still on the partial list. 1819 */ 1820 remove_partial(s, page); 1821 stat(s, FREE_REMOVE_PARTIAL); 1822 } 1823 slab_unlock(page); 1824 stat(s, FREE_SLAB); 1825 discard_slab(s, page); 1826 return; 1827 1828 debug: 1829 if (!free_debug_processing(s, page, x, addr)) 1830 goto out_unlock; 1831 goto checks_ok; 1832 } 1833 1834 /* 1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1836 * can perform fastpath freeing without additional function calls. 1837 * 1838 * The fastpath is only possible if we are freeing to the current cpu slab 1839 * of this processor. This typically the case if we have just allocated 1840 * the item before. 1841 * 1842 * If fastpath is not possible then fall back to __slab_free where we deal 1843 * with all sorts of special processing. 1844 */ 1845 static __always_inline void slab_free(struct kmem_cache *s, 1846 struct page *page, void *x, unsigned long addr) 1847 { 1848 void **object = (void *)x; 1849 struct kmem_cache_cpu *c; 1850 unsigned long flags; 1851 1852 kmemleak_free_recursive(x, s->flags); 1853 local_irq_save(flags); 1854 c = __this_cpu_ptr(s->cpu_slab); 1855 kmemcheck_slab_free(s, object, s->objsize); 1856 debug_check_no_locks_freed(object, s->objsize); 1857 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1858 debug_check_no_obj_freed(object, s->objsize); 1859 if (likely(page == c->page && c->node >= 0)) { 1860 set_freepointer(s, object, c->freelist); 1861 c->freelist = object; 1862 stat(s, FREE_FASTPATH); 1863 } else 1864 __slab_free(s, page, x, addr); 1865 1866 local_irq_restore(flags); 1867 } 1868 1869 void kmem_cache_free(struct kmem_cache *s, void *x) 1870 { 1871 struct page *page; 1872 1873 page = virt_to_head_page(x); 1874 1875 slab_free(s, page, x, _RET_IP_); 1876 1877 trace_kmem_cache_free(_RET_IP_, x); 1878 } 1879 EXPORT_SYMBOL(kmem_cache_free); 1880 1881 /* Figure out on which slab page the object resides */ 1882 static struct page *get_object_page(const void *x) 1883 { 1884 struct page *page = virt_to_head_page(x); 1885 1886 if (!PageSlab(page)) 1887 return NULL; 1888 1889 return page; 1890 } 1891 1892 /* 1893 * Object placement in a slab is made very easy because we always start at 1894 * offset 0. If we tune the size of the object to the alignment then we can 1895 * get the required alignment by putting one properly sized object after 1896 * another. 1897 * 1898 * Notice that the allocation order determines the sizes of the per cpu 1899 * caches. Each processor has always one slab available for allocations. 1900 * Increasing the allocation order reduces the number of times that slabs 1901 * must be moved on and off the partial lists and is therefore a factor in 1902 * locking overhead. 1903 */ 1904 1905 /* 1906 * Mininum / Maximum order of slab pages. This influences locking overhead 1907 * and slab fragmentation. A higher order reduces the number of partial slabs 1908 * and increases the number of allocations possible without having to 1909 * take the list_lock. 1910 */ 1911 static int slub_min_order; 1912 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1913 static int slub_min_objects; 1914 1915 /* 1916 * Merge control. If this is set then no merging of slab caches will occur. 1917 * (Could be removed. This was introduced to pacify the merge skeptics.) 1918 */ 1919 static int slub_nomerge; 1920 1921 /* 1922 * Calculate the order of allocation given an slab object size. 1923 * 1924 * The order of allocation has significant impact on performance and other 1925 * system components. Generally order 0 allocations should be preferred since 1926 * order 0 does not cause fragmentation in the page allocator. Larger objects 1927 * be problematic to put into order 0 slabs because there may be too much 1928 * unused space left. We go to a higher order if more than 1/16th of the slab 1929 * would be wasted. 1930 * 1931 * In order to reach satisfactory performance we must ensure that a minimum 1932 * number of objects is in one slab. Otherwise we may generate too much 1933 * activity on the partial lists which requires taking the list_lock. This is 1934 * less a concern for large slabs though which are rarely used. 1935 * 1936 * slub_max_order specifies the order where we begin to stop considering the 1937 * number of objects in a slab as critical. If we reach slub_max_order then 1938 * we try to keep the page order as low as possible. So we accept more waste 1939 * of space in favor of a small page order. 1940 * 1941 * Higher order allocations also allow the placement of more objects in a 1942 * slab and thereby reduce object handling overhead. If the user has 1943 * requested a higher mininum order then we start with that one instead of 1944 * the smallest order which will fit the object. 1945 */ 1946 static inline int slab_order(int size, int min_objects, 1947 int max_order, int fract_leftover) 1948 { 1949 int order; 1950 int rem; 1951 int min_order = slub_min_order; 1952 1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1955 1956 for (order = max(min_order, 1957 fls(min_objects * size - 1) - PAGE_SHIFT); 1958 order <= max_order; order++) { 1959 1960 unsigned long slab_size = PAGE_SIZE << order; 1961 1962 if (slab_size < min_objects * size) 1963 continue; 1964 1965 rem = slab_size % size; 1966 1967 if (rem <= slab_size / fract_leftover) 1968 break; 1969 1970 } 1971 1972 return order; 1973 } 1974 1975 static inline int calculate_order(int size) 1976 { 1977 int order; 1978 int min_objects; 1979 int fraction; 1980 int max_objects; 1981 1982 /* 1983 * Attempt to find best configuration for a slab. This 1984 * works by first attempting to generate a layout with 1985 * the best configuration and backing off gradually. 1986 * 1987 * First we reduce the acceptable waste in a slab. Then 1988 * we reduce the minimum objects required in a slab. 1989 */ 1990 min_objects = slub_min_objects; 1991 if (!min_objects) 1992 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1993 max_objects = (PAGE_SIZE << slub_max_order)/size; 1994 min_objects = min(min_objects, max_objects); 1995 1996 while (min_objects > 1) { 1997 fraction = 16; 1998 while (fraction >= 4) { 1999 order = slab_order(size, min_objects, 2000 slub_max_order, fraction); 2001 if (order <= slub_max_order) 2002 return order; 2003 fraction /= 2; 2004 } 2005 min_objects--; 2006 } 2007 2008 /* 2009 * We were unable to place multiple objects in a slab. Now 2010 * lets see if we can place a single object there. 2011 */ 2012 order = slab_order(size, 1, slub_max_order, 1); 2013 if (order <= slub_max_order) 2014 return order; 2015 2016 /* 2017 * Doh this slab cannot be placed using slub_max_order. 2018 */ 2019 order = slab_order(size, 1, MAX_ORDER, 1); 2020 if (order < MAX_ORDER) 2021 return order; 2022 return -ENOSYS; 2023 } 2024 2025 /* 2026 * Figure out what the alignment of the objects will be. 2027 */ 2028 static unsigned long calculate_alignment(unsigned long flags, 2029 unsigned long align, unsigned long size) 2030 { 2031 /* 2032 * If the user wants hardware cache aligned objects then follow that 2033 * suggestion if the object is sufficiently large. 2034 * 2035 * The hardware cache alignment cannot override the specified 2036 * alignment though. If that is greater then use it. 2037 */ 2038 if (flags & SLAB_HWCACHE_ALIGN) { 2039 unsigned long ralign = cache_line_size(); 2040 while (size <= ralign / 2) 2041 ralign /= 2; 2042 align = max(align, ralign); 2043 } 2044 2045 if (align < ARCH_SLAB_MINALIGN) 2046 align = ARCH_SLAB_MINALIGN; 2047 2048 return ALIGN(align, sizeof(void *)); 2049 } 2050 2051 static void 2052 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2053 { 2054 n->nr_partial = 0; 2055 spin_lock_init(&n->list_lock); 2056 INIT_LIST_HEAD(&n->partial); 2057 #ifdef CONFIG_SLUB_DEBUG 2058 atomic_long_set(&n->nr_slabs, 0); 2059 atomic_long_set(&n->total_objects, 0); 2060 INIT_LIST_HEAD(&n->full); 2061 #endif 2062 } 2063 2064 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]); 2065 2066 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2067 { 2068 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches) 2069 /* 2070 * Boot time creation of the kmalloc array. Use static per cpu data 2071 * since the per cpu allocator is not available yet. 2072 */ 2073 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches); 2074 else 2075 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); 2076 2077 if (!s->cpu_slab) 2078 return 0; 2079 2080 return 1; 2081 } 2082 2083 #ifdef CONFIG_NUMA 2084 /* 2085 * No kmalloc_node yet so do it by hand. We know that this is the first 2086 * slab on the node for this slabcache. There are no concurrent accesses 2087 * possible. 2088 * 2089 * Note that this function only works on the kmalloc_node_cache 2090 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2091 * memory on a fresh node that has no slab structures yet. 2092 */ 2093 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2094 { 2095 struct page *page; 2096 struct kmem_cache_node *n; 2097 unsigned long flags; 2098 2099 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2100 2101 page = new_slab(kmalloc_caches, gfpflags, node); 2102 2103 BUG_ON(!page); 2104 if (page_to_nid(page) != node) { 2105 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2106 "node %d\n", node); 2107 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2108 "in order to be able to continue\n"); 2109 } 2110 2111 n = page->freelist; 2112 BUG_ON(!n); 2113 page->freelist = get_freepointer(kmalloc_caches, n); 2114 page->inuse++; 2115 kmalloc_caches->node[node] = n; 2116 #ifdef CONFIG_SLUB_DEBUG 2117 init_object(kmalloc_caches, n, 1); 2118 init_tracking(kmalloc_caches, n); 2119 #endif 2120 init_kmem_cache_node(n, kmalloc_caches); 2121 inc_slabs_node(kmalloc_caches, node, page->objects); 2122 2123 /* 2124 * lockdep requires consistent irq usage for each lock 2125 * so even though there cannot be a race this early in 2126 * the boot sequence, we still disable irqs. 2127 */ 2128 local_irq_save(flags); 2129 add_partial(n, page, 0); 2130 local_irq_restore(flags); 2131 } 2132 2133 static void free_kmem_cache_nodes(struct kmem_cache *s) 2134 { 2135 int node; 2136 2137 for_each_node_state(node, N_NORMAL_MEMORY) { 2138 struct kmem_cache_node *n = s->node[node]; 2139 if (n) 2140 kmem_cache_free(kmalloc_caches, n); 2141 s->node[node] = NULL; 2142 } 2143 } 2144 2145 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2146 { 2147 int node; 2148 2149 for_each_node_state(node, N_NORMAL_MEMORY) { 2150 struct kmem_cache_node *n; 2151 2152 if (slab_state == DOWN) { 2153 early_kmem_cache_node_alloc(gfpflags, node); 2154 continue; 2155 } 2156 n = kmem_cache_alloc_node(kmalloc_caches, 2157 gfpflags, node); 2158 2159 if (!n) { 2160 free_kmem_cache_nodes(s); 2161 return 0; 2162 } 2163 2164 s->node[node] = n; 2165 init_kmem_cache_node(n, s); 2166 } 2167 return 1; 2168 } 2169 #else 2170 static void free_kmem_cache_nodes(struct kmem_cache *s) 2171 { 2172 } 2173 2174 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2175 { 2176 init_kmem_cache_node(&s->local_node, s); 2177 return 1; 2178 } 2179 #endif 2180 2181 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2182 { 2183 if (min < MIN_PARTIAL) 2184 min = MIN_PARTIAL; 2185 else if (min > MAX_PARTIAL) 2186 min = MAX_PARTIAL; 2187 s->min_partial = min; 2188 } 2189 2190 /* 2191 * calculate_sizes() determines the order and the distribution of data within 2192 * a slab object. 2193 */ 2194 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2195 { 2196 unsigned long flags = s->flags; 2197 unsigned long size = s->objsize; 2198 unsigned long align = s->align; 2199 int order; 2200 2201 /* 2202 * Round up object size to the next word boundary. We can only 2203 * place the free pointer at word boundaries and this determines 2204 * the possible location of the free pointer. 2205 */ 2206 size = ALIGN(size, sizeof(void *)); 2207 2208 #ifdef CONFIG_SLUB_DEBUG 2209 /* 2210 * Determine if we can poison the object itself. If the user of 2211 * the slab may touch the object after free or before allocation 2212 * then we should never poison the object itself. 2213 */ 2214 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2215 !s->ctor) 2216 s->flags |= __OBJECT_POISON; 2217 else 2218 s->flags &= ~__OBJECT_POISON; 2219 2220 2221 /* 2222 * If we are Redzoning then check if there is some space between the 2223 * end of the object and the free pointer. If not then add an 2224 * additional word to have some bytes to store Redzone information. 2225 */ 2226 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2227 size += sizeof(void *); 2228 #endif 2229 2230 /* 2231 * With that we have determined the number of bytes in actual use 2232 * by the object. This is the potential offset to the free pointer. 2233 */ 2234 s->inuse = size; 2235 2236 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2237 s->ctor)) { 2238 /* 2239 * Relocate free pointer after the object if it is not 2240 * permitted to overwrite the first word of the object on 2241 * kmem_cache_free. 2242 * 2243 * This is the case if we do RCU, have a constructor or 2244 * destructor or are poisoning the objects. 2245 */ 2246 s->offset = size; 2247 size += sizeof(void *); 2248 } 2249 2250 #ifdef CONFIG_SLUB_DEBUG 2251 if (flags & SLAB_STORE_USER) 2252 /* 2253 * Need to store information about allocs and frees after 2254 * the object. 2255 */ 2256 size += 2 * sizeof(struct track); 2257 2258 if (flags & SLAB_RED_ZONE) 2259 /* 2260 * Add some empty padding so that we can catch 2261 * overwrites from earlier objects rather than let 2262 * tracking information or the free pointer be 2263 * corrupted if a user writes before the start 2264 * of the object. 2265 */ 2266 size += sizeof(void *); 2267 #endif 2268 2269 /* 2270 * Determine the alignment based on various parameters that the 2271 * user specified and the dynamic determination of cache line size 2272 * on bootup. 2273 */ 2274 align = calculate_alignment(flags, align, s->objsize); 2275 s->align = align; 2276 2277 /* 2278 * SLUB stores one object immediately after another beginning from 2279 * offset 0. In order to align the objects we have to simply size 2280 * each object to conform to the alignment. 2281 */ 2282 size = ALIGN(size, align); 2283 s->size = size; 2284 if (forced_order >= 0) 2285 order = forced_order; 2286 else 2287 order = calculate_order(size); 2288 2289 if (order < 0) 2290 return 0; 2291 2292 s->allocflags = 0; 2293 if (order) 2294 s->allocflags |= __GFP_COMP; 2295 2296 if (s->flags & SLAB_CACHE_DMA) 2297 s->allocflags |= SLUB_DMA; 2298 2299 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2300 s->allocflags |= __GFP_RECLAIMABLE; 2301 2302 /* 2303 * Determine the number of objects per slab 2304 */ 2305 s->oo = oo_make(order, size); 2306 s->min = oo_make(get_order(size), size); 2307 if (oo_objects(s->oo) > oo_objects(s->max)) 2308 s->max = s->oo; 2309 2310 return !!oo_objects(s->oo); 2311 2312 } 2313 2314 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2315 const char *name, size_t size, 2316 size_t align, unsigned long flags, 2317 void (*ctor)(void *)) 2318 { 2319 memset(s, 0, kmem_size); 2320 s->name = name; 2321 s->ctor = ctor; 2322 s->objsize = size; 2323 s->align = align; 2324 s->flags = kmem_cache_flags(size, flags, name, ctor); 2325 2326 if (!calculate_sizes(s, -1)) 2327 goto error; 2328 if (disable_higher_order_debug) { 2329 /* 2330 * Disable debugging flags that store metadata if the min slab 2331 * order increased. 2332 */ 2333 if (get_order(s->size) > get_order(s->objsize)) { 2334 s->flags &= ~DEBUG_METADATA_FLAGS; 2335 s->offset = 0; 2336 if (!calculate_sizes(s, -1)) 2337 goto error; 2338 } 2339 } 2340 2341 /* 2342 * The larger the object size is, the more pages we want on the partial 2343 * list to avoid pounding the page allocator excessively. 2344 */ 2345 set_min_partial(s, ilog2(s->size)); 2346 s->refcount = 1; 2347 #ifdef CONFIG_NUMA 2348 s->remote_node_defrag_ratio = 1000; 2349 #endif 2350 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2351 goto error; 2352 2353 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2354 return 1; 2355 2356 free_kmem_cache_nodes(s); 2357 error: 2358 if (flags & SLAB_PANIC) 2359 panic("Cannot create slab %s size=%lu realsize=%u " 2360 "order=%u offset=%u flags=%lx\n", 2361 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2362 s->offset, flags); 2363 return 0; 2364 } 2365 2366 /* 2367 * Check if a given pointer is valid 2368 */ 2369 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2370 { 2371 struct page *page; 2372 2373 if (!kern_ptr_validate(object, s->size)) 2374 return 0; 2375 2376 page = get_object_page(object); 2377 2378 if (!page || s != page->slab) 2379 /* No slab or wrong slab */ 2380 return 0; 2381 2382 if (!check_valid_pointer(s, page, object)) 2383 return 0; 2384 2385 /* 2386 * We could also check if the object is on the slabs freelist. 2387 * But this would be too expensive and it seems that the main 2388 * purpose of kmem_ptr_valid() is to check if the object belongs 2389 * to a certain slab. 2390 */ 2391 return 1; 2392 } 2393 EXPORT_SYMBOL(kmem_ptr_validate); 2394 2395 /* 2396 * Determine the size of a slab object 2397 */ 2398 unsigned int kmem_cache_size(struct kmem_cache *s) 2399 { 2400 return s->objsize; 2401 } 2402 EXPORT_SYMBOL(kmem_cache_size); 2403 2404 const char *kmem_cache_name(struct kmem_cache *s) 2405 { 2406 return s->name; 2407 } 2408 EXPORT_SYMBOL(kmem_cache_name); 2409 2410 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2411 const char *text) 2412 { 2413 #ifdef CONFIG_SLUB_DEBUG 2414 void *addr = page_address(page); 2415 void *p; 2416 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long), 2417 GFP_ATOMIC); 2418 2419 if (!map) 2420 return; 2421 slab_err(s, page, "%s", text); 2422 slab_lock(page); 2423 for_each_free_object(p, s, page->freelist) 2424 set_bit(slab_index(p, s, addr), map); 2425 2426 for_each_object(p, s, addr, page->objects) { 2427 2428 if (!test_bit(slab_index(p, s, addr), map)) { 2429 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2430 p, p - addr); 2431 print_tracking(s, p); 2432 } 2433 } 2434 slab_unlock(page); 2435 kfree(map); 2436 #endif 2437 } 2438 2439 /* 2440 * Attempt to free all partial slabs on a node. 2441 */ 2442 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2443 { 2444 unsigned long flags; 2445 struct page *page, *h; 2446 2447 spin_lock_irqsave(&n->list_lock, flags); 2448 list_for_each_entry_safe(page, h, &n->partial, lru) { 2449 if (!page->inuse) { 2450 list_del(&page->lru); 2451 discard_slab(s, page); 2452 n->nr_partial--; 2453 } else { 2454 list_slab_objects(s, page, 2455 "Objects remaining on kmem_cache_close()"); 2456 } 2457 } 2458 spin_unlock_irqrestore(&n->list_lock, flags); 2459 } 2460 2461 /* 2462 * Release all resources used by a slab cache. 2463 */ 2464 static inline int kmem_cache_close(struct kmem_cache *s) 2465 { 2466 int node; 2467 2468 flush_all(s); 2469 free_percpu(s->cpu_slab); 2470 /* Attempt to free all objects */ 2471 for_each_node_state(node, N_NORMAL_MEMORY) { 2472 struct kmem_cache_node *n = get_node(s, node); 2473 2474 free_partial(s, n); 2475 if (n->nr_partial || slabs_node(s, node)) 2476 return 1; 2477 } 2478 free_kmem_cache_nodes(s); 2479 return 0; 2480 } 2481 2482 /* 2483 * Close a cache and release the kmem_cache structure 2484 * (must be used for caches created using kmem_cache_create) 2485 */ 2486 void kmem_cache_destroy(struct kmem_cache *s) 2487 { 2488 down_write(&slub_lock); 2489 s->refcount--; 2490 if (!s->refcount) { 2491 list_del(&s->list); 2492 up_write(&slub_lock); 2493 if (kmem_cache_close(s)) { 2494 printk(KERN_ERR "SLUB %s: %s called for cache that " 2495 "still has objects.\n", s->name, __func__); 2496 dump_stack(); 2497 } 2498 if (s->flags & SLAB_DESTROY_BY_RCU) 2499 rcu_barrier(); 2500 sysfs_slab_remove(s); 2501 } else 2502 up_write(&slub_lock); 2503 } 2504 EXPORT_SYMBOL(kmem_cache_destroy); 2505 2506 /******************************************************************** 2507 * Kmalloc subsystem 2508 *******************************************************************/ 2509 2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned; 2511 EXPORT_SYMBOL(kmalloc_caches); 2512 2513 static int __init setup_slub_min_order(char *str) 2514 { 2515 get_option(&str, &slub_min_order); 2516 2517 return 1; 2518 } 2519 2520 __setup("slub_min_order=", setup_slub_min_order); 2521 2522 static int __init setup_slub_max_order(char *str) 2523 { 2524 get_option(&str, &slub_max_order); 2525 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 2526 2527 return 1; 2528 } 2529 2530 __setup("slub_max_order=", setup_slub_max_order); 2531 2532 static int __init setup_slub_min_objects(char *str) 2533 { 2534 get_option(&str, &slub_min_objects); 2535 2536 return 1; 2537 } 2538 2539 __setup("slub_min_objects=", setup_slub_min_objects); 2540 2541 static int __init setup_slub_nomerge(char *str) 2542 { 2543 slub_nomerge = 1; 2544 return 1; 2545 } 2546 2547 __setup("slub_nomerge", setup_slub_nomerge); 2548 2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2550 const char *name, int size, gfp_t gfp_flags) 2551 { 2552 unsigned int flags = 0; 2553 2554 if (gfp_flags & SLUB_DMA) 2555 flags = SLAB_CACHE_DMA; 2556 2557 /* 2558 * This function is called with IRQs disabled during early-boot on 2559 * single CPU so there's no need to take slub_lock here. 2560 */ 2561 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2562 flags, NULL)) 2563 goto panic; 2564 2565 list_add(&s->list, &slab_caches); 2566 2567 if (sysfs_slab_add(s)) 2568 goto panic; 2569 return s; 2570 2571 panic: 2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2573 } 2574 2575 #ifdef CONFIG_ZONE_DMA 2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2577 2578 static void sysfs_add_func(struct work_struct *w) 2579 { 2580 struct kmem_cache *s; 2581 2582 down_write(&slub_lock); 2583 list_for_each_entry(s, &slab_caches, list) { 2584 if (s->flags & __SYSFS_ADD_DEFERRED) { 2585 s->flags &= ~__SYSFS_ADD_DEFERRED; 2586 sysfs_slab_add(s); 2587 } 2588 } 2589 up_write(&slub_lock); 2590 } 2591 2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2593 2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2595 { 2596 struct kmem_cache *s; 2597 char *text; 2598 size_t realsize; 2599 unsigned long slabflags; 2600 int i; 2601 2602 s = kmalloc_caches_dma[index]; 2603 if (s) 2604 return s; 2605 2606 /* Dynamically create dma cache */ 2607 if (flags & __GFP_WAIT) 2608 down_write(&slub_lock); 2609 else { 2610 if (!down_write_trylock(&slub_lock)) 2611 goto out; 2612 } 2613 2614 if (kmalloc_caches_dma[index]) 2615 goto unlock_out; 2616 2617 realsize = kmalloc_caches[index].objsize; 2618 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2619 (unsigned int)realsize); 2620 2621 s = NULL; 2622 for (i = 0; i < KMALLOC_CACHES; i++) 2623 if (!kmalloc_caches[i].size) 2624 break; 2625 2626 BUG_ON(i >= KMALLOC_CACHES); 2627 s = kmalloc_caches + i; 2628 2629 /* 2630 * Must defer sysfs creation to a workqueue because we don't know 2631 * what context we are called from. Before sysfs comes up, we don't 2632 * need to do anything because our sysfs initcall will start by 2633 * adding all existing slabs to sysfs. 2634 */ 2635 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK; 2636 if (slab_state >= SYSFS) 2637 slabflags |= __SYSFS_ADD_DEFERRED; 2638 2639 if (!text || !kmem_cache_open(s, flags, text, 2640 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) { 2641 s->size = 0; 2642 kfree(text); 2643 goto unlock_out; 2644 } 2645 2646 list_add(&s->list, &slab_caches); 2647 kmalloc_caches_dma[index] = s; 2648 2649 if (slab_state >= SYSFS) 2650 schedule_work(&sysfs_add_work); 2651 2652 unlock_out: 2653 up_write(&slub_lock); 2654 out: 2655 return kmalloc_caches_dma[index]; 2656 } 2657 #endif 2658 2659 /* 2660 * Conversion table for small slabs sizes / 8 to the index in the 2661 * kmalloc array. This is necessary for slabs < 192 since we have non power 2662 * of two cache sizes there. The size of larger slabs can be determined using 2663 * fls. 2664 */ 2665 static s8 size_index[24] = { 2666 3, /* 8 */ 2667 4, /* 16 */ 2668 5, /* 24 */ 2669 5, /* 32 */ 2670 6, /* 40 */ 2671 6, /* 48 */ 2672 6, /* 56 */ 2673 6, /* 64 */ 2674 1, /* 72 */ 2675 1, /* 80 */ 2676 1, /* 88 */ 2677 1, /* 96 */ 2678 7, /* 104 */ 2679 7, /* 112 */ 2680 7, /* 120 */ 2681 7, /* 128 */ 2682 2, /* 136 */ 2683 2, /* 144 */ 2684 2, /* 152 */ 2685 2, /* 160 */ 2686 2, /* 168 */ 2687 2, /* 176 */ 2688 2, /* 184 */ 2689 2 /* 192 */ 2690 }; 2691 2692 static inline int size_index_elem(size_t bytes) 2693 { 2694 return (bytes - 1) / 8; 2695 } 2696 2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2698 { 2699 int index; 2700 2701 if (size <= 192) { 2702 if (!size) 2703 return ZERO_SIZE_PTR; 2704 2705 index = size_index[size_index_elem(size)]; 2706 } else 2707 index = fls(size - 1); 2708 2709 #ifdef CONFIG_ZONE_DMA 2710 if (unlikely((flags & SLUB_DMA))) 2711 return dma_kmalloc_cache(index, flags); 2712 2713 #endif 2714 return &kmalloc_caches[index]; 2715 } 2716 2717 void *__kmalloc(size_t size, gfp_t flags) 2718 { 2719 struct kmem_cache *s; 2720 void *ret; 2721 2722 if (unlikely(size > SLUB_MAX_SIZE)) 2723 return kmalloc_large(size, flags); 2724 2725 s = get_slab(size, flags); 2726 2727 if (unlikely(ZERO_OR_NULL_PTR(s))) 2728 return s; 2729 2730 ret = slab_alloc(s, flags, -1, _RET_IP_); 2731 2732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2733 2734 return ret; 2735 } 2736 EXPORT_SYMBOL(__kmalloc); 2737 2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2739 { 2740 struct page *page; 2741 void *ptr = NULL; 2742 2743 flags |= __GFP_COMP | __GFP_NOTRACK; 2744 page = alloc_pages_node(node, flags, get_order(size)); 2745 if (page) 2746 ptr = page_address(page); 2747 2748 kmemleak_alloc(ptr, size, 1, flags); 2749 return ptr; 2750 } 2751 2752 #ifdef CONFIG_NUMA 2753 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2754 { 2755 struct kmem_cache *s; 2756 void *ret; 2757 2758 if (unlikely(size > SLUB_MAX_SIZE)) { 2759 ret = kmalloc_large_node(size, flags, node); 2760 2761 trace_kmalloc_node(_RET_IP_, ret, 2762 size, PAGE_SIZE << get_order(size), 2763 flags, node); 2764 2765 return ret; 2766 } 2767 2768 s = get_slab(size, flags); 2769 2770 if (unlikely(ZERO_OR_NULL_PTR(s))) 2771 return s; 2772 2773 ret = slab_alloc(s, flags, node, _RET_IP_); 2774 2775 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2776 2777 return ret; 2778 } 2779 EXPORT_SYMBOL(__kmalloc_node); 2780 #endif 2781 2782 size_t ksize(const void *object) 2783 { 2784 struct page *page; 2785 struct kmem_cache *s; 2786 2787 if (unlikely(object == ZERO_SIZE_PTR)) 2788 return 0; 2789 2790 page = virt_to_head_page(object); 2791 2792 if (unlikely(!PageSlab(page))) { 2793 WARN_ON(!PageCompound(page)); 2794 return PAGE_SIZE << compound_order(page); 2795 } 2796 s = page->slab; 2797 2798 #ifdef CONFIG_SLUB_DEBUG 2799 /* 2800 * Debugging requires use of the padding between object 2801 * and whatever may come after it. 2802 */ 2803 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2804 return s->objsize; 2805 2806 #endif 2807 /* 2808 * If we have the need to store the freelist pointer 2809 * back there or track user information then we can 2810 * only use the space before that information. 2811 */ 2812 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2813 return s->inuse; 2814 /* 2815 * Else we can use all the padding etc for the allocation 2816 */ 2817 return s->size; 2818 } 2819 EXPORT_SYMBOL(ksize); 2820 2821 void kfree(const void *x) 2822 { 2823 struct page *page; 2824 void *object = (void *)x; 2825 2826 trace_kfree(_RET_IP_, x); 2827 2828 if (unlikely(ZERO_OR_NULL_PTR(x))) 2829 return; 2830 2831 page = virt_to_head_page(x); 2832 if (unlikely(!PageSlab(page))) { 2833 BUG_ON(!PageCompound(page)); 2834 kmemleak_free(x); 2835 put_page(page); 2836 return; 2837 } 2838 slab_free(page->slab, page, object, _RET_IP_); 2839 } 2840 EXPORT_SYMBOL(kfree); 2841 2842 /* 2843 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2844 * the remaining slabs by the number of items in use. The slabs with the 2845 * most items in use come first. New allocations will then fill those up 2846 * and thus they can be removed from the partial lists. 2847 * 2848 * The slabs with the least items are placed last. This results in them 2849 * being allocated from last increasing the chance that the last objects 2850 * are freed in them. 2851 */ 2852 int kmem_cache_shrink(struct kmem_cache *s) 2853 { 2854 int node; 2855 int i; 2856 struct kmem_cache_node *n; 2857 struct page *page; 2858 struct page *t; 2859 int objects = oo_objects(s->max); 2860 struct list_head *slabs_by_inuse = 2861 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2862 unsigned long flags; 2863 2864 if (!slabs_by_inuse) 2865 return -ENOMEM; 2866 2867 flush_all(s); 2868 for_each_node_state(node, N_NORMAL_MEMORY) { 2869 n = get_node(s, node); 2870 2871 if (!n->nr_partial) 2872 continue; 2873 2874 for (i = 0; i < objects; i++) 2875 INIT_LIST_HEAD(slabs_by_inuse + i); 2876 2877 spin_lock_irqsave(&n->list_lock, flags); 2878 2879 /* 2880 * Build lists indexed by the items in use in each slab. 2881 * 2882 * Note that concurrent frees may occur while we hold the 2883 * list_lock. page->inuse here is the upper limit. 2884 */ 2885 list_for_each_entry_safe(page, t, &n->partial, lru) { 2886 if (!page->inuse && slab_trylock(page)) { 2887 /* 2888 * Must hold slab lock here because slab_free 2889 * may have freed the last object and be 2890 * waiting to release the slab. 2891 */ 2892 list_del(&page->lru); 2893 n->nr_partial--; 2894 slab_unlock(page); 2895 discard_slab(s, page); 2896 } else { 2897 list_move(&page->lru, 2898 slabs_by_inuse + page->inuse); 2899 } 2900 } 2901 2902 /* 2903 * Rebuild the partial list with the slabs filled up most 2904 * first and the least used slabs at the end. 2905 */ 2906 for (i = objects - 1; i >= 0; i--) 2907 list_splice(slabs_by_inuse + i, n->partial.prev); 2908 2909 spin_unlock_irqrestore(&n->list_lock, flags); 2910 } 2911 2912 kfree(slabs_by_inuse); 2913 return 0; 2914 } 2915 EXPORT_SYMBOL(kmem_cache_shrink); 2916 2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2918 static int slab_mem_going_offline_callback(void *arg) 2919 { 2920 struct kmem_cache *s; 2921 2922 down_read(&slub_lock); 2923 list_for_each_entry(s, &slab_caches, list) 2924 kmem_cache_shrink(s); 2925 up_read(&slub_lock); 2926 2927 return 0; 2928 } 2929 2930 static void slab_mem_offline_callback(void *arg) 2931 { 2932 struct kmem_cache_node *n; 2933 struct kmem_cache *s; 2934 struct memory_notify *marg = arg; 2935 int offline_node; 2936 2937 offline_node = marg->status_change_nid; 2938 2939 /* 2940 * If the node still has available memory. we need kmem_cache_node 2941 * for it yet. 2942 */ 2943 if (offline_node < 0) 2944 return; 2945 2946 down_read(&slub_lock); 2947 list_for_each_entry(s, &slab_caches, list) { 2948 n = get_node(s, offline_node); 2949 if (n) { 2950 /* 2951 * if n->nr_slabs > 0, slabs still exist on the node 2952 * that is going down. We were unable to free them, 2953 * and offline_pages() function shouldn't call this 2954 * callback. So, we must fail. 2955 */ 2956 BUG_ON(slabs_node(s, offline_node)); 2957 2958 s->node[offline_node] = NULL; 2959 kmem_cache_free(kmalloc_caches, n); 2960 } 2961 } 2962 up_read(&slub_lock); 2963 } 2964 2965 static int slab_mem_going_online_callback(void *arg) 2966 { 2967 struct kmem_cache_node *n; 2968 struct kmem_cache *s; 2969 struct memory_notify *marg = arg; 2970 int nid = marg->status_change_nid; 2971 int ret = 0; 2972 2973 /* 2974 * If the node's memory is already available, then kmem_cache_node is 2975 * already created. Nothing to do. 2976 */ 2977 if (nid < 0) 2978 return 0; 2979 2980 /* 2981 * We are bringing a node online. No memory is available yet. We must 2982 * allocate a kmem_cache_node structure in order to bring the node 2983 * online. 2984 */ 2985 down_read(&slub_lock); 2986 list_for_each_entry(s, &slab_caches, list) { 2987 /* 2988 * XXX: kmem_cache_alloc_node will fallback to other nodes 2989 * since memory is not yet available from the node that 2990 * is brought up. 2991 */ 2992 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2993 if (!n) { 2994 ret = -ENOMEM; 2995 goto out; 2996 } 2997 init_kmem_cache_node(n, s); 2998 s->node[nid] = n; 2999 } 3000 out: 3001 up_read(&slub_lock); 3002 return ret; 3003 } 3004 3005 static int slab_memory_callback(struct notifier_block *self, 3006 unsigned long action, void *arg) 3007 { 3008 int ret = 0; 3009 3010 switch (action) { 3011 case MEM_GOING_ONLINE: 3012 ret = slab_mem_going_online_callback(arg); 3013 break; 3014 case MEM_GOING_OFFLINE: 3015 ret = slab_mem_going_offline_callback(arg); 3016 break; 3017 case MEM_OFFLINE: 3018 case MEM_CANCEL_ONLINE: 3019 slab_mem_offline_callback(arg); 3020 break; 3021 case MEM_ONLINE: 3022 case MEM_CANCEL_OFFLINE: 3023 break; 3024 } 3025 if (ret) 3026 ret = notifier_from_errno(ret); 3027 else 3028 ret = NOTIFY_OK; 3029 return ret; 3030 } 3031 3032 #endif /* CONFIG_MEMORY_HOTPLUG */ 3033 3034 /******************************************************************** 3035 * Basic setup of slabs 3036 *******************************************************************/ 3037 3038 void __init kmem_cache_init(void) 3039 { 3040 int i; 3041 int caches = 0; 3042 3043 #ifdef CONFIG_NUMA 3044 /* 3045 * Must first have the slab cache available for the allocations of the 3046 * struct kmem_cache_node's. There is special bootstrap code in 3047 * kmem_cache_open for slab_state == DOWN. 3048 */ 3049 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3050 sizeof(struct kmem_cache_node), GFP_NOWAIT); 3051 kmalloc_caches[0].refcount = -1; 3052 caches++; 3053 3054 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3055 #endif 3056 3057 /* Able to allocate the per node structures */ 3058 slab_state = PARTIAL; 3059 3060 /* Caches that are not of the two-to-the-power-of size */ 3061 if (KMALLOC_MIN_SIZE <= 32) { 3062 create_kmalloc_cache(&kmalloc_caches[1], 3063 "kmalloc-96", 96, GFP_NOWAIT); 3064 caches++; 3065 } 3066 if (KMALLOC_MIN_SIZE <= 64) { 3067 create_kmalloc_cache(&kmalloc_caches[2], 3068 "kmalloc-192", 192, GFP_NOWAIT); 3069 caches++; 3070 } 3071 3072 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3073 create_kmalloc_cache(&kmalloc_caches[i], 3074 "kmalloc", 1 << i, GFP_NOWAIT); 3075 caches++; 3076 } 3077 3078 3079 /* 3080 * Patch up the size_index table if we have strange large alignment 3081 * requirements for the kmalloc array. This is only the case for 3082 * MIPS it seems. The standard arches will not generate any code here. 3083 * 3084 * Largest permitted alignment is 256 bytes due to the way we 3085 * handle the index determination for the smaller caches. 3086 * 3087 * Make sure that nothing crazy happens if someone starts tinkering 3088 * around with ARCH_KMALLOC_MINALIGN 3089 */ 3090 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3091 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3092 3093 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3094 int elem = size_index_elem(i); 3095 if (elem >= ARRAY_SIZE(size_index)) 3096 break; 3097 size_index[elem] = KMALLOC_SHIFT_LOW; 3098 } 3099 3100 if (KMALLOC_MIN_SIZE == 64) { 3101 /* 3102 * The 96 byte size cache is not used if the alignment 3103 * is 64 byte. 3104 */ 3105 for (i = 64 + 8; i <= 96; i += 8) 3106 size_index[size_index_elem(i)] = 7; 3107 } else if (KMALLOC_MIN_SIZE == 128) { 3108 /* 3109 * The 192 byte sized cache is not used if the alignment 3110 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3111 * instead. 3112 */ 3113 for (i = 128 + 8; i <= 192; i += 8) 3114 size_index[size_index_elem(i)] = 8; 3115 } 3116 3117 slab_state = UP; 3118 3119 /* Provide the correct kmalloc names now that the caches are up */ 3120 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3121 kmalloc_caches[i]. name = 3122 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3123 3124 #ifdef CONFIG_SMP 3125 register_cpu_notifier(&slab_notifier); 3126 #endif 3127 #ifdef CONFIG_NUMA 3128 kmem_size = offsetof(struct kmem_cache, node) + 3129 nr_node_ids * sizeof(struct kmem_cache_node *); 3130 #else 3131 kmem_size = sizeof(struct kmem_cache); 3132 #endif 3133 3134 printk(KERN_INFO 3135 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3136 " CPUs=%d, Nodes=%d\n", 3137 caches, cache_line_size(), 3138 slub_min_order, slub_max_order, slub_min_objects, 3139 nr_cpu_ids, nr_node_ids); 3140 } 3141 3142 void __init kmem_cache_init_late(void) 3143 { 3144 } 3145 3146 /* 3147 * Find a mergeable slab cache 3148 */ 3149 static int slab_unmergeable(struct kmem_cache *s) 3150 { 3151 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3152 return 1; 3153 3154 if (s->ctor) 3155 return 1; 3156 3157 /* 3158 * We may have set a slab to be unmergeable during bootstrap. 3159 */ 3160 if (s->refcount < 0) 3161 return 1; 3162 3163 return 0; 3164 } 3165 3166 static struct kmem_cache *find_mergeable(size_t size, 3167 size_t align, unsigned long flags, const char *name, 3168 void (*ctor)(void *)) 3169 { 3170 struct kmem_cache *s; 3171 3172 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3173 return NULL; 3174 3175 if (ctor) 3176 return NULL; 3177 3178 size = ALIGN(size, sizeof(void *)); 3179 align = calculate_alignment(flags, align, size); 3180 size = ALIGN(size, align); 3181 flags = kmem_cache_flags(size, flags, name, NULL); 3182 3183 list_for_each_entry(s, &slab_caches, list) { 3184 if (slab_unmergeable(s)) 3185 continue; 3186 3187 if (size > s->size) 3188 continue; 3189 3190 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3191 continue; 3192 /* 3193 * Check if alignment is compatible. 3194 * Courtesy of Adrian Drzewiecki 3195 */ 3196 if ((s->size & ~(align - 1)) != s->size) 3197 continue; 3198 3199 if (s->size - size >= sizeof(void *)) 3200 continue; 3201 3202 return s; 3203 } 3204 return NULL; 3205 } 3206 3207 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3208 size_t align, unsigned long flags, void (*ctor)(void *)) 3209 { 3210 struct kmem_cache *s; 3211 3212 if (WARN_ON(!name)) 3213 return NULL; 3214 3215 down_write(&slub_lock); 3216 s = find_mergeable(size, align, flags, name, ctor); 3217 if (s) { 3218 s->refcount++; 3219 /* 3220 * Adjust the object sizes so that we clear 3221 * the complete object on kzalloc. 3222 */ 3223 s->objsize = max(s->objsize, (int)size); 3224 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3225 up_write(&slub_lock); 3226 3227 if (sysfs_slab_alias(s, name)) { 3228 down_write(&slub_lock); 3229 s->refcount--; 3230 up_write(&slub_lock); 3231 goto err; 3232 } 3233 return s; 3234 } 3235 3236 s = kmalloc(kmem_size, GFP_KERNEL); 3237 if (s) { 3238 if (kmem_cache_open(s, GFP_KERNEL, name, 3239 size, align, flags, ctor)) { 3240 list_add(&s->list, &slab_caches); 3241 up_write(&slub_lock); 3242 if (sysfs_slab_add(s)) { 3243 down_write(&slub_lock); 3244 list_del(&s->list); 3245 up_write(&slub_lock); 3246 kfree(s); 3247 goto err; 3248 } 3249 return s; 3250 } 3251 kfree(s); 3252 } 3253 up_write(&slub_lock); 3254 3255 err: 3256 if (flags & SLAB_PANIC) 3257 panic("Cannot create slabcache %s\n", name); 3258 else 3259 s = NULL; 3260 return s; 3261 } 3262 EXPORT_SYMBOL(kmem_cache_create); 3263 3264 #ifdef CONFIG_SMP 3265 /* 3266 * Use the cpu notifier to insure that the cpu slabs are flushed when 3267 * necessary. 3268 */ 3269 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3270 unsigned long action, void *hcpu) 3271 { 3272 long cpu = (long)hcpu; 3273 struct kmem_cache *s; 3274 unsigned long flags; 3275 3276 switch (action) { 3277 case CPU_UP_CANCELED: 3278 case CPU_UP_CANCELED_FROZEN: 3279 case CPU_DEAD: 3280 case CPU_DEAD_FROZEN: 3281 down_read(&slub_lock); 3282 list_for_each_entry(s, &slab_caches, list) { 3283 local_irq_save(flags); 3284 __flush_cpu_slab(s, cpu); 3285 local_irq_restore(flags); 3286 } 3287 up_read(&slub_lock); 3288 break; 3289 default: 3290 break; 3291 } 3292 return NOTIFY_OK; 3293 } 3294 3295 static struct notifier_block __cpuinitdata slab_notifier = { 3296 .notifier_call = slab_cpuup_callback 3297 }; 3298 3299 #endif 3300 3301 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3302 { 3303 struct kmem_cache *s; 3304 void *ret; 3305 3306 if (unlikely(size > SLUB_MAX_SIZE)) 3307 return kmalloc_large(size, gfpflags); 3308 3309 s = get_slab(size, gfpflags); 3310 3311 if (unlikely(ZERO_OR_NULL_PTR(s))) 3312 return s; 3313 3314 ret = slab_alloc(s, gfpflags, -1, caller); 3315 3316 /* Honor the call site pointer we recieved. */ 3317 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3318 3319 return ret; 3320 } 3321 3322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3323 int node, unsigned long caller) 3324 { 3325 struct kmem_cache *s; 3326 void *ret; 3327 3328 if (unlikely(size > SLUB_MAX_SIZE)) { 3329 ret = kmalloc_large_node(size, gfpflags, node); 3330 3331 trace_kmalloc_node(caller, ret, 3332 size, PAGE_SIZE << get_order(size), 3333 gfpflags, node); 3334 3335 return ret; 3336 } 3337 3338 s = get_slab(size, gfpflags); 3339 3340 if (unlikely(ZERO_OR_NULL_PTR(s))) 3341 return s; 3342 3343 ret = slab_alloc(s, gfpflags, node, caller); 3344 3345 /* Honor the call site pointer we recieved. */ 3346 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3347 3348 return ret; 3349 } 3350 3351 #ifdef CONFIG_SLUB_DEBUG 3352 static int count_inuse(struct page *page) 3353 { 3354 return page->inuse; 3355 } 3356 3357 static int count_total(struct page *page) 3358 { 3359 return page->objects; 3360 } 3361 3362 static int validate_slab(struct kmem_cache *s, struct page *page, 3363 unsigned long *map) 3364 { 3365 void *p; 3366 void *addr = page_address(page); 3367 3368 if (!check_slab(s, page) || 3369 !on_freelist(s, page, NULL)) 3370 return 0; 3371 3372 /* Now we know that a valid freelist exists */ 3373 bitmap_zero(map, page->objects); 3374 3375 for_each_free_object(p, s, page->freelist) { 3376 set_bit(slab_index(p, s, addr), map); 3377 if (!check_object(s, page, p, 0)) 3378 return 0; 3379 } 3380 3381 for_each_object(p, s, addr, page->objects) 3382 if (!test_bit(slab_index(p, s, addr), map)) 3383 if (!check_object(s, page, p, 1)) 3384 return 0; 3385 return 1; 3386 } 3387 3388 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3389 unsigned long *map) 3390 { 3391 if (slab_trylock(page)) { 3392 validate_slab(s, page, map); 3393 slab_unlock(page); 3394 } else 3395 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3396 s->name, page); 3397 3398 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3399 if (!PageSlubDebug(page)) 3400 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3401 "on slab 0x%p\n", s->name, page); 3402 } else { 3403 if (PageSlubDebug(page)) 3404 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3405 "slab 0x%p\n", s->name, page); 3406 } 3407 } 3408 3409 static int validate_slab_node(struct kmem_cache *s, 3410 struct kmem_cache_node *n, unsigned long *map) 3411 { 3412 unsigned long count = 0; 3413 struct page *page; 3414 unsigned long flags; 3415 3416 spin_lock_irqsave(&n->list_lock, flags); 3417 3418 list_for_each_entry(page, &n->partial, lru) { 3419 validate_slab_slab(s, page, map); 3420 count++; 3421 } 3422 if (count != n->nr_partial) 3423 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3424 "counter=%ld\n", s->name, count, n->nr_partial); 3425 3426 if (!(s->flags & SLAB_STORE_USER)) 3427 goto out; 3428 3429 list_for_each_entry(page, &n->full, lru) { 3430 validate_slab_slab(s, page, map); 3431 count++; 3432 } 3433 if (count != atomic_long_read(&n->nr_slabs)) 3434 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3435 "counter=%ld\n", s->name, count, 3436 atomic_long_read(&n->nr_slabs)); 3437 3438 out: 3439 spin_unlock_irqrestore(&n->list_lock, flags); 3440 return count; 3441 } 3442 3443 static long validate_slab_cache(struct kmem_cache *s) 3444 { 3445 int node; 3446 unsigned long count = 0; 3447 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3448 sizeof(unsigned long), GFP_KERNEL); 3449 3450 if (!map) 3451 return -ENOMEM; 3452 3453 flush_all(s); 3454 for_each_node_state(node, N_NORMAL_MEMORY) { 3455 struct kmem_cache_node *n = get_node(s, node); 3456 3457 count += validate_slab_node(s, n, map); 3458 } 3459 kfree(map); 3460 return count; 3461 } 3462 3463 #ifdef SLUB_RESILIENCY_TEST 3464 static void resiliency_test(void) 3465 { 3466 u8 *p; 3467 3468 printk(KERN_ERR "SLUB resiliency testing\n"); 3469 printk(KERN_ERR "-----------------------\n"); 3470 printk(KERN_ERR "A. Corruption after allocation\n"); 3471 3472 p = kzalloc(16, GFP_KERNEL); 3473 p[16] = 0x12; 3474 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3475 " 0x12->0x%p\n\n", p + 16); 3476 3477 validate_slab_cache(kmalloc_caches + 4); 3478 3479 /* Hmmm... The next two are dangerous */ 3480 p = kzalloc(32, GFP_KERNEL); 3481 p[32 + sizeof(void *)] = 0x34; 3482 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3483 " 0x34 -> -0x%p\n", p); 3484 printk(KERN_ERR 3485 "If allocated object is overwritten then not detectable\n\n"); 3486 3487 validate_slab_cache(kmalloc_caches + 5); 3488 p = kzalloc(64, GFP_KERNEL); 3489 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3490 *p = 0x56; 3491 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3492 p); 3493 printk(KERN_ERR 3494 "If allocated object is overwritten then not detectable\n\n"); 3495 validate_slab_cache(kmalloc_caches + 6); 3496 3497 printk(KERN_ERR "\nB. Corruption after free\n"); 3498 p = kzalloc(128, GFP_KERNEL); 3499 kfree(p); 3500 *p = 0x78; 3501 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3502 validate_slab_cache(kmalloc_caches + 7); 3503 3504 p = kzalloc(256, GFP_KERNEL); 3505 kfree(p); 3506 p[50] = 0x9a; 3507 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3508 p); 3509 validate_slab_cache(kmalloc_caches + 8); 3510 3511 p = kzalloc(512, GFP_KERNEL); 3512 kfree(p); 3513 p[512] = 0xab; 3514 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3515 validate_slab_cache(kmalloc_caches + 9); 3516 } 3517 #else 3518 static void resiliency_test(void) {}; 3519 #endif 3520 3521 /* 3522 * Generate lists of code addresses where slabcache objects are allocated 3523 * and freed. 3524 */ 3525 3526 struct location { 3527 unsigned long count; 3528 unsigned long addr; 3529 long long sum_time; 3530 long min_time; 3531 long max_time; 3532 long min_pid; 3533 long max_pid; 3534 DECLARE_BITMAP(cpus, NR_CPUS); 3535 nodemask_t nodes; 3536 }; 3537 3538 struct loc_track { 3539 unsigned long max; 3540 unsigned long count; 3541 struct location *loc; 3542 }; 3543 3544 static void free_loc_track(struct loc_track *t) 3545 { 3546 if (t->max) 3547 free_pages((unsigned long)t->loc, 3548 get_order(sizeof(struct location) * t->max)); 3549 } 3550 3551 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3552 { 3553 struct location *l; 3554 int order; 3555 3556 order = get_order(sizeof(struct location) * max); 3557 3558 l = (void *)__get_free_pages(flags, order); 3559 if (!l) 3560 return 0; 3561 3562 if (t->count) { 3563 memcpy(l, t->loc, sizeof(struct location) * t->count); 3564 free_loc_track(t); 3565 } 3566 t->max = max; 3567 t->loc = l; 3568 return 1; 3569 } 3570 3571 static int add_location(struct loc_track *t, struct kmem_cache *s, 3572 const struct track *track) 3573 { 3574 long start, end, pos; 3575 struct location *l; 3576 unsigned long caddr; 3577 unsigned long age = jiffies - track->when; 3578 3579 start = -1; 3580 end = t->count; 3581 3582 for ( ; ; ) { 3583 pos = start + (end - start + 1) / 2; 3584 3585 /* 3586 * There is nothing at "end". If we end up there 3587 * we need to add something to before end. 3588 */ 3589 if (pos == end) 3590 break; 3591 3592 caddr = t->loc[pos].addr; 3593 if (track->addr == caddr) { 3594 3595 l = &t->loc[pos]; 3596 l->count++; 3597 if (track->when) { 3598 l->sum_time += age; 3599 if (age < l->min_time) 3600 l->min_time = age; 3601 if (age > l->max_time) 3602 l->max_time = age; 3603 3604 if (track->pid < l->min_pid) 3605 l->min_pid = track->pid; 3606 if (track->pid > l->max_pid) 3607 l->max_pid = track->pid; 3608 3609 cpumask_set_cpu(track->cpu, 3610 to_cpumask(l->cpus)); 3611 } 3612 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3613 return 1; 3614 } 3615 3616 if (track->addr < caddr) 3617 end = pos; 3618 else 3619 start = pos; 3620 } 3621 3622 /* 3623 * Not found. Insert new tracking element. 3624 */ 3625 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3626 return 0; 3627 3628 l = t->loc + pos; 3629 if (pos < t->count) 3630 memmove(l + 1, l, 3631 (t->count - pos) * sizeof(struct location)); 3632 t->count++; 3633 l->count = 1; 3634 l->addr = track->addr; 3635 l->sum_time = age; 3636 l->min_time = age; 3637 l->max_time = age; 3638 l->min_pid = track->pid; 3639 l->max_pid = track->pid; 3640 cpumask_clear(to_cpumask(l->cpus)); 3641 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3642 nodes_clear(l->nodes); 3643 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3644 return 1; 3645 } 3646 3647 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3648 struct page *page, enum track_item alloc, 3649 long *map) 3650 { 3651 void *addr = page_address(page); 3652 void *p; 3653 3654 bitmap_zero(map, page->objects); 3655 for_each_free_object(p, s, page->freelist) 3656 set_bit(slab_index(p, s, addr), map); 3657 3658 for_each_object(p, s, addr, page->objects) 3659 if (!test_bit(slab_index(p, s, addr), map)) 3660 add_location(t, s, get_track(s, p, alloc)); 3661 } 3662 3663 static int list_locations(struct kmem_cache *s, char *buf, 3664 enum track_item alloc) 3665 { 3666 int len = 0; 3667 unsigned long i; 3668 struct loc_track t = { 0, 0, NULL }; 3669 int node; 3670 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3671 sizeof(unsigned long), GFP_KERNEL); 3672 3673 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3674 GFP_TEMPORARY)) { 3675 kfree(map); 3676 return sprintf(buf, "Out of memory\n"); 3677 } 3678 /* Push back cpu slabs */ 3679 flush_all(s); 3680 3681 for_each_node_state(node, N_NORMAL_MEMORY) { 3682 struct kmem_cache_node *n = get_node(s, node); 3683 unsigned long flags; 3684 struct page *page; 3685 3686 if (!atomic_long_read(&n->nr_slabs)) 3687 continue; 3688 3689 spin_lock_irqsave(&n->list_lock, flags); 3690 list_for_each_entry(page, &n->partial, lru) 3691 process_slab(&t, s, page, alloc, map); 3692 list_for_each_entry(page, &n->full, lru) 3693 process_slab(&t, s, page, alloc, map); 3694 spin_unlock_irqrestore(&n->list_lock, flags); 3695 } 3696 3697 for (i = 0; i < t.count; i++) { 3698 struct location *l = &t.loc[i]; 3699 3700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3701 break; 3702 len += sprintf(buf + len, "%7ld ", l->count); 3703 3704 if (l->addr) 3705 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3706 else 3707 len += sprintf(buf + len, "<not-available>"); 3708 3709 if (l->sum_time != l->min_time) { 3710 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3711 l->min_time, 3712 (long)div_u64(l->sum_time, l->count), 3713 l->max_time); 3714 } else 3715 len += sprintf(buf + len, " age=%ld", 3716 l->min_time); 3717 3718 if (l->min_pid != l->max_pid) 3719 len += sprintf(buf + len, " pid=%ld-%ld", 3720 l->min_pid, l->max_pid); 3721 else 3722 len += sprintf(buf + len, " pid=%ld", 3723 l->min_pid); 3724 3725 if (num_online_cpus() > 1 && 3726 !cpumask_empty(to_cpumask(l->cpus)) && 3727 len < PAGE_SIZE - 60) { 3728 len += sprintf(buf + len, " cpus="); 3729 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3730 to_cpumask(l->cpus)); 3731 } 3732 3733 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 3734 len < PAGE_SIZE - 60) { 3735 len += sprintf(buf + len, " nodes="); 3736 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3737 l->nodes); 3738 } 3739 3740 len += sprintf(buf + len, "\n"); 3741 } 3742 3743 free_loc_track(&t); 3744 kfree(map); 3745 if (!t.count) 3746 len += sprintf(buf, "No data\n"); 3747 return len; 3748 } 3749 3750 enum slab_stat_type { 3751 SL_ALL, /* All slabs */ 3752 SL_PARTIAL, /* Only partially allocated slabs */ 3753 SL_CPU, /* Only slabs used for cpu caches */ 3754 SL_OBJECTS, /* Determine allocated objects not slabs */ 3755 SL_TOTAL /* Determine object capacity not slabs */ 3756 }; 3757 3758 #define SO_ALL (1 << SL_ALL) 3759 #define SO_PARTIAL (1 << SL_PARTIAL) 3760 #define SO_CPU (1 << SL_CPU) 3761 #define SO_OBJECTS (1 << SL_OBJECTS) 3762 #define SO_TOTAL (1 << SL_TOTAL) 3763 3764 static ssize_t show_slab_objects(struct kmem_cache *s, 3765 char *buf, unsigned long flags) 3766 { 3767 unsigned long total = 0; 3768 int node; 3769 int x; 3770 unsigned long *nodes; 3771 unsigned long *per_cpu; 3772 3773 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3774 if (!nodes) 3775 return -ENOMEM; 3776 per_cpu = nodes + nr_node_ids; 3777 3778 if (flags & SO_CPU) { 3779 int cpu; 3780 3781 for_each_possible_cpu(cpu) { 3782 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3783 3784 if (!c || c->node < 0) 3785 continue; 3786 3787 if (c->page) { 3788 if (flags & SO_TOTAL) 3789 x = c->page->objects; 3790 else if (flags & SO_OBJECTS) 3791 x = c->page->inuse; 3792 else 3793 x = 1; 3794 3795 total += x; 3796 nodes[c->node] += x; 3797 } 3798 per_cpu[c->node]++; 3799 } 3800 } 3801 3802 if (flags & SO_ALL) { 3803 for_each_node_state(node, N_NORMAL_MEMORY) { 3804 struct kmem_cache_node *n = get_node(s, node); 3805 3806 if (flags & SO_TOTAL) 3807 x = atomic_long_read(&n->total_objects); 3808 else if (flags & SO_OBJECTS) 3809 x = atomic_long_read(&n->total_objects) - 3810 count_partial(n, count_free); 3811 3812 else 3813 x = atomic_long_read(&n->nr_slabs); 3814 total += x; 3815 nodes[node] += x; 3816 } 3817 3818 } else if (flags & SO_PARTIAL) { 3819 for_each_node_state(node, N_NORMAL_MEMORY) { 3820 struct kmem_cache_node *n = get_node(s, node); 3821 3822 if (flags & SO_TOTAL) 3823 x = count_partial(n, count_total); 3824 else if (flags & SO_OBJECTS) 3825 x = count_partial(n, count_inuse); 3826 else 3827 x = n->nr_partial; 3828 total += x; 3829 nodes[node] += x; 3830 } 3831 } 3832 x = sprintf(buf, "%lu", total); 3833 #ifdef CONFIG_NUMA 3834 for_each_node_state(node, N_NORMAL_MEMORY) 3835 if (nodes[node]) 3836 x += sprintf(buf + x, " N%d=%lu", 3837 node, nodes[node]); 3838 #endif 3839 kfree(nodes); 3840 return x + sprintf(buf + x, "\n"); 3841 } 3842 3843 static int any_slab_objects(struct kmem_cache *s) 3844 { 3845 int node; 3846 3847 for_each_online_node(node) { 3848 struct kmem_cache_node *n = get_node(s, node); 3849 3850 if (!n) 3851 continue; 3852 3853 if (atomic_long_read(&n->total_objects)) 3854 return 1; 3855 } 3856 return 0; 3857 } 3858 3859 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3860 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3861 3862 struct slab_attribute { 3863 struct attribute attr; 3864 ssize_t (*show)(struct kmem_cache *s, char *buf); 3865 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3866 }; 3867 3868 #define SLAB_ATTR_RO(_name) \ 3869 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3870 3871 #define SLAB_ATTR(_name) \ 3872 static struct slab_attribute _name##_attr = \ 3873 __ATTR(_name, 0644, _name##_show, _name##_store) 3874 3875 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3876 { 3877 return sprintf(buf, "%d\n", s->size); 3878 } 3879 SLAB_ATTR_RO(slab_size); 3880 3881 static ssize_t align_show(struct kmem_cache *s, char *buf) 3882 { 3883 return sprintf(buf, "%d\n", s->align); 3884 } 3885 SLAB_ATTR_RO(align); 3886 3887 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3888 { 3889 return sprintf(buf, "%d\n", s->objsize); 3890 } 3891 SLAB_ATTR_RO(object_size); 3892 3893 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3894 { 3895 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3896 } 3897 SLAB_ATTR_RO(objs_per_slab); 3898 3899 static ssize_t order_store(struct kmem_cache *s, 3900 const char *buf, size_t length) 3901 { 3902 unsigned long order; 3903 int err; 3904 3905 err = strict_strtoul(buf, 10, &order); 3906 if (err) 3907 return err; 3908 3909 if (order > slub_max_order || order < slub_min_order) 3910 return -EINVAL; 3911 3912 calculate_sizes(s, order); 3913 return length; 3914 } 3915 3916 static ssize_t order_show(struct kmem_cache *s, char *buf) 3917 { 3918 return sprintf(buf, "%d\n", oo_order(s->oo)); 3919 } 3920 SLAB_ATTR(order); 3921 3922 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3923 { 3924 return sprintf(buf, "%lu\n", s->min_partial); 3925 } 3926 3927 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3928 size_t length) 3929 { 3930 unsigned long min; 3931 int err; 3932 3933 err = strict_strtoul(buf, 10, &min); 3934 if (err) 3935 return err; 3936 3937 set_min_partial(s, min); 3938 return length; 3939 } 3940 SLAB_ATTR(min_partial); 3941 3942 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3943 { 3944 if (s->ctor) { 3945 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3946 3947 return n + sprintf(buf + n, "\n"); 3948 } 3949 return 0; 3950 } 3951 SLAB_ATTR_RO(ctor); 3952 3953 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3954 { 3955 return sprintf(buf, "%d\n", s->refcount - 1); 3956 } 3957 SLAB_ATTR_RO(aliases); 3958 3959 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3960 { 3961 return show_slab_objects(s, buf, SO_ALL); 3962 } 3963 SLAB_ATTR_RO(slabs); 3964 3965 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3966 { 3967 return show_slab_objects(s, buf, SO_PARTIAL); 3968 } 3969 SLAB_ATTR_RO(partial); 3970 3971 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3972 { 3973 return show_slab_objects(s, buf, SO_CPU); 3974 } 3975 SLAB_ATTR_RO(cpu_slabs); 3976 3977 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3978 { 3979 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3980 } 3981 SLAB_ATTR_RO(objects); 3982 3983 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3984 { 3985 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3986 } 3987 SLAB_ATTR_RO(objects_partial); 3988 3989 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3990 { 3991 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3992 } 3993 SLAB_ATTR_RO(total_objects); 3994 3995 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3996 { 3997 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3998 } 3999 4000 static ssize_t sanity_checks_store(struct kmem_cache *s, 4001 const char *buf, size_t length) 4002 { 4003 s->flags &= ~SLAB_DEBUG_FREE; 4004 if (buf[0] == '1') 4005 s->flags |= SLAB_DEBUG_FREE; 4006 return length; 4007 } 4008 SLAB_ATTR(sanity_checks); 4009 4010 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4011 { 4012 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4013 } 4014 4015 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4016 size_t length) 4017 { 4018 s->flags &= ~SLAB_TRACE; 4019 if (buf[0] == '1') 4020 s->flags |= SLAB_TRACE; 4021 return length; 4022 } 4023 SLAB_ATTR(trace); 4024 4025 #ifdef CONFIG_FAILSLAB 4026 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4027 { 4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4029 } 4030 4031 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4032 size_t length) 4033 { 4034 s->flags &= ~SLAB_FAILSLAB; 4035 if (buf[0] == '1') 4036 s->flags |= SLAB_FAILSLAB; 4037 return length; 4038 } 4039 SLAB_ATTR(failslab); 4040 #endif 4041 4042 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4043 { 4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4045 } 4046 4047 static ssize_t reclaim_account_store(struct kmem_cache *s, 4048 const char *buf, size_t length) 4049 { 4050 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4051 if (buf[0] == '1') 4052 s->flags |= SLAB_RECLAIM_ACCOUNT; 4053 return length; 4054 } 4055 SLAB_ATTR(reclaim_account); 4056 4057 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4058 { 4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4060 } 4061 SLAB_ATTR_RO(hwcache_align); 4062 4063 #ifdef CONFIG_ZONE_DMA 4064 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4065 { 4066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4067 } 4068 SLAB_ATTR_RO(cache_dma); 4069 #endif 4070 4071 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4072 { 4073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4074 } 4075 SLAB_ATTR_RO(destroy_by_rcu); 4076 4077 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4078 { 4079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4080 } 4081 4082 static ssize_t red_zone_store(struct kmem_cache *s, 4083 const char *buf, size_t length) 4084 { 4085 if (any_slab_objects(s)) 4086 return -EBUSY; 4087 4088 s->flags &= ~SLAB_RED_ZONE; 4089 if (buf[0] == '1') 4090 s->flags |= SLAB_RED_ZONE; 4091 calculate_sizes(s, -1); 4092 return length; 4093 } 4094 SLAB_ATTR(red_zone); 4095 4096 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4097 { 4098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4099 } 4100 4101 static ssize_t poison_store(struct kmem_cache *s, 4102 const char *buf, size_t length) 4103 { 4104 if (any_slab_objects(s)) 4105 return -EBUSY; 4106 4107 s->flags &= ~SLAB_POISON; 4108 if (buf[0] == '1') 4109 s->flags |= SLAB_POISON; 4110 calculate_sizes(s, -1); 4111 return length; 4112 } 4113 SLAB_ATTR(poison); 4114 4115 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4116 { 4117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4118 } 4119 4120 static ssize_t store_user_store(struct kmem_cache *s, 4121 const char *buf, size_t length) 4122 { 4123 if (any_slab_objects(s)) 4124 return -EBUSY; 4125 4126 s->flags &= ~SLAB_STORE_USER; 4127 if (buf[0] == '1') 4128 s->flags |= SLAB_STORE_USER; 4129 calculate_sizes(s, -1); 4130 return length; 4131 } 4132 SLAB_ATTR(store_user); 4133 4134 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4135 { 4136 return 0; 4137 } 4138 4139 static ssize_t validate_store(struct kmem_cache *s, 4140 const char *buf, size_t length) 4141 { 4142 int ret = -EINVAL; 4143 4144 if (buf[0] == '1') { 4145 ret = validate_slab_cache(s); 4146 if (ret >= 0) 4147 ret = length; 4148 } 4149 return ret; 4150 } 4151 SLAB_ATTR(validate); 4152 4153 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4154 { 4155 return 0; 4156 } 4157 4158 static ssize_t shrink_store(struct kmem_cache *s, 4159 const char *buf, size_t length) 4160 { 4161 if (buf[0] == '1') { 4162 int rc = kmem_cache_shrink(s); 4163 4164 if (rc) 4165 return rc; 4166 } else 4167 return -EINVAL; 4168 return length; 4169 } 4170 SLAB_ATTR(shrink); 4171 4172 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4173 { 4174 if (!(s->flags & SLAB_STORE_USER)) 4175 return -ENOSYS; 4176 return list_locations(s, buf, TRACK_ALLOC); 4177 } 4178 SLAB_ATTR_RO(alloc_calls); 4179 4180 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4181 { 4182 if (!(s->flags & SLAB_STORE_USER)) 4183 return -ENOSYS; 4184 return list_locations(s, buf, TRACK_FREE); 4185 } 4186 SLAB_ATTR_RO(free_calls); 4187 4188 #ifdef CONFIG_NUMA 4189 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4190 { 4191 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4192 } 4193 4194 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4195 const char *buf, size_t length) 4196 { 4197 unsigned long ratio; 4198 int err; 4199 4200 err = strict_strtoul(buf, 10, &ratio); 4201 if (err) 4202 return err; 4203 4204 if (ratio <= 100) 4205 s->remote_node_defrag_ratio = ratio * 10; 4206 4207 return length; 4208 } 4209 SLAB_ATTR(remote_node_defrag_ratio); 4210 #endif 4211 4212 #ifdef CONFIG_SLUB_STATS 4213 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4214 { 4215 unsigned long sum = 0; 4216 int cpu; 4217 int len; 4218 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4219 4220 if (!data) 4221 return -ENOMEM; 4222 4223 for_each_online_cpu(cpu) { 4224 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4225 4226 data[cpu] = x; 4227 sum += x; 4228 } 4229 4230 len = sprintf(buf, "%lu", sum); 4231 4232 #ifdef CONFIG_SMP 4233 for_each_online_cpu(cpu) { 4234 if (data[cpu] && len < PAGE_SIZE - 20) 4235 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4236 } 4237 #endif 4238 kfree(data); 4239 return len + sprintf(buf + len, "\n"); 4240 } 4241 4242 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4243 { 4244 int cpu; 4245 4246 for_each_online_cpu(cpu) 4247 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4248 } 4249 4250 #define STAT_ATTR(si, text) \ 4251 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4252 { \ 4253 return show_stat(s, buf, si); \ 4254 } \ 4255 static ssize_t text##_store(struct kmem_cache *s, \ 4256 const char *buf, size_t length) \ 4257 { \ 4258 if (buf[0] != '0') \ 4259 return -EINVAL; \ 4260 clear_stat(s, si); \ 4261 return length; \ 4262 } \ 4263 SLAB_ATTR(text); \ 4264 4265 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4266 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4267 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4268 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4269 STAT_ATTR(FREE_FROZEN, free_frozen); 4270 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4271 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4272 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4273 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4274 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4275 STAT_ATTR(FREE_SLAB, free_slab); 4276 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4277 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4278 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4279 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4280 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4281 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4282 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4283 #endif 4284 4285 static struct attribute *slab_attrs[] = { 4286 &slab_size_attr.attr, 4287 &object_size_attr.attr, 4288 &objs_per_slab_attr.attr, 4289 &order_attr.attr, 4290 &min_partial_attr.attr, 4291 &objects_attr.attr, 4292 &objects_partial_attr.attr, 4293 &total_objects_attr.attr, 4294 &slabs_attr.attr, 4295 &partial_attr.attr, 4296 &cpu_slabs_attr.attr, 4297 &ctor_attr.attr, 4298 &aliases_attr.attr, 4299 &align_attr.attr, 4300 &sanity_checks_attr.attr, 4301 &trace_attr.attr, 4302 &hwcache_align_attr.attr, 4303 &reclaim_account_attr.attr, 4304 &destroy_by_rcu_attr.attr, 4305 &red_zone_attr.attr, 4306 &poison_attr.attr, 4307 &store_user_attr.attr, 4308 &validate_attr.attr, 4309 &shrink_attr.attr, 4310 &alloc_calls_attr.attr, 4311 &free_calls_attr.attr, 4312 #ifdef CONFIG_ZONE_DMA 4313 &cache_dma_attr.attr, 4314 #endif 4315 #ifdef CONFIG_NUMA 4316 &remote_node_defrag_ratio_attr.attr, 4317 #endif 4318 #ifdef CONFIG_SLUB_STATS 4319 &alloc_fastpath_attr.attr, 4320 &alloc_slowpath_attr.attr, 4321 &free_fastpath_attr.attr, 4322 &free_slowpath_attr.attr, 4323 &free_frozen_attr.attr, 4324 &free_add_partial_attr.attr, 4325 &free_remove_partial_attr.attr, 4326 &alloc_from_partial_attr.attr, 4327 &alloc_slab_attr.attr, 4328 &alloc_refill_attr.attr, 4329 &free_slab_attr.attr, 4330 &cpuslab_flush_attr.attr, 4331 &deactivate_full_attr.attr, 4332 &deactivate_empty_attr.attr, 4333 &deactivate_to_head_attr.attr, 4334 &deactivate_to_tail_attr.attr, 4335 &deactivate_remote_frees_attr.attr, 4336 &order_fallback_attr.attr, 4337 #endif 4338 #ifdef CONFIG_FAILSLAB 4339 &failslab_attr.attr, 4340 #endif 4341 4342 NULL 4343 }; 4344 4345 static struct attribute_group slab_attr_group = { 4346 .attrs = slab_attrs, 4347 }; 4348 4349 static ssize_t slab_attr_show(struct kobject *kobj, 4350 struct attribute *attr, 4351 char *buf) 4352 { 4353 struct slab_attribute *attribute; 4354 struct kmem_cache *s; 4355 int err; 4356 4357 attribute = to_slab_attr(attr); 4358 s = to_slab(kobj); 4359 4360 if (!attribute->show) 4361 return -EIO; 4362 4363 err = attribute->show(s, buf); 4364 4365 return err; 4366 } 4367 4368 static ssize_t slab_attr_store(struct kobject *kobj, 4369 struct attribute *attr, 4370 const char *buf, size_t len) 4371 { 4372 struct slab_attribute *attribute; 4373 struct kmem_cache *s; 4374 int err; 4375 4376 attribute = to_slab_attr(attr); 4377 s = to_slab(kobj); 4378 4379 if (!attribute->store) 4380 return -EIO; 4381 4382 err = attribute->store(s, buf, len); 4383 4384 return err; 4385 } 4386 4387 static void kmem_cache_release(struct kobject *kobj) 4388 { 4389 struct kmem_cache *s = to_slab(kobj); 4390 4391 kfree(s); 4392 } 4393 4394 static const struct sysfs_ops slab_sysfs_ops = { 4395 .show = slab_attr_show, 4396 .store = slab_attr_store, 4397 }; 4398 4399 static struct kobj_type slab_ktype = { 4400 .sysfs_ops = &slab_sysfs_ops, 4401 .release = kmem_cache_release 4402 }; 4403 4404 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4405 { 4406 struct kobj_type *ktype = get_ktype(kobj); 4407 4408 if (ktype == &slab_ktype) 4409 return 1; 4410 return 0; 4411 } 4412 4413 static const struct kset_uevent_ops slab_uevent_ops = { 4414 .filter = uevent_filter, 4415 }; 4416 4417 static struct kset *slab_kset; 4418 4419 #define ID_STR_LENGTH 64 4420 4421 /* Create a unique string id for a slab cache: 4422 * 4423 * Format :[flags-]size 4424 */ 4425 static char *create_unique_id(struct kmem_cache *s) 4426 { 4427 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4428 char *p = name; 4429 4430 BUG_ON(!name); 4431 4432 *p++ = ':'; 4433 /* 4434 * First flags affecting slabcache operations. We will only 4435 * get here for aliasable slabs so we do not need to support 4436 * too many flags. The flags here must cover all flags that 4437 * are matched during merging to guarantee that the id is 4438 * unique. 4439 */ 4440 if (s->flags & SLAB_CACHE_DMA) 4441 *p++ = 'd'; 4442 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4443 *p++ = 'a'; 4444 if (s->flags & SLAB_DEBUG_FREE) 4445 *p++ = 'F'; 4446 if (!(s->flags & SLAB_NOTRACK)) 4447 *p++ = 't'; 4448 if (p != name + 1) 4449 *p++ = '-'; 4450 p += sprintf(p, "%07d", s->size); 4451 BUG_ON(p > name + ID_STR_LENGTH - 1); 4452 return name; 4453 } 4454 4455 static int sysfs_slab_add(struct kmem_cache *s) 4456 { 4457 int err; 4458 const char *name; 4459 int unmergeable; 4460 4461 if (slab_state < SYSFS) 4462 /* Defer until later */ 4463 return 0; 4464 4465 unmergeable = slab_unmergeable(s); 4466 if (unmergeable) { 4467 /* 4468 * Slabcache can never be merged so we can use the name proper. 4469 * This is typically the case for debug situations. In that 4470 * case we can catch duplicate names easily. 4471 */ 4472 sysfs_remove_link(&slab_kset->kobj, s->name); 4473 name = s->name; 4474 } else { 4475 /* 4476 * Create a unique name for the slab as a target 4477 * for the symlinks. 4478 */ 4479 name = create_unique_id(s); 4480 } 4481 4482 s->kobj.kset = slab_kset; 4483 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4484 if (err) { 4485 kobject_put(&s->kobj); 4486 return err; 4487 } 4488 4489 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4490 if (err) { 4491 kobject_del(&s->kobj); 4492 kobject_put(&s->kobj); 4493 return err; 4494 } 4495 kobject_uevent(&s->kobj, KOBJ_ADD); 4496 if (!unmergeable) { 4497 /* Setup first alias */ 4498 sysfs_slab_alias(s, s->name); 4499 kfree(name); 4500 } 4501 return 0; 4502 } 4503 4504 static void sysfs_slab_remove(struct kmem_cache *s) 4505 { 4506 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4507 kobject_del(&s->kobj); 4508 kobject_put(&s->kobj); 4509 } 4510 4511 /* 4512 * Need to buffer aliases during bootup until sysfs becomes 4513 * available lest we lose that information. 4514 */ 4515 struct saved_alias { 4516 struct kmem_cache *s; 4517 const char *name; 4518 struct saved_alias *next; 4519 }; 4520 4521 static struct saved_alias *alias_list; 4522 4523 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4524 { 4525 struct saved_alias *al; 4526 4527 if (slab_state == SYSFS) { 4528 /* 4529 * If we have a leftover link then remove it. 4530 */ 4531 sysfs_remove_link(&slab_kset->kobj, name); 4532 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4533 } 4534 4535 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4536 if (!al) 4537 return -ENOMEM; 4538 4539 al->s = s; 4540 al->name = name; 4541 al->next = alias_list; 4542 alias_list = al; 4543 return 0; 4544 } 4545 4546 static int __init slab_sysfs_init(void) 4547 { 4548 struct kmem_cache *s; 4549 int err; 4550 4551 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4552 if (!slab_kset) { 4553 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4554 return -ENOSYS; 4555 } 4556 4557 slab_state = SYSFS; 4558 4559 list_for_each_entry(s, &slab_caches, list) { 4560 err = sysfs_slab_add(s); 4561 if (err) 4562 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4563 " to sysfs\n", s->name); 4564 } 4565 4566 while (alias_list) { 4567 struct saved_alias *al = alias_list; 4568 4569 alias_list = alias_list->next; 4570 err = sysfs_slab_alias(al->s, al->name); 4571 if (err) 4572 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4573 " %s to sysfs\n", s->name); 4574 kfree(al); 4575 } 4576 4577 resiliency_test(); 4578 return 0; 4579 } 4580 4581 __initcall(slab_sysfs_init); 4582 #endif 4583 4584 /* 4585 * The /proc/slabinfo ABI 4586 */ 4587 #ifdef CONFIG_SLABINFO 4588 static void print_slabinfo_header(struct seq_file *m) 4589 { 4590 seq_puts(m, "slabinfo - version: 2.1\n"); 4591 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4592 "<objperslab> <pagesperslab>"); 4593 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4594 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4595 seq_putc(m, '\n'); 4596 } 4597 4598 static void *s_start(struct seq_file *m, loff_t *pos) 4599 { 4600 loff_t n = *pos; 4601 4602 down_read(&slub_lock); 4603 if (!n) 4604 print_slabinfo_header(m); 4605 4606 return seq_list_start(&slab_caches, *pos); 4607 } 4608 4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4610 { 4611 return seq_list_next(p, &slab_caches, pos); 4612 } 4613 4614 static void s_stop(struct seq_file *m, void *p) 4615 { 4616 up_read(&slub_lock); 4617 } 4618 4619 static int s_show(struct seq_file *m, void *p) 4620 { 4621 unsigned long nr_partials = 0; 4622 unsigned long nr_slabs = 0; 4623 unsigned long nr_inuse = 0; 4624 unsigned long nr_objs = 0; 4625 unsigned long nr_free = 0; 4626 struct kmem_cache *s; 4627 int node; 4628 4629 s = list_entry(p, struct kmem_cache, list); 4630 4631 for_each_online_node(node) { 4632 struct kmem_cache_node *n = get_node(s, node); 4633 4634 if (!n) 4635 continue; 4636 4637 nr_partials += n->nr_partial; 4638 nr_slabs += atomic_long_read(&n->nr_slabs); 4639 nr_objs += atomic_long_read(&n->total_objects); 4640 nr_free += count_partial(n, count_free); 4641 } 4642 4643 nr_inuse = nr_objs - nr_free; 4644 4645 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4646 nr_objs, s->size, oo_objects(s->oo), 4647 (1 << oo_order(s->oo))); 4648 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4649 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4650 0UL); 4651 seq_putc(m, '\n'); 4652 return 0; 4653 } 4654 4655 static const struct seq_operations slabinfo_op = { 4656 .start = s_start, 4657 .next = s_next, 4658 .stop = s_stop, 4659 .show = s_show, 4660 }; 4661 4662 static int slabinfo_open(struct inode *inode, struct file *file) 4663 { 4664 return seq_open(file, &slabinfo_op); 4665 } 4666 4667 static const struct file_operations proc_slabinfo_operations = { 4668 .open = slabinfo_open, 4669 .read = seq_read, 4670 .llseek = seq_lseek, 4671 .release = seq_release, 4672 }; 4673 4674 static int __init slab_proc_init(void) 4675 { 4676 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); 4677 return 0; 4678 } 4679 module_init(slab_proc_init); 4680 #endif /* CONFIG_SLABINFO */ 4681