1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 #ifdef CONFIG_SMP 198 static struct notifier_block slab_notifier; 199 #endif 200 201 /* 202 * Tracking user of a slab. 203 */ 204 #define TRACK_ADDRS_COUNT 16 205 struct track { 206 unsigned long addr; /* Called from address */ 207 #ifdef CONFIG_STACKTRACE 208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 209 #endif 210 int cpu; /* Was running on cpu */ 211 int pid; /* Pid context */ 212 unsigned long when; /* When did the operation occur */ 213 }; 214 215 enum track_item { TRACK_ALLOC, TRACK_FREE }; 216 217 #ifdef CONFIG_SYSFS 218 static int sysfs_slab_add(struct kmem_cache *); 219 static int sysfs_slab_alias(struct kmem_cache *, const char *); 220 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /******************************************************************** 240 * Core slab cache functions 241 *******************************************************************/ 242 243 static inline void *get_freepointer(struct kmem_cache *s, void *object) 244 { 245 return *(void **)(object + s->offset); 246 } 247 248 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 249 { 250 prefetch(object + s->offset); 251 } 252 253 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 254 { 255 void *p; 256 257 if (!debug_pagealloc_enabled()) 258 return get_freepointer(s, object); 259 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 return p; 262 } 263 264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 265 { 266 *(void **)(object + s->offset) = fp; 267 } 268 269 /* Loop over all objects in a slab */ 270 #define for_each_object(__p, __s, __addr, __objects) \ 271 for (__p = fixup_red_left(__s, __addr); \ 272 __p < (__addr) + (__objects) * (__s)->size; \ 273 __p += (__s)->size) 274 275 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 277 __idx <= __objects; \ 278 __p += (__s)->size, __idx++) 279 280 /* Determine object index from a given position */ 281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 282 { 283 return (p - addr) / s->size; 284 } 285 286 static inline int order_objects(int order, unsigned long size, int reserved) 287 { 288 return ((PAGE_SIZE << order) - reserved) / size; 289 } 290 291 static inline struct kmem_cache_order_objects oo_make(int order, 292 unsigned long size, int reserved) 293 { 294 struct kmem_cache_order_objects x = { 295 (order << OO_SHIFT) + order_objects(order, size, reserved) 296 }; 297 298 return x; 299 } 300 301 static inline int oo_order(struct kmem_cache_order_objects x) 302 { 303 return x.x >> OO_SHIFT; 304 } 305 306 static inline int oo_objects(struct kmem_cache_order_objects x) 307 { 308 return x.x & OO_MASK; 309 } 310 311 /* 312 * Per slab locking using the pagelock 313 */ 314 static __always_inline void slab_lock(struct page *page) 315 { 316 VM_BUG_ON_PAGE(PageTail(page), page); 317 bit_spin_lock(PG_locked, &page->flags); 318 } 319 320 static __always_inline void slab_unlock(struct page *page) 321 { 322 VM_BUG_ON_PAGE(PageTail(page), page); 323 __bit_spin_unlock(PG_locked, &page->flags); 324 } 325 326 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 327 { 328 struct page tmp; 329 tmp.counters = counters_new; 330 /* 331 * page->counters can cover frozen/inuse/objects as well 332 * as page->_refcount. If we assign to ->counters directly 333 * we run the risk of losing updates to page->_refcount, so 334 * be careful and only assign to the fields we need. 335 */ 336 page->frozen = tmp.frozen; 337 page->inuse = tmp.inuse; 338 page->objects = tmp.objects; 339 } 340 341 /* Interrupts must be disabled (for the fallback code to work right) */ 342 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 343 void *freelist_old, unsigned long counters_old, 344 void *freelist_new, unsigned long counters_new, 345 const char *n) 346 { 347 VM_BUG_ON(!irqs_disabled()); 348 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 350 if (s->flags & __CMPXCHG_DOUBLE) { 351 if (cmpxchg_double(&page->freelist, &page->counters, 352 freelist_old, counters_old, 353 freelist_new, counters_new)) 354 return true; 355 } else 356 #endif 357 { 358 slab_lock(page); 359 if (page->freelist == freelist_old && 360 page->counters == counters_old) { 361 page->freelist = freelist_new; 362 set_page_slub_counters(page, counters_new); 363 slab_unlock(page); 364 return true; 365 } 366 slab_unlock(page); 367 } 368 369 cpu_relax(); 370 stat(s, CMPXCHG_DOUBLE_FAIL); 371 372 #ifdef SLUB_DEBUG_CMPXCHG 373 pr_info("%s %s: cmpxchg double redo ", n, s->name); 374 #endif 375 376 return false; 377 } 378 379 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 380 void *freelist_old, unsigned long counters_old, 381 void *freelist_new, unsigned long counters_new, 382 const char *n) 383 { 384 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 386 if (s->flags & __CMPXCHG_DOUBLE) { 387 if (cmpxchg_double(&page->freelist, &page->counters, 388 freelist_old, counters_old, 389 freelist_new, counters_new)) 390 return true; 391 } else 392 #endif 393 { 394 unsigned long flags; 395 396 local_irq_save(flags); 397 slab_lock(page); 398 if (page->freelist == freelist_old && 399 page->counters == counters_old) { 400 page->freelist = freelist_new; 401 set_page_slub_counters(page, counters_new); 402 slab_unlock(page); 403 local_irq_restore(flags); 404 return true; 405 } 406 slab_unlock(page); 407 local_irq_restore(flags); 408 } 409 410 cpu_relax(); 411 stat(s, CMPXCHG_DOUBLE_FAIL); 412 413 #ifdef SLUB_DEBUG_CMPXCHG 414 pr_info("%s %s: cmpxchg double redo ", n, s->name); 415 #endif 416 417 return false; 418 } 419 420 #ifdef CONFIG_SLUB_DEBUG 421 /* 422 * Determine a map of object in use on a page. 423 * 424 * Node listlock must be held to guarantee that the page does 425 * not vanish from under us. 426 */ 427 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 428 { 429 void *p; 430 void *addr = page_address(page); 431 432 for (p = page->freelist; p; p = get_freepointer(s, p)) 433 set_bit(slab_index(p, s, addr), map); 434 } 435 436 static inline int size_from_object(struct kmem_cache *s) 437 { 438 if (s->flags & SLAB_RED_ZONE) 439 return s->size - s->red_left_pad; 440 441 return s->size; 442 } 443 444 static inline void *restore_red_left(struct kmem_cache *s, void *p) 445 { 446 if (s->flags & SLAB_RED_ZONE) 447 p -= s->red_left_pad; 448 449 return p; 450 } 451 452 /* 453 * Debug settings: 454 */ 455 #if defined(CONFIG_SLUB_DEBUG_ON) 456 static int slub_debug = DEBUG_DEFAULT_FLAGS; 457 #elif defined(CONFIG_KASAN) 458 static int slub_debug = SLAB_STORE_USER; 459 #else 460 static int slub_debug; 461 #endif 462 463 static char *slub_debug_slabs; 464 static int disable_higher_order_debug; 465 466 /* 467 * slub is about to manipulate internal object metadata. This memory lies 468 * outside the range of the allocated object, so accessing it would normally 469 * be reported by kasan as a bounds error. metadata_access_enable() is used 470 * to tell kasan that these accesses are OK. 471 */ 472 static inline void metadata_access_enable(void) 473 { 474 kasan_disable_current(); 475 } 476 477 static inline void metadata_access_disable(void) 478 { 479 kasan_enable_current(); 480 } 481 482 /* 483 * Object debugging 484 */ 485 486 /* Verify that a pointer has an address that is valid within a slab page */ 487 static inline int check_valid_pointer(struct kmem_cache *s, 488 struct page *page, void *object) 489 { 490 void *base; 491 492 if (!object) 493 return 1; 494 495 base = page_address(page); 496 object = restore_red_left(s, object); 497 if (object < base || object >= base + page->objects * s->size || 498 (object - base) % s->size) { 499 return 0; 500 } 501 502 return 1; 503 } 504 505 static void print_section(char *text, u8 *addr, unsigned int length) 506 { 507 metadata_access_enable(); 508 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 509 length, 1); 510 metadata_access_disable(); 511 } 512 513 static struct track *get_track(struct kmem_cache *s, void *object, 514 enum track_item alloc) 515 { 516 struct track *p; 517 518 if (s->offset) 519 p = object + s->offset + sizeof(void *); 520 else 521 p = object + s->inuse; 522 523 return p + alloc; 524 } 525 526 static void set_track(struct kmem_cache *s, void *object, 527 enum track_item alloc, unsigned long addr) 528 { 529 struct track *p = get_track(s, object, alloc); 530 531 if (addr) { 532 #ifdef CONFIG_STACKTRACE 533 struct stack_trace trace; 534 int i; 535 536 trace.nr_entries = 0; 537 trace.max_entries = TRACK_ADDRS_COUNT; 538 trace.entries = p->addrs; 539 trace.skip = 3; 540 metadata_access_enable(); 541 save_stack_trace(&trace); 542 metadata_access_disable(); 543 544 /* See rant in lockdep.c */ 545 if (trace.nr_entries != 0 && 546 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 547 trace.nr_entries--; 548 549 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 550 p->addrs[i] = 0; 551 #endif 552 p->addr = addr; 553 p->cpu = smp_processor_id(); 554 p->pid = current->pid; 555 p->when = jiffies; 556 } else 557 memset(p, 0, sizeof(struct track)); 558 } 559 560 static void init_tracking(struct kmem_cache *s, void *object) 561 { 562 if (!(s->flags & SLAB_STORE_USER)) 563 return; 564 565 set_track(s, object, TRACK_FREE, 0UL); 566 set_track(s, object, TRACK_ALLOC, 0UL); 567 } 568 569 static void print_track(const char *s, struct track *t) 570 { 571 if (!t->addr) 572 return; 573 574 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 575 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 576 #ifdef CONFIG_STACKTRACE 577 { 578 int i; 579 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 580 if (t->addrs[i]) 581 pr_err("\t%pS\n", (void *)t->addrs[i]); 582 else 583 break; 584 } 585 #endif 586 } 587 588 static void print_tracking(struct kmem_cache *s, void *object) 589 { 590 if (!(s->flags & SLAB_STORE_USER)) 591 return; 592 593 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 594 print_track("Freed", get_track(s, object, TRACK_FREE)); 595 } 596 597 static void print_page_info(struct page *page) 598 { 599 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 600 page, page->objects, page->inuse, page->freelist, page->flags); 601 602 } 603 604 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 605 { 606 struct va_format vaf; 607 va_list args; 608 609 va_start(args, fmt); 610 vaf.fmt = fmt; 611 vaf.va = &args; 612 pr_err("=============================================================================\n"); 613 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 614 pr_err("-----------------------------------------------------------------------------\n\n"); 615 616 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 617 va_end(args); 618 } 619 620 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 621 { 622 struct va_format vaf; 623 va_list args; 624 625 va_start(args, fmt); 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 pr_err("FIX %s: %pV\n", s->name, &vaf); 629 va_end(args); 630 } 631 632 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 633 { 634 unsigned int off; /* Offset of last byte */ 635 u8 *addr = page_address(page); 636 637 print_tracking(s, p); 638 639 print_page_info(page); 640 641 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 642 p, p - addr, get_freepointer(s, p)); 643 644 if (s->flags & SLAB_RED_ZONE) 645 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad); 646 else if (p > addr + 16) 647 print_section("Bytes b4 ", p - 16, 16); 648 649 print_section("Object ", p, min_t(unsigned long, s->object_size, 650 PAGE_SIZE)); 651 if (s->flags & SLAB_RED_ZONE) 652 print_section("Redzone ", p + s->object_size, 653 s->inuse - s->object_size); 654 655 if (s->offset) 656 off = s->offset + sizeof(void *); 657 else 658 off = s->inuse; 659 660 if (s->flags & SLAB_STORE_USER) 661 off += 2 * sizeof(struct track); 662 663 if (off != size_from_object(s)) 664 /* Beginning of the filler is the free pointer */ 665 print_section("Padding ", p + off, size_from_object(s) - off); 666 667 dump_stack(); 668 } 669 670 void object_err(struct kmem_cache *s, struct page *page, 671 u8 *object, char *reason) 672 { 673 slab_bug(s, "%s", reason); 674 print_trailer(s, page, object); 675 } 676 677 static void slab_err(struct kmem_cache *s, struct page *page, 678 const char *fmt, ...) 679 { 680 va_list args; 681 char buf[100]; 682 683 va_start(args, fmt); 684 vsnprintf(buf, sizeof(buf), fmt, args); 685 va_end(args); 686 slab_bug(s, "%s", buf); 687 print_page_info(page); 688 dump_stack(); 689 } 690 691 static void init_object(struct kmem_cache *s, void *object, u8 val) 692 { 693 u8 *p = object; 694 695 if (s->flags & SLAB_RED_ZONE) 696 memset(p - s->red_left_pad, val, s->red_left_pad); 697 698 if (s->flags & __OBJECT_POISON) { 699 memset(p, POISON_FREE, s->object_size - 1); 700 p[s->object_size - 1] = POISON_END; 701 } 702 703 if (s->flags & SLAB_RED_ZONE) 704 memset(p + s->object_size, val, s->inuse - s->object_size); 705 } 706 707 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 708 void *from, void *to) 709 { 710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 711 memset(from, data, to - from); 712 } 713 714 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 715 u8 *object, char *what, 716 u8 *start, unsigned int value, unsigned int bytes) 717 { 718 u8 *fault; 719 u8 *end; 720 721 metadata_access_enable(); 722 fault = memchr_inv(start, value, bytes); 723 metadata_access_disable(); 724 if (!fault) 725 return 1; 726 727 end = start + bytes; 728 while (end > fault && end[-1] == value) 729 end--; 730 731 slab_bug(s, "%s overwritten", what); 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 733 fault, end - 1, fault[0], value); 734 print_trailer(s, page, object); 735 736 restore_bytes(s, what, value, fault, end); 737 return 0; 738 } 739 740 /* 741 * Object layout: 742 * 743 * object address 744 * Bytes of the object to be managed. 745 * If the freepointer may overlay the object then the free 746 * pointer is the first word of the object. 747 * 748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 749 * 0xa5 (POISON_END) 750 * 751 * object + s->object_size 752 * Padding to reach word boundary. This is also used for Redzoning. 753 * Padding is extended by another word if Redzoning is enabled and 754 * object_size == inuse. 755 * 756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 757 * 0xcc (RED_ACTIVE) for objects in use. 758 * 759 * object + s->inuse 760 * Meta data starts here. 761 * 762 * A. Free pointer (if we cannot overwrite object on free) 763 * B. Tracking data for SLAB_STORE_USER 764 * C. Padding to reach required alignment boundary or at mininum 765 * one word if debugging is on to be able to detect writes 766 * before the word boundary. 767 * 768 * Padding is done using 0x5a (POISON_INUSE) 769 * 770 * object + s->size 771 * Nothing is used beyond s->size. 772 * 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly 774 * ignored. And therefore no slab options that rely on these boundaries 775 * may be used with merged slabcaches. 776 */ 777 778 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 779 { 780 unsigned long off = s->inuse; /* The end of info */ 781 782 if (s->offset) 783 /* Freepointer is placed after the object. */ 784 off += sizeof(void *); 785 786 if (s->flags & SLAB_STORE_USER) 787 /* We also have user information there */ 788 off += 2 * sizeof(struct track); 789 790 if (size_from_object(s) == off) 791 return 1; 792 793 return check_bytes_and_report(s, page, p, "Object padding", 794 p + off, POISON_INUSE, size_from_object(s) - off); 795 } 796 797 /* Check the pad bytes at the end of a slab page */ 798 static int slab_pad_check(struct kmem_cache *s, struct page *page) 799 { 800 u8 *start; 801 u8 *fault; 802 u8 *end; 803 int length; 804 int remainder; 805 806 if (!(s->flags & SLAB_POISON)) 807 return 1; 808 809 start = page_address(page); 810 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 811 end = start + length; 812 remainder = length % s->size; 813 if (!remainder) 814 return 1; 815 816 metadata_access_enable(); 817 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 818 metadata_access_disable(); 819 if (!fault) 820 return 1; 821 while (end > fault && end[-1] == POISON_INUSE) 822 end--; 823 824 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 825 print_section("Padding ", end - remainder, remainder); 826 827 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 828 return 0; 829 } 830 831 static int check_object(struct kmem_cache *s, struct page *page, 832 void *object, u8 val) 833 { 834 u8 *p = object; 835 u8 *endobject = object + s->object_size; 836 837 if (s->flags & SLAB_RED_ZONE) { 838 if (!check_bytes_and_report(s, page, object, "Redzone", 839 object - s->red_left_pad, val, s->red_left_pad)) 840 return 0; 841 842 if (!check_bytes_and_report(s, page, object, "Redzone", 843 endobject, val, s->inuse - s->object_size)) 844 return 0; 845 } else { 846 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 847 check_bytes_and_report(s, page, p, "Alignment padding", 848 endobject, POISON_INUSE, 849 s->inuse - s->object_size); 850 } 851 } 852 853 if (s->flags & SLAB_POISON) { 854 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 855 (!check_bytes_and_report(s, page, p, "Poison", p, 856 POISON_FREE, s->object_size - 1) || 857 !check_bytes_and_report(s, page, p, "Poison", 858 p + s->object_size - 1, POISON_END, 1))) 859 return 0; 860 /* 861 * check_pad_bytes cleans up on its own. 862 */ 863 check_pad_bytes(s, page, p); 864 } 865 866 if (!s->offset && val == SLUB_RED_ACTIVE) 867 /* 868 * Object and freepointer overlap. Cannot check 869 * freepointer while object is allocated. 870 */ 871 return 1; 872 873 /* Check free pointer validity */ 874 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 875 object_err(s, page, p, "Freepointer corrupt"); 876 /* 877 * No choice but to zap it and thus lose the remainder 878 * of the free objects in this slab. May cause 879 * another error because the object count is now wrong. 880 */ 881 set_freepointer(s, p, NULL); 882 return 0; 883 } 884 return 1; 885 } 886 887 static int check_slab(struct kmem_cache *s, struct page *page) 888 { 889 int maxobj; 890 891 VM_BUG_ON(!irqs_disabled()); 892 893 if (!PageSlab(page)) { 894 slab_err(s, page, "Not a valid slab page"); 895 return 0; 896 } 897 898 maxobj = order_objects(compound_order(page), s->size, s->reserved); 899 if (page->objects > maxobj) { 900 slab_err(s, page, "objects %u > max %u", 901 page->objects, maxobj); 902 return 0; 903 } 904 if (page->inuse > page->objects) { 905 slab_err(s, page, "inuse %u > max %u", 906 page->inuse, page->objects); 907 return 0; 908 } 909 /* Slab_pad_check fixes things up after itself */ 910 slab_pad_check(s, page); 911 return 1; 912 } 913 914 /* 915 * Determine if a certain object on a page is on the freelist. Must hold the 916 * slab lock to guarantee that the chains are in a consistent state. 917 */ 918 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 919 { 920 int nr = 0; 921 void *fp; 922 void *object = NULL; 923 int max_objects; 924 925 fp = page->freelist; 926 while (fp && nr <= page->objects) { 927 if (fp == search) 928 return 1; 929 if (!check_valid_pointer(s, page, fp)) { 930 if (object) { 931 object_err(s, page, object, 932 "Freechain corrupt"); 933 set_freepointer(s, object, NULL); 934 } else { 935 slab_err(s, page, "Freepointer corrupt"); 936 page->freelist = NULL; 937 page->inuse = page->objects; 938 slab_fix(s, "Freelist cleared"); 939 return 0; 940 } 941 break; 942 } 943 object = fp; 944 fp = get_freepointer(s, object); 945 nr++; 946 } 947 948 max_objects = order_objects(compound_order(page), s->size, s->reserved); 949 if (max_objects > MAX_OBJS_PER_PAGE) 950 max_objects = MAX_OBJS_PER_PAGE; 951 952 if (page->objects != max_objects) { 953 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 954 page->objects, max_objects); 955 page->objects = max_objects; 956 slab_fix(s, "Number of objects adjusted."); 957 } 958 if (page->inuse != page->objects - nr) { 959 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 960 page->inuse, page->objects - nr); 961 page->inuse = page->objects - nr; 962 slab_fix(s, "Object count adjusted."); 963 } 964 return search == NULL; 965 } 966 967 static void trace(struct kmem_cache *s, struct page *page, void *object, 968 int alloc) 969 { 970 if (s->flags & SLAB_TRACE) { 971 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 972 s->name, 973 alloc ? "alloc" : "free", 974 object, page->inuse, 975 page->freelist); 976 977 if (!alloc) 978 print_section("Object ", (void *)object, 979 s->object_size); 980 981 dump_stack(); 982 } 983 } 984 985 /* 986 * Tracking of fully allocated slabs for debugging purposes. 987 */ 988 static void add_full(struct kmem_cache *s, 989 struct kmem_cache_node *n, struct page *page) 990 { 991 if (!(s->flags & SLAB_STORE_USER)) 992 return; 993 994 lockdep_assert_held(&n->list_lock); 995 list_add(&page->lru, &n->full); 996 } 997 998 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 999 { 1000 if (!(s->flags & SLAB_STORE_USER)) 1001 return; 1002 1003 lockdep_assert_held(&n->list_lock); 1004 list_del(&page->lru); 1005 } 1006 1007 /* Tracking of the number of slabs for debugging purposes */ 1008 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1009 { 1010 struct kmem_cache_node *n = get_node(s, node); 1011 1012 return atomic_long_read(&n->nr_slabs); 1013 } 1014 1015 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1016 { 1017 return atomic_long_read(&n->nr_slabs); 1018 } 1019 1020 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1021 { 1022 struct kmem_cache_node *n = get_node(s, node); 1023 1024 /* 1025 * May be called early in order to allocate a slab for the 1026 * kmem_cache_node structure. Solve the chicken-egg 1027 * dilemma by deferring the increment of the count during 1028 * bootstrap (see early_kmem_cache_node_alloc). 1029 */ 1030 if (likely(n)) { 1031 atomic_long_inc(&n->nr_slabs); 1032 atomic_long_add(objects, &n->total_objects); 1033 } 1034 } 1035 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1036 { 1037 struct kmem_cache_node *n = get_node(s, node); 1038 1039 atomic_long_dec(&n->nr_slabs); 1040 atomic_long_sub(objects, &n->total_objects); 1041 } 1042 1043 /* Object debug checks for alloc/free paths */ 1044 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1045 void *object) 1046 { 1047 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1048 return; 1049 1050 init_object(s, object, SLUB_RED_INACTIVE); 1051 init_tracking(s, object); 1052 } 1053 1054 static inline int alloc_consistency_checks(struct kmem_cache *s, 1055 struct page *page, 1056 void *object, unsigned long addr) 1057 { 1058 if (!check_slab(s, page)) 1059 return 0; 1060 1061 if (!check_valid_pointer(s, page, object)) { 1062 object_err(s, page, object, "Freelist Pointer check fails"); 1063 return 0; 1064 } 1065 1066 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1067 return 0; 1068 1069 return 1; 1070 } 1071 1072 static noinline int alloc_debug_processing(struct kmem_cache *s, 1073 struct page *page, 1074 void *object, unsigned long addr) 1075 { 1076 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1077 if (!alloc_consistency_checks(s, page, object, addr)) 1078 goto bad; 1079 } 1080 1081 /* Success perform special debug activities for allocs */ 1082 if (s->flags & SLAB_STORE_USER) 1083 set_track(s, object, TRACK_ALLOC, addr); 1084 trace(s, page, object, 1); 1085 init_object(s, object, SLUB_RED_ACTIVE); 1086 return 1; 1087 1088 bad: 1089 if (PageSlab(page)) { 1090 /* 1091 * If this is a slab page then lets do the best we can 1092 * to avoid issues in the future. Marking all objects 1093 * as used avoids touching the remaining objects. 1094 */ 1095 slab_fix(s, "Marking all objects used"); 1096 page->inuse = page->objects; 1097 page->freelist = NULL; 1098 } 1099 return 0; 1100 } 1101 1102 static inline int free_consistency_checks(struct kmem_cache *s, 1103 struct page *page, void *object, unsigned long addr) 1104 { 1105 if (!check_valid_pointer(s, page, object)) { 1106 slab_err(s, page, "Invalid object pointer 0x%p", object); 1107 return 0; 1108 } 1109 1110 if (on_freelist(s, page, object)) { 1111 object_err(s, page, object, "Object already free"); 1112 return 0; 1113 } 1114 1115 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1116 return 0; 1117 1118 if (unlikely(s != page->slab_cache)) { 1119 if (!PageSlab(page)) { 1120 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1121 object); 1122 } else if (!page->slab_cache) { 1123 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1124 object); 1125 dump_stack(); 1126 } else 1127 object_err(s, page, object, 1128 "page slab pointer corrupt."); 1129 return 0; 1130 } 1131 return 1; 1132 } 1133 1134 /* Supports checking bulk free of a constructed freelist */ 1135 static noinline int free_debug_processing( 1136 struct kmem_cache *s, struct page *page, 1137 void *head, void *tail, int bulk_cnt, 1138 unsigned long addr) 1139 { 1140 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1141 void *object = head; 1142 int cnt = 0; 1143 unsigned long uninitialized_var(flags); 1144 int ret = 0; 1145 1146 spin_lock_irqsave(&n->list_lock, flags); 1147 slab_lock(page); 1148 1149 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1150 if (!check_slab(s, page)) 1151 goto out; 1152 } 1153 1154 next_object: 1155 cnt++; 1156 1157 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1158 if (!free_consistency_checks(s, page, object, addr)) 1159 goto out; 1160 } 1161 1162 if (s->flags & SLAB_STORE_USER) 1163 set_track(s, object, TRACK_FREE, addr); 1164 trace(s, page, object, 0); 1165 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1166 init_object(s, object, SLUB_RED_INACTIVE); 1167 1168 /* Reached end of constructed freelist yet? */ 1169 if (object != tail) { 1170 object = get_freepointer(s, object); 1171 goto next_object; 1172 } 1173 ret = 1; 1174 1175 out: 1176 if (cnt != bulk_cnt) 1177 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1178 bulk_cnt, cnt); 1179 1180 slab_unlock(page); 1181 spin_unlock_irqrestore(&n->list_lock, flags); 1182 if (!ret) 1183 slab_fix(s, "Object at 0x%p not freed", object); 1184 return ret; 1185 } 1186 1187 static int __init setup_slub_debug(char *str) 1188 { 1189 slub_debug = DEBUG_DEFAULT_FLAGS; 1190 if (*str++ != '=' || !*str) 1191 /* 1192 * No options specified. Switch on full debugging. 1193 */ 1194 goto out; 1195 1196 if (*str == ',') 1197 /* 1198 * No options but restriction on slabs. This means full 1199 * debugging for slabs matching a pattern. 1200 */ 1201 goto check_slabs; 1202 1203 slub_debug = 0; 1204 if (*str == '-') 1205 /* 1206 * Switch off all debugging measures. 1207 */ 1208 goto out; 1209 1210 /* 1211 * Determine which debug features should be switched on 1212 */ 1213 for (; *str && *str != ','; str++) { 1214 switch (tolower(*str)) { 1215 case 'f': 1216 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1217 break; 1218 case 'z': 1219 slub_debug |= SLAB_RED_ZONE; 1220 break; 1221 case 'p': 1222 slub_debug |= SLAB_POISON; 1223 break; 1224 case 'u': 1225 slub_debug |= SLAB_STORE_USER; 1226 break; 1227 case 't': 1228 slub_debug |= SLAB_TRACE; 1229 break; 1230 case 'a': 1231 slub_debug |= SLAB_FAILSLAB; 1232 break; 1233 case 'o': 1234 /* 1235 * Avoid enabling debugging on caches if its minimum 1236 * order would increase as a result. 1237 */ 1238 disable_higher_order_debug = 1; 1239 break; 1240 default: 1241 pr_err("slub_debug option '%c' unknown. skipped\n", 1242 *str); 1243 } 1244 } 1245 1246 check_slabs: 1247 if (*str == ',') 1248 slub_debug_slabs = str + 1; 1249 out: 1250 return 1; 1251 } 1252 1253 __setup("slub_debug", setup_slub_debug); 1254 1255 unsigned long kmem_cache_flags(unsigned long object_size, 1256 unsigned long flags, const char *name, 1257 void (*ctor)(void *)) 1258 { 1259 /* 1260 * Enable debugging if selected on the kernel commandline. 1261 */ 1262 if (slub_debug && (!slub_debug_slabs || (name && 1263 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1264 flags |= slub_debug; 1265 1266 return flags; 1267 } 1268 #else /* !CONFIG_SLUB_DEBUG */ 1269 static inline void setup_object_debug(struct kmem_cache *s, 1270 struct page *page, void *object) {} 1271 1272 static inline int alloc_debug_processing(struct kmem_cache *s, 1273 struct page *page, void *object, unsigned long addr) { return 0; } 1274 1275 static inline int free_debug_processing( 1276 struct kmem_cache *s, struct page *page, 1277 void *head, void *tail, int bulk_cnt, 1278 unsigned long addr) { return 0; } 1279 1280 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1281 { return 1; } 1282 static inline int check_object(struct kmem_cache *s, struct page *page, 1283 void *object, u8 val) { return 1; } 1284 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1285 struct page *page) {} 1286 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1287 struct page *page) {} 1288 unsigned long kmem_cache_flags(unsigned long object_size, 1289 unsigned long flags, const char *name, 1290 void (*ctor)(void *)) 1291 { 1292 return flags; 1293 } 1294 #define slub_debug 0 1295 1296 #define disable_higher_order_debug 0 1297 1298 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1299 { return 0; } 1300 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1301 { return 0; } 1302 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1303 int objects) {} 1304 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1305 int objects) {} 1306 1307 #endif /* CONFIG_SLUB_DEBUG */ 1308 1309 /* 1310 * Hooks for other subsystems that check memory allocations. In a typical 1311 * production configuration these hooks all should produce no code at all. 1312 */ 1313 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1314 { 1315 kmemleak_alloc(ptr, size, 1, flags); 1316 kasan_kmalloc_large(ptr, size, flags); 1317 } 1318 1319 static inline void kfree_hook(const void *x) 1320 { 1321 kmemleak_free(x); 1322 kasan_kfree_large(x); 1323 } 1324 1325 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1326 { 1327 kmemleak_free_recursive(x, s->flags); 1328 1329 /* 1330 * Trouble is that we may no longer disable interrupts in the fast path 1331 * So in order to make the debug calls that expect irqs to be 1332 * disabled we need to disable interrupts temporarily. 1333 */ 1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1335 { 1336 unsigned long flags; 1337 1338 local_irq_save(flags); 1339 kmemcheck_slab_free(s, x, s->object_size); 1340 debug_check_no_locks_freed(x, s->object_size); 1341 local_irq_restore(flags); 1342 } 1343 #endif 1344 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1345 debug_check_no_obj_freed(x, s->object_size); 1346 1347 kasan_slab_free(s, x); 1348 } 1349 1350 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1351 void *head, void *tail) 1352 { 1353 /* 1354 * Compiler cannot detect this function can be removed if slab_free_hook() 1355 * evaluates to nothing. Thus, catch all relevant config debug options here. 1356 */ 1357 #if defined(CONFIG_KMEMCHECK) || \ 1358 defined(CONFIG_LOCKDEP) || \ 1359 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1360 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1361 defined(CONFIG_KASAN) 1362 1363 void *object = head; 1364 void *tail_obj = tail ? : head; 1365 1366 do { 1367 slab_free_hook(s, object); 1368 } while ((object != tail_obj) && 1369 (object = get_freepointer(s, object))); 1370 #endif 1371 } 1372 1373 static void setup_object(struct kmem_cache *s, struct page *page, 1374 void *object) 1375 { 1376 setup_object_debug(s, page, object); 1377 if (unlikely(s->ctor)) { 1378 kasan_unpoison_object_data(s, object); 1379 s->ctor(object); 1380 kasan_poison_object_data(s, object); 1381 } 1382 } 1383 1384 /* 1385 * Slab allocation and freeing 1386 */ 1387 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1388 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1389 { 1390 struct page *page; 1391 int order = oo_order(oo); 1392 1393 flags |= __GFP_NOTRACK; 1394 1395 if (node == NUMA_NO_NODE) 1396 page = alloc_pages(flags, order); 1397 else 1398 page = __alloc_pages_node(node, flags, order); 1399 1400 if (page && memcg_charge_slab(page, flags, order, s)) { 1401 __free_pages(page, order); 1402 page = NULL; 1403 } 1404 1405 return page; 1406 } 1407 1408 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1409 { 1410 struct page *page; 1411 struct kmem_cache_order_objects oo = s->oo; 1412 gfp_t alloc_gfp; 1413 void *start, *p; 1414 int idx, order; 1415 1416 flags &= gfp_allowed_mask; 1417 1418 if (gfpflags_allow_blocking(flags)) 1419 local_irq_enable(); 1420 1421 flags |= s->allocflags; 1422 1423 /* 1424 * Let the initial higher-order allocation fail under memory pressure 1425 * so we fall-back to the minimum order allocation. 1426 */ 1427 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1428 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1429 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1430 1431 page = alloc_slab_page(s, alloc_gfp, node, oo); 1432 if (unlikely(!page)) { 1433 oo = s->min; 1434 alloc_gfp = flags; 1435 /* 1436 * Allocation may have failed due to fragmentation. 1437 * Try a lower order alloc if possible 1438 */ 1439 page = alloc_slab_page(s, alloc_gfp, node, oo); 1440 if (unlikely(!page)) 1441 goto out; 1442 stat(s, ORDER_FALLBACK); 1443 } 1444 1445 if (kmemcheck_enabled && 1446 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1447 int pages = 1 << oo_order(oo); 1448 1449 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1450 1451 /* 1452 * Objects from caches that have a constructor don't get 1453 * cleared when they're allocated, so we need to do it here. 1454 */ 1455 if (s->ctor) 1456 kmemcheck_mark_uninitialized_pages(page, pages); 1457 else 1458 kmemcheck_mark_unallocated_pages(page, pages); 1459 } 1460 1461 page->objects = oo_objects(oo); 1462 1463 order = compound_order(page); 1464 page->slab_cache = s; 1465 __SetPageSlab(page); 1466 if (page_is_pfmemalloc(page)) 1467 SetPageSlabPfmemalloc(page); 1468 1469 start = page_address(page); 1470 1471 if (unlikely(s->flags & SLAB_POISON)) 1472 memset(start, POISON_INUSE, PAGE_SIZE << order); 1473 1474 kasan_poison_slab(page); 1475 1476 for_each_object_idx(p, idx, s, start, page->objects) { 1477 setup_object(s, page, p); 1478 if (likely(idx < page->objects)) 1479 set_freepointer(s, p, p + s->size); 1480 else 1481 set_freepointer(s, p, NULL); 1482 } 1483 1484 page->freelist = fixup_red_left(s, start); 1485 page->inuse = page->objects; 1486 page->frozen = 1; 1487 1488 out: 1489 if (gfpflags_allow_blocking(flags)) 1490 local_irq_disable(); 1491 if (!page) 1492 return NULL; 1493 1494 mod_zone_page_state(page_zone(page), 1495 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1496 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1497 1 << oo_order(oo)); 1498 1499 inc_slabs_node(s, page_to_nid(page), page->objects); 1500 1501 return page; 1502 } 1503 1504 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1505 { 1506 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1507 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1508 BUG(); 1509 } 1510 1511 return allocate_slab(s, 1512 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1513 } 1514 1515 static void __free_slab(struct kmem_cache *s, struct page *page) 1516 { 1517 int order = compound_order(page); 1518 int pages = 1 << order; 1519 1520 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1521 void *p; 1522 1523 slab_pad_check(s, page); 1524 for_each_object(p, s, page_address(page), 1525 page->objects) 1526 check_object(s, page, p, SLUB_RED_INACTIVE); 1527 } 1528 1529 kmemcheck_free_shadow(page, compound_order(page)); 1530 1531 mod_zone_page_state(page_zone(page), 1532 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1533 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1534 -pages); 1535 1536 __ClearPageSlabPfmemalloc(page); 1537 __ClearPageSlab(page); 1538 1539 page_mapcount_reset(page); 1540 if (current->reclaim_state) 1541 current->reclaim_state->reclaimed_slab += pages; 1542 memcg_uncharge_slab(page, order, s); 1543 __free_pages(page, order); 1544 } 1545 1546 #define need_reserve_slab_rcu \ 1547 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1548 1549 static void rcu_free_slab(struct rcu_head *h) 1550 { 1551 struct page *page; 1552 1553 if (need_reserve_slab_rcu) 1554 page = virt_to_head_page(h); 1555 else 1556 page = container_of((struct list_head *)h, struct page, lru); 1557 1558 __free_slab(page->slab_cache, page); 1559 } 1560 1561 static void free_slab(struct kmem_cache *s, struct page *page) 1562 { 1563 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1564 struct rcu_head *head; 1565 1566 if (need_reserve_slab_rcu) { 1567 int order = compound_order(page); 1568 int offset = (PAGE_SIZE << order) - s->reserved; 1569 1570 VM_BUG_ON(s->reserved != sizeof(*head)); 1571 head = page_address(page) + offset; 1572 } else { 1573 head = &page->rcu_head; 1574 } 1575 1576 call_rcu(head, rcu_free_slab); 1577 } else 1578 __free_slab(s, page); 1579 } 1580 1581 static void discard_slab(struct kmem_cache *s, struct page *page) 1582 { 1583 dec_slabs_node(s, page_to_nid(page), page->objects); 1584 free_slab(s, page); 1585 } 1586 1587 /* 1588 * Management of partially allocated slabs. 1589 */ 1590 static inline void 1591 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1592 { 1593 n->nr_partial++; 1594 if (tail == DEACTIVATE_TO_TAIL) 1595 list_add_tail(&page->lru, &n->partial); 1596 else 1597 list_add(&page->lru, &n->partial); 1598 } 1599 1600 static inline void add_partial(struct kmem_cache_node *n, 1601 struct page *page, int tail) 1602 { 1603 lockdep_assert_held(&n->list_lock); 1604 __add_partial(n, page, tail); 1605 } 1606 1607 static inline void remove_partial(struct kmem_cache_node *n, 1608 struct page *page) 1609 { 1610 lockdep_assert_held(&n->list_lock); 1611 list_del(&page->lru); 1612 n->nr_partial--; 1613 } 1614 1615 /* 1616 * Remove slab from the partial list, freeze it and 1617 * return the pointer to the freelist. 1618 * 1619 * Returns a list of objects or NULL if it fails. 1620 */ 1621 static inline void *acquire_slab(struct kmem_cache *s, 1622 struct kmem_cache_node *n, struct page *page, 1623 int mode, int *objects) 1624 { 1625 void *freelist; 1626 unsigned long counters; 1627 struct page new; 1628 1629 lockdep_assert_held(&n->list_lock); 1630 1631 /* 1632 * Zap the freelist and set the frozen bit. 1633 * The old freelist is the list of objects for the 1634 * per cpu allocation list. 1635 */ 1636 freelist = page->freelist; 1637 counters = page->counters; 1638 new.counters = counters; 1639 *objects = new.objects - new.inuse; 1640 if (mode) { 1641 new.inuse = page->objects; 1642 new.freelist = NULL; 1643 } else { 1644 new.freelist = freelist; 1645 } 1646 1647 VM_BUG_ON(new.frozen); 1648 new.frozen = 1; 1649 1650 if (!__cmpxchg_double_slab(s, page, 1651 freelist, counters, 1652 new.freelist, new.counters, 1653 "acquire_slab")) 1654 return NULL; 1655 1656 remove_partial(n, page); 1657 WARN_ON(!freelist); 1658 return freelist; 1659 } 1660 1661 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1662 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1663 1664 /* 1665 * Try to allocate a partial slab from a specific node. 1666 */ 1667 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1668 struct kmem_cache_cpu *c, gfp_t flags) 1669 { 1670 struct page *page, *page2; 1671 void *object = NULL; 1672 int available = 0; 1673 int objects; 1674 1675 /* 1676 * Racy check. If we mistakenly see no partial slabs then we 1677 * just allocate an empty slab. If we mistakenly try to get a 1678 * partial slab and there is none available then get_partials() 1679 * will return NULL. 1680 */ 1681 if (!n || !n->nr_partial) 1682 return NULL; 1683 1684 spin_lock(&n->list_lock); 1685 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1686 void *t; 1687 1688 if (!pfmemalloc_match(page, flags)) 1689 continue; 1690 1691 t = acquire_slab(s, n, page, object == NULL, &objects); 1692 if (!t) 1693 break; 1694 1695 available += objects; 1696 if (!object) { 1697 c->page = page; 1698 stat(s, ALLOC_FROM_PARTIAL); 1699 object = t; 1700 } else { 1701 put_cpu_partial(s, page, 0); 1702 stat(s, CPU_PARTIAL_NODE); 1703 } 1704 if (!kmem_cache_has_cpu_partial(s) 1705 || available > s->cpu_partial / 2) 1706 break; 1707 1708 } 1709 spin_unlock(&n->list_lock); 1710 return object; 1711 } 1712 1713 /* 1714 * Get a page from somewhere. Search in increasing NUMA distances. 1715 */ 1716 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1717 struct kmem_cache_cpu *c) 1718 { 1719 #ifdef CONFIG_NUMA 1720 struct zonelist *zonelist; 1721 struct zoneref *z; 1722 struct zone *zone; 1723 enum zone_type high_zoneidx = gfp_zone(flags); 1724 void *object; 1725 unsigned int cpuset_mems_cookie; 1726 1727 /* 1728 * The defrag ratio allows a configuration of the tradeoffs between 1729 * inter node defragmentation and node local allocations. A lower 1730 * defrag_ratio increases the tendency to do local allocations 1731 * instead of attempting to obtain partial slabs from other nodes. 1732 * 1733 * If the defrag_ratio is set to 0 then kmalloc() always 1734 * returns node local objects. If the ratio is higher then kmalloc() 1735 * may return off node objects because partial slabs are obtained 1736 * from other nodes and filled up. 1737 * 1738 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1739 * (which makes defrag_ratio = 1000) then every (well almost) 1740 * allocation will first attempt to defrag slab caches on other nodes. 1741 * This means scanning over all nodes to look for partial slabs which 1742 * may be expensive if we do it every time we are trying to find a slab 1743 * with available objects. 1744 */ 1745 if (!s->remote_node_defrag_ratio || 1746 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1747 return NULL; 1748 1749 do { 1750 cpuset_mems_cookie = read_mems_allowed_begin(); 1751 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1752 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1753 struct kmem_cache_node *n; 1754 1755 n = get_node(s, zone_to_nid(zone)); 1756 1757 if (n && cpuset_zone_allowed(zone, flags) && 1758 n->nr_partial > s->min_partial) { 1759 object = get_partial_node(s, n, c, flags); 1760 if (object) { 1761 /* 1762 * Don't check read_mems_allowed_retry() 1763 * here - if mems_allowed was updated in 1764 * parallel, that was a harmless race 1765 * between allocation and the cpuset 1766 * update 1767 */ 1768 return object; 1769 } 1770 } 1771 } 1772 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1773 #endif 1774 return NULL; 1775 } 1776 1777 /* 1778 * Get a partial page, lock it and return it. 1779 */ 1780 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1781 struct kmem_cache_cpu *c) 1782 { 1783 void *object; 1784 int searchnode = node; 1785 1786 if (node == NUMA_NO_NODE) 1787 searchnode = numa_mem_id(); 1788 else if (!node_present_pages(node)) 1789 searchnode = node_to_mem_node(node); 1790 1791 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1792 if (object || node != NUMA_NO_NODE) 1793 return object; 1794 1795 return get_any_partial(s, flags, c); 1796 } 1797 1798 #ifdef CONFIG_PREEMPT 1799 /* 1800 * Calculate the next globally unique transaction for disambiguiation 1801 * during cmpxchg. The transactions start with the cpu number and are then 1802 * incremented by CONFIG_NR_CPUS. 1803 */ 1804 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1805 #else 1806 /* 1807 * No preemption supported therefore also no need to check for 1808 * different cpus. 1809 */ 1810 #define TID_STEP 1 1811 #endif 1812 1813 static inline unsigned long next_tid(unsigned long tid) 1814 { 1815 return tid + TID_STEP; 1816 } 1817 1818 static inline unsigned int tid_to_cpu(unsigned long tid) 1819 { 1820 return tid % TID_STEP; 1821 } 1822 1823 static inline unsigned long tid_to_event(unsigned long tid) 1824 { 1825 return tid / TID_STEP; 1826 } 1827 1828 static inline unsigned int init_tid(int cpu) 1829 { 1830 return cpu; 1831 } 1832 1833 static inline void note_cmpxchg_failure(const char *n, 1834 const struct kmem_cache *s, unsigned long tid) 1835 { 1836 #ifdef SLUB_DEBUG_CMPXCHG 1837 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1838 1839 pr_info("%s %s: cmpxchg redo ", n, s->name); 1840 1841 #ifdef CONFIG_PREEMPT 1842 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1843 pr_warn("due to cpu change %d -> %d\n", 1844 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1845 else 1846 #endif 1847 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1848 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1849 tid_to_event(tid), tid_to_event(actual_tid)); 1850 else 1851 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1852 actual_tid, tid, next_tid(tid)); 1853 #endif 1854 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1855 } 1856 1857 static void init_kmem_cache_cpus(struct kmem_cache *s) 1858 { 1859 int cpu; 1860 1861 for_each_possible_cpu(cpu) 1862 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1863 } 1864 1865 /* 1866 * Remove the cpu slab 1867 */ 1868 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1869 void *freelist) 1870 { 1871 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1872 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1873 int lock = 0; 1874 enum slab_modes l = M_NONE, m = M_NONE; 1875 void *nextfree; 1876 int tail = DEACTIVATE_TO_HEAD; 1877 struct page new; 1878 struct page old; 1879 1880 if (page->freelist) { 1881 stat(s, DEACTIVATE_REMOTE_FREES); 1882 tail = DEACTIVATE_TO_TAIL; 1883 } 1884 1885 /* 1886 * Stage one: Free all available per cpu objects back 1887 * to the page freelist while it is still frozen. Leave the 1888 * last one. 1889 * 1890 * There is no need to take the list->lock because the page 1891 * is still frozen. 1892 */ 1893 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1894 void *prior; 1895 unsigned long counters; 1896 1897 do { 1898 prior = page->freelist; 1899 counters = page->counters; 1900 set_freepointer(s, freelist, prior); 1901 new.counters = counters; 1902 new.inuse--; 1903 VM_BUG_ON(!new.frozen); 1904 1905 } while (!__cmpxchg_double_slab(s, page, 1906 prior, counters, 1907 freelist, new.counters, 1908 "drain percpu freelist")); 1909 1910 freelist = nextfree; 1911 } 1912 1913 /* 1914 * Stage two: Ensure that the page is unfrozen while the 1915 * list presence reflects the actual number of objects 1916 * during unfreeze. 1917 * 1918 * We setup the list membership and then perform a cmpxchg 1919 * with the count. If there is a mismatch then the page 1920 * is not unfrozen but the page is on the wrong list. 1921 * 1922 * Then we restart the process which may have to remove 1923 * the page from the list that we just put it on again 1924 * because the number of objects in the slab may have 1925 * changed. 1926 */ 1927 redo: 1928 1929 old.freelist = page->freelist; 1930 old.counters = page->counters; 1931 VM_BUG_ON(!old.frozen); 1932 1933 /* Determine target state of the slab */ 1934 new.counters = old.counters; 1935 if (freelist) { 1936 new.inuse--; 1937 set_freepointer(s, freelist, old.freelist); 1938 new.freelist = freelist; 1939 } else 1940 new.freelist = old.freelist; 1941 1942 new.frozen = 0; 1943 1944 if (!new.inuse && n->nr_partial >= s->min_partial) 1945 m = M_FREE; 1946 else if (new.freelist) { 1947 m = M_PARTIAL; 1948 if (!lock) { 1949 lock = 1; 1950 /* 1951 * Taking the spinlock removes the possiblity 1952 * that acquire_slab() will see a slab page that 1953 * is frozen 1954 */ 1955 spin_lock(&n->list_lock); 1956 } 1957 } else { 1958 m = M_FULL; 1959 if (kmem_cache_debug(s) && !lock) { 1960 lock = 1; 1961 /* 1962 * This also ensures that the scanning of full 1963 * slabs from diagnostic functions will not see 1964 * any frozen slabs. 1965 */ 1966 spin_lock(&n->list_lock); 1967 } 1968 } 1969 1970 if (l != m) { 1971 1972 if (l == M_PARTIAL) 1973 1974 remove_partial(n, page); 1975 1976 else if (l == M_FULL) 1977 1978 remove_full(s, n, page); 1979 1980 if (m == M_PARTIAL) { 1981 1982 add_partial(n, page, tail); 1983 stat(s, tail); 1984 1985 } else if (m == M_FULL) { 1986 1987 stat(s, DEACTIVATE_FULL); 1988 add_full(s, n, page); 1989 1990 } 1991 } 1992 1993 l = m; 1994 if (!__cmpxchg_double_slab(s, page, 1995 old.freelist, old.counters, 1996 new.freelist, new.counters, 1997 "unfreezing slab")) 1998 goto redo; 1999 2000 if (lock) 2001 spin_unlock(&n->list_lock); 2002 2003 if (m == M_FREE) { 2004 stat(s, DEACTIVATE_EMPTY); 2005 discard_slab(s, page); 2006 stat(s, FREE_SLAB); 2007 } 2008 } 2009 2010 /* 2011 * Unfreeze all the cpu partial slabs. 2012 * 2013 * This function must be called with interrupts disabled 2014 * for the cpu using c (or some other guarantee must be there 2015 * to guarantee no concurrent accesses). 2016 */ 2017 static void unfreeze_partials(struct kmem_cache *s, 2018 struct kmem_cache_cpu *c) 2019 { 2020 #ifdef CONFIG_SLUB_CPU_PARTIAL 2021 struct kmem_cache_node *n = NULL, *n2 = NULL; 2022 struct page *page, *discard_page = NULL; 2023 2024 while ((page = c->partial)) { 2025 struct page new; 2026 struct page old; 2027 2028 c->partial = page->next; 2029 2030 n2 = get_node(s, page_to_nid(page)); 2031 if (n != n2) { 2032 if (n) 2033 spin_unlock(&n->list_lock); 2034 2035 n = n2; 2036 spin_lock(&n->list_lock); 2037 } 2038 2039 do { 2040 2041 old.freelist = page->freelist; 2042 old.counters = page->counters; 2043 VM_BUG_ON(!old.frozen); 2044 2045 new.counters = old.counters; 2046 new.freelist = old.freelist; 2047 2048 new.frozen = 0; 2049 2050 } while (!__cmpxchg_double_slab(s, page, 2051 old.freelist, old.counters, 2052 new.freelist, new.counters, 2053 "unfreezing slab")); 2054 2055 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2056 page->next = discard_page; 2057 discard_page = page; 2058 } else { 2059 add_partial(n, page, DEACTIVATE_TO_TAIL); 2060 stat(s, FREE_ADD_PARTIAL); 2061 } 2062 } 2063 2064 if (n) 2065 spin_unlock(&n->list_lock); 2066 2067 while (discard_page) { 2068 page = discard_page; 2069 discard_page = discard_page->next; 2070 2071 stat(s, DEACTIVATE_EMPTY); 2072 discard_slab(s, page); 2073 stat(s, FREE_SLAB); 2074 } 2075 #endif 2076 } 2077 2078 /* 2079 * Put a page that was just frozen (in __slab_free) into a partial page 2080 * slot if available. This is done without interrupts disabled and without 2081 * preemption disabled. The cmpxchg is racy and may put the partial page 2082 * onto a random cpus partial slot. 2083 * 2084 * If we did not find a slot then simply move all the partials to the 2085 * per node partial list. 2086 */ 2087 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2088 { 2089 #ifdef CONFIG_SLUB_CPU_PARTIAL 2090 struct page *oldpage; 2091 int pages; 2092 int pobjects; 2093 2094 preempt_disable(); 2095 do { 2096 pages = 0; 2097 pobjects = 0; 2098 oldpage = this_cpu_read(s->cpu_slab->partial); 2099 2100 if (oldpage) { 2101 pobjects = oldpage->pobjects; 2102 pages = oldpage->pages; 2103 if (drain && pobjects > s->cpu_partial) { 2104 unsigned long flags; 2105 /* 2106 * partial array is full. Move the existing 2107 * set to the per node partial list. 2108 */ 2109 local_irq_save(flags); 2110 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2111 local_irq_restore(flags); 2112 oldpage = NULL; 2113 pobjects = 0; 2114 pages = 0; 2115 stat(s, CPU_PARTIAL_DRAIN); 2116 } 2117 } 2118 2119 pages++; 2120 pobjects += page->objects - page->inuse; 2121 2122 page->pages = pages; 2123 page->pobjects = pobjects; 2124 page->next = oldpage; 2125 2126 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2127 != oldpage); 2128 if (unlikely(!s->cpu_partial)) { 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2133 local_irq_restore(flags); 2134 } 2135 preempt_enable(); 2136 #endif 2137 } 2138 2139 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2140 { 2141 stat(s, CPUSLAB_FLUSH); 2142 deactivate_slab(s, c->page, c->freelist); 2143 2144 c->tid = next_tid(c->tid); 2145 c->page = NULL; 2146 c->freelist = NULL; 2147 } 2148 2149 /* 2150 * Flush cpu slab. 2151 * 2152 * Called from IPI handler with interrupts disabled. 2153 */ 2154 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2155 { 2156 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2157 2158 if (likely(c)) { 2159 if (c->page) 2160 flush_slab(s, c); 2161 2162 unfreeze_partials(s, c); 2163 } 2164 } 2165 2166 static void flush_cpu_slab(void *d) 2167 { 2168 struct kmem_cache *s = d; 2169 2170 __flush_cpu_slab(s, smp_processor_id()); 2171 } 2172 2173 static bool has_cpu_slab(int cpu, void *info) 2174 { 2175 struct kmem_cache *s = info; 2176 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2177 2178 return c->page || c->partial; 2179 } 2180 2181 static void flush_all(struct kmem_cache *s) 2182 { 2183 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2184 } 2185 2186 /* 2187 * Check if the objects in a per cpu structure fit numa 2188 * locality expectations. 2189 */ 2190 static inline int node_match(struct page *page, int node) 2191 { 2192 #ifdef CONFIG_NUMA 2193 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2194 return 0; 2195 #endif 2196 return 1; 2197 } 2198 2199 #ifdef CONFIG_SLUB_DEBUG 2200 static int count_free(struct page *page) 2201 { 2202 return page->objects - page->inuse; 2203 } 2204 2205 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2206 { 2207 return atomic_long_read(&n->total_objects); 2208 } 2209 #endif /* CONFIG_SLUB_DEBUG */ 2210 2211 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2212 static unsigned long count_partial(struct kmem_cache_node *n, 2213 int (*get_count)(struct page *)) 2214 { 2215 unsigned long flags; 2216 unsigned long x = 0; 2217 struct page *page; 2218 2219 spin_lock_irqsave(&n->list_lock, flags); 2220 list_for_each_entry(page, &n->partial, lru) 2221 x += get_count(page); 2222 spin_unlock_irqrestore(&n->list_lock, flags); 2223 return x; 2224 } 2225 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2226 2227 static noinline void 2228 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2229 { 2230 #ifdef CONFIG_SLUB_DEBUG 2231 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2232 DEFAULT_RATELIMIT_BURST); 2233 int node; 2234 struct kmem_cache_node *n; 2235 2236 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2237 return; 2238 2239 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2240 nid, gfpflags, &gfpflags); 2241 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2242 s->name, s->object_size, s->size, oo_order(s->oo), 2243 oo_order(s->min)); 2244 2245 if (oo_order(s->min) > get_order(s->object_size)) 2246 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2247 s->name); 2248 2249 for_each_kmem_cache_node(s, node, n) { 2250 unsigned long nr_slabs; 2251 unsigned long nr_objs; 2252 unsigned long nr_free; 2253 2254 nr_free = count_partial(n, count_free); 2255 nr_slabs = node_nr_slabs(n); 2256 nr_objs = node_nr_objs(n); 2257 2258 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2259 node, nr_slabs, nr_objs, nr_free); 2260 } 2261 #endif 2262 } 2263 2264 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2265 int node, struct kmem_cache_cpu **pc) 2266 { 2267 void *freelist; 2268 struct kmem_cache_cpu *c = *pc; 2269 struct page *page; 2270 2271 freelist = get_partial(s, flags, node, c); 2272 2273 if (freelist) 2274 return freelist; 2275 2276 page = new_slab(s, flags, node); 2277 if (page) { 2278 c = raw_cpu_ptr(s->cpu_slab); 2279 if (c->page) 2280 flush_slab(s, c); 2281 2282 /* 2283 * No other reference to the page yet so we can 2284 * muck around with it freely without cmpxchg 2285 */ 2286 freelist = page->freelist; 2287 page->freelist = NULL; 2288 2289 stat(s, ALLOC_SLAB); 2290 c->page = page; 2291 *pc = c; 2292 } else 2293 freelist = NULL; 2294 2295 return freelist; 2296 } 2297 2298 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2299 { 2300 if (unlikely(PageSlabPfmemalloc(page))) 2301 return gfp_pfmemalloc_allowed(gfpflags); 2302 2303 return true; 2304 } 2305 2306 /* 2307 * Check the page->freelist of a page and either transfer the freelist to the 2308 * per cpu freelist or deactivate the page. 2309 * 2310 * The page is still frozen if the return value is not NULL. 2311 * 2312 * If this function returns NULL then the page has been unfrozen. 2313 * 2314 * This function must be called with interrupt disabled. 2315 */ 2316 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2317 { 2318 struct page new; 2319 unsigned long counters; 2320 void *freelist; 2321 2322 do { 2323 freelist = page->freelist; 2324 counters = page->counters; 2325 2326 new.counters = counters; 2327 VM_BUG_ON(!new.frozen); 2328 2329 new.inuse = page->objects; 2330 new.frozen = freelist != NULL; 2331 2332 } while (!__cmpxchg_double_slab(s, page, 2333 freelist, counters, 2334 NULL, new.counters, 2335 "get_freelist")); 2336 2337 return freelist; 2338 } 2339 2340 /* 2341 * Slow path. The lockless freelist is empty or we need to perform 2342 * debugging duties. 2343 * 2344 * Processing is still very fast if new objects have been freed to the 2345 * regular freelist. In that case we simply take over the regular freelist 2346 * as the lockless freelist and zap the regular freelist. 2347 * 2348 * If that is not working then we fall back to the partial lists. We take the 2349 * first element of the freelist as the object to allocate now and move the 2350 * rest of the freelist to the lockless freelist. 2351 * 2352 * And if we were unable to get a new slab from the partial slab lists then 2353 * we need to allocate a new slab. This is the slowest path since it involves 2354 * a call to the page allocator and the setup of a new slab. 2355 * 2356 * Version of __slab_alloc to use when we know that interrupts are 2357 * already disabled (which is the case for bulk allocation). 2358 */ 2359 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2360 unsigned long addr, struct kmem_cache_cpu *c) 2361 { 2362 void *freelist; 2363 struct page *page; 2364 2365 page = c->page; 2366 if (!page) 2367 goto new_slab; 2368 redo: 2369 2370 if (unlikely(!node_match(page, node))) { 2371 int searchnode = node; 2372 2373 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2374 searchnode = node_to_mem_node(node); 2375 2376 if (unlikely(!node_match(page, searchnode))) { 2377 stat(s, ALLOC_NODE_MISMATCH); 2378 deactivate_slab(s, page, c->freelist); 2379 c->page = NULL; 2380 c->freelist = NULL; 2381 goto new_slab; 2382 } 2383 } 2384 2385 /* 2386 * By rights, we should be searching for a slab page that was 2387 * PFMEMALLOC but right now, we are losing the pfmemalloc 2388 * information when the page leaves the per-cpu allocator 2389 */ 2390 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2391 deactivate_slab(s, page, c->freelist); 2392 c->page = NULL; 2393 c->freelist = NULL; 2394 goto new_slab; 2395 } 2396 2397 /* must check again c->freelist in case of cpu migration or IRQ */ 2398 freelist = c->freelist; 2399 if (freelist) 2400 goto load_freelist; 2401 2402 freelist = get_freelist(s, page); 2403 2404 if (!freelist) { 2405 c->page = NULL; 2406 stat(s, DEACTIVATE_BYPASS); 2407 goto new_slab; 2408 } 2409 2410 stat(s, ALLOC_REFILL); 2411 2412 load_freelist: 2413 /* 2414 * freelist is pointing to the list of objects to be used. 2415 * page is pointing to the page from which the objects are obtained. 2416 * That page must be frozen for per cpu allocations to work. 2417 */ 2418 VM_BUG_ON(!c->page->frozen); 2419 c->freelist = get_freepointer(s, freelist); 2420 c->tid = next_tid(c->tid); 2421 return freelist; 2422 2423 new_slab: 2424 2425 if (c->partial) { 2426 page = c->page = c->partial; 2427 c->partial = page->next; 2428 stat(s, CPU_PARTIAL_ALLOC); 2429 c->freelist = NULL; 2430 goto redo; 2431 } 2432 2433 freelist = new_slab_objects(s, gfpflags, node, &c); 2434 2435 if (unlikely(!freelist)) { 2436 slab_out_of_memory(s, gfpflags, node); 2437 return NULL; 2438 } 2439 2440 page = c->page; 2441 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2442 goto load_freelist; 2443 2444 /* Only entered in the debug case */ 2445 if (kmem_cache_debug(s) && 2446 !alloc_debug_processing(s, page, freelist, addr)) 2447 goto new_slab; /* Slab failed checks. Next slab needed */ 2448 2449 deactivate_slab(s, page, get_freepointer(s, freelist)); 2450 c->page = NULL; 2451 c->freelist = NULL; 2452 return freelist; 2453 } 2454 2455 /* 2456 * Another one that disabled interrupt and compensates for possible 2457 * cpu changes by refetching the per cpu area pointer. 2458 */ 2459 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2460 unsigned long addr, struct kmem_cache_cpu *c) 2461 { 2462 void *p; 2463 unsigned long flags; 2464 2465 local_irq_save(flags); 2466 #ifdef CONFIG_PREEMPT 2467 /* 2468 * We may have been preempted and rescheduled on a different 2469 * cpu before disabling interrupts. Need to reload cpu area 2470 * pointer. 2471 */ 2472 c = this_cpu_ptr(s->cpu_slab); 2473 #endif 2474 2475 p = ___slab_alloc(s, gfpflags, node, addr, c); 2476 local_irq_restore(flags); 2477 return p; 2478 } 2479 2480 /* 2481 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2482 * have the fastpath folded into their functions. So no function call 2483 * overhead for requests that can be satisfied on the fastpath. 2484 * 2485 * The fastpath works by first checking if the lockless freelist can be used. 2486 * If not then __slab_alloc is called for slow processing. 2487 * 2488 * Otherwise we can simply pick the next object from the lockless free list. 2489 */ 2490 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2491 gfp_t gfpflags, int node, unsigned long addr) 2492 { 2493 void *object; 2494 struct kmem_cache_cpu *c; 2495 struct page *page; 2496 unsigned long tid; 2497 2498 s = slab_pre_alloc_hook(s, gfpflags); 2499 if (!s) 2500 return NULL; 2501 redo: 2502 /* 2503 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2504 * enabled. We may switch back and forth between cpus while 2505 * reading from one cpu area. That does not matter as long 2506 * as we end up on the original cpu again when doing the cmpxchg. 2507 * 2508 * We should guarantee that tid and kmem_cache are retrieved on 2509 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2510 * to check if it is matched or not. 2511 */ 2512 do { 2513 tid = this_cpu_read(s->cpu_slab->tid); 2514 c = raw_cpu_ptr(s->cpu_slab); 2515 } while (IS_ENABLED(CONFIG_PREEMPT) && 2516 unlikely(tid != READ_ONCE(c->tid))); 2517 2518 /* 2519 * Irqless object alloc/free algorithm used here depends on sequence 2520 * of fetching cpu_slab's data. tid should be fetched before anything 2521 * on c to guarantee that object and page associated with previous tid 2522 * won't be used with current tid. If we fetch tid first, object and 2523 * page could be one associated with next tid and our alloc/free 2524 * request will be failed. In this case, we will retry. So, no problem. 2525 */ 2526 barrier(); 2527 2528 /* 2529 * The transaction ids are globally unique per cpu and per operation on 2530 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2531 * occurs on the right processor and that there was no operation on the 2532 * linked list in between. 2533 */ 2534 2535 object = c->freelist; 2536 page = c->page; 2537 if (unlikely(!object || !node_match(page, node))) { 2538 object = __slab_alloc(s, gfpflags, node, addr, c); 2539 stat(s, ALLOC_SLOWPATH); 2540 } else { 2541 void *next_object = get_freepointer_safe(s, object); 2542 2543 /* 2544 * The cmpxchg will only match if there was no additional 2545 * operation and if we are on the right processor. 2546 * 2547 * The cmpxchg does the following atomically (without lock 2548 * semantics!) 2549 * 1. Relocate first pointer to the current per cpu area. 2550 * 2. Verify that tid and freelist have not been changed 2551 * 3. If they were not changed replace tid and freelist 2552 * 2553 * Since this is without lock semantics the protection is only 2554 * against code executing on this cpu *not* from access by 2555 * other cpus. 2556 */ 2557 if (unlikely(!this_cpu_cmpxchg_double( 2558 s->cpu_slab->freelist, s->cpu_slab->tid, 2559 object, tid, 2560 next_object, next_tid(tid)))) { 2561 2562 note_cmpxchg_failure("slab_alloc", s, tid); 2563 goto redo; 2564 } 2565 prefetch_freepointer(s, next_object); 2566 stat(s, ALLOC_FASTPATH); 2567 } 2568 2569 if (unlikely(gfpflags & __GFP_ZERO) && object) 2570 memset(object, 0, s->object_size); 2571 2572 slab_post_alloc_hook(s, gfpflags, 1, &object); 2573 2574 return object; 2575 } 2576 2577 static __always_inline void *slab_alloc(struct kmem_cache *s, 2578 gfp_t gfpflags, unsigned long addr) 2579 { 2580 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2581 } 2582 2583 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2584 { 2585 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2586 2587 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2588 s->size, gfpflags); 2589 2590 return ret; 2591 } 2592 EXPORT_SYMBOL(kmem_cache_alloc); 2593 2594 #ifdef CONFIG_TRACING 2595 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2596 { 2597 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2598 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2599 kasan_kmalloc(s, ret, size, gfpflags); 2600 return ret; 2601 } 2602 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2603 #endif 2604 2605 #ifdef CONFIG_NUMA 2606 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2607 { 2608 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2609 2610 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2611 s->object_size, s->size, gfpflags, node); 2612 2613 return ret; 2614 } 2615 EXPORT_SYMBOL(kmem_cache_alloc_node); 2616 2617 #ifdef CONFIG_TRACING 2618 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2619 gfp_t gfpflags, 2620 int node, size_t size) 2621 { 2622 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2623 2624 trace_kmalloc_node(_RET_IP_, ret, 2625 size, s->size, gfpflags, node); 2626 2627 kasan_kmalloc(s, ret, size, gfpflags); 2628 return ret; 2629 } 2630 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2631 #endif 2632 #endif 2633 2634 /* 2635 * Slow path handling. This may still be called frequently since objects 2636 * have a longer lifetime than the cpu slabs in most processing loads. 2637 * 2638 * So we still attempt to reduce cache line usage. Just take the slab 2639 * lock and free the item. If there is no additional partial page 2640 * handling required then we can return immediately. 2641 */ 2642 static void __slab_free(struct kmem_cache *s, struct page *page, 2643 void *head, void *tail, int cnt, 2644 unsigned long addr) 2645 2646 { 2647 void *prior; 2648 int was_frozen; 2649 struct page new; 2650 unsigned long counters; 2651 struct kmem_cache_node *n = NULL; 2652 unsigned long uninitialized_var(flags); 2653 2654 stat(s, FREE_SLOWPATH); 2655 2656 if (kmem_cache_debug(s) && 2657 !free_debug_processing(s, page, head, tail, cnt, addr)) 2658 return; 2659 2660 do { 2661 if (unlikely(n)) { 2662 spin_unlock_irqrestore(&n->list_lock, flags); 2663 n = NULL; 2664 } 2665 prior = page->freelist; 2666 counters = page->counters; 2667 set_freepointer(s, tail, prior); 2668 new.counters = counters; 2669 was_frozen = new.frozen; 2670 new.inuse -= cnt; 2671 if ((!new.inuse || !prior) && !was_frozen) { 2672 2673 if (kmem_cache_has_cpu_partial(s) && !prior) { 2674 2675 /* 2676 * Slab was on no list before and will be 2677 * partially empty 2678 * We can defer the list move and instead 2679 * freeze it. 2680 */ 2681 new.frozen = 1; 2682 2683 } else { /* Needs to be taken off a list */ 2684 2685 n = get_node(s, page_to_nid(page)); 2686 /* 2687 * Speculatively acquire the list_lock. 2688 * If the cmpxchg does not succeed then we may 2689 * drop the list_lock without any processing. 2690 * 2691 * Otherwise the list_lock will synchronize with 2692 * other processors updating the list of slabs. 2693 */ 2694 spin_lock_irqsave(&n->list_lock, flags); 2695 2696 } 2697 } 2698 2699 } while (!cmpxchg_double_slab(s, page, 2700 prior, counters, 2701 head, new.counters, 2702 "__slab_free")); 2703 2704 if (likely(!n)) { 2705 2706 /* 2707 * If we just froze the page then put it onto the 2708 * per cpu partial list. 2709 */ 2710 if (new.frozen && !was_frozen) { 2711 put_cpu_partial(s, page, 1); 2712 stat(s, CPU_PARTIAL_FREE); 2713 } 2714 /* 2715 * The list lock was not taken therefore no list 2716 * activity can be necessary. 2717 */ 2718 if (was_frozen) 2719 stat(s, FREE_FROZEN); 2720 return; 2721 } 2722 2723 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2724 goto slab_empty; 2725 2726 /* 2727 * Objects left in the slab. If it was not on the partial list before 2728 * then add it. 2729 */ 2730 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2731 if (kmem_cache_debug(s)) 2732 remove_full(s, n, page); 2733 add_partial(n, page, DEACTIVATE_TO_TAIL); 2734 stat(s, FREE_ADD_PARTIAL); 2735 } 2736 spin_unlock_irqrestore(&n->list_lock, flags); 2737 return; 2738 2739 slab_empty: 2740 if (prior) { 2741 /* 2742 * Slab on the partial list. 2743 */ 2744 remove_partial(n, page); 2745 stat(s, FREE_REMOVE_PARTIAL); 2746 } else { 2747 /* Slab must be on the full list */ 2748 remove_full(s, n, page); 2749 } 2750 2751 spin_unlock_irqrestore(&n->list_lock, flags); 2752 stat(s, FREE_SLAB); 2753 discard_slab(s, page); 2754 } 2755 2756 /* 2757 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2758 * can perform fastpath freeing without additional function calls. 2759 * 2760 * The fastpath is only possible if we are freeing to the current cpu slab 2761 * of this processor. This typically the case if we have just allocated 2762 * the item before. 2763 * 2764 * If fastpath is not possible then fall back to __slab_free where we deal 2765 * with all sorts of special processing. 2766 * 2767 * Bulk free of a freelist with several objects (all pointing to the 2768 * same page) possible by specifying head and tail ptr, plus objects 2769 * count (cnt). Bulk free indicated by tail pointer being set. 2770 */ 2771 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2772 void *head, void *tail, int cnt, 2773 unsigned long addr) 2774 { 2775 void *tail_obj = tail ? : head; 2776 struct kmem_cache_cpu *c; 2777 unsigned long tid; 2778 2779 slab_free_freelist_hook(s, head, tail); 2780 2781 redo: 2782 /* 2783 * Determine the currently cpus per cpu slab. 2784 * The cpu may change afterward. However that does not matter since 2785 * data is retrieved via this pointer. If we are on the same cpu 2786 * during the cmpxchg then the free will succeed. 2787 */ 2788 do { 2789 tid = this_cpu_read(s->cpu_slab->tid); 2790 c = raw_cpu_ptr(s->cpu_slab); 2791 } while (IS_ENABLED(CONFIG_PREEMPT) && 2792 unlikely(tid != READ_ONCE(c->tid))); 2793 2794 /* Same with comment on barrier() in slab_alloc_node() */ 2795 barrier(); 2796 2797 if (likely(page == c->page)) { 2798 set_freepointer(s, tail_obj, c->freelist); 2799 2800 if (unlikely(!this_cpu_cmpxchg_double( 2801 s->cpu_slab->freelist, s->cpu_slab->tid, 2802 c->freelist, tid, 2803 head, next_tid(tid)))) { 2804 2805 note_cmpxchg_failure("slab_free", s, tid); 2806 goto redo; 2807 } 2808 stat(s, FREE_FASTPATH); 2809 } else 2810 __slab_free(s, page, head, tail_obj, cnt, addr); 2811 2812 } 2813 2814 void kmem_cache_free(struct kmem_cache *s, void *x) 2815 { 2816 s = cache_from_obj(s, x); 2817 if (!s) 2818 return; 2819 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2820 trace_kmem_cache_free(_RET_IP_, x); 2821 } 2822 EXPORT_SYMBOL(kmem_cache_free); 2823 2824 struct detached_freelist { 2825 struct page *page; 2826 void *tail; 2827 void *freelist; 2828 int cnt; 2829 struct kmem_cache *s; 2830 }; 2831 2832 /* 2833 * This function progressively scans the array with free objects (with 2834 * a limited look ahead) and extract objects belonging to the same 2835 * page. It builds a detached freelist directly within the given 2836 * page/objects. This can happen without any need for 2837 * synchronization, because the objects are owned by running process. 2838 * The freelist is build up as a single linked list in the objects. 2839 * The idea is, that this detached freelist can then be bulk 2840 * transferred to the real freelist(s), but only requiring a single 2841 * synchronization primitive. Look ahead in the array is limited due 2842 * to performance reasons. 2843 */ 2844 static inline 2845 int build_detached_freelist(struct kmem_cache *s, size_t size, 2846 void **p, struct detached_freelist *df) 2847 { 2848 size_t first_skipped_index = 0; 2849 int lookahead = 3; 2850 void *object; 2851 struct page *page; 2852 2853 /* Always re-init detached_freelist */ 2854 df->page = NULL; 2855 2856 do { 2857 object = p[--size]; 2858 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 2859 } while (!object && size); 2860 2861 if (!object) 2862 return 0; 2863 2864 page = virt_to_head_page(object); 2865 if (!s) { 2866 /* Handle kalloc'ed objects */ 2867 if (unlikely(!PageSlab(page))) { 2868 BUG_ON(!PageCompound(page)); 2869 kfree_hook(object); 2870 __free_kmem_pages(page, compound_order(page)); 2871 p[size] = NULL; /* mark object processed */ 2872 return size; 2873 } 2874 /* Derive kmem_cache from object */ 2875 df->s = page->slab_cache; 2876 } else { 2877 df->s = cache_from_obj(s, object); /* Support for memcg */ 2878 } 2879 2880 /* Start new detached freelist */ 2881 df->page = page; 2882 set_freepointer(df->s, object, NULL); 2883 df->tail = object; 2884 df->freelist = object; 2885 p[size] = NULL; /* mark object processed */ 2886 df->cnt = 1; 2887 2888 while (size) { 2889 object = p[--size]; 2890 if (!object) 2891 continue; /* Skip processed objects */ 2892 2893 /* df->page is always set at this point */ 2894 if (df->page == virt_to_head_page(object)) { 2895 /* Opportunity build freelist */ 2896 set_freepointer(df->s, object, df->freelist); 2897 df->freelist = object; 2898 df->cnt++; 2899 p[size] = NULL; /* mark object processed */ 2900 2901 continue; 2902 } 2903 2904 /* Limit look ahead search */ 2905 if (!--lookahead) 2906 break; 2907 2908 if (!first_skipped_index) 2909 first_skipped_index = size + 1; 2910 } 2911 2912 return first_skipped_index; 2913 } 2914 2915 /* Note that interrupts must be enabled when calling this function. */ 2916 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 2917 { 2918 if (WARN_ON(!size)) 2919 return; 2920 2921 do { 2922 struct detached_freelist df; 2923 2924 size = build_detached_freelist(s, size, p, &df); 2925 if (unlikely(!df.page)) 2926 continue; 2927 2928 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 2929 } while (likely(size)); 2930 } 2931 EXPORT_SYMBOL(kmem_cache_free_bulk); 2932 2933 /* Note that interrupts must be enabled when calling this function. */ 2934 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2935 void **p) 2936 { 2937 struct kmem_cache_cpu *c; 2938 int i; 2939 2940 /* memcg and kmem_cache debug support */ 2941 s = slab_pre_alloc_hook(s, flags); 2942 if (unlikely(!s)) 2943 return false; 2944 /* 2945 * Drain objects in the per cpu slab, while disabling local 2946 * IRQs, which protects against PREEMPT and interrupts 2947 * handlers invoking normal fastpath. 2948 */ 2949 local_irq_disable(); 2950 c = this_cpu_ptr(s->cpu_slab); 2951 2952 for (i = 0; i < size; i++) { 2953 void *object = c->freelist; 2954 2955 if (unlikely(!object)) { 2956 /* 2957 * Invoking slow path likely have side-effect 2958 * of re-populating per CPU c->freelist 2959 */ 2960 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 2961 _RET_IP_, c); 2962 if (unlikely(!p[i])) 2963 goto error; 2964 2965 c = this_cpu_ptr(s->cpu_slab); 2966 continue; /* goto for-loop */ 2967 } 2968 c->freelist = get_freepointer(s, object); 2969 p[i] = object; 2970 } 2971 c->tid = next_tid(c->tid); 2972 local_irq_enable(); 2973 2974 /* Clear memory outside IRQ disabled fastpath loop */ 2975 if (unlikely(flags & __GFP_ZERO)) { 2976 int j; 2977 2978 for (j = 0; j < i; j++) 2979 memset(p[j], 0, s->object_size); 2980 } 2981 2982 /* memcg and kmem_cache debug support */ 2983 slab_post_alloc_hook(s, flags, size, p); 2984 return i; 2985 error: 2986 local_irq_enable(); 2987 slab_post_alloc_hook(s, flags, i, p); 2988 __kmem_cache_free_bulk(s, i, p); 2989 return 0; 2990 } 2991 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2992 2993 2994 /* 2995 * Object placement in a slab is made very easy because we always start at 2996 * offset 0. If we tune the size of the object to the alignment then we can 2997 * get the required alignment by putting one properly sized object after 2998 * another. 2999 * 3000 * Notice that the allocation order determines the sizes of the per cpu 3001 * caches. Each processor has always one slab available for allocations. 3002 * Increasing the allocation order reduces the number of times that slabs 3003 * must be moved on and off the partial lists and is therefore a factor in 3004 * locking overhead. 3005 */ 3006 3007 /* 3008 * Mininum / Maximum order of slab pages. This influences locking overhead 3009 * and slab fragmentation. A higher order reduces the number of partial slabs 3010 * and increases the number of allocations possible without having to 3011 * take the list_lock. 3012 */ 3013 static int slub_min_order; 3014 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3015 static int slub_min_objects; 3016 3017 /* 3018 * Calculate the order of allocation given an slab object size. 3019 * 3020 * The order of allocation has significant impact on performance and other 3021 * system components. Generally order 0 allocations should be preferred since 3022 * order 0 does not cause fragmentation in the page allocator. Larger objects 3023 * be problematic to put into order 0 slabs because there may be too much 3024 * unused space left. We go to a higher order if more than 1/16th of the slab 3025 * would be wasted. 3026 * 3027 * In order to reach satisfactory performance we must ensure that a minimum 3028 * number of objects is in one slab. Otherwise we may generate too much 3029 * activity on the partial lists which requires taking the list_lock. This is 3030 * less a concern for large slabs though which are rarely used. 3031 * 3032 * slub_max_order specifies the order where we begin to stop considering the 3033 * number of objects in a slab as critical. If we reach slub_max_order then 3034 * we try to keep the page order as low as possible. So we accept more waste 3035 * of space in favor of a small page order. 3036 * 3037 * Higher order allocations also allow the placement of more objects in a 3038 * slab and thereby reduce object handling overhead. If the user has 3039 * requested a higher mininum order then we start with that one instead of 3040 * the smallest order which will fit the object. 3041 */ 3042 static inline int slab_order(int size, int min_objects, 3043 int max_order, int fract_leftover, int reserved) 3044 { 3045 int order; 3046 int rem; 3047 int min_order = slub_min_order; 3048 3049 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3050 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3051 3052 for (order = max(min_order, get_order(min_objects * size + reserved)); 3053 order <= max_order; order++) { 3054 3055 unsigned long slab_size = PAGE_SIZE << order; 3056 3057 rem = (slab_size - reserved) % size; 3058 3059 if (rem <= slab_size / fract_leftover) 3060 break; 3061 } 3062 3063 return order; 3064 } 3065 3066 static inline int calculate_order(int size, int reserved) 3067 { 3068 int order; 3069 int min_objects; 3070 int fraction; 3071 int max_objects; 3072 3073 /* 3074 * Attempt to find best configuration for a slab. This 3075 * works by first attempting to generate a layout with 3076 * the best configuration and backing off gradually. 3077 * 3078 * First we increase the acceptable waste in a slab. Then 3079 * we reduce the minimum objects required in a slab. 3080 */ 3081 min_objects = slub_min_objects; 3082 if (!min_objects) 3083 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3084 max_objects = order_objects(slub_max_order, size, reserved); 3085 min_objects = min(min_objects, max_objects); 3086 3087 while (min_objects > 1) { 3088 fraction = 16; 3089 while (fraction >= 4) { 3090 order = slab_order(size, min_objects, 3091 slub_max_order, fraction, reserved); 3092 if (order <= slub_max_order) 3093 return order; 3094 fraction /= 2; 3095 } 3096 min_objects--; 3097 } 3098 3099 /* 3100 * We were unable to place multiple objects in a slab. Now 3101 * lets see if we can place a single object there. 3102 */ 3103 order = slab_order(size, 1, slub_max_order, 1, reserved); 3104 if (order <= slub_max_order) 3105 return order; 3106 3107 /* 3108 * Doh this slab cannot be placed using slub_max_order. 3109 */ 3110 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3111 if (order < MAX_ORDER) 3112 return order; 3113 return -ENOSYS; 3114 } 3115 3116 static void 3117 init_kmem_cache_node(struct kmem_cache_node *n) 3118 { 3119 n->nr_partial = 0; 3120 spin_lock_init(&n->list_lock); 3121 INIT_LIST_HEAD(&n->partial); 3122 #ifdef CONFIG_SLUB_DEBUG 3123 atomic_long_set(&n->nr_slabs, 0); 3124 atomic_long_set(&n->total_objects, 0); 3125 INIT_LIST_HEAD(&n->full); 3126 #endif 3127 } 3128 3129 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3130 { 3131 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3132 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3133 3134 /* 3135 * Must align to double word boundary for the double cmpxchg 3136 * instructions to work; see __pcpu_double_call_return_bool(). 3137 */ 3138 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3139 2 * sizeof(void *)); 3140 3141 if (!s->cpu_slab) 3142 return 0; 3143 3144 init_kmem_cache_cpus(s); 3145 3146 return 1; 3147 } 3148 3149 static struct kmem_cache *kmem_cache_node; 3150 3151 /* 3152 * No kmalloc_node yet so do it by hand. We know that this is the first 3153 * slab on the node for this slabcache. There are no concurrent accesses 3154 * possible. 3155 * 3156 * Note that this function only works on the kmem_cache_node 3157 * when allocating for the kmem_cache_node. This is used for bootstrapping 3158 * memory on a fresh node that has no slab structures yet. 3159 */ 3160 static void early_kmem_cache_node_alloc(int node) 3161 { 3162 struct page *page; 3163 struct kmem_cache_node *n; 3164 3165 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3166 3167 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3168 3169 BUG_ON(!page); 3170 if (page_to_nid(page) != node) { 3171 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3172 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3173 } 3174 3175 n = page->freelist; 3176 BUG_ON(!n); 3177 page->freelist = get_freepointer(kmem_cache_node, n); 3178 page->inuse = 1; 3179 page->frozen = 0; 3180 kmem_cache_node->node[node] = n; 3181 #ifdef CONFIG_SLUB_DEBUG 3182 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3183 init_tracking(kmem_cache_node, n); 3184 #endif 3185 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3186 GFP_KERNEL); 3187 init_kmem_cache_node(n); 3188 inc_slabs_node(kmem_cache_node, node, page->objects); 3189 3190 /* 3191 * No locks need to be taken here as it has just been 3192 * initialized and there is no concurrent access. 3193 */ 3194 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3195 } 3196 3197 static void free_kmem_cache_nodes(struct kmem_cache *s) 3198 { 3199 int node; 3200 struct kmem_cache_node *n; 3201 3202 for_each_kmem_cache_node(s, node, n) { 3203 kmem_cache_free(kmem_cache_node, n); 3204 s->node[node] = NULL; 3205 } 3206 } 3207 3208 void __kmem_cache_release(struct kmem_cache *s) 3209 { 3210 free_percpu(s->cpu_slab); 3211 free_kmem_cache_nodes(s); 3212 } 3213 3214 static int init_kmem_cache_nodes(struct kmem_cache *s) 3215 { 3216 int node; 3217 3218 for_each_node_state(node, N_NORMAL_MEMORY) { 3219 struct kmem_cache_node *n; 3220 3221 if (slab_state == DOWN) { 3222 early_kmem_cache_node_alloc(node); 3223 continue; 3224 } 3225 n = kmem_cache_alloc_node(kmem_cache_node, 3226 GFP_KERNEL, node); 3227 3228 if (!n) { 3229 free_kmem_cache_nodes(s); 3230 return 0; 3231 } 3232 3233 s->node[node] = n; 3234 init_kmem_cache_node(n); 3235 } 3236 return 1; 3237 } 3238 3239 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3240 { 3241 if (min < MIN_PARTIAL) 3242 min = MIN_PARTIAL; 3243 else if (min > MAX_PARTIAL) 3244 min = MAX_PARTIAL; 3245 s->min_partial = min; 3246 } 3247 3248 /* 3249 * calculate_sizes() determines the order and the distribution of data within 3250 * a slab object. 3251 */ 3252 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3253 { 3254 unsigned long flags = s->flags; 3255 unsigned long size = s->object_size; 3256 int order; 3257 3258 /* 3259 * Round up object size to the next word boundary. We can only 3260 * place the free pointer at word boundaries and this determines 3261 * the possible location of the free pointer. 3262 */ 3263 size = ALIGN(size, sizeof(void *)); 3264 3265 #ifdef CONFIG_SLUB_DEBUG 3266 /* 3267 * Determine if we can poison the object itself. If the user of 3268 * the slab may touch the object after free or before allocation 3269 * then we should never poison the object itself. 3270 */ 3271 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3272 !s->ctor) 3273 s->flags |= __OBJECT_POISON; 3274 else 3275 s->flags &= ~__OBJECT_POISON; 3276 3277 3278 /* 3279 * If we are Redzoning then check if there is some space between the 3280 * end of the object and the free pointer. If not then add an 3281 * additional word to have some bytes to store Redzone information. 3282 */ 3283 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3284 size += sizeof(void *); 3285 #endif 3286 3287 /* 3288 * With that we have determined the number of bytes in actual use 3289 * by the object. This is the potential offset to the free pointer. 3290 */ 3291 s->inuse = size; 3292 3293 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3294 s->ctor)) { 3295 /* 3296 * Relocate free pointer after the object if it is not 3297 * permitted to overwrite the first word of the object on 3298 * kmem_cache_free. 3299 * 3300 * This is the case if we do RCU, have a constructor or 3301 * destructor or are poisoning the objects. 3302 */ 3303 s->offset = size; 3304 size += sizeof(void *); 3305 } 3306 3307 #ifdef CONFIG_SLUB_DEBUG 3308 if (flags & SLAB_STORE_USER) 3309 /* 3310 * Need to store information about allocs and frees after 3311 * the object. 3312 */ 3313 size += 2 * sizeof(struct track); 3314 3315 if (flags & SLAB_RED_ZONE) { 3316 /* 3317 * Add some empty padding so that we can catch 3318 * overwrites from earlier objects rather than let 3319 * tracking information or the free pointer be 3320 * corrupted if a user writes before the start 3321 * of the object. 3322 */ 3323 size += sizeof(void *); 3324 3325 s->red_left_pad = sizeof(void *); 3326 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3327 size += s->red_left_pad; 3328 } 3329 #endif 3330 3331 /* 3332 * SLUB stores one object immediately after another beginning from 3333 * offset 0. In order to align the objects we have to simply size 3334 * each object to conform to the alignment. 3335 */ 3336 size = ALIGN(size, s->align); 3337 s->size = size; 3338 if (forced_order >= 0) 3339 order = forced_order; 3340 else 3341 order = calculate_order(size, s->reserved); 3342 3343 if (order < 0) 3344 return 0; 3345 3346 s->allocflags = 0; 3347 if (order) 3348 s->allocflags |= __GFP_COMP; 3349 3350 if (s->flags & SLAB_CACHE_DMA) 3351 s->allocflags |= GFP_DMA; 3352 3353 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3354 s->allocflags |= __GFP_RECLAIMABLE; 3355 3356 /* 3357 * Determine the number of objects per slab 3358 */ 3359 s->oo = oo_make(order, size, s->reserved); 3360 s->min = oo_make(get_order(size), size, s->reserved); 3361 if (oo_objects(s->oo) > oo_objects(s->max)) 3362 s->max = s->oo; 3363 3364 return !!oo_objects(s->oo); 3365 } 3366 3367 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3368 { 3369 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3370 s->reserved = 0; 3371 3372 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3373 s->reserved = sizeof(struct rcu_head); 3374 3375 if (!calculate_sizes(s, -1)) 3376 goto error; 3377 if (disable_higher_order_debug) { 3378 /* 3379 * Disable debugging flags that store metadata if the min slab 3380 * order increased. 3381 */ 3382 if (get_order(s->size) > get_order(s->object_size)) { 3383 s->flags &= ~DEBUG_METADATA_FLAGS; 3384 s->offset = 0; 3385 if (!calculate_sizes(s, -1)) 3386 goto error; 3387 } 3388 } 3389 3390 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3392 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3393 /* Enable fast mode */ 3394 s->flags |= __CMPXCHG_DOUBLE; 3395 #endif 3396 3397 /* 3398 * The larger the object size is, the more pages we want on the partial 3399 * list to avoid pounding the page allocator excessively. 3400 */ 3401 set_min_partial(s, ilog2(s->size) / 2); 3402 3403 /* 3404 * cpu_partial determined the maximum number of objects kept in the 3405 * per cpu partial lists of a processor. 3406 * 3407 * Per cpu partial lists mainly contain slabs that just have one 3408 * object freed. If they are used for allocation then they can be 3409 * filled up again with minimal effort. The slab will never hit the 3410 * per node partial lists and therefore no locking will be required. 3411 * 3412 * This setting also determines 3413 * 3414 * A) The number of objects from per cpu partial slabs dumped to the 3415 * per node list when we reach the limit. 3416 * B) The number of objects in cpu partial slabs to extract from the 3417 * per node list when we run out of per cpu objects. We only fetch 3418 * 50% to keep some capacity around for frees. 3419 */ 3420 if (!kmem_cache_has_cpu_partial(s)) 3421 s->cpu_partial = 0; 3422 else if (s->size >= PAGE_SIZE) 3423 s->cpu_partial = 2; 3424 else if (s->size >= 1024) 3425 s->cpu_partial = 6; 3426 else if (s->size >= 256) 3427 s->cpu_partial = 13; 3428 else 3429 s->cpu_partial = 30; 3430 3431 #ifdef CONFIG_NUMA 3432 s->remote_node_defrag_ratio = 1000; 3433 #endif 3434 if (!init_kmem_cache_nodes(s)) 3435 goto error; 3436 3437 if (alloc_kmem_cache_cpus(s)) 3438 return 0; 3439 3440 free_kmem_cache_nodes(s); 3441 error: 3442 if (flags & SLAB_PANIC) 3443 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3444 s->name, (unsigned long)s->size, s->size, 3445 oo_order(s->oo), s->offset, flags); 3446 return -EINVAL; 3447 } 3448 3449 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3450 const char *text) 3451 { 3452 #ifdef CONFIG_SLUB_DEBUG 3453 void *addr = page_address(page); 3454 void *p; 3455 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3456 sizeof(long), GFP_ATOMIC); 3457 if (!map) 3458 return; 3459 slab_err(s, page, text, s->name); 3460 slab_lock(page); 3461 3462 get_map(s, page, map); 3463 for_each_object(p, s, addr, page->objects) { 3464 3465 if (!test_bit(slab_index(p, s, addr), map)) { 3466 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3467 print_tracking(s, p); 3468 } 3469 } 3470 slab_unlock(page); 3471 kfree(map); 3472 #endif 3473 } 3474 3475 /* 3476 * Attempt to free all partial slabs on a node. 3477 * This is called from __kmem_cache_shutdown(). We must take list_lock 3478 * because sysfs file might still access partial list after the shutdowning. 3479 */ 3480 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3481 { 3482 struct page *page, *h; 3483 3484 BUG_ON(irqs_disabled()); 3485 spin_lock_irq(&n->list_lock); 3486 list_for_each_entry_safe(page, h, &n->partial, lru) { 3487 if (!page->inuse) { 3488 remove_partial(n, page); 3489 discard_slab(s, page); 3490 } else { 3491 list_slab_objects(s, page, 3492 "Objects remaining in %s on __kmem_cache_shutdown()"); 3493 } 3494 } 3495 spin_unlock_irq(&n->list_lock); 3496 } 3497 3498 /* 3499 * Release all resources used by a slab cache. 3500 */ 3501 int __kmem_cache_shutdown(struct kmem_cache *s) 3502 { 3503 int node; 3504 struct kmem_cache_node *n; 3505 3506 flush_all(s); 3507 /* Attempt to free all objects */ 3508 for_each_kmem_cache_node(s, node, n) { 3509 free_partial(s, n); 3510 if (n->nr_partial || slabs_node(s, node)) 3511 return 1; 3512 } 3513 return 0; 3514 } 3515 3516 /******************************************************************** 3517 * Kmalloc subsystem 3518 *******************************************************************/ 3519 3520 static int __init setup_slub_min_order(char *str) 3521 { 3522 get_option(&str, &slub_min_order); 3523 3524 return 1; 3525 } 3526 3527 __setup("slub_min_order=", setup_slub_min_order); 3528 3529 static int __init setup_slub_max_order(char *str) 3530 { 3531 get_option(&str, &slub_max_order); 3532 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3533 3534 return 1; 3535 } 3536 3537 __setup("slub_max_order=", setup_slub_max_order); 3538 3539 static int __init setup_slub_min_objects(char *str) 3540 { 3541 get_option(&str, &slub_min_objects); 3542 3543 return 1; 3544 } 3545 3546 __setup("slub_min_objects=", setup_slub_min_objects); 3547 3548 void *__kmalloc(size_t size, gfp_t flags) 3549 { 3550 struct kmem_cache *s; 3551 void *ret; 3552 3553 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3554 return kmalloc_large(size, flags); 3555 3556 s = kmalloc_slab(size, flags); 3557 3558 if (unlikely(ZERO_OR_NULL_PTR(s))) 3559 return s; 3560 3561 ret = slab_alloc(s, flags, _RET_IP_); 3562 3563 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3564 3565 kasan_kmalloc(s, ret, size, flags); 3566 3567 return ret; 3568 } 3569 EXPORT_SYMBOL(__kmalloc); 3570 3571 #ifdef CONFIG_NUMA 3572 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3573 { 3574 struct page *page; 3575 void *ptr = NULL; 3576 3577 flags |= __GFP_COMP | __GFP_NOTRACK; 3578 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3579 if (page) 3580 ptr = page_address(page); 3581 3582 kmalloc_large_node_hook(ptr, size, flags); 3583 return ptr; 3584 } 3585 3586 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3587 { 3588 struct kmem_cache *s; 3589 void *ret; 3590 3591 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3592 ret = kmalloc_large_node(size, flags, node); 3593 3594 trace_kmalloc_node(_RET_IP_, ret, 3595 size, PAGE_SIZE << get_order(size), 3596 flags, node); 3597 3598 return ret; 3599 } 3600 3601 s = kmalloc_slab(size, flags); 3602 3603 if (unlikely(ZERO_OR_NULL_PTR(s))) 3604 return s; 3605 3606 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3607 3608 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3609 3610 kasan_kmalloc(s, ret, size, flags); 3611 3612 return ret; 3613 } 3614 EXPORT_SYMBOL(__kmalloc_node); 3615 #endif 3616 3617 static size_t __ksize(const void *object) 3618 { 3619 struct page *page; 3620 3621 if (unlikely(object == ZERO_SIZE_PTR)) 3622 return 0; 3623 3624 page = virt_to_head_page(object); 3625 3626 if (unlikely(!PageSlab(page))) { 3627 WARN_ON(!PageCompound(page)); 3628 return PAGE_SIZE << compound_order(page); 3629 } 3630 3631 return slab_ksize(page->slab_cache); 3632 } 3633 3634 size_t ksize(const void *object) 3635 { 3636 size_t size = __ksize(object); 3637 /* We assume that ksize callers could use whole allocated area, 3638 * so we need to unpoison this area. 3639 */ 3640 kasan_unpoison_shadow(object, size); 3641 return size; 3642 } 3643 EXPORT_SYMBOL(ksize); 3644 3645 void kfree(const void *x) 3646 { 3647 struct page *page; 3648 void *object = (void *)x; 3649 3650 trace_kfree(_RET_IP_, x); 3651 3652 if (unlikely(ZERO_OR_NULL_PTR(x))) 3653 return; 3654 3655 page = virt_to_head_page(x); 3656 if (unlikely(!PageSlab(page))) { 3657 BUG_ON(!PageCompound(page)); 3658 kfree_hook(x); 3659 __free_kmem_pages(page, compound_order(page)); 3660 return; 3661 } 3662 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3663 } 3664 EXPORT_SYMBOL(kfree); 3665 3666 #define SHRINK_PROMOTE_MAX 32 3667 3668 /* 3669 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3670 * up most to the head of the partial lists. New allocations will then 3671 * fill those up and thus they can be removed from the partial lists. 3672 * 3673 * The slabs with the least items are placed last. This results in them 3674 * being allocated from last increasing the chance that the last objects 3675 * are freed in them. 3676 */ 3677 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3678 { 3679 int node; 3680 int i; 3681 struct kmem_cache_node *n; 3682 struct page *page; 3683 struct page *t; 3684 struct list_head discard; 3685 struct list_head promote[SHRINK_PROMOTE_MAX]; 3686 unsigned long flags; 3687 int ret = 0; 3688 3689 if (deactivate) { 3690 /* 3691 * Disable empty slabs caching. Used to avoid pinning offline 3692 * memory cgroups by kmem pages that can be freed. 3693 */ 3694 s->cpu_partial = 0; 3695 s->min_partial = 0; 3696 3697 /* 3698 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3699 * so we have to make sure the change is visible. 3700 */ 3701 synchronize_sched(); 3702 } 3703 3704 flush_all(s); 3705 for_each_kmem_cache_node(s, node, n) { 3706 INIT_LIST_HEAD(&discard); 3707 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3708 INIT_LIST_HEAD(promote + i); 3709 3710 spin_lock_irqsave(&n->list_lock, flags); 3711 3712 /* 3713 * Build lists of slabs to discard or promote. 3714 * 3715 * Note that concurrent frees may occur while we hold the 3716 * list_lock. page->inuse here is the upper limit. 3717 */ 3718 list_for_each_entry_safe(page, t, &n->partial, lru) { 3719 int free = page->objects - page->inuse; 3720 3721 /* Do not reread page->inuse */ 3722 barrier(); 3723 3724 /* We do not keep full slabs on the list */ 3725 BUG_ON(free <= 0); 3726 3727 if (free == page->objects) { 3728 list_move(&page->lru, &discard); 3729 n->nr_partial--; 3730 } else if (free <= SHRINK_PROMOTE_MAX) 3731 list_move(&page->lru, promote + free - 1); 3732 } 3733 3734 /* 3735 * Promote the slabs filled up most to the head of the 3736 * partial list. 3737 */ 3738 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3739 list_splice(promote + i, &n->partial); 3740 3741 spin_unlock_irqrestore(&n->list_lock, flags); 3742 3743 /* Release empty slabs */ 3744 list_for_each_entry_safe(page, t, &discard, lru) 3745 discard_slab(s, page); 3746 3747 if (slabs_node(s, node)) 3748 ret = 1; 3749 } 3750 3751 return ret; 3752 } 3753 3754 static int slab_mem_going_offline_callback(void *arg) 3755 { 3756 struct kmem_cache *s; 3757 3758 mutex_lock(&slab_mutex); 3759 list_for_each_entry(s, &slab_caches, list) 3760 __kmem_cache_shrink(s, false); 3761 mutex_unlock(&slab_mutex); 3762 3763 return 0; 3764 } 3765 3766 static void slab_mem_offline_callback(void *arg) 3767 { 3768 struct kmem_cache_node *n; 3769 struct kmem_cache *s; 3770 struct memory_notify *marg = arg; 3771 int offline_node; 3772 3773 offline_node = marg->status_change_nid_normal; 3774 3775 /* 3776 * If the node still has available memory. we need kmem_cache_node 3777 * for it yet. 3778 */ 3779 if (offline_node < 0) 3780 return; 3781 3782 mutex_lock(&slab_mutex); 3783 list_for_each_entry(s, &slab_caches, list) { 3784 n = get_node(s, offline_node); 3785 if (n) { 3786 /* 3787 * if n->nr_slabs > 0, slabs still exist on the node 3788 * that is going down. We were unable to free them, 3789 * and offline_pages() function shouldn't call this 3790 * callback. So, we must fail. 3791 */ 3792 BUG_ON(slabs_node(s, offline_node)); 3793 3794 s->node[offline_node] = NULL; 3795 kmem_cache_free(kmem_cache_node, n); 3796 } 3797 } 3798 mutex_unlock(&slab_mutex); 3799 } 3800 3801 static int slab_mem_going_online_callback(void *arg) 3802 { 3803 struct kmem_cache_node *n; 3804 struct kmem_cache *s; 3805 struct memory_notify *marg = arg; 3806 int nid = marg->status_change_nid_normal; 3807 int ret = 0; 3808 3809 /* 3810 * If the node's memory is already available, then kmem_cache_node is 3811 * already created. Nothing to do. 3812 */ 3813 if (nid < 0) 3814 return 0; 3815 3816 /* 3817 * We are bringing a node online. No memory is available yet. We must 3818 * allocate a kmem_cache_node structure in order to bring the node 3819 * online. 3820 */ 3821 mutex_lock(&slab_mutex); 3822 list_for_each_entry(s, &slab_caches, list) { 3823 /* 3824 * XXX: kmem_cache_alloc_node will fallback to other nodes 3825 * since memory is not yet available from the node that 3826 * is brought up. 3827 */ 3828 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3829 if (!n) { 3830 ret = -ENOMEM; 3831 goto out; 3832 } 3833 init_kmem_cache_node(n); 3834 s->node[nid] = n; 3835 } 3836 out: 3837 mutex_unlock(&slab_mutex); 3838 return ret; 3839 } 3840 3841 static int slab_memory_callback(struct notifier_block *self, 3842 unsigned long action, void *arg) 3843 { 3844 int ret = 0; 3845 3846 switch (action) { 3847 case MEM_GOING_ONLINE: 3848 ret = slab_mem_going_online_callback(arg); 3849 break; 3850 case MEM_GOING_OFFLINE: 3851 ret = slab_mem_going_offline_callback(arg); 3852 break; 3853 case MEM_OFFLINE: 3854 case MEM_CANCEL_ONLINE: 3855 slab_mem_offline_callback(arg); 3856 break; 3857 case MEM_ONLINE: 3858 case MEM_CANCEL_OFFLINE: 3859 break; 3860 } 3861 if (ret) 3862 ret = notifier_from_errno(ret); 3863 else 3864 ret = NOTIFY_OK; 3865 return ret; 3866 } 3867 3868 static struct notifier_block slab_memory_callback_nb = { 3869 .notifier_call = slab_memory_callback, 3870 .priority = SLAB_CALLBACK_PRI, 3871 }; 3872 3873 /******************************************************************** 3874 * Basic setup of slabs 3875 *******************************************************************/ 3876 3877 /* 3878 * Used for early kmem_cache structures that were allocated using 3879 * the page allocator. Allocate them properly then fix up the pointers 3880 * that may be pointing to the wrong kmem_cache structure. 3881 */ 3882 3883 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3884 { 3885 int node; 3886 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3887 struct kmem_cache_node *n; 3888 3889 memcpy(s, static_cache, kmem_cache->object_size); 3890 3891 /* 3892 * This runs very early, and only the boot processor is supposed to be 3893 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3894 * IPIs around. 3895 */ 3896 __flush_cpu_slab(s, smp_processor_id()); 3897 for_each_kmem_cache_node(s, node, n) { 3898 struct page *p; 3899 3900 list_for_each_entry(p, &n->partial, lru) 3901 p->slab_cache = s; 3902 3903 #ifdef CONFIG_SLUB_DEBUG 3904 list_for_each_entry(p, &n->full, lru) 3905 p->slab_cache = s; 3906 #endif 3907 } 3908 slab_init_memcg_params(s); 3909 list_add(&s->list, &slab_caches); 3910 return s; 3911 } 3912 3913 void __init kmem_cache_init(void) 3914 { 3915 static __initdata struct kmem_cache boot_kmem_cache, 3916 boot_kmem_cache_node; 3917 3918 if (debug_guardpage_minorder()) 3919 slub_max_order = 0; 3920 3921 kmem_cache_node = &boot_kmem_cache_node; 3922 kmem_cache = &boot_kmem_cache; 3923 3924 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3925 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3926 3927 register_hotmemory_notifier(&slab_memory_callback_nb); 3928 3929 /* Able to allocate the per node structures */ 3930 slab_state = PARTIAL; 3931 3932 create_boot_cache(kmem_cache, "kmem_cache", 3933 offsetof(struct kmem_cache, node) + 3934 nr_node_ids * sizeof(struct kmem_cache_node *), 3935 SLAB_HWCACHE_ALIGN); 3936 3937 kmem_cache = bootstrap(&boot_kmem_cache); 3938 3939 /* 3940 * Allocate kmem_cache_node properly from the kmem_cache slab. 3941 * kmem_cache_node is separately allocated so no need to 3942 * update any list pointers. 3943 */ 3944 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3945 3946 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3947 setup_kmalloc_cache_index_table(); 3948 create_kmalloc_caches(0); 3949 3950 #ifdef CONFIG_SMP 3951 register_cpu_notifier(&slab_notifier); 3952 #endif 3953 3954 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3955 cache_line_size(), 3956 slub_min_order, slub_max_order, slub_min_objects, 3957 nr_cpu_ids, nr_node_ids); 3958 } 3959 3960 void __init kmem_cache_init_late(void) 3961 { 3962 } 3963 3964 struct kmem_cache * 3965 __kmem_cache_alias(const char *name, size_t size, size_t align, 3966 unsigned long flags, void (*ctor)(void *)) 3967 { 3968 struct kmem_cache *s, *c; 3969 3970 s = find_mergeable(size, align, flags, name, ctor); 3971 if (s) { 3972 s->refcount++; 3973 3974 /* 3975 * Adjust the object sizes so that we clear 3976 * the complete object on kzalloc. 3977 */ 3978 s->object_size = max(s->object_size, (int)size); 3979 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3980 3981 for_each_memcg_cache(c, s) { 3982 c->object_size = s->object_size; 3983 c->inuse = max_t(int, c->inuse, 3984 ALIGN(size, sizeof(void *))); 3985 } 3986 3987 if (sysfs_slab_alias(s, name)) { 3988 s->refcount--; 3989 s = NULL; 3990 } 3991 } 3992 3993 return s; 3994 } 3995 3996 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3997 { 3998 int err; 3999 4000 err = kmem_cache_open(s, flags); 4001 if (err) 4002 return err; 4003 4004 /* Mutex is not taken during early boot */ 4005 if (slab_state <= UP) 4006 return 0; 4007 4008 memcg_propagate_slab_attrs(s); 4009 err = sysfs_slab_add(s); 4010 if (err) 4011 __kmem_cache_release(s); 4012 4013 return err; 4014 } 4015 4016 #ifdef CONFIG_SMP 4017 /* 4018 * Use the cpu notifier to insure that the cpu slabs are flushed when 4019 * necessary. 4020 */ 4021 static int slab_cpuup_callback(struct notifier_block *nfb, 4022 unsigned long action, void *hcpu) 4023 { 4024 long cpu = (long)hcpu; 4025 struct kmem_cache *s; 4026 unsigned long flags; 4027 4028 switch (action) { 4029 case CPU_UP_CANCELED: 4030 case CPU_UP_CANCELED_FROZEN: 4031 case CPU_DEAD: 4032 case CPU_DEAD_FROZEN: 4033 mutex_lock(&slab_mutex); 4034 list_for_each_entry(s, &slab_caches, list) { 4035 local_irq_save(flags); 4036 __flush_cpu_slab(s, cpu); 4037 local_irq_restore(flags); 4038 } 4039 mutex_unlock(&slab_mutex); 4040 break; 4041 default: 4042 break; 4043 } 4044 return NOTIFY_OK; 4045 } 4046 4047 static struct notifier_block slab_notifier = { 4048 .notifier_call = slab_cpuup_callback 4049 }; 4050 4051 #endif 4052 4053 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4054 { 4055 struct kmem_cache *s; 4056 void *ret; 4057 4058 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4059 return kmalloc_large(size, gfpflags); 4060 4061 s = kmalloc_slab(size, gfpflags); 4062 4063 if (unlikely(ZERO_OR_NULL_PTR(s))) 4064 return s; 4065 4066 ret = slab_alloc(s, gfpflags, caller); 4067 4068 /* Honor the call site pointer we received. */ 4069 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4070 4071 return ret; 4072 } 4073 4074 #ifdef CONFIG_NUMA 4075 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4076 int node, unsigned long caller) 4077 { 4078 struct kmem_cache *s; 4079 void *ret; 4080 4081 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4082 ret = kmalloc_large_node(size, gfpflags, node); 4083 4084 trace_kmalloc_node(caller, ret, 4085 size, PAGE_SIZE << get_order(size), 4086 gfpflags, node); 4087 4088 return ret; 4089 } 4090 4091 s = kmalloc_slab(size, gfpflags); 4092 4093 if (unlikely(ZERO_OR_NULL_PTR(s))) 4094 return s; 4095 4096 ret = slab_alloc_node(s, gfpflags, node, caller); 4097 4098 /* Honor the call site pointer we received. */ 4099 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4100 4101 return ret; 4102 } 4103 #endif 4104 4105 #ifdef CONFIG_SYSFS 4106 static int count_inuse(struct page *page) 4107 { 4108 return page->inuse; 4109 } 4110 4111 static int count_total(struct page *page) 4112 { 4113 return page->objects; 4114 } 4115 #endif 4116 4117 #ifdef CONFIG_SLUB_DEBUG 4118 static int validate_slab(struct kmem_cache *s, struct page *page, 4119 unsigned long *map) 4120 { 4121 void *p; 4122 void *addr = page_address(page); 4123 4124 if (!check_slab(s, page) || 4125 !on_freelist(s, page, NULL)) 4126 return 0; 4127 4128 /* Now we know that a valid freelist exists */ 4129 bitmap_zero(map, page->objects); 4130 4131 get_map(s, page, map); 4132 for_each_object(p, s, addr, page->objects) { 4133 if (test_bit(slab_index(p, s, addr), map)) 4134 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4135 return 0; 4136 } 4137 4138 for_each_object(p, s, addr, page->objects) 4139 if (!test_bit(slab_index(p, s, addr), map)) 4140 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4141 return 0; 4142 return 1; 4143 } 4144 4145 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4146 unsigned long *map) 4147 { 4148 slab_lock(page); 4149 validate_slab(s, page, map); 4150 slab_unlock(page); 4151 } 4152 4153 static int validate_slab_node(struct kmem_cache *s, 4154 struct kmem_cache_node *n, unsigned long *map) 4155 { 4156 unsigned long count = 0; 4157 struct page *page; 4158 unsigned long flags; 4159 4160 spin_lock_irqsave(&n->list_lock, flags); 4161 4162 list_for_each_entry(page, &n->partial, lru) { 4163 validate_slab_slab(s, page, map); 4164 count++; 4165 } 4166 if (count != n->nr_partial) 4167 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4168 s->name, count, n->nr_partial); 4169 4170 if (!(s->flags & SLAB_STORE_USER)) 4171 goto out; 4172 4173 list_for_each_entry(page, &n->full, lru) { 4174 validate_slab_slab(s, page, map); 4175 count++; 4176 } 4177 if (count != atomic_long_read(&n->nr_slabs)) 4178 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4179 s->name, count, atomic_long_read(&n->nr_slabs)); 4180 4181 out: 4182 spin_unlock_irqrestore(&n->list_lock, flags); 4183 return count; 4184 } 4185 4186 static long validate_slab_cache(struct kmem_cache *s) 4187 { 4188 int node; 4189 unsigned long count = 0; 4190 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4191 sizeof(unsigned long), GFP_KERNEL); 4192 struct kmem_cache_node *n; 4193 4194 if (!map) 4195 return -ENOMEM; 4196 4197 flush_all(s); 4198 for_each_kmem_cache_node(s, node, n) 4199 count += validate_slab_node(s, n, map); 4200 kfree(map); 4201 return count; 4202 } 4203 /* 4204 * Generate lists of code addresses where slabcache objects are allocated 4205 * and freed. 4206 */ 4207 4208 struct location { 4209 unsigned long count; 4210 unsigned long addr; 4211 long long sum_time; 4212 long min_time; 4213 long max_time; 4214 long min_pid; 4215 long max_pid; 4216 DECLARE_BITMAP(cpus, NR_CPUS); 4217 nodemask_t nodes; 4218 }; 4219 4220 struct loc_track { 4221 unsigned long max; 4222 unsigned long count; 4223 struct location *loc; 4224 }; 4225 4226 static void free_loc_track(struct loc_track *t) 4227 { 4228 if (t->max) 4229 free_pages((unsigned long)t->loc, 4230 get_order(sizeof(struct location) * t->max)); 4231 } 4232 4233 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4234 { 4235 struct location *l; 4236 int order; 4237 4238 order = get_order(sizeof(struct location) * max); 4239 4240 l = (void *)__get_free_pages(flags, order); 4241 if (!l) 4242 return 0; 4243 4244 if (t->count) { 4245 memcpy(l, t->loc, sizeof(struct location) * t->count); 4246 free_loc_track(t); 4247 } 4248 t->max = max; 4249 t->loc = l; 4250 return 1; 4251 } 4252 4253 static int add_location(struct loc_track *t, struct kmem_cache *s, 4254 const struct track *track) 4255 { 4256 long start, end, pos; 4257 struct location *l; 4258 unsigned long caddr; 4259 unsigned long age = jiffies - track->when; 4260 4261 start = -1; 4262 end = t->count; 4263 4264 for ( ; ; ) { 4265 pos = start + (end - start + 1) / 2; 4266 4267 /* 4268 * There is nothing at "end". If we end up there 4269 * we need to add something to before end. 4270 */ 4271 if (pos == end) 4272 break; 4273 4274 caddr = t->loc[pos].addr; 4275 if (track->addr == caddr) { 4276 4277 l = &t->loc[pos]; 4278 l->count++; 4279 if (track->when) { 4280 l->sum_time += age; 4281 if (age < l->min_time) 4282 l->min_time = age; 4283 if (age > l->max_time) 4284 l->max_time = age; 4285 4286 if (track->pid < l->min_pid) 4287 l->min_pid = track->pid; 4288 if (track->pid > l->max_pid) 4289 l->max_pid = track->pid; 4290 4291 cpumask_set_cpu(track->cpu, 4292 to_cpumask(l->cpus)); 4293 } 4294 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4295 return 1; 4296 } 4297 4298 if (track->addr < caddr) 4299 end = pos; 4300 else 4301 start = pos; 4302 } 4303 4304 /* 4305 * Not found. Insert new tracking element. 4306 */ 4307 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4308 return 0; 4309 4310 l = t->loc + pos; 4311 if (pos < t->count) 4312 memmove(l + 1, l, 4313 (t->count - pos) * sizeof(struct location)); 4314 t->count++; 4315 l->count = 1; 4316 l->addr = track->addr; 4317 l->sum_time = age; 4318 l->min_time = age; 4319 l->max_time = age; 4320 l->min_pid = track->pid; 4321 l->max_pid = track->pid; 4322 cpumask_clear(to_cpumask(l->cpus)); 4323 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4324 nodes_clear(l->nodes); 4325 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4326 return 1; 4327 } 4328 4329 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4330 struct page *page, enum track_item alloc, 4331 unsigned long *map) 4332 { 4333 void *addr = page_address(page); 4334 void *p; 4335 4336 bitmap_zero(map, page->objects); 4337 get_map(s, page, map); 4338 4339 for_each_object(p, s, addr, page->objects) 4340 if (!test_bit(slab_index(p, s, addr), map)) 4341 add_location(t, s, get_track(s, p, alloc)); 4342 } 4343 4344 static int list_locations(struct kmem_cache *s, char *buf, 4345 enum track_item alloc) 4346 { 4347 int len = 0; 4348 unsigned long i; 4349 struct loc_track t = { 0, 0, NULL }; 4350 int node; 4351 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4352 sizeof(unsigned long), GFP_KERNEL); 4353 struct kmem_cache_node *n; 4354 4355 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4356 GFP_TEMPORARY)) { 4357 kfree(map); 4358 return sprintf(buf, "Out of memory\n"); 4359 } 4360 /* Push back cpu slabs */ 4361 flush_all(s); 4362 4363 for_each_kmem_cache_node(s, node, n) { 4364 unsigned long flags; 4365 struct page *page; 4366 4367 if (!atomic_long_read(&n->nr_slabs)) 4368 continue; 4369 4370 spin_lock_irqsave(&n->list_lock, flags); 4371 list_for_each_entry(page, &n->partial, lru) 4372 process_slab(&t, s, page, alloc, map); 4373 list_for_each_entry(page, &n->full, lru) 4374 process_slab(&t, s, page, alloc, map); 4375 spin_unlock_irqrestore(&n->list_lock, flags); 4376 } 4377 4378 for (i = 0; i < t.count; i++) { 4379 struct location *l = &t.loc[i]; 4380 4381 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4382 break; 4383 len += sprintf(buf + len, "%7ld ", l->count); 4384 4385 if (l->addr) 4386 len += sprintf(buf + len, "%pS", (void *)l->addr); 4387 else 4388 len += sprintf(buf + len, "<not-available>"); 4389 4390 if (l->sum_time != l->min_time) { 4391 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4392 l->min_time, 4393 (long)div_u64(l->sum_time, l->count), 4394 l->max_time); 4395 } else 4396 len += sprintf(buf + len, " age=%ld", 4397 l->min_time); 4398 4399 if (l->min_pid != l->max_pid) 4400 len += sprintf(buf + len, " pid=%ld-%ld", 4401 l->min_pid, l->max_pid); 4402 else 4403 len += sprintf(buf + len, " pid=%ld", 4404 l->min_pid); 4405 4406 if (num_online_cpus() > 1 && 4407 !cpumask_empty(to_cpumask(l->cpus)) && 4408 len < PAGE_SIZE - 60) 4409 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4410 " cpus=%*pbl", 4411 cpumask_pr_args(to_cpumask(l->cpus))); 4412 4413 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4414 len < PAGE_SIZE - 60) 4415 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4416 " nodes=%*pbl", 4417 nodemask_pr_args(&l->nodes)); 4418 4419 len += sprintf(buf + len, "\n"); 4420 } 4421 4422 free_loc_track(&t); 4423 kfree(map); 4424 if (!t.count) 4425 len += sprintf(buf, "No data\n"); 4426 return len; 4427 } 4428 #endif 4429 4430 #ifdef SLUB_RESILIENCY_TEST 4431 static void __init resiliency_test(void) 4432 { 4433 u8 *p; 4434 4435 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4436 4437 pr_err("SLUB resiliency testing\n"); 4438 pr_err("-----------------------\n"); 4439 pr_err("A. Corruption after allocation\n"); 4440 4441 p = kzalloc(16, GFP_KERNEL); 4442 p[16] = 0x12; 4443 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4444 p + 16); 4445 4446 validate_slab_cache(kmalloc_caches[4]); 4447 4448 /* Hmmm... The next two are dangerous */ 4449 p = kzalloc(32, GFP_KERNEL); 4450 p[32 + sizeof(void *)] = 0x34; 4451 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4452 p); 4453 pr_err("If allocated object is overwritten then not detectable\n\n"); 4454 4455 validate_slab_cache(kmalloc_caches[5]); 4456 p = kzalloc(64, GFP_KERNEL); 4457 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4458 *p = 0x56; 4459 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4460 p); 4461 pr_err("If allocated object is overwritten then not detectable\n\n"); 4462 validate_slab_cache(kmalloc_caches[6]); 4463 4464 pr_err("\nB. Corruption after free\n"); 4465 p = kzalloc(128, GFP_KERNEL); 4466 kfree(p); 4467 *p = 0x78; 4468 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4469 validate_slab_cache(kmalloc_caches[7]); 4470 4471 p = kzalloc(256, GFP_KERNEL); 4472 kfree(p); 4473 p[50] = 0x9a; 4474 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4475 validate_slab_cache(kmalloc_caches[8]); 4476 4477 p = kzalloc(512, GFP_KERNEL); 4478 kfree(p); 4479 p[512] = 0xab; 4480 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4481 validate_slab_cache(kmalloc_caches[9]); 4482 } 4483 #else 4484 #ifdef CONFIG_SYSFS 4485 static void resiliency_test(void) {}; 4486 #endif 4487 #endif 4488 4489 #ifdef CONFIG_SYSFS 4490 enum slab_stat_type { 4491 SL_ALL, /* All slabs */ 4492 SL_PARTIAL, /* Only partially allocated slabs */ 4493 SL_CPU, /* Only slabs used for cpu caches */ 4494 SL_OBJECTS, /* Determine allocated objects not slabs */ 4495 SL_TOTAL /* Determine object capacity not slabs */ 4496 }; 4497 4498 #define SO_ALL (1 << SL_ALL) 4499 #define SO_PARTIAL (1 << SL_PARTIAL) 4500 #define SO_CPU (1 << SL_CPU) 4501 #define SO_OBJECTS (1 << SL_OBJECTS) 4502 #define SO_TOTAL (1 << SL_TOTAL) 4503 4504 static ssize_t show_slab_objects(struct kmem_cache *s, 4505 char *buf, unsigned long flags) 4506 { 4507 unsigned long total = 0; 4508 int node; 4509 int x; 4510 unsigned long *nodes; 4511 4512 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4513 if (!nodes) 4514 return -ENOMEM; 4515 4516 if (flags & SO_CPU) { 4517 int cpu; 4518 4519 for_each_possible_cpu(cpu) { 4520 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4521 cpu); 4522 int node; 4523 struct page *page; 4524 4525 page = READ_ONCE(c->page); 4526 if (!page) 4527 continue; 4528 4529 node = page_to_nid(page); 4530 if (flags & SO_TOTAL) 4531 x = page->objects; 4532 else if (flags & SO_OBJECTS) 4533 x = page->inuse; 4534 else 4535 x = 1; 4536 4537 total += x; 4538 nodes[node] += x; 4539 4540 page = READ_ONCE(c->partial); 4541 if (page) { 4542 node = page_to_nid(page); 4543 if (flags & SO_TOTAL) 4544 WARN_ON_ONCE(1); 4545 else if (flags & SO_OBJECTS) 4546 WARN_ON_ONCE(1); 4547 else 4548 x = page->pages; 4549 total += x; 4550 nodes[node] += x; 4551 } 4552 } 4553 } 4554 4555 get_online_mems(); 4556 #ifdef CONFIG_SLUB_DEBUG 4557 if (flags & SO_ALL) { 4558 struct kmem_cache_node *n; 4559 4560 for_each_kmem_cache_node(s, node, n) { 4561 4562 if (flags & SO_TOTAL) 4563 x = atomic_long_read(&n->total_objects); 4564 else if (flags & SO_OBJECTS) 4565 x = atomic_long_read(&n->total_objects) - 4566 count_partial(n, count_free); 4567 else 4568 x = atomic_long_read(&n->nr_slabs); 4569 total += x; 4570 nodes[node] += x; 4571 } 4572 4573 } else 4574 #endif 4575 if (flags & SO_PARTIAL) { 4576 struct kmem_cache_node *n; 4577 4578 for_each_kmem_cache_node(s, node, n) { 4579 if (flags & SO_TOTAL) 4580 x = count_partial(n, count_total); 4581 else if (flags & SO_OBJECTS) 4582 x = count_partial(n, count_inuse); 4583 else 4584 x = n->nr_partial; 4585 total += x; 4586 nodes[node] += x; 4587 } 4588 } 4589 x = sprintf(buf, "%lu", total); 4590 #ifdef CONFIG_NUMA 4591 for (node = 0; node < nr_node_ids; node++) 4592 if (nodes[node]) 4593 x += sprintf(buf + x, " N%d=%lu", 4594 node, nodes[node]); 4595 #endif 4596 put_online_mems(); 4597 kfree(nodes); 4598 return x + sprintf(buf + x, "\n"); 4599 } 4600 4601 #ifdef CONFIG_SLUB_DEBUG 4602 static int any_slab_objects(struct kmem_cache *s) 4603 { 4604 int node; 4605 struct kmem_cache_node *n; 4606 4607 for_each_kmem_cache_node(s, node, n) 4608 if (atomic_long_read(&n->total_objects)) 4609 return 1; 4610 4611 return 0; 4612 } 4613 #endif 4614 4615 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4616 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4617 4618 struct slab_attribute { 4619 struct attribute attr; 4620 ssize_t (*show)(struct kmem_cache *s, char *buf); 4621 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4622 }; 4623 4624 #define SLAB_ATTR_RO(_name) \ 4625 static struct slab_attribute _name##_attr = \ 4626 __ATTR(_name, 0400, _name##_show, NULL) 4627 4628 #define SLAB_ATTR(_name) \ 4629 static struct slab_attribute _name##_attr = \ 4630 __ATTR(_name, 0600, _name##_show, _name##_store) 4631 4632 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4633 { 4634 return sprintf(buf, "%d\n", s->size); 4635 } 4636 SLAB_ATTR_RO(slab_size); 4637 4638 static ssize_t align_show(struct kmem_cache *s, char *buf) 4639 { 4640 return sprintf(buf, "%d\n", s->align); 4641 } 4642 SLAB_ATTR_RO(align); 4643 4644 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4645 { 4646 return sprintf(buf, "%d\n", s->object_size); 4647 } 4648 SLAB_ATTR_RO(object_size); 4649 4650 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4651 { 4652 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4653 } 4654 SLAB_ATTR_RO(objs_per_slab); 4655 4656 static ssize_t order_store(struct kmem_cache *s, 4657 const char *buf, size_t length) 4658 { 4659 unsigned long order; 4660 int err; 4661 4662 err = kstrtoul(buf, 10, &order); 4663 if (err) 4664 return err; 4665 4666 if (order > slub_max_order || order < slub_min_order) 4667 return -EINVAL; 4668 4669 calculate_sizes(s, order); 4670 return length; 4671 } 4672 4673 static ssize_t order_show(struct kmem_cache *s, char *buf) 4674 { 4675 return sprintf(buf, "%d\n", oo_order(s->oo)); 4676 } 4677 SLAB_ATTR(order); 4678 4679 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4680 { 4681 return sprintf(buf, "%lu\n", s->min_partial); 4682 } 4683 4684 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4685 size_t length) 4686 { 4687 unsigned long min; 4688 int err; 4689 4690 err = kstrtoul(buf, 10, &min); 4691 if (err) 4692 return err; 4693 4694 set_min_partial(s, min); 4695 return length; 4696 } 4697 SLAB_ATTR(min_partial); 4698 4699 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4700 { 4701 return sprintf(buf, "%u\n", s->cpu_partial); 4702 } 4703 4704 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4705 size_t length) 4706 { 4707 unsigned long objects; 4708 int err; 4709 4710 err = kstrtoul(buf, 10, &objects); 4711 if (err) 4712 return err; 4713 if (objects && !kmem_cache_has_cpu_partial(s)) 4714 return -EINVAL; 4715 4716 s->cpu_partial = objects; 4717 flush_all(s); 4718 return length; 4719 } 4720 SLAB_ATTR(cpu_partial); 4721 4722 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4723 { 4724 if (!s->ctor) 4725 return 0; 4726 return sprintf(buf, "%pS\n", s->ctor); 4727 } 4728 SLAB_ATTR_RO(ctor); 4729 4730 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4731 { 4732 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4733 } 4734 SLAB_ATTR_RO(aliases); 4735 4736 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4737 { 4738 return show_slab_objects(s, buf, SO_PARTIAL); 4739 } 4740 SLAB_ATTR_RO(partial); 4741 4742 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4743 { 4744 return show_slab_objects(s, buf, SO_CPU); 4745 } 4746 SLAB_ATTR_RO(cpu_slabs); 4747 4748 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4749 { 4750 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4751 } 4752 SLAB_ATTR_RO(objects); 4753 4754 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4755 { 4756 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4757 } 4758 SLAB_ATTR_RO(objects_partial); 4759 4760 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4761 { 4762 int objects = 0; 4763 int pages = 0; 4764 int cpu; 4765 int len; 4766 4767 for_each_online_cpu(cpu) { 4768 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4769 4770 if (page) { 4771 pages += page->pages; 4772 objects += page->pobjects; 4773 } 4774 } 4775 4776 len = sprintf(buf, "%d(%d)", objects, pages); 4777 4778 #ifdef CONFIG_SMP 4779 for_each_online_cpu(cpu) { 4780 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4781 4782 if (page && len < PAGE_SIZE - 20) 4783 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4784 page->pobjects, page->pages); 4785 } 4786 #endif 4787 return len + sprintf(buf + len, "\n"); 4788 } 4789 SLAB_ATTR_RO(slabs_cpu_partial); 4790 4791 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4792 { 4793 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4794 } 4795 4796 static ssize_t reclaim_account_store(struct kmem_cache *s, 4797 const char *buf, size_t length) 4798 { 4799 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4800 if (buf[0] == '1') 4801 s->flags |= SLAB_RECLAIM_ACCOUNT; 4802 return length; 4803 } 4804 SLAB_ATTR(reclaim_account); 4805 4806 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4807 { 4808 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4809 } 4810 SLAB_ATTR_RO(hwcache_align); 4811 4812 #ifdef CONFIG_ZONE_DMA 4813 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4814 { 4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4816 } 4817 SLAB_ATTR_RO(cache_dma); 4818 #endif 4819 4820 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4821 { 4822 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4823 } 4824 SLAB_ATTR_RO(destroy_by_rcu); 4825 4826 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4827 { 4828 return sprintf(buf, "%d\n", s->reserved); 4829 } 4830 SLAB_ATTR_RO(reserved); 4831 4832 #ifdef CONFIG_SLUB_DEBUG 4833 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4834 { 4835 return show_slab_objects(s, buf, SO_ALL); 4836 } 4837 SLAB_ATTR_RO(slabs); 4838 4839 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4840 { 4841 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4842 } 4843 SLAB_ATTR_RO(total_objects); 4844 4845 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4846 { 4847 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 4848 } 4849 4850 static ssize_t sanity_checks_store(struct kmem_cache *s, 4851 const char *buf, size_t length) 4852 { 4853 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 4854 if (buf[0] == '1') { 4855 s->flags &= ~__CMPXCHG_DOUBLE; 4856 s->flags |= SLAB_CONSISTENCY_CHECKS; 4857 } 4858 return length; 4859 } 4860 SLAB_ATTR(sanity_checks); 4861 4862 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4863 { 4864 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4865 } 4866 4867 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4868 size_t length) 4869 { 4870 /* 4871 * Tracing a merged cache is going to give confusing results 4872 * as well as cause other issues like converting a mergeable 4873 * cache into an umergeable one. 4874 */ 4875 if (s->refcount > 1) 4876 return -EINVAL; 4877 4878 s->flags &= ~SLAB_TRACE; 4879 if (buf[0] == '1') { 4880 s->flags &= ~__CMPXCHG_DOUBLE; 4881 s->flags |= SLAB_TRACE; 4882 } 4883 return length; 4884 } 4885 SLAB_ATTR(trace); 4886 4887 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4888 { 4889 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4890 } 4891 4892 static ssize_t red_zone_store(struct kmem_cache *s, 4893 const char *buf, size_t length) 4894 { 4895 if (any_slab_objects(s)) 4896 return -EBUSY; 4897 4898 s->flags &= ~SLAB_RED_ZONE; 4899 if (buf[0] == '1') { 4900 s->flags |= SLAB_RED_ZONE; 4901 } 4902 calculate_sizes(s, -1); 4903 return length; 4904 } 4905 SLAB_ATTR(red_zone); 4906 4907 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4908 { 4909 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4910 } 4911 4912 static ssize_t poison_store(struct kmem_cache *s, 4913 const char *buf, size_t length) 4914 { 4915 if (any_slab_objects(s)) 4916 return -EBUSY; 4917 4918 s->flags &= ~SLAB_POISON; 4919 if (buf[0] == '1') { 4920 s->flags |= SLAB_POISON; 4921 } 4922 calculate_sizes(s, -1); 4923 return length; 4924 } 4925 SLAB_ATTR(poison); 4926 4927 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4928 { 4929 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4930 } 4931 4932 static ssize_t store_user_store(struct kmem_cache *s, 4933 const char *buf, size_t length) 4934 { 4935 if (any_slab_objects(s)) 4936 return -EBUSY; 4937 4938 s->flags &= ~SLAB_STORE_USER; 4939 if (buf[0] == '1') { 4940 s->flags &= ~__CMPXCHG_DOUBLE; 4941 s->flags |= SLAB_STORE_USER; 4942 } 4943 calculate_sizes(s, -1); 4944 return length; 4945 } 4946 SLAB_ATTR(store_user); 4947 4948 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4949 { 4950 return 0; 4951 } 4952 4953 static ssize_t validate_store(struct kmem_cache *s, 4954 const char *buf, size_t length) 4955 { 4956 int ret = -EINVAL; 4957 4958 if (buf[0] == '1') { 4959 ret = validate_slab_cache(s); 4960 if (ret >= 0) 4961 ret = length; 4962 } 4963 return ret; 4964 } 4965 SLAB_ATTR(validate); 4966 4967 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4968 { 4969 if (!(s->flags & SLAB_STORE_USER)) 4970 return -ENOSYS; 4971 return list_locations(s, buf, TRACK_ALLOC); 4972 } 4973 SLAB_ATTR_RO(alloc_calls); 4974 4975 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4976 { 4977 if (!(s->flags & SLAB_STORE_USER)) 4978 return -ENOSYS; 4979 return list_locations(s, buf, TRACK_FREE); 4980 } 4981 SLAB_ATTR_RO(free_calls); 4982 #endif /* CONFIG_SLUB_DEBUG */ 4983 4984 #ifdef CONFIG_FAILSLAB 4985 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4986 { 4987 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4988 } 4989 4990 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4991 size_t length) 4992 { 4993 if (s->refcount > 1) 4994 return -EINVAL; 4995 4996 s->flags &= ~SLAB_FAILSLAB; 4997 if (buf[0] == '1') 4998 s->flags |= SLAB_FAILSLAB; 4999 return length; 5000 } 5001 SLAB_ATTR(failslab); 5002 #endif 5003 5004 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5005 { 5006 return 0; 5007 } 5008 5009 static ssize_t shrink_store(struct kmem_cache *s, 5010 const char *buf, size_t length) 5011 { 5012 if (buf[0] == '1') 5013 kmem_cache_shrink(s); 5014 else 5015 return -EINVAL; 5016 return length; 5017 } 5018 SLAB_ATTR(shrink); 5019 5020 #ifdef CONFIG_NUMA 5021 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5022 { 5023 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5024 } 5025 5026 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5027 const char *buf, size_t length) 5028 { 5029 unsigned long ratio; 5030 int err; 5031 5032 err = kstrtoul(buf, 10, &ratio); 5033 if (err) 5034 return err; 5035 5036 if (ratio <= 100) 5037 s->remote_node_defrag_ratio = ratio * 10; 5038 5039 return length; 5040 } 5041 SLAB_ATTR(remote_node_defrag_ratio); 5042 #endif 5043 5044 #ifdef CONFIG_SLUB_STATS 5045 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5046 { 5047 unsigned long sum = 0; 5048 int cpu; 5049 int len; 5050 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5051 5052 if (!data) 5053 return -ENOMEM; 5054 5055 for_each_online_cpu(cpu) { 5056 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5057 5058 data[cpu] = x; 5059 sum += x; 5060 } 5061 5062 len = sprintf(buf, "%lu", sum); 5063 5064 #ifdef CONFIG_SMP 5065 for_each_online_cpu(cpu) { 5066 if (data[cpu] && len < PAGE_SIZE - 20) 5067 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5068 } 5069 #endif 5070 kfree(data); 5071 return len + sprintf(buf + len, "\n"); 5072 } 5073 5074 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5075 { 5076 int cpu; 5077 5078 for_each_online_cpu(cpu) 5079 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5080 } 5081 5082 #define STAT_ATTR(si, text) \ 5083 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5084 { \ 5085 return show_stat(s, buf, si); \ 5086 } \ 5087 static ssize_t text##_store(struct kmem_cache *s, \ 5088 const char *buf, size_t length) \ 5089 { \ 5090 if (buf[0] != '0') \ 5091 return -EINVAL; \ 5092 clear_stat(s, si); \ 5093 return length; \ 5094 } \ 5095 SLAB_ATTR(text); \ 5096 5097 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5098 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5099 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5100 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5101 STAT_ATTR(FREE_FROZEN, free_frozen); 5102 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5103 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5104 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5105 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5106 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5107 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5108 STAT_ATTR(FREE_SLAB, free_slab); 5109 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5110 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5111 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5112 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5113 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5114 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5115 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5116 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5117 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5118 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5119 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5120 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5121 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5122 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5123 #endif 5124 5125 static struct attribute *slab_attrs[] = { 5126 &slab_size_attr.attr, 5127 &object_size_attr.attr, 5128 &objs_per_slab_attr.attr, 5129 &order_attr.attr, 5130 &min_partial_attr.attr, 5131 &cpu_partial_attr.attr, 5132 &objects_attr.attr, 5133 &objects_partial_attr.attr, 5134 &partial_attr.attr, 5135 &cpu_slabs_attr.attr, 5136 &ctor_attr.attr, 5137 &aliases_attr.attr, 5138 &align_attr.attr, 5139 &hwcache_align_attr.attr, 5140 &reclaim_account_attr.attr, 5141 &destroy_by_rcu_attr.attr, 5142 &shrink_attr.attr, 5143 &reserved_attr.attr, 5144 &slabs_cpu_partial_attr.attr, 5145 #ifdef CONFIG_SLUB_DEBUG 5146 &total_objects_attr.attr, 5147 &slabs_attr.attr, 5148 &sanity_checks_attr.attr, 5149 &trace_attr.attr, 5150 &red_zone_attr.attr, 5151 &poison_attr.attr, 5152 &store_user_attr.attr, 5153 &validate_attr.attr, 5154 &alloc_calls_attr.attr, 5155 &free_calls_attr.attr, 5156 #endif 5157 #ifdef CONFIG_ZONE_DMA 5158 &cache_dma_attr.attr, 5159 #endif 5160 #ifdef CONFIG_NUMA 5161 &remote_node_defrag_ratio_attr.attr, 5162 #endif 5163 #ifdef CONFIG_SLUB_STATS 5164 &alloc_fastpath_attr.attr, 5165 &alloc_slowpath_attr.attr, 5166 &free_fastpath_attr.attr, 5167 &free_slowpath_attr.attr, 5168 &free_frozen_attr.attr, 5169 &free_add_partial_attr.attr, 5170 &free_remove_partial_attr.attr, 5171 &alloc_from_partial_attr.attr, 5172 &alloc_slab_attr.attr, 5173 &alloc_refill_attr.attr, 5174 &alloc_node_mismatch_attr.attr, 5175 &free_slab_attr.attr, 5176 &cpuslab_flush_attr.attr, 5177 &deactivate_full_attr.attr, 5178 &deactivate_empty_attr.attr, 5179 &deactivate_to_head_attr.attr, 5180 &deactivate_to_tail_attr.attr, 5181 &deactivate_remote_frees_attr.attr, 5182 &deactivate_bypass_attr.attr, 5183 &order_fallback_attr.attr, 5184 &cmpxchg_double_fail_attr.attr, 5185 &cmpxchg_double_cpu_fail_attr.attr, 5186 &cpu_partial_alloc_attr.attr, 5187 &cpu_partial_free_attr.attr, 5188 &cpu_partial_node_attr.attr, 5189 &cpu_partial_drain_attr.attr, 5190 #endif 5191 #ifdef CONFIG_FAILSLAB 5192 &failslab_attr.attr, 5193 #endif 5194 5195 NULL 5196 }; 5197 5198 static struct attribute_group slab_attr_group = { 5199 .attrs = slab_attrs, 5200 }; 5201 5202 static ssize_t slab_attr_show(struct kobject *kobj, 5203 struct attribute *attr, 5204 char *buf) 5205 { 5206 struct slab_attribute *attribute; 5207 struct kmem_cache *s; 5208 int err; 5209 5210 attribute = to_slab_attr(attr); 5211 s = to_slab(kobj); 5212 5213 if (!attribute->show) 5214 return -EIO; 5215 5216 err = attribute->show(s, buf); 5217 5218 return err; 5219 } 5220 5221 static ssize_t slab_attr_store(struct kobject *kobj, 5222 struct attribute *attr, 5223 const char *buf, size_t len) 5224 { 5225 struct slab_attribute *attribute; 5226 struct kmem_cache *s; 5227 int err; 5228 5229 attribute = to_slab_attr(attr); 5230 s = to_slab(kobj); 5231 5232 if (!attribute->store) 5233 return -EIO; 5234 5235 err = attribute->store(s, buf, len); 5236 #ifdef CONFIG_MEMCG 5237 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5238 struct kmem_cache *c; 5239 5240 mutex_lock(&slab_mutex); 5241 if (s->max_attr_size < len) 5242 s->max_attr_size = len; 5243 5244 /* 5245 * This is a best effort propagation, so this function's return 5246 * value will be determined by the parent cache only. This is 5247 * basically because not all attributes will have a well 5248 * defined semantics for rollbacks - most of the actions will 5249 * have permanent effects. 5250 * 5251 * Returning the error value of any of the children that fail 5252 * is not 100 % defined, in the sense that users seeing the 5253 * error code won't be able to know anything about the state of 5254 * the cache. 5255 * 5256 * Only returning the error code for the parent cache at least 5257 * has well defined semantics. The cache being written to 5258 * directly either failed or succeeded, in which case we loop 5259 * through the descendants with best-effort propagation. 5260 */ 5261 for_each_memcg_cache(c, s) 5262 attribute->store(c, buf, len); 5263 mutex_unlock(&slab_mutex); 5264 } 5265 #endif 5266 return err; 5267 } 5268 5269 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5270 { 5271 #ifdef CONFIG_MEMCG 5272 int i; 5273 char *buffer = NULL; 5274 struct kmem_cache *root_cache; 5275 5276 if (is_root_cache(s)) 5277 return; 5278 5279 root_cache = s->memcg_params.root_cache; 5280 5281 /* 5282 * This mean this cache had no attribute written. Therefore, no point 5283 * in copying default values around 5284 */ 5285 if (!root_cache->max_attr_size) 5286 return; 5287 5288 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5289 char mbuf[64]; 5290 char *buf; 5291 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5292 5293 if (!attr || !attr->store || !attr->show) 5294 continue; 5295 5296 /* 5297 * It is really bad that we have to allocate here, so we will 5298 * do it only as a fallback. If we actually allocate, though, 5299 * we can just use the allocated buffer until the end. 5300 * 5301 * Most of the slub attributes will tend to be very small in 5302 * size, but sysfs allows buffers up to a page, so they can 5303 * theoretically happen. 5304 */ 5305 if (buffer) 5306 buf = buffer; 5307 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5308 buf = mbuf; 5309 else { 5310 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5311 if (WARN_ON(!buffer)) 5312 continue; 5313 buf = buffer; 5314 } 5315 5316 attr->show(root_cache, buf); 5317 attr->store(s, buf, strlen(buf)); 5318 } 5319 5320 if (buffer) 5321 free_page((unsigned long)buffer); 5322 #endif 5323 } 5324 5325 static void kmem_cache_release(struct kobject *k) 5326 { 5327 slab_kmem_cache_release(to_slab(k)); 5328 } 5329 5330 static const struct sysfs_ops slab_sysfs_ops = { 5331 .show = slab_attr_show, 5332 .store = slab_attr_store, 5333 }; 5334 5335 static struct kobj_type slab_ktype = { 5336 .sysfs_ops = &slab_sysfs_ops, 5337 .release = kmem_cache_release, 5338 }; 5339 5340 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5341 { 5342 struct kobj_type *ktype = get_ktype(kobj); 5343 5344 if (ktype == &slab_ktype) 5345 return 1; 5346 return 0; 5347 } 5348 5349 static const struct kset_uevent_ops slab_uevent_ops = { 5350 .filter = uevent_filter, 5351 }; 5352 5353 static struct kset *slab_kset; 5354 5355 static inline struct kset *cache_kset(struct kmem_cache *s) 5356 { 5357 #ifdef CONFIG_MEMCG 5358 if (!is_root_cache(s)) 5359 return s->memcg_params.root_cache->memcg_kset; 5360 #endif 5361 return slab_kset; 5362 } 5363 5364 #define ID_STR_LENGTH 64 5365 5366 /* Create a unique string id for a slab cache: 5367 * 5368 * Format :[flags-]size 5369 */ 5370 static char *create_unique_id(struct kmem_cache *s) 5371 { 5372 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5373 char *p = name; 5374 5375 BUG_ON(!name); 5376 5377 *p++ = ':'; 5378 /* 5379 * First flags affecting slabcache operations. We will only 5380 * get here for aliasable slabs so we do not need to support 5381 * too many flags. The flags here must cover all flags that 5382 * are matched during merging to guarantee that the id is 5383 * unique. 5384 */ 5385 if (s->flags & SLAB_CACHE_DMA) 5386 *p++ = 'd'; 5387 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5388 *p++ = 'a'; 5389 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5390 *p++ = 'F'; 5391 if (!(s->flags & SLAB_NOTRACK)) 5392 *p++ = 't'; 5393 if (s->flags & SLAB_ACCOUNT) 5394 *p++ = 'A'; 5395 if (p != name + 1) 5396 *p++ = '-'; 5397 p += sprintf(p, "%07d", s->size); 5398 5399 BUG_ON(p > name + ID_STR_LENGTH - 1); 5400 return name; 5401 } 5402 5403 static int sysfs_slab_add(struct kmem_cache *s) 5404 { 5405 int err; 5406 const char *name; 5407 int unmergeable = slab_unmergeable(s); 5408 5409 if (unmergeable) { 5410 /* 5411 * Slabcache can never be merged so we can use the name proper. 5412 * This is typically the case for debug situations. In that 5413 * case we can catch duplicate names easily. 5414 */ 5415 sysfs_remove_link(&slab_kset->kobj, s->name); 5416 name = s->name; 5417 } else { 5418 /* 5419 * Create a unique name for the slab as a target 5420 * for the symlinks. 5421 */ 5422 name = create_unique_id(s); 5423 } 5424 5425 s->kobj.kset = cache_kset(s); 5426 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5427 if (err) 5428 goto out; 5429 5430 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5431 if (err) 5432 goto out_del_kobj; 5433 5434 #ifdef CONFIG_MEMCG 5435 if (is_root_cache(s)) { 5436 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5437 if (!s->memcg_kset) { 5438 err = -ENOMEM; 5439 goto out_del_kobj; 5440 } 5441 } 5442 #endif 5443 5444 kobject_uevent(&s->kobj, KOBJ_ADD); 5445 if (!unmergeable) { 5446 /* Setup first alias */ 5447 sysfs_slab_alias(s, s->name); 5448 } 5449 out: 5450 if (!unmergeable) 5451 kfree(name); 5452 return err; 5453 out_del_kobj: 5454 kobject_del(&s->kobj); 5455 goto out; 5456 } 5457 5458 void sysfs_slab_remove(struct kmem_cache *s) 5459 { 5460 if (slab_state < FULL) 5461 /* 5462 * Sysfs has not been setup yet so no need to remove the 5463 * cache from sysfs. 5464 */ 5465 return; 5466 5467 #ifdef CONFIG_MEMCG 5468 kset_unregister(s->memcg_kset); 5469 #endif 5470 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5471 kobject_del(&s->kobj); 5472 kobject_put(&s->kobj); 5473 } 5474 5475 /* 5476 * Need to buffer aliases during bootup until sysfs becomes 5477 * available lest we lose that information. 5478 */ 5479 struct saved_alias { 5480 struct kmem_cache *s; 5481 const char *name; 5482 struct saved_alias *next; 5483 }; 5484 5485 static struct saved_alias *alias_list; 5486 5487 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5488 { 5489 struct saved_alias *al; 5490 5491 if (slab_state == FULL) { 5492 /* 5493 * If we have a leftover link then remove it. 5494 */ 5495 sysfs_remove_link(&slab_kset->kobj, name); 5496 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5497 } 5498 5499 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5500 if (!al) 5501 return -ENOMEM; 5502 5503 al->s = s; 5504 al->name = name; 5505 al->next = alias_list; 5506 alias_list = al; 5507 return 0; 5508 } 5509 5510 static int __init slab_sysfs_init(void) 5511 { 5512 struct kmem_cache *s; 5513 int err; 5514 5515 mutex_lock(&slab_mutex); 5516 5517 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5518 if (!slab_kset) { 5519 mutex_unlock(&slab_mutex); 5520 pr_err("Cannot register slab subsystem.\n"); 5521 return -ENOSYS; 5522 } 5523 5524 slab_state = FULL; 5525 5526 list_for_each_entry(s, &slab_caches, list) { 5527 err = sysfs_slab_add(s); 5528 if (err) 5529 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5530 s->name); 5531 } 5532 5533 while (alias_list) { 5534 struct saved_alias *al = alias_list; 5535 5536 alias_list = alias_list->next; 5537 err = sysfs_slab_alias(al->s, al->name); 5538 if (err) 5539 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5540 al->name); 5541 kfree(al); 5542 } 5543 5544 mutex_unlock(&slab_mutex); 5545 resiliency_test(); 5546 return 0; 5547 } 5548 5549 __initcall(slab_sysfs_init); 5550 #endif /* CONFIG_SYSFS */ 5551 5552 /* 5553 * The /proc/slabinfo ABI 5554 */ 5555 #ifdef CONFIG_SLABINFO 5556 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5557 { 5558 unsigned long nr_slabs = 0; 5559 unsigned long nr_objs = 0; 5560 unsigned long nr_free = 0; 5561 int node; 5562 struct kmem_cache_node *n; 5563 5564 for_each_kmem_cache_node(s, node, n) { 5565 nr_slabs += node_nr_slabs(n); 5566 nr_objs += node_nr_objs(n); 5567 nr_free += count_partial(n, count_free); 5568 } 5569 5570 sinfo->active_objs = nr_objs - nr_free; 5571 sinfo->num_objs = nr_objs; 5572 sinfo->active_slabs = nr_slabs; 5573 sinfo->num_slabs = nr_slabs; 5574 sinfo->objects_per_slab = oo_objects(s->oo); 5575 sinfo->cache_order = oo_order(s->oo); 5576 } 5577 5578 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5579 { 5580 } 5581 5582 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5583 size_t count, loff_t *ppos) 5584 { 5585 return -EIO; 5586 } 5587 #endif /* CONFIG_SLABINFO */ 5588