1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/proc_fs.h> 18 #include <linux/seq_file.h> 19 #include <linux/cpu.h> 20 #include <linux/cpuset.h> 21 #include <linux/mempolicy.h> 22 #include <linux/ctype.h> 23 #include <linux/debugobjects.h> 24 #include <linux/kallsyms.h> 25 #include <linux/memory.h> 26 #include <linux/math64.h> 27 #include <linux/fault-inject.h> 28 29 /* 30 * Lock order: 31 * 1. slab_lock(page) 32 * 2. slab->list_lock 33 * 34 * The slab_lock protects operations on the object of a particular 35 * slab and its metadata in the page struct. If the slab lock 36 * has been taken then no allocations nor frees can be performed 37 * on the objects in the slab nor can the slab be added or removed 38 * from the partial or full lists since this would mean modifying 39 * the page_struct of the slab. 40 * 41 * The list_lock protects the partial and full list on each node and 42 * the partial slab counter. If taken then no new slabs may be added or 43 * removed from the lists nor make the number of partial slabs be modified. 44 * (Note that the total number of slabs is an atomic value that may be 45 * modified without taking the list lock). 46 * 47 * The list_lock is a centralized lock and thus we avoid taking it as 48 * much as possible. As long as SLUB does not have to handle partial 49 * slabs, operations can continue without any centralized lock. F.e. 50 * allocating a long series of objects that fill up slabs does not require 51 * the list lock. 52 * 53 * The lock order is sometimes inverted when we are trying to get a slab 54 * off a list. We take the list_lock and then look for a page on the list 55 * to use. While we do that objects in the slabs may be freed. We can 56 * only operate on the slab if we have also taken the slab_lock. So we use 57 * a slab_trylock() on the slab. If trylock was successful then no frees 58 * can occur anymore and we can use the slab for allocations etc. If the 59 * slab_trylock() does not succeed then frees are in progress in the slab and 60 * we must stay away from it for a while since we may cause a bouncing 61 * cacheline if we try to acquire the lock. So go onto the next slab. 62 * If all pages are busy then we may allocate a new slab instead of reusing 63 * a partial slab. A new slab has noone operating on it and thus there is 64 * no danger of cacheline contention. 65 * 66 * Interrupts are disabled during allocation and deallocation in order to 67 * make the slab allocator safe to use in the context of an irq. In addition 68 * interrupts are disabled to ensure that the processor does not change 69 * while handling per_cpu slabs, due to kernel preemption. 70 * 71 * SLUB assigns one slab for allocation to each processor. 72 * Allocations only occur from these slabs called cpu slabs. 73 * 74 * Slabs with free elements are kept on a partial list and during regular 75 * operations no list for full slabs is used. If an object in a full slab is 76 * freed then the slab will show up again on the partial lists. 77 * We track full slabs for debugging purposes though because otherwise we 78 * cannot scan all objects. 79 * 80 * Slabs are freed when they become empty. Teardown and setup is 81 * minimal so we rely on the page allocators per cpu caches for 82 * fast frees and allocs. 83 * 84 * Overloading of page flags that are otherwise used for LRU management. 85 * 86 * PageActive The slab is frozen and exempt from list processing. 87 * This means that the slab is dedicated to a purpose 88 * such as satisfying allocations for a specific 89 * processor. Objects may be freed in the slab while 90 * it is frozen but slab_free will then skip the usual 91 * list operations. It is up to the processor holding 92 * the slab to integrate the slab into the slab lists 93 * when the slab is no longer needed. 94 * 95 * One use of this flag is to mark slabs that are 96 * used for allocations. Then such a slab becomes a cpu 97 * slab. The cpu slab may be equipped with an additional 98 * freelist that allows lockless access to 99 * free objects in addition to the regular freelist 100 * that requires the slab lock. 101 * 102 * PageError Slab requires special handling due to debug 103 * options set. This moves slab handling out of 104 * the fast path and disables lockless freelists. 105 */ 106 107 #ifdef CONFIG_SLUB_DEBUG 108 #define SLABDEBUG 1 109 #else 110 #define SLABDEBUG 0 111 #endif 112 113 /* 114 * Issues still to be resolved: 115 * 116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 117 * 118 * - Variable sizing of the per node arrays 119 */ 120 121 /* Enable to test recovery from slab corruption on boot */ 122 #undef SLUB_RESILIENCY_TEST 123 124 /* 125 * Mininum number of partial slabs. These will be left on the partial 126 * lists even if they are empty. kmem_cache_shrink may reclaim them. 127 */ 128 #define MIN_PARTIAL 5 129 130 /* 131 * Maximum number of desirable partial slabs. 132 * The existence of more partial slabs makes kmem_cache_shrink 133 * sort the partial list by the number of objects in the. 134 */ 135 #define MAX_PARTIAL 10 136 137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 138 SLAB_POISON | SLAB_STORE_USER) 139 140 /* 141 * Set of flags that will prevent slab merging 142 */ 143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 144 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 145 146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 147 SLAB_CACHE_DMA) 148 149 #ifndef ARCH_KMALLOC_MINALIGN 150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 151 #endif 152 153 #ifndef ARCH_SLAB_MINALIGN 154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 155 #endif 156 157 #define OO_SHIFT 16 158 #define OO_MASK ((1 << OO_SHIFT) - 1) 159 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 160 161 /* Internal SLUB flags */ 162 #define __OBJECT_POISON 0x80000000 /* Poison object */ 163 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 164 165 static int kmem_size = sizeof(struct kmem_cache); 166 167 #ifdef CONFIG_SMP 168 static struct notifier_block slab_notifier; 169 #endif 170 171 static enum { 172 DOWN, /* No slab functionality available */ 173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 174 UP, /* Everything works but does not show up in sysfs */ 175 SYSFS /* Sysfs up */ 176 } slab_state = DOWN; 177 178 /* A list of all slab caches on the system */ 179 static DECLARE_RWSEM(slub_lock); 180 static LIST_HEAD(slab_caches); 181 182 /* 183 * Tracking user of a slab. 184 */ 185 struct track { 186 unsigned long addr; /* Called from address */ 187 int cpu; /* Was running on cpu */ 188 int pid; /* Pid context */ 189 unsigned long when; /* When did the operation occur */ 190 }; 191 192 enum track_item { TRACK_ALLOC, TRACK_FREE }; 193 194 #ifdef CONFIG_SLUB_DEBUG 195 static int sysfs_slab_add(struct kmem_cache *); 196 static int sysfs_slab_alias(struct kmem_cache *, const char *); 197 static void sysfs_slab_remove(struct kmem_cache *); 198 199 #else 200 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 201 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 202 { return 0; } 203 static inline void sysfs_slab_remove(struct kmem_cache *s) 204 { 205 kfree(s); 206 } 207 208 #endif 209 210 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 211 { 212 #ifdef CONFIG_SLUB_STATS 213 c->stat[si]++; 214 #endif 215 } 216 217 /******************************************************************** 218 * Core slab cache functions 219 *******************************************************************/ 220 221 int slab_is_available(void) 222 { 223 return slab_state >= UP; 224 } 225 226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 227 { 228 #ifdef CONFIG_NUMA 229 return s->node[node]; 230 #else 231 return &s->local_node; 232 #endif 233 } 234 235 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 236 { 237 #ifdef CONFIG_SMP 238 return s->cpu_slab[cpu]; 239 #else 240 return &s->cpu_slab; 241 #endif 242 } 243 244 /* Verify that a pointer has an address that is valid within a slab page */ 245 static inline int check_valid_pointer(struct kmem_cache *s, 246 struct page *page, const void *object) 247 { 248 void *base; 249 250 if (!object) 251 return 1; 252 253 base = page_address(page); 254 if (object < base || object >= base + page->objects * s->size || 255 (object - base) % s->size) { 256 return 0; 257 } 258 259 return 1; 260 } 261 262 /* 263 * Slow version of get and set free pointer. 264 * 265 * This version requires touching the cache lines of kmem_cache which 266 * we avoid to do in the fast alloc free paths. There we obtain the offset 267 * from the page struct. 268 */ 269 static inline void *get_freepointer(struct kmem_cache *s, void *object) 270 { 271 return *(void **)(object + s->offset); 272 } 273 274 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 275 { 276 *(void **)(object + s->offset) = fp; 277 } 278 279 /* Loop over all objects in a slab */ 280 #define for_each_object(__p, __s, __addr, __objects) \ 281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 282 __p += (__s)->size) 283 284 /* Scan freelist */ 285 #define for_each_free_object(__p, __s, __free) \ 286 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 287 288 /* Determine object index from a given position */ 289 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 290 { 291 return (p - addr) / s->size; 292 } 293 294 static inline struct kmem_cache_order_objects oo_make(int order, 295 unsigned long size) 296 { 297 struct kmem_cache_order_objects x = { 298 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 299 }; 300 301 return x; 302 } 303 304 static inline int oo_order(struct kmem_cache_order_objects x) 305 { 306 return x.x >> OO_SHIFT; 307 } 308 309 static inline int oo_objects(struct kmem_cache_order_objects x) 310 { 311 return x.x & OO_MASK; 312 } 313 314 #ifdef CONFIG_SLUB_DEBUG 315 /* 316 * Debug settings: 317 */ 318 #ifdef CONFIG_SLUB_DEBUG_ON 319 static int slub_debug = DEBUG_DEFAULT_FLAGS; 320 #else 321 static int slub_debug; 322 #endif 323 324 static char *slub_debug_slabs; 325 326 /* 327 * Object debugging 328 */ 329 static void print_section(char *text, u8 *addr, unsigned int length) 330 { 331 int i, offset; 332 int newline = 1; 333 char ascii[17]; 334 335 ascii[16] = 0; 336 337 for (i = 0; i < length; i++) { 338 if (newline) { 339 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 340 newline = 0; 341 } 342 printk(KERN_CONT " %02x", addr[i]); 343 offset = i % 16; 344 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 345 if (offset == 15) { 346 printk(KERN_CONT " %s\n", ascii); 347 newline = 1; 348 } 349 } 350 if (!newline) { 351 i %= 16; 352 while (i < 16) { 353 printk(KERN_CONT " "); 354 ascii[i] = ' '; 355 i++; 356 } 357 printk(KERN_CONT " %s\n", ascii); 358 } 359 } 360 361 static struct track *get_track(struct kmem_cache *s, void *object, 362 enum track_item alloc) 363 { 364 struct track *p; 365 366 if (s->offset) 367 p = object + s->offset + sizeof(void *); 368 else 369 p = object + s->inuse; 370 371 return p + alloc; 372 } 373 374 static void set_track(struct kmem_cache *s, void *object, 375 enum track_item alloc, unsigned long addr) 376 { 377 struct track *p; 378 379 if (s->offset) 380 p = object + s->offset + sizeof(void *); 381 else 382 p = object + s->inuse; 383 384 p += alloc; 385 if (addr) { 386 p->addr = addr; 387 p->cpu = smp_processor_id(); 388 p->pid = current->pid; 389 p->when = jiffies; 390 } else 391 memset(p, 0, sizeof(struct track)); 392 } 393 394 static void init_tracking(struct kmem_cache *s, void *object) 395 { 396 if (!(s->flags & SLAB_STORE_USER)) 397 return; 398 399 set_track(s, object, TRACK_FREE, 0UL); 400 set_track(s, object, TRACK_ALLOC, 0UL); 401 } 402 403 static void print_track(const char *s, struct track *t) 404 { 405 if (!t->addr) 406 return; 407 408 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 409 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 410 } 411 412 static void print_tracking(struct kmem_cache *s, void *object) 413 { 414 if (!(s->flags & SLAB_STORE_USER)) 415 return; 416 417 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 418 print_track("Freed", get_track(s, object, TRACK_FREE)); 419 } 420 421 static void print_page_info(struct page *page) 422 { 423 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 424 page, page->objects, page->inuse, page->freelist, page->flags); 425 426 } 427 428 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 429 { 430 va_list args; 431 char buf[100]; 432 433 va_start(args, fmt); 434 vsnprintf(buf, sizeof(buf), fmt, args); 435 va_end(args); 436 printk(KERN_ERR "========================================" 437 "=====================================\n"); 438 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 439 printk(KERN_ERR "----------------------------------------" 440 "-------------------------------------\n\n"); 441 } 442 443 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 444 { 445 va_list args; 446 char buf[100]; 447 448 va_start(args, fmt); 449 vsnprintf(buf, sizeof(buf), fmt, args); 450 va_end(args); 451 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 452 } 453 454 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 455 { 456 unsigned int off; /* Offset of last byte */ 457 u8 *addr = page_address(page); 458 459 print_tracking(s, p); 460 461 print_page_info(page); 462 463 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 464 p, p - addr, get_freepointer(s, p)); 465 466 if (p > addr + 16) 467 print_section("Bytes b4", p - 16, 16); 468 469 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 470 471 if (s->flags & SLAB_RED_ZONE) 472 print_section("Redzone", p + s->objsize, 473 s->inuse - s->objsize); 474 475 if (s->offset) 476 off = s->offset + sizeof(void *); 477 else 478 off = s->inuse; 479 480 if (s->flags & SLAB_STORE_USER) 481 off += 2 * sizeof(struct track); 482 483 if (off != s->size) 484 /* Beginning of the filler is the free pointer */ 485 print_section("Padding", p + off, s->size - off); 486 487 dump_stack(); 488 } 489 490 static void object_err(struct kmem_cache *s, struct page *page, 491 u8 *object, char *reason) 492 { 493 slab_bug(s, "%s", reason); 494 print_trailer(s, page, object); 495 } 496 497 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 498 { 499 va_list args; 500 char buf[100]; 501 502 va_start(args, fmt); 503 vsnprintf(buf, sizeof(buf), fmt, args); 504 va_end(args); 505 slab_bug(s, "%s", buf); 506 print_page_info(page); 507 dump_stack(); 508 } 509 510 static void init_object(struct kmem_cache *s, void *object, int active) 511 { 512 u8 *p = object; 513 514 if (s->flags & __OBJECT_POISON) { 515 memset(p, POISON_FREE, s->objsize - 1); 516 p[s->objsize - 1] = POISON_END; 517 } 518 519 if (s->flags & SLAB_RED_ZONE) 520 memset(p + s->objsize, 521 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 522 s->inuse - s->objsize); 523 } 524 525 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 526 { 527 while (bytes) { 528 if (*start != (u8)value) 529 return start; 530 start++; 531 bytes--; 532 } 533 return NULL; 534 } 535 536 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 537 void *from, void *to) 538 { 539 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 540 memset(from, data, to - from); 541 } 542 543 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 544 u8 *object, char *what, 545 u8 *start, unsigned int value, unsigned int bytes) 546 { 547 u8 *fault; 548 u8 *end; 549 550 fault = check_bytes(start, value, bytes); 551 if (!fault) 552 return 1; 553 554 end = start + bytes; 555 while (end > fault && end[-1] == value) 556 end--; 557 558 slab_bug(s, "%s overwritten", what); 559 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 560 fault, end - 1, fault[0], value); 561 print_trailer(s, page, object); 562 563 restore_bytes(s, what, value, fault, end); 564 return 0; 565 } 566 567 /* 568 * Object layout: 569 * 570 * object address 571 * Bytes of the object to be managed. 572 * If the freepointer may overlay the object then the free 573 * pointer is the first word of the object. 574 * 575 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 576 * 0xa5 (POISON_END) 577 * 578 * object + s->objsize 579 * Padding to reach word boundary. This is also used for Redzoning. 580 * Padding is extended by another word if Redzoning is enabled and 581 * objsize == inuse. 582 * 583 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 584 * 0xcc (RED_ACTIVE) for objects in use. 585 * 586 * object + s->inuse 587 * Meta data starts here. 588 * 589 * A. Free pointer (if we cannot overwrite object on free) 590 * B. Tracking data for SLAB_STORE_USER 591 * C. Padding to reach required alignment boundary or at mininum 592 * one word if debugging is on to be able to detect writes 593 * before the word boundary. 594 * 595 * Padding is done using 0x5a (POISON_INUSE) 596 * 597 * object + s->size 598 * Nothing is used beyond s->size. 599 * 600 * If slabcaches are merged then the objsize and inuse boundaries are mostly 601 * ignored. And therefore no slab options that rely on these boundaries 602 * may be used with merged slabcaches. 603 */ 604 605 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 606 { 607 unsigned long off = s->inuse; /* The end of info */ 608 609 if (s->offset) 610 /* Freepointer is placed after the object. */ 611 off += sizeof(void *); 612 613 if (s->flags & SLAB_STORE_USER) 614 /* We also have user information there */ 615 off += 2 * sizeof(struct track); 616 617 if (s->size == off) 618 return 1; 619 620 return check_bytes_and_report(s, page, p, "Object padding", 621 p + off, POISON_INUSE, s->size - off); 622 } 623 624 /* Check the pad bytes at the end of a slab page */ 625 static int slab_pad_check(struct kmem_cache *s, struct page *page) 626 { 627 u8 *start; 628 u8 *fault; 629 u8 *end; 630 int length; 631 int remainder; 632 633 if (!(s->flags & SLAB_POISON)) 634 return 1; 635 636 start = page_address(page); 637 length = (PAGE_SIZE << compound_order(page)); 638 end = start + length; 639 remainder = length % s->size; 640 if (!remainder) 641 return 1; 642 643 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 644 if (!fault) 645 return 1; 646 while (end > fault && end[-1] == POISON_INUSE) 647 end--; 648 649 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 650 print_section("Padding", end - remainder, remainder); 651 652 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 653 return 0; 654 } 655 656 static int check_object(struct kmem_cache *s, struct page *page, 657 void *object, int active) 658 { 659 u8 *p = object; 660 u8 *endobject = object + s->objsize; 661 662 if (s->flags & SLAB_RED_ZONE) { 663 unsigned int red = 664 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 665 666 if (!check_bytes_and_report(s, page, object, "Redzone", 667 endobject, red, s->inuse - s->objsize)) 668 return 0; 669 } else { 670 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 671 check_bytes_and_report(s, page, p, "Alignment padding", 672 endobject, POISON_INUSE, s->inuse - s->objsize); 673 } 674 } 675 676 if (s->flags & SLAB_POISON) { 677 if (!active && (s->flags & __OBJECT_POISON) && 678 (!check_bytes_and_report(s, page, p, "Poison", p, 679 POISON_FREE, s->objsize - 1) || 680 !check_bytes_and_report(s, page, p, "Poison", 681 p + s->objsize - 1, POISON_END, 1))) 682 return 0; 683 /* 684 * check_pad_bytes cleans up on its own. 685 */ 686 check_pad_bytes(s, page, p); 687 } 688 689 if (!s->offset && active) 690 /* 691 * Object and freepointer overlap. Cannot check 692 * freepointer while object is allocated. 693 */ 694 return 1; 695 696 /* Check free pointer validity */ 697 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 698 object_err(s, page, p, "Freepointer corrupt"); 699 /* 700 * No choice but to zap it and thus lose the remainder 701 * of the free objects in this slab. May cause 702 * another error because the object count is now wrong. 703 */ 704 set_freepointer(s, p, NULL); 705 return 0; 706 } 707 return 1; 708 } 709 710 static int check_slab(struct kmem_cache *s, struct page *page) 711 { 712 int maxobj; 713 714 VM_BUG_ON(!irqs_disabled()); 715 716 if (!PageSlab(page)) { 717 slab_err(s, page, "Not a valid slab page"); 718 return 0; 719 } 720 721 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 722 if (page->objects > maxobj) { 723 slab_err(s, page, "objects %u > max %u", 724 s->name, page->objects, maxobj); 725 return 0; 726 } 727 if (page->inuse > page->objects) { 728 slab_err(s, page, "inuse %u > max %u", 729 s->name, page->inuse, page->objects); 730 return 0; 731 } 732 /* Slab_pad_check fixes things up after itself */ 733 slab_pad_check(s, page); 734 return 1; 735 } 736 737 /* 738 * Determine if a certain object on a page is on the freelist. Must hold the 739 * slab lock to guarantee that the chains are in a consistent state. 740 */ 741 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 742 { 743 int nr = 0; 744 void *fp = page->freelist; 745 void *object = NULL; 746 unsigned long max_objects; 747 748 while (fp && nr <= page->objects) { 749 if (fp == search) 750 return 1; 751 if (!check_valid_pointer(s, page, fp)) { 752 if (object) { 753 object_err(s, page, object, 754 "Freechain corrupt"); 755 set_freepointer(s, object, NULL); 756 break; 757 } else { 758 slab_err(s, page, "Freepointer corrupt"); 759 page->freelist = NULL; 760 page->inuse = page->objects; 761 slab_fix(s, "Freelist cleared"); 762 return 0; 763 } 764 break; 765 } 766 object = fp; 767 fp = get_freepointer(s, object); 768 nr++; 769 } 770 771 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 772 if (max_objects > MAX_OBJS_PER_PAGE) 773 max_objects = MAX_OBJS_PER_PAGE; 774 775 if (page->objects != max_objects) { 776 slab_err(s, page, "Wrong number of objects. Found %d but " 777 "should be %d", page->objects, max_objects); 778 page->objects = max_objects; 779 slab_fix(s, "Number of objects adjusted."); 780 } 781 if (page->inuse != page->objects - nr) { 782 slab_err(s, page, "Wrong object count. Counter is %d but " 783 "counted were %d", page->inuse, page->objects - nr); 784 page->inuse = page->objects - nr; 785 slab_fix(s, "Object count adjusted."); 786 } 787 return search == NULL; 788 } 789 790 static void trace(struct kmem_cache *s, struct page *page, void *object, 791 int alloc) 792 { 793 if (s->flags & SLAB_TRACE) { 794 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 795 s->name, 796 alloc ? "alloc" : "free", 797 object, page->inuse, 798 page->freelist); 799 800 if (!alloc) 801 print_section("Object", (void *)object, s->objsize); 802 803 dump_stack(); 804 } 805 } 806 807 /* 808 * Tracking of fully allocated slabs for debugging purposes. 809 */ 810 static void add_full(struct kmem_cache_node *n, struct page *page) 811 { 812 spin_lock(&n->list_lock); 813 list_add(&page->lru, &n->full); 814 spin_unlock(&n->list_lock); 815 } 816 817 static void remove_full(struct kmem_cache *s, struct page *page) 818 { 819 struct kmem_cache_node *n; 820 821 if (!(s->flags & SLAB_STORE_USER)) 822 return; 823 824 n = get_node(s, page_to_nid(page)); 825 826 spin_lock(&n->list_lock); 827 list_del(&page->lru); 828 spin_unlock(&n->list_lock); 829 } 830 831 /* Tracking of the number of slabs for debugging purposes */ 832 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 833 { 834 struct kmem_cache_node *n = get_node(s, node); 835 836 return atomic_long_read(&n->nr_slabs); 837 } 838 839 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 840 { 841 struct kmem_cache_node *n = get_node(s, node); 842 843 /* 844 * May be called early in order to allocate a slab for the 845 * kmem_cache_node structure. Solve the chicken-egg 846 * dilemma by deferring the increment of the count during 847 * bootstrap (see early_kmem_cache_node_alloc). 848 */ 849 if (!NUMA_BUILD || n) { 850 atomic_long_inc(&n->nr_slabs); 851 atomic_long_add(objects, &n->total_objects); 852 } 853 } 854 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 855 { 856 struct kmem_cache_node *n = get_node(s, node); 857 858 atomic_long_dec(&n->nr_slabs); 859 atomic_long_sub(objects, &n->total_objects); 860 } 861 862 /* Object debug checks for alloc/free paths */ 863 static void setup_object_debug(struct kmem_cache *s, struct page *page, 864 void *object) 865 { 866 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 867 return; 868 869 init_object(s, object, 0); 870 init_tracking(s, object); 871 } 872 873 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 874 void *object, unsigned long addr) 875 { 876 if (!check_slab(s, page)) 877 goto bad; 878 879 if (!on_freelist(s, page, object)) { 880 object_err(s, page, object, "Object already allocated"); 881 goto bad; 882 } 883 884 if (!check_valid_pointer(s, page, object)) { 885 object_err(s, page, object, "Freelist Pointer check fails"); 886 goto bad; 887 } 888 889 if (!check_object(s, page, object, 0)) 890 goto bad; 891 892 /* Success perform special debug activities for allocs */ 893 if (s->flags & SLAB_STORE_USER) 894 set_track(s, object, TRACK_ALLOC, addr); 895 trace(s, page, object, 1); 896 init_object(s, object, 1); 897 return 1; 898 899 bad: 900 if (PageSlab(page)) { 901 /* 902 * If this is a slab page then lets do the best we can 903 * to avoid issues in the future. Marking all objects 904 * as used avoids touching the remaining objects. 905 */ 906 slab_fix(s, "Marking all objects used"); 907 page->inuse = page->objects; 908 page->freelist = NULL; 909 } 910 return 0; 911 } 912 913 static int free_debug_processing(struct kmem_cache *s, struct page *page, 914 void *object, unsigned long addr) 915 { 916 if (!check_slab(s, page)) 917 goto fail; 918 919 if (!check_valid_pointer(s, page, object)) { 920 slab_err(s, page, "Invalid object pointer 0x%p", object); 921 goto fail; 922 } 923 924 if (on_freelist(s, page, object)) { 925 object_err(s, page, object, "Object already free"); 926 goto fail; 927 } 928 929 if (!check_object(s, page, object, 1)) 930 return 0; 931 932 if (unlikely(s != page->slab)) { 933 if (!PageSlab(page)) { 934 slab_err(s, page, "Attempt to free object(0x%p) " 935 "outside of slab", object); 936 } else if (!page->slab) { 937 printk(KERN_ERR 938 "SLUB <none>: no slab for object 0x%p.\n", 939 object); 940 dump_stack(); 941 } else 942 object_err(s, page, object, 943 "page slab pointer corrupt."); 944 goto fail; 945 } 946 947 /* Special debug activities for freeing objects */ 948 if (!PageSlubFrozen(page) && !page->freelist) 949 remove_full(s, page); 950 if (s->flags & SLAB_STORE_USER) 951 set_track(s, object, TRACK_FREE, addr); 952 trace(s, page, object, 0); 953 init_object(s, object, 0); 954 return 1; 955 956 fail: 957 slab_fix(s, "Object at 0x%p not freed", object); 958 return 0; 959 } 960 961 static int __init setup_slub_debug(char *str) 962 { 963 slub_debug = DEBUG_DEFAULT_FLAGS; 964 if (*str++ != '=' || !*str) 965 /* 966 * No options specified. Switch on full debugging. 967 */ 968 goto out; 969 970 if (*str == ',') 971 /* 972 * No options but restriction on slabs. This means full 973 * debugging for slabs matching a pattern. 974 */ 975 goto check_slabs; 976 977 slub_debug = 0; 978 if (*str == '-') 979 /* 980 * Switch off all debugging measures. 981 */ 982 goto out; 983 984 /* 985 * Determine which debug features should be switched on 986 */ 987 for (; *str && *str != ','; str++) { 988 switch (tolower(*str)) { 989 case 'f': 990 slub_debug |= SLAB_DEBUG_FREE; 991 break; 992 case 'z': 993 slub_debug |= SLAB_RED_ZONE; 994 break; 995 case 'p': 996 slub_debug |= SLAB_POISON; 997 break; 998 case 'u': 999 slub_debug |= SLAB_STORE_USER; 1000 break; 1001 case 't': 1002 slub_debug |= SLAB_TRACE; 1003 break; 1004 default: 1005 printk(KERN_ERR "slub_debug option '%c' " 1006 "unknown. skipped\n", *str); 1007 } 1008 } 1009 1010 check_slabs: 1011 if (*str == ',') 1012 slub_debug_slabs = str + 1; 1013 out: 1014 return 1; 1015 } 1016 1017 __setup("slub_debug", setup_slub_debug); 1018 1019 static unsigned long kmem_cache_flags(unsigned long objsize, 1020 unsigned long flags, const char *name, 1021 void (*ctor)(void *)) 1022 { 1023 /* 1024 * Enable debugging if selected on the kernel commandline. 1025 */ 1026 if (slub_debug && (!slub_debug_slabs || 1027 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1028 flags |= slub_debug; 1029 1030 return flags; 1031 } 1032 #else 1033 static inline void setup_object_debug(struct kmem_cache *s, 1034 struct page *page, void *object) {} 1035 1036 static inline int alloc_debug_processing(struct kmem_cache *s, 1037 struct page *page, void *object, unsigned long addr) { return 0; } 1038 1039 static inline int free_debug_processing(struct kmem_cache *s, 1040 struct page *page, void *object, unsigned long addr) { return 0; } 1041 1042 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1043 { return 1; } 1044 static inline int check_object(struct kmem_cache *s, struct page *page, 1045 void *object, int active) { return 1; } 1046 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1047 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1048 unsigned long flags, const char *name, 1049 void (*ctor)(void *)) 1050 { 1051 return flags; 1052 } 1053 #define slub_debug 0 1054 1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1056 { return 0; } 1057 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1058 int objects) {} 1059 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1060 int objects) {} 1061 #endif 1062 1063 /* 1064 * Slab allocation and freeing 1065 */ 1066 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1067 struct kmem_cache_order_objects oo) 1068 { 1069 int order = oo_order(oo); 1070 1071 if (node == -1) 1072 return alloc_pages(flags, order); 1073 else 1074 return alloc_pages_node(node, flags, order); 1075 } 1076 1077 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1078 { 1079 struct page *page; 1080 struct kmem_cache_order_objects oo = s->oo; 1081 1082 flags |= s->allocflags; 1083 1084 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1085 oo); 1086 if (unlikely(!page)) { 1087 oo = s->min; 1088 /* 1089 * Allocation may have failed due to fragmentation. 1090 * Try a lower order alloc if possible 1091 */ 1092 page = alloc_slab_page(flags, node, oo); 1093 if (!page) 1094 return NULL; 1095 1096 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1097 } 1098 page->objects = oo_objects(oo); 1099 mod_zone_page_state(page_zone(page), 1100 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1101 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1102 1 << oo_order(oo)); 1103 1104 return page; 1105 } 1106 1107 static void setup_object(struct kmem_cache *s, struct page *page, 1108 void *object) 1109 { 1110 setup_object_debug(s, page, object); 1111 if (unlikely(s->ctor)) 1112 s->ctor(object); 1113 } 1114 1115 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1116 { 1117 struct page *page; 1118 void *start; 1119 void *last; 1120 void *p; 1121 1122 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1123 1124 page = allocate_slab(s, 1125 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1126 if (!page) 1127 goto out; 1128 1129 inc_slabs_node(s, page_to_nid(page), page->objects); 1130 page->slab = s; 1131 page->flags |= 1 << PG_slab; 1132 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1133 SLAB_STORE_USER | SLAB_TRACE)) 1134 __SetPageSlubDebug(page); 1135 1136 start = page_address(page); 1137 1138 if (unlikely(s->flags & SLAB_POISON)) 1139 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1140 1141 last = start; 1142 for_each_object(p, s, start, page->objects) { 1143 setup_object(s, page, last); 1144 set_freepointer(s, last, p); 1145 last = p; 1146 } 1147 setup_object(s, page, last); 1148 set_freepointer(s, last, NULL); 1149 1150 page->freelist = start; 1151 page->inuse = 0; 1152 out: 1153 return page; 1154 } 1155 1156 static void __free_slab(struct kmem_cache *s, struct page *page) 1157 { 1158 int order = compound_order(page); 1159 int pages = 1 << order; 1160 1161 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1162 void *p; 1163 1164 slab_pad_check(s, page); 1165 for_each_object(p, s, page_address(page), 1166 page->objects) 1167 check_object(s, page, p, 0); 1168 __ClearPageSlubDebug(page); 1169 } 1170 1171 mod_zone_page_state(page_zone(page), 1172 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1173 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1174 -pages); 1175 1176 __ClearPageSlab(page); 1177 reset_page_mapcount(page); 1178 __free_pages(page, order); 1179 } 1180 1181 static void rcu_free_slab(struct rcu_head *h) 1182 { 1183 struct page *page; 1184 1185 page = container_of((struct list_head *)h, struct page, lru); 1186 __free_slab(page->slab, page); 1187 } 1188 1189 static void free_slab(struct kmem_cache *s, struct page *page) 1190 { 1191 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1192 /* 1193 * RCU free overloads the RCU head over the LRU 1194 */ 1195 struct rcu_head *head = (void *)&page->lru; 1196 1197 call_rcu(head, rcu_free_slab); 1198 } else 1199 __free_slab(s, page); 1200 } 1201 1202 static void discard_slab(struct kmem_cache *s, struct page *page) 1203 { 1204 dec_slabs_node(s, page_to_nid(page), page->objects); 1205 free_slab(s, page); 1206 } 1207 1208 /* 1209 * Per slab locking using the pagelock 1210 */ 1211 static __always_inline void slab_lock(struct page *page) 1212 { 1213 bit_spin_lock(PG_locked, &page->flags); 1214 } 1215 1216 static __always_inline void slab_unlock(struct page *page) 1217 { 1218 __bit_spin_unlock(PG_locked, &page->flags); 1219 } 1220 1221 static __always_inline int slab_trylock(struct page *page) 1222 { 1223 int rc = 1; 1224 1225 rc = bit_spin_trylock(PG_locked, &page->flags); 1226 return rc; 1227 } 1228 1229 /* 1230 * Management of partially allocated slabs 1231 */ 1232 static void add_partial(struct kmem_cache_node *n, 1233 struct page *page, int tail) 1234 { 1235 spin_lock(&n->list_lock); 1236 n->nr_partial++; 1237 if (tail) 1238 list_add_tail(&page->lru, &n->partial); 1239 else 1240 list_add(&page->lru, &n->partial); 1241 spin_unlock(&n->list_lock); 1242 } 1243 1244 static void remove_partial(struct kmem_cache *s, struct page *page) 1245 { 1246 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1247 1248 spin_lock(&n->list_lock); 1249 list_del(&page->lru); 1250 n->nr_partial--; 1251 spin_unlock(&n->list_lock); 1252 } 1253 1254 /* 1255 * Lock slab and remove from the partial list. 1256 * 1257 * Must hold list_lock. 1258 */ 1259 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1260 struct page *page) 1261 { 1262 if (slab_trylock(page)) { 1263 list_del(&page->lru); 1264 n->nr_partial--; 1265 __SetPageSlubFrozen(page); 1266 return 1; 1267 } 1268 return 0; 1269 } 1270 1271 /* 1272 * Try to allocate a partial slab from a specific node. 1273 */ 1274 static struct page *get_partial_node(struct kmem_cache_node *n) 1275 { 1276 struct page *page; 1277 1278 /* 1279 * Racy check. If we mistakenly see no partial slabs then we 1280 * just allocate an empty slab. If we mistakenly try to get a 1281 * partial slab and there is none available then get_partials() 1282 * will return NULL. 1283 */ 1284 if (!n || !n->nr_partial) 1285 return NULL; 1286 1287 spin_lock(&n->list_lock); 1288 list_for_each_entry(page, &n->partial, lru) 1289 if (lock_and_freeze_slab(n, page)) 1290 goto out; 1291 page = NULL; 1292 out: 1293 spin_unlock(&n->list_lock); 1294 return page; 1295 } 1296 1297 /* 1298 * Get a page from somewhere. Search in increasing NUMA distances. 1299 */ 1300 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1301 { 1302 #ifdef CONFIG_NUMA 1303 struct zonelist *zonelist; 1304 struct zoneref *z; 1305 struct zone *zone; 1306 enum zone_type high_zoneidx = gfp_zone(flags); 1307 struct page *page; 1308 1309 /* 1310 * The defrag ratio allows a configuration of the tradeoffs between 1311 * inter node defragmentation and node local allocations. A lower 1312 * defrag_ratio increases the tendency to do local allocations 1313 * instead of attempting to obtain partial slabs from other nodes. 1314 * 1315 * If the defrag_ratio is set to 0 then kmalloc() always 1316 * returns node local objects. If the ratio is higher then kmalloc() 1317 * may return off node objects because partial slabs are obtained 1318 * from other nodes and filled up. 1319 * 1320 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1321 * defrag_ratio = 1000) then every (well almost) allocation will 1322 * first attempt to defrag slab caches on other nodes. This means 1323 * scanning over all nodes to look for partial slabs which may be 1324 * expensive if we do it every time we are trying to find a slab 1325 * with available objects. 1326 */ 1327 if (!s->remote_node_defrag_ratio || 1328 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1329 return NULL; 1330 1331 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1333 struct kmem_cache_node *n; 1334 1335 n = get_node(s, zone_to_nid(zone)); 1336 1337 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1338 n->nr_partial > n->min_partial) { 1339 page = get_partial_node(n); 1340 if (page) 1341 return page; 1342 } 1343 } 1344 #endif 1345 return NULL; 1346 } 1347 1348 /* 1349 * Get a partial page, lock it and return it. 1350 */ 1351 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1352 { 1353 struct page *page; 1354 int searchnode = (node == -1) ? numa_node_id() : node; 1355 1356 page = get_partial_node(get_node(s, searchnode)); 1357 if (page || (flags & __GFP_THISNODE)) 1358 return page; 1359 1360 return get_any_partial(s, flags); 1361 } 1362 1363 /* 1364 * Move a page back to the lists. 1365 * 1366 * Must be called with the slab lock held. 1367 * 1368 * On exit the slab lock will have been dropped. 1369 */ 1370 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1371 { 1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1373 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1374 1375 __ClearPageSlubFrozen(page); 1376 if (page->inuse) { 1377 1378 if (page->freelist) { 1379 add_partial(n, page, tail); 1380 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1381 } else { 1382 stat(c, DEACTIVATE_FULL); 1383 if (SLABDEBUG && PageSlubDebug(page) && 1384 (s->flags & SLAB_STORE_USER)) 1385 add_full(n, page); 1386 } 1387 slab_unlock(page); 1388 } else { 1389 stat(c, DEACTIVATE_EMPTY); 1390 if (n->nr_partial < n->min_partial) { 1391 /* 1392 * Adding an empty slab to the partial slabs in order 1393 * to avoid page allocator overhead. This slab needs 1394 * to come after the other slabs with objects in 1395 * so that the others get filled first. That way the 1396 * size of the partial list stays small. 1397 * 1398 * kmem_cache_shrink can reclaim any empty slabs from 1399 * the partial list. 1400 */ 1401 add_partial(n, page, 1); 1402 slab_unlock(page); 1403 } else { 1404 slab_unlock(page); 1405 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1406 discard_slab(s, page); 1407 } 1408 } 1409 } 1410 1411 /* 1412 * Remove the cpu slab 1413 */ 1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1415 { 1416 struct page *page = c->page; 1417 int tail = 1; 1418 1419 if (page->freelist) 1420 stat(c, DEACTIVATE_REMOTE_FREES); 1421 /* 1422 * Merge cpu freelist into slab freelist. Typically we get here 1423 * because both freelists are empty. So this is unlikely 1424 * to occur. 1425 */ 1426 while (unlikely(c->freelist)) { 1427 void **object; 1428 1429 tail = 0; /* Hot objects. Put the slab first */ 1430 1431 /* Retrieve object from cpu_freelist */ 1432 object = c->freelist; 1433 c->freelist = c->freelist[c->offset]; 1434 1435 /* And put onto the regular freelist */ 1436 object[c->offset] = page->freelist; 1437 page->freelist = object; 1438 page->inuse--; 1439 } 1440 c->page = NULL; 1441 unfreeze_slab(s, page, tail); 1442 } 1443 1444 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1445 { 1446 stat(c, CPUSLAB_FLUSH); 1447 slab_lock(c->page); 1448 deactivate_slab(s, c); 1449 } 1450 1451 /* 1452 * Flush cpu slab. 1453 * 1454 * Called from IPI handler with interrupts disabled. 1455 */ 1456 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1457 { 1458 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1459 1460 if (likely(c && c->page)) 1461 flush_slab(s, c); 1462 } 1463 1464 static void flush_cpu_slab(void *d) 1465 { 1466 struct kmem_cache *s = d; 1467 1468 __flush_cpu_slab(s, smp_processor_id()); 1469 } 1470 1471 static void flush_all(struct kmem_cache *s) 1472 { 1473 on_each_cpu(flush_cpu_slab, s, 1); 1474 } 1475 1476 /* 1477 * Check if the objects in a per cpu structure fit numa 1478 * locality expectations. 1479 */ 1480 static inline int node_match(struct kmem_cache_cpu *c, int node) 1481 { 1482 #ifdef CONFIG_NUMA 1483 if (node != -1 && c->node != node) 1484 return 0; 1485 #endif 1486 return 1; 1487 } 1488 1489 /* 1490 * Slow path. The lockless freelist is empty or we need to perform 1491 * debugging duties. 1492 * 1493 * Interrupts are disabled. 1494 * 1495 * Processing is still very fast if new objects have been freed to the 1496 * regular freelist. In that case we simply take over the regular freelist 1497 * as the lockless freelist and zap the regular freelist. 1498 * 1499 * If that is not working then we fall back to the partial lists. We take the 1500 * first element of the freelist as the object to allocate now and move the 1501 * rest of the freelist to the lockless freelist. 1502 * 1503 * And if we were unable to get a new slab from the partial slab lists then 1504 * we need to allocate a new slab. This is the slowest path since it involves 1505 * a call to the page allocator and the setup of a new slab. 1506 */ 1507 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1508 unsigned long addr, struct kmem_cache_cpu *c) 1509 { 1510 void **object; 1511 struct page *new; 1512 1513 /* We handle __GFP_ZERO in the caller */ 1514 gfpflags &= ~__GFP_ZERO; 1515 1516 if (!c->page) 1517 goto new_slab; 1518 1519 slab_lock(c->page); 1520 if (unlikely(!node_match(c, node))) 1521 goto another_slab; 1522 1523 stat(c, ALLOC_REFILL); 1524 1525 load_freelist: 1526 object = c->page->freelist; 1527 if (unlikely(!object)) 1528 goto another_slab; 1529 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1530 goto debug; 1531 1532 c->freelist = object[c->offset]; 1533 c->page->inuse = c->page->objects; 1534 c->page->freelist = NULL; 1535 c->node = page_to_nid(c->page); 1536 unlock_out: 1537 slab_unlock(c->page); 1538 stat(c, ALLOC_SLOWPATH); 1539 return object; 1540 1541 another_slab: 1542 deactivate_slab(s, c); 1543 1544 new_slab: 1545 new = get_partial(s, gfpflags, node); 1546 if (new) { 1547 c->page = new; 1548 stat(c, ALLOC_FROM_PARTIAL); 1549 goto load_freelist; 1550 } 1551 1552 if (gfpflags & __GFP_WAIT) 1553 local_irq_enable(); 1554 1555 new = new_slab(s, gfpflags, node); 1556 1557 if (gfpflags & __GFP_WAIT) 1558 local_irq_disable(); 1559 1560 if (new) { 1561 c = get_cpu_slab(s, smp_processor_id()); 1562 stat(c, ALLOC_SLAB); 1563 if (c->page) 1564 flush_slab(s, c); 1565 slab_lock(new); 1566 __SetPageSlubFrozen(new); 1567 c->page = new; 1568 goto load_freelist; 1569 } 1570 return NULL; 1571 debug: 1572 if (!alloc_debug_processing(s, c->page, object, addr)) 1573 goto another_slab; 1574 1575 c->page->inuse++; 1576 c->page->freelist = object[c->offset]; 1577 c->node = -1; 1578 goto unlock_out; 1579 } 1580 1581 /* 1582 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1583 * have the fastpath folded into their functions. So no function call 1584 * overhead for requests that can be satisfied on the fastpath. 1585 * 1586 * The fastpath works by first checking if the lockless freelist can be used. 1587 * If not then __slab_alloc is called for slow processing. 1588 * 1589 * Otherwise we can simply pick the next object from the lockless free list. 1590 */ 1591 static __always_inline void *slab_alloc(struct kmem_cache *s, 1592 gfp_t gfpflags, int node, unsigned long addr) 1593 { 1594 void **object; 1595 struct kmem_cache_cpu *c; 1596 unsigned long flags; 1597 unsigned int objsize; 1598 1599 might_sleep_if(gfpflags & __GFP_WAIT); 1600 1601 if (should_failslab(s->objsize, gfpflags)) 1602 return NULL; 1603 1604 local_irq_save(flags); 1605 c = get_cpu_slab(s, smp_processor_id()); 1606 objsize = c->objsize; 1607 if (unlikely(!c->freelist || !node_match(c, node))) 1608 1609 object = __slab_alloc(s, gfpflags, node, addr, c); 1610 1611 else { 1612 object = c->freelist; 1613 c->freelist = object[c->offset]; 1614 stat(c, ALLOC_FASTPATH); 1615 } 1616 local_irq_restore(flags); 1617 1618 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1619 memset(object, 0, objsize); 1620 1621 return object; 1622 } 1623 1624 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1625 { 1626 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1627 } 1628 EXPORT_SYMBOL(kmem_cache_alloc); 1629 1630 #ifdef CONFIG_NUMA 1631 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1632 { 1633 return slab_alloc(s, gfpflags, node, _RET_IP_); 1634 } 1635 EXPORT_SYMBOL(kmem_cache_alloc_node); 1636 #endif 1637 1638 /* 1639 * Slow patch handling. This may still be called frequently since objects 1640 * have a longer lifetime than the cpu slabs in most processing loads. 1641 * 1642 * So we still attempt to reduce cache line usage. Just take the slab 1643 * lock and free the item. If there is no additional partial page 1644 * handling required then we can return immediately. 1645 */ 1646 static void __slab_free(struct kmem_cache *s, struct page *page, 1647 void *x, unsigned long addr, unsigned int offset) 1648 { 1649 void *prior; 1650 void **object = (void *)x; 1651 struct kmem_cache_cpu *c; 1652 1653 c = get_cpu_slab(s, raw_smp_processor_id()); 1654 stat(c, FREE_SLOWPATH); 1655 slab_lock(page); 1656 1657 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1658 goto debug; 1659 1660 checks_ok: 1661 prior = object[offset] = page->freelist; 1662 page->freelist = object; 1663 page->inuse--; 1664 1665 if (unlikely(PageSlubFrozen(page))) { 1666 stat(c, FREE_FROZEN); 1667 goto out_unlock; 1668 } 1669 1670 if (unlikely(!page->inuse)) 1671 goto slab_empty; 1672 1673 /* 1674 * Objects left in the slab. If it was not on the partial list before 1675 * then add it. 1676 */ 1677 if (unlikely(!prior)) { 1678 add_partial(get_node(s, page_to_nid(page)), page, 1); 1679 stat(c, FREE_ADD_PARTIAL); 1680 } 1681 1682 out_unlock: 1683 slab_unlock(page); 1684 return; 1685 1686 slab_empty: 1687 if (prior) { 1688 /* 1689 * Slab still on the partial list. 1690 */ 1691 remove_partial(s, page); 1692 stat(c, FREE_REMOVE_PARTIAL); 1693 } 1694 slab_unlock(page); 1695 stat(c, FREE_SLAB); 1696 discard_slab(s, page); 1697 return; 1698 1699 debug: 1700 if (!free_debug_processing(s, page, x, addr)) 1701 goto out_unlock; 1702 goto checks_ok; 1703 } 1704 1705 /* 1706 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1707 * can perform fastpath freeing without additional function calls. 1708 * 1709 * The fastpath is only possible if we are freeing to the current cpu slab 1710 * of this processor. This typically the case if we have just allocated 1711 * the item before. 1712 * 1713 * If fastpath is not possible then fall back to __slab_free where we deal 1714 * with all sorts of special processing. 1715 */ 1716 static __always_inline void slab_free(struct kmem_cache *s, 1717 struct page *page, void *x, unsigned long addr) 1718 { 1719 void **object = (void *)x; 1720 struct kmem_cache_cpu *c; 1721 unsigned long flags; 1722 1723 local_irq_save(flags); 1724 c = get_cpu_slab(s, smp_processor_id()); 1725 debug_check_no_locks_freed(object, c->objsize); 1726 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1727 debug_check_no_obj_freed(object, s->objsize); 1728 if (likely(page == c->page && c->node >= 0)) { 1729 object[c->offset] = c->freelist; 1730 c->freelist = object; 1731 stat(c, FREE_FASTPATH); 1732 } else 1733 __slab_free(s, page, x, addr, c->offset); 1734 1735 local_irq_restore(flags); 1736 } 1737 1738 void kmem_cache_free(struct kmem_cache *s, void *x) 1739 { 1740 struct page *page; 1741 1742 page = virt_to_head_page(x); 1743 1744 slab_free(s, page, x, _RET_IP_); 1745 } 1746 EXPORT_SYMBOL(kmem_cache_free); 1747 1748 /* Figure out on which slab page the object resides */ 1749 static struct page *get_object_page(const void *x) 1750 { 1751 struct page *page = virt_to_head_page(x); 1752 1753 if (!PageSlab(page)) 1754 return NULL; 1755 1756 return page; 1757 } 1758 1759 /* 1760 * Object placement in a slab is made very easy because we always start at 1761 * offset 0. If we tune the size of the object to the alignment then we can 1762 * get the required alignment by putting one properly sized object after 1763 * another. 1764 * 1765 * Notice that the allocation order determines the sizes of the per cpu 1766 * caches. Each processor has always one slab available for allocations. 1767 * Increasing the allocation order reduces the number of times that slabs 1768 * must be moved on and off the partial lists and is therefore a factor in 1769 * locking overhead. 1770 */ 1771 1772 /* 1773 * Mininum / Maximum order of slab pages. This influences locking overhead 1774 * and slab fragmentation. A higher order reduces the number of partial slabs 1775 * and increases the number of allocations possible without having to 1776 * take the list_lock. 1777 */ 1778 static int slub_min_order; 1779 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1780 static int slub_min_objects; 1781 1782 /* 1783 * Merge control. If this is set then no merging of slab caches will occur. 1784 * (Could be removed. This was introduced to pacify the merge skeptics.) 1785 */ 1786 static int slub_nomerge; 1787 1788 /* 1789 * Calculate the order of allocation given an slab object size. 1790 * 1791 * The order of allocation has significant impact on performance and other 1792 * system components. Generally order 0 allocations should be preferred since 1793 * order 0 does not cause fragmentation in the page allocator. Larger objects 1794 * be problematic to put into order 0 slabs because there may be too much 1795 * unused space left. We go to a higher order if more than 1/16th of the slab 1796 * would be wasted. 1797 * 1798 * In order to reach satisfactory performance we must ensure that a minimum 1799 * number of objects is in one slab. Otherwise we may generate too much 1800 * activity on the partial lists which requires taking the list_lock. This is 1801 * less a concern for large slabs though which are rarely used. 1802 * 1803 * slub_max_order specifies the order where we begin to stop considering the 1804 * number of objects in a slab as critical. If we reach slub_max_order then 1805 * we try to keep the page order as low as possible. So we accept more waste 1806 * of space in favor of a small page order. 1807 * 1808 * Higher order allocations also allow the placement of more objects in a 1809 * slab and thereby reduce object handling overhead. If the user has 1810 * requested a higher mininum order then we start with that one instead of 1811 * the smallest order which will fit the object. 1812 */ 1813 static inline int slab_order(int size, int min_objects, 1814 int max_order, int fract_leftover) 1815 { 1816 int order; 1817 int rem; 1818 int min_order = slub_min_order; 1819 1820 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1821 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1822 1823 for (order = max(min_order, 1824 fls(min_objects * size - 1) - PAGE_SHIFT); 1825 order <= max_order; order++) { 1826 1827 unsigned long slab_size = PAGE_SIZE << order; 1828 1829 if (slab_size < min_objects * size) 1830 continue; 1831 1832 rem = slab_size % size; 1833 1834 if (rem <= slab_size / fract_leftover) 1835 break; 1836 1837 } 1838 1839 return order; 1840 } 1841 1842 static inline int calculate_order(int size) 1843 { 1844 int order; 1845 int min_objects; 1846 int fraction; 1847 1848 /* 1849 * Attempt to find best configuration for a slab. This 1850 * works by first attempting to generate a layout with 1851 * the best configuration and backing off gradually. 1852 * 1853 * First we reduce the acceptable waste in a slab. Then 1854 * we reduce the minimum objects required in a slab. 1855 */ 1856 min_objects = slub_min_objects; 1857 if (!min_objects) 1858 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1859 while (min_objects > 1) { 1860 fraction = 16; 1861 while (fraction >= 4) { 1862 order = slab_order(size, min_objects, 1863 slub_max_order, fraction); 1864 if (order <= slub_max_order) 1865 return order; 1866 fraction /= 2; 1867 } 1868 min_objects /= 2; 1869 } 1870 1871 /* 1872 * We were unable to place multiple objects in a slab. Now 1873 * lets see if we can place a single object there. 1874 */ 1875 order = slab_order(size, 1, slub_max_order, 1); 1876 if (order <= slub_max_order) 1877 return order; 1878 1879 /* 1880 * Doh this slab cannot be placed using slub_max_order. 1881 */ 1882 order = slab_order(size, 1, MAX_ORDER, 1); 1883 if (order <= MAX_ORDER) 1884 return order; 1885 return -ENOSYS; 1886 } 1887 1888 /* 1889 * Figure out what the alignment of the objects will be. 1890 */ 1891 static unsigned long calculate_alignment(unsigned long flags, 1892 unsigned long align, unsigned long size) 1893 { 1894 /* 1895 * If the user wants hardware cache aligned objects then follow that 1896 * suggestion if the object is sufficiently large. 1897 * 1898 * The hardware cache alignment cannot override the specified 1899 * alignment though. If that is greater then use it. 1900 */ 1901 if (flags & SLAB_HWCACHE_ALIGN) { 1902 unsigned long ralign = cache_line_size(); 1903 while (size <= ralign / 2) 1904 ralign /= 2; 1905 align = max(align, ralign); 1906 } 1907 1908 if (align < ARCH_SLAB_MINALIGN) 1909 align = ARCH_SLAB_MINALIGN; 1910 1911 return ALIGN(align, sizeof(void *)); 1912 } 1913 1914 static void init_kmem_cache_cpu(struct kmem_cache *s, 1915 struct kmem_cache_cpu *c) 1916 { 1917 c->page = NULL; 1918 c->freelist = NULL; 1919 c->node = 0; 1920 c->offset = s->offset / sizeof(void *); 1921 c->objsize = s->objsize; 1922 #ifdef CONFIG_SLUB_STATS 1923 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1924 #endif 1925 } 1926 1927 static void 1928 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1929 { 1930 n->nr_partial = 0; 1931 1932 /* 1933 * The larger the object size is, the more pages we want on the partial 1934 * list to avoid pounding the page allocator excessively. 1935 */ 1936 n->min_partial = ilog2(s->size); 1937 if (n->min_partial < MIN_PARTIAL) 1938 n->min_partial = MIN_PARTIAL; 1939 else if (n->min_partial > MAX_PARTIAL) 1940 n->min_partial = MAX_PARTIAL; 1941 1942 spin_lock_init(&n->list_lock); 1943 INIT_LIST_HEAD(&n->partial); 1944 #ifdef CONFIG_SLUB_DEBUG 1945 atomic_long_set(&n->nr_slabs, 0); 1946 atomic_long_set(&n->total_objects, 0); 1947 INIT_LIST_HEAD(&n->full); 1948 #endif 1949 } 1950 1951 #ifdef CONFIG_SMP 1952 /* 1953 * Per cpu array for per cpu structures. 1954 * 1955 * The per cpu array places all kmem_cache_cpu structures from one processor 1956 * close together meaning that it becomes possible that multiple per cpu 1957 * structures are contained in one cacheline. This may be particularly 1958 * beneficial for the kmalloc caches. 1959 * 1960 * A desktop system typically has around 60-80 slabs. With 100 here we are 1961 * likely able to get per cpu structures for all caches from the array defined 1962 * here. We must be able to cover all kmalloc caches during bootstrap. 1963 * 1964 * If the per cpu array is exhausted then fall back to kmalloc 1965 * of individual cachelines. No sharing is possible then. 1966 */ 1967 #define NR_KMEM_CACHE_CPU 100 1968 1969 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1970 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1971 1972 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1973 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 1974 1975 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1976 int cpu, gfp_t flags) 1977 { 1978 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1979 1980 if (c) 1981 per_cpu(kmem_cache_cpu_free, cpu) = 1982 (void *)c->freelist; 1983 else { 1984 /* Table overflow: So allocate ourselves */ 1985 c = kmalloc_node( 1986 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1987 flags, cpu_to_node(cpu)); 1988 if (!c) 1989 return NULL; 1990 } 1991 1992 init_kmem_cache_cpu(s, c); 1993 return c; 1994 } 1995 1996 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1997 { 1998 if (c < per_cpu(kmem_cache_cpu, cpu) || 1999 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2000 kfree(c); 2001 return; 2002 } 2003 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2004 per_cpu(kmem_cache_cpu_free, cpu) = c; 2005 } 2006 2007 static void free_kmem_cache_cpus(struct kmem_cache *s) 2008 { 2009 int cpu; 2010 2011 for_each_online_cpu(cpu) { 2012 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2013 2014 if (c) { 2015 s->cpu_slab[cpu] = NULL; 2016 free_kmem_cache_cpu(c, cpu); 2017 } 2018 } 2019 } 2020 2021 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2022 { 2023 int cpu; 2024 2025 for_each_online_cpu(cpu) { 2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2027 2028 if (c) 2029 continue; 2030 2031 c = alloc_kmem_cache_cpu(s, cpu, flags); 2032 if (!c) { 2033 free_kmem_cache_cpus(s); 2034 return 0; 2035 } 2036 s->cpu_slab[cpu] = c; 2037 } 2038 return 1; 2039 } 2040 2041 /* 2042 * Initialize the per cpu array. 2043 */ 2044 static void init_alloc_cpu_cpu(int cpu) 2045 { 2046 int i; 2047 2048 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2049 return; 2050 2051 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2052 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2053 2054 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2055 } 2056 2057 static void __init init_alloc_cpu(void) 2058 { 2059 int cpu; 2060 2061 for_each_online_cpu(cpu) 2062 init_alloc_cpu_cpu(cpu); 2063 } 2064 2065 #else 2066 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2067 static inline void init_alloc_cpu(void) {} 2068 2069 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2070 { 2071 init_kmem_cache_cpu(s, &s->cpu_slab); 2072 return 1; 2073 } 2074 #endif 2075 2076 #ifdef CONFIG_NUMA 2077 /* 2078 * No kmalloc_node yet so do it by hand. We know that this is the first 2079 * slab on the node for this slabcache. There are no concurrent accesses 2080 * possible. 2081 * 2082 * Note that this function only works on the kmalloc_node_cache 2083 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2084 * memory on a fresh node that has no slab structures yet. 2085 */ 2086 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2087 { 2088 struct page *page; 2089 struct kmem_cache_node *n; 2090 unsigned long flags; 2091 2092 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2093 2094 page = new_slab(kmalloc_caches, gfpflags, node); 2095 2096 BUG_ON(!page); 2097 if (page_to_nid(page) != node) { 2098 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2099 "node %d\n", node); 2100 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2101 "in order to be able to continue\n"); 2102 } 2103 2104 n = page->freelist; 2105 BUG_ON(!n); 2106 page->freelist = get_freepointer(kmalloc_caches, n); 2107 page->inuse++; 2108 kmalloc_caches->node[node] = n; 2109 #ifdef CONFIG_SLUB_DEBUG 2110 init_object(kmalloc_caches, n, 1); 2111 init_tracking(kmalloc_caches, n); 2112 #endif 2113 init_kmem_cache_node(n, kmalloc_caches); 2114 inc_slabs_node(kmalloc_caches, node, page->objects); 2115 2116 /* 2117 * lockdep requires consistent irq usage for each lock 2118 * so even though there cannot be a race this early in 2119 * the boot sequence, we still disable irqs. 2120 */ 2121 local_irq_save(flags); 2122 add_partial(n, page, 0); 2123 local_irq_restore(flags); 2124 } 2125 2126 static void free_kmem_cache_nodes(struct kmem_cache *s) 2127 { 2128 int node; 2129 2130 for_each_node_state(node, N_NORMAL_MEMORY) { 2131 struct kmem_cache_node *n = s->node[node]; 2132 if (n && n != &s->local_node) 2133 kmem_cache_free(kmalloc_caches, n); 2134 s->node[node] = NULL; 2135 } 2136 } 2137 2138 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2139 { 2140 int node; 2141 int local_node; 2142 2143 if (slab_state >= UP) 2144 local_node = page_to_nid(virt_to_page(s)); 2145 else 2146 local_node = 0; 2147 2148 for_each_node_state(node, N_NORMAL_MEMORY) { 2149 struct kmem_cache_node *n; 2150 2151 if (local_node == node) 2152 n = &s->local_node; 2153 else { 2154 if (slab_state == DOWN) { 2155 early_kmem_cache_node_alloc(gfpflags, node); 2156 continue; 2157 } 2158 n = kmem_cache_alloc_node(kmalloc_caches, 2159 gfpflags, node); 2160 2161 if (!n) { 2162 free_kmem_cache_nodes(s); 2163 return 0; 2164 } 2165 2166 } 2167 s->node[node] = n; 2168 init_kmem_cache_node(n, s); 2169 } 2170 return 1; 2171 } 2172 #else 2173 static void free_kmem_cache_nodes(struct kmem_cache *s) 2174 { 2175 } 2176 2177 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2178 { 2179 init_kmem_cache_node(&s->local_node, s); 2180 return 1; 2181 } 2182 #endif 2183 2184 /* 2185 * calculate_sizes() determines the order and the distribution of data within 2186 * a slab object. 2187 */ 2188 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2189 { 2190 unsigned long flags = s->flags; 2191 unsigned long size = s->objsize; 2192 unsigned long align = s->align; 2193 int order; 2194 2195 /* 2196 * Round up object size to the next word boundary. We can only 2197 * place the free pointer at word boundaries and this determines 2198 * the possible location of the free pointer. 2199 */ 2200 size = ALIGN(size, sizeof(void *)); 2201 2202 #ifdef CONFIG_SLUB_DEBUG 2203 /* 2204 * Determine if we can poison the object itself. If the user of 2205 * the slab may touch the object after free or before allocation 2206 * then we should never poison the object itself. 2207 */ 2208 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2209 !s->ctor) 2210 s->flags |= __OBJECT_POISON; 2211 else 2212 s->flags &= ~__OBJECT_POISON; 2213 2214 2215 /* 2216 * If we are Redzoning then check if there is some space between the 2217 * end of the object and the free pointer. If not then add an 2218 * additional word to have some bytes to store Redzone information. 2219 */ 2220 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2221 size += sizeof(void *); 2222 #endif 2223 2224 /* 2225 * With that we have determined the number of bytes in actual use 2226 * by the object. This is the potential offset to the free pointer. 2227 */ 2228 s->inuse = size; 2229 2230 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2231 s->ctor)) { 2232 /* 2233 * Relocate free pointer after the object if it is not 2234 * permitted to overwrite the first word of the object on 2235 * kmem_cache_free. 2236 * 2237 * This is the case if we do RCU, have a constructor or 2238 * destructor or are poisoning the objects. 2239 */ 2240 s->offset = size; 2241 size += sizeof(void *); 2242 } 2243 2244 #ifdef CONFIG_SLUB_DEBUG 2245 if (flags & SLAB_STORE_USER) 2246 /* 2247 * Need to store information about allocs and frees after 2248 * the object. 2249 */ 2250 size += 2 * sizeof(struct track); 2251 2252 if (flags & SLAB_RED_ZONE) 2253 /* 2254 * Add some empty padding so that we can catch 2255 * overwrites from earlier objects rather than let 2256 * tracking information or the free pointer be 2257 * corrupted if a user writes before the start 2258 * of the object. 2259 */ 2260 size += sizeof(void *); 2261 #endif 2262 2263 /* 2264 * Determine the alignment based on various parameters that the 2265 * user specified and the dynamic determination of cache line size 2266 * on bootup. 2267 */ 2268 align = calculate_alignment(flags, align, s->objsize); 2269 2270 /* 2271 * SLUB stores one object immediately after another beginning from 2272 * offset 0. In order to align the objects we have to simply size 2273 * each object to conform to the alignment. 2274 */ 2275 size = ALIGN(size, align); 2276 s->size = size; 2277 if (forced_order >= 0) 2278 order = forced_order; 2279 else 2280 order = calculate_order(size); 2281 2282 if (order < 0) 2283 return 0; 2284 2285 s->allocflags = 0; 2286 if (order) 2287 s->allocflags |= __GFP_COMP; 2288 2289 if (s->flags & SLAB_CACHE_DMA) 2290 s->allocflags |= SLUB_DMA; 2291 2292 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2293 s->allocflags |= __GFP_RECLAIMABLE; 2294 2295 /* 2296 * Determine the number of objects per slab 2297 */ 2298 s->oo = oo_make(order, size); 2299 s->min = oo_make(get_order(size), size); 2300 if (oo_objects(s->oo) > oo_objects(s->max)) 2301 s->max = s->oo; 2302 2303 return !!oo_objects(s->oo); 2304 2305 } 2306 2307 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2308 const char *name, size_t size, 2309 size_t align, unsigned long flags, 2310 void (*ctor)(void *)) 2311 { 2312 memset(s, 0, kmem_size); 2313 s->name = name; 2314 s->ctor = ctor; 2315 s->objsize = size; 2316 s->align = align; 2317 s->flags = kmem_cache_flags(size, flags, name, ctor); 2318 2319 if (!calculate_sizes(s, -1)) 2320 goto error; 2321 2322 s->refcount = 1; 2323 #ifdef CONFIG_NUMA 2324 s->remote_node_defrag_ratio = 1000; 2325 #endif 2326 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2327 goto error; 2328 2329 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2330 return 1; 2331 free_kmem_cache_nodes(s); 2332 error: 2333 if (flags & SLAB_PANIC) 2334 panic("Cannot create slab %s size=%lu realsize=%u " 2335 "order=%u offset=%u flags=%lx\n", 2336 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2337 s->offset, flags); 2338 return 0; 2339 } 2340 2341 /* 2342 * Check if a given pointer is valid 2343 */ 2344 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2345 { 2346 struct page *page; 2347 2348 page = get_object_page(object); 2349 2350 if (!page || s != page->slab) 2351 /* No slab or wrong slab */ 2352 return 0; 2353 2354 if (!check_valid_pointer(s, page, object)) 2355 return 0; 2356 2357 /* 2358 * We could also check if the object is on the slabs freelist. 2359 * But this would be too expensive and it seems that the main 2360 * purpose of kmem_ptr_valid() is to check if the object belongs 2361 * to a certain slab. 2362 */ 2363 return 1; 2364 } 2365 EXPORT_SYMBOL(kmem_ptr_validate); 2366 2367 /* 2368 * Determine the size of a slab object 2369 */ 2370 unsigned int kmem_cache_size(struct kmem_cache *s) 2371 { 2372 return s->objsize; 2373 } 2374 EXPORT_SYMBOL(kmem_cache_size); 2375 2376 const char *kmem_cache_name(struct kmem_cache *s) 2377 { 2378 return s->name; 2379 } 2380 EXPORT_SYMBOL(kmem_cache_name); 2381 2382 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2383 const char *text) 2384 { 2385 #ifdef CONFIG_SLUB_DEBUG 2386 void *addr = page_address(page); 2387 void *p; 2388 DECLARE_BITMAP(map, page->objects); 2389 2390 bitmap_zero(map, page->objects); 2391 slab_err(s, page, "%s", text); 2392 slab_lock(page); 2393 for_each_free_object(p, s, page->freelist) 2394 set_bit(slab_index(p, s, addr), map); 2395 2396 for_each_object(p, s, addr, page->objects) { 2397 2398 if (!test_bit(slab_index(p, s, addr), map)) { 2399 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2400 p, p - addr); 2401 print_tracking(s, p); 2402 } 2403 } 2404 slab_unlock(page); 2405 #endif 2406 } 2407 2408 /* 2409 * Attempt to free all partial slabs on a node. 2410 */ 2411 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2412 { 2413 unsigned long flags; 2414 struct page *page, *h; 2415 2416 spin_lock_irqsave(&n->list_lock, flags); 2417 list_for_each_entry_safe(page, h, &n->partial, lru) { 2418 if (!page->inuse) { 2419 list_del(&page->lru); 2420 discard_slab(s, page); 2421 n->nr_partial--; 2422 } else { 2423 list_slab_objects(s, page, 2424 "Objects remaining on kmem_cache_close()"); 2425 } 2426 } 2427 spin_unlock_irqrestore(&n->list_lock, flags); 2428 } 2429 2430 /* 2431 * Release all resources used by a slab cache. 2432 */ 2433 static inline int kmem_cache_close(struct kmem_cache *s) 2434 { 2435 int node; 2436 2437 flush_all(s); 2438 2439 /* Attempt to free all objects */ 2440 free_kmem_cache_cpus(s); 2441 for_each_node_state(node, N_NORMAL_MEMORY) { 2442 struct kmem_cache_node *n = get_node(s, node); 2443 2444 free_partial(s, n); 2445 if (n->nr_partial || slabs_node(s, node)) 2446 return 1; 2447 } 2448 free_kmem_cache_nodes(s); 2449 return 0; 2450 } 2451 2452 /* 2453 * Close a cache and release the kmem_cache structure 2454 * (must be used for caches created using kmem_cache_create) 2455 */ 2456 void kmem_cache_destroy(struct kmem_cache *s) 2457 { 2458 down_write(&slub_lock); 2459 s->refcount--; 2460 if (!s->refcount) { 2461 list_del(&s->list); 2462 up_write(&slub_lock); 2463 if (kmem_cache_close(s)) { 2464 printk(KERN_ERR "SLUB %s: %s called for cache that " 2465 "still has objects.\n", s->name, __func__); 2466 dump_stack(); 2467 } 2468 sysfs_slab_remove(s); 2469 } else 2470 up_write(&slub_lock); 2471 } 2472 EXPORT_SYMBOL(kmem_cache_destroy); 2473 2474 /******************************************************************** 2475 * Kmalloc subsystem 2476 *******************************************************************/ 2477 2478 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; 2479 EXPORT_SYMBOL(kmalloc_caches); 2480 2481 static int __init setup_slub_min_order(char *str) 2482 { 2483 get_option(&str, &slub_min_order); 2484 2485 return 1; 2486 } 2487 2488 __setup("slub_min_order=", setup_slub_min_order); 2489 2490 static int __init setup_slub_max_order(char *str) 2491 { 2492 get_option(&str, &slub_max_order); 2493 2494 return 1; 2495 } 2496 2497 __setup("slub_max_order=", setup_slub_max_order); 2498 2499 static int __init setup_slub_min_objects(char *str) 2500 { 2501 get_option(&str, &slub_min_objects); 2502 2503 return 1; 2504 } 2505 2506 __setup("slub_min_objects=", setup_slub_min_objects); 2507 2508 static int __init setup_slub_nomerge(char *str) 2509 { 2510 slub_nomerge = 1; 2511 return 1; 2512 } 2513 2514 __setup("slub_nomerge", setup_slub_nomerge); 2515 2516 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2517 const char *name, int size, gfp_t gfp_flags) 2518 { 2519 unsigned int flags = 0; 2520 2521 if (gfp_flags & SLUB_DMA) 2522 flags = SLAB_CACHE_DMA; 2523 2524 down_write(&slub_lock); 2525 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2526 flags, NULL)) 2527 goto panic; 2528 2529 list_add(&s->list, &slab_caches); 2530 up_write(&slub_lock); 2531 if (sysfs_slab_add(s)) 2532 goto panic; 2533 return s; 2534 2535 panic: 2536 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2537 } 2538 2539 #ifdef CONFIG_ZONE_DMA 2540 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; 2541 2542 static void sysfs_add_func(struct work_struct *w) 2543 { 2544 struct kmem_cache *s; 2545 2546 down_write(&slub_lock); 2547 list_for_each_entry(s, &slab_caches, list) { 2548 if (s->flags & __SYSFS_ADD_DEFERRED) { 2549 s->flags &= ~__SYSFS_ADD_DEFERRED; 2550 sysfs_slab_add(s); 2551 } 2552 } 2553 up_write(&slub_lock); 2554 } 2555 2556 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2557 2558 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2559 { 2560 struct kmem_cache *s; 2561 char *text; 2562 size_t realsize; 2563 2564 s = kmalloc_caches_dma[index]; 2565 if (s) 2566 return s; 2567 2568 /* Dynamically create dma cache */ 2569 if (flags & __GFP_WAIT) 2570 down_write(&slub_lock); 2571 else { 2572 if (!down_write_trylock(&slub_lock)) 2573 goto out; 2574 } 2575 2576 if (kmalloc_caches_dma[index]) 2577 goto unlock_out; 2578 2579 realsize = kmalloc_caches[index].objsize; 2580 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2581 (unsigned int)realsize); 2582 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2583 2584 if (!s || !text || !kmem_cache_open(s, flags, text, 2585 realsize, ARCH_KMALLOC_MINALIGN, 2586 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2587 kfree(s); 2588 kfree(text); 2589 goto unlock_out; 2590 } 2591 2592 list_add(&s->list, &slab_caches); 2593 kmalloc_caches_dma[index] = s; 2594 2595 schedule_work(&sysfs_add_work); 2596 2597 unlock_out: 2598 up_write(&slub_lock); 2599 out: 2600 return kmalloc_caches_dma[index]; 2601 } 2602 #endif 2603 2604 /* 2605 * Conversion table for small slabs sizes / 8 to the index in the 2606 * kmalloc array. This is necessary for slabs < 192 since we have non power 2607 * of two cache sizes there. The size of larger slabs can be determined using 2608 * fls. 2609 */ 2610 static s8 size_index[24] = { 2611 3, /* 8 */ 2612 4, /* 16 */ 2613 5, /* 24 */ 2614 5, /* 32 */ 2615 6, /* 40 */ 2616 6, /* 48 */ 2617 6, /* 56 */ 2618 6, /* 64 */ 2619 1, /* 72 */ 2620 1, /* 80 */ 2621 1, /* 88 */ 2622 1, /* 96 */ 2623 7, /* 104 */ 2624 7, /* 112 */ 2625 7, /* 120 */ 2626 7, /* 128 */ 2627 2, /* 136 */ 2628 2, /* 144 */ 2629 2, /* 152 */ 2630 2, /* 160 */ 2631 2, /* 168 */ 2632 2, /* 176 */ 2633 2, /* 184 */ 2634 2 /* 192 */ 2635 }; 2636 2637 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2638 { 2639 int index; 2640 2641 if (size <= 192) { 2642 if (!size) 2643 return ZERO_SIZE_PTR; 2644 2645 index = size_index[(size - 1) / 8]; 2646 } else 2647 index = fls(size - 1); 2648 2649 #ifdef CONFIG_ZONE_DMA 2650 if (unlikely((flags & SLUB_DMA))) 2651 return dma_kmalloc_cache(index, flags); 2652 2653 #endif 2654 return &kmalloc_caches[index]; 2655 } 2656 2657 void *__kmalloc(size_t size, gfp_t flags) 2658 { 2659 struct kmem_cache *s; 2660 2661 if (unlikely(size > PAGE_SIZE)) 2662 return kmalloc_large(size, flags); 2663 2664 s = get_slab(size, flags); 2665 2666 if (unlikely(ZERO_OR_NULL_PTR(s))) 2667 return s; 2668 2669 return slab_alloc(s, flags, -1, _RET_IP_); 2670 } 2671 EXPORT_SYMBOL(__kmalloc); 2672 2673 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2674 { 2675 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2676 get_order(size)); 2677 2678 if (page) 2679 return page_address(page); 2680 else 2681 return NULL; 2682 } 2683 2684 #ifdef CONFIG_NUMA 2685 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2686 { 2687 struct kmem_cache *s; 2688 2689 if (unlikely(size > PAGE_SIZE)) 2690 return kmalloc_large_node(size, flags, node); 2691 2692 s = get_slab(size, flags); 2693 2694 if (unlikely(ZERO_OR_NULL_PTR(s))) 2695 return s; 2696 2697 return slab_alloc(s, flags, node, _RET_IP_); 2698 } 2699 EXPORT_SYMBOL(__kmalloc_node); 2700 #endif 2701 2702 size_t ksize(const void *object) 2703 { 2704 struct page *page; 2705 struct kmem_cache *s; 2706 2707 if (unlikely(object == ZERO_SIZE_PTR)) 2708 return 0; 2709 2710 page = virt_to_head_page(object); 2711 2712 if (unlikely(!PageSlab(page))) { 2713 WARN_ON(!PageCompound(page)); 2714 return PAGE_SIZE << compound_order(page); 2715 } 2716 s = page->slab; 2717 2718 #ifdef CONFIG_SLUB_DEBUG 2719 /* 2720 * Debugging requires use of the padding between object 2721 * and whatever may come after it. 2722 */ 2723 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2724 return s->objsize; 2725 2726 #endif 2727 /* 2728 * If we have the need to store the freelist pointer 2729 * back there or track user information then we can 2730 * only use the space before that information. 2731 */ 2732 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2733 return s->inuse; 2734 /* 2735 * Else we can use all the padding etc for the allocation 2736 */ 2737 return s->size; 2738 } 2739 EXPORT_SYMBOL(ksize); 2740 2741 void kfree(const void *x) 2742 { 2743 struct page *page; 2744 void *object = (void *)x; 2745 2746 if (unlikely(ZERO_OR_NULL_PTR(x))) 2747 return; 2748 2749 page = virt_to_head_page(x); 2750 if (unlikely(!PageSlab(page))) { 2751 BUG_ON(!PageCompound(page)); 2752 put_page(page); 2753 return; 2754 } 2755 slab_free(page->slab, page, object, _RET_IP_); 2756 } 2757 EXPORT_SYMBOL(kfree); 2758 2759 /* 2760 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2761 * the remaining slabs by the number of items in use. The slabs with the 2762 * most items in use come first. New allocations will then fill those up 2763 * and thus they can be removed from the partial lists. 2764 * 2765 * The slabs with the least items are placed last. This results in them 2766 * being allocated from last increasing the chance that the last objects 2767 * are freed in them. 2768 */ 2769 int kmem_cache_shrink(struct kmem_cache *s) 2770 { 2771 int node; 2772 int i; 2773 struct kmem_cache_node *n; 2774 struct page *page; 2775 struct page *t; 2776 int objects = oo_objects(s->max); 2777 struct list_head *slabs_by_inuse = 2778 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2779 unsigned long flags; 2780 2781 if (!slabs_by_inuse) 2782 return -ENOMEM; 2783 2784 flush_all(s); 2785 for_each_node_state(node, N_NORMAL_MEMORY) { 2786 n = get_node(s, node); 2787 2788 if (!n->nr_partial) 2789 continue; 2790 2791 for (i = 0; i < objects; i++) 2792 INIT_LIST_HEAD(slabs_by_inuse + i); 2793 2794 spin_lock_irqsave(&n->list_lock, flags); 2795 2796 /* 2797 * Build lists indexed by the items in use in each slab. 2798 * 2799 * Note that concurrent frees may occur while we hold the 2800 * list_lock. page->inuse here is the upper limit. 2801 */ 2802 list_for_each_entry_safe(page, t, &n->partial, lru) { 2803 if (!page->inuse && slab_trylock(page)) { 2804 /* 2805 * Must hold slab lock here because slab_free 2806 * may have freed the last object and be 2807 * waiting to release the slab. 2808 */ 2809 list_del(&page->lru); 2810 n->nr_partial--; 2811 slab_unlock(page); 2812 discard_slab(s, page); 2813 } else { 2814 list_move(&page->lru, 2815 slabs_by_inuse + page->inuse); 2816 } 2817 } 2818 2819 /* 2820 * Rebuild the partial list with the slabs filled up most 2821 * first and the least used slabs at the end. 2822 */ 2823 for (i = objects - 1; i >= 0; i--) 2824 list_splice(slabs_by_inuse + i, n->partial.prev); 2825 2826 spin_unlock_irqrestore(&n->list_lock, flags); 2827 } 2828 2829 kfree(slabs_by_inuse); 2830 return 0; 2831 } 2832 EXPORT_SYMBOL(kmem_cache_shrink); 2833 2834 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2835 static int slab_mem_going_offline_callback(void *arg) 2836 { 2837 struct kmem_cache *s; 2838 2839 down_read(&slub_lock); 2840 list_for_each_entry(s, &slab_caches, list) 2841 kmem_cache_shrink(s); 2842 up_read(&slub_lock); 2843 2844 return 0; 2845 } 2846 2847 static void slab_mem_offline_callback(void *arg) 2848 { 2849 struct kmem_cache_node *n; 2850 struct kmem_cache *s; 2851 struct memory_notify *marg = arg; 2852 int offline_node; 2853 2854 offline_node = marg->status_change_nid; 2855 2856 /* 2857 * If the node still has available memory. we need kmem_cache_node 2858 * for it yet. 2859 */ 2860 if (offline_node < 0) 2861 return; 2862 2863 down_read(&slub_lock); 2864 list_for_each_entry(s, &slab_caches, list) { 2865 n = get_node(s, offline_node); 2866 if (n) { 2867 /* 2868 * if n->nr_slabs > 0, slabs still exist on the node 2869 * that is going down. We were unable to free them, 2870 * and offline_pages() function shoudn't call this 2871 * callback. So, we must fail. 2872 */ 2873 BUG_ON(slabs_node(s, offline_node)); 2874 2875 s->node[offline_node] = NULL; 2876 kmem_cache_free(kmalloc_caches, n); 2877 } 2878 } 2879 up_read(&slub_lock); 2880 } 2881 2882 static int slab_mem_going_online_callback(void *arg) 2883 { 2884 struct kmem_cache_node *n; 2885 struct kmem_cache *s; 2886 struct memory_notify *marg = arg; 2887 int nid = marg->status_change_nid; 2888 int ret = 0; 2889 2890 /* 2891 * If the node's memory is already available, then kmem_cache_node is 2892 * already created. Nothing to do. 2893 */ 2894 if (nid < 0) 2895 return 0; 2896 2897 /* 2898 * We are bringing a node online. No memory is available yet. We must 2899 * allocate a kmem_cache_node structure in order to bring the node 2900 * online. 2901 */ 2902 down_read(&slub_lock); 2903 list_for_each_entry(s, &slab_caches, list) { 2904 /* 2905 * XXX: kmem_cache_alloc_node will fallback to other nodes 2906 * since memory is not yet available from the node that 2907 * is brought up. 2908 */ 2909 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2910 if (!n) { 2911 ret = -ENOMEM; 2912 goto out; 2913 } 2914 init_kmem_cache_node(n, s); 2915 s->node[nid] = n; 2916 } 2917 out: 2918 up_read(&slub_lock); 2919 return ret; 2920 } 2921 2922 static int slab_memory_callback(struct notifier_block *self, 2923 unsigned long action, void *arg) 2924 { 2925 int ret = 0; 2926 2927 switch (action) { 2928 case MEM_GOING_ONLINE: 2929 ret = slab_mem_going_online_callback(arg); 2930 break; 2931 case MEM_GOING_OFFLINE: 2932 ret = slab_mem_going_offline_callback(arg); 2933 break; 2934 case MEM_OFFLINE: 2935 case MEM_CANCEL_ONLINE: 2936 slab_mem_offline_callback(arg); 2937 break; 2938 case MEM_ONLINE: 2939 case MEM_CANCEL_OFFLINE: 2940 break; 2941 } 2942 if (ret) 2943 ret = notifier_from_errno(ret); 2944 else 2945 ret = NOTIFY_OK; 2946 return ret; 2947 } 2948 2949 #endif /* CONFIG_MEMORY_HOTPLUG */ 2950 2951 /******************************************************************** 2952 * Basic setup of slabs 2953 *******************************************************************/ 2954 2955 void __init kmem_cache_init(void) 2956 { 2957 int i; 2958 int caches = 0; 2959 2960 init_alloc_cpu(); 2961 2962 #ifdef CONFIG_NUMA 2963 /* 2964 * Must first have the slab cache available for the allocations of the 2965 * struct kmem_cache_node's. There is special bootstrap code in 2966 * kmem_cache_open for slab_state == DOWN. 2967 */ 2968 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2969 sizeof(struct kmem_cache_node), GFP_KERNEL); 2970 kmalloc_caches[0].refcount = -1; 2971 caches++; 2972 2973 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 2974 #endif 2975 2976 /* Able to allocate the per node structures */ 2977 slab_state = PARTIAL; 2978 2979 /* Caches that are not of the two-to-the-power-of size */ 2980 if (KMALLOC_MIN_SIZE <= 64) { 2981 create_kmalloc_cache(&kmalloc_caches[1], 2982 "kmalloc-96", 96, GFP_KERNEL); 2983 caches++; 2984 create_kmalloc_cache(&kmalloc_caches[2], 2985 "kmalloc-192", 192, GFP_KERNEL); 2986 caches++; 2987 } 2988 2989 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { 2990 create_kmalloc_cache(&kmalloc_caches[i], 2991 "kmalloc", 1 << i, GFP_KERNEL); 2992 caches++; 2993 } 2994 2995 2996 /* 2997 * Patch up the size_index table if we have strange large alignment 2998 * requirements for the kmalloc array. This is only the case for 2999 * MIPS it seems. The standard arches will not generate any code here. 3000 * 3001 * Largest permitted alignment is 256 bytes due to the way we 3002 * handle the index determination for the smaller caches. 3003 * 3004 * Make sure that nothing crazy happens if someone starts tinkering 3005 * around with ARCH_KMALLOC_MINALIGN 3006 */ 3007 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3008 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3009 3010 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3011 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3012 3013 if (KMALLOC_MIN_SIZE == 128) { 3014 /* 3015 * The 192 byte sized cache is not used if the alignment 3016 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3017 * instead. 3018 */ 3019 for (i = 128 + 8; i <= 192; i += 8) 3020 size_index[(i - 1) / 8] = 8; 3021 } 3022 3023 slab_state = UP; 3024 3025 /* Provide the correct kmalloc names now that the caches are up */ 3026 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) 3027 kmalloc_caches[i]. name = 3028 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3029 3030 #ifdef CONFIG_SMP 3031 register_cpu_notifier(&slab_notifier); 3032 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3033 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3034 #else 3035 kmem_size = sizeof(struct kmem_cache); 3036 #endif 3037 3038 printk(KERN_INFO 3039 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3040 " CPUs=%d, Nodes=%d\n", 3041 caches, cache_line_size(), 3042 slub_min_order, slub_max_order, slub_min_objects, 3043 nr_cpu_ids, nr_node_ids); 3044 } 3045 3046 /* 3047 * Find a mergeable slab cache 3048 */ 3049 static int slab_unmergeable(struct kmem_cache *s) 3050 { 3051 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3052 return 1; 3053 3054 if (s->ctor) 3055 return 1; 3056 3057 /* 3058 * We may have set a slab to be unmergeable during bootstrap. 3059 */ 3060 if (s->refcount < 0) 3061 return 1; 3062 3063 return 0; 3064 } 3065 3066 static struct kmem_cache *find_mergeable(size_t size, 3067 size_t align, unsigned long flags, const char *name, 3068 void (*ctor)(void *)) 3069 { 3070 struct kmem_cache *s; 3071 3072 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3073 return NULL; 3074 3075 if (ctor) 3076 return NULL; 3077 3078 size = ALIGN(size, sizeof(void *)); 3079 align = calculate_alignment(flags, align, size); 3080 size = ALIGN(size, align); 3081 flags = kmem_cache_flags(size, flags, name, NULL); 3082 3083 list_for_each_entry(s, &slab_caches, list) { 3084 if (slab_unmergeable(s)) 3085 continue; 3086 3087 if (size > s->size) 3088 continue; 3089 3090 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3091 continue; 3092 /* 3093 * Check if alignment is compatible. 3094 * Courtesy of Adrian Drzewiecki 3095 */ 3096 if ((s->size & ~(align - 1)) != s->size) 3097 continue; 3098 3099 if (s->size - size >= sizeof(void *)) 3100 continue; 3101 3102 return s; 3103 } 3104 return NULL; 3105 } 3106 3107 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3108 size_t align, unsigned long flags, void (*ctor)(void *)) 3109 { 3110 struct kmem_cache *s; 3111 3112 down_write(&slub_lock); 3113 s = find_mergeable(size, align, flags, name, ctor); 3114 if (s) { 3115 int cpu; 3116 3117 s->refcount++; 3118 /* 3119 * Adjust the object sizes so that we clear 3120 * the complete object on kzalloc. 3121 */ 3122 s->objsize = max(s->objsize, (int)size); 3123 3124 /* 3125 * And then we need to update the object size in the 3126 * per cpu structures 3127 */ 3128 for_each_online_cpu(cpu) 3129 get_cpu_slab(s, cpu)->objsize = s->objsize; 3130 3131 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3132 up_write(&slub_lock); 3133 3134 if (sysfs_slab_alias(s, name)) { 3135 down_write(&slub_lock); 3136 s->refcount--; 3137 up_write(&slub_lock); 3138 goto err; 3139 } 3140 return s; 3141 } 3142 3143 s = kmalloc(kmem_size, GFP_KERNEL); 3144 if (s) { 3145 if (kmem_cache_open(s, GFP_KERNEL, name, 3146 size, align, flags, ctor)) { 3147 list_add(&s->list, &slab_caches); 3148 up_write(&slub_lock); 3149 if (sysfs_slab_add(s)) { 3150 down_write(&slub_lock); 3151 list_del(&s->list); 3152 up_write(&slub_lock); 3153 kfree(s); 3154 goto err; 3155 } 3156 return s; 3157 } 3158 kfree(s); 3159 } 3160 up_write(&slub_lock); 3161 3162 err: 3163 if (flags & SLAB_PANIC) 3164 panic("Cannot create slabcache %s\n", name); 3165 else 3166 s = NULL; 3167 return s; 3168 } 3169 EXPORT_SYMBOL(kmem_cache_create); 3170 3171 #ifdef CONFIG_SMP 3172 /* 3173 * Use the cpu notifier to insure that the cpu slabs are flushed when 3174 * necessary. 3175 */ 3176 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3177 unsigned long action, void *hcpu) 3178 { 3179 long cpu = (long)hcpu; 3180 struct kmem_cache *s; 3181 unsigned long flags; 3182 3183 switch (action) { 3184 case CPU_UP_PREPARE: 3185 case CPU_UP_PREPARE_FROZEN: 3186 init_alloc_cpu_cpu(cpu); 3187 down_read(&slub_lock); 3188 list_for_each_entry(s, &slab_caches, list) 3189 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3190 GFP_KERNEL); 3191 up_read(&slub_lock); 3192 break; 3193 3194 case CPU_UP_CANCELED: 3195 case CPU_UP_CANCELED_FROZEN: 3196 case CPU_DEAD: 3197 case CPU_DEAD_FROZEN: 3198 down_read(&slub_lock); 3199 list_for_each_entry(s, &slab_caches, list) { 3200 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3201 3202 local_irq_save(flags); 3203 __flush_cpu_slab(s, cpu); 3204 local_irq_restore(flags); 3205 free_kmem_cache_cpu(c, cpu); 3206 s->cpu_slab[cpu] = NULL; 3207 } 3208 up_read(&slub_lock); 3209 break; 3210 default: 3211 break; 3212 } 3213 return NOTIFY_OK; 3214 } 3215 3216 static struct notifier_block __cpuinitdata slab_notifier = { 3217 .notifier_call = slab_cpuup_callback 3218 }; 3219 3220 #endif 3221 3222 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3223 { 3224 struct kmem_cache *s; 3225 3226 if (unlikely(size > PAGE_SIZE)) 3227 return kmalloc_large(size, gfpflags); 3228 3229 s = get_slab(size, gfpflags); 3230 3231 if (unlikely(ZERO_OR_NULL_PTR(s))) 3232 return s; 3233 3234 return slab_alloc(s, gfpflags, -1, caller); 3235 } 3236 3237 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3238 int node, unsigned long caller) 3239 { 3240 struct kmem_cache *s; 3241 3242 if (unlikely(size > PAGE_SIZE)) 3243 return kmalloc_large_node(size, gfpflags, node); 3244 3245 s = get_slab(size, gfpflags); 3246 3247 if (unlikely(ZERO_OR_NULL_PTR(s))) 3248 return s; 3249 3250 return slab_alloc(s, gfpflags, node, caller); 3251 } 3252 3253 #ifdef CONFIG_SLUB_DEBUG 3254 static unsigned long count_partial(struct kmem_cache_node *n, 3255 int (*get_count)(struct page *)) 3256 { 3257 unsigned long flags; 3258 unsigned long x = 0; 3259 struct page *page; 3260 3261 spin_lock_irqsave(&n->list_lock, flags); 3262 list_for_each_entry(page, &n->partial, lru) 3263 x += get_count(page); 3264 spin_unlock_irqrestore(&n->list_lock, flags); 3265 return x; 3266 } 3267 3268 static int count_inuse(struct page *page) 3269 { 3270 return page->inuse; 3271 } 3272 3273 static int count_total(struct page *page) 3274 { 3275 return page->objects; 3276 } 3277 3278 static int count_free(struct page *page) 3279 { 3280 return page->objects - page->inuse; 3281 } 3282 3283 static int validate_slab(struct kmem_cache *s, struct page *page, 3284 unsigned long *map) 3285 { 3286 void *p; 3287 void *addr = page_address(page); 3288 3289 if (!check_slab(s, page) || 3290 !on_freelist(s, page, NULL)) 3291 return 0; 3292 3293 /* Now we know that a valid freelist exists */ 3294 bitmap_zero(map, page->objects); 3295 3296 for_each_free_object(p, s, page->freelist) { 3297 set_bit(slab_index(p, s, addr), map); 3298 if (!check_object(s, page, p, 0)) 3299 return 0; 3300 } 3301 3302 for_each_object(p, s, addr, page->objects) 3303 if (!test_bit(slab_index(p, s, addr), map)) 3304 if (!check_object(s, page, p, 1)) 3305 return 0; 3306 return 1; 3307 } 3308 3309 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3310 unsigned long *map) 3311 { 3312 if (slab_trylock(page)) { 3313 validate_slab(s, page, map); 3314 slab_unlock(page); 3315 } else 3316 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3317 s->name, page); 3318 3319 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3320 if (!PageSlubDebug(page)) 3321 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3322 "on slab 0x%p\n", s->name, page); 3323 } else { 3324 if (PageSlubDebug(page)) 3325 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3326 "slab 0x%p\n", s->name, page); 3327 } 3328 } 3329 3330 static int validate_slab_node(struct kmem_cache *s, 3331 struct kmem_cache_node *n, unsigned long *map) 3332 { 3333 unsigned long count = 0; 3334 struct page *page; 3335 unsigned long flags; 3336 3337 spin_lock_irqsave(&n->list_lock, flags); 3338 3339 list_for_each_entry(page, &n->partial, lru) { 3340 validate_slab_slab(s, page, map); 3341 count++; 3342 } 3343 if (count != n->nr_partial) 3344 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3345 "counter=%ld\n", s->name, count, n->nr_partial); 3346 3347 if (!(s->flags & SLAB_STORE_USER)) 3348 goto out; 3349 3350 list_for_each_entry(page, &n->full, lru) { 3351 validate_slab_slab(s, page, map); 3352 count++; 3353 } 3354 if (count != atomic_long_read(&n->nr_slabs)) 3355 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3356 "counter=%ld\n", s->name, count, 3357 atomic_long_read(&n->nr_slabs)); 3358 3359 out: 3360 spin_unlock_irqrestore(&n->list_lock, flags); 3361 return count; 3362 } 3363 3364 static long validate_slab_cache(struct kmem_cache *s) 3365 { 3366 int node; 3367 unsigned long count = 0; 3368 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3369 sizeof(unsigned long), GFP_KERNEL); 3370 3371 if (!map) 3372 return -ENOMEM; 3373 3374 flush_all(s); 3375 for_each_node_state(node, N_NORMAL_MEMORY) { 3376 struct kmem_cache_node *n = get_node(s, node); 3377 3378 count += validate_slab_node(s, n, map); 3379 } 3380 kfree(map); 3381 return count; 3382 } 3383 3384 #ifdef SLUB_RESILIENCY_TEST 3385 static void resiliency_test(void) 3386 { 3387 u8 *p; 3388 3389 printk(KERN_ERR "SLUB resiliency testing\n"); 3390 printk(KERN_ERR "-----------------------\n"); 3391 printk(KERN_ERR "A. Corruption after allocation\n"); 3392 3393 p = kzalloc(16, GFP_KERNEL); 3394 p[16] = 0x12; 3395 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3396 " 0x12->0x%p\n\n", p + 16); 3397 3398 validate_slab_cache(kmalloc_caches + 4); 3399 3400 /* Hmmm... The next two are dangerous */ 3401 p = kzalloc(32, GFP_KERNEL); 3402 p[32 + sizeof(void *)] = 0x34; 3403 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3404 " 0x34 -> -0x%p\n", p); 3405 printk(KERN_ERR 3406 "If allocated object is overwritten then not detectable\n\n"); 3407 3408 validate_slab_cache(kmalloc_caches + 5); 3409 p = kzalloc(64, GFP_KERNEL); 3410 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3411 *p = 0x56; 3412 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3413 p); 3414 printk(KERN_ERR 3415 "If allocated object is overwritten then not detectable\n\n"); 3416 validate_slab_cache(kmalloc_caches + 6); 3417 3418 printk(KERN_ERR "\nB. Corruption after free\n"); 3419 p = kzalloc(128, GFP_KERNEL); 3420 kfree(p); 3421 *p = 0x78; 3422 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3423 validate_slab_cache(kmalloc_caches + 7); 3424 3425 p = kzalloc(256, GFP_KERNEL); 3426 kfree(p); 3427 p[50] = 0x9a; 3428 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3429 p); 3430 validate_slab_cache(kmalloc_caches + 8); 3431 3432 p = kzalloc(512, GFP_KERNEL); 3433 kfree(p); 3434 p[512] = 0xab; 3435 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3436 validate_slab_cache(kmalloc_caches + 9); 3437 } 3438 #else 3439 static void resiliency_test(void) {}; 3440 #endif 3441 3442 /* 3443 * Generate lists of code addresses where slabcache objects are allocated 3444 * and freed. 3445 */ 3446 3447 struct location { 3448 unsigned long count; 3449 unsigned long addr; 3450 long long sum_time; 3451 long min_time; 3452 long max_time; 3453 long min_pid; 3454 long max_pid; 3455 DECLARE_BITMAP(cpus, NR_CPUS); 3456 nodemask_t nodes; 3457 }; 3458 3459 struct loc_track { 3460 unsigned long max; 3461 unsigned long count; 3462 struct location *loc; 3463 }; 3464 3465 static void free_loc_track(struct loc_track *t) 3466 { 3467 if (t->max) 3468 free_pages((unsigned long)t->loc, 3469 get_order(sizeof(struct location) * t->max)); 3470 } 3471 3472 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3473 { 3474 struct location *l; 3475 int order; 3476 3477 order = get_order(sizeof(struct location) * max); 3478 3479 l = (void *)__get_free_pages(flags, order); 3480 if (!l) 3481 return 0; 3482 3483 if (t->count) { 3484 memcpy(l, t->loc, sizeof(struct location) * t->count); 3485 free_loc_track(t); 3486 } 3487 t->max = max; 3488 t->loc = l; 3489 return 1; 3490 } 3491 3492 static int add_location(struct loc_track *t, struct kmem_cache *s, 3493 const struct track *track) 3494 { 3495 long start, end, pos; 3496 struct location *l; 3497 unsigned long caddr; 3498 unsigned long age = jiffies - track->when; 3499 3500 start = -1; 3501 end = t->count; 3502 3503 for ( ; ; ) { 3504 pos = start + (end - start + 1) / 2; 3505 3506 /* 3507 * There is nothing at "end". If we end up there 3508 * we need to add something to before end. 3509 */ 3510 if (pos == end) 3511 break; 3512 3513 caddr = t->loc[pos].addr; 3514 if (track->addr == caddr) { 3515 3516 l = &t->loc[pos]; 3517 l->count++; 3518 if (track->when) { 3519 l->sum_time += age; 3520 if (age < l->min_time) 3521 l->min_time = age; 3522 if (age > l->max_time) 3523 l->max_time = age; 3524 3525 if (track->pid < l->min_pid) 3526 l->min_pid = track->pid; 3527 if (track->pid > l->max_pid) 3528 l->max_pid = track->pid; 3529 3530 cpumask_set_cpu(track->cpu, 3531 to_cpumask(l->cpus)); 3532 } 3533 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3534 return 1; 3535 } 3536 3537 if (track->addr < caddr) 3538 end = pos; 3539 else 3540 start = pos; 3541 } 3542 3543 /* 3544 * Not found. Insert new tracking element. 3545 */ 3546 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3547 return 0; 3548 3549 l = t->loc + pos; 3550 if (pos < t->count) 3551 memmove(l + 1, l, 3552 (t->count - pos) * sizeof(struct location)); 3553 t->count++; 3554 l->count = 1; 3555 l->addr = track->addr; 3556 l->sum_time = age; 3557 l->min_time = age; 3558 l->max_time = age; 3559 l->min_pid = track->pid; 3560 l->max_pid = track->pid; 3561 cpumask_clear(to_cpumask(l->cpus)); 3562 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3563 nodes_clear(l->nodes); 3564 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3565 return 1; 3566 } 3567 3568 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3569 struct page *page, enum track_item alloc) 3570 { 3571 void *addr = page_address(page); 3572 DECLARE_BITMAP(map, page->objects); 3573 void *p; 3574 3575 bitmap_zero(map, page->objects); 3576 for_each_free_object(p, s, page->freelist) 3577 set_bit(slab_index(p, s, addr), map); 3578 3579 for_each_object(p, s, addr, page->objects) 3580 if (!test_bit(slab_index(p, s, addr), map)) 3581 add_location(t, s, get_track(s, p, alloc)); 3582 } 3583 3584 static int list_locations(struct kmem_cache *s, char *buf, 3585 enum track_item alloc) 3586 { 3587 int len = 0; 3588 unsigned long i; 3589 struct loc_track t = { 0, 0, NULL }; 3590 int node; 3591 3592 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3593 GFP_TEMPORARY)) 3594 return sprintf(buf, "Out of memory\n"); 3595 3596 /* Push back cpu slabs */ 3597 flush_all(s); 3598 3599 for_each_node_state(node, N_NORMAL_MEMORY) { 3600 struct kmem_cache_node *n = get_node(s, node); 3601 unsigned long flags; 3602 struct page *page; 3603 3604 if (!atomic_long_read(&n->nr_slabs)) 3605 continue; 3606 3607 spin_lock_irqsave(&n->list_lock, flags); 3608 list_for_each_entry(page, &n->partial, lru) 3609 process_slab(&t, s, page, alloc); 3610 list_for_each_entry(page, &n->full, lru) 3611 process_slab(&t, s, page, alloc); 3612 spin_unlock_irqrestore(&n->list_lock, flags); 3613 } 3614 3615 for (i = 0; i < t.count; i++) { 3616 struct location *l = &t.loc[i]; 3617 3618 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3619 break; 3620 len += sprintf(buf + len, "%7ld ", l->count); 3621 3622 if (l->addr) 3623 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3624 else 3625 len += sprintf(buf + len, "<not-available>"); 3626 3627 if (l->sum_time != l->min_time) { 3628 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3629 l->min_time, 3630 (long)div_u64(l->sum_time, l->count), 3631 l->max_time); 3632 } else 3633 len += sprintf(buf + len, " age=%ld", 3634 l->min_time); 3635 3636 if (l->min_pid != l->max_pid) 3637 len += sprintf(buf + len, " pid=%ld-%ld", 3638 l->min_pid, l->max_pid); 3639 else 3640 len += sprintf(buf + len, " pid=%ld", 3641 l->min_pid); 3642 3643 if (num_online_cpus() > 1 && 3644 !cpumask_empty(to_cpumask(l->cpus)) && 3645 len < PAGE_SIZE - 60) { 3646 len += sprintf(buf + len, " cpus="); 3647 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3648 to_cpumask(l->cpus)); 3649 } 3650 3651 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3652 len < PAGE_SIZE - 60) { 3653 len += sprintf(buf + len, " nodes="); 3654 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3655 l->nodes); 3656 } 3657 3658 len += sprintf(buf + len, "\n"); 3659 } 3660 3661 free_loc_track(&t); 3662 if (!t.count) 3663 len += sprintf(buf, "No data\n"); 3664 return len; 3665 } 3666 3667 enum slab_stat_type { 3668 SL_ALL, /* All slabs */ 3669 SL_PARTIAL, /* Only partially allocated slabs */ 3670 SL_CPU, /* Only slabs used for cpu caches */ 3671 SL_OBJECTS, /* Determine allocated objects not slabs */ 3672 SL_TOTAL /* Determine object capacity not slabs */ 3673 }; 3674 3675 #define SO_ALL (1 << SL_ALL) 3676 #define SO_PARTIAL (1 << SL_PARTIAL) 3677 #define SO_CPU (1 << SL_CPU) 3678 #define SO_OBJECTS (1 << SL_OBJECTS) 3679 #define SO_TOTAL (1 << SL_TOTAL) 3680 3681 static ssize_t show_slab_objects(struct kmem_cache *s, 3682 char *buf, unsigned long flags) 3683 { 3684 unsigned long total = 0; 3685 int node; 3686 int x; 3687 unsigned long *nodes; 3688 unsigned long *per_cpu; 3689 3690 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3691 if (!nodes) 3692 return -ENOMEM; 3693 per_cpu = nodes + nr_node_ids; 3694 3695 if (flags & SO_CPU) { 3696 int cpu; 3697 3698 for_each_possible_cpu(cpu) { 3699 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3700 3701 if (!c || c->node < 0) 3702 continue; 3703 3704 if (c->page) { 3705 if (flags & SO_TOTAL) 3706 x = c->page->objects; 3707 else if (flags & SO_OBJECTS) 3708 x = c->page->inuse; 3709 else 3710 x = 1; 3711 3712 total += x; 3713 nodes[c->node] += x; 3714 } 3715 per_cpu[c->node]++; 3716 } 3717 } 3718 3719 if (flags & SO_ALL) { 3720 for_each_node_state(node, N_NORMAL_MEMORY) { 3721 struct kmem_cache_node *n = get_node(s, node); 3722 3723 if (flags & SO_TOTAL) 3724 x = atomic_long_read(&n->total_objects); 3725 else if (flags & SO_OBJECTS) 3726 x = atomic_long_read(&n->total_objects) - 3727 count_partial(n, count_free); 3728 3729 else 3730 x = atomic_long_read(&n->nr_slabs); 3731 total += x; 3732 nodes[node] += x; 3733 } 3734 3735 } else if (flags & SO_PARTIAL) { 3736 for_each_node_state(node, N_NORMAL_MEMORY) { 3737 struct kmem_cache_node *n = get_node(s, node); 3738 3739 if (flags & SO_TOTAL) 3740 x = count_partial(n, count_total); 3741 else if (flags & SO_OBJECTS) 3742 x = count_partial(n, count_inuse); 3743 else 3744 x = n->nr_partial; 3745 total += x; 3746 nodes[node] += x; 3747 } 3748 } 3749 x = sprintf(buf, "%lu", total); 3750 #ifdef CONFIG_NUMA 3751 for_each_node_state(node, N_NORMAL_MEMORY) 3752 if (nodes[node]) 3753 x += sprintf(buf + x, " N%d=%lu", 3754 node, nodes[node]); 3755 #endif 3756 kfree(nodes); 3757 return x + sprintf(buf + x, "\n"); 3758 } 3759 3760 static int any_slab_objects(struct kmem_cache *s) 3761 { 3762 int node; 3763 3764 for_each_online_node(node) { 3765 struct kmem_cache_node *n = get_node(s, node); 3766 3767 if (!n) 3768 continue; 3769 3770 if (atomic_long_read(&n->total_objects)) 3771 return 1; 3772 } 3773 return 0; 3774 } 3775 3776 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3777 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3778 3779 struct slab_attribute { 3780 struct attribute attr; 3781 ssize_t (*show)(struct kmem_cache *s, char *buf); 3782 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3783 }; 3784 3785 #define SLAB_ATTR_RO(_name) \ 3786 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3787 3788 #define SLAB_ATTR(_name) \ 3789 static struct slab_attribute _name##_attr = \ 3790 __ATTR(_name, 0644, _name##_show, _name##_store) 3791 3792 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3793 { 3794 return sprintf(buf, "%d\n", s->size); 3795 } 3796 SLAB_ATTR_RO(slab_size); 3797 3798 static ssize_t align_show(struct kmem_cache *s, char *buf) 3799 { 3800 return sprintf(buf, "%d\n", s->align); 3801 } 3802 SLAB_ATTR_RO(align); 3803 3804 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3805 { 3806 return sprintf(buf, "%d\n", s->objsize); 3807 } 3808 SLAB_ATTR_RO(object_size); 3809 3810 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3811 { 3812 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3813 } 3814 SLAB_ATTR_RO(objs_per_slab); 3815 3816 static ssize_t order_store(struct kmem_cache *s, 3817 const char *buf, size_t length) 3818 { 3819 unsigned long order; 3820 int err; 3821 3822 err = strict_strtoul(buf, 10, &order); 3823 if (err) 3824 return err; 3825 3826 if (order > slub_max_order || order < slub_min_order) 3827 return -EINVAL; 3828 3829 calculate_sizes(s, order); 3830 return length; 3831 } 3832 3833 static ssize_t order_show(struct kmem_cache *s, char *buf) 3834 { 3835 return sprintf(buf, "%d\n", oo_order(s->oo)); 3836 } 3837 SLAB_ATTR(order); 3838 3839 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3840 { 3841 if (s->ctor) { 3842 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3843 3844 return n + sprintf(buf + n, "\n"); 3845 } 3846 return 0; 3847 } 3848 SLAB_ATTR_RO(ctor); 3849 3850 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3851 { 3852 return sprintf(buf, "%d\n", s->refcount - 1); 3853 } 3854 SLAB_ATTR_RO(aliases); 3855 3856 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3857 { 3858 return show_slab_objects(s, buf, SO_ALL); 3859 } 3860 SLAB_ATTR_RO(slabs); 3861 3862 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3863 { 3864 return show_slab_objects(s, buf, SO_PARTIAL); 3865 } 3866 SLAB_ATTR_RO(partial); 3867 3868 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3869 { 3870 return show_slab_objects(s, buf, SO_CPU); 3871 } 3872 SLAB_ATTR_RO(cpu_slabs); 3873 3874 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3875 { 3876 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3877 } 3878 SLAB_ATTR_RO(objects); 3879 3880 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3881 { 3882 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3883 } 3884 SLAB_ATTR_RO(objects_partial); 3885 3886 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3887 { 3888 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3889 } 3890 SLAB_ATTR_RO(total_objects); 3891 3892 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3893 { 3894 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3895 } 3896 3897 static ssize_t sanity_checks_store(struct kmem_cache *s, 3898 const char *buf, size_t length) 3899 { 3900 s->flags &= ~SLAB_DEBUG_FREE; 3901 if (buf[0] == '1') 3902 s->flags |= SLAB_DEBUG_FREE; 3903 return length; 3904 } 3905 SLAB_ATTR(sanity_checks); 3906 3907 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3908 { 3909 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3910 } 3911 3912 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3913 size_t length) 3914 { 3915 s->flags &= ~SLAB_TRACE; 3916 if (buf[0] == '1') 3917 s->flags |= SLAB_TRACE; 3918 return length; 3919 } 3920 SLAB_ATTR(trace); 3921 3922 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3923 { 3924 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3925 } 3926 3927 static ssize_t reclaim_account_store(struct kmem_cache *s, 3928 const char *buf, size_t length) 3929 { 3930 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3931 if (buf[0] == '1') 3932 s->flags |= SLAB_RECLAIM_ACCOUNT; 3933 return length; 3934 } 3935 SLAB_ATTR(reclaim_account); 3936 3937 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3938 { 3939 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3940 } 3941 SLAB_ATTR_RO(hwcache_align); 3942 3943 #ifdef CONFIG_ZONE_DMA 3944 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3945 { 3946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3947 } 3948 SLAB_ATTR_RO(cache_dma); 3949 #endif 3950 3951 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3952 { 3953 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3954 } 3955 SLAB_ATTR_RO(destroy_by_rcu); 3956 3957 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3958 { 3959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3960 } 3961 3962 static ssize_t red_zone_store(struct kmem_cache *s, 3963 const char *buf, size_t length) 3964 { 3965 if (any_slab_objects(s)) 3966 return -EBUSY; 3967 3968 s->flags &= ~SLAB_RED_ZONE; 3969 if (buf[0] == '1') 3970 s->flags |= SLAB_RED_ZONE; 3971 calculate_sizes(s, -1); 3972 return length; 3973 } 3974 SLAB_ATTR(red_zone); 3975 3976 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3977 { 3978 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3979 } 3980 3981 static ssize_t poison_store(struct kmem_cache *s, 3982 const char *buf, size_t length) 3983 { 3984 if (any_slab_objects(s)) 3985 return -EBUSY; 3986 3987 s->flags &= ~SLAB_POISON; 3988 if (buf[0] == '1') 3989 s->flags |= SLAB_POISON; 3990 calculate_sizes(s, -1); 3991 return length; 3992 } 3993 SLAB_ATTR(poison); 3994 3995 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3996 { 3997 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3998 } 3999 4000 static ssize_t store_user_store(struct kmem_cache *s, 4001 const char *buf, size_t length) 4002 { 4003 if (any_slab_objects(s)) 4004 return -EBUSY; 4005 4006 s->flags &= ~SLAB_STORE_USER; 4007 if (buf[0] == '1') 4008 s->flags |= SLAB_STORE_USER; 4009 calculate_sizes(s, -1); 4010 return length; 4011 } 4012 SLAB_ATTR(store_user); 4013 4014 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4015 { 4016 return 0; 4017 } 4018 4019 static ssize_t validate_store(struct kmem_cache *s, 4020 const char *buf, size_t length) 4021 { 4022 int ret = -EINVAL; 4023 4024 if (buf[0] == '1') { 4025 ret = validate_slab_cache(s); 4026 if (ret >= 0) 4027 ret = length; 4028 } 4029 return ret; 4030 } 4031 SLAB_ATTR(validate); 4032 4033 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4034 { 4035 return 0; 4036 } 4037 4038 static ssize_t shrink_store(struct kmem_cache *s, 4039 const char *buf, size_t length) 4040 { 4041 if (buf[0] == '1') { 4042 int rc = kmem_cache_shrink(s); 4043 4044 if (rc) 4045 return rc; 4046 } else 4047 return -EINVAL; 4048 return length; 4049 } 4050 SLAB_ATTR(shrink); 4051 4052 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4053 { 4054 if (!(s->flags & SLAB_STORE_USER)) 4055 return -ENOSYS; 4056 return list_locations(s, buf, TRACK_ALLOC); 4057 } 4058 SLAB_ATTR_RO(alloc_calls); 4059 4060 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4061 { 4062 if (!(s->flags & SLAB_STORE_USER)) 4063 return -ENOSYS; 4064 return list_locations(s, buf, TRACK_FREE); 4065 } 4066 SLAB_ATTR_RO(free_calls); 4067 4068 #ifdef CONFIG_NUMA 4069 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4070 { 4071 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4072 } 4073 4074 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4075 const char *buf, size_t length) 4076 { 4077 unsigned long ratio; 4078 int err; 4079 4080 err = strict_strtoul(buf, 10, &ratio); 4081 if (err) 4082 return err; 4083 4084 if (ratio <= 100) 4085 s->remote_node_defrag_ratio = ratio * 10; 4086 4087 return length; 4088 } 4089 SLAB_ATTR(remote_node_defrag_ratio); 4090 #endif 4091 4092 #ifdef CONFIG_SLUB_STATS 4093 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4094 { 4095 unsigned long sum = 0; 4096 int cpu; 4097 int len; 4098 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4099 4100 if (!data) 4101 return -ENOMEM; 4102 4103 for_each_online_cpu(cpu) { 4104 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4105 4106 data[cpu] = x; 4107 sum += x; 4108 } 4109 4110 len = sprintf(buf, "%lu", sum); 4111 4112 #ifdef CONFIG_SMP 4113 for_each_online_cpu(cpu) { 4114 if (data[cpu] && len < PAGE_SIZE - 20) 4115 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4116 } 4117 #endif 4118 kfree(data); 4119 return len + sprintf(buf + len, "\n"); 4120 } 4121 4122 #define STAT_ATTR(si, text) \ 4123 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4124 { \ 4125 return show_stat(s, buf, si); \ 4126 } \ 4127 SLAB_ATTR_RO(text); \ 4128 4129 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4130 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4131 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4132 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4133 STAT_ATTR(FREE_FROZEN, free_frozen); 4134 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4135 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4136 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4137 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4138 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4139 STAT_ATTR(FREE_SLAB, free_slab); 4140 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4141 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4142 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4143 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4144 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4145 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4146 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4147 #endif 4148 4149 static struct attribute *slab_attrs[] = { 4150 &slab_size_attr.attr, 4151 &object_size_attr.attr, 4152 &objs_per_slab_attr.attr, 4153 &order_attr.attr, 4154 &objects_attr.attr, 4155 &objects_partial_attr.attr, 4156 &total_objects_attr.attr, 4157 &slabs_attr.attr, 4158 &partial_attr.attr, 4159 &cpu_slabs_attr.attr, 4160 &ctor_attr.attr, 4161 &aliases_attr.attr, 4162 &align_attr.attr, 4163 &sanity_checks_attr.attr, 4164 &trace_attr.attr, 4165 &hwcache_align_attr.attr, 4166 &reclaim_account_attr.attr, 4167 &destroy_by_rcu_attr.attr, 4168 &red_zone_attr.attr, 4169 &poison_attr.attr, 4170 &store_user_attr.attr, 4171 &validate_attr.attr, 4172 &shrink_attr.attr, 4173 &alloc_calls_attr.attr, 4174 &free_calls_attr.attr, 4175 #ifdef CONFIG_ZONE_DMA 4176 &cache_dma_attr.attr, 4177 #endif 4178 #ifdef CONFIG_NUMA 4179 &remote_node_defrag_ratio_attr.attr, 4180 #endif 4181 #ifdef CONFIG_SLUB_STATS 4182 &alloc_fastpath_attr.attr, 4183 &alloc_slowpath_attr.attr, 4184 &free_fastpath_attr.attr, 4185 &free_slowpath_attr.attr, 4186 &free_frozen_attr.attr, 4187 &free_add_partial_attr.attr, 4188 &free_remove_partial_attr.attr, 4189 &alloc_from_partial_attr.attr, 4190 &alloc_slab_attr.attr, 4191 &alloc_refill_attr.attr, 4192 &free_slab_attr.attr, 4193 &cpuslab_flush_attr.attr, 4194 &deactivate_full_attr.attr, 4195 &deactivate_empty_attr.attr, 4196 &deactivate_to_head_attr.attr, 4197 &deactivate_to_tail_attr.attr, 4198 &deactivate_remote_frees_attr.attr, 4199 &order_fallback_attr.attr, 4200 #endif 4201 NULL 4202 }; 4203 4204 static struct attribute_group slab_attr_group = { 4205 .attrs = slab_attrs, 4206 }; 4207 4208 static ssize_t slab_attr_show(struct kobject *kobj, 4209 struct attribute *attr, 4210 char *buf) 4211 { 4212 struct slab_attribute *attribute; 4213 struct kmem_cache *s; 4214 int err; 4215 4216 attribute = to_slab_attr(attr); 4217 s = to_slab(kobj); 4218 4219 if (!attribute->show) 4220 return -EIO; 4221 4222 err = attribute->show(s, buf); 4223 4224 return err; 4225 } 4226 4227 static ssize_t slab_attr_store(struct kobject *kobj, 4228 struct attribute *attr, 4229 const char *buf, size_t len) 4230 { 4231 struct slab_attribute *attribute; 4232 struct kmem_cache *s; 4233 int err; 4234 4235 attribute = to_slab_attr(attr); 4236 s = to_slab(kobj); 4237 4238 if (!attribute->store) 4239 return -EIO; 4240 4241 err = attribute->store(s, buf, len); 4242 4243 return err; 4244 } 4245 4246 static void kmem_cache_release(struct kobject *kobj) 4247 { 4248 struct kmem_cache *s = to_slab(kobj); 4249 4250 kfree(s); 4251 } 4252 4253 static struct sysfs_ops slab_sysfs_ops = { 4254 .show = slab_attr_show, 4255 .store = slab_attr_store, 4256 }; 4257 4258 static struct kobj_type slab_ktype = { 4259 .sysfs_ops = &slab_sysfs_ops, 4260 .release = kmem_cache_release 4261 }; 4262 4263 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4264 { 4265 struct kobj_type *ktype = get_ktype(kobj); 4266 4267 if (ktype == &slab_ktype) 4268 return 1; 4269 return 0; 4270 } 4271 4272 static struct kset_uevent_ops slab_uevent_ops = { 4273 .filter = uevent_filter, 4274 }; 4275 4276 static struct kset *slab_kset; 4277 4278 #define ID_STR_LENGTH 64 4279 4280 /* Create a unique string id for a slab cache: 4281 * 4282 * Format :[flags-]size 4283 */ 4284 static char *create_unique_id(struct kmem_cache *s) 4285 { 4286 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4287 char *p = name; 4288 4289 BUG_ON(!name); 4290 4291 *p++ = ':'; 4292 /* 4293 * First flags affecting slabcache operations. We will only 4294 * get here for aliasable slabs so we do not need to support 4295 * too many flags. The flags here must cover all flags that 4296 * are matched during merging to guarantee that the id is 4297 * unique. 4298 */ 4299 if (s->flags & SLAB_CACHE_DMA) 4300 *p++ = 'd'; 4301 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4302 *p++ = 'a'; 4303 if (s->flags & SLAB_DEBUG_FREE) 4304 *p++ = 'F'; 4305 if (p != name + 1) 4306 *p++ = '-'; 4307 p += sprintf(p, "%07d", s->size); 4308 BUG_ON(p > name + ID_STR_LENGTH - 1); 4309 return name; 4310 } 4311 4312 static int sysfs_slab_add(struct kmem_cache *s) 4313 { 4314 int err; 4315 const char *name; 4316 int unmergeable; 4317 4318 if (slab_state < SYSFS) 4319 /* Defer until later */ 4320 return 0; 4321 4322 unmergeable = slab_unmergeable(s); 4323 if (unmergeable) { 4324 /* 4325 * Slabcache can never be merged so we can use the name proper. 4326 * This is typically the case for debug situations. In that 4327 * case we can catch duplicate names easily. 4328 */ 4329 sysfs_remove_link(&slab_kset->kobj, s->name); 4330 name = s->name; 4331 } else { 4332 /* 4333 * Create a unique name for the slab as a target 4334 * for the symlinks. 4335 */ 4336 name = create_unique_id(s); 4337 } 4338 4339 s->kobj.kset = slab_kset; 4340 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4341 if (err) { 4342 kobject_put(&s->kobj); 4343 return err; 4344 } 4345 4346 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4347 if (err) 4348 return err; 4349 kobject_uevent(&s->kobj, KOBJ_ADD); 4350 if (!unmergeable) { 4351 /* Setup first alias */ 4352 sysfs_slab_alias(s, s->name); 4353 kfree(name); 4354 } 4355 return 0; 4356 } 4357 4358 static void sysfs_slab_remove(struct kmem_cache *s) 4359 { 4360 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4361 kobject_del(&s->kobj); 4362 kobject_put(&s->kobj); 4363 } 4364 4365 /* 4366 * Need to buffer aliases during bootup until sysfs becomes 4367 * available lest we lose that information. 4368 */ 4369 struct saved_alias { 4370 struct kmem_cache *s; 4371 const char *name; 4372 struct saved_alias *next; 4373 }; 4374 4375 static struct saved_alias *alias_list; 4376 4377 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4378 { 4379 struct saved_alias *al; 4380 4381 if (slab_state == SYSFS) { 4382 /* 4383 * If we have a leftover link then remove it. 4384 */ 4385 sysfs_remove_link(&slab_kset->kobj, name); 4386 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4387 } 4388 4389 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4390 if (!al) 4391 return -ENOMEM; 4392 4393 al->s = s; 4394 al->name = name; 4395 al->next = alias_list; 4396 alias_list = al; 4397 return 0; 4398 } 4399 4400 static int __init slab_sysfs_init(void) 4401 { 4402 struct kmem_cache *s; 4403 int err; 4404 4405 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4406 if (!slab_kset) { 4407 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4408 return -ENOSYS; 4409 } 4410 4411 slab_state = SYSFS; 4412 4413 list_for_each_entry(s, &slab_caches, list) { 4414 err = sysfs_slab_add(s); 4415 if (err) 4416 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4417 " to sysfs\n", s->name); 4418 } 4419 4420 while (alias_list) { 4421 struct saved_alias *al = alias_list; 4422 4423 alias_list = alias_list->next; 4424 err = sysfs_slab_alias(al->s, al->name); 4425 if (err) 4426 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4427 " %s to sysfs\n", s->name); 4428 kfree(al); 4429 } 4430 4431 resiliency_test(); 4432 return 0; 4433 } 4434 4435 __initcall(slab_sysfs_init); 4436 #endif 4437 4438 /* 4439 * The /proc/slabinfo ABI 4440 */ 4441 #ifdef CONFIG_SLABINFO 4442 static void print_slabinfo_header(struct seq_file *m) 4443 { 4444 seq_puts(m, "slabinfo - version: 2.1\n"); 4445 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4446 "<objperslab> <pagesperslab>"); 4447 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4448 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4449 seq_putc(m, '\n'); 4450 } 4451 4452 static void *s_start(struct seq_file *m, loff_t *pos) 4453 { 4454 loff_t n = *pos; 4455 4456 down_read(&slub_lock); 4457 if (!n) 4458 print_slabinfo_header(m); 4459 4460 return seq_list_start(&slab_caches, *pos); 4461 } 4462 4463 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4464 { 4465 return seq_list_next(p, &slab_caches, pos); 4466 } 4467 4468 static void s_stop(struct seq_file *m, void *p) 4469 { 4470 up_read(&slub_lock); 4471 } 4472 4473 static int s_show(struct seq_file *m, void *p) 4474 { 4475 unsigned long nr_partials = 0; 4476 unsigned long nr_slabs = 0; 4477 unsigned long nr_inuse = 0; 4478 unsigned long nr_objs = 0; 4479 unsigned long nr_free = 0; 4480 struct kmem_cache *s; 4481 int node; 4482 4483 s = list_entry(p, struct kmem_cache, list); 4484 4485 for_each_online_node(node) { 4486 struct kmem_cache_node *n = get_node(s, node); 4487 4488 if (!n) 4489 continue; 4490 4491 nr_partials += n->nr_partial; 4492 nr_slabs += atomic_long_read(&n->nr_slabs); 4493 nr_objs += atomic_long_read(&n->total_objects); 4494 nr_free += count_partial(n, count_free); 4495 } 4496 4497 nr_inuse = nr_objs - nr_free; 4498 4499 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4500 nr_objs, s->size, oo_objects(s->oo), 4501 (1 << oo_order(s->oo))); 4502 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4503 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4504 0UL); 4505 seq_putc(m, '\n'); 4506 return 0; 4507 } 4508 4509 static const struct seq_operations slabinfo_op = { 4510 .start = s_start, 4511 .next = s_next, 4512 .stop = s_stop, 4513 .show = s_show, 4514 }; 4515 4516 static int slabinfo_open(struct inode *inode, struct file *file) 4517 { 4518 return seq_open(file, &slabinfo_op); 4519 } 4520 4521 static const struct file_operations proc_slabinfo_operations = { 4522 .open = slabinfo_open, 4523 .read = seq_read, 4524 .llseek = seq_lseek, 4525 .release = seq_release, 4526 }; 4527 4528 static int __init slab_proc_init(void) 4529 { 4530 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4531 return 0; 4532 } 4533 module_init(slab_proc_init); 4534 #endif /* CONFIG_SLABINFO */ 4535