xref: /linux/mm/slub.c (revision a80abfbb1013ffec7aa7e574b5ba9bcf02bd5462)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51 
52 #include "internal.h"
53 
54 /*
55  * Lock order:
56  *   1. slab_mutex (Global Mutex)
57  *   2. node->list_lock (Spinlock)
58  *   3. kmem_cache->cpu_slab->lock (Local lock)
59  *   4. slab_lock(slab) (Only on some arches)
60  *   5. object_map_lock (Only for debugging)
61  *
62  *   slab_mutex
63  *
64  *   The role of the slab_mutex is to protect the list of all the slabs
65  *   and to synchronize major metadata changes to slab cache structures.
66  *   Also synchronizes memory hotplug callbacks.
67  *
68  *   slab_lock
69  *
70  *   The slab_lock is a wrapper around the page lock, thus it is a bit
71  *   spinlock.
72  *
73  *   The slab_lock is only used on arches that do not have the ability
74  *   to do a cmpxchg_double. It only protects:
75  *
76  *	A. slab->freelist	-> List of free objects in a slab
77  *	B. slab->inuse		-> Number of objects in use
78  *	C. slab->objects	-> Number of objects in slab
79  *	D. slab->frozen		-> frozen state
80  *
81  *   Frozen slabs
82  *
83  *   If a slab is frozen then it is exempt from list management. It is
84  *   the cpu slab which is actively allocated from by the processor that
85  *   froze it and it is not on any list. The processor that froze the
86  *   slab is the one who can perform list operations on the slab. Other
87  *   processors may put objects onto the freelist but the processor that
88  *   froze the slab is the only one that can retrieve the objects from the
89  *   slab's freelist.
90  *
91  *   CPU partial slabs
92  *
93  *   The partially empty slabs cached on the CPU partial list are used
94  *   for performance reasons, which speeds up the allocation process.
95  *   These slabs are not frozen, but are also exempt from list management,
96  *   by clearing the SL_partial flag when moving out of the node
97  *   partial list. Please see __slab_free() for more details.
98  *
99  *   To sum up, the current scheme is:
100  *   - node partial slab: SL_partial && !frozen
101  *   - cpu partial slab: !SL_partial && !frozen
102  *   - cpu slab: !SL_partial && frozen
103  *   - full slab: !SL_partial && !frozen
104  *
105  *   list_lock
106  *
107  *   The list_lock protects the partial and full list on each node and
108  *   the partial slab counter. If taken then no new slabs may be added or
109  *   removed from the lists nor make the number of partial slabs be modified.
110  *   (Note that the total number of slabs is an atomic value that may be
111  *   modified without taking the list lock).
112  *
113  *   The list_lock is a centralized lock and thus we avoid taking it as
114  *   much as possible. As long as SLUB does not have to handle partial
115  *   slabs, operations can continue without any centralized lock. F.e.
116  *   allocating a long series of objects that fill up slabs does not require
117  *   the list lock.
118  *
119  *   For debug caches, all allocations are forced to go through a list_lock
120  *   protected region to serialize against concurrent validation.
121  *
122  *   cpu_slab->lock local lock
123  *
124  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
125  *   except the stat counters. This is a percpu structure manipulated only by
126  *   the local cpu, so the lock protects against being preempted or interrupted
127  *   by an irq. Fast path operations rely on lockless operations instead.
128  *
129  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130  *   which means the lockless fastpath cannot be used as it might interfere with
131  *   an in-progress slow path operations. In this case the local lock is always
132  *   taken but it still utilizes the freelist for the common operations.
133  *
134  *   lockless fastpaths
135  *
136  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137  *   are fully lockless when satisfied from the percpu slab (and when
138  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
139  *   They also don't disable preemption or migration or irqs. They rely on
140  *   the transaction id (tid) field to detect being preempted or moved to
141  *   another cpu.
142  *
143  *   irq, preemption, migration considerations
144  *
145  *   Interrupts are disabled as part of list_lock or local_lock operations, or
146  *   around the slab_lock operation, in order to make the slab allocator safe
147  *   to use in the context of an irq.
148  *
149  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152  *   doesn't have to be revalidated in each section protected by the local lock.
153  *
154  * SLUB assigns one slab for allocation to each processor.
155  * Allocations only occur from these slabs called cpu slabs.
156  *
157  * Slabs with free elements are kept on a partial list and during regular
158  * operations no list for full slabs is used. If an object in a full slab is
159  * freed then the slab will show up again on the partial lists.
160  * We track full slabs for debugging purposes though because otherwise we
161  * cannot scan all objects.
162  *
163  * Slabs are freed when they become empty. Teardown and setup is
164  * minimal so we rely on the page allocators per cpu caches for
165  * fast frees and allocs.
166  *
167  * slab->frozen		The slab is frozen and exempt from list processing.
168  * 			This means that the slab is dedicated to a purpose
169  * 			such as satisfying allocations for a specific
170  * 			processor. Objects may be freed in the slab while
171  * 			it is frozen but slab_free will then skip the usual
172  * 			list operations. It is up to the processor holding
173  * 			the slab to integrate the slab into the slab lists
174  * 			when the slab is no longer needed.
175  *
176  * 			One use of this flag is to mark slabs that are
177  * 			used for allocations. Then such a slab becomes a cpu
178  * 			slab. The cpu slab may be equipped with an additional
179  * 			freelist that allows lockless access to
180  * 			free objects in addition to the regular freelist
181  * 			that requires the slab lock.
182  *
183  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
184  * 			options set. This moves	slab handling out of
185  * 			the fast path and disables lockless freelists.
186  */
187 
188 /**
189  * enum slab_flags - How the slab flags bits are used.
190  * @SL_locked: Is locked with slab_lock()
191  * @SL_partial: On the per-node partial list
192  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193  *
194  * The slab flags share space with the page flags but some bits have
195  * different interpretations.  The high bits are used for information
196  * like zone/node/section.
197  */
198 enum slab_flags {
199 	SL_locked = PG_locked,
200 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
201 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
202 };
203 
204 /*
205  * We could simply use migrate_disable()/enable() but as long as it's a
206  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207  */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH()	(true)
212 #else
213 #define slub_get_cpu_ptr(var)		\
214 ({					\
215 	migrate_disable();		\
216 	this_cpu_ptr(var);		\
217 })
218 #define slub_put_cpu_ptr(var)		\
219 do {					\
220 	(void)(var);			\
221 	migrate_enable();		\
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH()	(false)
224 #endif
225 
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231 
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif		/* CONFIG_SLUB_DEBUG */
239 
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243 
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 	gfp_t flags;
247 	unsigned int orig_size;
248 	void *object;
249 };
250 
kmem_cache_debug(struct kmem_cache * s)251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255 
fixup_red_left(struct kmem_cache * s,void * p)256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 		p += s->red_left_pad;
260 
261 	return p;
262 }
263 
kmem_cache_has_cpu_partial(struct kmem_cache * s)264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 	return !kmem_cache_debug(s);
268 #else
269 	return false;
270 #endif
271 }
272 
273 /*
274  * Issues still to be resolved:
275  *
276  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277  *
278  * - Variable sizing of the per node arrays
279  */
280 
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283 
284 #ifndef CONFIG_SLUB_TINY
285 /*
286  * Minimum number of partial slabs. These will be left on the partial
287  * lists even if they are empty. kmem_cache_shrink may reclaim them.
288  */
289 #define MIN_PARTIAL 5
290 
291 /*
292  * Maximum number of desirable partial slabs.
293  * The existence of more partial slabs makes kmem_cache_shrink
294  * sort the partial list by the number of objects in use.
295  */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301 
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 				SLAB_POISON | SLAB_STORE_USER)
304 
305 /*
306  * These debug flags cannot use CMPXCHG because there might be consistency
307  * issues when checking or reading debug information
308  */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 				SLAB_TRACE)
311 
312 
313 /*
314  * Debugging flags that require metadata to be stored in the slab.  These get
315  * disabled when slab_debug=O is used and a cache's min order increases with
316  * metadata.
317  */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319 
320 #define OO_SHIFT	16
321 #define OO_MASK		((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
323 
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328 
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
333 #endif
334 
335 /*
336  * Tracking user of a slab.
337  */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 	unsigned long addr;	/* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 	depot_stack_handle_t handle;
343 #endif
344 	int cpu;		/* Was running on cpu */
345 	int pid;		/* Pid context */
346 	unsigned long when;	/* When did the operation occur */
347 };
348 
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350 
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
sysfs_slab_add(struct kmem_cache * s)355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 							{ return 0; }
358 #endif
359 
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
debugfs_slab_add(struct kmem_cache * s)363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365 
366 enum stat_item {
367 	ALLOC_PCS,		/* Allocation from percpu sheaf */
368 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
369 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
370 	FREE_PCS,		/* Free to percpu sheaf */
371 	FREE_RCU_SHEAF,		/* Free to rcu_free sheaf */
372 	FREE_RCU_SHEAF_FAIL,	/* Failed to free to a rcu_free sheaf */
373 	FREE_FASTPATH,		/* Free to cpu slab */
374 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
375 	FREE_FROZEN,		/* Freeing to frozen slab */
376 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
377 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
378 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
379 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
380 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
381 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
382 	FREE_SLAB,		/* Slab freed to the page allocator */
383 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
384 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
385 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
386 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
387 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
388 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
390 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
391 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
393 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
394 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
395 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
396 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
397 	SHEAF_FLUSH,		/* Objects flushed from a sheaf */
398 	SHEAF_REFILL,		/* Objects refilled to a sheaf */
399 	SHEAF_ALLOC,		/* Allocation of an empty sheaf */
400 	SHEAF_FREE,		/* Freeing of an empty sheaf */
401 	BARN_GET,		/* Got full sheaf from barn */
402 	BARN_GET_FAIL,		/* Failed to get full sheaf from barn */
403 	BARN_PUT,		/* Put full sheaf to barn */
404 	BARN_PUT_FAIL,		/* Failed to put full sheaf to barn */
405 	SHEAF_PREFILL_FAST,	/* Sheaf prefill grabbed the spare sheaf */
406 	SHEAF_PREFILL_SLOW,	/* Sheaf prefill found no spare sheaf */
407 	SHEAF_PREFILL_OVERSIZE,	/* Allocation of oversize sheaf for prefill */
408 	SHEAF_RETURN_FAST,	/* Sheaf return reattached spare sheaf */
409 	SHEAF_RETURN_SLOW,	/* Sheaf return could not reattach spare */
410 	NR_SLUB_STAT_ITEMS
411 };
412 
413 #ifndef CONFIG_SLUB_TINY
414 /*
415  * When changing the layout, make sure freelist and tid are still compatible
416  * with this_cpu_cmpxchg_double() alignment requirements.
417  */
418 struct kmem_cache_cpu {
419 	union {
420 		struct {
421 			void **freelist;	/* Pointer to next available object */
422 			unsigned long tid;	/* Globally unique transaction id */
423 		};
424 		freelist_aba_t freelist_tid;
425 	};
426 	struct slab *slab;	/* The slab from which we are allocating */
427 #ifdef CONFIG_SLUB_CPU_PARTIAL
428 	struct slab *partial;	/* Partially allocated slabs */
429 #endif
430 	local_trylock_t lock;	/* Protects the fields above */
431 #ifdef CONFIG_SLUB_STATS
432 	unsigned int stat[NR_SLUB_STAT_ITEMS];
433 #endif
434 };
435 #endif /* CONFIG_SLUB_TINY */
436 
stat(const struct kmem_cache * s,enum stat_item si)437 static inline void stat(const struct kmem_cache *s, enum stat_item si)
438 {
439 #ifdef CONFIG_SLUB_STATS
440 	/*
441 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
442 	 * avoid this_cpu_add()'s irq-disable overhead.
443 	 */
444 	raw_cpu_inc(s->cpu_slab->stat[si]);
445 #endif
446 }
447 
448 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
450 {
451 #ifdef CONFIG_SLUB_STATS
452 	raw_cpu_add(s->cpu_slab->stat[si], v);
453 #endif
454 }
455 
456 #define MAX_FULL_SHEAVES	10
457 #define MAX_EMPTY_SHEAVES	10
458 
459 struct node_barn {
460 	spinlock_t lock;
461 	struct list_head sheaves_full;
462 	struct list_head sheaves_empty;
463 	unsigned int nr_full;
464 	unsigned int nr_empty;
465 };
466 
467 struct slab_sheaf {
468 	union {
469 		struct rcu_head rcu_head;
470 		struct list_head barn_list;
471 		/* only used for prefilled sheafs */
472 		unsigned int capacity;
473 	};
474 	struct kmem_cache *cache;
475 	unsigned int size;
476 	int node; /* only used for rcu_sheaf */
477 	void *objects[];
478 };
479 
480 struct slub_percpu_sheaves {
481 	local_trylock_t lock;
482 	struct slab_sheaf *main; /* never NULL when unlocked */
483 	struct slab_sheaf *spare; /* empty or full, may be NULL */
484 	struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
485 };
486 
487 /*
488  * The slab lists for all objects.
489  */
490 struct kmem_cache_node {
491 	spinlock_t list_lock;
492 	unsigned long nr_partial;
493 	struct list_head partial;
494 #ifdef CONFIG_SLUB_DEBUG
495 	atomic_long_t nr_slabs;
496 	atomic_long_t total_objects;
497 	struct list_head full;
498 #endif
499 	struct node_barn *barn;
500 };
501 
get_node(struct kmem_cache * s,int node)502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
503 {
504 	return s->node[node];
505 }
506 
507 /*
508  * Get the barn of the current cpu's closest memory node. It may not exist on
509  * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
510  */
get_barn(struct kmem_cache * s)511 static inline struct node_barn *get_barn(struct kmem_cache *s)
512 {
513 	struct kmem_cache_node *n = get_node(s, numa_mem_id());
514 
515 	if (!n)
516 		return NULL;
517 
518 	return n->barn;
519 }
520 
521 /*
522  * Iterator over all nodes. The body will be executed for each node that has
523  * a kmem_cache_node structure allocated (which is true for all online nodes)
524  */
525 #define for_each_kmem_cache_node(__s, __node, __n) \
526 	for (__node = 0; __node < nr_node_ids; __node++) \
527 		 if ((__n = get_node(__s, __node)))
528 
529 /*
530  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
531  * Corresponds to node_state[N_MEMORY], but can temporarily
532  * differ during memory hotplug/hotremove operations.
533  * Protected by slab_mutex.
534  */
535 static nodemask_t slab_nodes;
536 
537 /*
538  * Workqueue used for flush_cpu_slab().
539  */
540 static struct workqueue_struct *flushwq;
541 
542 struct slub_flush_work {
543 	struct work_struct work;
544 	struct kmem_cache *s;
545 	bool skip;
546 };
547 
548 static DEFINE_MUTEX(flush_lock);
549 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
550 
551 /********************************************************************
552  * 			Core slab cache functions
553  *******************************************************************/
554 
555 /*
556  * Returns freelist pointer (ptr). With hardening, this is obfuscated
557  * with an XOR of the address where the pointer is held and a per-cache
558  * random number.
559  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)560 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
561 					    void *ptr, unsigned long ptr_addr)
562 {
563 	unsigned long encoded;
564 
565 #ifdef CONFIG_SLAB_FREELIST_HARDENED
566 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
567 #else
568 	encoded = (unsigned long)ptr;
569 #endif
570 	return (freeptr_t){.v = encoded};
571 }
572 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)573 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
574 					freeptr_t ptr, unsigned long ptr_addr)
575 {
576 	void *decoded;
577 
578 #ifdef CONFIG_SLAB_FREELIST_HARDENED
579 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
580 #else
581 	decoded = (void *)ptr.v;
582 #endif
583 	return decoded;
584 }
585 
get_freepointer(struct kmem_cache * s,void * object)586 static inline void *get_freepointer(struct kmem_cache *s, void *object)
587 {
588 	unsigned long ptr_addr;
589 	freeptr_t p;
590 
591 	object = kasan_reset_tag(object);
592 	ptr_addr = (unsigned long)object + s->offset;
593 	p = *(freeptr_t *)(ptr_addr);
594 	return freelist_ptr_decode(s, p, ptr_addr);
595 }
596 
597 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)598 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
599 {
600 	prefetchw(object + s->offset);
601 }
602 #endif
603 
604 /*
605  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
606  * pointer value in the case the current thread loses the race for the next
607  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
608  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
609  * KMSAN will still check all arguments of cmpxchg because of imperfect
610  * handling of inline assembly.
611  * To work around this problem, we apply __no_kmsan_checks to ensure that
612  * get_freepointer_safe() returns initialized memory.
613  */
614 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)615 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
616 {
617 	unsigned long freepointer_addr;
618 	freeptr_t p;
619 
620 	if (!debug_pagealloc_enabled_static())
621 		return get_freepointer(s, object);
622 
623 	object = kasan_reset_tag(object);
624 	freepointer_addr = (unsigned long)object + s->offset;
625 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
626 	return freelist_ptr_decode(s, p, freepointer_addr);
627 }
628 
set_freepointer(struct kmem_cache * s,void * object,void * fp)629 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
630 {
631 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
632 
633 #ifdef CONFIG_SLAB_FREELIST_HARDENED
634 	BUG_ON(object == fp); /* naive detection of double free or corruption */
635 #endif
636 
637 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
638 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
639 }
640 
641 /*
642  * See comment in calculate_sizes().
643  */
freeptr_outside_object(struct kmem_cache * s)644 static inline bool freeptr_outside_object(struct kmem_cache *s)
645 {
646 	return s->offset >= s->inuse;
647 }
648 
649 /*
650  * Return offset of the end of info block which is inuse + free pointer if
651  * not overlapping with object.
652  */
get_info_end(struct kmem_cache * s)653 static inline unsigned int get_info_end(struct kmem_cache *s)
654 {
655 	if (freeptr_outside_object(s))
656 		return s->inuse + sizeof(void *);
657 	else
658 		return s->inuse;
659 }
660 
661 /* Loop over all objects in a slab */
662 #define for_each_object(__p, __s, __addr, __objects) \
663 	for (__p = fixup_red_left(__s, __addr); \
664 		__p < (__addr) + (__objects) * (__s)->size; \
665 		__p += (__s)->size)
666 
order_objects(unsigned int order,unsigned int size)667 static inline unsigned int order_objects(unsigned int order, unsigned int size)
668 {
669 	return ((unsigned int)PAGE_SIZE << order) / size;
670 }
671 
oo_make(unsigned int order,unsigned int size)672 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
673 		unsigned int size)
674 {
675 	struct kmem_cache_order_objects x = {
676 		(order << OO_SHIFT) + order_objects(order, size)
677 	};
678 
679 	return x;
680 }
681 
oo_order(struct kmem_cache_order_objects x)682 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
683 {
684 	return x.x >> OO_SHIFT;
685 }
686 
oo_objects(struct kmem_cache_order_objects x)687 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
688 {
689 	return x.x & OO_MASK;
690 }
691 
692 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)693 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
694 {
695 	unsigned int nr_slabs;
696 
697 	s->cpu_partial = nr_objects;
698 
699 	/*
700 	 * We take the number of objects but actually limit the number of
701 	 * slabs on the per cpu partial list, in order to limit excessive
702 	 * growth of the list. For simplicity we assume that the slabs will
703 	 * be half-full.
704 	 */
705 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
706 	s->cpu_partial_slabs = nr_slabs;
707 }
708 
slub_get_cpu_partial(struct kmem_cache * s)709 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
710 {
711 	return s->cpu_partial_slabs;
712 }
713 #else
714 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)715 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
716 {
717 }
718 
slub_get_cpu_partial(struct kmem_cache * s)719 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
720 {
721 	return 0;
722 }
723 #endif /* CONFIG_SLUB_CPU_PARTIAL */
724 
725 /*
726  * If network-based swap is enabled, slub must keep track of whether memory
727  * were allocated from pfmemalloc reserves.
728  */
slab_test_pfmemalloc(const struct slab * slab)729 static inline bool slab_test_pfmemalloc(const struct slab *slab)
730 {
731 	return test_bit(SL_pfmemalloc, &slab->flags.f);
732 }
733 
slab_set_pfmemalloc(struct slab * slab)734 static inline void slab_set_pfmemalloc(struct slab *slab)
735 {
736 	set_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738 
__slab_clear_pfmemalloc(struct slab * slab)739 static inline void __slab_clear_pfmemalloc(struct slab *slab)
740 {
741 	__clear_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743 
744 /*
745  * Per slab locking using the pagelock
746  */
slab_lock(struct slab * slab)747 static __always_inline void slab_lock(struct slab *slab)
748 {
749 	bit_spin_lock(SL_locked, &slab->flags.f);
750 }
751 
slab_unlock(struct slab * slab)752 static __always_inline void slab_unlock(struct slab *slab)
753 {
754 	bit_spin_unlock(SL_locked, &slab->flags.f);
755 }
756 
757 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)758 __update_freelist_fast(struct slab *slab,
759 		      void *freelist_old, unsigned long counters_old,
760 		      void *freelist_new, unsigned long counters_new)
761 {
762 #ifdef system_has_freelist_aba
763 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
764 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
765 
766 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
767 #else
768 	return false;
769 #endif
770 }
771 
772 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)773 __update_freelist_slow(struct slab *slab,
774 		      void *freelist_old, unsigned long counters_old,
775 		      void *freelist_new, unsigned long counters_new)
776 {
777 	bool ret = false;
778 
779 	slab_lock(slab);
780 	if (slab->freelist == freelist_old &&
781 	    slab->counters == counters_old) {
782 		slab->freelist = freelist_new;
783 		slab->counters = counters_new;
784 		ret = true;
785 	}
786 	slab_unlock(slab);
787 
788 	return ret;
789 }
790 
791 /*
792  * Interrupts must be disabled (for the fallback code to work right), typically
793  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
794  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
795  * allocation/ free operation in hardirq context. Therefore nothing can
796  * interrupt the operation.
797  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)798 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
799 		void *freelist_old, unsigned long counters_old,
800 		void *freelist_new, unsigned long counters_new,
801 		const char *n)
802 {
803 	bool ret;
804 
805 	if (USE_LOCKLESS_FAST_PATH())
806 		lockdep_assert_irqs_disabled();
807 
808 	if (s->flags & __CMPXCHG_DOUBLE) {
809 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
810 				            freelist_new, counters_new);
811 	} else {
812 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
813 				            freelist_new, counters_new);
814 	}
815 	if (likely(ret))
816 		return true;
817 
818 	cpu_relax();
819 	stat(s, CMPXCHG_DOUBLE_FAIL);
820 
821 #ifdef SLUB_DEBUG_CMPXCHG
822 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
823 #endif
824 
825 	return false;
826 }
827 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)828 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
829 		void *freelist_old, unsigned long counters_old,
830 		void *freelist_new, unsigned long counters_new,
831 		const char *n)
832 {
833 	bool ret;
834 
835 	if (s->flags & __CMPXCHG_DOUBLE) {
836 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
837 				            freelist_new, counters_new);
838 	} else {
839 		unsigned long flags;
840 
841 		local_irq_save(flags);
842 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
843 				            freelist_new, counters_new);
844 		local_irq_restore(flags);
845 	}
846 	if (likely(ret))
847 		return true;
848 
849 	cpu_relax();
850 	stat(s, CMPXCHG_DOUBLE_FAIL);
851 
852 #ifdef SLUB_DEBUG_CMPXCHG
853 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
854 #endif
855 
856 	return false;
857 }
858 
859 /*
860  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
861  * family will round up the real request size to these fixed ones, so
862  * there could be an extra area than what is requested. Save the original
863  * request size in the meta data area, for better debug and sanity check.
864  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)865 static inline void set_orig_size(struct kmem_cache *s,
866 				void *object, unsigned int orig_size)
867 {
868 	void *p = kasan_reset_tag(object);
869 
870 	if (!slub_debug_orig_size(s))
871 		return;
872 
873 	p += get_info_end(s);
874 	p += sizeof(struct track) * 2;
875 
876 	*(unsigned int *)p = orig_size;
877 }
878 
get_orig_size(struct kmem_cache * s,void * object)879 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
880 {
881 	void *p = kasan_reset_tag(object);
882 
883 	if (is_kfence_address(object))
884 		return kfence_ksize(object);
885 
886 	if (!slub_debug_orig_size(s))
887 		return s->object_size;
888 
889 	p += get_info_end(s);
890 	p += sizeof(struct track) * 2;
891 
892 	return *(unsigned int *)p;
893 }
894 
895 #ifdef CONFIG_SLUB_DEBUG
896 
897 /*
898  * For debugging context when we want to check if the struct slab pointer
899  * appears to be valid.
900  */
validate_slab_ptr(struct slab * slab)901 static inline bool validate_slab_ptr(struct slab *slab)
902 {
903 	return PageSlab(slab_page(slab));
904 }
905 
906 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
907 static DEFINE_SPINLOCK(object_map_lock);
908 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)909 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
910 		       struct slab *slab)
911 {
912 	void *addr = slab_address(slab);
913 	void *p;
914 
915 	bitmap_zero(obj_map, slab->objects);
916 
917 	for (p = slab->freelist; p; p = get_freepointer(s, p))
918 		set_bit(__obj_to_index(s, addr, p), obj_map);
919 }
920 
921 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)922 static bool slab_add_kunit_errors(void)
923 {
924 	struct kunit_resource *resource;
925 
926 	if (!kunit_get_current_test())
927 		return false;
928 
929 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
930 	if (!resource)
931 		return false;
932 
933 	(*(int *)resource->data)++;
934 	kunit_put_resource(resource);
935 	return true;
936 }
937 
slab_in_kunit_test(void)938 bool slab_in_kunit_test(void)
939 {
940 	struct kunit_resource *resource;
941 
942 	if (!kunit_get_current_test())
943 		return false;
944 
945 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
946 	if (!resource)
947 		return false;
948 
949 	kunit_put_resource(resource);
950 	return true;
951 }
952 #else
slab_add_kunit_errors(void)953 static inline bool slab_add_kunit_errors(void) { return false; }
954 #endif
955 
size_from_object(struct kmem_cache * s)956 static inline unsigned int size_from_object(struct kmem_cache *s)
957 {
958 	if (s->flags & SLAB_RED_ZONE)
959 		return s->size - s->red_left_pad;
960 
961 	return s->size;
962 }
963 
restore_red_left(struct kmem_cache * s,void * p)964 static inline void *restore_red_left(struct kmem_cache *s, void *p)
965 {
966 	if (s->flags & SLAB_RED_ZONE)
967 		p -= s->red_left_pad;
968 
969 	return p;
970 }
971 
972 /*
973  * Debug settings:
974  */
975 #if defined(CONFIG_SLUB_DEBUG_ON)
976 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
977 #else
978 static slab_flags_t slub_debug;
979 #endif
980 
981 static char *slub_debug_string;
982 static int disable_higher_order_debug;
983 
984 /*
985  * slub is about to manipulate internal object metadata.  This memory lies
986  * outside the range of the allocated object, so accessing it would normally
987  * be reported by kasan as a bounds error.  metadata_access_enable() is used
988  * to tell kasan that these accesses are OK.
989  */
metadata_access_enable(void)990 static inline void metadata_access_enable(void)
991 {
992 	kasan_disable_current();
993 	kmsan_disable_current();
994 }
995 
metadata_access_disable(void)996 static inline void metadata_access_disable(void)
997 {
998 	kmsan_enable_current();
999 	kasan_enable_current();
1000 }
1001 
1002 /*
1003  * Object debugging
1004  */
1005 
1006 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)1007 static inline int check_valid_pointer(struct kmem_cache *s,
1008 				struct slab *slab, void *object)
1009 {
1010 	void *base;
1011 
1012 	if (!object)
1013 		return 1;
1014 
1015 	base = slab_address(slab);
1016 	object = kasan_reset_tag(object);
1017 	object = restore_red_left(s, object);
1018 	if (object < base || object >= base + slab->objects * s->size ||
1019 		(object - base) % s->size) {
1020 		return 0;
1021 	}
1022 
1023 	return 1;
1024 }
1025 
print_section(char * level,char * text,u8 * addr,unsigned int length)1026 static void print_section(char *level, char *text, u8 *addr,
1027 			  unsigned int length)
1028 {
1029 	metadata_access_enable();
1030 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1031 			16, 1, kasan_reset_tag((void *)addr), length, 1);
1032 	metadata_access_disable();
1033 }
1034 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)1035 static struct track *get_track(struct kmem_cache *s, void *object,
1036 	enum track_item alloc)
1037 {
1038 	struct track *p;
1039 
1040 	p = object + get_info_end(s);
1041 
1042 	return kasan_reset_tag(p + alloc);
1043 }
1044 
1045 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)1046 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1047 {
1048 	depot_stack_handle_t handle;
1049 	unsigned long entries[TRACK_ADDRS_COUNT];
1050 	unsigned int nr_entries;
1051 
1052 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1053 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
1054 
1055 	return handle;
1056 }
1057 #else
set_track_prepare(gfp_t gfp_flags)1058 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1059 {
1060 	return 0;
1061 }
1062 #endif
1063 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)1064 static void set_track_update(struct kmem_cache *s, void *object,
1065 			     enum track_item alloc, unsigned long addr,
1066 			     depot_stack_handle_t handle)
1067 {
1068 	struct track *p = get_track(s, object, alloc);
1069 
1070 #ifdef CONFIG_STACKDEPOT
1071 	p->handle = handle;
1072 #endif
1073 	p->addr = addr;
1074 	p->cpu = smp_processor_id();
1075 	p->pid = current->pid;
1076 	p->when = jiffies;
1077 }
1078 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1079 static __always_inline void set_track(struct kmem_cache *s, void *object,
1080 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1081 {
1082 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1083 
1084 	set_track_update(s, object, alloc, addr, handle);
1085 }
1086 
init_tracking(struct kmem_cache * s,void * object)1087 static void init_tracking(struct kmem_cache *s, void *object)
1088 {
1089 	struct track *p;
1090 
1091 	if (!(s->flags & SLAB_STORE_USER))
1092 		return;
1093 
1094 	p = get_track(s, object, TRACK_ALLOC);
1095 	memset(p, 0, 2*sizeof(struct track));
1096 }
1097 
print_track(const char * s,struct track * t,unsigned long pr_time)1098 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1099 {
1100 	depot_stack_handle_t handle __maybe_unused;
1101 
1102 	if (!t->addr)
1103 		return;
1104 
1105 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1106 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1107 #ifdef CONFIG_STACKDEPOT
1108 	handle = READ_ONCE(t->handle);
1109 	if (handle)
1110 		stack_depot_print(handle);
1111 	else
1112 		pr_err("object allocation/free stack trace missing\n");
1113 #endif
1114 }
1115 
print_tracking(struct kmem_cache * s,void * object)1116 void print_tracking(struct kmem_cache *s, void *object)
1117 {
1118 	unsigned long pr_time = jiffies;
1119 	if (!(s->flags & SLAB_STORE_USER))
1120 		return;
1121 
1122 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1123 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1124 }
1125 
print_slab_info(const struct slab * slab)1126 static void print_slab_info(const struct slab *slab)
1127 {
1128 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1129 	       slab, slab->objects, slab->inuse, slab->freelist,
1130 	       &slab->flags.f);
1131 }
1132 
skip_orig_size_check(struct kmem_cache * s,const void * object)1133 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1134 {
1135 	set_orig_size(s, (void *)object, s->object_size);
1136 }
1137 
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1138 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1139 {
1140 	struct va_format vaf;
1141 	va_list args;
1142 
1143 	va_copy(args, argsp);
1144 	vaf.fmt = fmt;
1145 	vaf.va = &args;
1146 	pr_err("=============================================================================\n");
1147 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1148 	pr_err("-----------------------------------------------------------------------------\n\n");
1149 	va_end(args);
1150 }
1151 
slab_bug(struct kmem_cache * s,const char * fmt,...)1152 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1153 {
1154 	va_list args;
1155 
1156 	va_start(args, fmt);
1157 	__slab_bug(s, fmt, args);
1158 	va_end(args);
1159 }
1160 
1161 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1162 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1163 {
1164 	struct va_format vaf;
1165 	va_list args;
1166 
1167 	if (slab_add_kunit_errors())
1168 		return;
1169 
1170 	va_start(args, fmt);
1171 	vaf.fmt = fmt;
1172 	vaf.va = &args;
1173 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1174 	va_end(args);
1175 }
1176 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1177 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1178 {
1179 	unsigned int off;	/* Offset of last byte */
1180 	u8 *addr = slab_address(slab);
1181 
1182 	print_tracking(s, p);
1183 
1184 	print_slab_info(slab);
1185 
1186 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1187 	       p, p - addr, get_freepointer(s, p));
1188 
1189 	if (s->flags & SLAB_RED_ZONE)
1190 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1191 			      s->red_left_pad);
1192 	else if (p > addr + 16)
1193 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1194 
1195 	print_section(KERN_ERR,         "Object   ", p,
1196 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1197 	if (s->flags & SLAB_RED_ZONE)
1198 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1199 			s->inuse - s->object_size);
1200 
1201 	off = get_info_end(s);
1202 
1203 	if (s->flags & SLAB_STORE_USER)
1204 		off += 2 * sizeof(struct track);
1205 
1206 	if (slub_debug_orig_size(s))
1207 		off += sizeof(unsigned int);
1208 
1209 	off += kasan_metadata_size(s, false);
1210 
1211 	if (off != size_from_object(s))
1212 		/* Beginning of the filler is the free pointer */
1213 		print_section(KERN_ERR, "Padding  ", p + off,
1214 			      size_from_object(s) - off);
1215 }
1216 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1217 static void object_err(struct kmem_cache *s, struct slab *slab,
1218 			u8 *object, const char *reason)
1219 {
1220 	if (slab_add_kunit_errors())
1221 		return;
1222 
1223 	slab_bug(s, reason);
1224 	if (!object || !check_valid_pointer(s, slab, object)) {
1225 		print_slab_info(slab);
1226 		pr_err("Invalid pointer 0x%p\n", object);
1227 	} else {
1228 		print_trailer(s, slab, object);
1229 	}
1230 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1231 
1232 	WARN_ON(1);
1233 }
1234 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1235 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1236 			       void **freelist, void *nextfree)
1237 {
1238 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1239 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1240 		object_err(s, slab, *freelist, "Freechain corrupt");
1241 		*freelist = NULL;
1242 		slab_fix(s, "Isolate corrupted freechain");
1243 		return true;
1244 	}
1245 
1246 	return false;
1247 }
1248 
__slab_err(struct slab * slab)1249 static void __slab_err(struct slab *slab)
1250 {
1251 	if (slab_in_kunit_test())
1252 		return;
1253 
1254 	print_slab_info(slab);
1255 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1256 
1257 	WARN_ON(1);
1258 }
1259 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1260 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1261 			const char *fmt, ...)
1262 {
1263 	va_list args;
1264 
1265 	if (slab_add_kunit_errors())
1266 		return;
1267 
1268 	va_start(args, fmt);
1269 	__slab_bug(s, fmt, args);
1270 	va_end(args);
1271 
1272 	__slab_err(slab);
1273 }
1274 
init_object(struct kmem_cache * s,void * object,u8 val)1275 static void init_object(struct kmem_cache *s, void *object, u8 val)
1276 {
1277 	u8 *p = kasan_reset_tag(object);
1278 	unsigned int poison_size = s->object_size;
1279 
1280 	if (s->flags & SLAB_RED_ZONE) {
1281 		/*
1282 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1283 		 * the shadow makes it possible to distinguish uninit-value
1284 		 * from use-after-free.
1285 		 */
1286 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1287 					  s->red_left_pad);
1288 
1289 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1290 			/*
1291 			 * Redzone the extra allocated space by kmalloc than
1292 			 * requested, and the poison size will be limited to
1293 			 * the original request size accordingly.
1294 			 */
1295 			poison_size = get_orig_size(s, object);
1296 		}
1297 	}
1298 
1299 	if (s->flags & __OBJECT_POISON) {
1300 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1301 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1302 	}
1303 
1304 	if (s->flags & SLAB_RED_ZONE)
1305 		memset_no_sanitize_memory(p + poison_size, val,
1306 					  s->inuse - poison_size);
1307 }
1308 
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1309 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1310 						void *from, void *to)
1311 {
1312 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1313 	memset(from, data, to - from);
1314 }
1315 
1316 #ifdef CONFIG_KMSAN
1317 #define pad_check_attributes noinline __no_kmsan_checks
1318 #else
1319 #define pad_check_attributes
1320 #endif
1321 
1322 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1323 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1324 		       u8 *object, const char *what, u8 *start, unsigned int value,
1325 		       unsigned int bytes, bool slab_obj_print)
1326 {
1327 	u8 *fault;
1328 	u8 *end;
1329 	u8 *addr = slab_address(slab);
1330 
1331 	metadata_access_enable();
1332 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1333 	metadata_access_disable();
1334 	if (!fault)
1335 		return 1;
1336 
1337 	end = start + bytes;
1338 	while (end > fault && end[-1] == value)
1339 		end--;
1340 
1341 	if (slab_add_kunit_errors())
1342 		goto skip_bug_print;
1343 
1344 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1345 	       what, fault, end - 1, fault - addr, fault[0], value);
1346 
1347 	if (slab_obj_print)
1348 		object_err(s, slab, object, "Object corrupt");
1349 
1350 skip_bug_print:
1351 	restore_bytes(s, what, value, fault, end);
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Object layout:
1357  *
1358  * object address
1359  * 	Bytes of the object to be managed.
1360  * 	If the freepointer may overlay the object then the free
1361  *	pointer is at the middle of the object.
1362  *
1363  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1364  * 	0xa5 (POISON_END)
1365  *
1366  * object + s->object_size
1367  * 	Padding to reach word boundary. This is also used for Redzoning.
1368  * 	Padding is extended by another word if Redzoning is enabled and
1369  * 	object_size == inuse.
1370  *
1371  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1372  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1373  *
1374  * object + s->inuse
1375  * 	Meta data starts here.
1376  *
1377  * 	A. Free pointer (if we cannot overwrite object on free)
1378  * 	B. Tracking data for SLAB_STORE_USER
1379  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1380  *	D. Padding to reach required alignment boundary or at minimum
1381  * 		one word if debugging is on to be able to detect writes
1382  * 		before the word boundary.
1383  *
1384  *	Padding is done using 0x5a (POISON_INUSE)
1385  *
1386  * object + s->size
1387  * 	Nothing is used beyond s->size.
1388  *
1389  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1390  * ignored. And therefore no slab options that rely on these boundaries
1391  * may be used with merged slabcaches.
1392  */
1393 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1394 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1395 {
1396 	unsigned long off = get_info_end(s);	/* The end of info */
1397 
1398 	if (s->flags & SLAB_STORE_USER) {
1399 		/* We also have user information there */
1400 		off += 2 * sizeof(struct track);
1401 
1402 		if (s->flags & SLAB_KMALLOC)
1403 			off += sizeof(unsigned int);
1404 	}
1405 
1406 	off += kasan_metadata_size(s, false);
1407 
1408 	if (size_from_object(s) == off)
1409 		return 1;
1410 
1411 	return check_bytes_and_report(s, slab, p, "Object padding",
1412 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1413 }
1414 
1415 /* Check the pad bytes at the end of a slab page */
1416 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1417 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1418 {
1419 	u8 *start;
1420 	u8 *fault;
1421 	u8 *end;
1422 	u8 *pad;
1423 	int length;
1424 	int remainder;
1425 
1426 	if (!(s->flags & SLAB_POISON))
1427 		return;
1428 
1429 	start = slab_address(slab);
1430 	length = slab_size(slab);
1431 	end = start + length;
1432 	remainder = length % s->size;
1433 	if (!remainder)
1434 		return;
1435 
1436 	pad = end - remainder;
1437 	metadata_access_enable();
1438 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1439 	metadata_access_disable();
1440 	if (!fault)
1441 		return;
1442 	while (end > fault && end[-1] == POISON_INUSE)
1443 		end--;
1444 
1445 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1446 		 fault, end - 1, fault - start);
1447 	print_section(KERN_ERR, "Padding ", pad, remainder);
1448 	__slab_err(slab);
1449 
1450 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1451 }
1452 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1453 static int check_object(struct kmem_cache *s, struct slab *slab,
1454 					void *object, u8 val)
1455 {
1456 	u8 *p = object;
1457 	u8 *endobject = object + s->object_size;
1458 	unsigned int orig_size, kasan_meta_size;
1459 	int ret = 1;
1460 
1461 	if (s->flags & SLAB_RED_ZONE) {
1462 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1463 			object - s->red_left_pad, val, s->red_left_pad, ret))
1464 			ret = 0;
1465 
1466 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1467 			endobject, val, s->inuse - s->object_size, ret))
1468 			ret = 0;
1469 
1470 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1471 			orig_size = get_orig_size(s, object);
1472 
1473 			if (s->object_size > orig_size  &&
1474 				!check_bytes_and_report(s, slab, object,
1475 					"kmalloc Redzone", p + orig_size,
1476 					val, s->object_size - orig_size, ret)) {
1477 				ret = 0;
1478 			}
1479 		}
1480 	} else {
1481 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1482 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1483 				endobject, POISON_INUSE,
1484 				s->inuse - s->object_size, ret))
1485 				ret = 0;
1486 		}
1487 	}
1488 
1489 	if (s->flags & SLAB_POISON) {
1490 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1491 			/*
1492 			 * KASAN can save its free meta data inside of the
1493 			 * object at offset 0. Thus, skip checking the part of
1494 			 * the redzone that overlaps with the meta data.
1495 			 */
1496 			kasan_meta_size = kasan_metadata_size(s, true);
1497 			if (kasan_meta_size < s->object_size - 1 &&
1498 			    !check_bytes_and_report(s, slab, p, "Poison",
1499 					p + kasan_meta_size, POISON_FREE,
1500 					s->object_size - kasan_meta_size - 1, ret))
1501 				ret = 0;
1502 			if (kasan_meta_size < s->object_size &&
1503 			    !check_bytes_and_report(s, slab, p, "End Poison",
1504 					p + s->object_size - 1, POISON_END, 1, ret))
1505 				ret = 0;
1506 		}
1507 		/*
1508 		 * check_pad_bytes cleans up on its own.
1509 		 */
1510 		if (!check_pad_bytes(s, slab, p))
1511 			ret = 0;
1512 	}
1513 
1514 	/*
1515 	 * Cannot check freepointer while object is allocated if
1516 	 * object and freepointer overlap.
1517 	 */
1518 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1519 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1520 		object_err(s, slab, p, "Freepointer corrupt");
1521 		/*
1522 		 * No choice but to zap it and thus lose the remainder
1523 		 * of the free objects in this slab. May cause
1524 		 * another error because the object count is now wrong.
1525 		 */
1526 		set_freepointer(s, p, NULL);
1527 		ret = 0;
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Checks if the slab state looks sane. Assumes the struct slab pointer
1535  * was either obtained in a way that ensures it's valid, or validated
1536  * by validate_slab_ptr()
1537  */
check_slab(struct kmem_cache * s,struct slab * slab)1538 static int check_slab(struct kmem_cache *s, struct slab *slab)
1539 {
1540 	int maxobj;
1541 
1542 	maxobj = order_objects(slab_order(slab), s->size);
1543 	if (slab->objects > maxobj) {
1544 		slab_err(s, slab, "objects %u > max %u",
1545 			slab->objects, maxobj);
1546 		return 0;
1547 	}
1548 	if (slab->inuse > slab->objects) {
1549 		slab_err(s, slab, "inuse %u > max %u",
1550 			slab->inuse, slab->objects);
1551 		return 0;
1552 	}
1553 	if (slab->frozen) {
1554 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1555 		return 0;
1556 	}
1557 
1558 	/* Slab_pad_check fixes things up after itself */
1559 	slab_pad_check(s, slab);
1560 	return 1;
1561 }
1562 
1563 /*
1564  * Determine if a certain object in a slab is on the freelist. Must hold the
1565  * slab lock to guarantee that the chains are in a consistent state.
1566  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1567 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1568 {
1569 	int nr = 0;
1570 	void *fp;
1571 	void *object = NULL;
1572 	int max_objects;
1573 
1574 	fp = slab->freelist;
1575 	while (fp && nr <= slab->objects) {
1576 		if (fp == search)
1577 			return true;
1578 		if (!check_valid_pointer(s, slab, fp)) {
1579 			if (object) {
1580 				object_err(s, slab, object,
1581 					"Freechain corrupt");
1582 				set_freepointer(s, object, NULL);
1583 				break;
1584 			} else {
1585 				slab_err(s, slab, "Freepointer corrupt");
1586 				slab->freelist = NULL;
1587 				slab->inuse = slab->objects;
1588 				slab_fix(s, "Freelist cleared");
1589 				return false;
1590 			}
1591 		}
1592 		object = fp;
1593 		fp = get_freepointer(s, object);
1594 		nr++;
1595 	}
1596 
1597 	if (nr > slab->objects) {
1598 		slab_err(s, slab, "Freelist cycle detected");
1599 		slab->freelist = NULL;
1600 		slab->inuse = slab->objects;
1601 		slab_fix(s, "Freelist cleared");
1602 		return false;
1603 	}
1604 
1605 	max_objects = order_objects(slab_order(slab), s->size);
1606 	if (max_objects > MAX_OBJS_PER_PAGE)
1607 		max_objects = MAX_OBJS_PER_PAGE;
1608 
1609 	if (slab->objects != max_objects) {
1610 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1611 			 slab->objects, max_objects);
1612 		slab->objects = max_objects;
1613 		slab_fix(s, "Number of objects adjusted");
1614 	}
1615 	if (slab->inuse != slab->objects - nr) {
1616 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1617 			 slab->inuse, slab->objects - nr);
1618 		slab->inuse = slab->objects - nr;
1619 		slab_fix(s, "Object count adjusted");
1620 	}
1621 	return search == NULL;
1622 }
1623 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1624 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1625 								int alloc)
1626 {
1627 	if (s->flags & SLAB_TRACE) {
1628 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1629 			s->name,
1630 			alloc ? "alloc" : "free",
1631 			object, slab->inuse,
1632 			slab->freelist);
1633 
1634 		if (!alloc)
1635 			print_section(KERN_INFO, "Object ", (void *)object,
1636 					s->object_size);
1637 
1638 		dump_stack();
1639 	}
1640 }
1641 
1642 /*
1643  * Tracking of fully allocated slabs for debugging purposes.
1644  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1645 static void add_full(struct kmem_cache *s,
1646 	struct kmem_cache_node *n, struct slab *slab)
1647 {
1648 	if (!(s->flags & SLAB_STORE_USER))
1649 		return;
1650 
1651 	lockdep_assert_held(&n->list_lock);
1652 	list_add(&slab->slab_list, &n->full);
1653 }
1654 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1655 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1656 {
1657 	if (!(s->flags & SLAB_STORE_USER))
1658 		return;
1659 
1660 	lockdep_assert_held(&n->list_lock);
1661 	list_del(&slab->slab_list);
1662 }
1663 
node_nr_slabs(struct kmem_cache_node * n)1664 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1665 {
1666 	return atomic_long_read(&n->nr_slabs);
1667 }
1668 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1669 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1670 {
1671 	struct kmem_cache_node *n = get_node(s, node);
1672 
1673 	atomic_long_inc(&n->nr_slabs);
1674 	atomic_long_add(objects, &n->total_objects);
1675 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1676 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1677 {
1678 	struct kmem_cache_node *n = get_node(s, node);
1679 
1680 	atomic_long_dec(&n->nr_slabs);
1681 	atomic_long_sub(objects, &n->total_objects);
1682 }
1683 
1684 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1685 static void setup_object_debug(struct kmem_cache *s, void *object)
1686 {
1687 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1688 		return;
1689 
1690 	init_object(s, object, SLUB_RED_INACTIVE);
1691 	init_tracking(s, object);
1692 }
1693 
1694 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1695 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1696 {
1697 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1698 		return;
1699 
1700 	metadata_access_enable();
1701 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1702 	metadata_access_disable();
1703 }
1704 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1705 static inline int alloc_consistency_checks(struct kmem_cache *s,
1706 					struct slab *slab, void *object)
1707 {
1708 	if (!check_slab(s, slab))
1709 		return 0;
1710 
1711 	if (!check_valid_pointer(s, slab, object)) {
1712 		object_err(s, slab, object, "Freelist Pointer check fails");
1713 		return 0;
1714 	}
1715 
1716 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1717 		return 0;
1718 
1719 	return 1;
1720 }
1721 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1722 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1723 			struct slab *slab, void *object, int orig_size)
1724 {
1725 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1726 		if (!alloc_consistency_checks(s, slab, object))
1727 			goto bad;
1728 	}
1729 
1730 	/* Success. Perform special debug activities for allocs */
1731 	trace(s, slab, object, 1);
1732 	set_orig_size(s, object, orig_size);
1733 	init_object(s, object, SLUB_RED_ACTIVE);
1734 	return true;
1735 
1736 bad:
1737 	/*
1738 	 * Let's do the best we can to avoid issues in the future. Marking all
1739 	 * objects as used avoids touching the remaining objects.
1740 	 */
1741 	slab_fix(s, "Marking all objects used");
1742 	slab->inuse = slab->objects;
1743 	slab->freelist = NULL;
1744 	slab->frozen = 1; /* mark consistency-failed slab as frozen */
1745 
1746 	return false;
1747 }
1748 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1749 static inline int free_consistency_checks(struct kmem_cache *s,
1750 		struct slab *slab, void *object, unsigned long addr)
1751 {
1752 	if (!check_valid_pointer(s, slab, object)) {
1753 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1754 		return 0;
1755 	}
1756 
1757 	if (on_freelist(s, slab, object)) {
1758 		object_err(s, slab, object, "Object already free");
1759 		return 0;
1760 	}
1761 
1762 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1763 		return 0;
1764 
1765 	if (unlikely(s != slab->slab_cache)) {
1766 		if (!slab->slab_cache) {
1767 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1768 				 object);
1769 		} else {
1770 			object_err(s, slab, object,
1771 				   "page slab pointer corrupt.");
1772 		}
1773 		return 0;
1774 	}
1775 	return 1;
1776 }
1777 
1778 /*
1779  * Parse a block of slab_debug options. Blocks are delimited by ';'
1780  *
1781  * @str:    start of block
1782  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1783  * @slabs:  return start of list of slabs, or NULL when there's no list
1784  * @init:   assume this is initial parsing and not per-kmem-create parsing
1785  *
1786  * returns the start of next block if there's any, or NULL
1787  */
1788 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1789 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1790 {
1791 	bool higher_order_disable = false;
1792 
1793 	/* Skip any completely empty blocks */
1794 	while (*str && *str == ';')
1795 		str++;
1796 
1797 	if (*str == ',') {
1798 		/*
1799 		 * No options but restriction on slabs. This means full
1800 		 * debugging for slabs matching a pattern.
1801 		 */
1802 		*flags = DEBUG_DEFAULT_FLAGS;
1803 		goto check_slabs;
1804 	}
1805 	*flags = 0;
1806 
1807 	/* Determine which debug features should be switched on */
1808 	for (; *str && *str != ',' && *str != ';'; str++) {
1809 		switch (tolower(*str)) {
1810 		case '-':
1811 			*flags = 0;
1812 			break;
1813 		case 'f':
1814 			*flags |= SLAB_CONSISTENCY_CHECKS;
1815 			break;
1816 		case 'z':
1817 			*flags |= SLAB_RED_ZONE;
1818 			break;
1819 		case 'p':
1820 			*flags |= SLAB_POISON;
1821 			break;
1822 		case 'u':
1823 			*flags |= SLAB_STORE_USER;
1824 			break;
1825 		case 't':
1826 			*flags |= SLAB_TRACE;
1827 			break;
1828 		case 'a':
1829 			*flags |= SLAB_FAILSLAB;
1830 			break;
1831 		case 'o':
1832 			/*
1833 			 * Avoid enabling debugging on caches if its minimum
1834 			 * order would increase as a result.
1835 			 */
1836 			higher_order_disable = true;
1837 			break;
1838 		default:
1839 			if (init)
1840 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1841 		}
1842 	}
1843 check_slabs:
1844 	if (*str == ',')
1845 		*slabs = ++str;
1846 	else
1847 		*slabs = NULL;
1848 
1849 	/* Skip over the slab list */
1850 	while (*str && *str != ';')
1851 		str++;
1852 
1853 	/* Skip any completely empty blocks */
1854 	while (*str && *str == ';')
1855 		str++;
1856 
1857 	if (init && higher_order_disable)
1858 		disable_higher_order_debug = 1;
1859 
1860 	if (*str)
1861 		return str;
1862 	else
1863 		return NULL;
1864 }
1865 
setup_slub_debug(char * str)1866 static int __init setup_slub_debug(char *str)
1867 {
1868 	slab_flags_t flags;
1869 	slab_flags_t global_flags;
1870 	char *saved_str;
1871 	char *slab_list;
1872 	bool global_slub_debug_changed = false;
1873 	bool slab_list_specified = false;
1874 
1875 	global_flags = DEBUG_DEFAULT_FLAGS;
1876 	if (*str++ != '=' || !*str)
1877 		/*
1878 		 * No options specified. Switch on full debugging.
1879 		 */
1880 		goto out;
1881 
1882 	saved_str = str;
1883 	while (str) {
1884 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1885 
1886 		if (!slab_list) {
1887 			global_flags = flags;
1888 			global_slub_debug_changed = true;
1889 		} else {
1890 			slab_list_specified = true;
1891 			if (flags & SLAB_STORE_USER)
1892 				stack_depot_request_early_init();
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * For backwards compatibility, a single list of flags with list of
1898 	 * slabs means debugging is only changed for those slabs, so the global
1899 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1900 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1901 	 * long as there is no option specifying flags without a slab list.
1902 	 */
1903 	if (slab_list_specified) {
1904 		if (!global_slub_debug_changed)
1905 			global_flags = slub_debug;
1906 		slub_debug_string = saved_str;
1907 	}
1908 out:
1909 	slub_debug = global_flags;
1910 	if (slub_debug & SLAB_STORE_USER)
1911 		stack_depot_request_early_init();
1912 	if (slub_debug != 0 || slub_debug_string)
1913 		static_branch_enable(&slub_debug_enabled);
1914 	else
1915 		static_branch_disable(&slub_debug_enabled);
1916 	if ((static_branch_unlikely(&init_on_alloc) ||
1917 	     static_branch_unlikely(&init_on_free)) &&
1918 	    (slub_debug & SLAB_POISON))
1919 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1920 	return 1;
1921 }
1922 
1923 __setup("slab_debug", setup_slub_debug);
1924 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1925 
1926 /*
1927  * kmem_cache_flags - apply debugging options to the cache
1928  * @flags:		flags to set
1929  * @name:		name of the cache
1930  *
1931  * Debug option(s) are applied to @flags. In addition to the debug
1932  * option(s), if a slab name (or multiple) is specified i.e.
1933  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1934  * then only the select slabs will receive the debug option(s).
1935  */
kmem_cache_flags(slab_flags_t flags,const char * name)1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 	char *iter;
1939 	size_t len;
1940 	char *next_block;
1941 	slab_flags_t block_flags;
1942 	slab_flags_t slub_debug_local = slub_debug;
1943 
1944 	if (flags & SLAB_NO_USER_FLAGS)
1945 		return flags;
1946 
1947 	/*
1948 	 * If the slab cache is for debugging (e.g. kmemleak) then
1949 	 * don't store user (stack trace) information by default,
1950 	 * but let the user enable it via the command line below.
1951 	 */
1952 	if (flags & SLAB_NOLEAKTRACE)
1953 		slub_debug_local &= ~SLAB_STORE_USER;
1954 
1955 	len = strlen(name);
1956 	next_block = slub_debug_string;
1957 	/* Go through all blocks of debug options, see if any matches our slab's name */
1958 	while (next_block) {
1959 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1960 		if (!iter)
1961 			continue;
1962 		/* Found a block that has a slab list, search it */
1963 		while (*iter) {
1964 			char *end, *glob;
1965 			size_t cmplen;
1966 
1967 			end = strchrnul(iter, ',');
1968 			if (next_block && next_block < end)
1969 				end = next_block - 1;
1970 
1971 			glob = strnchr(iter, end - iter, '*');
1972 			if (glob)
1973 				cmplen = glob - iter;
1974 			else
1975 				cmplen = max_t(size_t, len, (end - iter));
1976 
1977 			if (!strncmp(name, iter, cmplen)) {
1978 				flags |= block_flags;
1979 				return flags;
1980 			}
1981 
1982 			if (!*end || *end == ';')
1983 				break;
1984 			iter = end + 1;
1985 		}
1986 	}
1987 
1988 	return flags | slub_debug_local;
1989 }
1990 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1991 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1992 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1993 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1994 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1995 static inline bool alloc_debug_processing(struct kmem_cache *s,
1996 	struct slab *slab, void *object, int orig_size) { return true; }
1997 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1998 static inline bool free_debug_processing(struct kmem_cache *s,
1999 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2000 	unsigned long addr, depot_stack_handle_t handle) { return true; }
2001 
slab_pad_check(struct kmem_cache * s,struct slab * slab)2002 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)2003 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2004 			void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)2005 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)2006 static inline void set_track(struct kmem_cache *s, void *object,
2007 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2008 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2010 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2011 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)2012 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2013 {
2014 	return flags;
2015 }
2016 #define slub_debug 0
2017 
2018 #define disable_higher_order_debug 0
2019 
node_nr_slabs(struct kmem_cache_node * n)2020 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2021 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)2022 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2023 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)2024 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2025 							int objects) {}
2026 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)2027 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2028 			       void **freelist, void *nextfree)
2029 {
2030 	return false;
2031 }
2032 #endif
2033 #endif /* CONFIG_SLUB_DEBUG */
2034 
2035 #ifdef CONFIG_SLAB_OBJ_EXT
2036 
2037 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2038 
mark_objexts_empty(struct slabobj_ext * obj_exts)2039 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2040 {
2041 	struct slabobj_ext *slab_exts;
2042 	struct slab *obj_exts_slab;
2043 
2044 	obj_exts_slab = virt_to_slab(obj_exts);
2045 	slab_exts = slab_obj_exts(obj_exts_slab);
2046 	if (slab_exts) {
2047 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2048 						 obj_exts_slab, obj_exts);
2049 		/* codetag should be NULL */
2050 		WARN_ON(slab_exts[offs].ref.ct);
2051 		set_codetag_empty(&slab_exts[offs].ref);
2052 	}
2053 }
2054 
mark_failed_objexts_alloc(struct slab * slab)2055 static inline bool mark_failed_objexts_alloc(struct slab *slab)
2056 {
2057 	return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2058 }
2059 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2060 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2061 			struct slabobj_ext *vec, unsigned int objects)
2062 {
2063 	/*
2064 	 * If vector previously failed to allocate then we have live
2065 	 * objects with no tag reference. Mark all references in this
2066 	 * vector as empty to avoid warnings later on.
2067 	 */
2068 	if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2069 		unsigned int i;
2070 
2071 		for (i = 0; i < objects; i++)
2072 			set_codetag_empty(&vec[i].ref);
2073 	}
2074 }
2075 
2076 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2077 
mark_objexts_empty(struct slabobj_ext * obj_exts)2078 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2079 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2080 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2081 			struct slabobj_ext *vec, unsigned int objects) {}
2082 
2083 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2084 
2085 /*
2086  * The allocated objcg pointers array is not accounted directly.
2087  * Moreover, it should not come from DMA buffer and is not readily
2088  * reclaimable. So those GFP bits should be masked off.
2089  */
2090 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2091 				__GFP_ACCOUNT | __GFP_NOFAIL)
2092 
init_slab_obj_exts(struct slab * slab)2093 static inline void init_slab_obj_exts(struct slab *slab)
2094 {
2095 	slab->obj_exts = 0;
2096 }
2097 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 		        gfp_t gfp, bool new_slab)
2100 {
2101 	bool allow_spin = gfpflags_allow_spinning(gfp);
2102 	unsigned int objects = objs_per_slab(s, slab);
2103 	unsigned long new_exts;
2104 	unsigned long old_exts;
2105 	struct slabobj_ext *vec;
2106 
2107 	gfp &= ~OBJCGS_CLEAR_MASK;
2108 	/* Prevent recursive extension vector allocation */
2109 	gfp |= __GFP_NO_OBJ_EXT;
2110 
2111 	/*
2112 	 * Note that allow_spin may be false during early boot and its
2113 	 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 	 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 	 * very early allocations on those.
2116 	 */
2117 	if (unlikely(!allow_spin)) {
2118 		size_t sz = objects * sizeof(struct slabobj_ext);
2119 
2120 		vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 				     slab_nid(slab));
2122 	} else {
2123 		vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 				   slab_nid(slab));
2125 	}
2126 	if (!vec) {
2127 		/*
2128 		 * Try to mark vectors which failed to allocate.
2129 		 * If this operation fails, there may be a racing process
2130 		 * that has already completed the allocation.
2131 		 */
2132 		if (!mark_failed_objexts_alloc(slab) &&
2133 		    slab_obj_exts(slab))
2134 			return 0;
2135 
2136 		return -ENOMEM;
2137 	}
2138 
2139 	new_exts = (unsigned long)vec;
2140 	if (unlikely(!allow_spin))
2141 		new_exts |= OBJEXTS_NOSPIN_ALLOC;
2142 #ifdef CONFIG_MEMCG
2143 	new_exts |= MEMCG_DATA_OBJEXTS;
2144 #endif
2145 retry:
2146 	old_exts = READ_ONCE(slab->obj_exts);
2147 	handle_failed_objexts_alloc(old_exts, vec, objects);
2148 	if (new_slab) {
2149 		/*
2150 		 * If the slab is brand new and nobody can yet access its
2151 		 * obj_exts, no synchronization is required and obj_exts can
2152 		 * be simply assigned.
2153 		 */
2154 		slab->obj_exts = new_exts;
2155 	} else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2156 		/*
2157 		 * If the slab is already in use, somebody can allocate and
2158 		 * assign slabobj_exts in parallel. In this case the existing
2159 		 * objcg vector should be reused.
2160 		 */
2161 		mark_objexts_empty(vec);
2162 		if (unlikely(!allow_spin))
2163 			kfree_nolock(vec);
2164 		else
2165 			kfree(vec);
2166 		return 0;
2167 	} else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2168 		/* Retry if a racing thread changed slab->obj_exts from under us. */
2169 		goto retry;
2170 	}
2171 
2172 	if (allow_spin)
2173 		kmemleak_not_leak(vec);
2174 	return 0;
2175 }
2176 
free_slab_obj_exts(struct slab * slab)2177 static inline void free_slab_obj_exts(struct slab *slab)
2178 {
2179 	struct slabobj_ext *obj_exts;
2180 
2181 	obj_exts = slab_obj_exts(slab);
2182 	if (!obj_exts) {
2183 		/*
2184 		 * If obj_exts allocation failed, slab->obj_exts is set to
2185 		 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2186 		 * clear the flag.
2187 		 */
2188 		slab->obj_exts = 0;
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2194 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2195 	 * warning if slab has extensions but the extension of an object is
2196 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2197 	 * the extension for obj_exts is expected to be NULL.
2198 	 */
2199 	mark_objexts_empty(obj_exts);
2200 	if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2201 		kfree_nolock(obj_exts);
2202 	else
2203 		kfree(obj_exts);
2204 	slab->obj_exts = 0;
2205 }
2206 
2207 #else /* CONFIG_SLAB_OBJ_EXT */
2208 
init_slab_obj_exts(struct slab * slab)2209 static inline void init_slab_obj_exts(struct slab *slab)
2210 {
2211 }
2212 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2213 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2214 			       gfp_t gfp, bool new_slab)
2215 {
2216 	return 0;
2217 }
2218 
free_slab_obj_exts(struct slab * slab)2219 static inline void free_slab_obj_exts(struct slab *slab)
2220 {
2221 }
2222 
2223 #endif /* CONFIG_SLAB_OBJ_EXT */
2224 
2225 #ifdef CONFIG_MEM_ALLOC_PROFILING
2226 
2227 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2228 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2229 {
2230 	struct slab *slab;
2231 
2232 	slab = virt_to_slab(p);
2233 	if (!slab_obj_exts(slab) &&
2234 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2235 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2236 			     __func__, s->name);
2237 		return NULL;
2238 	}
2239 
2240 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2241 }
2242 
2243 /* Should be called only if mem_alloc_profiling_enabled() */
2244 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2245 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2246 {
2247 	struct slabobj_ext *obj_exts;
2248 
2249 	if (!object)
2250 		return;
2251 
2252 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2253 		return;
2254 
2255 	if (flags & __GFP_NO_OBJ_EXT)
2256 		return;
2257 
2258 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2259 	/*
2260 	 * Currently obj_exts is used only for allocation profiling.
2261 	 * If other users appear then mem_alloc_profiling_enabled()
2262 	 * check should be added before alloc_tag_add().
2263 	 */
2264 	if (likely(obj_exts))
2265 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2266 	else
2267 		alloc_tag_set_inaccurate(current->alloc_tag);
2268 }
2269 
2270 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2271 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2272 {
2273 	if (mem_alloc_profiling_enabled())
2274 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2275 }
2276 
2277 /* Should be called only if mem_alloc_profiling_enabled() */
2278 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2279 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2280 			       int objects)
2281 {
2282 	struct slabobj_ext *obj_exts;
2283 	int i;
2284 
2285 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2286 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2287 		return;
2288 
2289 	obj_exts = slab_obj_exts(slab);
2290 	if (!obj_exts)
2291 		return;
2292 
2293 	for (i = 0; i < objects; i++) {
2294 		unsigned int off = obj_to_index(s, slab, p[i]);
2295 
2296 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2297 	}
2298 }
2299 
2300 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2301 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2302 			     int objects)
2303 {
2304 	if (mem_alloc_profiling_enabled())
2305 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2306 }
2307 
2308 #else /* CONFIG_MEM_ALLOC_PROFILING */
2309 
2310 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2311 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2312 {
2313 }
2314 
2315 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2316 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2317 			     int objects)
2318 {
2319 }
2320 
2321 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2322 
2323 
2324 #ifdef CONFIG_MEMCG
2325 
2326 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2327 
2328 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2329 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2330 				gfp_t flags, size_t size, void **p)
2331 {
2332 	if (likely(!memcg_kmem_online()))
2333 		return true;
2334 
2335 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2336 		return true;
2337 
2338 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2339 		return true;
2340 
2341 	if (likely(size == 1)) {
2342 		memcg_alloc_abort_single(s, *p);
2343 		*p = NULL;
2344 	} else {
2345 		kmem_cache_free_bulk(s, size, p);
2346 	}
2347 
2348 	return false;
2349 }
2350 
2351 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2352 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2353 			  int objects)
2354 {
2355 	struct slabobj_ext *obj_exts;
2356 
2357 	if (!memcg_kmem_online())
2358 		return;
2359 
2360 	obj_exts = slab_obj_exts(slab);
2361 	if (likely(!obj_exts))
2362 		return;
2363 
2364 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2365 }
2366 
2367 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2368 bool memcg_slab_post_charge(void *p, gfp_t flags)
2369 {
2370 	struct slabobj_ext *slab_exts;
2371 	struct kmem_cache *s;
2372 	struct folio *folio;
2373 	struct slab *slab;
2374 	unsigned long off;
2375 
2376 	folio = virt_to_folio(p);
2377 	if (!folio_test_slab(folio)) {
2378 		int size;
2379 
2380 		if (folio_memcg_kmem(folio))
2381 			return true;
2382 
2383 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2384 					     folio_order(folio)))
2385 			return false;
2386 
2387 		/*
2388 		 * This folio has already been accounted in the global stats but
2389 		 * not in the memcg stats. So, subtract from the global and use
2390 		 * the interface which adds to both global and memcg stats.
2391 		 */
2392 		size = folio_size(folio);
2393 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2394 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2395 		return true;
2396 	}
2397 
2398 	slab = folio_slab(folio);
2399 	s = slab->slab_cache;
2400 
2401 	/*
2402 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2403 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2404 	 * becoming effectively unfreeable.
2405 	 */
2406 	if (is_kmalloc_normal(s))
2407 		return true;
2408 
2409 	/* Ignore already charged objects. */
2410 	slab_exts = slab_obj_exts(slab);
2411 	if (slab_exts) {
2412 		off = obj_to_index(s, slab, p);
2413 		if (unlikely(slab_exts[off].objcg))
2414 			return true;
2415 	}
2416 
2417 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2418 }
2419 
2420 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2421 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2422 					      struct list_lru *lru,
2423 					      gfp_t flags, size_t size,
2424 					      void **p)
2425 {
2426 	return true;
2427 }
2428 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2429 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2430 					void **p, int objects)
2431 {
2432 }
2433 
memcg_slab_post_charge(void * p,gfp_t flags)2434 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2435 {
2436 	return true;
2437 }
2438 #endif /* CONFIG_MEMCG */
2439 
2440 #ifdef CONFIG_SLUB_RCU_DEBUG
2441 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2442 
2443 struct rcu_delayed_free {
2444 	struct rcu_head head;
2445 	void *object;
2446 };
2447 #endif
2448 
2449 /*
2450  * Hooks for other subsystems that check memory allocations. In a typical
2451  * production configuration these hooks all should produce no code at all.
2452  *
2453  * Returns true if freeing of the object can proceed, false if its reuse
2454  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2455  * to KFENCE.
2456  */
2457 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2458 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2459 		    bool after_rcu_delay)
2460 {
2461 	/* Are the object contents still accessible? */
2462 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2463 
2464 	kmemleak_free_recursive(x, s->flags);
2465 	kmsan_slab_free(s, x);
2466 
2467 	debug_check_no_locks_freed(x, s->object_size);
2468 
2469 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2470 		debug_check_no_obj_freed(x, s->object_size);
2471 
2472 	/* Use KCSAN to help debug racy use-after-free. */
2473 	if (!still_accessible)
2474 		__kcsan_check_access(x, s->object_size,
2475 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2476 
2477 	if (kfence_free(x))
2478 		return false;
2479 
2480 	/*
2481 	 * Give KASAN a chance to notice an invalid free operation before we
2482 	 * modify the object.
2483 	 */
2484 	if (kasan_slab_pre_free(s, x))
2485 		return false;
2486 
2487 #ifdef CONFIG_SLUB_RCU_DEBUG
2488 	if (still_accessible) {
2489 		struct rcu_delayed_free *delayed_free;
2490 
2491 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2492 		if (delayed_free) {
2493 			/*
2494 			 * Let KASAN track our call stack as a "related work
2495 			 * creation", just like if the object had been freed
2496 			 * normally via kfree_rcu().
2497 			 * We have to do this manually because the rcu_head is
2498 			 * not located inside the object.
2499 			 */
2500 			kasan_record_aux_stack(x);
2501 
2502 			delayed_free->object = x;
2503 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2504 			return false;
2505 		}
2506 	}
2507 #endif /* CONFIG_SLUB_RCU_DEBUG */
2508 
2509 	/*
2510 	 * As memory initialization might be integrated into KASAN,
2511 	 * kasan_slab_free and initialization memset's must be
2512 	 * kept together to avoid discrepancies in behavior.
2513 	 *
2514 	 * The initialization memset's clear the object and the metadata,
2515 	 * but don't touch the SLAB redzone.
2516 	 *
2517 	 * The object's freepointer is also avoided if stored outside the
2518 	 * object.
2519 	 */
2520 	if (unlikely(init)) {
2521 		int rsize;
2522 		unsigned int inuse, orig_size;
2523 
2524 		inuse = get_info_end(s);
2525 		orig_size = get_orig_size(s, x);
2526 		if (!kasan_has_integrated_init())
2527 			memset(kasan_reset_tag(x), 0, orig_size);
2528 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2529 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2530 		       s->size - inuse - rsize);
2531 		/*
2532 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2533 		 * would be reported
2534 		 */
2535 		set_orig_size(s, x, orig_size);
2536 
2537 	}
2538 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2539 	return !kasan_slab_free(s, x, init, still_accessible, false);
2540 }
2541 
2542 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2543 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2544 			     int *cnt)
2545 {
2546 
2547 	void *object;
2548 	void *next = *head;
2549 	void *old_tail = *tail;
2550 	bool init;
2551 
2552 	if (is_kfence_address(next)) {
2553 		slab_free_hook(s, next, false, false);
2554 		return false;
2555 	}
2556 
2557 	/* Head and tail of the reconstructed freelist */
2558 	*head = NULL;
2559 	*tail = NULL;
2560 
2561 	init = slab_want_init_on_free(s);
2562 
2563 	do {
2564 		object = next;
2565 		next = get_freepointer(s, object);
2566 
2567 		/* If object's reuse doesn't have to be delayed */
2568 		if (likely(slab_free_hook(s, object, init, false))) {
2569 			/* Move object to the new freelist */
2570 			set_freepointer(s, object, *head);
2571 			*head = object;
2572 			if (!*tail)
2573 				*tail = object;
2574 		} else {
2575 			/*
2576 			 * Adjust the reconstructed freelist depth
2577 			 * accordingly if object's reuse is delayed.
2578 			 */
2579 			--(*cnt);
2580 		}
2581 	} while (object != old_tail);
2582 
2583 	return *head != NULL;
2584 }
2585 
setup_object(struct kmem_cache * s,void * object)2586 static void *setup_object(struct kmem_cache *s, void *object)
2587 {
2588 	setup_object_debug(s, object);
2589 	object = kasan_init_slab_obj(s, object);
2590 	if (unlikely(s->ctor)) {
2591 		kasan_unpoison_new_object(s, object);
2592 		s->ctor(object);
2593 		kasan_poison_new_object(s, object);
2594 	}
2595 	return object;
2596 }
2597 
alloc_empty_sheaf(struct kmem_cache * s,gfp_t gfp)2598 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2599 {
2600 	struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects,
2601 					s->sheaf_capacity), gfp);
2602 
2603 	if (unlikely(!sheaf))
2604 		return NULL;
2605 
2606 	sheaf->cache = s;
2607 
2608 	stat(s, SHEAF_ALLOC);
2609 
2610 	return sheaf;
2611 }
2612 
free_empty_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf)2613 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2614 {
2615 	kfree(sheaf);
2616 
2617 	stat(s, SHEAF_FREE);
2618 }
2619 
2620 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2621 				   size_t size, void **p);
2622 
2623 
refill_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)2624 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2625 			 gfp_t gfp)
2626 {
2627 	int to_fill = s->sheaf_capacity - sheaf->size;
2628 	int filled;
2629 
2630 	if (!to_fill)
2631 		return 0;
2632 
2633 	filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2634 					 &sheaf->objects[sheaf->size]);
2635 
2636 	sheaf->size += filled;
2637 
2638 	stat_add(s, SHEAF_REFILL, filled);
2639 
2640 	if (filled < to_fill)
2641 		return -ENOMEM;
2642 
2643 	return 0;
2644 }
2645 
2646 
alloc_full_sheaf(struct kmem_cache * s,gfp_t gfp)2647 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2648 {
2649 	struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2650 
2651 	if (!sheaf)
2652 		return NULL;
2653 
2654 	if (refill_sheaf(s, sheaf, gfp)) {
2655 		free_empty_sheaf(s, sheaf);
2656 		return NULL;
2657 	}
2658 
2659 	return sheaf;
2660 }
2661 
2662 /*
2663  * Maximum number of objects freed during a single flush of main pcs sheaf.
2664  * Translates directly to an on-stack array size.
2665  */
2666 #define PCS_BATCH_MAX	32U
2667 
2668 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2669 
2670 /*
2671  * Free all objects from the main sheaf. In order to perform
2672  * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2673  * object pointers are moved to a on-stack array under the lock. To bound the
2674  * stack usage, limit each batch to PCS_BATCH_MAX.
2675  *
2676  * returns true if at least partially flushed
2677  */
sheaf_flush_main(struct kmem_cache * s)2678 static bool sheaf_flush_main(struct kmem_cache *s)
2679 {
2680 	struct slub_percpu_sheaves *pcs;
2681 	unsigned int batch, remaining;
2682 	void *objects[PCS_BATCH_MAX];
2683 	struct slab_sheaf *sheaf;
2684 	bool ret = false;
2685 
2686 next_batch:
2687 	if (!local_trylock(&s->cpu_sheaves->lock))
2688 		return ret;
2689 
2690 	pcs = this_cpu_ptr(s->cpu_sheaves);
2691 	sheaf = pcs->main;
2692 
2693 	batch = min(PCS_BATCH_MAX, sheaf->size);
2694 
2695 	sheaf->size -= batch;
2696 	memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2697 
2698 	remaining = sheaf->size;
2699 
2700 	local_unlock(&s->cpu_sheaves->lock);
2701 
2702 	__kmem_cache_free_bulk(s, batch, &objects[0]);
2703 
2704 	stat_add(s, SHEAF_FLUSH, batch);
2705 
2706 	ret = true;
2707 
2708 	if (remaining)
2709 		goto next_batch;
2710 
2711 	return ret;
2712 }
2713 
2714 /*
2715  * Free all objects from a sheaf that's unused, i.e. not linked to any
2716  * cpu_sheaves, so we need no locking and batching. The locking is also not
2717  * necessary when flushing cpu's sheaves (both spare and main) during cpu
2718  * hotremove as the cpu is not executing anymore.
2719  */
sheaf_flush_unused(struct kmem_cache * s,struct slab_sheaf * sheaf)2720 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2721 {
2722 	if (!sheaf->size)
2723 		return;
2724 
2725 	stat_add(s, SHEAF_FLUSH, sheaf->size);
2726 
2727 	__kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2728 
2729 	sheaf->size = 0;
2730 }
2731 
__rcu_free_sheaf_prepare(struct kmem_cache * s,struct slab_sheaf * sheaf)2732 static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
2733 				     struct slab_sheaf *sheaf)
2734 {
2735 	bool init = slab_want_init_on_free(s);
2736 	void **p = &sheaf->objects[0];
2737 	unsigned int i = 0;
2738 
2739 	while (i < sheaf->size) {
2740 		struct slab *slab = virt_to_slab(p[i]);
2741 
2742 		memcg_slab_free_hook(s, slab, p + i, 1);
2743 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2744 
2745 		if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2746 			p[i] = p[--sheaf->size];
2747 			continue;
2748 		}
2749 
2750 		i++;
2751 	}
2752 }
2753 
rcu_free_sheaf_nobarn(struct rcu_head * head)2754 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2755 {
2756 	struct slab_sheaf *sheaf;
2757 	struct kmem_cache *s;
2758 
2759 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
2760 	s = sheaf->cache;
2761 
2762 	__rcu_free_sheaf_prepare(s, sheaf);
2763 
2764 	sheaf_flush_unused(s, sheaf);
2765 
2766 	free_empty_sheaf(s, sheaf);
2767 }
2768 
2769 /*
2770  * Caller needs to make sure migration is disabled in order to fully flush
2771  * single cpu's sheaves
2772  *
2773  * must not be called from an irq
2774  *
2775  * flushing operations are rare so let's keep it simple and flush to slabs
2776  * directly, skipping the barn
2777  */
pcs_flush_all(struct kmem_cache * s)2778 static void pcs_flush_all(struct kmem_cache *s)
2779 {
2780 	struct slub_percpu_sheaves *pcs;
2781 	struct slab_sheaf *spare, *rcu_free;
2782 
2783 	local_lock(&s->cpu_sheaves->lock);
2784 	pcs = this_cpu_ptr(s->cpu_sheaves);
2785 
2786 	spare = pcs->spare;
2787 	pcs->spare = NULL;
2788 
2789 	rcu_free = pcs->rcu_free;
2790 	pcs->rcu_free = NULL;
2791 
2792 	local_unlock(&s->cpu_sheaves->lock);
2793 
2794 	if (spare) {
2795 		sheaf_flush_unused(s, spare);
2796 		free_empty_sheaf(s, spare);
2797 	}
2798 
2799 	if (rcu_free)
2800 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2801 
2802 	sheaf_flush_main(s);
2803 }
2804 
__pcs_flush_all_cpu(struct kmem_cache * s,unsigned int cpu)2805 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2806 {
2807 	struct slub_percpu_sheaves *pcs;
2808 
2809 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2810 
2811 	/* The cpu is not executing anymore so we don't need pcs->lock */
2812 	sheaf_flush_unused(s, pcs->main);
2813 	if (pcs->spare) {
2814 		sheaf_flush_unused(s, pcs->spare);
2815 		free_empty_sheaf(s, pcs->spare);
2816 		pcs->spare = NULL;
2817 	}
2818 
2819 	if (pcs->rcu_free) {
2820 		call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2821 		pcs->rcu_free = NULL;
2822 	}
2823 }
2824 
pcs_destroy(struct kmem_cache * s)2825 static void pcs_destroy(struct kmem_cache *s)
2826 {
2827 	int cpu;
2828 
2829 	for_each_possible_cpu(cpu) {
2830 		struct slub_percpu_sheaves *pcs;
2831 
2832 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2833 
2834 		/* can happen when unwinding failed create */
2835 		if (!pcs->main)
2836 			continue;
2837 
2838 		/*
2839 		 * We have already passed __kmem_cache_shutdown() so everything
2840 		 * was flushed and there should be no objects allocated from
2841 		 * slabs, otherwise kmem_cache_destroy() would have aborted.
2842 		 * Therefore something would have to be really wrong if the
2843 		 * warnings here trigger, and we should rather leave objects and
2844 		 * sheaves to leak in that case.
2845 		 */
2846 
2847 		WARN_ON(pcs->spare);
2848 		WARN_ON(pcs->rcu_free);
2849 
2850 		if (!WARN_ON(pcs->main->size)) {
2851 			free_empty_sheaf(s, pcs->main);
2852 			pcs->main = NULL;
2853 		}
2854 	}
2855 
2856 	free_percpu(s->cpu_sheaves);
2857 	s->cpu_sheaves = NULL;
2858 }
2859 
barn_get_empty_sheaf(struct node_barn * barn)2860 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2861 {
2862 	struct slab_sheaf *empty = NULL;
2863 	unsigned long flags;
2864 
2865 	if (!data_race(barn->nr_empty))
2866 		return NULL;
2867 
2868 	spin_lock_irqsave(&barn->lock, flags);
2869 
2870 	if (likely(barn->nr_empty)) {
2871 		empty = list_first_entry(&barn->sheaves_empty,
2872 					 struct slab_sheaf, barn_list);
2873 		list_del(&empty->barn_list);
2874 		barn->nr_empty--;
2875 	}
2876 
2877 	spin_unlock_irqrestore(&barn->lock, flags);
2878 
2879 	return empty;
2880 }
2881 
2882 /*
2883  * The following two functions are used mainly in cases where we have to undo an
2884  * intended action due to a race or cpu migration. Thus they do not check the
2885  * empty or full sheaf limits for simplicity.
2886  */
2887 
barn_put_empty_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2888 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2889 {
2890 	unsigned long flags;
2891 
2892 	spin_lock_irqsave(&barn->lock, flags);
2893 
2894 	list_add(&sheaf->barn_list, &barn->sheaves_empty);
2895 	barn->nr_empty++;
2896 
2897 	spin_unlock_irqrestore(&barn->lock, flags);
2898 }
2899 
barn_put_full_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2900 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2901 {
2902 	unsigned long flags;
2903 
2904 	spin_lock_irqsave(&barn->lock, flags);
2905 
2906 	list_add(&sheaf->barn_list, &barn->sheaves_full);
2907 	barn->nr_full++;
2908 
2909 	spin_unlock_irqrestore(&barn->lock, flags);
2910 }
2911 
barn_get_full_or_empty_sheaf(struct node_barn * barn)2912 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2913 {
2914 	struct slab_sheaf *sheaf = NULL;
2915 	unsigned long flags;
2916 
2917 	if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2918 		return NULL;
2919 
2920 	spin_lock_irqsave(&barn->lock, flags);
2921 
2922 	if (barn->nr_full) {
2923 		sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2924 					barn_list);
2925 		list_del(&sheaf->barn_list);
2926 		barn->nr_full--;
2927 	} else if (barn->nr_empty) {
2928 		sheaf = list_first_entry(&barn->sheaves_empty,
2929 					 struct slab_sheaf, barn_list);
2930 		list_del(&sheaf->barn_list);
2931 		barn->nr_empty--;
2932 	}
2933 
2934 	spin_unlock_irqrestore(&barn->lock, flags);
2935 
2936 	return sheaf;
2937 }
2938 
2939 /*
2940  * If a full sheaf is available, return it and put the supplied empty one to
2941  * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2942  * change.
2943  */
2944 static struct slab_sheaf *
barn_replace_empty_sheaf(struct node_barn * barn,struct slab_sheaf * empty)2945 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2946 {
2947 	struct slab_sheaf *full = NULL;
2948 	unsigned long flags;
2949 
2950 	if (!data_race(barn->nr_full))
2951 		return NULL;
2952 
2953 	spin_lock_irqsave(&barn->lock, flags);
2954 
2955 	if (likely(barn->nr_full)) {
2956 		full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2957 					barn_list);
2958 		list_del(&full->barn_list);
2959 		list_add(&empty->barn_list, &barn->sheaves_empty);
2960 		barn->nr_full--;
2961 		barn->nr_empty++;
2962 	}
2963 
2964 	spin_unlock_irqrestore(&barn->lock, flags);
2965 
2966 	return full;
2967 }
2968 
2969 /*
2970  * If an empty sheaf is available, return it and put the supplied full one to
2971  * barn. But if there are too many full sheaves, reject this with -E2BIG.
2972  */
2973 static struct slab_sheaf *
barn_replace_full_sheaf(struct node_barn * barn,struct slab_sheaf * full)2974 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2975 {
2976 	struct slab_sheaf *empty;
2977 	unsigned long flags;
2978 
2979 	/* we don't repeat this check under barn->lock as it's not critical */
2980 	if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
2981 		return ERR_PTR(-E2BIG);
2982 	if (!data_race(barn->nr_empty))
2983 		return ERR_PTR(-ENOMEM);
2984 
2985 	spin_lock_irqsave(&barn->lock, flags);
2986 
2987 	if (likely(barn->nr_empty)) {
2988 		empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
2989 					 barn_list);
2990 		list_del(&empty->barn_list);
2991 		list_add(&full->barn_list, &barn->sheaves_full);
2992 		barn->nr_empty--;
2993 		barn->nr_full++;
2994 	} else {
2995 		empty = ERR_PTR(-ENOMEM);
2996 	}
2997 
2998 	spin_unlock_irqrestore(&barn->lock, flags);
2999 
3000 	return empty;
3001 }
3002 
barn_init(struct node_barn * barn)3003 static void barn_init(struct node_barn *barn)
3004 {
3005 	spin_lock_init(&barn->lock);
3006 	INIT_LIST_HEAD(&barn->sheaves_full);
3007 	INIT_LIST_HEAD(&barn->sheaves_empty);
3008 	barn->nr_full = 0;
3009 	barn->nr_empty = 0;
3010 }
3011 
barn_shrink(struct kmem_cache * s,struct node_barn * barn)3012 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3013 {
3014 	struct list_head empty_list;
3015 	struct list_head full_list;
3016 	struct slab_sheaf *sheaf, *sheaf2;
3017 	unsigned long flags;
3018 
3019 	INIT_LIST_HEAD(&empty_list);
3020 	INIT_LIST_HEAD(&full_list);
3021 
3022 	spin_lock_irqsave(&barn->lock, flags);
3023 
3024 	list_splice_init(&barn->sheaves_full, &full_list);
3025 	barn->nr_full = 0;
3026 	list_splice_init(&barn->sheaves_empty, &empty_list);
3027 	barn->nr_empty = 0;
3028 
3029 	spin_unlock_irqrestore(&barn->lock, flags);
3030 
3031 	list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3032 		sheaf_flush_unused(s, sheaf);
3033 		free_empty_sheaf(s, sheaf);
3034 	}
3035 
3036 	list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3037 		free_empty_sheaf(s, sheaf);
3038 }
3039 
3040 /*
3041  * Slab allocation and freeing
3042  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo,bool allow_spin)3043 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3044 					   struct kmem_cache_order_objects oo,
3045 					   bool allow_spin)
3046 {
3047 	struct folio *folio;
3048 	struct slab *slab;
3049 	unsigned int order = oo_order(oo);
3050 
3051 	if (unlikely(!allow_spin))
3052 		folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3053 								  node, order);
3054 	else if (node == NUMA_NO_NODE)
3055 		folio = (struct folio *)alloc_frozen_pages(flags, order);
3056 	else
3057 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
3058 
3059 	if (!folio)
3060 		return NULL;
3061 
3062 	slab = folio_slab(folio);
3063 	__folio_set_slab(folio);
3064 	if (folio_is_pfmemalloc(folio))
3065 		slab_set_pfmemalloc(slab);
3066 
3067 	return slab;
3068 }
3069 
3070 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3071 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)3072 static int init_cache_random_seq(struct kmem_cache *s)
3073 {
3074 	unsigned int count = oo_objects(s->oo);
3075 	int err;
3076 
3077 	/* Bailout if already initialised */
3078 	if (s->random_seq)
3079 		return 0;
3080 
3081 	err = cache_random_seq_create(s, count, GFP_KERNEL);
3082 	if (err) {
3083 		pr_err("SLUB: Unable to initialize free list for %s\n",
3084 			s->name);
3085 		return err;
3086 	}
3087 
3088 	/* Transform to an offset on the set of pages */
3089 	if (s->random_seq) {
3090 		unsigned int i;
3091 
3092 		for (i = 0; i < count; i++)
3093 			s->random_seq[i] *= s->size;
3094 	}
3095 	return 0;
3096 }
3097 
3098 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)3099 static void __init init_freelist_randomization(void)
3100 {
3101 	struct kmem_cache *s;
3102 
3103 	mutex_lock(&slab_mutex);
3104 
3105 	list_for_each_entry(s, &slab_caches, list)
3106 		init_cache_random_seq(s);
3107 
3108 	mutex_unlock(&slab_mutex);
3109 }
3110 
3111 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)3112 static void *next_freelist_entry(struct kmem_cache *s,
3113 				unsigned long *pos, void *start,
3114 				unsigned long page_limit,
3115 				unsigned long freelist_count)
3116 {
3117 	unsigned int idx;
3118 
3119 	/*
3120 	 * If the target page allocation failed, the number of objects on the
3121 	 * page might be smaller than the usual size defined by the cache.
3122 	 */
3123 	do {
3124 		idx = s->random_seq[*pos];
3125 		*pos += 1;
3126 		if (*pos >= freelist_count)
3127 			*pos = 0;
3128 	} while (unlikely(idx >= page_limit));
3129 
3130 	return (char *)start + idx;
3131 }
3132 
3133 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3134 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3135 {
3136 	void *start;
3137 	void *cur;
3138 	void *next;
3139 	unsigned long idx, pos, page_limit, freelist_count;
3140 
3141 	if (slab->objects < 2 || !s->random_seq)
3142 		return false;
3143 
3144 	freelist_count = oo_objects(s->oo);
3145 	pos = get_random_u32_below(freelist_count);
3146 
3147 	page_limit = slab->objects * s->size;
3148 	start = fixup_red_left(s, slab_address(slab));
3149 
3150 	/* First entry is used as the base of the freelist */
3151 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3152 	cur = setup_object(s, cur);
3153 	slab->freelist = cur;
3154 
3155 	for (idx = 1; idx < slab->objects; idx++) {
3156 		next = next_freelist_entry(s, &pos, start, page_limit,
3157 			freelist_count);
3158 		next = setup_object(s, next);
3159 		set_freepointer(s, cur, next);
3160 		cur = next;
3161 	}
3162 	set_freepointer(s, cur, NULL);
3163 
3164 	return true;
3165 }
3166 #else
init_cache_random_seq(struct kmem_cache * s)3167 static inline int init_cache_random_seq(struct kmem_cache *s)
3168 {
3169 	return 0;
3170 }
init_freelist_randomization(void)3171 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3172 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3173 {
3174 	return false;
3175 }
3176 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3177 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)3178 static __always_inline void account_slab(struct slab *slab, int order,
3179 					 struct kmem_cache *s, gfp_t gfp)
3180 {
3181 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3182 		alloc_slab_obj_exts(slab, s, gfp, true);
3183 
3184 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3185 			    PAGE_SIZE << order);
3186 }
3187 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)3188 static __always_inline void unaccount_slab(struct slab *slab, int order,
3189 					   struct kmem_cache *s)
3190 {
3191 	/*
3192 	 * The slab object extensions should now be freed regardless of
3193 	 * whether mem_alloc_profiling_enabled() or not because profiling
3194 	 * might have been disabled after slab->obj_exts got allocated.
3195 	 */
3196 	free_slab_obj_exts(slab);
3197 
3198 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3199 			    -(PAGE_SIZE << order));
3200 }
3201 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)3202 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3203 {
3204 	bool allow_spin = gfpflags_allow_spinning(flags);
3205 	struct slab *slab;
3206 	struct kmem_cache_order_objects oo = s->oo;
3207 	gfp_t alloc_gfp;
3208 	void *start, *p, *next;
3209 	int idx;
3210 	bool shuffle;
3211 
3212 	flags &= gfp_allowed_mask;
3213 
3214 	flags |= s->allocflags;
3215 
3216 	/*
3217 	 * Let the initial higher-order allocation fail under memory pressure
3218 	 * so we fall-back to the minimum order allocation.
3219 	 */
3220 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3221 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3222 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3223 
3224 	/*
3225 	 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3226 	 * so pass allow_spin flag directly.
3227 	 */
3228 	slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3229 	if (unlikely(!slab)) {
3230 		oo = s->min;
3231 		alloc_gfp = flags;
3232 		/*
3233 		 * Allocation may have failed due to fragmentation.
3234 		 * Try a lower order alloc if possible
3235 		 */
3236 		slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3237 		if (unlikely(!slab))
3238 			return NULL;
3239 		stat(s, ORDER_FALLBACK);
3240 	}
3241 
3242 	slab->objects = oo_objects(oo);
3243 	slab->inuse = 0;
3244 	slab->frozen = 0;
3245 	init_slab_obj_exts(slab);
3246 
3247 	account_slab(slab, oo_order(oo), s, flags);
3248 
3249 	slab->slab_cache = s;
3250 
3251 	kasan_poison_slab(slab);
3252 
3253 	start = slab_address(slab);
3254 
3255 	setup_slab_debug(s, slab, start);
3256 
3257 	shuffle = shuffle_freelist(s, slab);
3258 
3259 	if (!shuffle) {
3260 		start = fixup_red_left(s, start);
3261 		start = setup_object(s, start);
3262 		slab->freelist = start;
3263 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3264 			next = p + s->size;
3265 			next = setup_object(s, next);
3266 			set_freepointer(s, p, next);
3267 			p = next;
3268 		}
3269 		set_freepointer(s, p, NULL);
3270 	}
3271 
3272 	return slab;
3273 }
3274 
new_slab(struct kmem_cache * s,gfp_t flags,int node)3275 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3276 {
3277 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3278 		flags = kmalloc_fix_flags(flags);
3279 
3280 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3281 
3282 	return allocate_slab(s,
3283 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3284 }
3285 
__free_slab(struct kmem_cache * s,struct slab * slab)3286 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3287 {
3288 	struct folio *folio = slab_folio(slab);
3289 	int order = folio_order(folio);
3290 	int pages = 1 << order;
3291 
3292 	__slab_clear_pfmemalloc(slab);
3293 	folio->mapping = NULL;
3294 	__folio_clear_slab(folio);
3295 	mm_account_reclaimed_pages(pages);
3296 	unaccount_slab(slab, order, s);
3297 	free_frozen_pages(&folio->page, order);
3298 }
3299 
rcu_free_slab(struct rcu_head * h)3300 static void rcu_free_slab(struct rcu_head *h)
3301 {
3302 	struct slab *slab = container_of(h, struct slab, rcu_head);
3303 
3304 	__free_slab(slab->slab_cache, slab);
3305 }
3306 
free_slab(struct kmem_cache * s,struct slab * slab)3307 static void free_slab(struct kmem_cache *s, struct slab *slab)
3308 {
3309 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3310 		void *p;
3311 
3312 		slab_pad_check(s, slab);
3313 		for_each_object(p, s, slab_address(slab), slab->objects)
3314 			check_object(s, slab, p, SLUB_RED_INACTIVE);
3315 	}
3316 
3317 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3318 		call_rcu(&slab->rcu_head, rcu_free_slab);
3319 	else
3320 		__free_slab(s, slab);
3321 }
3322 
discard_slab(struct kmem_cache * s,struct slab * slab)3323 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3324 {
3325 	dec_slabs_node(s, slab_nid(slab), slab->objects);
3326 	free_slab(s, slab);
3327 }
3328 
slab_test_node_partial(const struct slab * slab)3329 static inline bool slab_test_node_partial(const struct slab *slab)
3330 {
3331 	return test_bit(SL_partial, &slab->flags.f);
3332 }
3333 
slab_set_node_partial(struct slab * slab)3334 static inline void slab_set_node_partial(struct slab *slab)
3335 {
3336 	set_bit(SL_partial, &slab->flags.f);
3337 }
3338 
slab_clear_node_partial(struct slab * slab)3339 static inline void slab_clear_node_partial(struct slab *slab)
3340 {
3341 	clear_bit(SL_partial, &slab->flags.f);
3342 }
3343 
3344 /*
3345  * Management of partially allocated slabs.
3346  */
3347 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3348 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3349 {
3350 	n->nr_partial++;
3351 	if (tail == DEACTIVATE_TO_TAIL)
3352 		list_add_tail(&slab->slab_list, &n->partial);
3353 	else
3354 		list_add(&slab->slab_list, &n->partial);
3355 	slab_set_node_partial(slab);
3356 }
3357 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3358 static inline void add_partial(struct kmem_cache_node *n,
3359 				struct slab *slab, int tail)
3360 {
3361 	lockdep_assert_held(&n->list_lock);
3362 	__add_partial(n, slab, tail);
3363 }
3364 
remove_partial(struct kmem_cache_node * n,struct slab * slab)3365 static inline void remove_partial(struct kmem_cache_node *n,
3366 					struct slab *slab)
3367 {
3368 	lockdep_assert_held(&n->list_lock);
3369 	list_del(&slab->slab_list);
3370 	slab_clear_node_partial(slab);
3371 	n->nr_partial--;
3372 }
3373 
3374 /*
3375  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3376  * slab from the n->partial list. Remove only a single object from the slab, do
3377  * the alloc_debug_processing() checks and leave the slab on the list, or move
3378  * it to full list if it was the last free object.
3379  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)3380 static void *alloc_single_from_partial(struct kmem_cache *s,
3381 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
3382 {
3383 	void *object;
3384 
3385 	lockdep_assert_held(&n->list_lock);
3386 
3387 #ifdef CONFIG_SLUB_DEBUG
3388 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3389 		if (!validate_slab_ptr(slab)) {
3390 			slab_err(s, slab, "Not a valid slab page");
3391 			return NULL;
3392 		}
3393 	}
3394 #endif
3395 
3396 	object = slab->freelist;
3397 	slab->freelist = get_freepointer(s, object);
3398 	slab->inuse++;
3399 
3400 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3401 		remove_partial(n, slab);
3402 		return NULL;
3403 	}
3404 
3405 	if (slab->inuse == slab->objects) {
3406 		remove_partial(n, slab);
3407 		add_full(s, n, slab);
3408 	}
3409 
3410 	return object;
3411 }
3412 
3413 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3414 
3415 /*
3416  * Called only for kmem_cache_debug() caches to allocate from a freshly
3417  * allocated slab. Allocate a single object instead of whole freelist
3418  * and put the slab to the partial (or full) list.
3419  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size,gfp_t gfpflags)3420 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3421 					int orig_size, gfp_t gfpflags)
3422 {
3423 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
3424 	int nid = slab_nid(slab);
3425 	struct kmem_cache_node *n = get_node(s, nid);
3426 	unsigned long flags;
3427 	void *object;
3428 
3429 	if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3430 		/* Unlucky, discard newly allocated slab */
3431 		defer_deactivate_slab(slab, NULL);
3432 		return NULL;
3433 	}
3434 
3435 	object = slab->freelist;
3436 	slab->freelist = get_freepointer(s, object);
3437 	slab->inuse = 1;
3438 
3439 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3440 		/*
3441 		 * It's not really expected that this would fail on a
3442 		 * freshly allocated slab, but a concurrent memory
3443 		 * corruption in theory could cause that.
3444 		 * Leak memory of allocated slab.
3445 		 */
3446 		if (!allow_spin)
3447 			spin_unlock_irqrestore(&n->list_lock, flags);
3448 		return NULL;
3449 	}
3450 
3451 	if (allow_spin)
3452 		spin_lock_irqsave(&n->list_lock, flags);
3453 
3454 	if (slab->inuse == slab->objects)
3455 		add_full(s, n, slab);
3456 	else
3457 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
3458 
3459 	inc_slabs_node(s, nid, slab->objects);
3460 	spin_unlock_irqrestore(&n->list_lock, flags);
3461 
3462 	return object;
3463 }
3464 
3465 #ifdef CONFIG_SLUB_CPU_PARTIAL
3466 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3467 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3468 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3469 				   int drain) { }
3470 #endif
3471 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3472 
3473 /*
3474  * Try to allocate a partial slab from a specific node.
3475  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)3476 static struct slab *get_partial_node(struct kmem_cache *s,
3477 				     struct kmem_cache_node *n,
3478 				     struct partial_context *pc)
3479 {
3480 	struct slab *slab, *slab2, *partial = NULL;
3481 	unsigned long flags;
3482 	unsigned int partial_slabs = 0;
3483 
3484 	/*
3485 	 * Racy check. If we mistakenly see no partial slabs then we
3486 	 * just allocate an empty slab. If we mistakenly try to get a
3487 	 * partial slab and there is none available then get_partial()
3488 	 * will return NULL.
3489 	 */
3490 	if (!n || !n->nr_partial)
3491 		return NULL;
3492 
3493 	if (gfpflags_allow_spinning(pc->flags))
3494 		spin_lock_irqsave(&n->list_lock, flags);
3495 	else if (!spin_trylock_irqsave(&n->list_lock, flags))
3496 		return NULL;
3497 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3498 		if (!pfmemalloc_match(slab, pc->flags))
3499 			continue;
3500 
3501 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3502 			void *object = alloc_single_from_partial(s, n, slab,
3503 							pc->orig_size);
3504 			if (object) {
3505 				partial = slab;
3506 				pc->object = object;
3507 				break;
3508 			}
3509 			continue;
3510 		}
3511 
3512 		remove_partial(n, slab);
3513 
3514 		if (!partial) {
3515 			partial = slab;
3516 			stat(s, ALLOC_FROM_PARTIAL);
3517 
3518 			if ((slub_get_cpu_partial(s) == 0)) {
3519 				break;
3520 			}
3521 		} else {
3522 			put_cpu_partial(s, slab, 0);
3523 			stat(s, CPU_PARTIAL_NODE);
3524 
3525 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3526 				break;
3527 			}
3528 		}
3529 	}
3530 	spin_unlock_irqrestore(&n->list_lock, flags);
3531 	return partial;
3532 }
3533 
3534 /*
3535  * Get a slab from somewhere. Search in increasing NUMA distances.
3536  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)3537 static struct slab *get_any_partial(struct kmem_cache *s,
3538 				    struct partial_context *pc)
3539 {
3540 #ifdef CONFIG_NUMA
3541 	struct zonelist *zonelist;
3542 	struct zoneref *z;
3543 	struct zone *zone;
3544 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3545 	struct slab *slab;
3546 	unsigned int cpuset_mems_cookie;
3547 
3548 	/*
3549 	 * The defrag ratio allows a configuration of the tradeoffs between
3550 	 * inter node defragmentation and node local allocations. A lower
3551 	 * defrag_ratio increases the tendency to do local allocations
3552 	 * instead of attempting to obtain partial slabs from other nodes.
3553 	 *
3554 	 * If the defrag_ratio is set to 0 then kmalloc() always
3555 	 * returns node local objects. If the ratio is higher then kmalloc()
3556 	 * may return off node objects because partial slabs are obtained
3557 	 * from other nodes and filled up.
3558 	 *
3559 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3560 	 * (which makes defrag_ratio = 1000) then every (well almost)
3561 	 * allocation will first attempt to defrag slab caches on other nodes.
3562 	 * This means scanning over all nodes to look for partial slabs which
3563 	 * may be expensive if we do it every time we are trying to find a slab
3564 	 * with available objects.
3565 	 */
3566 	if (!s->remote_node_defrag_ratio ||
3567 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
3568 		return NULL;
3569 
3570 	do {
3571 		cpuset_mems_cookie = read_mems_allowed_begin();
3572 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3573 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3574 			struct kmem_cache_node *n;
3575 
3576 			n = get_node(s, zone_to_nid(zone));
3577 
3578 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
3579 					n->nr_partial > s->min_partial) {
3580 				slab = get_partial_node(s, n, pc);
3581 				if (slab) {
3582 					/*
3583 					 * Don't check read_mems_allowed_retry()
3584 					 * here - if mems_allowed was updated in
3585 					 * parallel, that was a harmless race
3586 					 * between allocation and the cpuset
3587 					 * update
3588 					 */
3589 					return slab;
3590 				}
3591 			}
3592 		}
3593 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3594 #endif	/* CONFIG_NUMA */
3595 	return NULL;
3596 }
3597 
3598 /*
3599  * Get a partial slab, lock it and return it.
3600  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3601 static struct slab *get_partial(struct kmem_cache *s, int node,
3602 				struct partial_context *pc)
3603 {
3604 	struct slab *slab;
3605 	int searchnode = node;
3606 
3607 	if (node == NUMA_NO_NODE)
3608 		searchnode = numa_mem_id();
3609 
3610 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3611 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3612 		return slab;
3613 
3614 	return get_any_partial(s, pc);
3615 }
3616 
3617 #ifndef CONFIG_SLUB_TINY
3618 
3619 #ifdef CONFIG_PREEMPTION
3620 /*
3621  * Calculate the next globally unique transaction for disambiguation
3622  * during cmpxchg. The transactions start with the cpu number and are then
3623  * incremented by CONFIG_NR_CPUS.
3624  */
3625 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3626 #else
3627 /*
3628  * No preemption supported therefore also no need to check for
3629  * different cpus.
3630  */
3631 #define TID_STEP 1
3632 #endif /* CONFIG_PREEMPTION */
3633 
next_tid(unsigned long tid)3634 static inline unsigned long next_tid(unsigned long tid)
3635 {
3636 	return tid + TID_STEP;
3637 }
3638 
3639 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3640 static inline unsigned int tid_to_cpu(unsigned long tid)
3641 {
3642 	return tid % TID_STEP;
3643 }
3644 
tid_to_event(unsigned long tid)3645 static inline unsigned long tid_to_event(unsigned long tid)
3646 {
3647 	return tid / TID_STEP;
3648 }
3649 #endif
3650 
init_tid(int cpu)3651 static inline unsigned int init_tid(int cpu)
3652 {
3653 	return cpu;
3654 }
3655 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3656 static inline void note_cmpxchg_failure(const char *n,
3657 		const struct kmem_cache *s, unsigned long tid)
3658 {
3659 #ifdef SLUB_DEBUG_CMPXCHG
3660 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3661 
3662 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3663 
3664 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
3665 	    tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3666 		pr_warn("due to cpu change %d -> %d\n",
3667 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3668 	} else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3669 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3670 			tid_to_event(tid), tid_to_event(actual_tid));
3671 	} else {
3672 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3673 			actual_tid, tid, next_tid(tid));
3674 	}
3675 #endif
3676 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3677 }
3678 
init_kmem_cache_cpus(struct kmem_cache * s)3679 static void init_kmem_cache_cpus(struct kmem_cache *s)
3680 {
3681 #ifdef CONFIG_PREEMPT_RT
3682 	/*
3683 	 * Register lockdep key for non-boot kmem caches to avoid
3684 	 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3685 	 */
3686 	bool finegrain_lockdep = !init_section_contains(s, 1);
3687 #else
3688 	/*
3689 	 * Don't bother with different lockdep classes for each
3690 	 * kmem_cache, since we only use local_trylock_irqsave().
3691 	 */
3692 	bool finegrain_lockdep = false;
3693 #endif
3694 	int cpu;
3695 	struct kmem_cache_cpu *c;
3696 
3697 	if (finegrain_lockdep)
3698 		lockdep_register_key(&s->lock_key);
3699 	for_each_possible_cpu(cpu) {
3700 		c = per_cpu_ptr(s->cpu_slab, cpu);
3701 		local_trylock_init(&c->lock);
3702 		if (finegrain_lockdep)
3703 			lockdep_set_class(&c->lock, &s->lock_key);
3704 		c->tid = init_tid(cpu);
3705 	}
3706 }
3707 
3708 /*
3709  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3710  * unfreezes the slabs and puts it on the proper list.
3711  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3712  * by the caller.
3713  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3714 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3715 			    void *freelist)
3716 {
3717 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3718 	int free_delta = 0;
3719 	void *nextfree, *freelist_iter, *freelist_tail;
3720 	int tail = DEACTIVATE_TO_HEAD;
3721 	unsigned long flags = 0;
3722 	struct slab new;
3723 	struct slab old;
3724 
3725 	if (READ_ONCE(slab->freelist)) {
3726 		stat(s, DEACTIVATE_REMOTE_FREES);
3727 		tail = DEACTIVATE_TO_TAIL;
3728 	}
3729 
3730 	/*
3731 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3732 	 * remember the last object in freelist_tail for later splicing.
3733 	 */
3734 	freelist_tail = NULL;
3735 	freelist_iter = freelist;
3736 	while (freelist_iter) {
3737 		nextfree = get_freepointer(s, freelist_iter);
3738 
3739 		/*
3740 		 * If 'nextfree' is invalid, it is possible that the object at
3741 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3742 		 * starting at 'freelist_iter' by skipping them.
3743 		 */
3744 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3745 			break;
3746 
3747 		freelist_tail = freelist_iter;
3748 		free_delta++;
3749 
3750 		freelist_iter = nextfree;
3751 	}
3752 
3753 	/*
3754 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3755 	 * freelist to the head of slab's freelist.
3756 	 */
3757 	do {
3758 		old.freelist = READ_ONCE(slab->freelist);
3759 		old.counters = READ_ONCE(slab->counters);
3760 		VM_BUG_ON(!old.frozen);
3761 
3762 		/* Determine target state of the slab */
3763 		new.counters = old.counters;
3764 		new.frozen = 0;
3765 		if (freelist_tail) {
3766 			new.inuse -= free_delta;
3767 			set_freepointer(s, freelist_tail, old.freelist);
3768 			new.freelist = freelist;
3769 		} else {
3770 			new.freelist = old.freelist;
3771 		}
3772 	} while (!slab_update_freelist(s, slab,
3773 		old.freelist, old.counters,
3774 		new.freelist, new.counters,
3775 		"unfreezing slab"));
3776 
3777 	/*
3778 	 * Stage three: Manipulate the slab list based on the updated state.
3779 	 */
3780 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3781 		stat(s, DEACTIVATE_EMPTY);
3782 		discard_slab(s, slab);
3783 		stat(s, FREE_SLAB);
3784 	} else if (new.freelist) {
3785 		spin_lock_irqsave(&n->list_lock, flags);
3786 		add_partial(n, slab, tail);
3787 		spin_unlock_irqrestore(&n->list_lock, flags);
3788 		stat(s, tail);
3789 	} else {
3790 		stat(s, DEACTIVATE_FULL);
3791 	}
3792 }
3793 
3794 /*
3795  * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3796  * can be acquired without a deadlock before invoking the function.
3797  *
3798  * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3799  * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3800  * and kmalloc() is not used in an unsupported context.
3801  *
3802  * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3803  * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3804  * lockdep_assert() will catch a bug in case:
3805  * #1
3806  * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3807  * or
3808  * #2
3809  * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3810  *
3811  * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3812  * disabled context. The lock will always be acquired and if needed it
3813  * block and sleep until the lock is available.
3814  * #1 is possible in !PREEMPT_RT only.
3815  * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3816  * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3817  *    tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3818  *
3819  * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3820  */
3821 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3822 #define local_lock_cpu_slab(s, flags)	\
3823 	local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3824 #else
3825 #define local_lock_cpu_slab(s, flags)					       \
3826 	do {								       \
3827 		bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3828 		lockdep_assert(__l);					       \
3829 	} while (0)
3830 #endif
3831 
3832 #define local_unlock_cpu_slab(s, flags)	\
3833 	local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3834 
3835 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3836 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3837 {
3838 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3839 	struct slab *slab, *slab_to_discard = NULL;
3840 	unsigned long flags = 0;
3841 
3842 	while (partial_slab) {
3843 		slab = partial_slab;
3844 		partial_slab = slab->next;
3845 
3846 		n2 = get_node(s, slab_nid(slab));
3847 		if (n != n2) {
3848 			if (n)
3849 				spin_unlock_irqrestore(&n->list_lock, flags);
3850 
3851 			n = n2;
3852 			spin_lock_irqsave(&n->list_lock, flags);
3853 		}
3854 
3855 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3856 			slab->next = slab_to_discard;
3857 			slab_to_discard = slab;
3858 		} else {
3859 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3860 			stat(s, FREE_ADD_PARTIAL);
3861 		}
3862 	}
3863 
3864 	if (n)
3865 		spin_unlock_irqrestore(&n->list_lock, flags);
3866 
3867 	while (slab_to_discard) {
3868 		slab = slab_to_discard;
3869 		slab_to_discard = slab_to_discard->next;
3870 
3871 		stat(s, DEACTIVATE_EMPTY);
3872 		discard_slab(s, slab);
3873 		stat(s, FREE_SLAB);
3874 	}
3875 }
3876 
3877 /*
3878  * Put all the cpu partial slabs to the node partial list.
3879  */
put_partials(struct kmem_cache * s)3880 static void put_partials(struct kmem_cache *s)
3881 {
3882 	struct slab *partial_slab;
3883 	unsigned long flags;
3884 
3885 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3886 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3887 	this_cpu_write(s->cpu_slab->partial, NULL);
3888 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3889 
3890 	if (partial_slab)
3891 		__put_partials(s, partial_slab);
3892 }
3893 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3894 static void put_partials_cpu(struct kmem_cache *s,
3895 			     struct kmem_cache_cpu *c)
3896 {
3897 	struct slab *partial_slab;
3898 
3899 	partial_slab = slub_percpu_partial(c);
3900 	c->partial = NULL;
3901 
3902 	if (partial_slab)
3903 		__put_partials(s, partial_slab);
3904 }
3905 
3906 /*
3907  * Put a slab into a partial slab slot if available.
3908  *
3909  * If we did not find a slot then simply move all the partials to the
3910  * per node partial list.
3911  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3912 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3913 {
3914 	struct slab *oldslab;
3915 	struct slab *slab_to_put = NULL;
3916 	unsigned long flags;
3917 	int slabs = 0;
3918 
3919 	local_lock_cpu_slab(s, flags);
3920 
3921 	oldslab = this_cpu_read(s->cpu_slab->partial);
3922 
3923 	if (oldslab) {
3924 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3925 			/*
3926 			 * Partial array is full. Move the existing set to the
3927 			 * per node partial list. Postpone the actual unfreezing
3928 			 * outside of the critical section.
3929 			 */
3930 			slab_to_put = oldslab;
3931 			oldslab = NULL;
3932 		} else {
3933 			slabs = oldslab->slabs;
3934 		}
3935 	}
3936 
3937 	slabs++;
3938 
3939 	slab->slabs = slabs;
3940 	slab->next = oldslab;
3941 
3942 	this_cpu_write(s->cpu_slab->partial, slab);
3943 
3944 	local_unlock_cpu_slab(s, flags);
3945 
3946 	if (slab_to_put) {
3947 		__put_partials(s, slab_to_put);
3948 		stat(s, CPU_PARTIAL_DRAIN);
3949 	}
3950 }
3951 
3952 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3953 
put_partials(struct kmem_cache * s)3954 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3955 static inline void put_partials_cpu(struct kmem_cache *s,
3956 				    struct kmem_cache_cpu *c) { }
3957 
3958 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3959 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3960 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3961 {
3962 	unsigned long flags;
3963 	struct slab *slab;
3964 	void *freelist;
3965 
3966 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3967 
3968 	slab = c->slab;
3969 	freelist = c->freelist;
3970 
3971 	c->slab = NULL;
3972 	c->freelist = NULL;
3973 	c->tid = next_tid(c->tid);
3974 
3975 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3976 
3977 	if (slab) {
3978 		deactivate_slab(s, slab, freelist);
3979 		stat(s, CPUSLAB_FLUSH);
3980 	}
3981 }
3982 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3983 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3984 {
3985 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3986 	void *freelist = c->freelist;
3987 	struct slab *slab = c->slab;
3988 
3989 	c->slab = NULL;
3990 	c->freelist = NULL;
3991 	c->tid = next_tid(c->tid);
3992 
3993 	if (slab) {
3994 		deactivate_slab(s, slab, freelist);
3995 		stat(s, CPUSLAB_FLUSH);
3996 	}
3997 
3998 	put_partials_cpu(s, c);
3999 }
4000 
flush_this_cpu_slab(struct kmem_cache * s)4001 static inline void flush_this_cpu_slab(struct kmem_cache *s)
4002 {
4003 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4004 
4005 	if (c->slab)
4006 		flush_slab(s, c);
4007 
4008 	put_partials(s);
4009 }
4010 
has_cpu_slab(int cpu,struct kmem_cache * s)4011 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4012 {
4013 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4014 
4015 	return c->slab || slub_percpu_partial(c);
4016 }
4017 
4018 #else /* CONFIG_SLUB_TINY */
__flush_cpu_slab(struct kmem_cache * s,int cpu)4019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
has_cpu_slab(int cpu,struct kmem_cache * s)4020 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; }
flush_this_cpu_slab(struct kmem_cache * s)4021 static inline void flush_this_cpu_slab(struct kmem_cache *s) { }
4022 #endif /* CONFIG_SLUB_TINY */
4023 
has_pcs_used(int cpu,struct kmem_cache * s)4024 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4025 {
4026 	struct slub_percpu_sheaves *pcs;
4027 
4028 	if (!s->cpu_sheaves)
4029 		return false;
4030 
4031 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4032 
4033 	return (pcs->spare || pcs->rcu_free || pcs->main->size);
4034 }
4035 
4036 /*
4037  * Flush cpu slab.
4038  *
4039  * Called from CPU work handler with migration disabled.
4040  */
flush_cpu_slab(struct work_struct * w)4041 static void flush_cpu_slab(struct work_struct *w)
4042 {
4043 	struct kmem_cache *s;
4044 	struct slub_flush_work *sfw;
4045 
4046 	sfw = container_of(w, struct slub_flush_work, work);
4047 
4048 	s = sfw->s;
4049 
4050 	if (s->cpu_sheaves)
4051 		pcs_flush_all(s);
4052 
4053 	flush_this_cpu_slab(s);
4054 }
4055 
flush_all_cpus_locked(struct kmem_cache * s)4056 static void flush_all_cpus_locked(struct kmem_cache *s)
4057 {
4058 	struct slub_flush_work *sfw;
4059 	unsigned int cpu;
4060 
4061 	lockdep_assert_cpus_held();
4062 	mutex_lock(&flush_lock);
4063 
4064 	for_each_online_cpu(cpu) {
4065 		sfw = &per_cpu(slub_flush, cpu);
4066 		if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4067 			sfw->skip = true;
4068 			continue;
4069 		}
4070 		INIT_WORK(&sfw->work, flush_cpu_slab);
4071 		sfw->skip = false;
4072 		sfw->s = s;
4073 		queue_work_on(cpu, flushwq, &sfw->work);
4074 	}
4075 
4076 	for_each_online_cpu(cpu) {
4077 		sfw = &per_cpu(slub_flush, cpu);
4078 		if (sfw->skip)
4079 			continue;
4080 		flush_work(&sfw->work);
4081 	}
4082 
4083 	mutex_unlock(&flush_lock);
4084 }
4085 
flush_all(struct kmem_cache * s)4086 static void flush_all(struct kmem_cache *s)
4087 {
4088 	cpus_read_lock();
4089 	flush_all_cpus_locked(s);
4090 	cpus_read_unlock();
4091 }
4092 
flush_rcu_sheaf(struct work_struct * w)4093 static void flush_rcu_sheaf(struct work_struct *w)
4094 {
4095 	struct slub_percpu_sheaves *pcs;
4096 	struct slab_sheaf *rcu_free;
4097 	struct slub_flush_work *sfw;
4098 	struct kmem_cache *s;
4099 
4100 	sfw = container_of(w, struct slub_flush_work, work);
4101 	s = sfw->s;
4102 
4103 	local_lock(&s->cpu_sheaves->lock);
4104 	pcs = this_cpu_ptr(s->cpu_sheaves);
4105 
4106 	rcu_free = pcs->rcu_free;
4107 	pcs->rcu_free = NULL;
4108 
4109 	local_unlock(&s->cpu_sheaves->lock);
4110 
4111 	if (rcu_free)
4112 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4113 }
4114 
4115 
4116 /* needed for kvfree_rcu_barrier() */
flush_all_rcu_sheaves(void)4117 void flush_all_rcu_sheaves(void)
4118 {
4119 	struct slub_flush_work *sfw;
4120 	struct kmem_cache *s;
4121 	unsigned int cpu;
4122 
4123 	cpus_read_lock();
4124 	mutex_lock(&slab_mutex);
4125 
4126 	list_for_each_entry(s, &slab_caches, list) {
4127 		if (!s->cpu_sheaves)
4128 			continue;
4129 
4130 		mutex_lock(&flush_lock);
4131 
4132 		for_each_online_cpu(cpu) {
4133 			sfw = &per_cpu(slub_flush, cpu);
4134 
4135 			/*
4136 			 * we don't check if rcu_free sheaf exists - racing
4137 			 * __kfree_rcu_sheaf() might have just removed it.
4138 			 * by executing flush_rcu_sheaf() on the cpu we make
4139 			 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4140 			 */
4141 
4142 			INIT_WORK(&sfw->work, flush_rcu_sheaf);
4143 			sfw->s = s;
4144 			queue_work_on(cpu, flushwq, &sfw->work);
4145 		}
4146 
4147 		for_each_online_cpu(cpu) {
4148 			sfw = &per_cpu(slub_flush, cpu);
4149 			flush_work(&sfw->work);
4150 		}
4151 
4152 		mutex_unlock(&flush_lock);
4153 	}
4154 
4155 	mutex_unlock(&slab_mutex);
4156 	cpus_read_unlock();
4157 
4158 	rcu_barrier();
4159 }
4160 
4161 /*
4162  * Use the cpu notifier to insure that the cpu slabs are flushed when
4163  * necessary.
4164  */
slub_cpu_dead(unsigned int cpu)4165 static int slub_cpu_dead(unsigned int cpu)
4166 {
4167 	struct kmem_cache *s;
4168 
4169 	mutex_lock(&slab_mutex);
4170 	list_for_each_entry(s, &slab_caches, list) {
4171 		__flush_cpu_slab(s, cpu);
4172 		if (s->cpu_sheaves)
4173 			__pcs_flush_all_cpu(s, cpu);
4174 	}
4175 	mutex_unlock(&slab_mutex);
4176 	return 0;
4177 }
4178 
4179 /*
4180  * Check if the objects in a per cpu structure fit numa
4181  * locality expectations.
4182  */
node_match(struct slab * slab,int node)4183 static inline int node_match(struct slab *slab, int node)
4184 {
4185 #ifdef CONFIG_NUMA
4186 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4187 		return 0;
4188 #endif
4189 	return 1;
4190 }
4191 
4192 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)4193 static int count_free(struct slab *slab)
4194 {
4195 	return slab->objects - slab->inuse;
4196 }
4197 
node_nr_objs(struct kmem_cache_node * n)4198 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4199 {
4200 	return atomic_long_read(&n->total_objects);
4201 }
4202 
4203 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)4204 static inline bool free_debug_processing(struct kmem_cache *s,
4205 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
4206 	unsigned long addr, depot_stack_handle_t handle)
4207 {
4208 	bool checks_ok = false;
4209 	void *object = head;
4210 	int cnt = 0;
4211 
4212 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4213 		if (!check_slab(s, slab))
4214 			goto out;
4215 	}
4216 
4217 	if (slab->inuse < *bulk_cnt) {
4218 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4219 			 slab->inuse, *bulk_cnt);
4220 		goto out;
4221 	}
4222 
4223 next_object:
4224 
4225 	if (++cnt > *bulk_cnt)
4226 		goto out_cnt;
4227 
4228 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4229 		if (!free_consistency_checks(s, slab, object, addr))
4230 			goto out;
4231 	}
4232 
4233 	if (s->flags & SLAB_STORE_USER)
4234 		set_track_update(s, object, TRACK_FREE, addr, handle);
4235 	trace(s, slab, object, 0);
4236 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4237 	init_object(s, object, SLUB_RED_INACTIVE);
4238 
4239 	/* Reached end of constructed freelist yet? */
4240 	if (object != tail) {
4241 		object = get_freepointer(s, object);
4242 		goto next_object;
4243 	}
4244 	checks_ok = true;
4245 
4246 out_cnt:
4247 	if (cnt != *bulk_cnt) {
4248 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4249 			 *bulk_cnt, cnt);
4250 		*bulk_cnt = cnt;
4251 	}
4252 
4253 out:
4254 
4255 	if (!checks_ok)
4256 		slab_fix(s, "Object at 0x%p not freed", object);
4257 
4258 	return checks_ok;
4259 }
4260 #endif /* CONFIG_SLUB_DEBUG */
4261 
4262 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))4263 static unsigned long count_partial(struct kmem_cache_node *n,
4264 					int (*get_count)(struct slab *))
4265 {
4266 	unsigned long flags;
4267 	unsigned long x = 0;
4268 	struct slab *slab;
4269 
4270 	spin_lock_irqsave(&n->list_lock, flags);
4271 	list_for_each_entry(slab, &n->partial, slab_list)
4272 		x += get_count(slab);
4273 	spin_unlock_irqrestore(&n->list_lock, flags);
4274 	return x;
4275 }
4276 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4277 
4278 #ifdef CONFIG_SLUB_DEBUG
4279 #define MAX_PARTIAL_TO_SCAN 10000
4280 
count_partial_free_approx(struct kmem_cache_node * n)4281 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4282 {
4283 	unsigned long flags;
4284 	unsigned long x = 0;
4285 	struct slab *slab;
4286 
4287 	spin_lock_irqsave(&n->list_lock, flags);
4288 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4289 		list_for_each_entry(slab, &n->partial, slab_list)
4290 			x += slab->objects - slab->inuse;
4291 	} else {
4292 		/*
4293 		 * For a long list, approximate the total count of objects in
4294 		 * it to meet the limit on the number of slabs to scan.
4295 		 * Scan from both the list's head and tail for better accuracy.
4296 		 */
4297 		unsigned long scanned = 0;
4298 
4299 		list_for_each_entry(slab, &n->partial, slab_list) {
4300 			x += slab->objects - slab->inuse;
4301 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4302 				break;
4303 		}
4304 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4305 			x += slab->objects - slab->inuse;
4306 			if (++scanned == MAX_PARTIAL_TO_SCAN)
4307 				break;
4308 		}
4309 		x = mult_frac(x, n->nr_partial, scanned);
4310 		x = min(x, node_nr_objs(n));
4311 	}
4312 	spin_unlock_irqrestore(&n->list_lock, flags);
4313 	return x;
4314 }
4315 
4316 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4317 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4318 {
4319 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4320 				      DEFAULT_RATELIMIT_BURST);
4321 	int cpu = raw_smp_processor_id();
4322 	int node;
4323 	struct kmem_cache_node *n;
4324 
4325 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4326 		return;
4327 
4328 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4329 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4330 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4331 		s->name, s->object_size, s->size, oo_order(s->oo),
4332 		oo_order(s->min));
4333 
4334 	if (oo_order(s->min) > get_order(s->object_size))
4335 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
4336 			s->name);
4337 
4338 	for_each_kmem_cache_node(s, node, n) {
4339 		unsigned long nr_slabs;
4340 		unsigned long nr_objs;
4341 		unsigned long nr_free;
4342 
4343 		nr_free  = count_partial_free_approx(n);
4344 		nr_slabs = node_nr_slabs(n);
4345 		nr_objs  = node_nr_objs(n);
4346 
4347 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
4348 			node, nr_slabs, nr_objs, nr_free);
4349 	}
4350 }
4351 #else /* CONFIG_SLUB_DEBUG */
4352 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4353 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4354 #endif
4355 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)4356 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4357 {
4358 	if (unlikely(slab_test_pfmemalloc(slab)))
4359 		return gfp_pfmemalloc_allowed(gfpflags);
4360 
4361 	return true;
4362 }
4363 
4364 #ifndef CONFIG_SLUB_TINY
4365 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)4366 __update_cpu_freelist_fast(struct kmem_cache *s,
4367 			   void *freelist_old, void *freelist_new,
4368 			   unsigned long tid)
4369 {
4370 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
4371 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
4372 
4373 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
4374 					     &old.full, new.full);
4375 }
4376 
4377 /*
4378  * Check the slab->freelist and either transfer the freelist to the
4379  * per cpu freelist or deactivate the slab.
4380  *
4381  * The slab is still frozen if the return value is not NULL.
4382  *
4383  * If this function returns NULL then the slab has been unfrozen.
4384  */
get_freelist(struct kmem_cache * s,struct slab * slab)4385 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4386 {
4387 	struct slab new;
4388 	unsigned long counters;
4389 	void *freelist;
4390 
4391 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4392 
4393 	do {
4394 		freelist = slab->freelist;
4395 		counters = slab->counters;
4396 
4397 		new.counters = counters;
4398 
4399 		new.inuse = slab->objects;
4400 		new.frozen = freelist != NULL;
4401 
4402 	} while (!__slab_update_freelist(s, slab,
4403 		freelist, counters,
4404 		NULL, new.counters,
4405 		"get_freelist"));
4406 
4407 	return freelist;
4408 }
4409 
4410 /*
4411  * Freeze the partial slab and return the pointer to the freelist.
4412  */
freeze_slab(struct kmem_cache * s,struct slab * slab)4413 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4414 {
4415 	struct slab new;
4416 	unsigned long counters;
4417 	void *freelist;
4418 
4419 	do {
4420 		freelist = slab->freelist;
4421 		counters = slab->counters;
4422 
4423 		new.counters = counters;
4424 		VM_BUG_ON(new.frozen);
4425 
4426 		new.inuse = slab->objects;
4427 		new.frozen = 1;
4428 
4429 	} while (!slab_update_freelist(s, slab,
4430 		freelist, counters,
4431 		NULL, new.counters,
4432 		"freeze_slab"));
4433 
4434 	return freelist;
4435 }
4436 
4437 /*
4438  * Slow path. The lockless freelist is empty or we need to perform
4439  * debugging duties.
4440  *
4441  * Processing is still very fast if new objects have been freed to the
4442  * regular freelist. In that case we simply take over the regular freelist
4443  * as the lockless freelist and zap the regular freelist.
4444  *
4445  * If that is not working then we fall back to the partial lists. We take the
4446  * first element of the freelist as the object to allocate now and move the
4447  * rest of the freelist to the lockless freelist.
4448  *
4449  * And if we were unable to get a new slab from the partial slab lists then
4450  * we need to allocate a new slab. This is the slowest path since it involves
4451  * a call to the page allocator and the setup of a new slab.
4452  *
4453  * Version of __slab_alloc to use when we know that preemption is
4454  * already disabled (which is the case for bulk allocation).
4455  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4456 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4457 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4458 {
4459 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
4460 	void *freelist;
4461 	struct slab *slab;
4462 	unsigned long flags;
4463 	struct partial_context pc;
4464 	bool try_thisnode = true;
4465 
4466 	stat(s, ALLOC_SLOWPATH);
4467 
4468 reread_slab:
4469 
4470 	slab = READ_ONCE(c->slab);
4471 	if (!slab) {
4472 		/*
4473 		 * if the node is not online or has no normal memory, just
4474 		 * ignore the node constraint
4475 		 */
4476 		if (unlikely(node != NUMA_NO_NODE &&
4477 			     !node_isset(node, slab_nodes)))
4478 			node = NUMA_NO_NODE;
4479 		goto new_slab;
4480 	}
4481 
4482 	if (unlikely(!node_match(slab, node))) {
4483 		/*
4484 		 * same as above but node_match() being false already
4485 		 * implies node != NUMA_NO_NODE.
4486 		 *
4487 		 * We don't strictly honor pfmemalloc and NUMA preferences
4488 		 * when !allow_spin because:
4489 		 *
4490 		 * 1. Most kmalloc() users allocate objects on the local node,
4491 		 *    so kmalloc_nolock() tries not to interfere with them by
4492 		 *    deactivating the cpu slab.
4493 		 *
4494 		 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4495 		 *    unnecessary slab allocations even when n->partial list
4496 		 *    is not empty.
4497 		 */
4498 		if (!node_isset(node, slab_nodes) ||
4499 		    !allow_spin) {
4500 			node = NUMA_NO_NODE;
4501 		} else {
4502 			stat(s, ALLOC_NODE_MISMATCH);
4503 			goto deactivate_slab;
4504 		}
4505 	}
4506 
4507 	/*
4508 	 * By rights, we should be searching for a slab page that was
4509 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
4510 	 * information when the page leaves the per-cpu allocator
4511 	 */
4512 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4513 		goto deactivate_slab;
4514 
4515 	/* must check again c->slab in case we got preempted and it changed */
4516 	local_lock_cpu_slab(s, flags);
4517 
4518 	if (unlikely(slab != c->slab)) {
4519 		local_unlock_cpu_slab(s, flags);
4520 		goto reread_slab;
4521 	}
4522 	freelist = c->freelist;
4523 	if (freelist)
4524 		goto load_freelist;
4525 
4526 	freelist = get_freelist(s, slab);
4527 
4528 	if (!freelist) {
4529 		c->slab = NULL;
4530 		c->tid = next_tid(c->tid);
4531 		local_unlock_cpu_slab(s, flags);
4532 		stat(s, DEACTIVATE_BYPASS);
4533 		goto new_slab;
4534 	}
4535 
4536 	stat(s, ALLOC_REFILL);
4537 
4538 load_freelist:
4539 
4540 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4541 
4542 	/*
4543 	 * freelist is pointing to the list of objects to be used.
4544 	 * slab is pointing to the slab from which the objects are obtained.
4545 	 * That slab must be frozen for per cpu allocations to work.
4546 	 */
4547 	VM_BUG_ON(!c->slab->frozen);
4548 	c->freelist = get_freepointer(s, freelist);
4549 	c->tid = next_tid(c->tid);
4550 	local_unlock_cpu_slab(s, flags);
4551 	return freelist;
4552 
4553 deactivate_slab:
4554 
4555 	local_lock_cpu_slab(s, flags);
4556 	if (slab != c->slab) {
4557 		local_unlock_cpu_slab(s, flags);
4558 		goto reread_slab;
4559 	}
4560 	freelist = c->freelist;
4561 	c->slab = NULL;
4562 	c->freelist = NULL;
4563 	c->tid = next_tid(c->tid);
4564 	local_unlock_cpu_slab(s, flags);
4565 	deactivate_slab(s, slab, freelist);
4566 
4567 new_slab:
4568 
4569 #ifdef CONFIG_SLUB_CPU_PARTIAL
4570 	while (slub_percpu_partial(c)) {
4571 		local_lock_cpu_slab(s, flags);
4572 		if (unlikely(c->slab)) {
4573 			local_unlock_cpu_slab(s, flags);
4574 			goto reread_slab;
4575 		}
4576 		if (unlikely(!slub_percpu_partial(c))) {
4577 			local_unlock_cpu_slab(s, flags);
4578 			/* we were preempted and partial list got empty */
4579 			goto new_objects;
4580 		}
4581 
4582 		slab = slub_percpu_partial(c);
4583 		slub_set_percpu_partial(c, slab);
4584 
4585 		if (likely(node_match(slab, node) &&
4586 			   pfmemalloc_match(slab, gfpflags)) ||
4587 		    !allow_spin) {
4588 			c->slab = slab;
4589 			freelist = get_freelist(s, slab);
4590 			VM_BUG_ON(!freelist);
4591 			stat(s, CPU_PARTIAL_ALLOC);
4592 			goto load_freelist;
4593 		}
4594 
4595 		local_unlock_cpu_slab(s, flags);
4596 
4597 		slab->next = NULL;
4598 		__put_partials(s, slab);
4599 	}
4600 #endif
4601 
4602 new_objects:
4603 
4604 	pc.flags = gfpflags;
4605 	/*
4606 	 * When a preferred node is indicated but no __GFP_THISNODE
4607 	 *
4608 	 * 1) try to get a partial slab from target node only by having
4609 	 *    __GFP_THISNODE in pc.flags for get_partial()
4610 	 * 2) if 1) failed, try to allocate a new slab from target node with
4611 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
4612 	 * 3) if 2) failed, retry with original gfpflags which will allow
4613 	 *    get_partial() try partial lists of other nodes before potentially
4614 	 *    allocating new page from other nodes
4615 	 */
4616 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4617 		     && try_thisnode)) {
4618 		if (unlikely(!allow_spin))
4619 			/* Do not upgrade gfp to NOWAIT from more restrictive mode */
4620 			pc.flags = gfpflags | __GFP_THISNODE;
4621 		else
4622 			pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4623 	}
4624 
4625 	pc.orig_size = orig_size;
4626 	slab = get_partial(s, node, &pc);
4627 	if (slab) {
4628 		if (kmem_cache_debug(s)) {
4629 			freelist = pc.object;
4630 			/*
4631 			 * For debug caches here we had to go through
4632 			 * alloc_single_from_partial() so just store the
4633 			 * tracking info and return the object.
4634 			 *
4635 			 * Due to disabled preemption we need to disallow
4636 			 * blocking. The flags are further adjusted by
4637 			 * gfp_nested_mask() in stack_depot itself.
4638 			 */
4639 			if (s->flags & SLAB_STORE_USER)
4640 				set_track(s, freelist, TRACK_ALLOC, addr,
4641 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4642 
4643 			return freelist;
4644 		}
4645 
4646 		freelist = freeze_slab(s, slab);
4647 		goto retry_load_slab;
4648 	}
4649 
4650 	slub_put_cpu_ptr(s->cpu_slab);
4651 	slab = new_slab(s, pc.flags, node);
4652 	c = slub_get_cpu_ptr(s->cpu_slab);
4653 
4654 	if (unlikely(!slab)) {
4655 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4656 		    && try_thisnode) {
4657 			try_thisnode = false;
4658 			goto new_objects;
4659 		}
4660 		slab_out_of_memory(s, gfpflags, node);
4661 		return NULL;
4662 	}
4663 
4664 	stat(s, ALLOC_SLAB);
4665 
4666 	if (kmem_cache_debug(s)) {
4667 		freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4668 
4669 		if (unlikely(!freelist)) {
4670 			/* This could cause an endless loop. Fail instead. */
4671 			if (!allow_spin)
4672 				return NULL;
4673 			goto new_objects;
4674 		}
4675 
4676 		if (s->flags & SLAB_STORE_USER)
4677 			set_track(s, freelist, TRACK_ALLOC, addr,
4678 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4679 
4680 		return freelist;
4681 	}
4682 
4683 	/*
4684 	 * No other reference to the slab yet so we can
4685 	 * muck around with it freely without cmpxchg
4686 	 */
4687 	freelist = slab->freelist;
4688 	slab->freelist = NULL;
4689 	slab->inuse = slab->objects;
4690 	slab->frozen = 1;
4691 
4692 	inc_slabs_node(s, slab_nid(slab), slab->objects);
4693 
4694 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4695 		/*
4696 		 * For !pfmemalloc_match() case we don't load freelist so that
4697 		 * we don't make further mismatched allocations easier.
4698 		 */
4699 		deactivate_slab(s, slab, get_freepointer(s, freelist));
4700 		return freelist;
4701 	}
4702 
4703 retry_load_slab:
4704 
4705 	local_lock_cpu_slab(s, flags);
4706 	if (unlikely(c->slab)) {
4707 		void *flush_freelist = c->freelist;
4708 		struct slab *flush_slab = c->slab;
4709 
4710 		c->slab = NULL;
4711 		c->freelist = NULL;
4712 		c->tid = next_tid(c->tid);
4713 
4714 		local_unlock_cpu_slab(s, flags);
4715 
4716 		if (unlikely(!allow_spin)) {
4717 			/* Reentrant slub cannot take locks, defer */
4718 			defer_deactivate_slab(flush_slab, flush_freelist);
4719 		} else {
4720 			deactivate_slab(s, flush_slab, flush_freelist);
4721 		}
4722 
4723 		stat(s, CPUSLAB_FLUSH);
4724 
4725 		goto retry_load_slab;
4726 	}
4727 	c->slab = slab;
4728 
4729 	goto load_freelist;
4730 }
4731 /*
4732  * We disallow kprobes in ___slab_alloc() to prevent reentrance
4733  *
4734  * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4735  * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4736  * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4737  * manipulating c->freelist without lock.
4738  *
4739  * This does not prevent kprobe in functions called from ___slab_alloc() such as
4740  * local_lock_irqsave() itself, and that is fine, we only need to protect the
4741  * c->freelist manipulation in ___slab_alloc() itself.
4742  */
4743 NOKPROBE_SYMBOL(___slab_alloc);
4744 
4745 /*
4746  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4747  * disabled. Compensates for possible cpu changes by refetching the per cpu area
4748  * pointer.
4749  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4750 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4751 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4752 {
4753 	void *p;
4754 
4755 #ifdef CONFIG_PREEMPT_COUNT
4756 	/*
4757 	 * We may have been preempted and rescheduled on a different
4758 	 * cpu before disabling preemption. Need to reload cpu area
4759 	 * pointer.
4760 	 */
4761 	c = slub_get_cpu_ptr(s->cpu_slab);
4762 #endif
4763 	if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4764 		if (local_lock_is_locked(&s->cpu_slab->lock)) {
4765 			/*
4766 			 * EBUSY is an internal signal to kmalloc_nolock() to
4767 			 * retry a different bucket. It's not propagated
4768 			 * to the caller.
4769 			 */
4770 			p = ERR_PTR(-EBUSY);
4771 			goto out;
4772 		}
4773 	}
4774 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4775 out:
4776 #ifdef CONFIG_PREEMPT_COUNT
4777 	slub_put_cpu_ptr(s->cpu_slab);
4778 #endif
4779 	return p;
4780 }
4781 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4782 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4783 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4784 {
4785 	struct kmem_cache_cpu *c;
4786 	struct slab *slab;
4787 	unsigned long tid;
4788 	void *object;
4789 
4790 redo:
4791 	/*
4792 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4793 	 * enabled. We may switch back and forth between cpus while
4794 	 * reading from one cpu area. That does not matter as long
4795 	 * as we end up on the original cpu again when doing the cmpxchg.
4796 	 *
4797 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4798 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4799 	 * the tid. If we are preempted and switched to another cpu between the
4800 	 * two reads, it's OK as the two are still associated with the same cpu
4801 	 * and cmpxchg later will validate the cpu.
4802 	 */
4803 	c = raw_cpu_ptr(s->cpu_slab);
4804 	tid = READ_ONCE(c->tid);
4805 
4806 	/*
4807 	 * Irqless object alloc/free algorithm used here depends on sequence
4808 	 * of fetching cpu_slab's data. tid should be fetched before anything
4809 	 * on c to guarantee that object and slab associated with previous tid
4810 	 * won't be used with current tid. If we fetch tid first, object and
4811 	 * slab could be one associated with next tid and our alloc/free
4812 	 * request will be failed. In this case, we will retry. So, no problem.
4813 	 */
4814 	barrier();
4815 
4816 	/*
4817 	 * The transaction ids are globally unique per cpu and per operation on
4818 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4819 	 * occurs on the right processor and that there was no operation on the
4820 	 * linked list in between.
4821 	 */
4822 
4823 	object = c->freelist;
4824 	slab = c->slab;
4825 
4826 #ifdef CONFIG_NUMA
4827 	if (static_branch_unlikely(&strict_numa) &&
4828 			node == NUMA_NO_NODE) {
4829 
4830 		struct mempolicy *mpol = current->mempolicy;
4831 
4832 		if (mpol) {
4833 			/*
4834 			 * Special BIND rule support. If existing slab
4835 			 * is in permitted set then do not redirect
4836 			 * to a particular node.
4837 			 * Otherwise we apply the memory policy to get
4838 			 * the node we need to allocate on.
4839 			 */
4840 			if (mpol->mode != MPOL_BIND || !slab ||
4841 					!node_isset(slab_nid(slab), mpol->nodes))
4842 
4843 				node = mempolicy_slab_node();
4844 		}
4845 	}
4846 #endif
4847 
4848 	if (!USE_LOCKLESS_FAST_PATH() ||
4849 	    unlikely(!object || !slab || !node_match(slab, node))) {
4850 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4851 	} else {
4852 		void *next_object = get_freepointer_safe(s, object);
4853 
4854 		/*
4855 		 * The cmpxchg will only match if there was no additional
4856 		 * operation and if we are on the right processor.
4857 		 *
4858 		 * The cmpxchg does the following atomically (without lock
4859 		 * semantics!)
4860 		 * 1. Relocate first pointer to the current per cpu area.
4861 		 * 2. Verify that tid and freelist have not been changed
4862 		 * 3. If they were not changed replace tid and freelist
4863 		 *
4864 		 * Since this is without lock semantics the protection is only
4865 		 * against code executing on this cpu *not* from access by
4866 		 * other cpus.
4867 		 */
4868 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4869 			note_cmpxchg_failure("slab_alloc", s, tid);
4870 			goto redo;
4871 		}
4872 		prefetch_freepointer(s, next_object);
4873 		stat(s, ALLOC_FASTPATH);
4874 	}
4875 
4876 	return object;
4877 }
4878 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4879 static void *__slab_alloc_node(struct kmem_cache *s,
4880 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4881 {
4882 	struct partial_context pc;
4883 	struct slab *slab;
4884 	void *object;
4885 
4886 	pc.flags = gfpflags;
4887 	pc.orig_size = orig_size;
4888 	slab = get_partial(s, node, &pc);
4889 
4890 	if (slab)
4891 		return pc.object;
4892 
4893 	slab = new_slab(s, gfpflags, node);
4894 	if (unlikely(!slab)) {
4895 		slab_out_of_memory(s, gfpflags, node);
4896 		return NULL;
4897 	}
4898 
4899 	object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4900 
4901 	return object;
4902 }
4903 #endif /* CONFIG_SLUB_TINY */
4904 
4905 /*
4906  * If the object has been wiped upon free, make sure it's fully initialized by
4907  * zeroing out freelist pointer.
4908  *
4909  * Note that we also wipe custom freelist pointers.
4910  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4911 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4912 						   void *obj)
4913 {
4914 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4915 	    !freeptr_outside_object(s))
4916 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4917 			0, sizeof(void *));
4918 }
4919 
4920 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4921 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4922 {
4923 	flags &= gfp_allowed_mask;
4924 
4925 	might_alloc(flags);
4926 
4927 	if (unlikely(should_failslab(s, flags)))
4928 		return NULL;
4929 
4930 	return s;
4931 }
4932 
4933 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4934 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4935 			  gfp_t flags, size_t size, void **p, bool init,
4936 			  unsigned int orig_size)
4937 {
4938 	unsigned int zero_size = s->object_size;
4939 	bool kasan_init = init;
4940 	size_t i;
4941 	gfp_t init_flags = flags & gfp_allowed_mask;
4942 
4943 	/*
4944 	 * For kmalloc object, the allocated memory size(object_size) is likely
4945 	 * larger than the requested size(orig_size). If redzone check is
4946 	 * enabled for the extra space, don't zero it, as it will be redzoned
4947 	 * soon. The redzone operation for this extra space could be seen as a
4948 	 * replacement of current poisoning under certain debug option, and
4949 	 * won't break other sanity checks.
4950 	 */
4951 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4952 	    (s->flags & SLAB_KMALLOC))
4953 		zero_size = orig_size;
4954 
4955 	/*
4956 	 * When slab_debug is enabled, avoid memory initialization integrated
4957 	 * into KASAN and instead zero out the memory via the memset below with
4958 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4959 	 * cause false-positive reports. This does not lead to a performance
4960 	 * penalty on production builds, as slab_debug is not intended to be
4961 	 * enabled there.
4962 	 */
4963 	if (__slub_debug_enabled())
4964 		kasan_init = false;
4965 
4966 	/*
4967 	 * As memory initialization might be integrated into KASAN,
4968 	 * kasan_slab_alloc and initialization memset must be
4969 	 * kept together to avoid discrepancies in behavior.
4970 	 *
4971 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4972 	 */
4973 	for (i = 0; i < size; i++) {
4974 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4975 		if (p[i] && init && (!kasan_init ||
4976 				     !kasan_has_integrated_init()))
4977 			memset(p[i], 0, zero_size);
4978 		if (gfpflags_allow_spinning(flags))
4979 			kmemleak_alloc_recursive(p[i], s->object_size, 1,
4980 						 s->flags, init_flags);
4981 		kmsan_slab_alloc(s, p[i], init_flags);
4982 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4983 	}
4984 
4985 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4986 }
4987 
4988 /*
4989  * Replace the empty main sheaf with a (at least partially) full sheaf.
4990  *
4991  * Must be called with the cpu_sheaves local lock locked. If successful, returns
4992  * the pcs pointer and the local lock locked (possibly on a different cpu than
4993  * initially called). If not successful, returns NULL and the local lock
4994  * unlocked.
4995  */
4996 static struct slub_percpu_sheaves *
__pcs_replace_empty_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,gfp_t gfp)4997 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4998 {
4999 	struct slab_sheaf *empty = NULL;
5000 	struct slab_sheaf *full;
5001 	struct node_barn *barn;
5002 	bool can_alloc;
5003 
5004 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5005 
5006 	if (pcs->spare && pcs->spare->size > 0) {
5007 		swap(pcs->main, pcs->spare);
5008 		return pcs;
5009 	}
5010 
5011 	barn = get_barn(s);
5012 	if (!barn) {
5013 		local_unlock(&s->cpu_sheaves->lock);
5014 		return NULL;
5015 	}
5016 
5017 	full = barn_replace_empty_sheaf(barn, pcs->main);
5018 
5019 	if (full) {
5020 		stat(s, BARN_GET);
5021 		pcs->main = full;
5022 		return pcs;
5023 	}
5024 
5025 	stat(s, BARN_GET_FAIL);
5026 
5027 	can_alloc = gfpflags_allow_blocking(gfp);
5028 
5029 	if (can_alloc) {
5030 		if (pcs->spare) {
5031 			empty = pcs->spare;
5032 			pcs->spare = NULL;
5033 		} else {
5034 			empty = barn_get_empty_sheaf(barn);
5035 		}
5036 	}
5037 
5038 	local_unlock(&s->cpu_sheaves->lock);
5039 
5040 	if (!can_alloc)
5041 		return NULL;
5042 
5043 	if (empty) {
5044 		if (!refill_sheaf(s, empty, gfp)) {
5045 			full = empty;
5046 		} else {
5047 			/*
5048 			 * we must be very low on memory so don't bother
5049 			 * with the barn
5050 			 */
5051 			free_empty_sheaf(s, empty);
5052 		}
5053 	} else {
5054 		full = alloc_full_sheaf(s, gfp);
5055 	}
5056 
5057 	if (!full)
5058 		return NULL;
5059 
5060 	/*
5061 	 * we can reach here only when gfpflags_allow_blocking
5062 	 * so this must not be an irq
5063 	 */
5064 	local_lock(&s->cpu_sheaves->lock);
5065 	pcs = this_cpu_ptr(s->cpu_sheaves);
5066 
5067 	/*
5068 	 * If we are returning empty sheaf, we either got it from the
5069 	 * barn or had to allocate one. If we are returning a full
5070 	 * sheaf, it's due to racing or being migrated to a different
5071 	 * cpu. Breaching the barn's sheaf limits should be thus rare
5072 	 * enough so just ignore them to simplify the recovery.
5073 	 */
5074 
5075 	if (pcs->main->size == 0) {
5076 		barn_put_empty_sheaf(barn, pcs->main);
5077 		pcs->main = full;
5078 		return pcs;
5079 	}
5080 
5081 	if (!pcs->spare) {
5082 		pcs->spare = full;
5083 		return pcs;
5084 	}
5085 
5086 	if (pcs->spare->size == 0) {
5087 		barn_put_empty_sheaf(barn, pcs->spare);
5088 		pcs->spare = full;
5089 		return pcs;
5090 	}
5091 
5092 	barn_put_full_sheaf(barn, full);
5093 	stat(s, BARN_PUT);
5094 
5095 	return pcs;
5096 }
5097 
5098 static __fastpath_inline
alloc_from_pcs(struct kmem_cache * s,gfp_t gfp,int node)5099 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5100 {
5101 	struct slub_percpu_sheaves *pcs;
5102 	bool node_requested;
5103 	void *object;
5104 
5105 #ifdef CONFIG_NUMA
5106 	if (static_branch_unlikely(&strict_numa) &&
5107 			 node == NUMA_NO_NODE) {
5108 
5109 		struct mempolicy *mpol = current->mempolicy;
5110 
5111 		if (mpol) {
5112 			/*
5113 			 * Special BIND rule support. If the local node
5114 			 * is in permitted set then do not redirect
5115 			 * to a particular node.
5116 			 * Otherwise we apply the memory policy to get
5117 			 * the node we need to allocate on.
5118 			 */
5119 			if (mpol->mode != MPOL_BIND ||
5120 					!node_isset(numa_mem_id(), mpol->nodes))
5121 
5122 				node = mempolicy_slab_node();
5123 		}
5124 	}
5125 #endif
5126 
5127 	node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5128 
5129 	/*
5130 	 * We assume the percpu sheaves contain only local objects although it's
5131 	 * not completely guaranteed, so we verify later.
5132 	 */
5133 	if (unlikely(node_requested && node != numa_mem_id()))
5134 		return NULL;
5135 
5136 	if (!local_trylock(&s->cpu_sheaves->lock))
5137 		return NULL;
5138 
5139 	pcs = this_cpu_ptr(s->cpu_sheaves);
5140 
5141 	if (unlikely(pcs->main->size == 0)) {
5142 		pcs = __pcs_replace_empty_main(s, pcs, gfp);
5143 		if (unlikely(!pcs))
5144 			return NULL;
5145 	}
5146 
5147 	object = pcs->main->objects[pcs->main->size - 1];
5148 
5149 	if (unlikely(node_requested)) {
5150 		/*
5151 		 * Verify that the object was from the node we want. This could
5152 		 * be false because of cpu migration during an unlocked part of
5153 		 * the current allocation or previous freeing process.
5154 		 */
5155 		if (folio_nid(virt_to_folio(object)) != node) {
5156 			local_unlock(&s->cpu_sheaves->lock);
5157 			return NULL;
5158 		}
5159 	}
5160 
5161 	pcs->main->size--;
5162 
5163 	local_unlock(&s->cpu_sheaves->lock);
5164 
5165 	stat(s, ALLOC_PCS);
5166 
5167 	return object;
5168 }
5169 
5170 static __fastpath_inline
alloc_from_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)5171 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5172 {
5173 	struct slub_percpu_sheaves *pcs;
5174 	struct slab_sheaf *main;
5175 	unsigned int allocated = 0;
5176 	unsigned int batch;
5177 
5178 next_batch:
5179 	if (!local_trylock(&s->cpu_sheaves->lock))
5180 		return allocated;
5181 
5182 	pcs = this_cpu_ptr(s->cpu_sheaves);
5183 
5184 	if (unlikely(pcs->main->size == 0)) {
5185 
5186 		struct slab_sheaf *full;
5187 		struct node_barn *barn;
5188 
5189 		if (pcs->spare && pcs->spare->size > 0) {
5190 			swap(pcs->main, pcs->spare);
5191 			goto do_alloc;
5192 		}
5193 
5194 		barn = get_barn(s);
5195 		if (!barn) {
5196 			local_unlock(&s->cpu_sheaves->lock);
5197 			return allocated;
5198 		}
5199 
5200 		full = barn_replace_empty_sheaf(barn, pcs->main);
5201 
5202 		if (full) {
5203 			stat(s, BARN_GET);
5204 			pcs->main = full;
5205 			goto do_alloc;
5206 		}
5207 
5208 		stat(s, BARN_GET_FAIL);
5209 
5210 		local_unlock(&s->cpu_sheaves->lock);
5211 
5212 		/*
5213 		 * Once full sheaves in barn are depleted, let the bulk
5214 		 * allocation continue from slab pages, otherwise we would just
5215 		 * be copying arrays of pointers twice.
5216 		 */
5217 		return allocated;
5218 	}
5219 
5220 do_alloc:
5221 
5222 	main = pcs->main;
5223 	batch = min(size, main->size);
5224 
5225 	main->size -= batch;
5226 	memcpy(p, main->objects + main->size, batch * sizeof(void *));
5227 
5228 	local_unlock(&s->cpu_sheaves->lock);
5229 
5230 	stat_add(s, ALLOC_PCS, batch);
5231 
5232 	allocated += batch;
5233 
5234 	if (batch < size) {
5235 		p += batch;
5236 		size -= batch;
5237 		goto next_batch;
5238 	}
5239 
5240 	return allocated;
5241 }
5242 
5243 
5244 /*
5245  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5246  * have the fastpath folded into their functions. So no function call
5247  * overhead for requests that can be satisfied on the fastpath.
5248  *
5249  * The fastpath works by first checking if the lockless freelist can be used.
5250  * If not then __slab_alloc is called for slow processing.
5251  *
5252  * Otherwise we can simply pick the next object from the lockless free list.
5253  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)5254 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5255 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5256 {
5257 	void *object;
5258 	bool init = false;
5259 
5260 	s = slab_pre_alloc_hook(s, gfpflags);
5261 	if (unlikely(!s))
5262 		return NULL;
5263 
5264 	object = kfence_alloc(s, orig_size, gfpflags);
5265 	if (unlikely(object))
5266 		goto out;
5267 
5268 	if (s->cpu_sheaves)
5269 		object = alloc_from_pcs(s, gfpflags, node);
5270 
5271 	if (!object)
5272 		object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5273 
5274 	maybe_wipe_obj_freeptr(s, object);
5275 	init = slab_want_init_on_alloc(gfpflags, s);
5276 
5277 out:
5278 	/*
5279 	 * When init equals 'true', like for kzalloc() family, only
5280 	 * @orig_size bytes might be zeroed instead of s->object_size
5281 	 * In case this fails due to memcg_slab_post_alloc_hook(),
5282 	 * object is set to NULL
5283 	 */
5284 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5285 
5286 	return object;
5287 }
5288 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)5289 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5290 {
5291 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5292 				    s->object_size);
5293 
5294 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5295 
5296 	return ret;
5297 }
5298 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5299 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)5300 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5301 			   gfp_t gfpflags)
5302 {
5303 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5304 				    s->object_size);
5305 
5306 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5307 
5308 	return ret;
5309 }
5310 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5311 
kmem_cache_charge(void * objp,gfp_t gfpflags)5312 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5313 {
5314 	if (!memcg_kmem_online())
5315 		return true;
5316 
5317 	return memcg_slab_post_charge(objp, gfpflags);
5318 }
5319 EXPORT_SYMBOL(kmem_cache_charge);
5320 
5321 /**
5322  * kmem_cache_alloc_node - Allocate an object on the specified node
5323  * @s: The cache to allocate from.
5324  * @gfpflags: See kmalloc().
5325  * @node: node number of the target node.
5326  *
5327  * Identical to kmem_cache_alloc but it will allocate memory on the given
5328  * node, which can improve the performance for cpu bound structures.
5329  *
5330  * Fallback to other node is possible if __GFP_THISNODE is not set.
5331  *
5332  * Return: pointer to the new object or %NULL in case of error
5333  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)5334 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5335 {
5336 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5337 
5338 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5339 
5340 	return ret;
5341 }
5342 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5343 
5344 /*
5345  * returns a sheaf that has at least the requested size
5346  * when prefilling is needed, do so with given gfp flags
5347  *
5348  * return NULL if sheaf allocation or prefilling failed
5349  */
5350 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)5351 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5352 {
5353 	struct slub_percpu_sheaves *pcs;
5354 	struct slab_sheaf *sheaf = NULL;
5355 	struct node_barn *barn;
5356 
5357 	if (unlikely(size > s->sheaf_capacity)) {
5358 
5359 		/*
5360 		 * slab_debug disables cpu sheaves intentionally so all
5361 		 * prefilled sheaves become "oversize" and we give up on
5362 		 * performance for the debugging. Same with SLUB_TINY.
5363 		 * Creating a cache without sheaves and then requesting a
5364 		 * prefilled sheaf is however not expected, so warn.
5365 		 */
5366 		WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5367 			     !IS_ENABLED(CONFIG_SLUB_TINY) &&
5368 			     !(s->flags & SLAB_DEBUG_FLAGS));
5369 
5370 		sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5371 		if (!sheaf)
5372 			return NULL;
5373 
5374 		stat(s, SHEAF_PREFILL_OVERSIZE);
5375 		sheaf->cache = s;
5376 		sheaf->capacity = size;
5377 
5378 		if (!__kmem_cache_alloc_bulk(s, gfp, size,
5379 					     &sheaf->objects[0])) {
5380 			kfree(sheaf);
5381 			return NULL;
5382 		}
5383 
5384 		sheaf->size = size;
5385 
5386 		return sheaf;
5387 	}
5388 
5389 	local_lock(&s->cpu_sheaves->lock);
5390 	pcs = this_cpu_ptr(s->cpu_sheaves);
5391 
5392 	if (pcs->spare) {
5393 		sheaf = pcs->spare;
5394 		pcs->spare = NULL;
5395 		stat(s, SHEAF_PREFILL_FAST);
5396 	} else {
5397 		barn = get_barn(s);
5398 
5399 		stat(s, SHEAF_PREFILL_SLOW);
5400 		if (barn)
5401 			sheaf = barn_get_full_or_empty_sheaf(barn);
5402 		if (sheaf && sheaf->size)
5403 			stat(s, BARN_GET);
5404 		else
5405 			stat(s, BARN_GET_FAIL);
5406 	}
5407 
5408 	local_unlock(&s->cpu_sheaves->lock);
5409 
5410 
5411 	if (!sheaf)
5412 		sheaf = alloc_empty_sheaf(s, gfp);
5413 
5414 	if (sheaf && sheaf->size < size) {
5415 		if (refill_sheaf(s, sheaf, gfp)) {
5416 			sheaf_flush_unused(s, sheaf);
5417 			free_empty_sheaf(s, sheaf);
5418 			sheaf = NULL;
5419 		}
5420 	}
5421 
5422 	if (sheaf)
5423 		sheaf->capacity = s->sheaf_capacity;
5424 
5425 	return sheaf;
5426 }
5427 
5428 /*
5429  * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5430  *
5431  * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5432  * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5433  * sheaf_capacity to avoid handling partially full sheaves.
5434  *
5435  * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5436  * sheaf is instead flushed and freed.
5437  */
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5438 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5439 			     struct slab_sheaf *sheaf)
5440 {
5441 	struct slub_percpu_sheaves *pcs;
5442 	struct node_barn *barn;
5443 
5444 	if (unlikely(sheaf->capacity != s->sheaf_capacity)) {
5445 		sheaf_flush_unused(s, sheaf);
5446 		kfree(sheaf);
5447 		return;
5448 	}
5449 
5450 	local_lock(&s->cpu_sheaves->lock);
5451 	pcs = this_cpu_ptr(s->cpu_sheaves);
5452 	barn = get_barn(s);
5453 
5454 	if (!pcs->spare) {
5455 		pcs->spare = sheaf;
5456 		sheaf = NULL;
5457 		stat(s, SHEAF_RETURN_FAST);
5458 	}
5459 
5460 	local_unlock(&s->cpu_sheaves->lock);
5461 
5462 	if (!sheaf)
5463 		return;
5464 
5465 	stat(s, SHEAF_RETURN_SLOW);
5466 
5467 	/*
5468 	 * If the barn has too many full sheaves or we fail to refill the sheaf,
5469 	 * simply flush and free it.
5470 	 */
5471 	if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5472 	    refill_sheaf(s, sheaf, gfp)) {
5473 		sheaf_flush_unused(s, sheaf);
5474 		free_empty_sheaf(s, sheaf);
5475 		return;
5476 	}
5477 
5478 	barn_put_full_sheaf(barn, sheaf);
5479 	stat(s, BARN_PUT);
5480 }
5481 
5482 /*
5483  * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5484  * the given size
5485  *
5486  * the sheaf might be replaced by a new one when requesting more than
5487  * s->sheaf_capacity objects if such replacement is necessary, but the refill
5488  * fails (returning -ENOMEM), the existing sheaf is left intact
5489  *
5490  * In practice we always refill to full sheaf's capacity.
5491  */
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)5492 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5493 			    struct slab_sheaf **sheafp, unsigned int size)
5494 {
5495 	struct slab_sheaf *sheaf;
5496 
5497 	/*
5498 	 * TODO: do we want to support *sheaf == NULL to be equivalent of
5499 	 * kmem_cache_prefill_sheaf() ?
5500 	 */
5501 	if (!sheafp || !(*sheafp))
5502 		return -EINVAL;
5503 
5504 	sheaf = *sheafp;
5505 	if (sheaf->size >= size)
5506 		return 0;
5507 
5508 	if (likely(sheaf->capacity >= size)) {
5509 		if (likely(sheaf->capacity == s->sheaf_capacity))
5510 			return refill_sheaf(s, sheaf, gfp);
5511 
5512 		if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5513 					     &sheaf->objects[sheaf->size])) {
5514 			return -ENOMEM;
5515 		}
5516 		sheaf->size = sheaf->capacity;
5517 
5518 		return 0;
5519 	}
5520 
5521 	/*
5522 	 * We had a regular sized sheaf and need an oversize one, or we had an
5523 	 * oversize one already but need a larger one now.
5524 	 * This should be a very rare path so let's not complicate it.
5525 	 */
5526 	sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5527 	if (!sheaf)
5528 		return -ENOMEM;
5529 
5530 	kmem_cache_return_sheaf(s, gfp, *sheafp);
5531 	*sheafp = sheaf;
5532 	return 0;
5533 }
5534 
5535 /*
5536  * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5537  *
5538  * Guaranteed not to fail as many allocations as was the requested size.
5539  * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5540  *
5541  * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5542  * memcg charging is forced over limit if necessary, to avoid failure.
5543  */
5544 void *
kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5545 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5546 				   struct slab_sheaf *sheaf)
5547 {
5548 	void *ret = NULL;
5549 	bool init;
5550 
5551 	if (sheaf->size == 0)
5552 		goto out;
5553 
5554 	ret = sheaf->objects[--sheaf->size];
5555 
5556 	init = slab_want_init_on_alloc(gfp, s);
5557 
5558 	/* add __GFP_NOFAIL to force successful memcg charging */
5559 	slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5560 out:
5561 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5562 
5563 	return ret;
5564 }
5565 
kmem_cache_sheaf_size(struct slab_sheaf * sheaf)5566 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5567 {
5568 	return sheaf->size;
5569 }
5570 /*
5571  * To avoid unnecessary overhead, we pass through large allocation requests
5572  * directly to the page allocator. We use __GFP_COMP, because we will need to
5573  * know the allocation order to free the pages properly in kfree.
5574  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)5575 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5576 {
5577 	struct folio *folio;
5578 	void *ptr = NULL;
5579 	unsigned int order = get_order(size);
5580 
5581 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
5582 		flags = kmalloc_fix_flags(flags);
5583 
5584 	flags |= __GFP_COMP;
5585 
5586 	if (node == NUMA_NO_NODE)
5587 		folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
5588 	else
5589 		folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
5590 
5591 	if (folio) {
5592 		ptr = folio_address(folio);
5593 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
5594 				      PAGE_SIZE << order);
5595 		__folio_set_large_kmalloc(folio);
5596 	}
5597 
5598 	ptr = kasan_kmalloc_large(ptr, size, flags);
5599 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
5600 	kmemleak_alloc(ptr, size, 1, flags);
5601 	kmsan_kmalloc_large(ptr, size, flags);
5602 
5603 	return ptr;
5604 }
5605 
__kmalloc_large_noprof(size_t size,gfp_t flags)5606 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5607 {
5608 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5609 
5610 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5611 		      flags, NUMA_NO_NODE);
5612 	return ret;
5613 }
5614 EXPORT_SYMBOL(__kmalloc_large_noprof);
5615 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)5616 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5617 {
5618 	void *ret = ___kmalloc_large_node(size, flags, node);
5619 
5620 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5621 		      flags, node);
5622 	return ret;
5623 }
5624 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5625 
5626 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)5627 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5628 			unsigned long caller)
5629 {
5630 	struct kmem_cache *s;
5631 	void *ret;
5632 
5633 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5634 		ret = __kmalloc_large_node_noprof(size, flags, node);
5635 		trace_kmalloc(caller, ret, size,
5636 			      PAGE_SIZE << get_order(size), flags, node);
5637 		return ret;
5638 	}
5639 
5640 	if (unlikely(!size))
5641 		return ZERO_SIZE_PTR;
5642 
5643 	s = kmalloc_slab(size, b, flags, caller);
5644 
5645 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5646 	ret = kasan_kmalloc(s, ret, size, flags);
5647 	trace_kmalloc(caller, ret, size, s->size, flags, node);
5648 	return ret;
5649 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5650 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5651 {
5652 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5653 }
5654 EXPORT_SYMBOL(__kmalloc_node_noprof);
5655 
__kmalloc_noprof(size_t size,gfp_t flags)5656 void *__kmalloc_noprof(size_t size, gfp_t flags)
5657 {
5658 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5659 }
5660 EXPORT_SYMBOL(__kmalloc_noprof);
5661 
5662 /**
5663  * kmalloc_nolock - Allocate an object of given size from any context.
5664  * @size: size to allocate
5665  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5666  * allowed.
5667  * @node: node number of the target node.
5668  *
5669  * Return: pointer to the new object or NULL in case of error.
5670  * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5671  * There is no reason to call it again and expect !NULL.
5672  */
kmalloc_nolock_noprof(size_t size,gfp_t gfp_flags,int node)5673 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5674 {
5675 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5676 	struct kmem_cache *s;
5677 	bool can_retry = true;
5678 	void *ret = ERR_PTR(-EBUSY);
5679 
5680 	VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5681 				      __GFP_NO_OBJ_EXT));
5682 
5683 	if (unlikely(!size))
5684 		return ZERO_SIZE_PTR;
5685 
5686 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5687 		/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5688 		return NULL;
5689 retry:
5690 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5691 		return NULL;
5692 	s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5693 
5694 	if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5695 		/*
5696 		 * kmalloc_nolock() is not supported on architectures that
5697 		 * don't implement cmpxchg16b, but debug caches don't use
5698 		 * per-cpu slab and per-cpu partial slabs. They rely on
5699 		 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5700 		 * attempt to allocate from debug caches by
5701 		 * spin_trylock_irqsave(&n->list_lock, ...)
5702 		 */
5703 		return NULL;
5704 
5705 	/*
5706 	 * Do not call slab_alloc_node(), since trylock mode isn't
5707 	 * compatible with slab_pre_alloc_hook/should_failslab and
5708 	 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5709 	 * and slab_post_alloc_hook() directly.
5710 	 *
5711 	 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5712 	 * in irq saved region. It assumes that the same cpu will not
5713 	 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5714 	 * Therefore use in_nmi() to check whether particular bucket is in
5715 	 * irq protected section.
5716 	 *
5717 	 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5718 	 * this cpu was interrupted somewhere inside ___slab_alloc() after
5719 	 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5720 	 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5721 	 */
5722 #ifndef CONFIG_SLUB_TINY
5723 	if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5724 #endif
5725 		ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5726 
5727 	if (PTR_ERR(ret) == -EBUSY) {
5728 		if (can_retry) {
5729 			/* pick the next kmalloc bucket */
5730 			size = s->object_size + 1;
5731 			/*
5732 			 * Another alternative is to
5733 			 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5734 			 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5735 			 * to retry from bucket of the same size.
5736 			 */
5737 			can_retry = false;
5738 			goto retry;
5739 		}
5740 		ret = NULL;
5741 	}
5742 
5743 	maybe_wipe_obj_freeptr(s, ret);
5744 	slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5745 			     slab_want_init_on_alloc(alloc_gfp, s), size);
5746 
5747 	ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5748 	return ret;
5749 }
5750 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5751 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)5752 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5753 					 int node, unsigned long caller)
5754 {
5755 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5756 
5757 }
5758 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5759 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)5760 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5761 {
5762 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5763 					    _RET_IP_, size);
5764 
5765 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5766 
5767 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5768 	return ret;
5769 }
5770 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5771 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)5772 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5773 				  int node, size_t size)
5774 {
5775 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5776 
5777 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5778 
5779 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5780 	return ret;
5781 }
5782 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5783 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)5784 static noinline void free_to_partial_list(
5785 	struct kmem_cache *s, struct slab *slab,
5786 	void *head, void *tail, int bulk_cnt,
5787 	unsigned long addr)
5788 {
5789 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5790 	struct slab *slab_free = NULL;
5791 	int cnt = bulk_cnt;
5792 	unsigned long flags;
5793 	depot_stack_handle_t handle = 0;
5794 
5795 	/*
5796 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
5797 	 * kswapd could deadlock
5798 	 */
5799 	if (s->flags & SLAB_STORE_USER)
5800 		handle = set_track_prepare(__GFP_NOWARN);
5801 
5802 	spin_lock_irqsave(&n->list_lock, flags);
5803 
5804 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5805 		void *prior = slab->freelist;
5806 
5807 		/* Perform the actual freeing while we still hold the locks */
5808 		slab->inuse -= cnt;
5809 		set_freepointer(s, tail, prior);
5810 		slab->freelist = head;
5811 
5812 		/*
5813 		 * If the slab is empty, and node's partial list is full,
5814 		 * it should be discarded anyway no matter it's on full or
5815 		 * partial list.
5816 		 */
5817 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5818 			slab_free = slab;
5819 
5820 		if (!prior) {
5821 			/* was on full list */
5822 			remove_full(s, n, slab);
5823 			if (!slab_free) {
5824 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
5825 				stat(s, FREE_ADD_PARTIAL);
5826 			}
5827 		} else if (slab_free) {
5828 			remove_partial(n, slab);
5829 			stat(s, FREE_REMOVE_PARTIAL);
5830 		}
5831 	}
5832 
5833 	if (slab_free) {
5834 		/*
5835 		 * Update the counters while still holding n->list_lock to
5836 		 * prevent spurious validation warnings
5837 		 */
5838 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5839 	}
5840 
5841 	spin_unlock_irqrestore(&n->list_lock, flags);
5842 
5843 	if (slab_free) {
5844 		stat(s, FREE_SLAB);
5845 		free_slab(s, slab_free);
5846 	}
5847 }
5848 
5849 /*
5850  * Slow path handling. This may still be called frequently since objects
5851  * have a longer lifetime than the cpu slabs in most processing loads.
5852  *
5853  * So we still attempt to reduce cache line usage. Just take the slab
5854  * lock and free the item. If there is no additional partial slab
5855  * handling required then we can return immediately.
5856  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)5857 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5858 			void *head, void *tail, int cnt,
5859 			unsigned long addr)
5860 
5861 {
5862 	void *prior;
5863 	int was_frozen;
5864 	struct slab new;
5865 	unsigned long counters;
5866 	struct kmem_cache_node *n = NULL;
5867 	unsigned long flags;
5868 	bool on_node_partial;
5869 
5870 	stat(s, FREE_SLOWPATH);
5871 
5872 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5873 		free_to_partial_list(s, slab, head, tail, cnt, addr);
5874 		return;
5875 	}
5876 
5877 	do {
5878 		if (unlikely(n)) {
5879 			spin_unlock_irqrestore(&n->list_lock, flags);
5880 			n = NULL;
5881 		}
5882 		prior = slab->freelist;
5883 		counters = slab->counters;
5884 		set_freepointer(s, tail, prior);
5885 		new.counters = counters;
5886 		was_frozen = new.frozen;
5887 		new.inuse -= cnt;
5888 		if ((!new.inuse || !prior) && !was_frozen) {
5889 			/* Needs to be taken off a list */
5890 			if (!kmem_cache_has_cpu_partial(s) || prior) {
5891 
5892 				n = get_node(s, slab_nid(slab));
5893 				/*
5894 				 * Speculatively acquire the list_lock.
5895 				 * If the cmpxchg does not succeed then we may
5896 				 * drop the list_lock without any processing.
5897 				 *
5898 				 * Otherwise the list_lock will synchronize with
5899 				 * other processors updating the list of slabs.
5900 				 */
5901 				spin_lock_irqsave(&n->list_lock, flags);
5902 
5903 				on_node_partial = slab_test_node_partial(slab);
5904 			}
5905 		}
5906 
5907 	} while (!slab_update_freelist(s, slab,
5908 		prior, counters,
5909 		head, new.counters,
5910 		"__slab_free"));
5911 
5912 	if (likely(!n)) {
5913 
5914 		if (likely(was_frozen)) {
5915 			/*
5916 			 * The list lock was not taken therefore no list
5917 			 * activity can be necessary.
5918 			 */
5919 			stat(s, FREE_FROZEN);
5920 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
5921 			/*
5922 			 * If we started with a full slab then put it onto the
5923 			 * per cpu partial list.
5924 			 */
5925 			put_cpu_partial(s, slab, 1);
5926 			stat(s, CPU_PARTIAL_FREE);
5927 		}
5928 
5929 		return;
5930 	}
5931 
5932 	/*
5933 	 * This slab was partially empty but not on the per-node partial list,
5934 	 * in which case we shouldn't manipulate its list, just return.
5935 	 */
5936 	if (prior && !on_node_partial) {
5937 		spin_unlock_irqrestore(&n->list_lock, flags);
5938 		return;
5939 	}
5940 
5941 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5942 		goto slab_empty;
5943 
5944 	/*
5945 	 * Objects left in the slab. If it was not on the partial list before
5946 	 * then add it.
5947 	 */
5948 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
5949 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
5950 		stat(s, FREE_ADD_PARTIAL);
5951 	}
5952 	spin_unlock_irqrestore(&n->list_lock, flags);
5953 	return;
5954 
5955 slab_empty:
5956 	if (prior) {
5957 		/*
5958 		 * Slab on the partial list.
5959 		 */
5960 		remove_partial(n, slab);
5961 		stat(s, FREE_REMOVE_PARTIAL);
5962 	}
5963 
5964 	spin_unlock_irqrestore(&n->list_lock, flags);
5965 	stat(s, FREE_SLAB);
5966 	discard_slab(s, slab);
5967 }
5968 
5969 /*
5970  * pcs is locked. We should have get rid of the spare sheaf and obtained an
5971  * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
5972  * as a main sheaf, and make the current main sheaf a spare sheaf.
5973  *
5974  * However due to having relinquished the cpu_sheaves lock when obtaining
5975  * the empty sheaf, we need to handle some unlikely but possible cases.
5976  *
5977  * If we put any sheaf to barn here, it's because we were interrupted or have
5978  * been migrated to a different cpu, which should be rare enough so just ignore
5979  * the barn's limits to simplify the handling.
5980  *
5981  * An alternative scenario that gets us here is when we fail
5982  * barn_replace_full_sheaf(), because there's no empty sheaf available in the
5983  * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
5984  * limit on full sheaves was not exceeded, we assume it didn't change and just
5985  * put the full sheaf there.
5986  */
__pcs_install_empty_sheaf(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,struct slab_sheaf * empty,struct node_barn * barn)5987 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
5988 		struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
5989 		struct node_barn *barn)
5990 {
5991 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5992 
5993 	/* This is what we expect to find if nobody interrupted us. */
5994 	if (likely(!pcs->spare)) {
5995 		pcs->spare = pcs->main;
5996 		pcs->main = empty;
5997 		return;
5998 	}
5999 
6000 	/*
6001 	 * Unlikely because if the main sheaf had space, we would have just
6002 	 * freed to it. Get rid of our empty sheaf.
6003 	 */
6004 	if (pcs->main->size < s->sheaf_capacity) {
6005 		barn_put_empty_sheaf(barn, empty);
6006 		return;
6007 	}
6008 
6009 	/* Also unlikely for the same reason */
6010 	if (pcs->spare->size < s->sheaf_capacity) {
6011 		swap(pcs->main, pcs->spare);
6012 		barn_put_empty_sheaf(barn, empty);
6013 		return;
6014 	}
6015 
6016 	/*
6017 	 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6018 	 * available there, but we allocated one, so finish the job.
6019 	 */
6020 	barn_put_full_sheaf(barn, pcs->main);
6021 	stat(s, BARN_PUT);
6022 	pcs->main = empty;
6023 }
6024 
6025 /*
6026  * Replace the full main sheaf with a (at least partially) empty sheaf.
6027  *
6028  * Must be called with the cpu_sheaves local lock locked. If successful, returns
6029  * the pcs pointer and the local lock locked (possibly on a different cpu than
6030  * initially called). If not successful, returns NULL and the local lock
6031  * unlocked.
6032  */
6033 static struct slub_percpu_sheaves *
__pcs_replace_full_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs)6034 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6035 {
6036 	struct slab_sheaf *empty;
6037 	struct node_barn *barn;
6038 	bool put_fail;
6039 
6040 restart:
6041 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6042 
6043 	barn = get_barn(s);
6044 	if (!barn) {
6045 		local_unlock(&s->cpu_sheaves->lock);
6046 		return NULL;
6047 	}
6048 
6049 	put_fail = false;
6050 
6051 	if (!pcs->spare) {
6052 		empty = barn_get_empty_sheaf(barn);
6053 		if (empty) {
6054 			pcs->spare = pcs->main;
6055 			pcs->main = empty;
6056 			return pcs;
6057 		}
6058 		goto alloc_empty;
6059 	}
6060 
6061 	if (pcs->spare->size < s->sheaf_capacity) {
6062 		swap(pcs->main, pcs->spare);
6063 		return pcs;
6064 	}
6065 
6066 	empty = barn_replace_full_sheaf(barn, pcs->main);
6067 
6068 	if (!IS_ERR(empty)) {
6069 		stat(s, BARN_PUT);
6070 		pcs->main = empty;
6071 		return pcs;
6072 	}
6073 
6074 	if (PTR_ERR(empty) == -E2BIG) {
6075 		/* Since we got here, spare exists and is full */
6076 		struct slab_sheaf *to_flush = pcs->spare;
6077 
6078 		stat(s, BARN_PUT_FAIL);
6079 
6080 		pcs->spare = NULL;
6081 		local_unlock(&s->cpu_sheaves->lock);
6082 
6083 		sheaf_flush_unused(s, to_flush);
6084 		empty = to_flush;
6085 		goto got_empty;
6086 	}
6087 
6088 	/*
6089 	 * We could not replace full sheaf because barn had no empty
6090 	 * sheaves. We can still allocate it and put the full sheaf in
6091 	 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6092 	 * make sure to count the fail.
6093 	 */
6094 	put_fail = true;
6095 
6096 alloc_empty:
6097 	local_unlock(&s->cpu_sheaves->lock);
6098 
6099 	empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6100 	if (empty)
6101 		goto got_empty;
6102 
6103 	if (put_fail)
6104 		 stat(s, BARN_PUT_FAIL);
6105 
6106 	if (!sheaf_flush_main(s))
6107 		return NULL;
6108 
6109 	if (!local_trylock(&s->cpu_sheaves->lock))
6110 		return NULL;
6111 
6112 	pcs = this_cpu_ptr(s->cpu_sheaves);
6113 
6114 	/*
6115 	 * we flushed the main sheaf so it should be empty now,
6116 	 * but in case we got preempted or migrated, we need to
6117 	 * check again
6118 	 */
6119 	if (pcs->main->size == s->sheaf_capacity)
6120 		goto restart;
6121 
6122 	return pcs;
6123 
6124 got_empty:
6125 	if (!local_trylock(&s->cpu_sheaves->lock)) {
6126 		barn_put_empty_sheaf(barn, empty);
6127 		return NULL;
6128 	}
6129 
6130 	pcs = this_cpu_ptr(s->cpu_sheaves);
6131 	__pcs_install_empty_sheaf(s, pcs, empty, barn);
6132 
6133 	return pcs;
6134 }
6135 
6136 /*
6137  * Free an object to the percpu sheaves.
6138  * The object is expected to have passed slab_free_hook() already.
6139  */
6140 static __fastpath_inline
free_to_pcs(struct kmem_cache * s,void * object)6141 bool free_to_pcs(struct kmem_cache *s, void *object)
6142 {
6143 	struct slub_percpu_sheaves *pcs;
6144 
6145 	if (!local_trylock(&s->cpu_sheaves->lock))
6146 		return false;
6147 
6148 	pcs = this_cpu_ptr(s->cpu_sheaves);
6149 
6150 	if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6151 
6152 		pcs = __pcs_replace_full_main(s, pcs);
6153 		if (unlikely(!pcs))
6154 			return false;
6155 	}
6156 
6157 	pcs->main->objects[pcs->main->size++] = object;
6158 
6159 	local_unlock(&s->cpu_sheaves->lock);
6160 
6161 	stat(s, FREE_PCS);
6162 
6163 	return true;
6164 }
6165 
rcu_free_sheaf(struct rcu_head * head)6166 static void rcu_free_sheaf(struct rcu_head *head)
6167 {
6168 	struct kmem_cache_node *n;
6169 	struct slab_sheaf *sheaf;
6170 	struct node_barn *barn = NULL;
6171 	struct kmem_cache *s;
6172 
6173 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
6174 
6175 	s = sheaf->cache;
6176 
6177 	/*
6178 	 * This may remove some objects due to slab_free_hook() returning false,
6179 	 * so that the sheaf might no longer be completely full. But it's easier
6180 	 * to handle it as full (unless it became completely empty), as the code
6181 	 * handles it fine. The only downside is that sheaf will serve fewer
6182 	 * allocations when reused. It only happens due to debugging, which is a
6183 	 * performance hit anyway.
6184 	 */
6185 	__rcu_free_sheaf_prepare(s, sheaf);
6186 
6187 	n = get_node(s, sheaf->node);
6188 	if (!n)
6189 		goto flush;
6190 
6191 	barn = n->barn;
6192 
6193 	/* due to slab_free_hook() */
6194 	if (unlikely(sheaf->size == 0))
6195 		goto empty;
6196 
6197 	/*
6198 	 * Checking nr_full/nr_empty outside lock avoids contention in case the
6199 	 * barn is at the respective limit. Due to the race we might go over the
6200 	 * limit but that should be rare and harmless.
6201 	 */
6202 
6203 	if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6204 		stat(s, BARN_PUT);
6205 		barn_put_full_sheaf(barn, sheaf);
6206 		return;
6207 	}
6208 
6209 flush:
6210 	stat(s, BARN_PUT_FAIL);
6211 	sheaf_flush_unused(s, sheaf);
6212 
6213 empty:
6214 	if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6215 		barn_put_empty_sheaf(barn, sheaf);
6216 		return;
6217 	}
6218 
6219 	free_empty_sheaf(s, sheaf);
6220 }
6221 
__kfree_rcu_sheaf(struct kmem_cache * s,void * obj)6222 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6223 {
6224 	struct slub_percpu_sheaves *pcs;
6225 	struct slab_sheaf *rcu_sheaf;
6226 
6227 	if (!local_trylock(&s->cpu_sheaves->lock))
6228 		goto fail;
6229 
6230 	pcs = this_cpu_ptr(s->cpu_sheaves);
6231 
6232 	if (unlikely(!pcs->rcu_free)) {
6233 
6234 		struct slab_sheaf *empty;
6235 		struct node_barn *barn;
6236 
6237 		if (pcs->spare && pcs->spare->size == 0) {
6238 			pcs->rcu_free = pcs->spare;
6239 			pcs->spare = NULL;
6240 			goto do_free;
6241 		}
6242 
6243 		barn = get_barn(s);
6244 		if (!barn) {
6245 			local_unlock(&s->cpu_sheaves->lock);
6246 			goto fail;
6247 		}
6248 
6249 		empty = barn_get_empty_sheaf(barn);
6250 
6251 		if (empty) {
6252 			pcs->rcu_free = empty;
6253 			goto do_free;
6254 		}
6255 
6256 		local_unlock(&s->cpu_sheaves->lock);
6257 
6258 		empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6259 
6260 		if (!empty)
6261 			goto fail;
6262 
6263 		if (!local_trylock(&s->cpu_sheaves->lock)) {
6264 			barn_put_empty_sheaf(barn, empty);
6265 			goto fail;
6266 		}
6267 
6268 		pcs = this_cpu_ptr(s->cpu_sheaves);
6269 
6270 		if (unlikely(pcs->rcu_free))
6271 			barn_put_empty_sheaf(barn, empty);
6272 		else
6273 			pcs->rcu_free = empty;
6274 	}
6275 
6276 do_free:
6277 
6278 	rcu_sheaf = pcs->rcu_free;
6279 
6280 	/*
6281 	 * Since we flush immediately when size reaches capacity, we never reach
6282 	 * this with size already at capacity, so no OOB write is possible.
6283 	 */
6284 	rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6285 
6286 	if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6287 		rcu_sheaf = NULL;
6288 	} else {
6289 		pcs->rcu_free = NULL;
6290 		rcu_sheaf->node = numa_mem_id();
6291 	}
6292 
6293 	/*
6294 	 * we flush before local_unlock to make sure a racing
6295 	 * flush_all_rcu_sheaves() doesn't miss this sheaf
6296 	 */
6297 	if (rcu_sheaf)
6298 		call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6299 
6300 	local_unlock(&s->cpu_sheaves->lock);
6301 
6302 	stat(s, FREE_RCU_SHEAF);
6303 	return true;
6304 
6305 fail:
6306 	stat(s, FREE_RCU_SHEAF_FAIL);
6307 	return false;
6308 }
6309 
6310 /*
6311  * Bulk free objects to the percpu sheaves.
6312  * Unlike free_to_pcs() this includes the calls to all necessary hooks
6313  * and the fallback to freeing to slab pages.
6314  */
free_to_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)6315 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6316 {
6317 	struct slub_percpu_sheaves *pcs;
6318 	struct slab_sheaf *main, *empty;
6319 	bool init = slab_want_init_on_free(s);
6320 	unsigned int batch, i = 0;
6321 	struct node_barn *barn;
6322 	void *remote_objects[PCS_BATCH_MAX];
6323 	unsigned int remote_nr = 0;
6324 	int node = numa_mem_id();
6325 
6326 next_remote_batch:
6327 	while (i < size) {
6328 		struct slab *slab = virt_to_slab(p[i]);
6329 
6330 		memcg_slab_free_hook(s, slab, p + i, 1);
6331 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6332 
6333 		if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6334 			p[i] = p[--size];
6335 			if (!size)
6336 				goto flush_remote;
6337 			continue;
6338 		}
6339 
6340 		if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) {
6341 			remote_objects[remote_nr] = p[i];
6342 			p[i] = p[--size];
6343 			if (++remote_nr >= PCS_BATCH_MAX)
6344 				goto flush_remote;
6345 			continue;
6346 		}
6347 
6348 		i++;
6349 	}
6350 
6351 next_batch:
6352 	if (!local_trylock(&s->cpu_sheaves->lock))
6353 		goto fallback;
6354 
6355 	pcs = this_cpu_ptr(s->cpu_sheaves);
6356 
6357 	if (likely(pcs->main->size < s->sheaf_capacity))
6358 		goto do_free;
6359 
6360 	barn = get_barn(s);
6361 	if (!barn)
6362 		goto no_empty;
6363 
6364 	if (!pcs->spare) {
6365 		empty = barn_get_empty_sheaf(barn);
6366 		if (!empty)
6367 			goto no_empty;
6368 
6369 		pcs->spare = pcs->main;
6370 		pcs->main = empty;
6371 		goto do_free;
6372 	}
6373 
6374 	if (pcs->spare->size < s->sheaf_capacity) {
6375 		swap(pcs->main, pcs->spare);
6376 		goto do_free;
6377 	}
6378 
6379 	empty = barn_replace_full_sheaf(barn, pcs->main);
6380 	if (IS_ERR(empty)) {
6381 		stat(s, BARN_PUT_FAIL);
6382 		goto no_empty;
6383 	}
6384 
6385 	stat(s, BARN_PUT);
6386 	pcs->main = empty;
6387 
6388 do_free:
6389 	main = pcs->main;
6390 	batch = min(size, s->sheaf_capacity - main->size);
6391 
6392 	memcpy(main->objects + main->size, p, batch * sizeof(void *));
6393 	main->size += batch;
6394 
6395 	local_unlock(&s->cpu_sheaves->lock);
6396 
6397 	stat_add(s, FREE_PCS, batch);
6398 
6399 	if (batch < size) {
6400 		p += batch;
6401 		size -= batch;
6402 		goto next_batch;
6403 	}
6404 
6405 	return;
6406 
6407 no_empty:
6408 	local_unlock(&s->cpu_sheaves->lock);
6409 
6410 	/*
6411 	 * if we depleted all empty sheaves in the barn or there are too
6412 	 * many full sheaves, free the rest to slab pages
6413 	 */
6414 fallback:
6415 	__kmem_cache_free_bulk(s, size, p);
6416 
6417 flush_remote:
6418 	if (remote_nr) {
6419 		__kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6420 		if (i < size) {
6421 			remote_nr = 0;
6422 			goto next_remote_batch;
6423 		}
6424 	}
6425 }
6426 
6427 struct defer_free {
6428 	struct llist_head objects;
6429 	struct llist_head slabs;
6430 	struct irq_work work;
6431 };
6432 
6433 static void free_deferred_objects(struct irq_work *work);
6434 
6435 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6436 	.objects = LLIST_HEAD_INIT(objects),
6437 	.slabs = LLIST_HEAD_INIT(slabs),
6438 	.work = IRQ_WORK_INIT(free_deferred_objects),
6439 };
6440 
6441 /*
6442  * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6443  * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6444  * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6445  */
free_deferred_objects(struct irq_work * work)6446 static void free_deferred_objects(struct irq_work *work)
6447 {
6448 	struct defer_free *df = container_of(work, struct defer_free, work);
6449 	struct llist_head *objs = &df->objects;
6450 	struct llist_head *slabs = &df->slabs;
6451 	struct llist_node *llnode, *pos, *t;
6452 
6453 	if (llist_empty(objs) && llist_empty(slabs))
6454 		return;
6455 
6456 	llnode = llist_del_all(objs);
6457 	llist_for_each_safe(pos, t, llnode) {
6458 		struct kmem_cache *s;
6459 		struct slab *slab;
6460 		void *x = pos;
6461 
6462 		slab = virt_to_slab(x);
6463 		s = slab->slab_cache;
6464 
6465 		/* Point 'x' back to the beginning of allocated object */
6466 		x -= s->offset;
6467 
6468 		/*
6469 		 * We used freepointer in 'x' to link 'x' into df->objects.
6470 		 * Clear it to NULL to avoid false positive detection
6471 		 * of "Freepointer corruption".
6472 		 */
6473 		set_freepointer(s, x, NULL);
6474 
6475 		__slab_free(s, slab, x, x, 1, _THIS_IP_);
6476 	}
6477 
6478 	llnode = llist_del_all(slabs);
6479 	llist_for_each_safe(pos, t, llnode) {
6480 		struct slab *slab = container_of(pos, struct slab, llnode);
6481 
6482 #ifdef CONFIG_SLUB_TINY
6483 		free_slab(slab->slab_cache, slab);
6484 #else
6485 		if (slab->frozen)
6486 			deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6487 		else
6488 			free_slab(slab->slab_cache, slab);
6489 #endif
6490 	}
6491 }
6492 
defer_free(struct kmem_cache * s,void * head)6493 static void defer_free(struct kmem_cache *s, void *head)
6494 {
6495 	struct defer_free *df;
6496 
6497 	guard(preempt)();
6498 
6499 	df = this_cpu_ptr(&defer_free_objects);
6500 	if (llist_add(head + s->offset, &df->objects))
6501 		irq_work_queue(&df->work);
6502 }
6503 
defer_deactivate_slab(struct slab * slab,void * flush_freelist)6504 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6505 {
6506 	struct defer_free *df;
6507 
6508 	slab->flush_freelist = flush_freelist;
6509 
6510 	guard(preempt)();
6511 
6512 	df = this_cpu_ptr(&defer_free_objects);
6513 	if (llist_add(&slab->llnode, &df->slabs))
6514 		irq_work_queue(&df->work);
6515 }
6516 
defer_free_barrier(void)6517 void defer_free_barrier(void)
6518 {
6519 	int cpu;
6520 
6521 	for_each_possible_cpu(cpu)
6522 		irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6523 }
6524 
6525 #ifndef CONFIG_SLUB_TINY
6526 /*
6527  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6528  * can perform fastpath freeing without additional function calls.
6529  *
6530  * The fastpath is only possible if we are freeing to the current cpu slab
6531  * of this processor. This typically the case if we have just allocated
6532  * the item before.
6533  *
6534  * If fastpath is not possible then fall back to __slab_free where we deal
6535  * with all sorts of special processing.
6536  *
6537  * Bulk free of a freelist with several objects (all pointing to the
6538  * same slab) possible by specifying head and tail ptr, plus objects
6539  * count (cnt). Bulk free indicated by tail pointer being set.
6540  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6541 static __always_inline void do_slab_free(struct kmem_cache *s,
6542 				struct slab *slab, void *head, void *tail,
6543 				int cnt, unsigned long addr)
6544 {
6545 	/* cnt == 0 signals that it's called from kfree_nolock() */
6546 	bool allow_spin = cnt;
6547 	struct kmem_cache_cpu *c;
6548 	unsigned long tid;
6549 	void **freelist;
6550 
6551 redo:
6552 	/*
6553 	 * Determine the currently cpus per cpu slab.
6554 	 * The cpu may change afterward. However that does not matter since
6555 	 * data is retrieved via this pointer. If we are on the same cpu
6556 	 * during the cmpxchg then the free will succeed.
6557 	 */
6558 	c = raw_cpu_ptr(s->cpu_slab);
6559 	tid = READ_ONCE(c->tid);
6560 
6561 	/* Same with comment on barrier() in __slab_alloc_node() */
6562 	barrier();
6563 
6564 	if (unlikely(slab != c->slab)) {
6565 		if (unlikely(!allow_spin)) {
6566 			/*
6567 			 * __slab_free() can locklessly cmpxchg16 into a slab,
6568 			 * but then it might need to take spin_lock or local_lock
6569 			 * in put_cpu_partial() for further processing.
6570 			 * Avoid the complexity and simply add to a deferred list.
6571 			 */
6572 			defer_free(s, head);
6573 		} else {
6574 			__slab_free(s, slab, head, tail, cnt, addr);
6575 		}
6576 		return;
6577 	}
6578 
6579 	if (unlikely(!allow_spin)) {
6580 		if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6581 		    local_lock_is_locked(&s->cpu_slab->lock)) {
6582 			defer_free(s, head);
6583 			return;
6584 		}
6585 		cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6586 	}
6587 
6588 	if (USE_LOCKLESS_FAST_PATH()) {
6589 		freelist = READ_ONCE(c->freelist);
6590 
6591 		set_freepointer(s, tail, freelist);
6592 
6593 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6594 			note_cmpxchg_failure("slab_free", s, tid);
6595 			goto redo;
6596 		}
6597 	} else {
6598 		__maybe_unused unsigned long flags = 0;
6599 
6600 		/* Update the free list under the local lock */
6601 		local_lock_cpu_slab(s, flags);
6602 		c = this_cpu_ptr(s->cpu_slab);
6603 		if (unlikely(slab != c->slab)) {
6604 			local_unlock_cpu_slab(s, flags);
6605 			goto redo;
6606 		}
6607 		tid = c->tid;
6608 		freelist = c->freelist;
6609 
6610 		set_freepointer(s, tail, freelist);
6611 		c->freelist = head;
6612 		c->tid = next_tid(tid);
6613 
6614 		local_unlock_cpu_slab(s, flags);
6615 	}
6616 	stat_add(s, FREE_FASTPATH, cnt);
6617 }
6618 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6619 static void do_slab_free(struct kmem_cache *s,
6620 				struct slab *slab, void *head, void *tail,
6621 				int cnt, unsigned long addr)
6622 {
6623 	__slab_free(s, slab, head, tail, cnt, addr);
6624 }
6625 #endif /* CONFIG_SLUB_TINY */
6626 
6627 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)6628 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6629 	       unsigned long addr)
6630 {
6631 	memcg_slab_free_hook(s, slab, &object, 1);
6632 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
6633 
6634 	if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6635 		return;
6636 
6637 	if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6638 				     slab_nid(slab) == numa_mem_id())) {
6639 		if (likely(free_to_pcs(s, object)))
6640 			return;
6641 	}
6642 
6643 	do_slab_free(s, slab, object, object, 1, addr);
6644 }
6645 
6646 #ifdef CONFIG_MEMCG
6647 /* Do not inline the rare memcg charging failed path into the allocation path */
6648 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)6649 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6650 {
6651 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6652 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6653 }
6654 #endif
6655 
6656 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)6657 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6658 		    void *tail, void **p, int cnt, unsigned long addr)
6659 {
6660 	memcg_slab_free_hook(s, slab, p, cnt);
6661 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
6662 	/*
6663 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6664 	 * to remove objects, whose reuse must be delayed.
6665 	 */
6666 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6667 		do_slab_free(s, slab, head, tail, cnt, addr);
6668 }
6669 
6670 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)6671 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6672 {
6673 	struct rcu_delayed_free *delayed_free =
6674 			container_of(rcu_head, struct rcu_delayed_free, head);
6675 	void *object = delayed_free->object;
6676 	struct slab *slab = virt_to_slab(object);
6677 	struct kmem_cache *s;
6678 
6679 	kfree(delayed_free);
6680 
6681 	if (WARN_ON(is_kfence_address(object)))
6682 		return;
6683 
6684 	/* find the object and the cache again */
6685 	if (WARN_ON(!slab))
6686 		return;
6687 	s = slab->slab_cache;
6688 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6689 		return;
6690 
6691 	/* resume freeing */
6692 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6693 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6694 }
6695 #endif /* CONFIG_SLUB_RCU_DEBUG */
6696 
6697 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)6698 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6699 {
6700 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6701 }
6702 #endif
6703 
virt_to_cache(const void * obj)6704 static inline struct kmem_cache *virt_to_cache(const void *obj)
6705 {
6706 	struct slab *slab;
6707 
6708 	slab = virt_to_slab(obj);
6709 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6710 		return NULL;
6711 	return slab->slab_cache;
6712 }
6713 
cache_from_obj(struct kmem_cache * s,void * x)6714 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6715 {
6716 	struct kmem_cache *cachep;
6717 
6718 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6719 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6720 		return s;
6721 
6722 	cachep = virt_to_cache(x);
6723 	if (WARN(cachep && cachep != s,
6724 		 "%s: Wrong slab cache. %s but object is from %s\n",
6725 		 __func__, s->name, cachep->name))
6726 		print_tracking(cachep, x);
6727 	return cachep;
6728 }
6729 
6730 /**
6731  * kmem_cache_free - Deallocate an object
6732  * @s: The cache the allocation was from.
6733  * @x: The previously allocated object.
6734  *
6735  * Free an object which was previously allocated from this
6736  * cache.
6737  */
kmem_cache_free(struct kmem_cache * s,void * x)6738 void kmem_cache_free(struct kmem_cache *s, void *x)
6739 {
6740 	s = cache_from_obj(s, x);
6741 	if (!s)
6742 		return;
6743 	trace_kmem_cache_free(_RET_IP_, x, s);
6744 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
6745 }
6746 EXPORT_SYMBOL(kmem_cache_free);
6747 
free_large_kmalloc(struct folio * folio,void * object)6748 static void free_large_kmalloc(struct folio *folio, void *object)
6749 {
6750 	unsigned int order = folio_order(folio);
6751 
6752 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
6753 		dump_page(&folio->page, "Not a kmalloc allocation");
6754 		return;
6755 	}
6756 
6757 	if (WARN_ON_ONCE(order == 0))
6758 		pr_warn_once("object pointer: 0x%p\n", object);
6759 
6760 	kmemleak_free(object);
6761 	kasan_kfree_large(object);
6762 	kmsan_kfree_large(object);
6763 
6764 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
6765 			      -(PAGE_SIZE << order));
6766 	__folio_clear_large_kmalloc(folio);
6767 	free_frozen_pages(&folio->page, order);
6768 }
6769 
6770 /*
6771  * Given an rcu_head embedded within an object obtained from kvmalloc at an
6772  * offset < 4k, free the object in question.
6773  */
kvfree_rcu_cb(struct rcu_head * head)6774 void kvfree_rcu_cb(struct rcu_head *head)
6775 {
6776 	void *obj = head;
6777 	struct folio *folio;
6778 	struct slab *slab;
6779 	struct kmem_cache *s;
6780 	void *slab_addr;
6781 
6782 	if (is_vmalloc_addr(obj)) {
6783 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6784 		vfree(obj);
6785 		return;
6786 	}
6787 
6788 	folio = virt_to_folio(obj);
6789 	if (!folio_test_slab(folio)) {
6790 		/*
6791 		 * rcu_head offset can be only less than page size so no need to
6792 		 * consider folio order
6793 		 */
6794 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6795 		free_large_kmalloc(folio, obj);
6796 		return;
6797 	}
6798 
6799 	slab = folio_slab(folio);
6800 	s = slab->slab_cache;
6801 	slab_addr = folio_address(folio);
6802 
6803 	if (is_kfence_address(obj)) {
6804 		obj = kfence_object_start(obj);
6805 	} else {
6806 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
6807 
6808 		obj = slab_addr + s->size * idx;
6809 		obj = fixup_red_left(s, obj);
6810 	}
6811 
6812 	slab_free(s, slab, obj, _RET_IP_);
6813 }
6814 
6815 /**
6816  * kfree - free previously allocated memory
6817  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6818  *
6819  * If @object is NULL, no operation is performed.
6820  */
kfree(const void * object)6821 void kfree(const void *object)
6822 {
6823 	struct folio *folio;
6824 	struct slab *slab;
6825 	struct kmem_cache *s;
6826 	void *x = (void *)object;
6827 
6828 	trace_kfree(_RET_IP_, object);
6829 
6830 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6831 		return;
6832 
6833 	folio = virt_to_folio(object);
6834 	if (unlikely(!folio_test_slab(folio))) {
6835 		free_large_kmalloc(folio, (void *)object);
6836 		return;
6837 	}
6838 
6839 	slab = folio_slab(folio);
6840 	s = slab->slab_cache;
6841 	slab_free(s, slab, x, _RET_IP_);
6842 }
6843 EXPORT_SYMBOL(kfree);
6844 
6845 /*
6846  * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6847  * but ONLY for objects allocated by kmalloc_nolock().
6848  * Debug checks (like kmemleak and kfence) were skipped on allocation,
6849  * hence
6850  * obj = kmalloc(); kfree_nolock(obj);
6851  * will miss kmemleak/kfence book keeping and will cause false positives.
6852  * large_kmalloc is not supported either.
6853  */
kfree_nolock(const void * object)6854 void kfree_nolock(const void *object)
6855 {
6856 	struct folio *folio;
6857 	struct slab *slab;
6858 	struct kmem_cache *s;
6859 	void *x = (void *)object;
6860 
6861 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6862 		return;
6863 
6864 	folio = virt_to_folio(object);
6865 	if (unlikely(!folio_test_slab(folio))) {
6866 		WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6867 		return;
6868 	}
6869 
6870 	slab = folio_slab(folio);
6871 	s = slab->slab_cache;
6872 
6873 	memcg_slab_free_hook(s, slab, &x, 1);
6874 	alloc_tagging_slab_free_hook(s, slab, &x, 1);
6875 	/*
6876 	 * Unlike slab_free() do NOT call the following:
6877 	 * kmemleak_free_recursive(x, s->flags);
6878 	 * debug_check_no_locks_freed(x, s->object_size);
6879 	 * debug_check_no_obj_freed(x, s->object_size);
6880 	 * __kcsan_check_access(x, s->object_size, ..);
6881 	 * kfence_free(x);
6882 	 * since they take spinlocks or not safe from any context.
6883 	 */
6884 	kmsan_slab_free(s, x);
6885 	/*
6886 	 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6887 	 * which will call raw_spin_lock_irqsave() which is technically
6888 	 * unsafe from NMI, but take chance and report kernel bug.
6889 	 * The sequence of
6890 	 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6891 	 *  -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6892 	 * is double buggy and deserves to deadlock.
6893 	 */
6894 	if (kasan_slab_pre_free(s, x))
6895 		return;
6896 	/*
6897 	 * memcg, kasan_slab_pre_free are done for 'x'.
6898 	 * The only thing left is kasan_poison without quarantine,
6899 	 * since kasan quarantine takes locks and not supported from NMI.
6900 	 */
6901 	kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6902 #ifndef CONFIG_SLUB_TINY
6903 	do_slab_free(s, slab, x, x, 0, _RET_IP_);
6904 #else
6905 	defer_free(s, x);
6906 #endif
6907 }
6908 EXPORT_SYMBOL_GPL(kfree_nolock);
6909 
6910 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6911 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6912 {
6913 	void *ret;
6914 	size_t ks = 0;
6915 	int orig_size = 0;
6916 	struct kmem_cache *s = NULL;
6917 
6918 	if (unlikely(ZERO_OR_NULL_PTR(p)))
6919 		goto alloc_new;
6920 
6921 	/* Check for double-free. */
6922 	if (!kasan_check_byte(p))
6923 		return NULL;
6924 
6925 	/*
6926 	 * If reallocation is not necessary (e. g. the new size is less
6927 	 * than the current allocated size), the current allocation will be
6928 	 * preserved unless __GFP_THISNODE is set. In the latter case a new
6929 	 * allocation on the requested node will be attempted.
6930 	 */
6931 	if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6932 		     nid != page_to_nid(virt_to_page(p)))
6933 		goto alloc_new;
6934 
6935 	if (is_kfence_address(p)) {
6936 		ks = orig_size = kfence_ksize(p);
6937 	} else {
6938 		struct folio *folio;
6939 
6940 		folio = virt_to_folio(p);
6941 		if (unlikely(!folio_test_slab(folio))) {
6942 			/* Big kmalloc object */
6943 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
6944 			WARN_ON(p != folio_address(folio));
6945 			ks = folio_size(folio);
6946 		} else {
6947 			s = folio_slab(folio)->slab_cache;
6948 			orig_size = get_orig_size(s, (void *)p);
6949 			ks = s->object_size;
6950 		}
6951 	}
6952 
6953 	/* If the old object doesn't fit, allocate a bigger one */
6954 	if (new_size > ks)
6955 		goto alloc_new;
6956 
6957 	/* If the old object doesn't satisfy the new alignment, allocate a new one */
6958 	if (!IS_ALIGNED((unsigned long)p, align))
6959 		goto alloc_new;
6960 
6961 	/* Zero out spare memory. */
6962 	if (want_init_on_alloc(flags)) {
6963 		kasan_disable_current();
6964 		if (orig_size && orig_size < new_size)
6965 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6966 		else
6967 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6968 		kasan_enable_current();
6969 	}
6970 
6971 	/* Setup kmalloc redzone when needed */
6972 	if (s && slub_debug_orig_size(s)) {
6973 		set_orig_size(s, (void *)p, new_size);
6974 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
6975 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
6976 						SLUB_RED_ACTIVE, ks - new_size);
6977 	}
6978 
6979 	p = kasan_krealloc(p, new_size, flags);
6980 	return (void *)p;
6981 
6982 alloc_new:
6983 	ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
6984 	if (ret && p) {
6985 		/* Disable KASAN checks as the object's redzone is accessed. */
6986 		kasan_disable_current();
6987 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
6988 		kasan_enable_current();
6989 	}
6990 
6991 	return ret;
6992 }
6993 
6994 /**
6995  * krealloc_node_align - reallocate memory. The contents will remain unchanged.
6996  * @p: object to reallocate memory for.
6997  * @new_size: how many bytes of memory are required.
6998  * @align: desired alignment.
6999  * @flags: the type of memory to allocate.
7000  * @nid: NUMA node or NUMA_NO_NODE
7001  *
7002  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
7003  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7004  *
7005  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7006  * Documentation/core-api/memory-allocation.rst for more details.
7007  *
7008  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7009  * initial memory allocation, every subsequent call to this API for the same
7010  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7011  * __GFP_ZERO is not fully honored by this API.
7012  *
7013  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7014  * size of an allocation (but not the exact size it was allocated with) and
7015  * hence implements the following semantics for shrinking and growing buffers
7016  * with __GFP_ZERO::
7017  *
7018  *           new             bucket
7019  *   0       size             size
7020  *   |--------|----------------|
7021  *   |  keep  |      zero      |
7022  *
7023  * Otherwise, the original allocation size 'orig_size' could be used to
7024  * precisely clear the requested size, and the new size will also be stored
7025  * as the new 'orig_size'.
7026  *
7027  * In any case, the contents of the object pointed to are preserved up to the
7028  * lesser of the new and old sizes.
7029  *
7030  * Return: pointer to the allocated memory or %NULL in case of error
7031  */
krealloc_node_align_noprof(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)7032 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7033 				 gfp_t flags, int nid)
7034 {
7035 	void *ret;
7036 
7037 	if (unlikely(!new_size)) {
7038 		kfree(p);
7039 		return ZERO_SIZE_PTR;
7040 	}
7041 
7042 	ret = __do_krealloc(p, new_size, align, flags, nid);
7043 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7044 		kfree(p);
7045 
7046 	return ret;
7047 }
7048 EXPORT_SYMBOL(krealloc_node_align_noprof);
7049 
kmalloc_gfp_adjust(gfp_t flags,size_t size)7050 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7051 {
7052 	/*
7053 	 * We want to attempt a large physically contiguous block first because
7054 	 * it is less likely to fragment multiple larger blocks and therefore
7055 	 * contribute to a long term fragmentation less than vmalloc fallback.
7056 	 * However make sure that larger requests are not too disruptive - i.e.
7057 	 * do not direct reclaim unless physically continuous memory is preferred
7058 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7059 	 * start working in the background
7060 	 */
7061 	if (size > PAGE_SIZE) {
7062 		flags |= __GFP_NOWARN;
7063 
7064 		if (!(flags & __GFP_RETRY_MAYFAIL))
7065 			flags &= ~__GFP_DIRECT_RECLAIM;
7066 
7067 		/* nofail semantic is implemented by the vmalloc fallback */
7068 		flags &= ~__GFP_NOFAIL;
7069 	}
7070 
7071 	return flags;
7072 }
7073 
7074 /**
7075  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7076  * failure, fall back to non-contiguous (vmalloc) allocation.
7077  * @size: size of the request.
7078  * @b: which set of kmalloc buckets to allocate from.
7079  * @align: desired alignment.
7080  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7081  * @node: numa node to allocate from
7082  *
7083  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7084  * Documentation/core-api/memory-allocation.rst for more details.
7085  *
7086  * Uses kmalloc to get the memory but if the allocation fails then falls back
7087  * to the vmalloc allocator. Use kvfree for freeing the memory.
7088  *
7089  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7090  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7091  * preferable to the vmalloc fallback, due to visible performance drawbacks.
7092  *
7093  * Return: pointer to the allocated memory of %NULL in case of failure
7094  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),unsigned long align,gfp_t flags,int node)7095 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7096 			     gfp_t flags, int node)
7097 {
7098 	void *ret;
7099 
7100 	/*
7101 	 * It doesn't really make sense to fallback to vmalloc for sub page
7102 	 * requests
7103 	 */
7104 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7105 				kmalloc_gfp_adjust(flags, size),
7106 				node, _RET_IP_);
7107 	if (ret || size <= PAGE_SIZE)
7108 		return ret;
7109 
7110 	/* non-sleeping allocations are not supported by vmalloc */
7111 	if (!gfpflags_allow_blocking(flags))
7112 		return NULL;
7113 
7114 	/* Don't even allow crazy sizes */
7115 	if (unlikely(size > INT_MAX)) {
7116 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7117 		return NULL;
7118 	}
7119 
7120 	/*
7121 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7122 	 * since the callers already cannot assume anything
7123 	 * about the resulting pointer, and cannot play
7124 	 * protection games.
7125 	 */
7126 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7127 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7128 			node, __builtin_return_address(0));
7129 }
7130 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7131 
7132 /**
7133  * kvfree() - Free memory.
7134  * @addr: Pointer to allocated memory.
7135  *
7136  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7137  * It is slightly more efficient to use kfree() or vfree() if you are certain
7138  * that you know which one to use.
7139  *
7140  * Context: Either preemptible task context or not-NMI interrupt.
7141  */
kvfree(const void * addr)7142 void kvfree(const void *addr)
7143 {
7144 	if (is_vmalloc_addr(addr))
7145 		vfree(addr);
7146 	else
7147 		kfree(addr);
7148 }
7149 EXPORT_SYMBOL(kvfree);
7150 
7151 /**
7152  * kvfree_sensitive - Free a data object containing sensitive information.
7153  * @addr: address of the data object to be freed.
7154  * @len: length of the data object.
7155  *
7156  * Use the special memzero_explicit() function to clear the content of a
7157  * kvmalloc'ed object containing sensitive data to make sure that the
7158  * compiler won't optimize out the data clearing.
7159  */
kvfree_sensitive(const void * addr,size_t len)7160 void kvfree_sensitive(const void *addr, size_t len)
7161 {
7162 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
7163 		memzero_explicit((void *)addr, len);
7164 		kvfree(addr);
7165 	}
7166 }
7167 EXPORT_SYMBOL(kvfree_sensitive);
7168 
7169 /**
7170  * kvrealloc_node_align - reallocate memory; contents remain unchanged
7171  * @p: object to reallocate memory for
7172  * @size: the size to reallocate
7173  * @align: desired alignment
7174  * @flags: the flags for the page level allocator
7175  * @nid: NUMA node id
7176  *
7177  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7178  * and @p is not a %NULL pointer, the object pointed to is freed.
7179  *
7180  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7181  * Documentation/core-api/memory-allocation.rst for more details.
7182  *
7183  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7184  * initial memory allocation, every subsequent call to this API for the same
7185  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7186  * __GFP_ZERO is not fully honored by this API.
7187  *
7188  * In any case, the contents of the object pointed to are preserved up to the
7189  * lesser of the new and old sizes.
7190  *
7191  * This function must not be called concurrently with itself or kvfree() for the
7192  * same memory allocation.
7193  *
7194  * Return: pointer to the allocated memory or %NULL in case of error
7195  */
kvrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)7196 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7197 				  gfp_t flags, int nid)
7198 {
7199 	void *n;
7200 
7201 	if (is_vmalloc_addr(p))
7202 		return vrealloc_node_align_noprof(p, size, align, flags, nid);
7203 
7204 	n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7205 	if (!n) {
7206 		/* We failed to krealloc(), fall back to kvmalloc(). */
7207 		n = kvmalloc_node_align_noprof(size, align, flags, nid);
7208 		if (!n)
7209 			return NULL;
7210 
7211 		if (p) {
7212 			/* We already know that `p` is not a vmalloc address. */
7213 			kasan_disable_current();
7214 			memcpy(n, kasan_reset_tag(p), ksize(p));
7215 			kasan_enable_current();
7216 
7217 			kfree(p);
7218 		}
7219 	}
7220 
7221 	return n;
7222 }
7223 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7224 
7225 struct detached_freelist {
7226 	struct slab *slab;
7227 	void *tail;
7228 	void *freelist;
7229 	int cnt;
7230 	struct kmem_cache *s;
7231 };
7232 
7233 /*
7234  * This function progressively scans the array with free objects (with
7235  * a limited look ahead) and extract objects belonging to the same
7236  * slab.  It builds a detached freelist directly within the given
7237  * slab/objects.  This can happen without any need for
7238  * synchronization, because the objects are owned by running process.
7239  * The freelist is build up as a single linked list in the objects.
7240  * The idea is, that this detached freelist can then be bulk
7241  * transferred to the real freelist(s), but only requiring a single
7242  * synchronization primitive.  Look ahead in the array is limited due
7243  * to performance reasons.
7244  */
7245 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)7246 int build_detached_freelist(struct kmem_cache *s, size_t size,
7247 			    void **p, struct detached_freelist *df)
7248 {
7249 	int lookahead = 3;
7250 	void *object;
7251 	struct folio *folio;
7252 	size_t same;
7253 
7254 	object = p[--size];
7255 	folio = virt_to_folio(object);
7256 	if (!s) {
7257 		/* Handle kalloc'ed objects */
7258 		if (unlikely(!folio_test_slab(folio))) {
7259 			free_large_kmalloc(folio, object);
7260 			df->slab = NULL;
7261 			return size;
7262 		}
7263 		/* Derive kmem_cache from object */
7264 		df->slab = folio_slab(folio);
7265 		df->s = df->slab->slab_cache;
7266 	} else {
7267 		df->slab = folio_slab(folio);
7268 		df->s = cache_from_obj(s, object); /* Support for memcg */
7269 	}
7270 
7271 	/* Start new detached freelist */
7272 	df->tail = object;
7273 	df->freelist = object;
7274 	df->cnt = 1;
7275 
7276 	if (is_kfence_address(object))
7277 		return size;
7278 
7279 	set_freepointer(df->s, object, NULL);
7280 
7281 	same = size;
7282 	while (size) {
7283 		object = p[--size];
7284 		/* df->slab is always set at this point */
7285 		if (df->slab == virt_to_slab(object)) {
7286 			/* Opportunity build freelist */
7287 			set_freepointer(df->s, object, df->freelist);
7288 			df->freelist = object;
7289 			df->cnt++;
7290 			same--;
7291 			if (size != same)
7292 				swap(p[size], p[same]);
7293 			continue;
7294 		}
7295 
7296 		/* Limit look ahead search */
7297 		if (!--lookahead)
7298 			break;
7299 	}
7300 
7301 	return same;
7302 }
7303 
7304 /*
7305  * Internal bulk free of objects that were not initialised by the post alloc
7306  * hooks and thus should not be processed by the free hooks
7307  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7308 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7309 {
7310 	if (!size)
7311 		return;
7312 
7313 	do {
7314 		struct detached_freelist df;
7315 
7316 		size = build_detached_freelist(s, size, p, &df);
7317 		if (!df.slab)
7318 			continue;
7319 
7320 		if (kfence_free(df.freelist))
7321 			continue;
7322 
7323 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7324 			     _RET_IP_);
7325 	} while (likely(size));
7326 }
7327 
7328 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7329 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7330 {
7331 	if (!size)
7332 		return;
7333 
7334 	/*
7335 	 * freeing to sheaves is so incompatible with the detached freelist so
7336 	 * once we go that way, we have to do everything differently
7337 	 */
7338 	if (s && s->cpu_sheaves) {
7339 		free_to_pcs_bulk(s, size, p);
7340 		return;
7341 	}
7342 
7343 	do {
7344 		struct detached_freelist df;
7345 
7346 		size = build_detached_freelist(s, size, p, &df);
7347 		if (!df.slab)
7348 			continue;
7349 
7350 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7351 			       df.cnt, _RET_IP_);
7352 	} while (likely(size));
7353 }
7354 EXPORT_SYMBOL(kmem_cache_free_bulk);
7355 
7356 #ifndef CONFIG_SLUB_TINY
7357 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7358 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7359 			    void **p)
7360 {
7361 	struct kmem_cache_cpu *c;
7362 	unsigned long irqflags;
7363 	int i;
7364 
7365 	/*
7366 	 * Drain objects in the per cpu slab, while disabling local
7367 	 * IRQs, which protects against PREEMPT and interrupts
7368 	 * handlers invoking normal fastpath.
7369 	 */
7370 	c = slub_get_cpu_ptr(s->cpu_slab);
7371 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7372 
7373 	for (i = 0; i < size; i++) {
7374 		void *object = kfence_alloc(s, s->object_size, flags);
7375 
7376 		if (unlikely(object)) {
7377 			p[i] = object;
7378 			continue;
7379 		}
7380 
7381 		object = c->freelist;
7382 		if (unlikely(!object)) {
7383 			/*
7384 			 * We may have removed an object from c->freelist using
7385 			 * the fastpath in the previous iteration; in that case,
7386 			 * c->tid has not been bumped yet.
7387 			 * Since ___slab_alloc() may reenable interrupts while
7388 			 * allocating memory, we should bump c->tid now.
7389 			 */
7390 			c->tid = next_tid(c->tid);
7391 
7392 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7393 
7394 			/*
7395 			 * Invoking slow path likely have side-effect
7396 			 * of re-populating per CPU c->freelist
7397 			 */
7398 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7399 					    _RET_IP_, c, s->object_size);
7400 			if (unlikely(!p[i]))
7401 				goto error;
7402 
7403 			c = this_cpu_ptr(s->cpu_slab);
7404 			maybe_wipe_obj_freeptr(s, p[i]);
7405 
7406 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7407 
7408 			continue; /* goto for-loop */
7409 		}
7410 		c->freelist = get_freepointer(s, object);
7411 		p[i] = object;
7412 		maybe_wipe_obj_freeptr(s, p[i]);
7413 		stat(s, ALLOC_FASTPATH);
7414 	}
7415 	c->tid = next_tid(c->tid);
7416 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7417 	slub_put_cpu_ptr(s->cpu_slab);
7418 
7419 	return i;
7420 
7421 error:
7422 	slub_put_cpu_ptr(s->cpu_slab);
7423 	__kmem_cache_free_bulk(s, i, p);
7424 	return 0;
7425 
7426 }
7427 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7428 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
7429 				   size_t size, void **p)
7430 {
7431 	int i;
7432 
7433 	for (i = 0; i < size; i++) {
7434 		void *object = kfence_alloc(s, s->object_size, flags);
7435 
7436 		if (unlikely(object)) {
7437 			p[i] = object;
7438 			continue;
7439 		}
7440 
7441 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
7442 					 _RET_IP_, s->object_size);
7443 		if (unlikely(!p[i]))
7444 			goto error;
7445 
7446 		maybe_wipe_obj_freeptr(s, p[i]);
7447 	}
7448 
7449 	return i;
7450 
7451 error:
7452 	__kmem_cache_free_bulk(s, i, p);
7453 	return 0;
7454 }
7455 #endif /* CONFIG_SLUB_TINY */
7456 
7457 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7458 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7459 				 void **p)
7460 {
7461 	unsigned int i = 0;
7462 
7463 	if (!size)
7464 		return 0;
7465 
7466 	s = slab_pre_alloc_hook(s, flags);
7467 	if (unlikely(!s))
7468 		return 0;
7469 
7470 	if (s->cpu_sheaves)
7471 		i = alloc_from_pcs_bulk(s, size, p);
7472 
7473 	if (i < size) {
7474 		/*
7475 		 * If we ran out of memory, don't bother with freeing back to
7476 		 * the percpu sheaves, we have bigger problems.
7477 		 */
7478 		if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7479 			if (i > 0)
7480 				__kmem_cache_free_bulk(s, i, p);
7481 			return 0;
7482 		}
7483 	}
7484 
7485 	/*
7486 	 * memcg and kmem_cache debug support and memory initialization.
7487 	 * Done outside of the IRQ disabled fastpath loop.
7488 	 */
7489 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7490 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
7491 		return 0;
7492 	}
7493 
7494 	return size;
7495 }
7496 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7497 
7498 /*
7499  * Object placement in a slab is made very easy because we always start at
7500  * offset 0. If we tune the size of the object to the alignment then we can
7501  * get the required alignment by putting one properly sized object after
7502  * another.
7503  *
7504  * Notice that the allocation order determines the sizes of the per cpu
7505  * caches. Each processor has always one slab available for allocations.
7506  * Increasing the allocation order reduces the number of times that slabs
7507  * must be moved on and off the partial lists and is therefore a factor in
7508  * locking overhead.
7509  */
7510 
7511 /*
7512  * Minimum / Maximum order of slab pages. This influences locking overhead
7513  * and slab fragmentation. A higher order reduces the number of partial slabs
7514  * and increases the number of allocations possible without having to
7515  * take the list_lock.
7516  */
7517 static unsigned int slub_min_order;
7518 static unsigned int slub_max_order =
7519 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7520 static unsigned int slub_min_objects;
7521 
7522 /*
7523  * Calculate the order of allocation given an slab object size.
7524  *
7525  * The order of allocation has significant impact on performance and other
7526  * system components. Generally order 0 allocations should be preferred since
7527  * order 0 does not cause fragmentation in the page allocator. Larger objects
7528  * be problematic to put into order 0 slabs because there may be too much
7529  * unused space left. We go to a higher order if more than 1/16th of the slab
7530  * would be wasted.
7531  *
7532  * In order to reach satisfactory performance we must ensure that a minimum
7533  * number of objects is in one slab. Otherwise we may generate too much
7534  * activity on the partial lists which requires taking the list_lock. This is
7535  * less a concern for large slabs though which are rarely used.
7536  *
7537  * slab_max_order specifies the order where we begin to stop considering the
7538  * number of objects in a slab as critical. If we reach slab_max_order then
7539  * we try to keep the page order as low as possible. So we accept more waste
7540  * of space in favor of a small page order.
7541  *
7542  * Higher order allocations also allow the placement of more objects in a
7543  * slab and thereby reduce object handling overhead. If the user has
7544  * requested a higher minimum order then we start with that one instead of
7545  * the smallest order which will fit the object.
7546  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)7547 static inline unsigned int calc_slab_order(unsigned int size,
7548 		unsigned int min_order, unsigned int max_order,
7549 		unsigned int fract_leftover)
7550 {
7551 	unsigned int order;
7552 
7553 	for (order = min_order; order <= max_order; order++) {
7554 
7555 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7556 		unsigned int rem;
7557 
7558 		rem = slab_size % size;
7559 
7560 		if (rem <= slab_size / fract_leftover)
7561 			break;
7562 	}
7563 
7564 	return order;
7565 }
7566 
calculate_order(unsigned int size)7567 static inline int calculate_order(unsigned int size)
7568 {
7569 	unsigned int order;
7570 	unsigned int min_objects;
7571 	unsigned int max_objects;
7572 	unsigned int min_order;
7573 
7574 	min_objects = slub_min_objects;
7575 	if (!min_objects) {
7576 		/*
7577 		 * Some architectures will only update present cpus when
7578 		 * onlining them, so don't trust the number if it's just 1. But
7579 		 * we also don't want to use nr_cpu_ids always, as on some other
7580 		 * architectures, there can be many possible cpus, but never
7581 		 * onlined. Here we compromise between trying to avoid too high
7582 		 * order on systems that appear larger than they are, and too
7583 		 * low order on systems that appear smaller than they are.
7584 		 */
7585 		unsigned int nr_cpus = num_present_cpus();
7586 		if (nr_cpus <= 1)
7587 			nr_cpus = nr_cpu_ids;
7588 		min_objects = 4 * (fls(nr_cpus) + 1);
7589 	}
7590 	/* min_objects can't be 0 because get_order(0) is undefined */
7591 	max_objects = max(order_objects(slub_max_order, size), 1U);
7592 	min_objects = min(min_objects, max_objects);
7593 
7594 	min_order = max_t(unsigned int, slub_min_order,
7595 			  get_order(min_objects * size));
7596 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7597 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7598 
7599 	/*
7600 	 * Attempt to find best configuration for a slab. This works by first
7601 	 * attempting to generate a layout with the best possible configuration
7602 	 * and backing off gradually.
7603 	 *
7604 	 * We start with accepting at most 1/16 waste and try to find the
7605 	 * smallest order from min_objects-derived/slab_min_order up to
7606 	 * slab_max_order that will satisfy the constraint. Note that increasing
7607 	 * the order can only result in same or less fractional waste, not more.
7608 	 *
7609 	 * If that fails, we increase the acceptable fraction of waste and try
7610 	 * again. The last iteration with fraction of 1/2 would effectively
7611 	 * accept any waste and give us the order determined by min_objects, as
7612 	 * long as at least single object fits within slab_max_order.
7613 	 */
7614 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7615 		order = calc_slab_order(size, min_order, slub_max_order,
7616 					fraction);
7617 		if (order <= slub_max_order)
7618 			return order;
7619 	}
7620 
7621 	/*
7622 	 * Doh this slab cannot be placed using slab_max_order.
7623 	 */
7624 	order = get_order(size);
7625 	if (order <= MAX_PAGE_ORDER)
7626 		return order;
7627 	return -ENOSYS;
7628 }
7629 
7630 static void
init_kmem_cache_node(struct kmem_cache_node * n,struct node_barn * barn)7631 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7632 {
7633 	n->nr_partial = 0;
7634 	spin_lock_init(&n->list_lock);
7635 	INIT_LIST_HEAD(&n->partial);
7636 #ifdef CONFIG_SLUB_DEBUG
7637 	atomic_long_set(&n->nr_slabs, 0);
7638 	atomic_long_set(&n->total_objects, 0);
7639 	INIT_LIST_HEAD(&n->full);
7640 #endif
7641 	n->barn = barn;
7642 	if (barn)
7643 		barn_init(barn);
7644 }
7645 
7646 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)7647 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7648 {
7649 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7650 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7651 			sizeof(struct kmem_cache_cpu));
7652 
7653 	/*
7654 	 * Must align to double word boundary for the double cmpxchg
7655 	 * instructions to work; see __pcpu_double_call_return_bool().
7656 	 */
7657 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7658 				     2 * sizeof(void *));
7659 
7660 	if (!s->cpu_slab)
7661 		return 0;
7662 
7663 	init_kmem_cache_cpus(s);
7664 
7665 	return 1;
7666 }
7667 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)7668 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7669 {
7670 	return 1;
7671 }
7672 #endif /* CONFIG_SLUB_TINY */
7673 
init_percpu_sheaves(struct kmem_cache * s)7674 static int init_percpu_sheaves(struct kmem_cache *s)
7675 {
7676 	int cpu;
7677 
7678 	for_each_possible_cpu(cpu) {
7679 		struct slub_percpu_sheaves *pcs;
7680 
7681 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7682 
7683 		local_trylock_init(&pcs->lock);
7684 
7685 		pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7686 
7687 		if (!pcs->main)
7688 			return -ENOMEM;
7689 	}
7690 
7691 	return 0;
7692 }
7693 
7694 static struct kmem_cache *kmem_cache_node;
7695 
7696 /*
7697  * No kmalloc_node yet so do it by hand. We know that this is the first
7698  * slab on the node for this slabcache. There are no concurrent accesses
7699  * possible.
7700  *
7701  * Note that this function only works on the kmem_cache_node
7702  * when allocating for the kmem_cache_node. This is used for bootstrapping
7703  * memory on a fresh node that has no slab structures yet.
7704  */
early_kmem_cache_node_alloc(int node)7705 static void early_kmem_cache_node_alloc(int node)
7706 {
7707 	struct slab *slab;
7708 	struct kmem_cache_node *n;
7709 
7710 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7711 
7712 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7713 
7714 	BUG_ON(!slab);
7715 	if (slab_nid(slab) != node) {
7716 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7717 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7718 	}
7719 
7720 	n = slab->freelist;
7721 	BUG_ON(!n);
7722 #ifdef CONFIG_SLUB_DEBUG
7723 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7724 #endif
7725 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7726 	slab->freelist = get_freepointer(kmem_cache_node, n);
7727 	slab->inuse = 1;
7728 	kmem_cache_node->node[node] = n;
7729 	init_kmem_cache_node(n, NULL);
7730 	inc_slabs_node(kmem_cache_node, node, slab->objects);
7731 
7732 	/*
7733 	 * No locks need to be taken here as it has just been
7734 	 * initialized and there is no concurrent access.
7735 	 */
7736 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
7737 }
7738 
free_kmem_cache_nodes(struct kmem_cache * s)7739 static void free_kmem_cache_nodes(struct kmem_cache *s)
7740 {
7741 	int node;
7742 	struct kmem_cache_node *n;
7743 
7744 	for_each_kmem_cache_node(s, node, n) {
7745 		if (n->barn) {
7746 			WARN_ON(n->barn->nr_full);
7747 			WARN_ON(n->barn->nr_empty);
7748 			kfree(n->barn);
7749 			n->barn = NULL;
7750 		}
7751 
7752 		s->node[node] = NULL;
7753 		kmem_cache_free(kmem_cache_node, n);
7754 	}
7755 }
7756 
__kmem_cache_release(struct kmem_cache * s)7757 void __kmem_cache_release(struct kmem_cache *s)
7758 {
7759 	cache_random_seq_destroy(s);
7760 	if (s->cpu_sheaves)
7761 		pcs_destroy(s);
7762 #ifndef CONFIG_SLUB_TINY
7763 #ifdef CONFIG_PREEMPT_RT
7764 	if (s->cpu_slab)
7765 		lockdep_unregister_key(&s->lock_key);
7766 #endif
7767 	free_percpu(s->cpu_slab);
7768 #endif
7769 	free_kmem_cache_nodes(s);
7770 }
7771 
init_kmem_cache_nodes(struct kmem_cache * s)7772 static int init_kmem_cache_nodes(struct kmem_cache *s)
7773 {
7774 	int node;
7775 
7776 	for_each_node_mask(node, slab_nodes) {
7777 		struct kmem_cache_node *n;
7778 		struct node_barn *barn = NULL;
7779 
7780 		if (slab_state == DOWN) {
7781 			early_kmem_cache_node_alloc(node);
7782 			continue;
7783 		}
7784 
7785 		if (s->cpu_sheaves) {
7786 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7787 
7788 			if (!barn)
7789 				return 0;
7790 		}
7791 
7792 		n = kmem_cache_alloc_node(kmem_cache_node,
7793 						GFP_KERNEL, node);
7794 		if (!n) {
7795 			kfree(barn);
7796 			return 0;
7797 		}
7798 
7799 		init_kmem_cache_node(n, barn);
7800 
7801 		s->node[node] = n;
7802 	}
7803 	return 1;
7804 }
7805 
set_cpu_partial(struct kmem_cache * s)7806 static void set_cpu_partial(struct kmem_cache *s)
7807 {
7808 #ifdef CONFIG_SLUB_CPU_PARTIAL
7809 	unsigned int nr_objects;
7810 
7811 	/*
7812 	 * cpu_partial determined the maximum number of objects kept in the
7813 	 * per cpu partial lists of a processor.
7814 	 *
7815 	 * Per cpu partial lists mainly contain slabs that just have one
7816 	 * object freed. If they are used for allocation then they can be
7817 	 * filled up again with minimal effort. The slab will never hit the
7818 	 * per node partial lists and therefore no locking will be required.
7819 	 *
7820 	 * For backwards compatibility reasons, this is determined as number
7821 	 * of objects, even though we now limit maximum number of pages, see
7822 	 * slub_set_cpu_partial()
7823 	 */
7824 	if (!kmem_cache_has_cpu_partial(s))
7825 		nr_objects = 0;
7826 	else if (s->size >= PAGE_SIZE)
7827 		nr_objects = 6;
7828 	else if (s->size >= 1024)
7829 		nr_objects = 24;
7830 	else if (s->size >= 256)
7831 		nr_objects = 52;
7832 	else
7833 		nr_objects = 120;
7834 
7835 	slub_set_cpu_partial(s, nr_objects);
7836 #endif
7837 }
7838 
7839 /*
7840  * calculate_sizes() determines the order and the distribution of data within
7841  * a slab object.
7842  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)7843 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7844 {
7845 	slab_flags_t flags = s->flags;
7846 	unsigned int size = s->object_size;
7847 	unsigned int order;
7848 
7849 	/*
7850 	 * Round up object size to the next word boundary. We can only
7851 	 * place the free pointer at word boundaries and this determines
7852 	 * the possible location of the free pointer.
7853 	 */
7854 	size = ALIGN(size, sizeof(void *));
7855 
7856 #ifdef CONFIG_SLUB_DEBUG
7857 	/*
7858 	 * Determine if we can poison the object itself. If the user of
7859 	 * the slab may touch the object after free or before allocation
7860 	 * then we should never poison the object itself.
7861 	 */
7862 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7863 			!s->ctor)
7864 		s->flags |= __OBJECT_POISON;
7865 	else
7866 		s->flags &= ~__OBJECT_POISON;
7867 
7868 
7869 	/*
7870 	 * If we are Redzoning then check if there is some space between the
7871 	 * end of the object and the free pointer. If not then add an
7872 	 * additional word to have some bytes to store Redzone information.
7873 	 */
7874 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7875 		size += sizeof(void *);
7876 #endif
7877 
7878 	/*
7879 	 * With that we have determined the number of bytes in actual use
7880 	 * by the object and redzoning.
7881 	 */
7882 	s->inuse = size;
7883 
7884 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7885 	    (flags & SLAB_POISON) || s->ctor ||
7886 	    ((flags & SLAB_RED_ZONE) &&
7887 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7888 		/*
7889 		 * Relocate free pointer after the object if it is not
7890 		 * permitted to overwrite the first word of the object on
7891 		 * kmem_cache_free.
7892 		 *
7893 		 * This is the case if we do RCU, have a constructor or
7894 		 * destructor, are poisoning the objects, or are
7895 		 * redzoning an object smaller than sizeof(void *) or are
7896 		 * redzoning an object with slub_debug_orig_size() enabled,
7897 		 * in which case the right redzone may be extended.
7898 		 *
7899 		 * The assumption that s->offset >= s->inuse means free
7900 		 * pointer is outside of the object is used in the
7901 		 * freeptr_outside_object() function. If that is no
7902 		 * longer true, the function needs to be modified.
7903 		 */
7904 		s->offset = size;
7905 		size += sizeof(void *);
7906 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7907 		s->offset = args->freeptr_offset;
7908 	} else {
7909 		/*
7910 		 * Store freelist pointer near middle of object to keep
7911 		 * it away from the edges of the object to avoid small
7912 		 * sized over/underflows from neighboring allocations.
7913 		 */
7914 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7915 	}
7916 
7917 #ifdef CONFIG_SLUB_DEBUG
7918 	if (flags & SLAB_STORE_USER) {
7919 		/*
7920 		 * Need to store information about allocs and frees after
7921 		 * the object.
7922 		 */
7923 		size += 2 * sizeof(struct track);
7924 
7925 		/* Save the original kmalloc request size */
7926 		if (flags & SLAB_KMALLOC)
7927 			size += sizeof(unsigned int);
7928 	}
7929 #endif
7930 
7931 	kasan_cache_create(s, &size, &s->flags);
7932 #ifdef CONFIG_SLUB_DEBUG
7933 	if (flags & SLAB_RED_ZONE) {
7934 		/*
7935 		 * Add some empty padding so that we can catch
7936 		 * overwrites from earlier objects rather than let
7937 		 * tracking information or the free pointer be
7938 		 * corrupted if a user writes before the start
7939 		 * of the object.
7940 		 */
7941 		size += sizeof(void *);
7942 
7943 		s->red_left_pad = sizeof(void *);
7944 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7945 		size += s->red_left_pad;
7946 	}
7947 #endif
7948 
7949 	/*
7950 	 * SLUB stores one object immediately after another beginning from
7951 	 * offset 0. In order to align the objects we have to simply size
7952 	 * each object to conform to the alignment.
7953 	 */
7954 	size = ALIGN(size, s->align);
7955 	s->size = size;
7956 	s->reciprocal_size = reciprocal_value(size);
7957 	order = calculate_order(size);
7958 
7959 	if ((int)order < 0)
7960 		return 0;
7961 
7962 	s->allocflags = __GFP_COMP;
7963 
7964 	if (s->flags & SLAB_CACHE_DMA)
7965 		s->allocflags |= GFP_DMA;
7966 
7967 	if (s->flags & SLAB_CACHE_DMA32)
7968 		s->allocflags |= GFP_DMA32;
7969 
7970 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7971 		s->allocflags |= __GFP_RECLAIMABLE;
7972 
7973 	/*
7974 	 * Determine the number of objects per slab
7975 	 */
7976 	s->oo = oo_make(order, size);
7977 	s->min = oo_make(get_order(size), size);
7978 
7979 	return !!oo_objects(s->oo);
7980 }
7981 
list_slab_objects(struct kmem_cache * s,struct slab * slab)7982 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7983 {
7984 #ifdef CONFIG_SLUB_DEBUG
7985 	void *addr = slab_address(slab);
7986 	void *p;
7987 
7988 	if (!slab_add_kunit_errors())
7989 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7990 
7991 	spin_lock(&object_map_lock);
7992 	__fill_map(object_map, s, slab);
7993 
7994 	for_each_object(p, s, addr, slab->objects) {
7995 
7996 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
7997 			if (slab_add_kunit_errors())
7998 				continue;
7999 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
8000 			print_tracking(s, p);
8001 		}
8002 	}
8003 	spin_unlock(&object_map_lock);
8004 
8005 	__slab_err(slab);
8006 #endif
8007 }
8008 
8009 /*
8010  * Attempt to free all partial slabs on a node.
8011  * This is called from __kmem_cache_shutdown(). We must take list_lock
8012  * because sysfs file might still access partial list after the shutdowning.
8013  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)8014 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8015 {
8016 	LIST_HEAD(discard);
8017 	struct slab *slab, *h;
8018 
8019 	BUG_ON(irqs_disabled());
8020 	spin_lock_irq(&n->list_lock);
8021 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8022 		if (!slab->inuse) {
8023 			remove_partial(n, slab);
8024 			list_add(&slab->slab_list, &discard);
8025 		} else {
8026 			list_slab_objects(s, slab);
8027 		}
8028 	}
8029 	spin_unlock_irq(&n->list_lock);
8030 
8031 	list_for_each_entry_safe(slab, h, &discard, slab_list)
8032 		discard_slab(s, slab);
8033 }
8034 
__kmem_cache_empty(struct kmem_cache * s)8035 bool __kmem_cache_empty(struct kmem_cache *s)
8036 {
8037 	int node;
8038 	struct kmem_cache_node *n;
8039 
8040 	for_each_kmem_cache_node(s, node, n)
8041 		if (n->nr_partial || node_nr_slabs(n))
8042 			return false;
8043 	return true;
8044 }
8045 
8046 /*
8047  * Release all resources used by a slab cache.
8048  */
__kmem_cache_shutdown(struct kmem_cache * s)8049 int __kmem_cache_shutdown(struct kmem_cache *s)
8050 {
8051 	int node;
8052 	struct kmem_cache_node *n;
8053 
8054 	flush_all_cpus_locked(s);
8055 
8056 	/* we might have rcu sheaves in flight */
8057 	if (s->cpu_sheaves)
8058 		rcu_barrier();
8059 
8060 	/* Attempt to free all objects */
8061 	for_each_kmem_cache_node(s, node, n) {
8062 		if (n->barn)
8063 			barn_shrink(s, n->barn);
8064 		free_partial(s, n);
8065 		if (n->nr_partial || node_nr_slabs(n))
8066 			return 1;
8067 	}
8068 	return 0;
8069 }
8070 
8071 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)8072 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8073 {
8074 	void *base;
8075 	int __maybe_unused i;
8076 	unsigned int objnr;
8077 	void *objp;
8078 	void *objp0;
8079 	struct kmem_cache *s = slab->slab_cache;
8080 	struct track __maybe_unused *trackp;
8081 
8082 	kpp->kp_ptr = object;
8083 	kpp->kp_slab = slab;
8084 	kpp->kp_slab_cache = s;
8085 	base = slab_address(slab);
8086 	objp0 = kasan_reset_tag(object);
8087 #ifdef CONFIG_SLUB_DEBUG
8088 	objp = restore_red_left(s, objp0);
8089 #else
8090 	objp = objp0;
8091 #endif
8092 	objnr = obj_to_index(s, slab, objp);
8093 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8094 	objp = base + s->size * objnr;
8095 	kpp->kp_objp = objp;
8096 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8097 			 || (objp - base) % s->size) ||
8098 	    !(s->flags & SLAB_STORE_USER))
8099 		return;
8100 #ifdef CONFIG_SLUB_DEBUG
8101 	objp = fixup_red_left(s, objp);
8102 	trackp = get_track(s, objp, TRACK_ALLOC);
8103 	kpp->kp_ret = (void *)trackp->addr;
8104 #ifdef CONFIG_STACKDEPOT
8105 	{
8106 		depot_stack_handle_t handle;
8107 		unsigned long *entries;
8108 		unsigned int nr_entries;
8109 
8110 		handle = READ_ONCE(trackp->handle);
8111 		if (handle) {
8112 			nr_entries = stack_depot_fetch(handle, &entries);
8113 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8114 				kpp->kp_stack[i] = (void *)entries[i];
8115 		}
8116 
8117 		trackp = get_track(s, objp, TRACK_FREE);
8118 		handle = READ_ONCE(trackp->handle);
8119 		if (handle) {
8120 			nr_entries = stack_depot_fetch(handle, &entries);
8121 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8122 				kpp->kp_free_stack[i] = (void *)entries[i];
8123 		}
8124 	}
8125 #endif
8126 #endif
8127 }
8128 #endif
8129 
8130 /********************************************************************
8131  *		Kmalloc subsystem
8132  *******************************************************************/
8133 
setup_slub_min_order(char * str)8134 static int __init setup_slub_min_order(char *str)
8135 {
8136 	get_option(&str, (int *)&slub_min_order);
8137 
8138 	if (slub_min_order > slub_max_order)
8139 		slub_max_order = slub_min_order;
8140 
8141 	return 1;
8142 }
8143 
8144 __setup("slab_min_order=", setup_slub_min_order);
8145 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
8146 
8147 
setup_slub_max_order(char * str)8148 static int __init setup_slub_max_order(char *str)
8149 {
8150 	get_option(&str, (int *)&slub_max_order);
8151 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8152 
8153 	if (slub_min_order > slub_max_order)
8154 		slub_min_order = slub_max_order;
8155 
8156 	return 1;
8157 }
8158 
8159 __setup("slab_max_order=", setup_slub_max_order);
8160 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
8161 
setup_slub_min_objects(char * str)8162 static int __init setup_slub_min_objects(char *str)
8163 {
8164 	get_option(&str, (int *)&slub_min_objects);
8165 
8166 	return 1;
8167 }
8168 
8169 __setup("slab_min_objects=", setup_slub_min_objects);
8170 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
8171 
8172 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)8173 static int __init setup_slab_strict_numa(char *str)
8174 {
8175 	if (nr_node_ids > 1) {
8176 		static_branch_enable(&strict_numa);
8177 		pr_info("SLUB: Strict NUMA enabled.\n");
8178 	} else {
8179 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8180 	}
8181 
8182 	return 1;
8183 }
8184 
8185 __setup("slab_strict_numa", setup_slab_strict_numa);
8186 #endif
8187 
8188 
8189 #ifdef CONFIG_HARDENED_USERCOPY
8190 /*
8191  * Rejects incorrectly sized objects and objects that are to be copied
8192  * to/from userspace but do not fall entirely within the containing slab
8193  * cache's usercopy region.
8194  *
8195  * Returns NULL if check passes, otherwise const char * to name of cache
8196  * to indicate an error.
8197  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)8198 void __check_heap_object(const void *ptr, unsigned long n,
8199 			 const struct slab *slab, bool to_user)
8200 {
8201 	struct kmem_cache *s;
8202 	unsigned int offset;
8203 	bool is_kfence = is_kfence_address(ptr);
8204 
8205 	ptr = kasan_reset_tag(ptr);
8206 
8207 	/* Find object and usable object size. */
8208 	s = slab->slab_cache;
8209 
8210 	/* Reject impossible pointers. */
8211 	if (ptr < slab_address(slab))
8212 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
8213 			       to_user, 0, n);
8214 
8215 	/* Find offset within object. */
8216 	if (is_kfence)
8217 		offset = ptr - kfence_object_start(ptr);
8218 	else
8219 		offset = (ptr - slab_address(slab)) % s->size;
8220 
8221 	/* Adjust for redzone and reject if within the redzone. */
8222 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8223 		if (offset < s->red_left_pad)
8224 			usercopy_abort("SLUB object in left red zone",
8225 				       s->name, to_user, offset, n);
8226 		offset -= s->red_left_pad;
8227 	}
8228 
8229 	/* Allow address range falling entirely within usercopy region. */
8230 	if (offset >= s->useroffset &&
8231 	    offset - s->useroffset <= s->usersize &&
8232 	    n <= s->useroffset - offset + s->usersize)
8233 		return;
8234 
8235 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
8236 }
8237 #endif /* CONFIG_HARDENED_USERCOPY */
8238 
8239 #define SHRINK_PROMOTE_MAX 32
8240 
8241 /*
8242  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8243  * up most to the head of the partial lists. New allocations will then
8244  * fill those up and thus they can be removed from the partial lists.
8245  *
8246  * The slabs with the least items are placed last. This results in them
8247  * being allocated from last increasing the chance that the last objects
8248  * are freed in them.
8249  */
__kmem_cache_do_shrink(struct kmem_cache * s)8250 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8251 {
8252 	int node;
8253 	int i;
8254 	struct kmem_cache_node *n;
8255 	struct slab *slab;
8256 	struct slab *t;
8257 	struct list_head discard;
8258 	struct list_head promote[SHRINK_PROMOTE_MAX];
8259 	unsigned long flags;
8260 	int ret = 0;
8261 
8262 	for_each_kmem_cache_node(s, node, n) {
8263 		INIT_LIST_HEAD(&discard);
8264 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8265 			INIT_LIST_HEAD(promote + i);
8266 
8267 		if (n->barn)
8268 			barn_shrink(s, n->barn);
8269 
8270 		spin_lock_irqsave(&n->list_lock, flags);
8271 
8272 		/*
8273 		 * Build lists of slabs to discard or promote.
8274 		 *
8275 		 * Note that concurrent frees may occur while we hold the
8276 		 * list_lock. slab->inuse here is the upper limit.
8277 		 */
8278 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8279 			int free = slab->objects - slab->inuse;
8280 
8281 			/* Do not reread slab->inuse */
8282 			barrier();
8283 
8284 			/* We do not keep full slabs on the list */
8285 			BUG_ON(free <= 0);
8286 
8287 			if (free == slab->objects) {
8288 				list_move(&slab->slab_list, &discard);
8289 				slab_clear_node_partial(slab);
8290 				n->nr_partial--;
8291 				dec_slabs_node(s, node, slab->objects);
8292 			} else if (free <= SHRINK_PROMOTE_MAX)
8293 				list_move(&slab->slab_list, promote + free - 1);
8294 		}
8295 
8296 		/*
8297 		 * Promote the slabs filled up most to the head of the
8298 		 * partial list.
8299 		 */
8300 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8301 			list_splice(promote + i, &n->partial);
8302 
8303 		spin_unlock_irqrestore(&n->list_lock, flags);
8304 
8305 		/* Release empty slabs */
8306 		list_for_each_entry_safe(slab, t, &discard, slab_list)
8307 			free_slab(s, slab);
8308 
8309 		if (node_nr_slabs(n))
8310 			ret = 1;
8311 	}
8312 
8313 	return ret;
8314 }
8315 
__kmem_cache_shrink(struct kmem_cache * s)8316 int __kmem_cache_shrink(struct kmem_cache *s)
8317 {
8318 	flush_all(s);
8319 	return __kmem_cache_do_shrink(s);
8320 }
8321 
slab_mem_going_offline_callback(void)8322 static int slab_mem_going_offline_callback(void)
8323 {
8324 	struct kmem_cache *s;
8325 
8326 	mutex_lock(&slab_mutex);
8327 	list_for_each_entry(s, &slab_caches, list) {
8328 		flush_all_cpus_locked(s);
8329 		__kmem_cache_do_shrink(s);
8330 	}
8331 	mutex_unlock(&slab_mutex);
8332 
8333 	return 0;
8334 }
8335 
slab_mem_going_online_callback(int nid)8336 static int slab_mem_going_online_callback(int nid)
8337 {
8338 	struct kmem_cache_node *n;
8339 	struct kmem_cache *s;
8340 	int ret = 0;
8341 
8342 	/*
8343 	 * We are bringing a node online. No memory is available yet. We must
8344 	 * allocate a kmem_cache_node structure in order to bring the node
8345 	 * online.
8346 	 */
8347 	mutex_lock(&slab_mutex);
8348 	list_for_each_entry(s, &slab_caches, list) {
8349 		struct node_barn *barn = NULL;
8350 
8351 		/*
8352 		 * The structure may already exist if the node was previously
8353 		 * onlined and offlined.
8354 		 */
8355 		if (get_node(s, nid))
8356 			continue;
8357 
8358 		if (s->cpu_sheaves) {
8359 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8360 
8361 			if (!barn) {
8362 				ret = -ENOMEM;
8363 				goto out;
8364 			}
8365 		}
8366 
8367 		/*
8368 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
8369 		 *      since memory is not yet available from the node that
8370 		 *      is brought up.
8371 		 */
8372 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8373 		if (!n) {
8374 			kfree(barn);
8375 			ret = -ENOMEM;
8376 			goto out;
8377 		}
8378 
8379 		init_kmem_cache_node(n, barn);
8380 
8381 		s->node[nid] = n;
8382 	}
8383 	/*
8384 	 * Any cache created after this point will also have kmem_cache_node
8385 	 * initialized for the new node.
8386 	 */
8387 	node_set(nid, slab_nodes);
8388 out:
8389 	mutex_unlock(&slab_mutex);
8390 	return ret;
8391 }
8392 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)8393 static int slab_memory_callback(struct notifier_block *self,
8394 				unsigned long action, void *arg)
8395 {
8396 	struct node_notify *nn = arg;
8397 	int nid = nn->nid;
8398 	int ret = 0;
8399 
8400 	switch (action) {
8401 	case NODE_ADDING_FIRST_MEMORY:
8402 		ret = slab_mem_going_online_callback(nid);
8403 		break;
8404 	case NODE_REMOVING_LAST_MEMORY:
8405 		ret = slab_mem_going_offline_callback();
8406 		break;
8407 	}
8408 	if (ret)
8409 		ret = notifier_from_errno(ret);
8410 	else
8411 		ret = NOTIFY_OK;
8412 	return ret;
8413 }
8414 
8415 /********************************************************************
8416  *			Basic setup of slabs
8417  *******************************************************************/
8418 
8419 /*
8420  * Used for early kmem_cache structures that were allocated using
8421  * the page allocator. Allocate them properly then fix up the pointers
8422  * that may be pointing to the wrong kmem_cache structure.
8423  */
8424 
bootstrap(struct kmem_cache * static_cache)8425 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8426 {
8427 	int node;
8428 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8429 	struct kmem_cache_node *n;
8430 
8431 	memcpy(s, static_cache, kmem_cache->object_size);
8432 
8433 	/*
8434 	 * This runs very early, and only the boot processor is supposed to be
8435 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
8436 	 * IPIs around.
8437 	 */
8438 	__flush_cpu_slab(s, smp_processor_id());
8439 	for_each_kmem_cache_node(s, node, n) {
8440 		struct slab *p;
8441 
8442 		list_for_each_entry(p, &n->partial, slab_list)
8443 			p->slab_cache = s;
8444 
8445 #ifdef CONFIG_SLUB_DEBUG
8446 		list_for_each_entry(p, &n->full, slab_list)
8447 			p->slab_cache = s;
8448 #endif
8449 	}
8450 	list_add(&s->list, &slab_caches);
8451 	return s;
8452 }
8453 
kmem_cache_init(void)8454 void __init kmem_cache_init(void)
8455 {
8456 	static __initdata struct kmem_cache boot_kmem_cache,
8457 		boot_kmem_cache_node;
8458 	int node;
8459 
8460 	if (debug_guardpage_minorder())
8461 		slub_max_order = 0;
8462 
8463 	/* Inform pointer hashing choice about slub debugging state. */
8464 	hash_pointers_finalize(__slub_debug_enabled());
8465 
8466 	kmem_cache_node = &boot_kmem_cache_node;
8467 	kmem_cache = &boot_kmem_cache;
8468 
8469 	/*
8470 	 * Initialize the nodemask for which we will allocate per node
8471 	 * structures. Here we don't need taking slab_mutex yet.
8472 	 */
8473 	for_each_node_state(node, N_MEMORY)
8474 		node_set(node, slab_nodes);
8475 
8476 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
8477 			sizeof(struct kmem_cache_node),
8478 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8479 
8480 	hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8481 
8482 	/* Able to allocate the per node structures */
8483 	slab_state = PARTIAL;
8484 
8485 	create_boot_cache(kmem_cache, "kmem_cache",
8486 			offsetof(struct kmem_cache, node) +
8487 				nr_node_ids * sizeof(struct kmem_cache_node *),
8488 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8489 
8490 	kmem_cache = bootstrap(&boot_kmem_cache);
8491 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8492 
8493 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
8494 	setup_kmalloc_cache_index_table();
8495 	create_kmalloc_caches();
8496 
8497 	/* Setup random freelists for each cache */
8498 	init_freelist_randomization();
8499 
8500 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8501 				  slub_cpu_dead);
8502 
8503 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8504 		cache_line_size(),
8505 		slub_min_order, slub_max_order, slub_min_objects,
8506 		nr_cpu_ids, nr_node_ids);
8507 }
8508 
kmem_cache_init_late(void)8509 void __init kmem_cache_init_late(void)
8510 {
8511 #ifndef CONFIG_SLUB_TINY
8512 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8513 	WARN_ON(!flushwq);
8514 #endif
8515 }
8516 
8517 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))8518 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8519 		   slab_flags_t flags, void (*ctor)(void *))
8520 {
8521 	struct kmem_cache *s;
8522 
8523 	s = find_mergeable(size, align, flags, name, ctor);
8524 	if (s) {
8525 		if (sysfs_slab_alias(s, name))
8526 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8527 			       name);
8528 
8529 		s->refcount++;
8530 
8531 		/*
8532 		 * Adjust the object sizes so that we clear
8533 		 * the complete object on kzalloc.
8534 		 */
8535 		s->object_size = max(s->object_size, size);
8536 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8537 	}
8538 
8539 	return s;
8540 }
8541 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)8542 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8543 			 unsigned int size, struct kmem_cache_args *args,
8544 			 slab_flags_t flags)
8545 {
8546 	int err = -EINVAL;
8547 
8548 	s->name = name;
8549 	s->size = s->object_size = size;
8550 
8551 	s->flags = kmem_cache_flags(flags, s->name);
8552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8553 	s->random = get_random_long();
8554 #endif
8555 	s->align = args->align;
8556 	s->ctor = args->ctor;
8557 #ifdef CONFIG_HARDENED_USERCOPY
8558 	s->useroffset = args->useroffset;
8559 	s->usersize = args->usersize;
8560 #endif
8561 
8562 	if (!calculate_sizes(args, s))
8563 		goto out;
8564 	if (disable_higher_order_debug) {
8565 		/*
8566 		 * Disable debugging flags that store metadata if the min slab
8567 		 * order increased.
8568 		 */
8569 		if (get_order(s->size) > get_order(s->object_size)) {
8570 			s->flags &= ~DEBUG_METADATA_FLAGS;
8571 			s->offset = 0;
8572 			if (!calculate_sizes(args, s))
8573 				goto out;
8574 		}
8575 	}
8576 
8577 #ifdef system_has_freelist_aba
8578 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8579 		/* Enable fast mode */
8580 		s->flags |= __CMPXCHG_DOUBLE;
8581 	}
8582 #endif
8583 
8584 	/*
8585 	 * The larger the object size is, the more slabs we want on the partial
8586 	 * list to avoid pounding the page allocator excessively.
8587 	 */
8588 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8589 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8590 
8591 	set_cpu_partial(s);
8592 
8593 	if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8594 					&& !(s->flags & SLAB_DEBUG_FLAGS)) {
8595 		s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8596 		if (!s->cpu_sheaves) {
8597 			err = -ENOMEM;
8598 			goto out;
8599 		}
8600 		// TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8601 		s->sheaf_capacity = args->sheaf_capacity;
8602 	}
8603 
8604 #ifdef CONFIG_NUMA
8605 	s->remote_node_defrag_ratio = 1000;
8606 #endif
8607 
8608 	/* Initialize the pre-computed randomized freelist if slab is up */
8609 	if (slab_state >= UP) {
8610 		if (init_cache_random_seq(s))
8611 			goto out;
8612 	}
8613 
8614 	if (!init_kmem_cache_nodes(s))
8615 		goto out;
8616 
8617 	if (!alloc_kmem_cache_cpus(s))
8618 		goto out;
8619 
8620 	if (s->cpu_sheaves) {
8621 		err = init_percpu_sheaves(s);
8622 		if (err)
8623 			goto out;
8624 	}
8625 
8626 	err = 0;
8627 
8628 	/* Mutex is not taken during early boot */
8629 	if (slab_state <= UP)
8630 		goto out;
8631 
8632 	/*
8633 	 * Failing to create sysfs files is not critical to SLUB functionality.
8634 	 * If it fails, proceed with cache creation without these files.
8635 	 */
8636 	if (sysfs_slab_add(s))
8637 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8638 
8639 	if (s->flags & SLAB_STORE_USER)
8640 		debugfs_slab_add(s);
8641 
8642 out:
8643 	if (err)
8644 		__kmem_cache_release(s);
8645 	return err;
8646 }
8647 
8648 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)8649 static int count_inuse(struct slab *slab)
8650 {
8651 	return slab->inuse;
8652 }
8653 
count_total(struct slab * slab)8654 static int count_total(struct slab *slab)
8655 {
8656 	return slab->objects;
8657 }
8658 #endif
8659 
8660 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)8661 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8662 			  unsigned long *obj_map)
8663 {
8664 	void *p;
8665 	void *addr = slab_address(slab);
8666 
8667 	if (!validate_slab_ptr(slab)) {
8668 		slab_err(s, slab, "Not a valid slab page");
8669 		return;
8670 	}
8671 
8672 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8673 		return;
8674 
8675 	/* Now we know that a valid freelist exists */
8676 	__fill_map(obj_map, s, slab);
8677 	for_each_object(p, s, addr, slab->objects) {
8678 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8679 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8680 
8681 		if (!check_object(s, slab, p, val))
8682 			break;
8683 	}
8684 }
8685 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)8686 static int validate_slab_node(struct kmem_cache *s,
8687 		struct kmem_cache_node *n, unsigned long *obj_map)
8688 {
8689 	unsigned long count = 0;
8690 	struct slab *slab;
8691 	unsigned long flags;
8692 
8693 	spin_lock_irqsave(&n->list_lock, flags);
8694 
8695 	list_for_each_entry(slab, &n->partial, slab_list) {
8696 		validate_slab(s, slab, obj_map);
8697 		count++;
8698 	}
8699 	if (count != n->nr_partial) {
8700 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8701 		       s->name, count, n->nr_partial);
8702 		slab_add_kunit_errors();
8703 	}
8704 
8705 	if (!(s->flags & SLAB_STORE_USER))
8706 		goto out;
8707 
8708 	list_for_each_entry(slab, &n->full, slab_list) {
8709 		validate_slab(s, slab, obj_map);
8710 		count++;
8711 	}
8712 	if (count != node_nr_slabs(n)) {
8713 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8714 		       s->name, count, node_nr_slabs(n));
8715 		slab_add_kunit_errors();
8716 	}
8717 
8718 out:
8719 	spin_unlock_irqrestore(&n->list_lock, flags);
8720 	return count;
8721 }
8722 
validate_slab_cache(struct kmem_cache * s)8723 long validate_slab_cache(struct kmem_cache *s)
8724 {
8725 	int node;
8726 	unsigned long count = 0;
8727 	struct kmem_cache_node *n;
8728 	unsigned long *obj_map;
8729 
8730 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8731 	if (!obj_map)
8732 		return -ENOMEM;
8733 
8734 	flush_all(s);
8735 	for_each_kmem_cache_node(s, node, n)
8736 		count += validate_slab_node(s, n, obj_map);
8737 
8738 	bitmap_free(obj_map);
8739 
8740 	return count;
8741 }
8742 EXPORT_SYMBOL(validate_slab_cache);
8743 
8744 #ifdef CONFIG_DEBUG_FS
8745 /*
8746  * Generate lists of code addresses where slabcache objects are allocated
8747  * and freed.
8748  */
8749 
8750 struct location {
8751 	depot_stack_handle_t handle;
8752 	unsigned long count;
8753 	unsigned long addr;
8754 	unsigned long waste;
8755 	long long sum_time;
8756 	long min_time;
8757 	long max_time;
8758 	long min_pid;
8759 	long max_pid;
8760 	DECLARE_BITMAP(cpus, NR_CPUS);
8761 	nodemask_t nodes;
8762 };
8763 
8764 struct loc_track {
8765 	unsigned long max;
8766 	unsigned long count;
8767 	struct location *loc;
8768 	loff_t idx;
8769 };
8770 
8771 static struct dentry *slab_debugfs_root;
8772 
free_loc_track(struct loc_track * t)8773 static void free_loc_track(struct loc_track *t)
8774 {
8775 	if (t->max)
8776 		free_pages((unsigned long)t->loc,
8777 			get_order(sizeof(struct location) * t->max));
8778 }
8779 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)8780 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8781 {
8782 	struct location *l;
8783 	int order;
8784 
8785 	order = get_order(sizeof(struct location) * max);
8786 
8787 	l = (void *)__get_free_pages(flags, order);
8788 	if (!l)
8789 		return 0;
8790 
8791 	if (t->count) {
8792 		memcpy(l, t->loc, sizeof(struct location) * t->count);
8793 		free_loc_track(t);
8794 	}
8795 	t->max = max;
8796 	t->loc = l;
8797 	return 1;
8798 }
8799 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)8800 static int add_location(struct loc_track *t, struct kmem_cache *s,
8801 				const struct track *track,
8802 				unsigned int orig_size)
8803 {
8804 	long start, end, pos;
8805 	struct location *l;
8806 	unsigned long caddr, chandle, cwaste;
8807 	unsigned long age = jiffies - track->when;
8808 	depot_stack_handle_t handle = 0;
8809 	unsigned int waste = s->object_size - orig_size;
8810 
8811 #ifdef CONFIG_STACKDEPOT
8812 	handle = READ_ONCE(track->handle);
8813 #endif
8814 	start = -1;
8815 	end = t->count;
8816 
8817 	for ( ; ; ) {
8818 		pos = start + (end - start + 1) / 2;
8819 
8820 		/*
8821 		 * There is nothing at "end". If we end up there
8822 		 * we need to add something to before end.
8823 		 */
8824 		if (pos == end)
8825 			break;
8826 
8827 		l = &t->loc[pos];
8828 		caddr = l->addr;
8829 		chandle = l->handle;
8830 		cwaste = l->waste;
8831 		if ((track->addr == caddr) && (handle == chandle) &&
8832 			(waste == cwaste)) {
8833 
8834 			l->count++;
8835 			if (track->when) {
8836 				l->sum_time += age;
8837 				if (age < l->min_time)
8838 					l->min_time = age;
8839 				if (age > l->max_time)
8840 					l->max_time = age;
8841 
8842 				if (track->pid < l->min_pid)
8843 					l->min_pid = track->pid;
8844 				if (track->pid > l->max_pid)
8845 					l->max_pid = track->pid;
8846 
8847 				cpumask_set_cpu(track->cpu,
8848 						to_cpumask(l->cpus));
8849 			}
8850 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
8851 			return 1;
8852 		}
8853 
8854 		if (track->addr < caddr)
8855 			end = pos;
8856 		else if (track->addr == caddr && handle < chandle)
8857 			end = pos;
8858 		else if (track->addr == caddr && handle == chandle &&
8859 				waste < cwaste)
8860 			end = pos;
8861 		else
8862 			start = pos;
8863 	}
8864 
8865 	/*
8866 	 * Not found. Insert new tracking element.
8867 	 */
8868 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8869 		return 0;
8870 
8871 	l = t->loc + pos;
8872 	if (pos < t->count)
8873 		memmove(l + 1, l,
8874 			(t->count - pos) * sizeof(struct location));
8875 	t->count++;
8876 	l->count = 1;
8877 	l->addr = track->addr;
8878 	l->sum_time = age;
8879 	l->min_time = age;
8880 	l->max_time = age;
8881 	l->min_pid = track->pid;
8882 	l->max_pid = track->pid;
8883 	l->handle = handle;
8884 	l->waste = waste;
8885 	cpumask_clear(to_cpumask(l->cpus));
8886 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8887 	nodes_clear(l->nodes);
8888 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
8889 	return 1;
8890 }
8891 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)8892 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8893 		struct slab *slab, enum track_item alloc,
8894 		unsigned long *obj_map)
8895 {
8896 	void *addr = slab_address(slab);
8897 	bool is_alloc = (alloc == TRACK_ALLOC);
8898 	void *p;
8899 
8900 	__fill_map(obj_map, s, slab);
8901 
8902 	for_each_object(p, s, addr, slab->objects)
8903 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8904 			add_location(t, s, get_track(s, p, alloc),
8905 				     is_alloc ? get_orig_size(s, p) :
8906 						s->object_size);
8907 }
8908 #endif  /* CONFIG_DEBUG_FS   */
8909 #endif	/* CONFIG_SLUB_DEBUG */
8910 
8911 #ifdef SLAB_SUPPORTS_SYSFS
8912 enum slab_stat_type {
8913 	SL_ALL,			/* All slabs */
8914 	SL_PARTIAL,		/* Only partially allocated slabs */
8915 	SL_CPU,			/* Only slabs used for cpu caches */
8916 	SL_OBJECTS,		/* Determine allocated objects not slabs */
8917 	SL_TOTAL		/* Determine object capacity not slabs */
8918 };
8919 
8920 #define SO_ALL		(1 << SL_ALL)
8921 #define SO_PARTIAL	(1 << SL_PARTIAL)
8922 #define SO_CPU		(1 << SL_CPU)
8923 #define SO_OBJECTS	(1 << SL_OBJECTS)
8924 #define SO_TOTAL	(1 << SL_TOTAL)
8925 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)8926 static ssize_t show_slab_objects(struct kmem_cache *s,
8927 				 char *buf, unsigned long flags)
8928 {
8929 	unsigned long total = 0;
8930 	int node;
8931 	int x;
8932 	unsigned long *nodes;
8933 	int len = 0;
8934 
8935 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8936 	if (!nodes)
8937 		return -ENOMEM;
8938 
8939 	if (flags & SO_CPU) {
8940 		int cpu;
8941 
8942 		for_each_possible_cpu(cpu) {
8943 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8944 							       cpu);
8945 			int node;
8946 			struct slab *slab;
8947 
8948 			slab = READ_ONCE(c->slab);
8949 			if (!slab)
8950 				continue;
8951 
8952 			node = slab_nid(slab);
8953 			if (flags & SO_TOTAL)
8954 				x = slab->objects;
8955 			else if (flags & SO_OBJECTS)
8956 				x = slab->inuse;
8957 			else
8958 				x = 1;
8959 
8960 			total += x;
8961 			nodes[node] += x;
8962 
8963 #ifdef CONFIG_SLUB_CPU_PARTIAL
8964 			slab = slub_percpu_partial_read_once(c);
8965 			if (slab) {
8966 				node = slab_nid(slab);
8967 				if (flags & SO_TOTAL)
8968 					WARN_ON_ONCE(1);
8969 				else if (flags & SO_OBJECTS)
8970 					WARN_ON_ONCE(1);
8971 				else
8972 					x = data_race(slab->slabs);
8973 				total += x;
8974 				nodes[node] += x;
8975 			}
8976 #endif
8977 		}
8978 	}
8979 
8980 	/*
8981 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
8982 	 * already held which will conflict with an existing lock order:
8983 	 *
8984 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
8985 	 *
8986 	 * We don't really need mem_hotplug_lock (to hold off
8987 	 * slab_mem_going_offline_callback) here because slab's memory hot
8988 	 * unplug code doesn't destroy the kmem_cache->node[] data.
8989 	 */
8990 
8991 #ifdef CONFIG_SLUB_DEBUG
8992 	if (flags & SO_ALL) {
8993 		struct kmem_cache_node *n;
8994 
8995 		for_each_kmem_cache_node(s, node, n) {
8996 
8997 			if (flags & SO_TOTAL)
8998 				x = node_nr_objs(n);
8999 			else if (flags & SO_OBJECTS)
9000 				x = node_nr_objs(n) - count_partial(n, count_free);
9001 			else
9002 				x = node_nr_slabs(n);
9003 			total += x;
9004 			nodes[node] += x;
9005 		}
9006 
9007 	} else
9008 #endif
9009 	if (flags & SO_PARTIAL) {
9010 		struct kmem_cache_node *n;
9011 
9012 		for_each_kmem_cache_node(s, node, n) {
9013 			if (flags & SO_TOTAL)
9014 				x = count_partial(n, count_total);
9015 			else if (flags & SO_OBJECTS)
9016 				x = count_partial(n, count_inuse);
9017 			else
9018 				x = n->nr_partial;
9019 			total += x;
9020 			nodes[node] += x;
9021 		}
9022 	}
9023 
9024 	len += sysfs_emit_at(buf, len, "%lu", total);
9025 #ifdef CONFIG_NUMA
9026 	for (node = 0; node < nr_node_ids; node++) {
9027 		if (nodes[node])
9028 			len += sysfs_emit_at(buf, len, " N%d=%lu",
9029 					     node, nodes[node]);
9030 	}
9031 #endif
9032 	len += sysfs_emit_at(buf, len, "\n");
9033 	kfree(nodes);
9034 
9035 	return len;
9036 }
9037 
9038 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9039 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9040 
9041 struct slab_attribute {
9042 	struct attribute attr;
9043 	ssize_t (*show)(struct kmem_cache *s, char *buf);
9044 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9045 };
9046 
9047 #define SLAB_ATTR_RO(_name) \
9048 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9049 
9050 #define SLAB_ATTR(_name) \
9051 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9052 
slab_size_show(struct kmem_cache * s,char * buf)9053 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9054 {
9055 	return sysfs_emit(buf, "%u\n", s->size);
9056 }
9057 SLAB_ATTR_RO(slab_size);
9058 
align_show(struct kmem_cache * s,char * buf)9059 static ssize_t align_show(struct kmem_cache *s, char *buf)
9060 {
9061 	return sysfs_emit(buf, "%u\n", s->align);
9062 }
9063 SLAB_ATTR_RO(align);
9064 
object_size_show(struct kmem_cache * s,char * buf)9065 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9066 {
9067 	return sysfs_emit(buf, "%u\n", s->object_size);
9068 }
9069 SLAB_ATTR_RO(object_size);
9070 
objs_per_slab_show(struct kmem_cache * s,char * buf)9071 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9072 {
9073 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9074 }
9075 SLAB_ATTR_RO(objs_per_slab);
9076 
order_show(struct kmem_cache * s,char * buf)9077 static ssize_t order_show(struct kmem_cache *s, char *buf)
9078 {
9079 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9080 }
9081 SLAB_ATTR_RO(order);
9082 
sheaf_capacity_show(struct kmem_cache * s,char * buf)9083 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9084 {
9085 	return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9086 }
9087 SLAB_ATTR_RO(sheaf_capacity);
9088 
min_partial_show(struct kmem_cache * s,char * buf)9089 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9090 {
9091 	return sysfs_emit(buf, "%lu\n", s->min_partial);
9092 }
9093 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)9094 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9095 				 size_t length)
9096 {
9097 	unsigned long min;
9098 	int err;
9099 
9100 	err = kstrtoul(buf, 10, &min);
9101 	if (err)
9102 		return err;
9103 
9104 	s->min_partial = min;
9105 	return length;
9106 }
9107 SLAB_ATTR(min_partial);
9108 
cpu_partial_show(struct kmem_cache * s,char * buf)9109 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9110 {
9111 	unsigned int nr_partial = 0;
9112 #ifdef CONFIG_SLUB_CPU_PARTIAL
9113 	nr_partial = s->cpu_partial;
9114 #endif
9115 
9116 	return sysfs_emit(buf, "%u\n", nr_partial);
9117 }
9118 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)9119 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9120 				 size_t length)
9121 {
9122 	unsigned int objects;
9123 	int err;
9124 
9125 	err = kstrtouint(buf, 10, &objects);
9126 	if (err)
9127 		return err;
9128 	if (objects && !kmem_cache_has_cpu_partial(s))
9129 		return -EINVAL;
9130 
9131 	slub_set_cpu_partial(s, objects);
9132 	flush_all(s);
9133 	return length;
9134 }
9135 SLAB_ATTR(cpu_partial);
9136 
ctor_show(struct kmem_cache * s,char * buf)9137 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9138 {
9139 	if (!s->ctor)
9140 		return 0;
9141 	return sysfs_emit(buf, "%pS\n", s->ctor);
9142 }
9143 SLAB_ATTR_RO(ctor);
9144 
aliases_show(struct kmem_cache * s,char * buf)9145 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9146 {
9147 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9148 }
9149 SLAB_ATTR_RO(aliases);
9150 
partial_show(struct kmem_cache * s,char * buf)9151 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9152 {
9153 	return show_slab_objects(s, buf, SO_PARTIAL);
9154 }
9155 SLAB_ATTR_RO(partial);
9156 
cpu_slabs_show(struct kmem_cache * s,char * buf)9157 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9158 {
9159 	return show_slab_objects(s, buf, SO_CPU);
9160 }
9161 SLAB_ATTR_RO(cpu_slabs);
9162 
objects_partial_show(struct kmem_cache * s,char * buf)9163 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9164 {
9165 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9166 }
9167 SLAB_ATTR_RO(objects_partial);
9168 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)9169 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9170 {
9171 	int objects = 0;
9172 	int slabs = 0;
9173 	int cpu __maybe_unused;
9174 	int len = 0;
9175 
9176 #ifdef CONFIG_SLUB_CPU_PARTIAL
9177 	for_each_online_cpu(cpu) {
9178 		struct slab *slab;
9179 
9180 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9181 
9182 		if (slab)
9183 			slabs += data_race(slab->slabs);
9184 	}
9185 #endif
9186 
9187 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
9188 	objects = (slabs * oo_objects(s->oo)) / 2;
9189 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9190 
9191 #ifdef CONFIG_SLUB_CPU_PARTIAL
9192 	for_each_online_cpu(cpu) {
9193 		struct slab *slab;
9194 
9195 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9196 		if (slab) {
9197 			slabs = data_race(slab->slabs);
9198 			objects = (slabs * oo_objects(s->oo)) / 2;
9199 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9200 					     cpu, objects, slabs);
9201 		}
9202 	}
9203 #endif
9204 	len += sysfs_emit_at(buf, len, "\n");
9205 
9206 	return len;
9207 }
9208 SLAB_ATTR_RO(slabs_cpu_partial);
9209 
reclaim_account_show(struct kmem_cache * s,char * buf)9210 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9211 {
9212 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9213 }
9214 SLAB_ATTR_RO(reclaim_account);
9215 
hwcache_align_show(struct kmem_cache * s,char * buf)9216 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9217 {
9218 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9219 }
9220 SLAB_ATTR_RO(hwcache_align);
9221 
9222 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)9223 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9224 {
9225 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9226 }
9227 SLAB_ATTR_RO(cache_dma);
9228 #endif
9229 
9230 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)9231 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9232 {
9233 	return sysfs_emit(buf, "%u\n", s->usersize);
9234 }
9235 SLAB_ATTR_RO(usersize);
9236 #endif
9237 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)9238 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9239 {
9240 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9241 }
9242 SLAB_ATTR_RO(destroy_by_rcu);
9243 
9244 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)9245 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9246 {
9247 	return show_slab_objects(s, buf, SO_ALL);
9248 }
9249 SLAB_ATTR_RO(slabs);
9250 
total_objects_show(struct kmem_cache * s,char * buf)9251 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9252 {
9253 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9254 }
9255 SLAB_ATTR_RO(total_objects);
9256 
objects_show(struct kmem_cache * s,char * buf)9257 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9258 {
9259 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9260 }
9261 SLAB_ATTR_RO(objects);
9262 
sanity_checks_show(struct kmem_cache * s,char * buf)9263 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9264 {
9265 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9266 }
9267 SLAB_ATTR_RO(sanity_checks);
9268 
trace_show(struct kmem_cache * s,char * buf)9269 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9270 {
9271 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9272 }
9273 SLAB_ATTR_RO(trace);
9274 
red_zone_show(struct kmem_cache * s,char * buf)9275 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9276 {
9277 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9278 }
9279 
9280 SLAB_ATTR_RO(red_zone);
9281 
poison_show(struct kmem_cache * s,char * buf)9282 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9283 {
9284 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9285 }
9286 
9287 SLAB_ATTR_RO(poison);
9288 
store_user_show(struct kmem_cache * s,char * buf)9289 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9290 {
9291 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9292 }
9293 
9294 SLAB_ATTR_RO(store_user);
9295 
validate_show(struct kmem_cache * s,char * buf)9296 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9297 {
9298 	return 0;
9299 }
9300 
validate_store(struct kmem_cache * s,const char * buf,size_t length)9301 static ssize_t validate_store(struct kmem_cache *s,
9302 			const char *buf, size_t length)
9303 {
9304 	int ret = -EINVAL;
9305 
9306 	if (buf[0] == '1' && kmem_cache_debug(s)) {
9307 		ret = validate_slab_cache(s);
9308 		if (ret >= 0)
9309 			ret = length;
9310 	}
9311 	return ret;
9312 }
9313 SLAB_ATTR(validate);
9314 
9315 #endif /* CONFIG_SLUB_DEBUG */
9316 
9317 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)9318 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9319 {
9320 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9321 }
9322 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)9323 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9324 				size_t length)
9325 {
9326 	if (s->refcount > 1)
9327 		return -EINVAL;
9328 
9329 	if (buf[0] == '1')
9330 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9331 	else
9332 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9333 
9334 	return length;
9335 }
9336 SLAB_ATTR(failslab);
9337 #endif
9338 
shrink_show(struct kmem_cache * s,char * buf)9339 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9340 {
9341 	return 0;
9342 }
9343 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)9344 static ssize_t shrink_store(struct kmem_cache *s,
9345 			const char *buf, size_t length)
9346 {
9347 	if (buf[0] == '1')
9348 		kmem_cache_shrink(s);
9349 	else
9350 		return -EINVAL;
9351 	return length;
9352 }
9353 SLAB_ATTR(shrink);
9354 
9355 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)9356 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9357 {
9358 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9359 }
9360 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)9361 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9362 				const char *buf, size_t length)
9363 {
9364 	unsigned int ratio;
9365 	int err;
9366 
9367 	err = kstrtouint(buf, 10, &ratio);
9368 	if (err)
9369 		return err;
9370 	if (ratio > 100)
9371 		return -ERANGE;
9372 
9373 	s->remote_node_defrag_ratio = ratio * 10;
9374 
9375 	return length;
9376 }
9377 SLAB_ATTR(remote_node_defrag_ratio);
9378 #endif
9379 
9380 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)9381 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9382 {
9383 	unsigned long sum  = 0;
9384 	int cpu;
9385 	int len = 0;
9386 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9387 
9388 	if (!data)
9389 		return -ENOMEM;
9390 
9391 	for_each_online_cpu(cpu) {
9392 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9393 
9394 		data[cpu] = x;
9395 		sum += x;
9396 	}
9397 
9398 	len += sysfs_emit_at(buf, len, "%lu", sum);
9399 
9400 #ifdef CONFIG_SMP
9401 	for_each_online_cpu(cpu) {
9402 		if (data[cpu])
9403 			len += sysfs_emit_at(buf, len, " C%d=%u",
9404 					     cpu, data[cpu]);
9405 	}
9406 #endif
9407 	kfree(data);
9408 	len += sysfs_emit_at(buf, len, "\n");
9409 
9410 	return len;
9411 }
9412 
clear_stat(struct kmem_cache * s,enum stat_item si)9413 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9414 {
9415 	int cpu;
9416 
9417 	for_each_online_cpu(cpu)
9418 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9419 }
9420 
9421 #define STAT_ATTR(si, text) 					\
9422 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
9423 {								\
9424 	return show_stat(s, buf, si);				\
9425 }								\
9426 static ssize_t text##_store(struct kmem_cache *s,		\
9427 				const char *buf, size_t length)	\
9428 {								\
9429 	if (buf[0] != '0')					\
9430 		return -EINVAL;					\
9431 	clear_stat(s, si);					\
9432 	return length;						\
9433 }								\
9434 SLAB_ATTR(text);						\
9435 
9436 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9437 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9438 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9439 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9440 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9441 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9442 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9443 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9444 STAT_ATTR(FREE_FROZEN, free_frozen);
9445 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9446 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9447 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9448 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9449 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9450 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9451 STAT_ATTR(FREE_SLAB, free_slab);
9452 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9453 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9454 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9455 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9456 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9457 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9458 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9459 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9460 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9461 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9462 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9463 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9464 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9465 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9466 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9467 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9468 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9469 STAT_ATTR(SHEAF_FREE, sheaf_free);
9470 STAT_ATTR(BARN_GET, barn_get);
9471 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9472 STAT_ATTR(BARN_PUT, barn_put);
9473 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9474 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9475 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9476 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9477 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9478 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9479 #endif	/* CONFIG_SLUB_STATS */
9480 
9481 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)9482 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9483 {
9484 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9485 }
9486 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)9487 static ssize_t skip_kfence_store(struct kmem_cache *s,
9488 			const char *buf, size_t length)
9489 {
9490 	int ret = length;
9491 
9492 	if (buf[0] == '0')
9493 		s->flags &= ~SLAB_SKIP_KFENCE;
9494 	else if (buf[0] == '1')
9495 		s->flags |= SLAB_SKIP_KFENCE;
9496 	else
9497 		ret = -EINVAL;
9498 
9499 	return ret;
9500 }
9501 SLAB_ATTR(skip_kfence);
9502 #endif
9503 
9504 static struct attribute *slab_attrs[] = {
9505 	&slab_size_attr.attr,
9506 	&object_size_attr.attr,
9507 	&objs_per_slab_attr.attr,
9508 	&order_attr.attr,
9509 	&sheaf_capacity_attr.attr,
9510 	&min_partial_attr.attr,
9511 	&cpu_partial_attr.attr,
9512 	&objects_partial_attr.attr,
9513 	&partial_attr.attr,
9514 	&cpu_slabs_attr.attr,
9515 	&ctor_attr.attr,
9516 	&aliases_attr.attr,
9517 	&align_attr.attr,
9518 	&hwcache_align_attr.attr,
9519 	&reclaim_account_attr.attr,
9520 	&destroy_by_rcu_attr.attr,
9521 	&shrink_attr.attr,
9522 	&slabs_cpu_partial_attr.attr,
9523 #ifdef CONFIG_SLUB_DEBUG
9524 	&total_objects_attr.attr,
9525 	&objects_attr.attr,
9526 	&slabs_attr.attr,
9527 	&sanity_checks_attr.attr,
9528 	&trace_attr.attr,
9529 	&red_zone_attr.attr,
9530 	&poison_attr.attr,
9531 	&store_user_attr.attr,
9532 	&validate_attr.attr,
9533 #endif
9534 #ifdef CONFIG_ZONE_DMA
9535 	&cache_dma_attr.attr,
9536 #endif
9537 #ifdef CONFIG_NUMA
9538 	&remote_node_defrag_ratio_attr.attr,
9539 #endif
9540 #ifdef CONFIG_SLUB_STATS
9541 	&alloc_cpu_sheaf_attr.attr,
9542 	&alloc_fastpath_attr.attr,
9543 	&alloc_slowpath_attr.attr,
9544 	&free_cpu_sheaf_attr.attr,
9545 	&free_rcu_sheaf_attr.attr,
9546 	&free_rcu_sheaf_fail_attr.attr,
9547 	&free_fastpath_attr.attr,
9548 	&free_slowpath_attr.attr,
9549 	&free_frozen_attr.attr,
9550 	&free_add_partial_attr.attr,
9551 	&free_remove_partial_attr.attr,
9552 	&alloc_from_partial_attr.attr,
9553 	&alloc_slab_attr.attr,
9554 	&alloc_refill_attr.attr,
9555 	&alloc_node_mismatch_attr.attr,
9556 	&free_slab_attr.attr,
9557 	&cpuslab_flush_attr.attr,
9558 	&deactivate_full_attr.attr,
9559 	&deactivate_empty_attr.attr,
9560 	&deactivate_to_head_attr.attr,
9561 	&deactivate_to_tail_attr.attr,
9562 	&deactivate_remote_frees_attr.attr,
9563 	&deactivate_bypass_attr.attr,
9564 	&order_fallback_attr.attr,
9565 	&cmpxchg_double_fail_attr.attr,
9566 	&cmpxchg_double_cpu_fail_attr.attr,
9567 	&cpu_partial_alloc_attr.attr,
9568 	&cpu_partial_free_attr.attr,
9569 	&cpu_partial_node_attr.attr,
9570 	&cpu_partial_drain_attr.attr,
9571 	&sheaf_flush_attr.attr,
9572 	&sheaf_refill_attr.attr,
9573 	&sheaf_alloc_attr.attr,
9574 	&sheaf_free_attr.attr,
9575 	&barn_get_attr.attr,
9576 	&barn_get_fail_attr.attr,
9577 	&barn_put_attr.attr,
9578 	&barn_put_fail_attr.attr,
9579 	&sheaf_prefill_fast_attr.attr,
9580 	&sheaf_prefill_slow_attr.attr,
9581 	&sheaf_prefill_oversize_attr.attr,
9582 	&sheaf_return_fast_attr.attr,
9583 	&sheaf_return_slow_attr.attr,
9584 #endif
9585 #ifdef CONFIG_FAILSLAB
9586 	&failslab_attr.attr,
9587 #endif
9588 #ifdef CONFIG_HARDENED_USERCOPY
9589 	&usersize_attr.attr,
9590 #endif
9591 #ifdef CONFIG_KFENCE
9592 	&skip_kfence_attr.attr,
9593 #endif
9594 
9595 	NULL
9596 };
9597 
9598 static const struct attribute_group slab_attr_group = {
9599 	.attrs = slab_attrs,
9600 };
9601 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)9602 static ssize_t slab_attr_show(struct kobject *kobj,
9603 				struct attribute *attr,
9604 				char *buf)
9605 {
9606 	struct slab_attribute *attribute;
9607 	struct kmem_cache *s;
9608 
9609 	attribute = to_slab_attr(attr);
9610 	s = to_slab(kobj);
9611 
9612 	if (!attribute->show)
9613 		return -EIO;
9614 
9615 	return attribute->show(s, buf);
9616 }
9617 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)9618 static ssize_t slab_attr_store(struct kobject *kobj,
9619 				struct attribute *attr,
9620 				const char *buf, size_t len)
9621 {
9622 	struct slab_attribute *attribute;
9623 	struct kmem_cache *s;
9624 
9625 	attribute = to_slab_attr(attr);
9626 	s = to_slab(kobj);
9627 
9628 	if (!attribute->store)
9629 		return -EIO;
9630 
9631 	return attribute->store(s, buf, len);
9632 }
9633 
kmem_cache_release(struct kobject * k)9634 static void kmem_cache_release(struct kobject *k)
9635 {
9636 	slab_kmem_cache_release(to_slab(k));
9637 }
9638 
9639 static const struct sysfs_ops slab_sysfs_ops = {
9640 	.show = slab_attr_show,
9641 	.store = slab_attr_store,
9642 };
9643 
9644 static const struct kobj_type slab_ktype = {
9645 	.sysfs_ops = &slab_sysfs_ops,
9646 	.release = kmem_cache_release,
9647 };
9648 
9649 static struct kset *slab_kset;
9650 
cache_kset(struct kmem_cache * s)9651 static inline struct kset *cache_kset(struct kmem_cache *s)
9652 {
9653 	return slab_kset;
9654 }
9655 
9656 #define ID_STR_LENGTH 32
9657 
9658 /* Create a unique string id for a slab cache:
9659  *
9660  * Format	:[flags-]size
9661  */
create_unique_id(struct kmem_cache * s)9662 static char *create_unique_id(struct kmem_cache *s)
9663 {
9664 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9665 	char *p = name;
9666 
9667 	if (!name)
9668 		return ERR_PTR(-ENOMEM);
9669 
9670 	*p++ = ':';
9671 	/*
9672 	 * First flags affecting slabcache operations. We will only
9673 	 * get here for aliasable slabs so we do not need to support
9674 	 * too many flags. The flags here must cover all flags that
9675 	 * are matched during merging to guarantee that the id is
9676 	 * unique.
9677 	 */
9678 	if (s->flags & SLAB_CACHE_DMA)
9679 		*p++ = 'd';
9680 	if (s->flags & SLAB_CACHE_DMA32)
9681 		*p++ = 'D';
9682 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
9683 		*p++ = 'a';
9684 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
9685 		*p++ = 'F';
9686 	if (s->flags & SLAB_ACCOUNT)
9687 		*p++ = 'A';
9688 	if (p != name + 1)
9689 		*p++ = '-';
9690 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9691 
9692 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9693 		kfree(name);
9694 		return ERR_PTR(-EINVAL);
9695 	}
9696 	kmsan_unpoison_memory(name, p - name);
9697 	return name;
9698 }
9699 
sysfs_slab_add(struct kmem_cache * s)9700 static int sysfs_slab_add(struct kmem_cache *s)
9701 {
9702 	int err;
9703 	const char *name;
9704 	struct kset *kset = cache_kset(s);
9705 	int unmergeable = slab_unmergeable(s);
9706 
9707 	if (!unmergeable && disable_higher_order_debug &&
9708 			(slub_debug & DEBUG_METADATA_FLAGS))
9709 		unmergeable = 1;
9710 
9711 	if (unmergeable) {
9712 		/*
9713 		 * Slabcache can never be merged so we can use the name proper.
9714 		 * This is typically the case for debug situations. In that
9715 		 * case we can catch duplicate names easily.
9716 		 */
9717 		sysfs_remove_link(&slab_kset->kobj, s->name);
9718 		name = s->name;
9719 	} else {
9720 		/*
9721 		 * Create a unique name for the slab as a target
9722 		 * for the symlinks.
9723 		 */
9724 		name = create_unique_id(s);
9725 		if (IS_ERR(name))
9726 			return PTR_ERR(name);
9727 	}
9728 
9729 	s->kobj.kset = kset;
9730 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9731 	if (err)
9732 		goto out;
9733 
9734 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
9735 	if (err)
9736 		goto out_del_kobj;
9737 
9738 	if (!unmergeable) {
9739 		/* Setup first alias */
9740 		sysfs_slab_alias(s, s->name);
9741 	}
9742 out:
9743 	if (!unmergeable)
9744 		kfree(name);
9745 	return err;
9746 out_del_kobj:
9747 	kobject_del(&s->kobj);
9748 	goto out;
9749 }
9750 
sysfs_slab_unlink(struct kmem_cache * s)9751 void sysfs_slab_unlink(struct kmem_cache *s)
9752 {
9753 	if (s->kobj.state_in_sysfs)
9754 		kobject_del(&s->kobj);
9755 }
9756 
sysfs_slab_release(struct kmem_cache * s)9757 void sysfs_slab_release(struct kmem_cache *s)
9758 {
9759 	kobject_put(&s->kobj);
9760 }
9761 
9762 /*
9763  * Need to buffer aliases during bootup until sysfs becomes
9764  * available lest we lose that information.
9765  */
9766 struct saved_alias {
9767 	struct kmem_cache *s;
9768 	const char *name;
9769 	struct saved_alias *next;
9770 };
9771 
9772 static struct saved_alias *alias_list;
9773 
sysfs_slab_alias(struct kmem_cache * s,const char * name)9774 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9775 {
9776 	struct saved_alias *al;
9777 
9778 	if (slab_state == FULL) {
9779 		/*
9780 		 * If we have a leftover link then remove it.
9781 		 */
9782 		sysfs_remove_link(&slab_kset->kobj, name);
9783 		/*
9784 		 * The original cache may have failed to generate sysfs file.
9785 		 * In that case, sysfs_create_link() returns -ENOENT and
9786 		 * symbolic link creation is skipped.
9787 		 */
9788 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9789 	}
9790 
9791 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9792 	if (!al)
9793 		return -ENOMEM;
9794 
9795 	al->s = s;
9796 	al->name = name;
9797 	al->next = alias_list;
9798 	alias_list = al;
9799 	kmsan_unpoison_memory(al, sizeof(*al));
9800 	return 0;
9801 }
9802 
slab_sysfs_init(void)9803 static int __init slab_sysfs_init(void)
9804 {
9805 	struct kmem_cache *s;
9806 	int err;
9807 
9808 	mutex_lock(&slab_mutex);
9809 
9810 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9811 	if (!slab_kset) {
9812 		mutex_unlock(&slab_mutex);
9813 		pr_err("Cannot register slab subsystem.\n");
9814 		return -ENOMEM;
9815 	}
9816 
9817 	slab_state = FULL;
9818 
9819 	list_for_each_entry(s, &slab_caches, list) {
9820 		err = sysfs_slab_add(s);
9821 		if (err)
9822 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9823 			       s->name);
9824 	}
9825 
9826 	while (alias_list) {
9827 		struct saved_alias *al = alias_list;
9828 
9829 		alias_list = alias_list->next;
9830 		err = sysfs_slab_alias(al->s, al->name);
9831 		if (err)
9832 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9833 			       al->name);
9834 		kfree(al);
9835 	}
9836 
9837 	mutex_unlock(&slab_mutex);
9838 	return 0;
9839 }
9840 late_initcall(slab_sysfs_init);
9841 #endif /* SLAB_SUPPORTS_SYSFS */
9842 
9843 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)9844 static int slab_debugfs_show(struct seq_file *seq, void *v)
9845 {
9846 	struct loc_track *t = seq->private;
9847 	struct location *l;
9848 	unsigned long idx;
9849 
9850 	idx = (unsigned long) t->idx;
9851 	if (idx < t->count) {
9852 		l = &t->loc[idx];
9853 
9854 		seq_printf(seq, "%7ld ", l->count);
9855 
9856 		if (l->addr)
9857 			seq_printf(seq, "%pS", (void *)l->addr);
9858 		else
9859 			seq_puts(seq, "<not-available>");
9860 
9861 		if (l->waste)
9862 			seq_printf(seq, " waste=%lu/%lu",
9863 				l->count * l->waste, l->waste);
9864 
9865 		if (l->sum_time != l->min_time) {
9866 			seq_printf(seq, " age=%ld/%llu/%ld",
9867 				l->min_time, div_u64(l->sum_time, l->count),
9868 				l->max_time);
9869 		} else
9870 			seq_printf(seq, " age=%ld", l->min_time);
9871 
9872 		if (l->min_pid != l->max_pid)
9873 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9874 		else
9875 			seq_printf(seq, " pid=%ld",
9876 				l->min_pid);
9877 
9878 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9879 			seq_printf(seq, " cpus=%*pbl",
9880 				 cpumask_pr_args(to_cpumask(l->cpus)));
9881 
9882 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9883 			seq_printf(seq, " nodes=%*pbl",
9884 				 nodemask_pr_args(&l->nodes));
9885 
9886 #ifdef CONFIG_STACKDEPOT
9887 		{
9888 			depot_stack_handle_t handle;
9889 			unsigned long *entries;
9890 			unsigned int nr_entries, j;
9891 
9892 			handle = READ_ONCE(l->handle);
9893 			if (handle) {
9894 				nr_entries = stack_depot_fetch(handle, &entries);
9895 				seq_puts(seq, "\n");
9896 				for (j = 0; j < nr_entries; j++)
9897 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
9898 			}
9899 		}
9900 #endif
9901 		seq_puts(seq, "\n");
9902 	}
9903 
9904 	if (!idx && !t->count)
9905 		seq_puts(seq, "No data\n");
9906 
9907 	return 0;
9908 }
9909 
slab_debugfs_stop(struct seq_file * seq,void * v)9910 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9911 {
9912 }
9913 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)9914 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9915 {
9916 	struct loc_track *t = seq->private;
9917 
9918 	t->idx = ++(*ppos);
9919 	if (*ppos <= t->count)
9920 		return ppos;
9921 
9922 	return NULL;
9923 }
9924 
cmp_loc_by_count(const void * a,const void * b)9925 static int cmp_loc_by_count(const void *a, const void *b)
9926 {
9927 	struct location *loc1 = (struct location *)a;
9928 	struct location *loc2 = (struct location *)b;
9929 
9930 	return cmp_int(loc2->count, loc1->count);
9931 }
9932 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)9933 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9934 {
9935 	struct loc_track *t = seq->private;
9936 
9937 	t->idx = *ppos;
9938 	return ppos;
9939 }
9940 
9941 static const struct seq_operations slab_debugfs_sops = {
9942 	.start  = slab_debugfs_start,
9943 	.next   = slab_debugfs_next,
9944 	.stop   = slab_debugfs_stop,
9945 	.show   = slab_debugfs_show,
9946 };
9947 
slab_debug_trace_open(struct inode * inode,struct file * filep)9948 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9949 {
9950 
9951 	struct kmem_cache_node *n;
9952 	enum track_item alloc;
9953 	int node;
9954 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9955 						sizeof(struct loc_track));
9956 	struct kmem_cache *s = file_inode(filep)->i_private;
9957 	unsigned long *obj_map;
9958 
9959 	if (!t)
9960 		return -ENOMEM;
9961 
9962 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9963 	if (!obj_map) {
9964 		seq_release_private(inode, filep);
9965 		return -ENOMEM;
9966 	}
9967 
9968 	alloc = debugfs_get_aux_num(filep);
9969 
9970 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9971 		bitmap_free(obj_map);
9972 		seq_release_private(inode, filep);
9973 		return -ENOMEM;
9974 	}
9975 
9976 	for_each_kmem_cache_node(s, node, n) {
9977 		unsigned long flags;
9978 		struct slab *slab;
9979 
9980 		if (!node_nr_slabs(n))
9981 			continue;
9982 
9983 		spin_lock_irqsave(&n->list_lock, flags);
9984 		list_for_each_entry(slab, &n->partial, slab_list)
9985 			process_slab(t, s, slab, alloc, obj_map);
9986 		list_for_each_entry(slab, &n->full, slab_list)
9987 			process_slab(t, s, slab, alloc, obj_map);
9988 		spin_unlock_irqrestore(&n->list_lock, flags);
9989 	}
9990 
9991 	/* Sort locations by count */
9992 	sort(t->loc, t->count, sizeof(struct location),
9993 	     cmp_loc_by_count, NULL);
9994 
9995 	bitmap_free(obj_map);
9996 	return 0;
9997 }
9998 
slab_debug_trace_release(struct inode * inode,struct file * file)9999 static int slab_debug_trace_release(struct inode *inode, struct file *file)
10000 {
10001 	struct seq_file *seq = file->private_data;
10002 	struct loc_track *t = seq->private;
10003 
10004 	free_loc_track(t);
10005 	return seq_release_private(inode, file);
10006 }
10007 
10008 static const struct file_operations slab_debugfs_fops = {
10009 	.open    = slab_debug_trace_open,
10010 	.read    = seq_read,
10011 	.llseek  = seq_lseek,
10012 	.release = slab_debug_trace_release,
10013 };
10014 
debugfs_slab_add(struct kmem_cache * s)10015 static void debugfs_slab_add(struct kmem_cache *s)
10016 {
10017 	struct dentry *slab_cache_dir;
10018 
10019 	if (unlikely(!slab_debugfs_root))
10020 		return;
10021 
10022 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10023 
10024 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10025 					TRACK_ALLOC, &slab_debugfs_fops);
10026 
10027 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10028 					TRACK_FREE, &slab_debugfs_fops);
10029 }
10030 
debugfs_slab_release(struct kmem_cache * s)10031 void debugfs_slab_release(struct kmem_cache *s)
10032 {
10033 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10034 }
10035 
slab_debugfs_init(void)10036 static int __init slab_debugfs_init(void)
10037 {
10038 	struct kmem_cache *s;
10039 
10040 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
10041 
10042 	list_for_each_entry(s, &slab_caches, list)
10043 		if (s->flags & SLAB_STORE_USER)
10044 			debugfs_slab_add(s);
10045 
10046 	return 0;
10047 
10048 }
10049 __initcall(slab_debugfs_init);
10050 #endif
10051 /*
10052  * The /proc/slabinfo ABI
10053  */
10054 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)10055 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10056 {
10057 	unsigned long nr_slabs = 0;
10058 	unsigned long nr_objs = 0;
10059 	unsigned long nr_free = 0;
10060 	int node;
10061 	struct kmem_cache_node *n;
10062 
10063 	for_each_kmem_cache_node(s, node, n) {
10064 		nr_slabs += node_nr_slabs(n);
10065 		nr_objs += node_nr_objs(n);
10066 		nr_free += count_partial_free_approx(n);
10067 	}
10068 
10069 	sinfo->active_objs = nr_objs - nr_free;
10070 	sinfo->num_objs = nr_objs;
10071 	sinfo->active_slabs = nr_slabs;
10072 	sinfo->num_slabs = nr_slabs;
10073 	sinfo->objects_per_slab = oo_objects(s->oo);
10074 	sinfo->cache_order = oo_order(s->oo);
10075 }
10076 #endif /* CONFIG_SLUB_DEBUG */
10077