1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 bit_spin_lock(PG_locked, &page->flags); 342 } 343 344 static __always_inline void slab_unlock(struct page *page) 345 { 346 __bit_spin_unlock(PG_locked, &page->flags); 347 } 348 349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 350 { 351 struct page tmp; 352 tmp.counters = counters_new; 353 /* 354 * page->counters can cover frozen/inuse/objects as well 355 * as page->_count. If we assign to ->counters directly 356 * we run the risk of losing updates to page->_count, so 357 * be careful and only assign to the fields we need. 358 */ 359 page->frozen = tmp.frozen; 360 page->inuse = tmp.inuse; 361 page->objects = tmp.objects; 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 set_page_slub_counters(page, counters_new); 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 set_page_slub_counters(page, counters_new); 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 /* 460 * Debug settings: 461 */ 462 #ifdef CONFIG_SLUB_DEBUG_ON 463 static int slub_debug = DEBUG_DEFAULT_FLAGS; 464 #else 465 static int slub_debug; 466 #endif 467 468 static char *slub_debug_slabs; 469 static int disable_higher_order_debug; 470 471 /* 472 * slub is about to manipulate internal object metadata. This memory lies 473 * outside the range of the allocated object, so accessing it would normally 474 * be reported by kasan as a bounds error. metadata_access_enable() is used 475 * to tell kasan that these accesses are OK. 476 */ 477 static inline void metadata_access_enable(void) 478 { 479 kasan_disable_current(); 480 } 481 482 static inline void metadata_access_disable(void) 483 { 484 kasan_enable_current(); 485 } 486 487 /* 488 * Object debugging 489 */ 490 static void print_section(char *text, u8 *addr, unsigned int length) 491 { 492 metadata_access_enable(); 493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 494 length, 1); 495 metadata_access_disable(); 496 } 497 498 static struct track *get_track(struct kmem_cache *s, void *object, 499 enum track_item alloc) 500 { 501 struct track *p; 502 503 if (s->offset) 504 p = object + s->offset + sizeof(void *); 505 else 506 p = object + s->inuse; 507 508 return p + alloc; 509 } 510 511 static void set_track(struct kmem_cache *s, void *object, 512 enum track_item alloc, unsigned long addr) 513 { 514 struct track *p = get_track(s, object, alloc); 515 516 if (addr) { 517 #ifdef CONFIG_STACKTRACE 518 struct stack_trace trace; 519 int i; 520 521 trace.nr_entries = 0; 522 trace.max_entries = TRACK_ADDRS_COUNT; 523 trace.entries = p->addrs; 524 trace.skip = 3; 525 metadata_access_enable(); 526 save_stack_trace(&trace); 527 metadata_access_disable(); 528 529 /* See rant in lockdep.c */ 530 if (trace.nr_entries != 0 && 531 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 532 trace.nr_entries--; 533 534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 535 p->addrs[i] = 0; 536 #endif 537 p->addr = addr; 538 p->cpu = smp_processor_id(); 539 p->pid = current->pid; 540 p->when = jiffies; 541 } else 542 memset(p, 0, sizeof(struct track)); 543 } 544 545 static void init_tracking(struct kmem_cache *s, void *object) 546 { 547 if (!(s->flags & SLAB_STORE_USER)) 548 return; 549 550 set_track(s, object, TRACK_FREE, 0UL); 551 set_track(s, object, TRACK_ALLOC, 0UL); 552 } 553 554 static void print_track(const char *s, struct track *t) 555 { 556 if (!t->addr) 557 return; 558 559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 561 #ifdef CONFIG_STACKTRACE 562 { 563 int i; 564 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 565 if (t->addrs[i]) 566 pr_err("\t%pS\n", (void *)t->addrs[i]); 567 else 568 break; 569 } 570 #endif 571 } 572 573 static void print_tracking(struct kmem_cache *s, void *object) 574 { 575 if (!(s->flags & SLAB_STORE_USER)) 576 return; 577 578 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 579 print_track("Freed", get_track(s, object, TRACK_FREE)); 580 } 581 582 static void print_page_info(struct page *page) 583 { 584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 585 page, page->objects, page->inuse, page->freelist, page->flags); 586 587 } 588 589 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 590 { 591 struct va_format vaf; 592 va_list args; 593 594 va_start(args, fmt); 595 vaf.fmt = fmt; 596 vaf.va = &args; 597 pr_err("=============================================================================\n"); 598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 599 pr_err("-----------------------------------------------------------------------------\n\n"); 600 601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 602 va_end(args); 603 } 604 605 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 606 { 607 struct va_format vaf; 608 va_list args; 609 610 va_start(args, fmt); 611 vaf.fmt = fmt; 612 vaf.va = &args; 613 pr_err("FIX %s: %pV\n", s->name, &vaf); 614 va_end(args); 615 } 616 617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 618 { 619 unsigned int off; /* Offset of last byte */ 620 u8 *addr = page_address(page); 621 622 print_tracking(s, p); 623 624 print_page_info(page); 625 626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 627 p, p - addr, get_freepointer(s, p)); 628 629 if (p > addr + 16) 630 print_section("Bytes b4 ", p - 16, 16); 631 632 print_section("Object ", p, min_t(unsigned long, s->object_size, 633 PAGE_SIZE)); 634 if (s->flags & SLAB_RED_ZONE) 635 print_section("Redzone ", p + s->object_size, 636 s->inuse - s->object_size); 637 638 if (s->offset) 639 off = s->offset + sizeof(void *); 640 else 641 off = s->inuse; 642 643 if (s->flags & SLAB_STORE_USER) 644 off += 2 * sizeof(struct track); 645 646 if (off != s->size) 647 /* Beginning of the filler is the free pointer */ 648 print_section("Padding ", p + off, s->size - off); 649 650 dump_stack(); 651 } 652 653 void object_err(struct kmem_cache *s, struct page *page, 654 u8 *object, char *reason) 655 { 656 slab_bug(s, "%s", reason); 657 print_trailer(s, page, object); 658 } 659 660 static void slab_err(struct kmem_cache *s, struct page *page, 661 const char *fmt, ...) 662 { 663 va_list args; 664 char buf[100]; 665 666 va_start(args, fmt); 667 vsnprintf(buf, sizeof(buf), fmt, args); 668 va_end(args); 669 slab_bug(s, "%s", buf); 670 print_page_info(page); 671 dump_stack(); 672 } 673 674 static void init_object(struct kmem_cache *s, void *object, u8 val) 675 { 676 u8 *p = object; 677 678 if (s->flags & __OBJECT_POISON) { 679 memset(p, POISON_FREE, s->object_size - 1); 680 p[s->object_size - 1] = POISON_END; 681 } 682 683 if (s->flags & SLAB_RED_ZONE) 684 memset(p + s->object_size, val, s->inuse - s->object_size); 685 } 686 687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 688 void *from, void *to) 689 { 690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 691 memset(from, data, to - from); 692 } 693 694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 695 u8 *object, char *what, 696 u8 *start, unsigned int value, unsigned int bytes) 697 { 698 u8 *fault; 699 u8 *end; 700 701 metadata_access_enable(); 702 fault = memchr_inv(start, value, bytes); 703 metadata_access_disable(); 704 if (!fault) 705 return 1; 706 707 end = start + bytes; 708 while (end > fault && end[-1] == value) 709 end--; 710 711 slab_bug(s, "%s overwritten", what); 712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 713 fault, end - 1, fault[0], value); 714 print_trailer(s, page, object); 715 716 restore_bytes(s, what, value, fault, end); 717 return 0; 718 } 719 720 /* 721 * Object layout: 722 * 723 * object address 724 * Bytes of the object to be managed. 725 * If the freepointer may overlay the object then the free 726 * pointer is the first word of the object. 727 * 728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 729 * 0xa5 (POISON_END) 730 * 731 * object + s->object_size 732 * Padding to reach word boundary. This is also used for Redzoning. 733 * Padding is extended by another word if Redzoning is enabled and 734 * object_size == inuse. 735 * 736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 737 * 0xcc (RED_ACTIVE) for objects in use. 738 * 739 * object + s->inuse 740 * Meta data starts here. 741 * 742 * A. Free pointer (if we cannot overwrite object on free) 743 * B. Tracking data for SLAB_STORE_USER 744 * C. Padding to reach required alignment boundary or at mininum 745 * one word if debugging is on to be able to detect writes 746 * before the word boundary. 747 * 748 * Padding is done using 0x5a (POISON_INUSE) 749 * 750 * object + s->size 751 * Nothing is used beyond s->size. 752 * 753 * If slabcaches are merged then the object_size and inuse boundaries are mostly 754 * ignored. And therefore no slab options that rely on these boundaries 755 * may be used with merged slabcaches. 756 */ 757 758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 759 { 760 unsigned long off = s->inuse; /* The end of info */ 761 762 if (s->offset) 763 /* Freepointer is placed after the object. */ 764 off += sizeof(void *); 765 766 if (s->flags & SLAB_STORE_USER) 767 /* We also have user information there */ 768 off += 2 * sizeof(struct track); 769 770 if (s->size == off) 771 return 1; 772 773 return check_bytes_and_report(s, page, p, "Object padding", 774 p + off, POISON_INUSE, s->size - off); 775 } 776 777 /* Check the pad bytes at the end of a slab page */ 778 static int slab_pad_check(struct kmem_cache *s, struct page *page) 779 { 780 u8 *start; 781 u8 *fault; 782 u8 *end; 783 int length; 784 int remainder; 785 786 if (!(s->flags & SLAB_POISON)) 787 return 1; 788 789 start = page_address(page); 790 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 791 end = start + length; 792 remainder = length % s->size; 793 if (!remainder) 794 return 1; 795 796 metadata_access_enable(); 797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 798 metadata_access_disable(); 799 if (!fault) 800 return 1; 801 while (end > fault && end[-1] == POISON_INUSE) 802 end--; 803 804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 805 print_section("Padding ", end - remainder, remainder); 806 807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 808 return 0; 809 } 810 811 static int check_object(struct kmem_cache *s, struct page *page, 812 void *object, u8 val) 813 { 814 u8 *p = object; 815 u8 *endobject = object + s->object_size; 816 817 if (s->flags & SLAB_RED_ZONE) { 818 if (!check_bytes_and_report(s, page, object, "Redzone", 819 endobject, val, s->inuse - s->object_size)) 820 return 0; 821 } else { 822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 823 check_bytes_and_report(s, page, p, "Alignment padding", 824 endobject, POISON_INUSE, 825 s->inuse - s->object_size); 826 } 827 } 828 829 if (s->flags & SLAB_POISON) { 830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 831 (!check_bytes_and_report(s, page, p, "Poison", p, 832 POISON_FREE, s->object_size - 1) || 833 !check_bytes_and_report(s, page, p, "Poison", 834 p + s->object_size - 1, POISON_END, 1))) 835 return 0; 836 /* 837 * check_pad_bytes cleans up on its own. 838 */ 839 check_pad_bytes(s, page, p); 840 } 841 842 if (!s->offset && val == SLUB_RED_ACTIVE) 843 /* 844 * Object and freepointer overlap. Cannot check 845 * freepointer while object is allocated. 846 */ 847 return 1; 848 849 /* Check free pointer validity */ 850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 851 object_err(s, page, p, "Freepointer corrupt"); 852 /* 853 * No choice but to zap it and thus lose the remainder 854 * of the free objects in this slab. May cause 855 * another error because the object count is now wrong. 856 */ 857 set_freepointer(s, p, NULL); 858 return 0; 859 } 860 return 1; 861 } 862 863 static int check_slab(struct kmem_cache *s, struct page *page) 864 { 865 int maxobj; 866 867 VM_BUG_ON(!irqs_disabled()); 868 869 if (!PageSlab(page)) { 870 slab_err(s, page, "Not a valid slab page"); 871 return 0; 872 } 873 874 maxobj = order_objects(compound_order(page), s->size, s->reserved); 875 if (page->objects > maxobj) { 876 slab_err(s, page, "objects %u > max %u", 877 page->objects, maxobj); 878 return 0; 879 } 880 if (page->inuse > page->objects) { 881 slab_err(s, page, "inuse %u > max %u", 882 page->inuse, page->objects); 883 return 0; 884 } 885 /* Slab_pad_check fixes things up after itself */ 886 slab_pad_check(s, page); 887 return 1; 888 } 889 890 /* 891 * Determine if a certain object on a page is on the freelist. Must hold the 892 * slab lock to guarantee that the chains are in a consistent state. 893 */ 894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 895 { 896 int nr = 0; 897 void *fp; 898 void *object = NULL; 899 int max_objects; 900 901 fp = page->freelist; 902 while (fp && nr <= page->objects) { 903 if (fp == search) 904 return 1; 905 if (!check_valid_pointer(s, page, fp)) { 906 if (object) { 907 object_err(s, page, object, 908 "Freechain corrupt"); 909 set_freepointer(s, object, NULL); 910 } else { 911 slab_err(s, page, "Freepointer corrupt"); 912 page->freelist = NULL; 913 page->inuse = page->objects; 914 slab_fix(s, "Freelist cleared"); 915 return 0; 916 } 917 break; 918 } 919 object = fp; 920 fp = get_freepointer(s, object); 921 nr++; 922 } 923 924 max_objects = order_objects(compound_order(page), s->size, s->reserved); 925 if (max_objects > MAX_OBJS_PER_PAGE) 926 max_objects = MAX_OBJS_PER_PAGE; 927 928 if (page->objects != max_objects) { 929 slab_err(s, page, "Wrong number of objects. Found %d but " 930 "should be %d", page->objects, max_objects); 931 page->objects = max_objects; 932 slab_fix(s, "Number of objects adjusted."); 933 } 934 if (page->inuse != page->objects - nr) { 935 slab_err(s, page, "Wrong object count. Counter is %d but " 936 "counted were %d", page->inuse, page->objects - nr); 937 page->inuse = page->objects - nr; 938 slab_fix(s, "Object count adjusted."); 939 } 940 return search == NULL; 941 } 942 943 static void trace(struct kmem_cache *s, struct page *page, void *object, 944 int alloc) 945 { 946 if (s->flags & SLAB_TRACE) { 947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 948 s->name, 949 alloc ? "alloc" : "free", 950 object, page->inuse, 951 page->freelist); 952 953 if (!alloc) 954 print_section("Object ", (void *)object, 955 s->object_size); 956 957 dump_stack(); 958 } 959 } 960 961 /* 962 * Tracking of fully allocated slabs for debugging purposes. 963 */ 964 static void add_full(struct kmem_cache *s, 965 struct kmem_cache_node *n, struct page *page) 966 { 967 if (!(s->flags & SLAB_STORE_USER)) 968 return; 969 970 lockdep_assert_held(&n->list_lock); 971 list_add(&page->lru, &n->full); 972 } 973 974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 975 { 976 if (!(s->flags & SLAB_STORE_USER)) 977 return; 978 979 lockdep_assert_held(&n->list_lock); 980 list_del(&page->lru); 981 } 982 983 /* Tracking of the number of slabs for debugging purposes */ 984 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 985 { 986 struct kmem_cache_node *n = get_node(s, node); 987 988 return atomic_long_read(&n->nr_slabs); 989 } 990 991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 992 { 993 return atomic_long_read(&n->nr_slabs); 994 } 995 996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 /* 1001 * May be called early in order to allocate a slab for the 1002 * kmem_cache_node structure. Solve the chicken-egg 1003 * dilemma by deferring the increment of the count during 1004 * bootstrap (see early_kmem_cache_node_alloc). 1005 */ 1006 if (likely(n)) { 1007 atomic_long_inc(&n->nr_slabs); 1008 atomic_long_add(objects, &n->total_objects); 1009 } 1010 } 1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1012 { 1013 struct kmem_cache_node *n = get_node(s, node); 1014 1015 atomic_long_dec(&n->nr_slabs); 1016 atomic_long_sub(objects, &n->total_objects); 1017 } 1018 1019 /* Object debug checks for alloc/free paths */ 1020 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1021 void *object) 1022 { 1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1024 return; 1025 1026 init_object(s, object, SLUB_RED_INACTIVE); 1027 init_tracking(s, object); 1028 } 1029 1030 static noinline int alloc_debug_processing(struct kmem_cache *s, 1031 struct page *page, 1032 void *object, unsigned long addr) 1033 { 1034 if (!check_slab(s, page)) 1035 goto bad; 1036 1037 if (!check_valid_pointer(s, page, object)) { 1038 object_err(s, page, object, "Freelist Pointer check fails"); 1039 goto bad; 1040 } 1041 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1043 goto bad; 1044 1045 /* Success perform special debug activities for allocs */ 1046 if (s->flags & SLAB_STORE_USER) 1047 set_track(s, object, TRACK_ALLOC, addr); 1048 trace(s, page, object, 1); 1049 init_object(s, object, SLUB_RED_ACTIVE); 1050 return 1; 1051 1052 bad: 1053 if (PageSlab(page)) { 1054 /* 1055 * If this is a slab page then lets do the best we can 1056 * to avoid issues in the future. Marking all objects 1057 * as used avoids touching the remaining objects. 1058 */ 1059 slab_fix(s, "Marking all objects used"); 1060 page->inuse = page->objects; 1061 page->freelist = NULL; 1062 } 1063 return 0; 1064 } 1065 1066 static noinline struct kmem_cache_node *free_debug_processing( 1067 struct kmem_cache *s, struct page *page, void *object, 1068 unsigned long addr, unsigned long *flags) 1069 { 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1071 1072 spin_lock_irqsave(&n->list_lock, *flags); 1073 slab_lock(page); 1074 1075 if (!check_slab(s, page)) 1076 goto fail; 1077 1078 if (!check_valid_pointer(s, page, object)) { 1079 slab_err(s, page, "Invalid object pointer 0x%p", object); 1080 goto fail; 1081 } 1082 1083 if (on_freelist(s, page, object)) { 1084 object_err(s, page, object, "Object already free"); 1085 goto fail; 1086 } 1087 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1089 goto out; 1090 1091 if (unlikely(s != page->slab_cache)) { 1092 if (!PageSlab(page)) { 1093 slab_err(s, page, "Attempt to free object(0x%p) " 1094 "outside of slab", object); 1095 } else if (!page->slab_cache) { 1096 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1097 object); 1098 dump_stack(); 1099 } else 1100 object_err(s, page, object, 1101 "page slab pointer corrupt."); 1102 goto fail; 1103 } 1104 1105 if (s->flags & SLAB_STORE_USER) 1106 set_track(s, object, TRACK_FREE, addr); 1107 trace(s, page, object, 0); 1108 init_object(s, object, SLUB_RED_INACTIVE); 1109 out: 1110 slab_unlock(page); 1111 /* 1112 * Keep node_lock to preserve integrity 1113 * until the object is actually freed 1114 */ 1115 return n; 1116 1117 fail: 1118 slab_unlock(page); 1119 spin_unlock_irqrestore(&n->list_lock, *flags); 1120 slab_fix(s, "Object at 0x%p not freed", object); 1121 return NULL; 1122 } 1123 1124 static int __init setup_slub_debug(char *str) 1125 { 1126 slub_debug = DEBUG_DEFAULT_FLAGS; 1127 if (*str++ != '=' || !*str) 1128 /* 1129 * No options specified. Switch on full debugging. 1130 */ 1131 goto out; 1132 1133 if (*str == ',') 1134 /* 1135 * No options but restriction on slabs. This means full 1136 * debugging for slabs matching a pattern. 1137 */ 1138 goto check_slabs; 1139 1140 slub_debug = 0; 1141 if (*str == '-') 1142 /* 1143 * Switch off all debugging measures. 1144 */ 1145 goto out; 1146 1147 /* 1148 * Determine which debug features should be switched on 1149 */ 1150 for (; *str && *str != ','; str++) { 1151 switch (tolower(*str)) { 1152 case 'f': 1153 slub_debug |= SLAB_DEBUG_FREE; 1154 break; 1155 case 'z': 1156 slub_debug |= SLAB_RED_ZONE; 1157 break; 1158 case 'p': 1159 slub_debug |= SLAB_POISON; 1160 break; 1161 case 'u': 1162 slub_debug |= SLAB_STORE_USER; 1163 break; 1164 case 't': 1165 slub_debug |= SLAB_TRACE; 1166 break; 1167 case 'a': 1168 slub_debug |= SLAB_FAILSLAB; 1169 break; 1170 case 'o': 1171 /* 1172 * Avoid enabling debugging on caches if its minimum 1173 * order would increase as a result. 1174 */ 1175 disable_higher_order_debug = 1; 1176 break; 1177 default: 1178 pr_err("slub_debug option '%c' unknown. skipped\n", 1179 *str); 1180 } 1181 } 1182 1183 check_slabs: 1184 if (*str == ',') 1185 slub_debug_slabs = str + 1; 1186 out: 1187 return 1; 1188 } 1189 1190 __setup("slub_debug", setup_slub_debug); 1191 1192 unsigned long kmem_cache_flags(unsigned long object_size, 1193 unsigned long flags, const char *name, 1194 void (*ctor)(void *)) 1195 { 1196 /* 1197 * Enable debugging if selected on the kernel commandline. 1198 */ 1199 if (slub_debug && (!slub_debug_slabs || (name && 1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1201 flags |= slub_debug; 1202 1203 return flags; 1204 } 1205 #else 1206 static inline void setup_object_debug(struct kmem_cache *s, 1207 struct page *page, void *object) {} 1208 1209 static inline int alloc_debug_processing(struct kmem_cache *s, 1210 struct page *page, void *object, unsigned long addr) { return 0; } 1211 1212 static inline struct kmem_cache_node *free_debug_processing( 1213 struct kmem_cache *s, struct page *page, void *object, 1214 unsigned long addr, unsigned long *flags) { return NULL; } 1215 1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1217 { return 1; } 1218 static inline int check_object(struct kmem_cache *s, struct page *page, 1219 void *object, u8 val) { return 1; } 1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1221 struct page *page) {} 1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1223 struct page *page) {} 1224 unsigned long kmem_cache_flags(unsigned long object_size, 1225 unsigned long flags, const char *name, 1226 void (*ctor)(void *)) 1227 { 1228 return flags; 1229 } 1230 #define slub_debug 0 1231 1232 #define disable_higher_order_debug 0 1233 1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1235 { return 0; } 1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1237 { return 0; } 1238 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1239 int objects) {} 1240 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1241 int objects) {} 1242 1243 #endif /* CONFIG_SLUB_DEBUG */ 1244 1245 /* 1246 * Hooks for other subsystems that check memory allocations. In a typical 1247 * production configuration these hooks all should produce no code at all. 1248 */ 1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1250 { 1251 kmemleak_alloc(ptr, size, 1, flags); 1252 kasan_kmalloc_large(ptr, size); 1253 } 1254 1255 static inline void kfree_hook(const void *x) 1256 { 1257 kmemleak_free(x); 1258 kasan_kfree_large(x); 1259 } 1260 1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1262 gfp_t flags) 1263 { 1264 flags &= gfp_allowed_mask; 1265 lockdep_trace_alloc(flags); 1266 might_sleep_if(flags & __GFP_WAIT); 1267 1268 if (should_failslab(s->object_size, flags, s->flags)) 1269 return NULL; 1270 1271 return memcg_kmem_get_cache(s, flags); 1272 } 1273 1274 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1275 gfp_t flags, void *object) 1276 { 1277 flags &= gfp_allowed_mask; 1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1280 memcg_kmem_put_cache(s); 1281 kasan_slab_alloc(s, object); 1282 } 1283 1284 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1285 { 1286 kmemleak_free_recursive(x, s->flags); 1287 1288 /* 1289 * Trouble is that we may no longer disable interrupts in the fast path 1290 * So in order to make the debug calls that expect irqs to be 1291 * disabled we need to disable interrupts temporarily. 1292 */ 1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1294 { 1295 unsigned long flags; 1296 1297 local_irq_save(flags); 1298 kmemcheck_slab_free(s, x, s->object_size); 1299 debug_check_no_locks_freed(x, s->object_size); 1300 local_irq_restore(flags); 1301 } 1302 #endif 1303 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1304 debug_check_no_obj_freed(x, s->object_size); 1305 1306 kasan_slab_free(s, x); 1307 } 1308 1309 /* 1310 * Slab allocation and freeing 1311 */ 1312 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1313 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1314 { 1315 struct page *page; 1316 int order = oo_order(oo); 1317 1318 flags |= __GFP_NOTRACK; 1319 1320 if (memcg_charge_slab(s, flags, order)) 1321 return NULL; 1322 1323 if (node == NUMA_NO_NODE) 1324 page = alloc_pages(flags, order); 1325 else 1326 page = alloc_pages_exact_node(node, flags, order); 1327 1328 if (!page) 1329 memcg_uncharge_slab(s, order); 1330 1331 return page; 1332 } 1333 1334 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1335 { 1336 struct page *page; 1337 struct kmem_cache_order_objects oo = s->oo; 1338 gfp_t alloc_gfp; 1339 1340 flags &= gfp_allowed_mask; 1341 1342 if (flags & __GFP_WAIT) 1343 local_irq_enable(); 1344 1345 flags |= s->allocflags; 1346 1347 /* 1348 * Let the initial higher-order allocation fail under memory pressure 1349 * so we fall-back to the minimum order allocation. 1350 */ 1351 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1352 1353 page = alloc_slab_page(s, alloc_gfp, node, oo); 1354 if (unlikely(!page)) { 1355 oo = s->min; 1356 alloc_gfp = flags; 1357 /* 1358 * Allocation may have failed due to fragmentation. 1359 * Try a lower order alloc if possible 1360 */ 1361 page = alloc_slab_page(s, alloc_gfp, node, oo); 1362 1363 if (page) 1364 stat(s, ORDER_FALLBACK); 1365 } 1366 1367 if (kmemcheck_enabled && page 1368 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1369 int pages = 1 << oo_order(oo); 1370 1371 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1372 1373 /* 1374 * Objects from caches that have a constructor don't get 1375 * cleared when they're allocated, so we need to do it here. 1376 */ 1377 if (s->ctor) 1378 kmemcheck_mark_uninitialized_pages(page, pages); 1379 else 1380 kmemcheck_mark_unallocated_pages(page, pages); 1381 } 1382 1383 if (flags & __GFP_WAIT) 1384 local_irq_disable(); 1385 if (!page) 1386 return NULL; 1387 1388 page->objects = oo_objects(oo); 1389 mod_zone_page_state(page_zone(page), 1390 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1391 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1392 1 << oo_order(oo)); 1393 1394 return page; 1395 } 1396 1397 static void setup_object(struct kmem_cache *s, struct page *page, 1398 void *object) 1399 { 1400 setup_object_debug(s, page, object); 1401 if (unlikely(s->ctor)) { 1402 kasan_unpoison_object_data(s, object); 1403 s->ctor(object); 1404 kasan_poison_object_data(s, object); 1405 } 1406 } 1407 1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1409 { 1410 struct page *page; 1411 void *start; 1412 void *p; 1413 int order; 1414 int idx; 1415 1416 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1417 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1418 BUG(); 1419 } 1420 1421 page = allocate_slab(s, 1422 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1423 if (!page) 1424 goto out; 1425 1426 order = compound_order(page); 1427 inc_slabs_node(s, page_to_nid(page), page->objects); 1428 page->slab_cache = s; 1429 __SetPageSlab(page); 1430 if (page->pfmemalloc) 1431 SetPageSlabPfmemalloc(page); 1432 1433 start = page_address(page); 1434 1435 if (unlikely(s->flags & SLAB_POISON)) 1436 memset(start, POISON_INUSE, PAGE_SIZE << order); 1437 1438 kasan_poison_slab(page); 1439 1440 for_each_object_idx(p, idx, s, start, page->objects) { 1441 setup_object(s, page, p); 1442 if (likely(idx < page->objects)) 1443 set_freepointer(s, p, p + s->size); 1444 else 1445 set_freepointer(s, p, NULL); 1446 } 1447 1448 page->freelist = start; 1449 page->inuse = page->objects; 1450 page->frozen = 1; 1451 out: 1452 return page; 1453 } 1454 1455 static void __free_slab(struct kmem_cache *s, struct page *page) 1456 { 1457 int order = compound_order(page); 1458 int pages = 1 << order; 1459 1460 if (kmem_cache_debug(s)) { 1461 void *p; 1462 1463 slab_pad_check(s, page); 1464 for_each_object(p, s, page_address(page), 1465 page->objects) 1466 check_object(s, page, p, SLUB_RED_INACTIVE); 1467 } 1468 1469 kmemcheck_free_shadow(page, compound_order(page)); 1470 1471 mod_zone_page_state(page_zone(page), 1472 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1473 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1474 -pages); 1475 1476 __ClearPageSlabPfmemalloc(page); 1477 __ClearPageSlab(page); 1478 1479 page_mapcount_reset(page); 1480 if (current->reclaim_state) 1481 current->reclaim_state->reclaimed_slab += pages; 1482 __free_pages(page, order); 1483 memcg_uncharge_slab(s, order); 1484 } 1485 1486 #define need_reserve_slab_rcu \ 1487 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1488 1489 static void rcu_free_slab(struct rcu_head *h) 1490 { 1491 struct page *page; 1492 1493 if (need_reserve_slab_rcu) 1494 page = virt_to_head_page(h); 1495 else 1496 page = container_of((struct list_head *)h, struct page, lru); 1497 1498 __free_slab(page->slab_cache, page); 1499 } 1500 1501 static void free_slab(struct kmem_cache *s, struct page *page) 1502 { 1503 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1504 struct rcu_head *head; 1505 1506 if (need_reserve_slab_rcu) { 1507 int order = compound_order(page); 1508 int offset = (PAGE_SIZE << order) - s->reserved; 1509 1510 VM_BUG_ON(s->reserved != sizeof(*head)); 1511 head = page_address(page) + offset; 1512 } else { 1513 /* 1514 * RCU free overloads the RCU head over the LRU 1515 */ 1516 head = (void *)&page->lru; 1517 } 1518 1519 call_rcu(head, rcu_free_slab); 1520 } else 1521 __free_slab(s, page); 1522 } 1523 1524 static void discard_slab(struct kmem_cache *s, struct page *page) 1525 { 1526 dec_slabs_node(s, page_to_nid(page), page->objects); 1527 free_slab(s, page); 1528 } 1529 1530 /* 1531 * Management of partially allocated slabs. 1532 */ 1533 static inline void 1534 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1535 { 1536 n->nr_partial++; 1537 if (tail == DEACTIVATE_TO_TAIL) 1538 list_add_tail(&page->lru, &n->partial); 1539 else 1540 list_add(&page->lru, &n->partial); 1541 } 1542 1543 static inline void add_partial(struct kmem_cache_node *n, 1544 struct page *page, int tail) 1545 { 1546 lockdep_assert_held(&n->list_lock); 1547 __add_partial(n, page, tail); 1548 } 1549 1550 static inline void 1551 __remove_partial(struct kmem_cache_node *n, struct page *page) 1552 { 1553 list_del(&page->lru); 1554 n->nr_partial--; 1555 } 1556 1557 static inline void remove_partial(struct kmem_cache_node *n, 1558 struct page *page) 1559 { 1560 lockdep_assert_held(&n->list_lock); 1561 __remove_partial(n, page); 1562 } 1563 1564 /* 1565 * Remove slab from the partial list, freeze it and 1566 * return the pointer to the freelist. 1567 * 1568 * Returns a list of objects or NULL if it fails. 1569 */ 1570 static inline void *acquire_slab(struct kmem_cache *s, 1571 struct kmem_cache_node *n, struct page *page, 1572 int mode, int *objects) 1573 { 1574 void *freelist; 1575 unsigned long counters; 1576 struct page new; 1577 1578 lockdep_assert_held(&n->list_lock); 1579 1580 /* 1581 * Zap the freelist and set the frozen bit. 1582 * The old freelist is the list of objects for the 1583 * per cpu allocation list. 1584 */ 1585 freelist = page->freelist; 1586 counters = page->counters; 1587 new.counters = counters; 1588 *objects = new.objects - new.inuse; 1589 if (mode) { 1590 new.inuse = page->objects; 1591 new.freelist = NULL; 1592 } else { 1593 new.freelist = freelist; 1594 } 1595 1596 VM_BUG_ON(new.frozen); 1597 new.frozen = 1; 1598 1599 if (!__cmpxchg_double_slab(s, page, 1600 freelist, counters, 1601 new.freelist, new.counters, 1602 "acquire_slab")) 1603 return NULL; 1604 1605 remove_partial(n, page); 1606 WARN_ON(!freelist); 1607 return freelist; 1608 } 1609 1610 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1611 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1612 1613 /* 1614 * Try to allocate a partial slab from a specific node. 1615 */ 1616 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1617 struct kmem_cache_cpu *c, gfp_t flags) 1618 { 1619 struct page *page, *page2; 1620 void *object = NULL; 1621 int available = 0; 1622 int objects; 1623 1624 /* 1625 * Racy check. If we mistakenly see no partial slabs then we 1626 * just allocate an empty slab. If we mistakenly try to get a 1627 * partial slab and there is none available then get_partials() 1628 * will return NULL. 1629 */ 1630 if (!n || !n->nr_partial) 1631 return NULL; 1632 1633 spin_lock(&n->list_lock); 1634 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1635 void *t; 1636 1637 if (!pfmemalloc_match(page, flags)) 1638 continue; 1639 1640 t = acquire_slab(s, n, page, object == NULL, &objects); 1641 if (!t) 1642 break; 1643 1644 available += objects; 1645 if (!object) { 1646 c->page = page; 1647 stat(s, ALLOC_FROM_PARTIAL); 1648 object = t; 1649 } else { 1650 put_cpu_partial(s, page, 0); 1651 stat(s, CPU_PARTIAL_NODE); 1652 } 1653 if (!kmem_cache_has_cpu_partial(s) 1654 || available > s->cpu_partial / 2) 1655 break; 1656 1657 } 1658 spin_unlock(&n->list_lock); 1659 return object; 1660 } 1661 1662 /* 1663 * Get a page from somewhere. Search in increasing NUMA distances. 1664 */ 1665 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1666 struct kmem_cache_cpu *c) 1667 { 1668 #ifdef CONFIG_NUMA 1669 struct zonelist *zonelist; 1670 struct zoneref *z; 1671 struct zone *zone; 1672 enum zone_type high_zoneidx = gfp_zone(flags); 1673 void *object; 1674 unsigned int cpuset_mems_cookie; 1675 1676 /* 1677 * The defrag ratio allows a configuration of the tradeoffs between 1678 * inter node defragmentation and node local allocations. A lower 1679 * defrag_ratio increases the tendency to do local allocations 1680 * instead of attempting to obtain partial slabs from other nodes. 1681 * 1682 * If the defrag_ratio is set to 0 then kmalloc() always 1683 * returns node local objects. If the ratio is higher then kmalloc() 1684 * may return off node objects because partial slabs are obtained 1685 * from other nodes and filled up. 1686 * 1687 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1688 * defrag_ratio = 1000) then every (well almost) allocation will 1689 * first attempt to defrag slab caches on other nodes. This means 1690 * scanning over all nodes to look for partial slabs which may be 1691 * expensive if we do it every time we are trying to find a slab 1692 * with available objects. 1693 */ 1694 if (!s->remote_node_defrag_ratio || 1695 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1696 return NULL; 1697 1698 do { 1699 cpuset_mems_cookie = read_mems_allowed_begin(); 1700 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1701 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1702 struct kmem_cache_node *n; 1703 1704 n = get_node(s, zone_to_nid(zone)); 1705 1706 if (n && cpuset_zone_allowed(zone, flags) && 1707 n->nr_partial > s->min_partial) { 1708 object = get_partial_node(s, n, c, flags); 1709 if (object) { 1710 /* 1711 * Don't check read_mems_allowed_retry() 1712 * here - if mems_allowed was updated in 1713 * parallel, that was a harmless race 1714 * between allocation and the cpuset 1715 * update 1716 */ 1717 return object; 1718 } 1719 } 1720 } 1721 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1722 #endif 1723 return NULL; 1724 } 1725 1726 /* 1727 * Get a partial page, lock it and return it. 1728 */ 1729 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1730 struct kmem_cache_cpu *c) 1731 { 1732 void *object; 1733 int searchnode = node; 1734 1735 if (node == NUMA_NO_NODE) 1736 searchnode = numa_mem_id(); 1737 else if (!node_present_pages(node)) 1738 searchnode = node_to_mem_node(node); 1739 1740 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1741 if (object || node != NUMA_NO_NODE) 1742 return object; 1743 1744 return get_any_partial(s, flags, c); 1745 } 1746 1747 #ifdef CONFIG_PREEMPT 1748 /* 1749 * Calculate the next globally unique transaction for disambiguiation 1750 * during cmpxchg. The transactions start with the cpu number and are then 1751 * incremented by CONFIG_NR_CPUS. 1752 */ 1753 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1754 #else 1755 /* 1756 * No preemption supported therefore also no need to check for 1757 * different cpus. 1758 */ 1759 #define TID_STEP 1 1760 #endif 1761 1762 static inline unsigned long next_tid(unsigned long tid) 1763 { 1764 return tid + TID_STEP; 1765 } 1766 1767 static inline unsigned int tid_to_cpu(unsigned long tid) 1768 { 1769 return tid % TID_STEP; 1770 } 1771 1772 static inline unsigned long tid_to_event(unsigned long tid) 1773 { 1774 return tid / TID_STEP; 1775 } 1776 1777 static inline unsigned int init_tid(int cpu) 1778 { 1779 return cpu; 1780 } 1781 1782 static inline void note_cmpxchg_failure(const char *n, 1783 const struct kmem_cache *s, unsigned long tid) 1784 { 1785 #ifdef SLUB_DEBUG_CMPXCHG 1786 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1787 1788 pr_info("%s %s: cmpxchg redo ", n, s->name); 1789 1790 #ifdef CONFIG_PREEMPT 1791 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1792 pr_warn("due to cpu change %d -> %d\n", 1793 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1794 else 1795 #endif 1796 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1797 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1798 tid_to_event(tid), tid_to_event(actual_tid)); 1799 else 1800 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1801 actual_tid, tid, next_tid(tid)); 1802 #endif 1803 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1804 } 1805 1806 static void init_kmem_cache_cpus(struct kmem_cache *s) 1807 { 1808 int cpu; 1809 1810 for_each_possible_cpu(cpu) 1811 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1812 } 1813 1814 /* 1815 * Remove the cpu slab 1816 */ 1817 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1818 void *freelist) 1819 { 1820 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1821 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1822 int lock = 0; 1823 enum slab_modes l = M_NONE, m = M_NONE; 1824 void *nextfree; 1825 int tail = DEACTIVATE_TO_HEAD; 1826 struct page new; 1827 struct page old; 1828 1829 if (page->freelist) { 1830 stat(s, DEACTIVATE_REMOTE_FREES); 1831 tail = DEACTIVATE_TO_TAIL; 1832 } 1833 1834 /* 1835 * Stage one: Free all available per cpu objects back 1836 * to the page freelist while it is still frozen. Leave the 1837 * last one. 1838 * 1839 * There is no need to take the list->lock because the page 1840 * is still frozen. 1841 */ 1842 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1843 void *prior; 1844 unsigned long counters; 1845 1846 do { 1847 prior = page->freelist; 1848 counters = page->counters; 1849 set_freepointer(s, freelist, prior); 1850 new.counters = counters; 1851 new.inuse--; 1852 VM_BUG_ON(!new.frozen); 1853 1854 } while (!__cmpxchg_double_slab(s, page, 1855 prior, counters, 1856 freelist, new.counters, 1857 "drain percpu freelist")); 1858 1859 freelist = nextfree; 1860 } 1861 1862 /* 1863 * Stage two: Ensure that the page is unfrozen while the 1864 * list presence reflects the actual number of objects 1865 * during unfreeze. 1866 * 1867 * We setup the list membership and then perform a cmpxchg 1868 * with the count. If there is a mismatch then the page 1869 * is not unfrozen but the page is on the wrong list. 1870 * 1871 * Then we restart the process which may have to remove 1872 * the page from the list that we just put it on again 1873 * because the number of objects in the slab may have 1874 * changed. 1875 */ 1876 redo: 1877 1878 old.freelist = page->freelist; 1879 old.counters = page->counters; 1880 VM_BUG_ON(!old.frozen); 1881 1882 /* Determine target state of the slab */ 1883 new.counters = old.counters; 1884 if (freelist) { 1885 new.inuse--; 1886 set_freepointer(s, freelist, old.freelist); 1887 new.freelist = freelist; 1888 } else 1889 new.freelist = old.freelist; 1890 1891 new.frozen = 0; 1892 1893 if (!new.inuse && n->nr_partial >= s->min_partial) 1894 m = M_FREE; 1895 else if (new.freelist) { 1896 m = M_PARTIAL; 1897 if (!lock) { 1898 lock = 1; 1899 /* 1900 * Taking the spinlock removes the possiblity 1901 * that acquire_slab() will see a slab page that 1902 * is frozen 1903 */ 1904 spin_lock(&n->list_lock); 1905 } 1906 } else { 1907 m = M_FULL; 1908 if (kmem_cache_debug(s) && !lock) { 1909 lock = 1; 1910 /* 1911 * This also ensures that the scanning of full 1912 * slabs from diagnostic functions will not see 1913 * any frozen slabs. 1914 */ 1915 spin_lock(&n->list_lock); 1916 } 1917 } 1918 1919 if (l != m) { 1920 1921 if (l == M_PARTIAL) 1922 1923 remove_partial(n, page); 1924 1925 else if (l == M_FULL) 1926 1927 remove_full(s, n, page); 1928 1929 if (m == M_PARTIAL) { 1930 1931 add_partial(n, page, tail); 1932 stat(s, tail); 1933 1934 } else if (m == M_FULL) { 1935 1936 stat(s, DEACTIVATE_FULL); 1937 add_full(s, n, page); 1938 1939 } 1940 } 1941 1942 l = m; 1943 if (!__cmpxchg_double_slab(s, page, 1944 old.freelist, old.counters, 1945 new.freelist, new.counters, 1946 "unfreezing slab")) 1947 goto redo; 1948 1949 if (lock) 1950 spin_unlock(&n->list_lock); 1951 1952 if (m == M_FREE) { 1953 stat(s, DEACTIVATE_EMPTY); 1954 discard_slab(s, page); 1955 stat(s, FREE_SLAB); 1956 } 1957 } 1958 1959 /* 1960 * Unfreeze all the cpu partial slabs. 1961 * 1962 * This function must be called with interrupts disabled 1963 * for the cpu using c (or some other guarantee must be there 1964 * to guarantee no concurrent accesses). 1965 */ 1966 static void unfreeze_partials(struct kmem_cache *s, 1967 struct kmem_cache_cpu *c) 1968 { 1969 #ifdef CONFIG_SLUB_CPU_PARTIAL 1970 struct kmem_cache_node *n = NULL, *n2 = NULL; 1971 struct page *page, *discard_page = NULL; 1972 1973 while ((page = c->partial)) { 1974 struct page new; 1975 struct page old; 1976 1977 c->partial = page->next; 1978 1979 n2 = get_node(s, page_to_nid(page)); 1980 if (n != n2) { 1981 if (n) 1982 spin_unlock(&n->list_lock); 1983 1984 n = n2; 1985 spin_lock(&n->list_lock); 1986 } 1987 1988 do { 1989 1990 old.freelist = page->freelist; 1991 old.counters = page->counters; 1992 VM_BUG_ON(!old.frozen); 1993 1994 new.counters = old.counters; 1995 new.freelist = old.freelist; 1996 1997 new.frozen = 0; 1998 1999 } while (!__cmpxchg_double_slab(s, page, 2000 old.freelist, old.counters, 2001 new.freelist, new.counters, 2002 "unfreezing slab")); 2003 2004 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2005 page->next = discard_page; 2006 discard_page = page; 2007 } else { 2008 add_partial(n, page, DEACTIVATE_TO_TAIL); 2009 stat(s, FREE_ADD_PARTIAL); 2010 } 2011 } 2012 2013 if (n) 2014 spin_unlock(&n->list_lock); 2015 2016 while (discard_page) { 2017 page = discard_page; 2018 discard_page = discard_page->next; 2019 2020 stat(s, DEACTIVATE_EMPTY); 2021 discard_slab(s, page); 2022 stat(s, FREE_SLAB); 2023 } 2024 #endif 2025 } 2026 2027 /* 2028 * Put a page that was just frozen (in __slab_free) into a partial page 2029 * slot if available. This is done without interrupts disabled and without 2030 * preemption disabled. The cmpxchg is racy and may put the partial page 2031 * onto a random cpus partial slot. 2032 * 2033 * If we did not find a slot then simply move all the partials to the 2034 * per node partial list. 2035 */ 2036 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2037 { 2038 #ifdef CONFIG_SLUB_CPU_PARTIAL 2039 struct page *oldpage; 2040 int pages; 2041 int pobjects; 2042 2043 preempt_disable(); 2044 do { 2045 pages = 0; 2046 pobjects = 0; 2047 oldpage = this_cpu_read(s->cpu_slab->partial); 2048 2049 if (oldpage) { 2050 pobjects = oldpage->pobjects; 2051 pages = oldpage->pages; 2052 if (drain && pobjects > s->cpu_partial) { 2053 unsigned long flags; 2054 /* 2055 * partial array is full. Move the existing 2056 * set to the per node partial list. 2057 */ 2058 local_irq_save(flags); 2059 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2060 local_irq_restore(flags); 2061 oldpage = NULL; 2062 pobjects = 0; 2063 pages = 0; 2064 stat(s, CPU_PARTIAL_DRAIN); 2065 } 2066 } 2067 2068 pages++; 2069 pobjects += page->objects - page->inuse; 2070 2071 page->pages = pages; 2072 page->pobjects = pobjects; 2073 page->next = oldpage; 2074 2075 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2076 != oldpage); 2077 if (unlikely(!s->cpu_partial)) { 2078 unsigned long flags; 2079 2080 local_irq_save(flags); 2081 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2082 local_irq_restore(flags); 2083 } 2084 preempt_enable(); 2085 #endif 2086 } 2087 2088 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2089 { 2090 stat(s, CPUSLAB_FLUSH); 2091 deactivate_slab(s, c->page, c->freelist); 2092 2093 c->tid = next_tid(c->tid); 2094 c->page = NULL; 2095 c->freelist = NULL; 2096 } 2097 2098 /* 2099 * Flush cpu slab. 2100 * 2101 * Called from IPI handler with interrupts disabled. 2102 */ 2103 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2104 { 2105 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2106 2107 if (likely(c)) { 2108 if (c->page) 2109 flush_slab(s, c); 2110 2111 unfreeze_partials(s, c); 2112 } 2113 } 2114 2115 static void flush_cpu_slab(void *d) 2116 { 2117 struct kmem_cache *s = d; 2118 2119 __flush_cpu_slab(s, smp_processor_id()); 2120 } 2121 2122 static bool has_cpu_slab(int cpu, void *info) 2123 { 2124 struct kmem_cache *s = info; 2125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2126 2127 return c->page || c->partial; 2128 } 2129 2130 static void flush_all(struct kmem_cache *s) 2131 { 2132 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2133 } 2134 2135 /* 2136 * Check if the objects in a per cpu structure fit numa 2137 * locality expectations. 2138 */ 2139 static inline int node_match(struct page *page, int node) 2140 { 2141 #ifdef CONFIG_NUMA 2142 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2143 return 0; 2144 #endif 2145 return 1; 2146 } 2147 2148 #ifdef CONFIG_SLUB_DEBUG 2149 static int count_free(struct page *page) 2150 { 2151 return page->objects - page->inuse; 2152 } 2153 2154 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2155 { 2156 return atomic_long_read(&n->total_objects); 2157 } 2158 #endif /* CONFIG_SLUB_DEBUG */ 2159 2160 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2161 static unsigned long count_partial(struct kmem_cache_node *n, 2162 int (*get_count)(struct page *)) 2163 { 2164 unsigned long flags; 2165 unsigned long x = 0; 2166 struct page *page; 2167 2168 spin_lock_irqsave(&n->list_lock, flags); 2169 list_for_each_entry(page, &n->partial, lru) 2170 x += get_count(page); 2171 spin_unlock_irqrestore(&n->list_lock, flags); 2172 return x; 2173 } 2174 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2175 2176 static noinline void 2177 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2178 { 2179 #ifdef CONFIG_SLUB_DEBUG 2180 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2181 DEFAULT_RATELIMIT_BURST); 2182 int node; 2183 struct kmem_cache_node *n; 2184 2185 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2186 return; 2187 2188 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2189 nid, gfpflags); 2190 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2191 s->name, s->object_size, s->size, oo_order(s->oo), 2192 oo_order(s->min)); 2193 2194 if (oo_order(s->min) > get_order(s->object_size)) 2195 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2196 s->name); 2197 2198 for_each_kmem_cache_node(s, node, n) { 2199 unsigned long nr_slabs; 2200 unsigned long nr_objs; 2201 unsigned long nr_free; 2202 2203 nr_free = count_partial(n, count_free); 2204 nr_slabs = node_nr_slabs(n); 2205 nr_objs = node_nr_objs(n); 2206 2207 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2208 node, nr_slabs, nr_objs, nr_free); 2209 } 2210 #endif 2211 } 2212 2213 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2214 int node, struct kmem_cache_cpu **pc) 2215 { 2216 void *freelist; 2217 struct kmem_cache_cpu *c = *pc; 2218 struct page *page; 2219 2220 freelist = get_partial(s, flags, node, c); 2221 2222 if (freelist) 2223 return freelist; 2224 2225 page = new_slab(s, flags, node); 2226 if (page) { 2227 c = raw_cpu_ptr(s->cpu_slab); 2228 if (c->page) 2229 flush_slab(s, c); 2230 2231 /* 2232 * No other reference to the page yet so we can 2233 * muck around with it freely without cmpxchg 2234 */ 2235 freelist = page->freelist; 2236 page->freelist = NULL; 2237 2238 stat(s, ALLOC_SLAB); 2239 c->page = page; 2240 *pc = c; 2241 } else 2242 freelist = NULL; 2243 2244 return freelist; 2245 } 2246 2247 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2248 { 2249 if (unlikely(PageSlabPfmemalloc(page))) 2250 return gfp_pfmemalloc_allowed(gfpflags); 2251 2252 return true; 2253 } 2254 2255 /* 2256 * Check the page->freelist of a page and either transfer the freelist to the 2257 * per cpu freelist or deactivate the page. 2258 * 2259 * The page is still frozen if the return value is not NULL. 2260 * 2261 * If this function returns NULL then the page has been unfrozen. 2262 * 2263 * This function must be called with interrupt disabled. 2264 */ 2265 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2266 { 2267 struct page new; 2268 unsigned long counters; 2269 void *freelist; 2270 2271 do { 2272 freelist = page->freelist; 2273 counters = page->counters; 2274 2275 new.counters = counters; 2276 VM_BUG_ON(!new.frozen); 2277 2278 new.inuse = page->objects; 2279 new.frozen = freelist != NULL; 2280 2281 } while (!__cmpxchg_double_slab(s, page, 2282 freelist, counters, 2283 NULL, new.counters, 2284 "get_freelist")); 2285 2286 return freelist; 2287 } 2288 2289 /* 2290 * Slow path. The lockless freelist is empty or we need to perform 2291 * debugging duties. 2292 * 2293 * Processing is still very fast if new objects have been freed to the 2294 * regular freelist. In that case we simply take over the regular freelist 2295 * as the lockless freelist and zap the regular freelist. 2296 * 2297 * If that is not working then we fall back to the partial lists. We take the 2298 * first element of the freelist as the object to allocate now and move the 2299 * rest of the freelist to the lockless freelist. 2300 * 2301 * And if we were unable to get a new slab from the partial slab lists then 2302 * we need to allocate a new slab. This is the slowest path since it involves 2303 * a call to the page allocator and the setup of a new slab. 2304 */ 2305 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2306 unsigned long addr, struct kmem_cache_cpu *c) 2307 { 2308 void *freelist; 2309 struct page *page; 2310 unsigned long flags; 2311 2312 local_irq_save(flags); 2313 #ifdef CONFIG_PREEMPT 2314 /* 2315 * We may have been preempted and rescheduled on a different 2316 * cpu before disabling interrupts. Need to reload cpu area 2317 * pointer. 2318 */ 2319 c = this_cpu_ptr(s->cpu_slab); 2320 #endif 2321 2322 page = c->page; 2323 if (!page) 2324 goto new_slab; 2325 redo: 2326 2327 if (unlikely(!node_match(page, node))) { 2328 int searchnode = node; 2329 2330 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2331 searchnode = node_to_mem_node(node); 2332 2333 if (unlikely(!node_match(page, searchnode))) { 2334 stat(s, ALLOC_NODE_MISMATCH); 2335 deactivate_slab(s, page, c->freelist); 2336 c->page = NULL; 2337 c->freelist = NULL; 2338 goto new_slab; 2339 } 2340 } 2341 2342 /* 2343 * By rights, we should be searching for a slab page that was 2344 * PFMEMALLOC but right now, we are losing the pfmemalloc 2345 * information when the page leaves the per-cpu allocator 2346 */ 2347 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2348 deactivate_slab(s, page, c->freelist); 2349 c->page = NULL; 2350 c->freelist = NULL; 2351 goto new_slab; 2352 } 2353 2354 /* must check again c->freelist in case of cpu migration or IRQ */ 2355 freelist = c->freelist; 2356 if (freelist) 2357 goto load_freelist; 2358 2359 freelist = get_freelist(s, page); 2360 2361 if (!freelist) { 2362 c->page = NULL; 2363 stat(s, DEACTIVATE_BYPASS); 2364 goto new_slab; 2365 } 2366 2367 stat(s, ALLOC_REFILL); 2368 2369 load_freelist: 2370 /* 2371 * freelist is pointing to the list of objects to be used. 2372 * page is pointing to the page from which the objects are obtained. 2373 * That page must be frozen for per cpu allocations to work. 2374 */ 2375 VM_BUG_ON(!c->page->frozen); 2376 c->freelist = get_freepointer(s, freelist); 2377 c->tid = next_tid(c->tid); 2378 local_irq_restore(flags); 2379 return freelist; 2380 2381 new_slab: 2382 2383 if (c->partial) { 2384 page = c->page = c->partial; 2385 c->partial = page->next; 2386 stat(s, CPU_PARTIAL_ALLOC); 2387 c->freelist = NULL; 2388 goto redo; 2389 } 2390 2391 freelist = new_slab_objects(s, gfpflags, node, &c); 2392 2393 if (unlikely(!freelist)) { 2394 slab_out_of_memory(s, gfpflags, node); 2395 local_irq_restore(flags); 2396 return NULL; 2397 } 2398 2399 page = c->page; 2400 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2401 goto load_freelist; 2402 2403 /* Only entered in the debug case */ 2404 if (kmem_cache_debug(s) && 2405 !alloc_debug_processing(s, page, freelist, addr)) 2406 goto new_slab; /* Slab failed checks. Next slab needed */ 2407 2408 deactivate_slab(s, page, get_freepointer(s, freelist)); 2409 c->page = NULL; 2410 c->freelist = NULL; 2411 local_irq_restore(flags); 2412 return freelist; 2413 } 2414 2415 /* 2416 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2417 * have the fastpath folded into their functions. So no function call 2418 * overhead for requests that can be satisfied on the fastpath. 2419 * 2420 * The fastpath works by first checking if the lockless freelist can be used. 2421 * If not then __slab_alloc is called for slow processing. 2422 * 2423 * Otherwise we can simply pick the next object from the lockless free list. 2424 */ 2425 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2426 gfp_t gfpflags, int node, unsigned long addr) 2427 { 2428 void **object; 2429 struct kmem_cache_cpu *c; 2430 struct page *page; 2431 unsigned long tid; 2432 2433 s = slab_pre_alloc_hook(s, gfpflags); 2434 if (!s) 2435 return NULL; 2436 redo: 2437 /* 2438 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2439 * enabled. We may switch back and forth between cpus while 2440 * reading from one cpu area. That does not matter as long 2441 * as we end up on the original cpu again when doing the cmpxchg. 2442 * 2443 * We should guarantee that tid and kmem_cache are retrieved on 2444 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2445 * to check if it is matched or not. 2446 */ 2447 do { 2448 tid = this_cpu_read(s->cpu_slab->tid); 2449 c = raw_cpu_ptr(s->cpu_slab); 2450 } while (IS_ENABLED(CONFIG_PREEMPT) && 2451 unlikely(tid != READ_ONCE(c->tid))); 2452 2453 /* 2454 * Irqless object alloc/free algorithm used here depends on sequence 2455 * of fetching cpu_slab's data. tid should be fetched before anything 2456 * on c to guarantee that object and page associated with previous tid 2457 * won't be used with current tid. If we fetch tid first, object and 2458 * page could be one associated with next tid and our alloc/free 2459 * request will be failed. In this case, we will retry. So, no problem. 2460 */ 2461 barrier(); 2462 2463 /* 2464 * The transaction ids are globally unique per cpu and per operation on 2465 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2466 * occurs on the right processor and that there was no operation on the 2467 * linked list in between. 2468 */ 2469 2470 object = c->freelist; 2471 page = c->page; 2472 if (unlikely(!object || !node_match(page, node))) { 2473 object = __slab_alloc(s, gfpflags, node, addr, c); 2474 stat(s, ALLOC_SLOWPATH); 2475 } else { 2476 void *next_object = get_freepointer_safe(s, object); 2477 2478 /* 2479 * The cmpxchg will only match if there was no additional 2480 * operation and if we are on the right processor. 2481 * 2482 * The cmpxchg does the following atomically (without lock 2483 * semantics!) 2484 * 1. Relocate first pointer to the current per cpu area. 2485 * 2. Verify that tid and freelist have not been changed 2486 * 3. If they were not changed replace tid and freelist 2487 * 2488 * Since this is without lock semantics the protection is only 2489 * against code executing on this cpu *not* from access by 2490 * other cpus. 2491 */ 2492 if (unlikely(!this_cpu_cmpxchg_double( 2493 s->cpu_slab->freelist, s->cpu_slab->tid, 2494 object, tid, 2495 next_object, next_tid(tid)))) { 2496 2497 note_cmpxchg_failure("slab_alloc", s, tid); 2498 goto redo; 2499 } 2500 prefetch_freepointer(s, next_object); 2501 stat(s, ALLOC_FASTPATH); 2502 } 2503 2504 if (unlikely(gfpflags & __GFP_ZERO) && object) 2505 memset(object, 0, s->object_size); 2506 2507 slab_post_alloc_hook(s, gfpflags, object); 2508 2509 return object; 2510 } 2511 2512 static __always_inline void *slab_alloc(struct kmem_cache *s, 2513 gfp_t gfpflags, unsigned long addr) 2514 { 2515 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2516 } 2517 2518 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2519 { 2520 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2521 2522 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2523 s->size, gfpflags); 2524 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(kmem_cache_alloc); 2528 2529 #ifdef CONFIG_TRACING 2530 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2531 { 2532 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2533 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2534 kasan_kmalloc(s, ret, size); 2535 return ret; 2536 } 2537 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2538 #endif 2539 2540 #ifdef CONFIG_NUMA 2541 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2542 { 2543 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2544 2545 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2546 s->object_size, s->size, gfpflags, node); 2547 2548 return ret; 2549 } 2550 EXPORT_SYMBOL(kmem_cache_alloc_node); 2551 2552 #ifdef CONFIG_TRACING 2553 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2554 gfp_t gfpflags, 2555 int node, size_t size) 2556 { 2557 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2558 2559 trace_kmalloc_node(_RET_IP_, ret, 2560 size, s->size, gfpflags, node); 2561 2562 kasan_kmalloc(s, ret, size); 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2566 #endif 2567 #endif 2568 2569 /* 2570 * Slow path handling. This may still be called frequently since objects 2571 * have a longer lifetime than the cpu slabs in most processing loads. 2572 * 2573 * So we still attempt to reduce cache line usage. Just take the slab 2574 * lock and free the item. If there is no additional partial page 2575 * handling required then we can return immediately. 2576 */ 2577 static void __slab_free(struct kmem_cache *s, struct page *page, 2578 void *x, unsigned long addr) 2579 { 2580 void *prior; 2581 void **object = (void *)x; 2582 int was_frozen; 2583 struct page new; 2584 unsigned long counters; 2585 struct kmem_cache_node *n = NULL; 2586 unsigned long uninitialized_var(flags); 2587 2588 stat(s, FREE_SLOWPATH); 2589 2590 if (kmem_cache_debug(s) && 2591 !(n = free_debug_processing(s, page, x, addr, &flags))) 2592 return; 2593 2594 do { 2595 if (unlikely(n)) { 2596 spin_unlock_irqrestore(&n->list_lock, flags); 2597 n = NULL; 2598 } 2599 prior = page->freelist; 2600 counters = page->counters; 2601 set_freepointer(s, object, prior); 2602 new.counters = counters; 2603 was_frozen = new.frozen; 2604 new.inuse--; 2605 if ((!new.inuse || !prior) && !was_frozen) { 2606 2607 if (kmem_cache_has_cpu_partial(s) && !prior) { 2608 2609 /* 2610 * Slab was on no list before and will be 2611 * partially empty 2612 * We can defer the list move and instead 2613 * freeze it. 2614 */ 2615 new.frozen = 1; 2616 2617 } else { /* Needs to be taken off a list */ 2618 2619 n = get_node(s, page_to_nid(page)); 2620 /* 2621 * Speculatively acquire the list_lock. 2622 * If the cmpxchg does not succeed then we may 2623 * drop the list_lock without any processing. 2624 * 2625 * Otherwise the list_lock will synchronize with 2626 * other processors updating the list of slabs. 2627 */ 2628 spin_lock_irqsave(&n->list_lock, flags); 2629 2630 } 2631 } 2632 2633 } while (!cmpxchg_double_slab(s, page, 2634 prior, counters, 2635 object, new.counters, 2636 "__slab_free")); 2637 2638 if (likely(!n)) { 2639 2640 /* 2641 * If we just froze the page then put it onto the 2642 * per cpu partial list. 2643 */ 2644 if (new.frozen && !was_frozen) { 2645 put_cpu_partial(s, page, 1); 2646 stat(s, CPU_PARTIAL_FREE); 2647 } 2648 /* 2649 * The list lock was not taken therefore no list 2650 * activity can be necessary. 2651 */ 2652 if (was_frozen) 2653 stat(s, FREE_FROZEN); 2654 return; 2655 } 2656 2657 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2658 goto slab_empty; 2659 2660 /* 2661 * Objects left in the slab. If it was not on the partial list before 2662 * then add it. 2663 */ 2664 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2665 if (kmem_cache_debug(s)) 2666 remove_full(s, n, page); 2667 add_partial(n, page, DEACTIVATE_TO_TAIL); 2668 stat(s, FREE_ADD_PARTIAL); 2669 } 2670 spin_unlock_irqrestore(&n->list_lock, flags); 2671 return; 2672 2673 slab_empty: 2674 if (prior) { 2675 /* 2676 * Slab on the partial list. 2677 */ 2678 remove_partial(n, page); 2679 stat(s, FREE_REMOVE_PARTIAL); 2680 } else { 2681 /* Slab must be on the full list */ 2682 remove_full(s, n, page); 2683 } 2684 2685 spin_unlock_irqrestore(&n->list_lock, flags); 2686 stat(s, FREE_SLAB); 2687 discard_slab(s, page); 2688 } 2689 2690 /* 2691 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2692 * can perform fastpath freeing without additional function calls. 2693 * 2694 * The fastpath is only possible if we are freeing to the current cpu slab 2695 * of this processor. This typically the case if we have just allocated 2696 * the item before. 2697 * 2698 * If fastpath is not possible then fall back to __slab_free where we deal 2699 * with all sorts of special processing. 2700 */ 2701 static __always_inline void slab_free(struct kmem_cache *s, 2702 struct page *page, void *x, unsigned long addr) 2703 { 2704 void **object = (void *)x; 2705 struct kmem_cache_cpu *c; 2706 unsigned long tid; 2707 2708 slab_free_hook(s, x); 2709 2710 redo: 2711 /* 2712 * Determine the currently cpus per cpu slab. 2713 * The cpu may change afterward. However that does not matter since 2714 * data is retrieved via this pointer. If we are on the same cpu 2715 * during the cmpxchg then the free will succedd. 2716 */ 2717 do { 2718 tid = this_cpu_read(s->cpu_slab->tid); 2719 c = raw_cpu_ptr(s->cpu_slab); 2720 } while (IS_ENABLED(CONFIG_PREEMPT) && 2721 unlikely(tid != READ_ONCE(c->tid))); 2722 2723 /* Same with comment on barrier() in slab_alloc_node() */ 2724 barrier(); 2725 2726 if (likely(page == c->page)) { 2727 set_freepointer(s, object, c->freelist); 2728 2729 if (unlikely(!this_cpu_cmpxchg_double( 2730 s->cpu_slab->freelist, s->cpu_slab->tid, 2731 c->freelist, tid, 2732 object, next_tid(tid)))) { 2733 2734 note_cmpxchg_failure("slab_free", s, tid); 2735 goto redo; 2736 } 2737 stat(s, FREE_FASTPATH); 2738 } else 2739 __slab_free(s, page, x, addr); 2740 2741 } 2742 2743 void kmem_cache_free(struct kmem_cache *s, void *x) 2744 { 2745 s = cache_from_obj(s, x); 2746 if (!s) 2747 return; 2748 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2749 trace_kmem_cache_free(_RET_IP_, x); 2750 } 2751 EXPORT_SYMBOL(kmem_cache_free); 2752 2753 /* 2754 * Object placement in a slab is made very easy because we always start at 2755 * offset 0. If we tune the size of the object to the alignment then we can 2756 * get the required alignment by putting one properly sized object after 2757 * another. 2758 * 2759 * Notice that the allocation order determines the sizes of the per cpu 2760 * caches. Each processor has always one slab available for allocations. 2761 * Increasing the allocation order reduces the number of times that slabs 2762 * must be moved on and off the partial lists and is therefore a factor in 2763 * locking overhead. 2764 */ 2765 2766 /* 2767 * Mininum / Maximum order of slab pages. This influences locking overhead 2768 * and slab fragmentation. A higher order reduces the number of partial slabs 2769 * and increases the number of allocations possible without having to 2770 * take the list_lock. 2771 */ 2772 static int slub_min_order; 2773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2774 static int slub_min_objects; 2775 2776 /* 2777 * Calculate the order of allocation given an slab object size. 2778 * 2779 * The order of allocation has significant impact on performance and other 2780 * system components. Generally order 0 allocations should be preferred since 2781 * order 0 does not cause fragmentation in the page allocator. Larger objects 2782 * be problematic to put into order 0 slabs because there may be too much 2783 * unused space left. We go to a higher order if more than 1/16th of the slab 2784 * would be wasted. 2785 * 2786 * In order to reach satisfactory performance we must ensure that a minimum 2787 * number of objects is in one slab. Otherwise we may generate too much 2788 * activity on the partial lists which requires taking the list_lock. This is 2789 * less a concern for large slabs though which are rarely used. 2790 * 2791 * slub_max_order specifies the order where we begin to stop considering the 2792 * number of objects in a slab as critical. If we reach slub_max_order then 2793 * we try to keep the page order as low as possible. So we accept more waste 2794 * of space in favor of a small page order. 2795 * 2796 * Higher order allocations also allow the placement of more objects in a 2797 * slab and thereby reduce object handling overhead. If the user has 2798 * requested a higher mininum order then we start with that one instead of 2799 * the smallest order which will fit the object. 2800 */ 2801 static inline int slab_order(int size, int min_objects, 2802 int max_order, int fract_leftover, int reserved) 2803 { 2804 int order; 2805 int rem; 2806 int min_order = slub_min_order; 2807 2808 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2809 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2810 2811 for (order = max(min_order, 2812 fls(min_objects * size - 1) - PAGE_SHIFT); 2813 order <= max_order; order++) { 2814 2815 unsigned long slab_size = PAGE_SIZE << order; 2816 2817 if (slab_size < min_objects * size + reserved) 2818 continue; 2819 2820 rem = (slab_size - reserved) % size; 2821 2822 if (rem <= slab_size / fract_leftover) 2823 break; 2824 2825 } 2826 2827 return order; 2828 } 2829 2830 static inline int calculate_order(int size, int reserved) 2831 { 2832 int order; 2833 int min_objects; 2834 int fraction; 2835 int max_objects; 2836 2837 /* 2838 * Attempt to find best configuration for a slab. This 2839 * works by first attempting to generate a layout with 2840 * the best configuration and backing off gradually. 2841 * 2842 * First we reduce the acceptable waste in a slab. Then 2843 * we reduce the minimum objects required in a slab. 2844 */ 2845 min_objects = slub_min_objects; 2846 if (!min_objects) 2847 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2848 max_objects = order_objects(slub_max_order, size, reserved); 2849 min_objects = min(min_objects, max_objects); 2850 2851 while (min_objects > 1) { 2852 fraction = 16; 2853 while (fraction >= 4) { 2854 order = slab_order(size, min_objects, 2855 slub_max_order, fraction, reserved); 2856 if (order <= slub_max_order) 2857 return order; 2858 fraction /= 2; 2859 } 2860 min_objects--; 2861 } 2862 2863 /* 2864 * We were unable to place multiple objects in a slab. Now 2865 * lets see if we can place a single object there. 2866 */ 2867 order = slab_order(size, 1, slub_max_order, 1, reserved); 2868 if (order <= slub_max_order) 2869 return order; 2870 2871 /* 2872 * Doh this slab cannot be placed using slub_max_order. 2873 */ 2874 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2875 if (order < MAX_ORDER) 2876 return order; 2877 return -ENOSYS; 2878 } 2879 2880 static void 2881 init_kmem_cache_node(struct kmem_cache_node *n) 2882 { 2883 n->nr_partial = 0; 2884 spin_lock_init(&n->list_lock); 2885 INIT_LIST_HEAD(&n->partial); 2886 #ifdef CONFIG_SLUB_DEBUG 2887 atomic_long_set(&n->nr_slabs, 0); 2888 atomic_long_set(&n->total_objects, 0); 2889 INIT_LIST_HEAD(&n->full); 2890 #endif 2891 } 2892 2893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2894 { 2895 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2896 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2897 2898 /* 2899 * Must align to double word boundary for the double cmpxchg 2900 * instructions to work; see __pcpu_double_call_return_bool(). 2901 */ 2902 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2903 2 * sizeof(void *)); 2904 2905 if (!s->cpu_slab) 2906 return 0; 2907 2908 init_kmem_cache_cpus(s); 2909 2910 return 1; 2911 } 2912 2913 static struct kmem_cache *kmem_cache_node; 2914 2915 /* 2916 * No kmalloc_node yet so do it by hand. We know that this is the first 2917 * slab on the node for this slabcache. There are no concurrent accesses 2918 * possible. 2919 * 2920 * Note that this function only works on the kmem_cache_node 2921 * when allocating for the kmem_cache_node. This is used for bootstrapping 2922 * memory on a fresh node that has no slab structures yet. 2923 */ 2924 static void early_kmem_cache_node_alloc(int node) 2925 { 2926 struct page *page; 2927 struct kmem_cache_node *n; 2928 2929 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2930 2931 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2932 2933 BUG_ON(!page); 2934 if (page_to_nid(page) != node) { 2935 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2936 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2937 } 2938 2939 n = page->freelist; 2940 BUG_ON(!n); 2941 page->freelist = get_freepointer(kmem_cache_node, n); 2942 page->inuse = 1; 2943 page->frozen = 0; 2944 kmem_cache_node->node[node] = n; 2945 #ifdef CONFIG_SLUB_DEBUG 2946 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2947 init_tracking(kmem_cache_node, n); 2948 #endif 2949 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 2950 init_kmem_cache_node(n); 2951 inc_slabs_node(kmem_cache_node, node, page->objects); 2952 2953 /* 2954 * No locks need to be taken here as it has just been 2955 * initialized and there is no concurrent access. 2956 */ 2957 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2958 } 2959 2960 static void free_kmem_cache_nodes(struct kmem_cache *s) 2961 { 2962 int node; 2963 struct kmem_cache_node *n; 2964 2965 for_each_kmem_cache_node(s, node, n) { 2966 kmem_cache_free(kmem_cache_node, n); 2967 s->node[node] = NULL; 2968 } 2969 } 2970 2971 static int init_kmem_cache_nodes(struct kmem_cache *s) 2972 { 2973 int node; 2974 2975 for_each_node_state(node, N_NORMAL_MEMORY) { 2976 struct kmem_cache_node *n; 2977 2978 if (slab_state == DOWN) { 2979 early_kmem_cache_node_alloc(node); 2980 continue; 2981 } 2982 n = kmem_cache_alloc_node(kmem_cache_node, 2983 GFP_KERNEL, node); 2984 2985 if (!n) { 2986 free_kmem_cache_nodes(s); 2987 return 0; 2988 } 2989 2990 s->node[node] = n; 2991 init_kmem_cache_node(n); 2992 } 2993 return 1; 2994 } 2995 2996 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2997 { 2998 if (min < MIN_PARTIAL) 2999 min = MIN_PARTIAL; 3000 else if (min > MAX_PARTIAL) 3001 min = MAX_PARTIAL; 3002 s->min_partial = min; 3003 } 3004 3005 /* 3006 * calculate_sizes() determines the order and the distribution of data within 3007 * a slab object. 3008 */ 3009 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3010 { 3011 unsigned long flags = s->flags; 3012 unsigned long size = s->object_size; 3013 int order; 3014 3015 /* 3016 * Round up object size to the next word boundary. We can only 3017 * place the free pointer at word boundaries and this determines 3018 * the possible location of the free pointer. 3019 */ 3020 size = ALIGN(size, sizeof(void *)); 3021 3022 #ifdef CONFIG_SLUB_DEBUG 3023 /* 3024 * Determine if we can poison the object itself. If the user of 3025 * the slab may touch the object after free or before allocation 3026 * then we should never poison the object itself. 3027 */ 3028 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3029 !s->ctor) 3030 s->flags |= __OBJECT_POISON; 3031 else 3032 s->flags &= ~__OBJECT_POISON; 3033 3034 3035 /* 3036 * If we are Redzoning then check if there is some space between the 3037 * end of the object and the free pointer. If not then add an 3038 * additional word to have some bytes to store Redzone information. 3039 */ 3040 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3041 size += sizeof(void *); 3042 #endif 3043 3044 /* 3045 * With that we have determined the number of bytes in actual use 3046 * by the object. This is the potential offset to the free pointer. 3047 */ 3048 s->inuse = size; 3049 3050 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3051 s->ctor)) { 3052 /* 3053 * Relocate free pointer after the object if it is not 3054 * permitted to overwrite the first word of the object on 3055 * kmem_cache_free. 3056 * 3057 * This is the case if we do RCU, have a constructor or 3058 * destructor or are poisoning the objects. 3059 */ 3060 s->offset = size; 3061 size += sizeof(void *); 3062 } 3063 3064 #ifdef CONFIG_SLUB_DEBUG 3065 if (flags & SLAB_STORE_USER) 3066 /* 3067 * Need to store information about allocs and frees after 3068 * the object. 3069 */ 3070 size += 2 * sizeof(struct track); 3071 3072 if (flags & SLAB_RED_ZONE) 3073 /* 3074 * Add some empty padding so that we can catch 3075 * overwrites from earlier objects rather than let 3076 * tracking information or the free pointer be 3077 * corrupted if a user writes before the start 3078 * of the object. 3079 */ 3080 size += sizeof(void *); 3081 #endif 3082 3083 /* 3084 * SLUB stores one object immediately after another beginning from 3085 * offset 0. In order to align the objects we have to simply size 3086 * each object to conform to the alignment. 3087 */ 3088 size = ALIGN(size, s->align); 3089 s->size = size; 3090 if (forced_order >= 0) 3091 order = forced_order; 3092 else 3093 order = calculate_order(size, s->reserved); 3094 3095 if (order < 0) 3096 return 0; 3097 3098 s->allocflags = 0; 3099 if (order) 3100 s->allocflags |= __GFP_COMP; 3101 3102 if (s->flags & SLAB_CACHE_DMA) 3103 s->allocflags |= GFP_DMA; 3104 3105 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3106 s->allocflags |= __GFP_RECLAIMABLE; 3107 3108 /* 3109 * Determine the number of objects per slab 3110 */ 3111 s->oo = oo_make(order, size, s->reserved); 3112 s->min = oo_make(get_order(size), size, s->reserved); 3113 if (oo_objects(s->oo) > oo_objects(s->max)) 3114 s->max = s->oo; 3115 3116 return !!oo_objects(s->oo); 3117 } 3118 3119 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3120 { 3121 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3122 s->reserved = 0; 3123 3124 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3125 s->reserved = sizeof(struct rcu_head); 3126 3127 if (!calculate_sizes(s, -1)) 3128 goto error; 3129 if (disable_higher_order_debug) { 3130 /* 3131 * Disable debugging flags that store metadata if the min slab 3132 * order increased. 3133 */ 3134 if (get_order(s->size) > get_order(s->object_size)) { 3135 s->flags &= ~DEBUG_METADATA_FLAGS; 3136 s->offset = 0; 3137 if (!calculate_sizes(s, -1)) 3138 goto error; 3139 } 3140 } 3141 3142 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3143 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3144 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3145 /* Enable fast mode */ 3146 s->flags |= __CMPXCHG_DOUBLE; 3147 #endif 3148 3149 /* 3150 * The larger the object size is, the more pages we want on the partial 3151 * list to avoid pounding the page allocator excessively. 3152 */ 3153 set_min_partial(s, ilog2(s->size) / 2); 3154 3155 /* 3156 * cpu_partial determined the maximum number of objects kept in the 3157 * per cpu partial lists of a processor. 3158 * 3159 * Per cpu partial lists mainly contain slabs that just have one 3160 * object freed. If they are used for allocation then they can be 3161 * filled up again with minimal effort. The slab will never hit the 3162 * per node partial lists and therefore no locking will be required. 3163 * 3164 * This setting also determines 3165 * 3166 * A) The number of objects from per cpu partial slabs dumped to the 3167 * per node list when we reach the limit. 3168 * B) The number of objects in cpu partial slabs to extract from the 3169 * per node list when we run out of per cpu objects. We only fetch 3170 * 50% to keep some capacity around for frees. 3171 */ 3172 if (!kmem_cache_has_cpu_partial(s)) 3173 s->cpu_partial = 0; 3174 else if (s->size >= PAGE_SIZE) 3175 s->cpu_partial = 2; 3176 else if (s->size >= 1024) 3177 s->cpu_partial = 6; 3178 else if (s->size >= 256) 3179 s->cpu_partial = 13; 3180 else 3181 s->cpu_partial = 30; 3182 3183 #ifdef CONFIG_NUMA 3184 s->remote_node_defrag_ratio = 1000; 3185 #endif 3186 if (!init_kmem_cache_nodes(s)) 3187 goto error; 3188 3189 if (alloc_kmem_cache_cpus(s)) 3190 return 0; 3191 3192 free_kmem_cache_nodes(s); 3193 error: 3194 if (flags & SLAB_PANIC) 3195 panic("Cannot create slab %s size=%lu realsize=%u " 3196 "order=%u offset=%u flags=%lx\n", 3197 s->name, (unsigned long)s->size, s->size, 3198 oo_order(s->oo), s->offset, flags); 3199 return -EINVAL; 3200 } 3201 3202 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3203 const char *text) 3204 { 3205 #ifdef CONFIG_SLUB_DEBUG 3206 void *addr = page_address(page); 3207 void *p; 3208 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3209 sizeof(long), GFP_ATOMIC); 3210 if (!map) 3211 return; 3212 slab_err(s, page, text, s->name); 3213 slab_lock(page); 3214 3215 get_map(s, page, map); 3216 for_each_object(p, s, addr, page->objects) { 3217 3218 if (!test_bit(slab_index(p, s, addr), map)) { 3219 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3220 print_tracking(s, p); 3221 } 3222 } 3223 slab_unlock(page); 3224 kfree(map); 3225 #endif 3226 } 3227 3228 /* 3229 * Attempt to free all partial slabs on a node. 3230 * This is called from kmem_cache_close(). We must be the last thread 3231 * using the cache and therefore we do not need to lock anymore. 3232 */ 3233 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3234 { 3235 struct page *page, *h; 3236 3237 list_for_each_entry_safe(page, h, &n->partial, lru) { 3238 if (!page->inuse) { 3239 __remove_partial(n, page); 3240 discard_slab(s, page); 3241 } else { 3242 list_slab_objects(s, page, 3243 "Objects remaining in %s on kmem_cache_close()"); 3244 } 3245 } 3246 } 3247 3248 /* 3249 * Release all resources used by a slab cache. 3250 */ 3251 static inline int kmem_cache_close(struct kmem_cache *s) 3252 { 3253 int node; 3254 struct kmem_cache_node *n; 3255 3256 flush_all(s); 3257 /* Attempt to free all objects */ 3258 for_each_kmem_cache_node(s, node, n) { 3259 free_partial(s, n); 3260 if (n->nr_partial || slabs_node(s, node)) 3261 return 1; 3262 } 3263 free_percpu(s->cpu_slab); 3264 free_kmem_cache_nodes(s); 3265 return 0; 3266 } 3267 3268 int __kmem_cache_shutdown(struct kmem_cache *s) 3269 { 3270 return kmem_cache_close(s); 3271 } 3272 3273 /******************************************************************** 3274 * Kmalloc subsystem 3275 *******************************************************************/ 3276 3277 static int __init setup_slub_min_order(char *str) 3278 { 3279 get_option(&str, &slub_min_order); 3280 3281 return 1; 3282 } 3283 3284 __setup("slub_min_order=", setup_slub_min_order); 3285 3286 static int __init setup_slub_max_order(char *str) 3287 { 3288 get_option(&str, &slub_max_order); 3289 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3290 3291 return 1; 3292 } 3293 3294 __setup("slub_max_order=", setup_slub_max_order); 3295 3296 static int __init setup_slub_min_objects(char *str) 3297 { 3298 get_option(&str, &slub_min_objects); 3299 3300 return 1; 3301 } 3302 3303 __setup("slub_min_objects=", setup_slub_min_objects); 3304 3305 void *__kmalloc(size_t size, gfp_t flags) 3306 { 3307 struct kmem_cache *s; 3308 void *ret; 3309 3310 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3311 return kmalloc_large(size, flags); 3312 3313 s = kmalloc_slab(size, flags); 3314 3315 if (unlikely(ZERO_OR_NULL_PTR(s))) 3316 return s; 3317 3318 ret = slab_alloc(s, flags, _RET_IP_); 3319 3320 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3321 3322 kasan_kmalloc(s, ret, size); 3323 3324 return ret; 3325 } 3326 EXPORT_SYMBOL(__kmalloc); 3327 3328 #ifdef CONFIG_NUMA 3329 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3330 { 3331 struct page *page; 3332 void *ptr = NULL; 3333 3334 flags |= __GFP_COMP | __GFP_NOTRACK; 3335 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3336 if (page) 3337 ptr = page_address(page); 3338 3339 kmalloc_large_node_hook(ptr, size, flags); 3340 return ptr; 3341 } 3342 3343 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3344 { 3345 struct kmem_cache *s; 3346 void *ret; 3347 3348 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3349 ret = kmalloc_large_node(size, flags, node); 3350 3351 trace_kmalloc_node(_RET_IP_, ret, 3352 size, PAGE_SIZE << get_order(size), 3353 flags, node); 3354 3355 return ret; 3356 } 3357 3358 s = kmalloc_slab(size, flags); 3359 3360 if (unlikely(ZERO_OR_NULL_PTR(s))) 3361 return s; 3362 3363 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3364 3365 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3366 3367 kasan_kmalloc(s, ret, size); 3368 3369 return ret; 3370 } 3371 EXPORT_SYMBOL(__kmalloc_node); 3372 #endif 3373 3374 static size_t __ksize(const void *object) 3375 { 3376 struct page *page; 3377 3378 if (unlikely(object == ZERO_SIZE_PTR)) 3379 return 0; 3380 3381 page = virt_to_head_page(object); 3382 3383 if (unlikely(!PageSlab(page))) { 3384 WARN_ON(!PageCompound(page)); 3385 return PAGE_SIZE << compound_order(page); 3386 } 3387 3388 return slab_ksize(page->slab_cache); 3389 } 3390 3391 size_t ksize(const void *object) 3392 { 3393 size_t size = __ksize(object); 3394 /* We assume that ksize callers could use whole allocated area, 3395 so we need unpoison this area. */ 3396 kasan_krealloc(object, size); 3397 return size; 3398 } 3399 EXPORT_SYMBOL(ksize); 3400 3401 void kfree(const void *x) 3402 { 3403 struct page *page; 3404 void *object = (void *)x; 3405 3406 trace_kfree(_RET_IP_, x); 3407 3408 if (unlikely(ZERO_OR_NULL_PTR(x))) 3409 return; 3410 3411 page = virt_to_head_page(x); 3412 if (unlikely(!PageSlab(page))) { 3413 BUG_ON(!PageCompound(page)); 3414 kfree_hook(x); 3415 __free_kmem_pages(page, compound_order(page)); 3416 return; 3417 } 3418 slab_free(page->slab_cache, page, object, _RET_IP_); 3419 } 3420 EXPORT_SYMBOL(kfree); 3421 3422 #define SHRINK_PROMOTE_MAX 32 3423 3424 /* 3425 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3426 * up most to the head of the partial lists. New allocations will then 3427 * fill those up and thus they can be removed from the partial lists. 3428 * 3429 * The slabs with the least items are placed last. This results in them 3430 * being allocated from last increasing the chance that the last objects 3431 * are freed in them. 3432 */ 3433 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3434 { 3435 int node; 3436 int i; 3437 struct kmem_cache_node *n; 3438 struct page *page; 3439 struct page *t; 3440 struct list_head discard; 3441 struct list_head promote[SHRINK_PROMOTE_MAX]; 3442 unsigned long flags; 3443 int ret = 0; 3444 3445 if (deactivate) { 3446 /* 3447 * Disable empty slabs caching. Used to avoid pinning offline 3448 * memory cgroups by kmem pages that can be freed. 3449 */ 3450 s->cpu_partial = 0; 3451 s->min_partial = 0; 3452 3453 /* 3454 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3455 * so we have to make sure the change is visible. 3456 */ 3457 kick_all_cpus_sync(); 3458 } 3459 3460 flush_all(s); 3461 for_each_kmem_cache_node(s, node, n) { 3462 INIT_LIST_HEAD(&discard); 3463 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3464 INIT_LIST_HEAD(promote + i); 3465 3466 spin_lock_irqsave(&n->list_lock, flags); 3467 3468 /* 3469 * Build lists of slabs to discard or promote. 3470 * 3471 * Note that concurrent frees may occur while we hold the 3472 * list_lock. page->inuse here is the upper limit. 3473 */ 3474 list_for_each_entry_safe(page, t, &n->partial, lru) { 3475 int free = page->objects - page->inuse; 3476 3477 /* Do not reread page->inuse */ 3478 barrier(); 3479 3480 /* We do not keep full slabs on the list */ 3481 BUG_ON(free <= 0); 3482 3483 if (free == page->objects) { 3484 list_move(&page->lru, &discard); 3485 n->nr_partial--; 3486 } else if (free <= SHRINK_PROMOTE_MAX) 3487 list_move(&page->lru, promote + free - 1); 3488 } 3489 3490 /* 3491 * Promote the slabs filled up most to the head of the 3492 * partial list. 3493 */ 3494 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3495 list_splice(promote + i, &n->partial); 3496 3497 spin_unlock_irqrestore(&n->list_lock, flags); 3498 3499 /* Release empty slabs */ 3500 list_for_each_entry_safe(page, t, &discard, lru) 3501 discard_slab(s, page); 3502 3503 if (slabs_node(s, node)) 3504 ret = 1; 3505 } 3506 3507 return ret; 3508 } 3509 3510 static int slab_mem_going_offline_callback(void *arg) 3511 { 3512 struct kmem_cache *s; 3513 3514 mutex_lock(&slab_mutex); 3515 list_for_each_entry(s, &slab_caches, list) 3516 __kmem_cache_shrink(s, false); 3517 mutex_unlock(&slab_mutex); 3518 3519 return 0; 3520 } 3521 3522 static void slab_mem_offline_callback(void *arg) 3523 { 3524 struct kmem_cache_node *n; 3525 struct kmem_cache *s; 3526 struct memory_notify *marg = arg; 3527 int offline_node; 3528 3529 offline_node = marg->status_change_nid_normal; 3530 3531 /* 3532 * If the node still has available memory. we need kmem_cache_node 3533 * for it yet. 3534 */ 3535 if (offline_node < 0) 3536 return; 3537 3538 mutex_lock(&slab_mutex); 3539 list_for_each_entry(s, &slab_caches, list) { 3540 n = get_node(s, offline_node); 3541 if (n) { 3542 /* 3543 * if n->nr_slabs > 0, slabs still exist on the node 3544 * that is going down. We were unable to free them, 3545 * and offline_pages() function shouldn't call this 3546 * callback. So, we must fail. 3547 */ 3548 BUG_ON(slabs_node(s, offline_node)); 3549 3550 s->node[offline_node] = NULL; 3551 kmem_cache_free(kmem_cache_node, n); 3552 } 3553 } 3554 mutex_unlock(&slab_mutex); 3555 } 3556 3557 static int slab_mem_going_online_callback(void *arg) 3558 { 3559 struct kmem_cache_node *n; 3560 struct kmem_cache *s; 3561 struct memory_notify *marg = arg; 3562 int nid = marg->status_change_nid_normal; 3563 int ret = 0; 3564 3565 /* 3566 * If the node's memory is already available, then kmem_cache_node is 3567 * already created. Nothing to do. 3568 */ 3569 if (nid < 0) 3570 return 0; 3571 3572 /* 3573 * We are bringing a node online. No memory is available yet. We must 3574 * allocate a kmem_cache_node structure in order to bring the node 3575 * online. 3576 */ 3577 mutex_lock(&slab_mutex); 3578 list_for_each_entry(s, &slab_caches, list) { 3579 /* 3580 * XXX: kmem_cache_alloc_node will fallback to other nodes 3581 * since memory is not yet available from the node that 3582 * is brought up. 3583 */ 3584 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3585 if (!n) { 3586 ret = -ENOMEM; 3587 goto out; 3588 } 3589 init_kmem_cache_node(n); 3590 s->node[nid] = n; 3591 } 3592 out: 3593 mutex_unlock(&slab_mutex); 3594 return ret; 3595 } 3596 3597 static int slab_memory_callback(struct notifier_block *self, 3598 unsigned long action, void *arg) 3599 { 3600 int ret = 0; 3601 3602 switch (action) { 3603 case MEM_GOING_ONLINE: 3604 ret = slab_mem_going_online_callback(arg); 3605 break; 3606 case MEM_GOING_OFFLINE: 3607 ret = slab_mem_going_offline_callback(arg); 3608 break; 3609 case MEM_OFFLINE: 3610 case MEM_CANCEL_ONLINE: 3611 slab_mem_offline_callback(arg); 3612 break; 3613 case MEM_ONLINE: 3614 case MEM_CANCEL_OFFLINE: 3615 break; 3616 } 3617 if (ret) 3618 ret = notifier_from_errno(ret); 3619 else 3620 ret = NOTIFY_OK; 3621 return ret; 3622 } 3623 3624 static struct notifier_block slab_memory_callback_nb = { 3625 .notifier_call = slab_memory_callback, 3626 .priority = SLAB_CALLBACK_PRI, 3627 }; 3628 3629 /******************************************************************** 3630 * Basic setup of slabs 3631 *******************************************************************/ 3632 3633 /* 3634 * Used for early kmem_cache structures that were allocated using 3635 * the page allocator. Allocate them properly then fix up the pointers 3636 * that may be pointing to the wrong kmem_cache structure. 3637 */ 3638 3639 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3640 { 3641 int node; 3642 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3643 struct kmem_cache_node *n; 3644 3645 memcpy(s, static_cache, kmem_cache->object_size); 3646 3647 /* 3648 * This runs very early, and only the boot processor is supposed to be 3649 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3650 * IPIs around. 3651 */ 3652 __flush_cpu_slab(s, smp_processor_id()); 3653 for_each_kmem_cache_node(s, node, n) { 3654 struct page *p; 3655 3656 list_for_each_entry(p, &n->partial, lru) 3657 p->slab_cache = s; 3658 3659 #ifdef CONFIG_SLUB_DEBUG 3660 list_for_each_entry(p, &n->full, lru) 3661 p->slab_cache = s; 3662 #endif 3663 } 3664 slab_init_memcg_params(s); 3665 list_add(&s->list, &slab_caches); 3666 return s; 3667 } 3668 3669 void __init kmem_cache_init(void) 3670 { 3671 static __initdata struct kmem_cache boot_kmem_cache, 3672 boot_kmem_cache_node; 3673 3674 if (debug_guardpage_minorder()) 3675 slub_max_order = 0; 3676 3677 kmem_cache_node = &boot_kmem_cache_node; 3678 kmem_cache = &boot_kmem_cache; 3679 3680 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3681 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3682 3683 register_hotmemory_notifier(&slab_memory_callback_nb); 3684 3685 /* Able to allocate the per node structures */ 3686 slab_state = PARTIAL; 3687 3688 create_boot_cache(kmem_cache, "kmem_cache", 3689 offsetof(struct kmem_cache, node) + 3690 nr_node_ids * sizeof(struct kmem_cache_node *), 3691 SLAB_HWCACHE_ALIGN); 3692 3693 kmem_cache = bootstrap(&boot_kmem_cache); 3694 3695 /* 3696 * Allocate kmem_cache_node properly from the kmem_cache slab. 3697 * kmem_cache_node is separately allocated so no need to 3698 * update any list pointers. 3699 */ 3700 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3701 3702 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3703 setup_kmalloc_cache_index_table(); 3704 create_kmalloc_caches(0); 3705 3706 #ifdef CONFIG_SMP 3707 register_cpu_notifier(&slab_notifier); 3708 #endif 3709 3710 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3711 cache_line_size(), 3712 slub_min_order, slub_max_order, slub_min_objects, 3713 nr_cpu_ids, nr_node_ids); 3714 } 3715 3716 void __init kmem_cache_init_late(void) 3717 { 3718 } 3719 3720 struct kmem_cache * 3721 __kmem_cache_alias(const char *name, size_t size, size_t align, 3722 unsigned long flags, void (*ctor)(void *)) 3723 { 3724 struct kmem_cache *s, *c; 3725 3726 s = find_mergeable(size, align, flags, name, ctor); 3727 if (s) { 3728 s->refcount++; 3729 3730 /* 3731 * Adjust the object sizes so that we clear 3732 * the complete object on kzalloc. 3733 */ 3734 s->object_size = max(s->object_size, (int)size); 3735 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3736 3737 for_each_memcg_cache(c, s) { 3738 c->object_size = s->object_size; 3739 c->inuse = max_t(int, c->inuse, 3740 ALIGN(size, sizeof(void *))); 3741 } 3742 3743 if (sysfs_slab_alias(s, name)) { 3744 s->refcount--; 3745 s = NULL; 3746 } 3747 } 3748 3749 return s; 3750 } 3751 3752 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3753 { 3754 int err; 3755 3756 err = kmem_cache_open(s, flags); 3757 if (err) 3758 return err; 3759 3760 /* Mutex is not taken during early boot */ 3761 if (slab_state <= UP) 3762 return 0; 3763 3764 memcg_propagate_slab_attrs(s); 3765 err = sysfs_slab_add(s); 3766 if (err) 3767 kmem_cache_close(s); 3768 3769 return err; 3770 } 3771 3772 #ifdef CONFIG_SMP 3773 /* 3774 * Use the cpu notifier to insure that the cpu slabs are flushed when 3775 * necessary. 3776 */ 3777 static int slab_cpuup_callback(struct notifier_block *nfb, 3778 unsigned long action, void *hcpu) 3779 { 3780 long cpu = (long)hcpu; 3781 struct kmem_cache *s; 3782 unsigned long flags; 3783 3784 switch (action) { 3785 case CPU_UP_CANCELED: 3786 case CPU_UP_CANCELED_FROZEN: 3787 case CPU_DEAD: 3788 case CPU_DEAD_FROZEN: 3789 mutex_lock(&slab_mutex); 3790 list_for_each_entry(s, &slab_caches, list) { 3791 local_irq_save(flags); 3792 __flush_cpu_slab(s, cpu); 3793 local_irq_restore(flags); 3794 } 3795 mutex_unlock(&slab_mutex); 3796 break; 3797 default: 3798 break; 3799 } 3800 return NOTIFY_OK; 3801 } 3802 3803 static struct notifier_block slab_notifier = { 3804 .notifier_call = slab_cpuup_callback 3805 }; 3806 3807 #endif 3808 3809 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3810 { 3811 struct kmem_cache *s; 3812 void *ret; 3813 3814 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3815 return kmalloc_large(size, gfpflags); 3816 3817 s = kmalloc_slab(size, gfpflags); 3818 3819 if (unlikely(ZERO_OR_NULL_PTR(s))) 3820 return s; 3821 3822 ret = slab_alloc(s, gfpflags, caller); 3823 3824 /* Honor the call site pointer we received. */ 3825 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3826 3827 return ret; 3828 } 3829 3830 #ifdef CONFIG_NUMA 3831 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3832 int node, unsigned long caller) 3833 { 3834 struct kmem_cache *s; 3835 void *ret; 3836 3837 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3838 ret = kmalloc_large_node(size, gfpflags, node); 3839 3840 trace_kmalloc_node(caller, ret, 3841 size, PAGE_SIZE << get_order(size), 3842 gfpflags, node); 3843 3844 return ret; 3845 } 3846 3847 s = kmalloc_slab(size, gfpflags); 3848 3849 if (unlikely(ZERO_OR_NULL_PTR(s))) 3850 return s; 3851 3852 ret = slab_alloc_node(s, gfpflags, node, caller); 3853 3854 /* Honor the call site pointer we received. */ 3855 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3856 3857 return ret; 3858 } 3859 #endif 3860 3861 #ifdef CONFIG_SYSFS 3862 static int count_inuse(struct page *page) 3863 { 3864 return page->inuse; 3865 } 3866 3867 static int count_total(struct page *page) 3868 { 3869 return page->objects; 3870 } 3871 #endif 3872 3873 #ifdef CONFIG_SLUB_DEBUG 3874 static int validate_slab(struct kmem_cache *s, struct page *page, 3875 unsigned long *map) 3876 { 3877 void *p; 3878 void *addr = page_address(page); 3879 3880 if (!check_slab(s, page) || 3881 !on_freelist(s, page, NULL)) 3882 return 0; 3883 3884 /* Now we know that a valid freelist exists */ 3885 bitmap_zero(map, page->objects); 3886 3887 get_map(s, page, map); 3888 for_each_object(p, s, addr, page->objects) { 3889 if (test_bit(slab_index(p, s, addr), map)) 3890 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3891 return 0; 3892 } 3893 3894 for_each_object(p, s, addr, page->objects) 3895 if (!test_bit(slab_index(p, s, addr), map)) 3896 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3897 return 0; 3898 return 1; 3899 } 3900 3901 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3902 unsigned long *map) 3903 { 3904 slab_lock(page); 3905 validate_slab(s, page, map); 3906 slab_unlock(page); 3907 } 3908 3909 static int validate_slab_node(struct kmem_cache *s, 3910 struct kmem_cache_node *n, unsigned long *map) 3911 { 3912 unsigned long count = 0; 3913 struct page *page; 3914 unsigned long flags; 3915 3916 spin_lock_irqsave(&n->list_lock, flags); 3917 3918 list_for_each_entry(page, &n->partial, lru) { 3919 validate_slab_slab(s, page, map); 3920 count++; 3921 } 3922 if (count != n->nr_partial) 3923 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3924 s->name, count, n->nr_partial); 3925 3926 if (!(s->flags & SLAB_STORE_USER)) 3927 goto out; 3928 3929 list_for_each_entry(page, &n->full, lru) { 3930 validate_slab_slab(s, page, map); 3931 count++; 3932 } 3933 if (count != atomic_long_read(&n->nr_slabs)) 3934 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3935 s->name, count, atomic_long_read(&n->nr_slabs)); 3936 3937 out: 3938 spin_unlock_irqrestore(&n->list_lock, flags); 3939 return count; 3940 } 3941 3942 static long validate_slab_cache(struct kmem_cache *s) 3943 { 3944 int node; 3945 unsigned long count = 0; 3946 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3947 sizeof(unsigned long), GFP_KERNEL); 3948 struct kmem_cache_node *n; 3949 3950 if (!map) 3951 return -ENOMEM; 3952 3953 flush_all(s); 3954 for_each_kmem_cache_node(s, node, n) 3955 count += validate_slab_node(s, n, map); 3956 kfree(map); 3957 return count; 3958 } 3959 /* 3960 * Generate lists of code addresses where slabcache objects are allocated 3961 * and freed. 3962 */ 3963 3964 struct location { 3965 unsigned long count; 3966 unsigned long addr; 3967 long long sum_time; 3968 long min_time; 3969 long max_time; 3970 long min_pid; 3971 long max_pid; 3972 DECLARE_BITMAP(cpus, NR_CPUS); 3973 nodemask_t nodes; 3974 }; 3975 3976 struct loc_track { 3977 unsigned long max; 3978 unsigned long count; 3979 struct location *loc; 3980 }; 3981 3982 static void free_loc_track(struct loc_track *t) 3983 { 3984 if (t->max) 3985 free_pages((unsigned long)t->loc, 3986 get_order(sizeof(struct location) * t->max)); 3987 } 3988 3989 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3990 { 3991 struct location *l; 3992 int order; 3993 3994 order = get_order(sizeof(struct location) * max); 3995 3996 l = (void *)__get_free_pages(flags, order); 3997 if (!l) 3998 return 0; 3999 4000 if (t->count) { 4001 memcpy(l, t->loc, sizeof(struct location) * t->count); 4002 free_loc_track(t); 4003 } 4004 t->max = max; 4005 t->loc = l; 4006 return 1; 4007 } 4008 4009 static int add_location(struct loc_track *t, struct kmem_cache *s, 4010 const struct track *track) 4011 { 4012 long start, end, pos; 4013 struct location *l; 4014 unsigned long caddr; 4015 unsigned long age = jiffies - track->when; 4016 4017 start = -1; 4018 end = t->count; 4019 4020 for ( ; ; ) { 4021 pos = start + (end - start + 1) / 2; 4022 4023 /* 4024 * There is nothing at "end". If we end up there 4025 * we need to add something to before end. 4026 */ 4027 if (pos == end) 4028 break; 4029 4030 caddr = t->loc[pos].addr; 4031 if (track->addr == caddr) { 4032 4033 l = &t->loc[pos]; 4034 l->count++; 4035 if (track->when) { 4036 l->sum_time += age; 4037 if (age < l->min_time) 4038 l->min_time = age; 4039 if (age > l->max_time) 4040 l->max_time = age; 4041 4042 if (track->pid < l->min_pid) 4043 l->min_pid = track->pid; 4044 if (track->pid > l->max_pid) 4045 l->max_pid = track->pid; 4046 4047 cpumask_set_cpu(track->cpu, 4048 to_cpumask(l->cpus)); 4049 } 4050 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4051 return 1; 4052 } 4053 4054 if (track->addr < caddr) 4055 end = pos; 4056 else 4057 start = pos; 4058 } 4059 4060 /* 4061 * Not found. Insert new tracking element. 4062 */ 4063 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4064 return 0; 4065 4066 l = t->loc + pos; 4067 if (pos < t->count) 4068 memmove(l + 1, l, 4069 (t->count - pos) * sizeof(struct location)); 4070 t->count++; 4071 l->count = 1; 4072 l->addr = track->addr; 4073 l->sum_time = age; 4074 l->min_time = age; 4075 l->max_time = age; 4076 l->min_pid = track->pid; 4077 l->max_pid = track->pid; 4078 cpumask_clear(to_cpumask(l->cpus)); 4079 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4080 nodes_clear(l->nodes); 4081 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4082 return 1; 4083 } 4084 4085 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4086 struct page *page, enum track_item alloc, 4087 unsigned long *map) 4088 { 4089 void *addr = page_address(page); 4090 void *p; 4091 4092 bitmap_zero(map, page->objects); 4093 get_map(s, page, map); 4094 4095 for_each_object(p, s, addr, page->objects) 4096 if (!test_bit(slab_index(p, s, addr), map)) 4097 add_location(t, s, get_track(s, p, alloc)); 4098 } 4099 4100 static int list_locations(struct kmem_cache *s, char *buf, 4101 enum track_item alloc) 4102 { 4103 int len = 0; 4104 unsigned long i; 4105 struct loc_track t = { 0, 0, NULL }; 4106 int node; 4107 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4108 sizeof(unsigned long), GFP_KERNEL); 4109 struct kmem_cache_node *n; 4110 4111 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4112 GFP_TEMPORARY)) { 4113 kfree(map); 4114 return sprintf(buf, "Out of memory\n"); 4115 } 4116 /* Push back cpu slabs */ 4117 flush_all(s); 4118 4119 for_each_kmem_cache_node(s, node, n) { 4120 unsigned long flags; 4121 struct page *page; 4122 4123 if (!atomic_long_read(&n->nr_slabs)) 4124 continue; 4125 4126 spin_lock_irqsave(&n->list_lock, flags); 4127 list_for_each_entry(page, &n->partial, lru) 4128 process_slab(&t, s, page, alloc, map); 4129 list_for_each_entry(page, &n->full, lru) 4130 process_slab(&t, s, page, alloc, map); 4131 spin_unlock_irqrestore(&n->list_lock, flags); 4132 } 4133 4134 for (i = 0; i < t.count; i++) { 4135 struct location *l = &t.loc[i]; 4136 4137 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4138 break; 4139 len += sprintf(buf + len, "%7ld ", l->count); 4140 4141 if (l->addr) 4142 len += sprintf(buf + len, "%pS", (void *)l->addr); 4143 else 4144 len += sprintf(buf + len, "<not-available>"); 4145 4146 if (l->sum_time != l->min_time) { 4147 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4148 l->min_time, 4149 (long)div_u64(l->sum_time, l->count), 4150 l->max_time); 4151 } else 4152 len += sprintf(buf + len, " age=%ld", 4153 l->min_time); 4154 4155 if (l->min_pid != l->max_pid) 4156 len += sprintf(buf + len, " pid=%ld-%ld", 4157 l->min_pid, l->max_pid); 4158 else 4159 len += sprintf(buf + len, " pid=%ld", 4160 l->min_pid); 4161 4162 if (num_online_cpus() > 1 && 4163 !cpumask_empty(to_cpumask(l->cpus)) && 4164 len < PAGE_SIZE - 60) 4165 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4166 " cpus=%*pbl", 4167 cpumask_pr_args(to_cpumask(l->cpus))); 4168 4169 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4170 len < PAGE_SIZE - 60) 4171 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4172 " nodes=%*pbl", 4173 nodemask_pr_args(&l->nodes)); 4174 4175 len += sprintf(buf + len, "\n"); 4176 } 4177 4178 free_loc_track(&t); 4179 kfree(map); 4180 if (!t.count) 4181 len += sprintf(buf, "No data\n"); 4182 return len; 4183 } 4184 #endif 4185 4186 #ifdef SLUB_RESILIENCY_TEST 4187 static void __init resiliency_test(void) 4188 { 4189 u8 *p; 4190 4191 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4192 4193 pr_err("SLUB resiliency testing\n"); 4194 pr_err("-----------------------\n"); 4195 pr_err("A. Corruption after allocation\n"); 4196 4197 p = kzalloc(16, GFP_KERNEL); 4198 p[16] = 0x12; 4199 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4200 p + 16); 4201 4202 validate_slab_cache(kmalloc_caches[4]); 4203 4204 /* Hmmm... The next two are dangerous */ 4205 p = kzalloc(32, GFP_KERNEL); 4206 p[32 + sizeof(void *)] = 0x34; 4207 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4208 p); 4209 pr_err("If allocated object is overwritten then not detectable\n\n"); 4210 4211 validate_slab_cache(kmalloc_caches[5]); 4212 p = kzalloc(64, GFP_KERNEL); 4213 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4214 *p = 0x56; 4215 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4216 p); 4217 pr_err("If allocated object is overwritten then not detectable\n\n"); 4218 validate_slab_cache(kmalloc_caches[6]); 4219 4220 pr_err("\nB. Corruption after free\n"); 4221 p = kzalloc(128, GFP_KERNEL); 4222 kfree(p); 4223 *p = 0x78; 4224 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4225 validate_slab_cache(kmalloc_caches[7]); 4226 4227 p = kzalloc(256, GFP_KERNEL); 4228 kfree(p); 4229 p[50] = 0x9a; 4230 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4231 validate_slab_cache(kmalloc_caches[8]); 4232 4233 p = kzalloc(512, GFP_KERNEL); 4234 kfree(p); 4235 p[512] = 0xab; 4236 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4237 validate_slab_cache(kmalloc_caches[9]); 4238 } 4239 #else 4240 #ifdef CONFIG_SYSFS 4241 static void resiliency_test(void) {}; 4242 #endif 4243 #endif 4244 4245 #ifdef CONFIG_SYSFS 4246 enum slab_stat_type { 4247 SL_ALL, /* All slabs */ 4248 SL_PARTIAL, /* Only partially allocated slabs */ 4249 SL_CPU, /* Only slabs used for cpu caches */ 4250 SL_OBJECTS, /* Determine allocated objects not slabs */ 4251 SL_TOTAL /* Determine object capacity not slabs */ 4252 }; 4253 4254 #define SO_ALL (1 << SL_ALL) 4255 #define SO_PARTIAL (1 << SL_PARTIAL) 4256 #define SO_CPU (1 << SL_CPU) 4257 #define SO_OBJECTS (1 << SL_OBJECTS) 4258 #define SO_TOTAL (1 << SL_TOTAL) 4259 4260 static ssize_t show_slab_objects(struct kmem_cache *s, 4261 char *buf, unsigned long flags) 4262 { 4263 unsigned long total = 0; 4264 int node; 4265 int x; 4266 unsigned long *nodes; 4267 4268 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4269 if (!nodes) 4270 return -ENOMEM; 4271 4272 if (flags & SO_CPU) { 4273 int cpu; 4274 4275 for_each_possible_cpu(cpu) { 4276 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4277 cpu); 4278 int node; 4279 struct page *page; 4280 4281 page = READ_ONCE(c->page); 4282 if (!page) 4283 continue; 4284 4285 node = page_to_nid(page); 4286 if (flags & SO_TOTAL) 4287 x = page->objects; 4288 else if (flags & SO_OBJECTS) 4289 x = page->inuse; 4290 else 4291 x = 1; 4292 4293 total += x; 4294 nodes[node] += x; 4295 4296 page = READ_ONCE(c->partial); 4297 if (page) { 4298 node = page_to_nid(page); 4299 if (flags & SO_TOTAL) 4300 WARN_ON_ONCE(1); 4301 else if (flags & SO_OBJECTS) 4302 WARN_ON_ONCE(1); 4303 else 4304 x = page->pages; 4305 total += x; 4306 nodes[node] += x; 4307 } 4308 } 4309 } 4310 4311 get_online_mems(); 4312 #ifdef CONFIG_SLUB_DEBUG 4313 if (flags & SO_ALL) { 4314 struct kmem_cache_node *n; 4315 4316 for_each_kmem_cache_node(s, node, n) { 4317 4318 if (flags & SO_TOTAL) 4319 x = atomic_long_read(&n->total_objects); 4320 else if (flags & SO_OBJECTS) 4321 x = atomic_long_read(&n->total_objects) - 4322 count_partial(n, count_free); 4323 else 4324 x = atomic_long_read(&n->nr_slabs); 4325 total += x; 4326 nodes[node] += x; 4327 } 4328 4329 } else 4330 #endif 4331 if (flags & SO_PARTIAL) { 4332 struct kmem_cache_node *n; 4333 4334 for_each_kmem_cache_node(s, node, n) { 4335 if (flags & SO_TOTAL) 4336 x = count_partial(n, count_total); 4337 else if (flags & SO_OBJECTS) 4338 x = count_partial(n, count_inuse); 4339 else 4340 x = n->nr_partial; 4341 total += x; 4342 nodes[node] += x; 4343 } 4344 } 4345 x = sprintf(buf, "%lu", total); 4346 #ifdef CONFIG_NUMA 4347 for (node = 0; node < nr_node_ids; node++) 4348 if (nodes[node]) 4349 x += sprintf(buf + x, " N%d=%lu", 4350 node, nodes[node]); 4351 #endif 4352 put_online_mems(); 4353 kfree(nodes); 4354 return x + sprintf(buf + x, "\n"); 4355 } 4356 4357 #ifdef CONFIG_SLUB_DEBUG 4358 static int any_slab_objects(struct kmem_cache *s) 4359 { 4360 int node; 4361 struct kmem_cache_node *n; 4362 4363 for_each_kmem_cache_node(s, node, n) 4364 if (atomic_long_read(&n->total_objects)) 4365 return 1; 4366 4367 return 0; 4368 } 4369 #endif 4370 4371 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4372 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4373 4374 struct slab_attribute { 4375 struct attribute attr; 4376 ssize_t (*show)(struct kmem_cache *s, char *buf); 4377 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4378 }; 4379 4380 #define SLAB_ATTR_RO(_name) \ 4381 static struct slab_attribute _name##_attr = \ 4382 __ATTR(_name, 0400, _name##_show, NULL) 4383 4384 #define SLAB_ATTR(_name) \ 4385 static struct slab_attribute _name##_attr = \ 4386 __ATTR(_name, 0600, _name##_show, _name##_store) 4387 4388 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4389 { 4390 return sprintf(buf, "%d\n", s->size); 4391 } 4392 SLAB_ATTR_RO(slab_size); 4393 4394 static ssize_t align_show(struct kmem_cache *s, char *buf) 4395 { 4396 return sprintf(buf, "%d\n", s->align); 4397 } 4398 SLAB_ATTR_RO(align); 4399 4400 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4401 { 4402 return sprintf(buf, "%d\n", s->object_size); 4403 } 4404 SLAB_ATTR_RO(object_size); 4405 4406 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4407 { 4408 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4409 } 4410 SLAB_ATTR_RO(objs_per_slab); 4411 4412 static ssize_t order_store(struct kmem_cache *s, 4413 const char *buf, size_t length) 4414 { 4415 unsigned long order; 4416 int err; 4417 4418 err = kstrtoul(buf, 10, &order); 4419 if (err) 4420 return err; 4421 4422 if (order > slub_max_order || order < slub_min_order) 4423 return -EINVAL; 4424 4425 calculate_sizes(s, order); 4426 return length; 4427 } 4428 4429 static ssize_t order_show(struct kmem_cache *s, char *buf) 4430 { 4431 return sprintf(buf, "%d\n", oo_order(s->oo)); 4432 } 4433 SLAB_ATTR(order); 4434 4435 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4436 { 4437 return sprintf(buf, "%lu\n", s->min_partial); 4438 } 4439 4440 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4441 size_t length) 4442 { 4443 unsigned long min; 4444 int err; 4445 4446 err = kstrtoul(buf, 10, &min); 4447 if (err) 4448 return err; 4449 4450 set_min_partial(s, min); 4451 return length; 4452 } 4453 SLAB_ATTR(min_partial); 4454 4455 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4456 { 4457 return sprintf(buf, "%u\n", s->cpu_partial); 4458 } 4459 4460 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4461 size_t length) 4462 { 4463 unsigned long objects; 4464 int err; 4465 4466 err = kstrtoul(buf, 10, &objects); 4467 if (err) 4468 return err; 4469 if (objects && !kmem_cache_has_cpu_partial(s)) 4470 return -EINVAL; 4471 4472 s->cpu_partial = objects; 4473 flush_all(s); 4474 return length; 4475 } 4476 SLAB_ATTR(cpu_partial); 4477 4478 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4479 { 4480 if (!s->ctor) 4481 return 0; 4482 return sprintf(buf, "%pS\n", s->ctor); 4483 } 4484 SLAB_ATTR_RO(ctor); 4485 4486 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4487 { 4488 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4489 } 4490 SLAB_ATTR_RO(aliases); 4491 4492 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4493 { 4494 return show_slab_objects(s, buf, SO_PARTIAL); 4495 } 4496 SLAB_ATTR_RO(partial); 4497 4498 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4499 { 4500 return show_slab_objects(s, buf, SO_CPU); 4501 } 4502 SLAB_ATTR_RO(cpu_slabs); 4503 4504 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4505 { 4506 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4507 } 4508 SLAB_ATTR_RO(objects); 4509 4510 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4511 { 4512 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4513 } 4514 SLAB_ATTR_RO(objects_partial); 4515 4516 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4517 { 4518 int objects = 0; 4519 int pages = 0; 4520 int cpu; 4521 int len; 4522 4523 for_each_online_cpu(cpu) { 4524 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4525 4526 if (page) { 4527 pages += page->pages; 4528 objects += page->pobjects; 4529 } 4530 } 4531 4532 len = sprintf(buf, "%d(%d)", objects, pages); 4533 4534 #ifdef CONFIG_SMP 4535 for_each_online_cpu(cpu) { 4536 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4537 4538 if (page && len < PAGE_SIZE - 20) 4539 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4540 page->pobjects, page->pages); 4541 } 4542 #endif 4543 return len + sprintf(buf + len, "\n"); 4544 } 4545 SLAB_ATTR_RO(slabs_cpu_partial); 4546 4547 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4548 { 4549 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4550 } 4551 4552 static ssize_t reclaim_account_store(struct kmem_cache *s, 4553 const char *buf, size_t length) 4554 { 4555 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4556 if (buf[0] == '1') 4557 s->flags |= SLAB_RECLAIM_ACCOUNT; 4558 return length; 4559 } 4560 SLAB_ATTR(reclaim_account); 4561 4562 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4563 { 4564 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4565 } 4566 SLAB_ATTR_RO(hwcache_align); 4567 4568 #ifdef CONFIG_ZONE_DMA 4569 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4570 { 4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4572 } 4573 SLAB_ATTR_RO(cache_dma); 4574 #endif 4575 4576 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4577 { 4578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4579 } 4580 SLAB_ATTR_RO(destroy_by_rcu); 4581 4582 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4583 { 4584 return sprintf(buf, "%d\n", s->reserved); 4585 } 4586 SLAB_ATTR_RO(reserved); 4587 4588 #ifdef CONFIG_SLUB_DEBUG 4589 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4590 { 4591 return show_slab_objects(s, buf, SO_ALL); 4592 } 4593 SLAB_ATTR_RO(slabs); 4594 4595 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4596 { 4597 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4598 } 4599 SLAB_ATTR_RO(total_objects); 4600 4601 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4602 { 4603 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4604 } 4605 4606 static ssize_t sanity_checks_store(struct kmem_cache *s, 4607 const char *buf, size_t length) 4608 { 4609 s->flags &= ~SLAB_DEBUG_FREE; 4610 if (buf[0] == '1') { 4611 s->flags &= ~__CMPXCHG_DOUBLE; 4612 s->flags |= SLAB_DEBUG_FREE; 4613 } 4614 return length; 4615 } 4616 SLAB_ATTR(sanity_checks); 4617 4618 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4619 { 4620 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4621 } 4622 4623 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4624 size_t length) 4625 { 4626 /* 4627 * Tracing a merged cache is going to give confusing results 4628 * as well as cause other issues like converting a mergeable 4629 * cache into an umergeable one. 4630 */ 4631 if (s->refcount > 1) 4632 return -EINVAL; 4633 4634 s->flags &= ~SLAB_TRACE; 4635 if (buf[0] == '1') { 4636 s->flags &= ~__CMPXCHG_DOUBLE; 4637 s->flags |= SLAB_TRACE; 4638 } 4639 return length; 4640 } 4641 SLAB_ATTR(trace); 4642 4643 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4644 { 4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4646 } 4647 4648 static ssize_t red_zone_store(struct kmem_cache *s, 4649 const char *buf, size_t length) 4650 { 4651 if (any_slab_objects(s)) 4652 return -EBUSY; 4653 4654 s->flags &= ~SLAB_RED_ZONE; 4655 if (buf[0] == '1') { 4656 s->flags &= ~__CMPXCHG_DOUBLE; 4657 s->flags |= SLAB_RED_ZONE; 4658 } 4659 calculate_sizes(s, -1); 4660 return length; 4661 } 4662 SLAB_ATTR(red_zone); 4663 4664 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4665 { 4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4667 } 4668 4669 static ssize_t poison_store(struct kmem_cache *s, 4670 const char *buf, size_t length) 4671 { 4672 if (any_slab_objects(s)) 4673 return -EBUSY; 4674 4675 s->flags &= ~SLAB_POISON; 4676 if (buf[0] == '1') { 4677 s->flags &= ~__CMPXCHG_DOUBLE; 4678 s->flags |= SLAB_POISON; 4679 } 4680 calculate_sizes(s, -1); 4681 return length; 4682 } 4683 SLAB_ATTR(poison); 4684 4685 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4686 { 4687 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4688 } 4689 4690 static ssize_t store_user_store(struct kmem_cache *s, 4691 const char *buf, size_t length) 4692 { 4693 if (any_slab_objects(s)) 4694 return -EBUSY; 4695 4696 s->flags &= ~SLAB_STORE_USER; 4697 if (buf[0] == '1') { 4698 s->flags &= ~__CMPXCHG_DOUBLE; 4699 s->flags |= SLAB_STORE_USER; 4700 } 4701 calculate_sizes(s, -1); 4702 return length; 4703 } 4704 SLAB_ATTR(store_user); 4705 4706 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4707 { 4708 return 0; 4709 } 4710 4711 static ssize_t validate_store(struct kmem_cache *s, 4712 const char *buf, size_t length) 4713 { 4714 int ret = -EINVAL; 4715 4716 if (buf[0] == '1') { 4717 ret = validate_slab_cache(s); 4718 if (ret >= 0) 4719 ret = length; 4720 } 4721 return ret; 4722 } 4723 SLAB_ATTR(validate); 4724 4725 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4726 { 4727 if (!(s->flags & SLAB_STORE_USER)) 4728 return -ENOSYS; 4729 return list_locations(s, buf, TRACK_ALLOC); 4730 } 4731 SLAB_ATTR_RO(alloc_calls); 4732 4733 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4734 { 4735 if (!(s->flags & SLAB_STORE_USER)) 4736 return -ENOSYS; 4737 return list_locations(s, buf, TRACK_FREE); 4738 } 4739 SLAB_ATTR_RO(free_calls); 4740 #endif /* CONFIG_SLUB_DEBUG */ 4741 4742 #ifdef CONFIG_FAILSLAB 4743 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4744 { 4745 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4746 } 4747 4748 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4749 size_t length) 4750 { 4751 if (s->refcount > 1) 4752 return -EINVAL; 4753 4754 s->flags &= ~SLAB_FAILSLAB; 4755 if (buf[0] == '1') 4756 s->flags |= SLAB_FAILSLAB; 4757 return length; 4758 } 4759 SLAB_ATTR(failslab); 4760 #endif 4761 4762 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4763 { 4764 return 0; 4765 } 4766 4767 static ssize_t shrink_store(struct kmem_cache *s, 4768 const char *buf, size_t length) 4769 { 4770 if (buf[0] == '1') 4771 kmem_cache_shrink(s); 4772 else 4773 return -EINVAL; 4774 return length; 4775 } 4776 SLAB_ATTR(shrink); 4777 4778 #ifdef CONFIG_NUMA 4779 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4780 { 4781 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4782 } 4783 4784 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4785 const char *buf, size_t length) 4786 { 4787 unsigned long ratio; 4788 int err; 4789 4790 err = kstrtoul(buf, 10, &ratio); 4791 if (err) 4792 return err; 4793 4794 if (ratio <= 100) 4795 s->remote_node_defrag_ratio = ratio * 10; 4796 4797 return length; 4798 } 4799 SLAB_ATTR(remote_node_defrag_ratio); 4800 #endif 4801 4802 #ifdef CONFIG_SLUB_STATS 4803 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4804 { 4805 unsigned long sum = 0; 4806 int cpu; 4807 int len; 4808 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4809 4810 if (!data) 4811 return -ENOMEM; 4812 4813 for_each_online_cpu(cpu) { 4814 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4815 4816 data[cpu] = x; 4817 sum += x; 4818 } 4819 4820 len = sprintf(buf, "%lu", sum); 4821 4822 #ifdef CONFIG_SMP 4823 for_each_online_cpu(cpu) { 4824 if (data[cpu] && len < PAGE_SIZE - 20) 4825 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4826 } 4827 #endif 4828 kfree(data); 4829 return len + sprintf(buf + len, "\n"); 4830 } 4831 4832 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4833 { 4834 int cpu; 4835 4836 for_each_online_cpu(cpu) 4837 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4838 } 4839 4840 #define STAT_ATTR(si, text) \ 4841 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4842 { \ 4843 return show_stat(s, buf, si); \ 4844 } \ 4845 static ssize_t text##_store(struct kmem_cache *s, \ 4846 const char *buf, size_t length) \ 4847 { \ 4848 if (buf[0] != '0') \ 4849 return -EINVAL; \ 4850 clear_stat(s, si); \ 4851 return length; \ 4852 } \ 4853 SLAB_ATTR(text); \ 4854 4855 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4856 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4857 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4858 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4859 STAT_ATTR(FREE_FROZEN, free_frozen); 4860 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4861 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4862 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4863 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4864 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4865 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4866 STAT_ATTR(FREE_SLAB, free_slab); 4867 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4868 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4869 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4870 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4871 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4872 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4873 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4874 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4875 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4876 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4877 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4878 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4879 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4880 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4881 #endif 4882 4883 static struct attribute *slab_attrs[] = { 4884 &slab_size_attr.attr, 4885 &object_size_attr.attr, 4886 &objs_per_slab_attr.attr, 4887 &order_attr.attr, 4888 &min_partial_attr.attr, 4889 &cpu_partial_attr.attr, 4890 &objects_attr.attr, 4891 &objects_partial_attr.attr, 4892 &partial_attr.attr, 4893 &cpu_slabs_attr.attr, 4894 &ctor_attr.attr, 4895 &aliases_attr.attr, 4896 &align_attr.attr, 4897 &hwcache_align_attr.attr, 4898 &reclaim_account_attr.attr, 4899 &destroy_by_rcu_attr.attr, 4900 &shrink_attr.attr, 4901 &reserved_attr.attr, 4902 &slabs_cpu_partial_attr.attr, 4903 #ifdef CONFIG_SLUB_DEBUG 4904 &total_objects_attr.attr, 4905 &slabs_attr.attr, 4906 &sanity_checks_attr.attr, 4907 &trace_attr.attr, 4908 &red_zone_attr.attr, 4909 &poison_attr.attr, 4910 &store_user_attr.attr, 4911 &validate_attr.attr, 4912 &alloc_calls_attr.attr, 4913 &free_calls_attr.attr, 4914 #endif 4915 #ifdef CONFIG_ZONE_DMA 4916 &cache_dma_attr.attr, 4917 #endif 4918 #ifdef CONFIG_NUMA 4919 &remote_node_defrag_ratio_attr.attr, 4920 #endif 4921 #ifdef CONFIG_SLUB_STATS 4922 &alloc_fastpath_attr.attr, 4923 &alloc_slowpath_attr.attr, 4924 &free_fastpath_attr.attr, 4925 &free_slowpath_attr.attr, 4926 &free_frozen_attr.attr, 4927 &free_add_partial_attr.attr, 4928 &free_remove_partial_attr.attr, 4929 &alloc_from_partial_attr.attr, 4930 &alloc_slab_attr.attr, 4931 &alloc_refill_attr.attr, 4932 &alloc_node_mismatch_attr.attr, 4933 &free_slab_attr.attr, 4934 &cpuslab_flush_attr.attr, 4935 &deactivate_full_attr.attr, 4936 &deactivate_empty_attr.attr, 4937 &deactivate_to_head_attr.attr, 4938 &deactivate_to_tail_attr.attr, 4939 &deactivate_remote_frees_attr.attr, 4940 &deactivate_bypass_attr.attr, 4941 &order_fallback_attr.attr, 4942 &cmpxchg_double_fail_attr.attr, 4943 &cmpxchg_double_cpu_fail_attr.attr, 4944 &cpu_partial_alloc_attr.attr, 4945 &cpu_partial_free_attr.attr, 4946 &cpu_partial_node_attr.attr, 4947 &cpu_partial_drain_attr.attr, 4948 #endif 4949 #ifdef CONFIG_FAILSLAB 4950 &failslab_attr.attr, 4951 #endif 4952 4953 NULL 4954 }; 4955 4956 static struct attribute_group slab_attr_group = { 4957 .attrs = slab_attrs, 4958 }; 4959 4960 static ssize_t slab_attr_show(struct kobject *kobj, 4961 struct attribute *attr, 4962 char *buf) 4963 { 4964 struct slab_attribute *attribute; 4965 struct kmem_cache *s; 4966 int err; 4967 4968 attribute = to_slab_attr(attr); 4969 s = to_slab(kobj); 4970 4971 if (!attribute->show) 4972 return -EIO; 4973 4974 err = attribute->show(s, buf); 4975 4976 return err; 4977 } 4978 4979 static ssize_t slab_attr_store(struct kobject *kobj, 4980 struct attribute *attr, 4981 const char *buf, size_t len) 4982 { 4983 struct slab_attribute *attribute; 4984 struct kmem_cache *s; 4985 int err; 4986 4987 attribute = to_slab_attr(attr); 4988 s = to_slab(kobj); 4989 4990 if (!attribute->store) 4991 return -EIO; 4992 4993 err = attribute->store(s, buf, len); 4994 #ifdef CONFIG_MEMCG_KMEM 4995 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 4996 struct kmem_cache *c; 4997 4998 mutex_lock(&slab_mutex); 4999 if (s->max_attr_size < len) 5000 s->max_attr_size = len; 5001 5002 /* 5003 * This is a best effort propagation, so this function's return 5004 * value will be determined by the parent cache only. This is 5005 * basically because not all attributes will have a well 5006 * defined semantics for rollbacks - most of the actions will 5007 * have permanent effects. 5008 * 5009 * Returning the error value of any of the children that fail 5010 * is not 100 % defined, in the sense that users seeing the 5011 * error code won't be able to know anything about the state of 5012 * the cache. 5013 * 5014 * Only returning the error code for the parent cache at least 5015 * has well defined semantics. The cache being written to 5016 * directly either failed or succeeded, in which case we loop 5017 * through the descendants with best-effort propagation. 5018 */ 5019 for_each_memcg_cache(c, s) 5020 attribute->store(c, buf, len); 5021 mutex_unlock(&slab_mutex); 5022 } 5023 #endif 5024 return err; 5025 } 5026 5027 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5028 { 5029 #ifdef CONFIG_MEMCG_KMEM 5030 int i; 5031 char *buffer = NULL; 5032 struct kmem_cache *root_cache; 5033 5034 if (is_root_cache(s)) 5035 return; 5036 5037 root_cache = s->memcg_params.root_cache; 5038 5039 /* 5040 * This mean this cache had no attribute written. Therefore, no point 5041 * in copying default values around 5042 */ 5043 if (!root_cache->max_attr_size) 5044 return; 5045 5046 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5047 char mbuf[64]; 5048 char *buf; 5049 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5050 5051 if (!attr || !attr->store || !attr->show) 5052 continue; 5053 5054 /* 5055 * It is really bad that we have to allocate here, so we will 5056 * do it only as a fallback. If we actually allocate, though, 5057 * we can just use the allocated buffer until the end. 5058 * 5059 * Most of the slub attributes will tend to be very small in 5060 * size, but sysfs allows buffers up to a page, so they can 5061 * theoretically happen. 5062 */ 5063 if (buffer) 5064 buf = buffer; 5065 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5066 buf = mbuf; 5067 else { 5068 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5069 if (WARN_ON(!buffer)) 5070 continue; 5071 buf = buffer; 5072 } 5073 5074 attr->show(root_cache, buf); 5075 attr->store(s, buf, strlen(buf)); 5076 } 5077 5078 if (buffer) 5079 free_page((unsigned long)buffer); 5080 #endif 5081 } 5082 5083 static void kmem_cache_release(struct kobject *k) 5084 { 5085 slab_kmem_cache_release(to_slab(k)); 5086 } 5087 5088 static const struct sysfs_ops slab_sysfs_ops = { 5089 .show = slab_attr_show, 5090 .store = slab_attr_store, 5091 }; 5092 5093 static struct kobj_type slab_ktype = { 5094 .sysfs_ops = &slab_sysfs_ops, 5095 .release = kmem_cache_release, 5096 }; 5097 5098 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5099 { 5100 struct kobj_type *ktype = get_ktype(kobj); 5101 5102 if (ktype == &slab_ktype) 5103 return 1; 5104 return 0; 5105 } 5106 5107 static const struct kset_uevent_ops slab_uevent_ops = { 5108 .filter = uevent_filter, 5109 }; 5110 5111 static struct kset *slab_kset; 5112 5113 static inline struct kset *cache_kset(struct kmem_cache *s) 5114 { 5115 #ifdef CONFIG_MEMCG_KMEM 5116 if (!is_root_cache(s)) 5117 return s->memcg_params.root_cache->memcg_kset; 5118 #endif 5119 return slab_kset; 5120 } 5121 5122 #define ID_STR_LENGTH 64 5123 5124 /* Create a unique string id for a slab cache: 5125 * 5126 * Format :[flags-]size 5127 */ 5128 static char *create_unique_id(struct kmem_cache *s) 5129 { 5130 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5131 char *p = name; 5132 5133 BUG_ON(!name); 5134 5135 *p++ = ':'; 5136 /* 5137 * First flags affecting slabcache operations. We will only 5138 * get here for aliasable slabs so we do not need to support 5139 * too many flags. The flags here must cover all flags that 5140 * are matched during merging to guarantee that the id is 5141 * unique. 5142 */ 5143 if (s->flags & SLAB_CACHE_DMA) 5144 *p++ = 'd'; 5145 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5146 *p++ = 'a'; 5147 if (s->flags & SLAB_DEBUG_FREE) 5148 *p++ = 'F'; 5149 if (!(s->flags & SLAB_NOTRACK)) 5150 *p++ = 't'; 5151 if (p != name + 1) 5152 *p++ = '-'; 5153 p += sprintf(p, "%07d", s->size); 5154 5155 BUG_ON(p > name + ID_STR_LENGTH - 1); 5156 return name; 5157 } 5158 5159 static int sysfs_slab_add(struct kmem_cache *s) 5160 { 5161 int err; 5162 const char *name; 5163 int unmergeable = slab_unmergeable(s); 5164 5165 if (unmergeable) { 5166 /* 5167 * Slabcache can never be merged so we can use the name proper. 5168 * This is typically the case for debug situations. In that 5169 * case we can catch duplicate names easily. 5170 */ 5171 sysfs_remove_link(&slab_kset->kobj, s->name); 5172 name = s->name; 5173 } else { 5174 /* 5175 * Create a unique name for the slab as a target 5176 * for the symlinks. 5177 */ 5178 name = create_unique_id(s); 5179 } 5180 5181 s->kobj.kset = cache_kset(s); 5182 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5183 if (err) 5184 goto out_put_kobj; 5185 5186 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5187 if (err) 5188 goto out_del_kobj; 5189 5190 #ifdef CONFIG_MEMCG_KMEM 5191 if (is_root_cache(s)) { 5192 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5193 if (!s->memcg_kset) { 5194 err = -ENOMEM; 5195 goto out_del_kobj; 5196 } 5197 } 5198 #endif 5199 5200 kobject_uevent(&s->kobj, KOBJ_ADD); 5201 if (!unmergeable) { 5202 /* Setup first alias */ 5203 sysfs_slab_alias(s, s->name); 5204 } 5205 out: 5206 if (!unmergeable) 5207 kfree(name); 5208 return err; 5209 out_del_kobj: 5210 kobject_del(&s->kobj); 5211 out_put_kobj: 5212 kobject_put(&s->kobj); 5213 goto out; 5214 } 5215 5216 void sysfs_slab_remove(struct kmem_cache *s) 5217 { 5218 if (slab_state < FULL) 5219 /* 5220 * Sysfs has not been setup yet so no need to remove the 5221 * cache from sysfs. 5222 */ 5223 return; 5224 5225 #ifdef CONFIG_MEMCG_KMEM 5226 kset_unregister(s->memcg_kset); 5227 #endif 5228 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5229 kobject_del(&s->kobj); 5230 kobject_put(&s->kobj); 5231 } 5232 5233 /* 5234 * Need to buffer aliases during bootup until sysfs becomes 5235 * available lest we lose that information. 5236 */ 5237 struct saved_alias { 5238 struct kmem_cache *s; 5239 const char *name; 5240 struct saved_alias *next; 5241 }; 5242 5243 static struct saved_alias *alias_list; 5244 5245 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5246 { 5247 struct saved_alias *al; 5248 5249 if (slab_state == FULL) { 5250 /* 5251 * If we have a leftover link then remove it. 5252 */ 5253 sysfs_remove_link(&slab_kset->kobj, name); 5254 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5255 } 5256 5257 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5258 if (!al) 5259 return -ENOMEM; 5260 5261 al->s = s; 5262 al->name = name; 5263 al->next = alias_list; 5264 alias_list = al; 5265 return 0; 5266 } 5267 5268 static int __init slab_sysfs_init(void) 5269 { 5270 struct kmem_cache *s; 5271 int err; 5272 5273 mutex_lock(&slab_mutex); 5274 5275 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5276 if (!slab_kset) { 5277 mutex_unlock(&slab_mutex); 5278 pr_err("Cannot register slab subsystem.\n"); 5279 return -ENOSYS; 5280 } 5281 5282 slab_state = FULL; 5283 5284 list_for_each_entry(s, &slab_caches, list) { 5285 err = sysfs_slab_add(s); 5286 if (err) 5287 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5288 s->name); 5289 } 5290 5291 while (alias_list) { 5292 struct saved_alias *al = alias_list; 5293 5294 alias_list = alias_list->next; 5295 err = sysfs_slab_alias(al->s, al->name); 5296 if (err) 5297 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5298 al->name); 5299 kfree(al); 5300 } 5301 5302 mutex_unlock(&slab_mutex); 5303 resiliency_test(); 5304 return 0; 5305 } 5306 5307 __initcall(slab_sysfs_init); 5308 #endif /* CONFIG_SYSFS */ 5309 5310 /* 5311 * The /proc/slabinfo ABI 5312 */ 5313 #ifdef CONFIG_SLABINFO 5314 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5315 { 5316 unsigned long nr_slabs = 0; 5317 unsigned long nr_objs = 0; 5318 unsigned long nr_free = 0; 5319 int node; 5320 struct kmem_cache_node *n; 5321 5322 for_each_kmem_cache_node(s, node, n) { 5323 nr_slabs += node_nr_slabs(n); 5324 nr_objs += node_nr_objs(n); 5325 nr_free += count_partial(n, count_free); 5326 } 5327 5328 sinfo->active_objs = nr_objs - nr_free; 5329 sinfo->num_objs = nr_objs; 5330 sinfo->active_slabs = nr_slabs; 5331 sinfo->num_slabs = nr_slabs; 5332 sinfo->objects_per_slab = oo_objects(s->oo); 5333 sinfo->cache_order = oo_order(s->oo); 5334 } 5335 5336 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5337 { 5338 } 5339 5340 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5341 size_t count, loff_t *ppos) 5342 { 5343 return -EIO; 5344 } 5345 #endif /* CONFIG_SLABINFO */ 5346