1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/vmalloc.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/kasan.h> 26 #include <linux/node.h> 27 #include <linux/kmsan.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/mempolicy.h> 31 #include <linux/ctype.h> 32 #include <linux/stackdepot.h> 33 #include <linux/debugobjects.h> 34 #include <linux/kallsyms.h> 35 #include <linux/kfence.h> 36 #include <linux/memory.h> 37 #include <linux/math64.h> 38 #include <linux/fault-inject.h> 39 #include <linux/kmemleak.h> 40 #include <linux/stacktrace.h> 41 #include <linux/prefetch.h> 42 #include <linux/memcontrol.h> 43 #include <linux/random.h> 44 #include <kunit/test.h> 45 #include <kunit/test-bug.h> 46 #include <linux/sort.h> 47 48 #include <linux/debugfs.h> 49 #include <trace/events/kmem.h> 50 51 #include "internal.h" 52 53 /* 54 * Lock order: 55 * 1. slab_mutex (Global Mutex) 56 * 2. node->list_lock (Spinlock) 57 * 3. kmem_cache->cpu_slab->lock (Local lock) 58 * 4. slab_lock(slab) (Only on some arches) 59 * 5. object_map_lock (Only for debugging) 60 * 61 * slab_mutex 62 * 63 * The role of the slab_mutex is to protect the list of all the slabs 64 * and to synchronize major metadata changes to slab cache structures. 65 * Also synchronizes memory hotplug callbacks. 66 * 67 * slab_lock 68 * 69 * The slab_lock is a wrapper around the page lock, thus it is a bit 70 * spinlock. 71 * 72 * The slab_lock is only used on arches that do not have the ability 73 * to do a cmpxchg_double. It only protects: 74 * 75 * A. slab->freelist -> List of free objects in a slab 76 * B. slab->inuse -> Number of objects in use 77 * C. slab->objects -> Number of objects in slab 78 * D. slab->frozen -> frozen state 79 * 80 * Frozen slabs 81 * 82 * If a slab is frozen then it is exempt from list management. It is 83 * the cpu slab which is actively allocated from by the processor that 84 * froze it and it is not on any list. The processor that froze the 85 * slab is the one who can perform list operations on the slab. Other 86 * processors may put objects onto the freelist but the processor that 87 * froze the slab is the only one that can retrieve the objects from the 88 * slab's freelist. 89 * 90 * CPU partial slabs 91 * 92 * The partially empty slabs cached on the CPU partial list are used 93 * for performance reasons, which speeds up the allocation process. 94 * These slabs are not frozen, but are also exempt from list management, 95 * by clearing the SL_partial flag when moving out of the node 96 * partial list. Please see __slab_free() for more details. 97 * 98 * To sum up, the current scheme is: 99 * - node partial slab: SL_partial && !frozen 100 * - cpu partial slab: !SL_partial && !frozen 101 * - cpu slab: !SL_partial && frozen 102 * - full slab: !SL_partial && !frozen 103 * 104 * list_lock 105 * 106 * The list_lock protects the partial and full list on each node and 107 * the partial slab counter. If taken then no new slabs may be added or 108 * removed from the lists nor make the number of partial slabs be modified. 109 * (Note that the total number of slabs is an atomic value that may be 110 * modified without taking the list lock). 111 * 112 * The list_lock is a centralized lock and thus we avoid taking it as 113 * much as possible. As long as SLUB does not have to handle partial 114 * slabs, operations can continue without any centralized lock. F.e. 115 * allocating a long series of objects that fill up slabs does not require 116 * the list lock. 117 * 118 * For debug caches, all allocations are forced to go through a list_lock 119 * protected region to serialize against concurrent validation. 120 * 121 * cpu_slab->lock local lock 122 * 123 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 124 * except the stat counters. This is a percpu structure manipulated only by 125 * the local cpu, so the lock protects against being preempted or interrupted 126 * by an irq. Fast path operations rely on lockless operations instead. 127 * 128 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 129 * which means the lockless fastpath cannot be used as it might interfere with 130 * an in-progress slow path operations. In this case the local lock is always 131 * taken but it still utilizes the freelist for the common operations. 132 * 133 * lockless fastpaths 134 * 135 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 136 * are fully lockless when satisfied from the percpu slab (and when 137 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 138 * They also don't disable preemption or migration or irqs. They rely on 139 * the transaction id (tid) field to detect being preempted or moved to 140 * another cpu. 141 * 142 * irq, preemption, migration considerations 143 * 144 * Interrupts are disabled as part of list_lock or local_lock operations, or 145 * around the slab_lock operation, in order to make the slab allocator safe 146 * to use in the context of an irq. 147 * 148 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 149 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 150 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 151 * doesn't have to be revalidated in each section protected by the local lock. 152 * 153 * SLUB assigns one slab for allocation to each processor. 154 * Allocations only occur from these slabs called cpu slabs. 155 * 156 * Slabs with free elements are kept on a partial list and during regular 157 * operations no list for full slabs is used. If an object in a full slab is 158 * freed then the slab will show up again on the partial lists. 159 * We track full slabs for debugging purposes though because otherwise we 160 * cannot scan all objects. 161 * 162 * Slabs are freed when they become empty. Teardown and setup is 163 * minimal so we rely on the page allocators per cpu caches for 164 * fast frees and allocs. 165 * 166 * slab->frozen The slab is frozen and exempt from list processing. 167 * This means that the slab is dedicated to a purpose 168 * such as satisfying allocations for a specific 169 * processor. Objects may be freed in the slab while 170 * it is frozen but slab_free will then skip the usual 171 * list operations. It is up to the processor holding 172 * the slab to integrate the slab into the slab lists 173 * when the slab is no longer needed. 174 * 175 * One use of this flag is to mark slabs that are 176 * used for allocations. Then such a slab becomes a cpu 177 * slab. The cpu slab may be equipped with an additional 178 * freelist that allows lockless access to 179 * free objects in addition to the regular freelist 180 * that requires the slab lock. 181 * 182 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 183 * options set. This moves slab handling out of 184 * the fast path and disables lockless freelists. 185 */ 186 187 /** 188 * enum slab_flags - How the slab flags bits are used. 189 * @SL_locked: Is locked with slab_lock() 190 * @SL_partial: On the per-node partial list 191 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves 192 * 193 * The slab flags share space with the page flags but some bits have 194 * different interpretations. The high bits are used for information 195 * like zone/node/section. 196 */ 197 enum slab_flags { 198 SL_locked = PG_locked, 199 SL_partial = PG_workingset, /* Historical reasons for this bit */ 200 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */ 201 }; 202 203 /* 204 * We could simply use migrate_disable()/enable() but as long as it's a 205 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 206 */ 207 #ifndef CONFIG_PREEMPT_RT 208 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 209 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 210 #define USE_LOCKLESS_FAST_PATH() (true) 211 #else 212 #define slub_get_cpu_ptr(var) \ 213 ({ \ 214 migrate_disable(); \ 215 this_cpu_ptr(var); \ 216 }) 217 #define slub_put_cpu_ptr(var) \ 218 do { \ 219 (void)(var); \ 220 migrate_enable(); \ 221 } while (0) 222 #define USE_LOCKLESS_FAST_PATH() (false) 223 #endif 224 225 #ifndef CONFIG_SLUB_TINY 226 #define __fastpath_inline __always_inline 227 #else 228 #define __fastpath_inline 229 #endif 230 231 #ifdef CONFIG_SLUB_DEBUG 232 #ifdef CONFIG_SLUB_DEBUG_ON 233 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 234 #else 235 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 236 #endif 237 #endif /* CONFIG_SLUB_DEBUG */ 238 239 #ifdef CONFIG_NUMA 240 static DEFINE_STATIC_KEY_FALSE(strict_numa); 241 #endif 242 243 /* Structure holding parameters for get_partial() call chain */ 244 struct partial_context { 245 gfp_t flags; 246 unsigned int orig_size; 247 void *object; 248 }; 249 250 static inline bool kmem_cache_debug(struct kmem_cache *s) 251 { 252 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 253 } 254 255 void *fixup_red_left(struct kmem_cache *s, void *p) 256 { 257 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 258 p += s->red_left_pad; 259 260 return p; 261 } 262 263 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 264 { 265 #ifdef CONFIG_SLUB_CPU_PARTIAL 266 return !kmem_cache_debug(s); 267 #else 268 return false; 269 #endif 270 } 271 272 /* 273 * Issues still to be resolved: 274 * 275 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 276 * 277 * - Variable sizing of the per node arrays 278 */ 279 280 /* Enable to log cmpxchg failures */ 281 #undef SLUB_DEBUG_CMPXCHG 282 283 #ifndef CONFIG_SLUB_TINY 284 /* 285 * Minimum number of partial slabs. These will be left on the partial 286 * lists even if they are empty. kmem_cache_shrink may reclaim them. 287 */ 288 #define MIN_PARTIAL 5 289 290 /* 291 * Maximum number of desirable partial slabs. 292 * The existence of more partial slabs makes kmem_cache_shrink 293 * sort the partial list by the number of objects in use. 294 */ 295 #define MAX_PARTIAL 10 296 #else 297 #define MIN_PARTIAL 0 298 #define MAX_PARTIAL 0 299 #endif 300 301 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 302 SLAB_POISON | SLAB_STORE_USER) 303 304 /* 305 * These debug flags cannot use CMPXCHG because there might be consistency 306 * issues when checking or reading debug information 307 */ 308 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 309 SLAB_TRACE) 310 311 312 /* 313 * Debugging flags that require metadata to be stored in the slab. These get 314 * disabled when slab_debug=O is used and a cache's min order increases with 315 * metadata. 316 */ 317 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 318 319 #define OO_SHIFT 16 320 #define OO_MASK ((1 << OO_SHIFT) - 1) 321 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 322 323 /* Internal SLUB flags */ 324 /* Poison object */ 325 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 326 /* Use cmpxchg_double */ 327 328 #ifdef system_has_freelist_aba 329 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 330 #else 331 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 332 #endif 333 334 /* 335 * Tracking user of a slab. 336 */ 337 #define TRACK_ADDRS_COUNT 16 338 struct track { 339 unsigned long addr; /* Called from address */ 340 #ifdef CONFIG_STACKDEPOT 341 depot_stack_handle_t handle; 342 #endif 343 int cpu; /* Was running on cpu */ 344 int pid; /* Pid context */ 345 unsigned long when; /* When did the operation occur */ 346 }; 347 348 enum track_item { TRACK_ALLOC, TRACK_FREE }; 349 350 #ifdef SLAB_SUPPORTS_SYSFS 351 static int sysfs_slab_add(struct kmem_cache *); 352 static int sysfs_slab_alias(struct kmem_cache *, const char *); 353 #else 354 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 355 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 356 { return 0; } 357 #endif 358 359 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 360 static void debugfs_slab_add(struct kmem_cache *); 361 #else 362 static inline void debugfs_slab_add(struct kmem_cache *s) { } 363 #endif 364 365 enum stat_item { 366 ALLOC_FASTPATH, /* Allocation from cpu slab */ 367 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 368 FREE_FASTPATH, /* Free to cpu slab */ 369 FREE_SLOWPATH, /* Freeing not to cpu slab */ 370 FREE_FROZEN, /* Freeing to frozen slab */ 371 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 372 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 373 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 374 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 375 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 376 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 377 FREE_SLAB, /* Slab freed to the page allocator */ 378 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 379 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 380 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 381 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 382 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 383 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 384 DEACTIVATE_BYPASS, /* Implicit deactivation */ 385 ORDER_FALLBACK, /* Number of times fallback was necessary */ 386 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 387 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 388 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 389 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 390 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 391 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 392 NR_SLUB_STAT_ITEMS 393 }; 394 395 #ifndef CONFIG_SLUB_TINY 396 /* 397 * When changing the layout, make sure freelist and tid are still compatible 398 * with this_cpu_cmpxchg_double() alignment requirements. 399 */ 400 struct kmem_cache_cpu { 401 union { 402 struct { 403 void **freelist; /* Pointer to next available object */ 404 unsigned long tid; /* Globally unique transaction id */ 405 }; 406 freelist_aba_t freelist_tid; 407 }; 408 struct slab *slab; /* The slab from which we are allocating */ 409 #ifdef CONFIG_SLUB_CPU_PARTIAL 410 struct slab *partial; /* Partially allocated slabs */ 411 #endif 412 local_lock_t lock; /* Protects the fields above */ 413 #ifdef CONFIG_SLUB_STATS 414 unsigned int stat[NR_SLUB_STAT_ITEMS]; 415 #endif 416 }; 417 #endif /* CONFIG_SLUB_TINY */ 418 419 static inline void stat(const struct kmem_cache *s, enum stat_item si) 420 { 421 #ifdef CONFIG_SLUB_STATS 422 /* 423 * The rmw is racy on a preemptible kernel but this is acceptable, so 424 * avoid this_cpu_add()'s irq-disable overhead. 425 */ 426 raw_cpu_inc(s->cpu_slab->stat[si]); 427 #endif 428 } 429 430 static inline 431 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 432 { 433 #ifdef CONFIG_SLUB_STATS 434 raw_cpu_add(s->cpu_slab->stat[si], v); 435 #endif 436 } 437 438 /* 439 * The slab lists for all objects. 440 */ 441 struct kmem_cache_node { 442 spinlock_t list_lock; 443 unsigned long nr_partial; 444 struct list_head partial; 445 #ifdef CONFIG_SLUB_DEBUG 446 atomic_long_t nr_slabs; 447 atomic_long_t total_objects; 448 struct list_head full; 449 #endif 450 }; 451 452 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 453 { 454 return s->node[node]; 455 } 456 457 /* 458 * Iterator over all nodes. The body will be executed for each node that has 459 * a kmem_cache_node structure allocated (which is true for all online nodes) 460 */ 461 #define for_each_kmem_cache_node(__s, __node, __n) \ 462 for (__node = 0; __node < nr_node_ids; __node++) \ 463 if ((__n = get_node(__s, __node))) 464 465 /* 466 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 467 * Corresponds to node_state[N_MEMORY], but can temporarily 468 * differ during memory hotplug/hotremove operations. 469 * Protected by slab_mutex. 470 */ 471 static nodemask_t slab_nodes; 472 473 #ifndef CONFIG_SLUB_TINY 474 /* 475 * Workqueue used for flush_cpu_slab(). 476 */ 477 static struct workqueue_struct *flushwq; 478 #endif 479 480 /******************************************************************** 481 * Core slab cache functions 482 *******************************************************************/ 483 484 /* 485 * Returns freelist pointer (ptr). With hardening, this is obfuscated 486 * with an XOR of the address where the pointer is held and a per-cache 487 * random number. 488 */ 489 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 490 void *ptr, unsigned long ptr_addr) 491 { 492 unsigned long encoded; 493 494 #ifdef CONFIG_SLAB_FREELIST_HARDENED 495 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 496 #else 497 encoded = (unsigned long)ptr; 498 #endif 499 return (freeptr_t){.v = encoded}; 500 } 501 502 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 503 freeptr_t ptr, unsigned long ptr_addr) 504 { 505 void *decoded; 506 507 #ifdef CONFIG_SLAB_FREELIST_HARDENED 508 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 509 #else 510 decoded = (void *)ptr.v; 511 #endif 512 return decoded; 513 } 514 515 static inline void *get_freepointer(struct kmem_cache *s, void *object) 516 { 517 unsigned long ptr_addr; 518 freeptr_t p; 519 520 object = kasan_reset_tag(object); 521 ptr_addr = (unsigned long)object + s->offset; 522 p = *(freeptr_t *)(ptr_addr); 523 return freelist_ptr_decode(s, p, ptr_addr); 524 } 525 526 #ifndef CONFIG_SLUB_TINY 527 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 528 { 529 prefetchw(object + s->offset); 530 } 531 #endif 532 533 /* 534 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 535 * pointer value in the case the current thread loses the race for the next 536 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 537 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 538 * KMSAN will still check all arguments of cmpxchg because of imperfect 539 * handling of inline assembly. 540 * To work around this problem, we apply __no_kmsan_checks to ensure that 541 * get_freepointer_safe() returns initialized memory. 542 */ 543 __no_kmsan_checks 544 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 545 { 546 unsigned long freepointer_addr; 547 freeptr_t p; 548 549 if (!debug_pagealloc_enabled_static()) 550 return get_freepointer(s, object); 551 552 object = kasan_reset_tag(object); 553 freepointer_addr = (unsigned long)object + s->offset; 554 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 555 return freelist_ptr_decode(s, p, freepointer_addr); 556 } 557 558 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 559 { 560 unsigned long freeptr_addr = (unsigned long)object + s->offset; 561 562 #ifdef CONFIG_SLAB_FREELIST_HARDENED 563 BUG_ON(object == fp); /* naive detection of double free or corruption */ 564 #endif 565 566 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 567 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 568 } 569 570 /* 571 * See comment in calculate_sizes(). 572 */ 573 static inline bool freeptr_outside_object(struct kmem_cache *s) 574 { 575 return s->offset >= s->inuse; 576 } 577 578 /* 579 * Return offset of the end of info block which is inuse + free pointer if 580 * not overlapping with object. 581 */ 582 static inline unsigned int get_info_end(struct kmem_cache *s) 583 { 584 if (freeptr_outside_object(s)) 585 return s->inuse + sizeof(void *); 586 else 587 return s->inuse; 588 } 589 590 /* Loop over all objects in a slab */ 591 #define for_each_object(__p, __s, __addr, __objects) \ 592 for (__p = fixup_red_left(__s, __addr); \ 593 __p < (__addr) + (__objects) * (__s)->size; \ 594 __p += (__s)->size) 595 596 static inline unsigned int order_objects(unsigned int order, unsigned int size) 597 { 598 return ((unsigned int)PAGE_SIZE << order) / size; 599 } 600 601 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 602 unsigned int size) 603 { 604 struct kmem_cache_order_objects x = { 605 (order << OO_SHIFT) + order_objects(order, size) 606 }; 607 608 return x; 609 } 610 611 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 612 { 613 return x.x >> OO_SHIFT; 614 } 615 616 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 617 { 618 return x.x & OO_MASK; 619 } 620 621 #ifdef CONFIG_SLUB_CPU_PARTIAL 622 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 623 { 624 unsigned int nr_slabs; 625 626 s->cpu_partial = nr_objects; 627 628 /* 629 * We take the number of objects but actually limit the number of 630 * slabs on the per cpu partial list, in order to limit excessive 631 * growth of the list. For simplicity we assume that the slabs will 632 * be half-full. 633 */ 634 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 635 s->cpu_partial_slabs = nr_slabs; 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return s->cpu_partial_slabs; 641 } 642 #else 643 static inline void 644 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 645 { 646 } 647 648 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 649 { 650 return 0; 651 } 652 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 653 654 /* 655 * If network-based swap is enabled, slub must keep track of whether memory 656 * were allocated from pfmemalloc reserves. 657 */ 658 static inline bool slab_test_pfmemalloc(const struct slab *slab) 659 { 660 return test_bit(SL_pfmemalloc, &slab->flags); 661 } 662 663 static inline void slab_set_pfmemalloc(struct slab *slab) 664 { 665 set_bit(SL_pfmemalloc, &slab->flags); 666 } 667 668 static inline void __slab_clear_pfmemalloc(struct slab *slab) 669 { 670 __clear_bit(SL_pfmemalloc, &slab->flags); 671 } 672 673 /* 674 * Per slab locking using the pagelock 675 */ 676 static __always_inline void slab_lock(struct slab *slab) 677 { 678 bit_spin_lock(SL_locked, &slab->flags); 679 } 680 681 static __always_inline void slab_unlock(struct slab *slab) 682 { 683 bit_spin_unlock(SL_locked, &slab->flags); 684 } 685 686 static inline bool 687 __update_freelist_fast(struct slab *slab, 688 void *freelist_old, unsigned long counters_old, 689 void *freelist_new, unsigned long counters_new) 690 { 691 #ifdef system_has_freelist_aba 692 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 693 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 694 695 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 696 #else 697 return false; 698 #endif 699 } 700 701 static inline bool 702 __update_freelist_slow(struct slab *slab, 703 void *freelist_old, unsigned long counters_old, 704 void *freelist_new, unsigned long counters_new) 705 { 706 bool ret = false; 707 708 slab_lock(slab); 709 if (slab->freelist == freelist_old && 710 slab->counters == counters_old) { 711 slab->freelist = freelist_new; 712 slab->counters = counters_new; 713 ret = true; 714 } 715 slab_unlock(slab); 716 717 return ret; 718 } 719 720 /* 721 * Interrupts must be disabled (for the fallback code to work right), typically 722 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 723 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 724 * allocation/ free operation in hardirq context. Therefore nothing can 725 * interrupt the operation. 726 */ 727 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 728 void *freelist_old, unsigned long counters_old, 729 void *freelist_new, unsigned long counters_new, 730 const char *n) 731 { 732 bool ret; 733 734 if (USE_LOCKLESS_FAST_PATH()) 735 lockdep_assert_irqs_disabled(); 736 737 if (s->flags & __CMPXCHG_DOUBLE) { 738 ret = __update_freelist_fast(slab, freelist_old, counters_old, 739 freelist_new, counters_new); 740 } else { 741 ret = __update_freelist_slow(slab, freelist_old, counters_old, 742 freelist_new, counters_new); 743 } 744 if (likely(ret)) 745 return true; 746 747 cpu_relax(); 748 stat(s, CMPXCHG_DOUBLE_FAIL); 749 750 #ifdef SLUB_DEBUG_CMPXCHG 751 pr_info("%s %s: cmpxchg double redo ", n, s->name); 752 #endif 753 754 return false; 755 } 756 757 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 758 void *freelist_old, unsigned long counters_old, 759 void *freelist_new, unsigned long counters_new, 760 const char *n) 761 { 762 bool ret; 763 764 if (s->flags & __CMPXCHG_DOUBLE) { 765 ret = __update_freelist_fast(slab, freelist_old, counters_old, 766 freelist_new, counters_new); 767 } else { 768 unsigned long flags; 769 770 local_irq_save(flags); 771 ret = __update_freelist_slow(slab, freelist_old, counters_old, 772 freelist_new, counters_new); 773 local_irq_restore(flags); 774 } 775 if (likely(ret)) 776 return true; 777 778 cpu_relax(); 779 stat(s, CMPXCHG_DOUBLE_FAIL); 780 781 #ifdef SLUB_DEBUG_CMPXCHG 782 pr_info("%s %s: cmpxchg double redo ", n, s->name); 783 #endif 784 785 return false; 786 } 787 788 /* 789 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 790 * family will round up the real request size to these fixed ones, so 791 * there could be an extra area than what is requested. Save the original 792 * request size in the meta data area, for better debug and sanity check. 793 */ 794 static inline void set_orig_size(struct kmem_cache *s, 795 void *object, unsigned int orig_size) 796 { 797 void *p = kasan_reset_tag(object); 798 799 if (!slub_debug_orig_size(s)) 800 return; 801 802 p += get_info_end(s); 803 p += sizeof(struct track) * 2; 804 805 *(unsigned int *)p = orig_size; 806 } 807 808 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 809 { 810 void *p = kasan_reset_tag(object); 811 812 if (is_kfence_address(object)) 813 return kfence_ksize(object); 814 815 if (!slub_debug_orig_size(s)) 816 return s->object_size; 817 818 p += get_info_end(s); 819 p += sizeof(struct track) * 2; 820 821 return *(unsigned int *)p; 822 } 823 824 #ifdef CONFIG_SLUB_DEBUG 825 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 826 static DEFINE_SPINLOCK(object_map_lock); 827 828 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 829 struct slab *slab) 830 { 831 void *addr = slab_address(slab); 832 void *p; 833 834 bitmap_zero(obj_map, slab->objects); 835 836 for (p = slab->freelist; p; p = get_freepointer(s, p)) 837 set_bit(__obj_to_index(s, addr, p), obj_map); 838 } 839 840 #if IS_ENABLED(CONFIG_KUNIT) 841 static bool slab_add_kunit_errors(void) 842 { 843 struct kunit_resource *resource; 844 845 if (!kunit_get_current_test()) 846 return false; 847 848 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 849 if (!resource) 850 return false; 851 852 (*(int *)resource->data)++; 853 kunit_put_resource(resource); 854 return true; 855 } 856 857 bool slab_in_kunit_test(void) 858 { 859 struct kunit_resource *resource; 860 861 if (!kunit_get_current_test()) 862 return false; 863 864 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 865 if (!resource) 866 return false; 867 868 kunit_put_resource(resource); 869 return true; 870 } 871 #else 872 static inline bool slab_add_kunit_errors(void) { return false; } 873 #endif 874 875 static inline unsigned int size_from_object(struct kmem_cache *s) 876 { 877 if (s->flags & SLAB_RED_ZONE) 878 return s->size - s->red_left_pad; 879 880 return s->size; 881 } 882 883 static inline void *restore_red_left(struct kmem_cache *s, void *p) 884 { 885 if (s->flags & SLAB_RED_ZONE) 886 p -= s->red_left_pad; 887 888 return p; 889 } 890 891 /* 892 * Debug settings: 893 */ 894 #if defined(CONFIG_SLUB_DEBUG_ON) 895 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 896 #else 897 static slab_flags_t slub_debug; 898 #endif 899 900 static char *slub_debug_string; 901 static int disable_higher_order_debug; 902 903 /* 904 * slub is about to manipulate internal object metadata. This memory lies 905 * outside the range of the allocated object, so accessing it would normally 906 * be reported by kasan as a bounds error. metadata_access_enable() is used 907 * to tell kasan that these accesses are OK. 908 */ 909 static inline void metadata_access_enable(void) 910 { 911 kasan_disable_current(); 912 kmsan_disable_current(); 913 } 914 915 static inline void metadata_access_disable(void) 916 { 917 kmsan_enable_current(); 918 kasan_enable_current(); 919 } 920 921 /* 922 * Object debugging 923 */ 924 925 /* Verify that a pointer has an address that is valid within a slab page */ 926 static inline int check_valid_pointer(struct kmem_cache *s, 927 struct slab *slab, void *object) 928 { 929 void *base; 930 931 if (!object) 932 return 1; 933 934 base = slab_address(slab); 935 object = kasan_reset_tag(object); 936 object = restore_red_left(s, object); 937 if (object < base || object >= base + slab->objects * s->size || 938 (object - base) % s->size) { 939 return 0; 940 } 941 942 return 1; 943 } 944 945 static void print_section(char *level, char *text, u8 *addr, 946 unsigned int length) 947 { 948 metadata_access_enable(); 949 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 950 16, 1, kasan_reset_tag((void *)addr), length, 1); 951 metadata_access_disable(); 952 } 953 954 static struct track *get_track(struct kmem_cache *s, void *object, 955 enum track_item alloc) 956 { 957 struct track *p; 958 959 p = object + get_info_end(s); 960 961 return kasan_reset_tag(p + alloc); 962 } 963 964 #ifdef CONFIG_STACKDEPOT 965 static noinline depot_stack_handle_t set_track_prepare(void) 966 { 967 depot_stack_handle_t handle; 968 unsigned long entries[TRACK_ADDRS_COUNT]; 969 unsigned int nr_entries; 970 971 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 972 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 973 974 return handle; 975 } 976 #else 977 static inline depot_stack_handle_t set_track_prepare(void) 978 { 979 return 0; 980 } 981 #endif 982 983 static void set_track_update(struct kmem_cache *s, void *object, 984 enum track_item alloc, unsigned long addr, 985 depot_stack_handle_t handle) 986 { 987 struct track *p = get_track(s, object, alloc); 988 989 #ifdef CONFIG_STACKDEPOT 990 p->handle = handle; 991 #endif 992 p->addr = addr; 993 p->cpu = smp_processor_id(); 994 p->pid = current->pid; 995 p->when = jiffies; 996 } 997 998 static __always_inline void set_track(struct kmem_cache *s, void *object, 999 enum track_item alloc, unsigned long addr) 1000 { 1001 depot_stack_handle_t handle = set_track_prepare(); 1002 1003 set_track_update(s, object, alloc, addr, handle); 1004 } 1005 1006 static void init_tracking(struct kmem_cache *s, void *object) 1007 { 1008 struct track *p; 1009 1010 if (!(s->flags & SLAB_STORE_USER)) 1011 return; 1012 1013 p = get_track(s, object, TRACK_ALLOC); 1014 memset(p, 0, 2*sizeof(struct track)); 1015 } 1016 1017 static void print_track(const char *s, struct track *t, unsigned long pr_time) 1018 { 1019 depot_stack_handle_t handle __maybe_unused; 1020 1021 if (!t->addr) 1022 return; 1023 1024 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 1025 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 1026 #ifdef CONFIG_STACKDEPOT 1027 handle = READ_ONCE(t->handle); 1028 if (handle) 1029 stack_depot_print(handle); 1030 else 1031 pr_err("object allocation/free stack trace missing\n"); 1032 #endif 1033 } 1034 1035 void print_tracking(struct kmem_cache *s, void *object) 1036 { 1037 unsigned long pr_time = jiffies; 1038 if (!(s->flags & SLAB_STORE_USER)) 1039 return; 1040 1041 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1042 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1043 } 1044 1045 static void print_slab_info(const struct slab *slab) 1046 { 1047 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1048 slab, slab->objects, slab->inuse, slab->freelist, 1049 &slab->flags); 1050 } 1051 1052 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1053 { 1054 set_orig_size(s, (void *)object, s->object_size); 1055 } 1056 1057 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1058 { 1059 struct va_format vaf; 1060 va_list args; 1061 1062 va_copy(args, argsp); 1063 vaf.fmt = fmt; 1064 vaf.va = &args; 1065 pr_err("=============================================================================\n"); 1066 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1067 pr_err("-----------------------------------------------------------------------------\n\n"); 1068 va_end(args); 1069 } 1070 1071 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1072 { 1073 va_list args; 1074 1075 va_start(args, fmt); 1076 __slab_bug(s, fmt, args); 1077 va_end(args); 1078 } 1079 1080 __printf(2, 3) 1081 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1082 { 1083 struct va_format vaf; 1084 va_list args; 1085 1086 if (slab_add_kunit_errors()) 1087 return; 1088 1089 va_start(args, fmt); 1090 vaf.fmt = fmt; 1091 vaf.va = &args; 1092 pr_err("FIX %s: %pV\n", s->name, &vaf); 1093 va_end(args); 1094 } 1095 1096 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1097 { 1098 unsigned int off; /* Offset of last byte */ 1099 u8 *addr = slab_address(slab); 1100 1101 print_tracking(s, p); 1102 1103 print_slab_info(slab); 1104 1105 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1106 p, p - addr, get_freepointer(s, p)); 1107 1108 if (s->flags & SLAB_RED_ZONE) 1109 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1110 s->red_left_pad); 1111 else if (p > addr + 16) 1112 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1113 1114 print_section(KERN_ERR, "Object ", p, 1115 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1116 if (s->flags & SLAB_RED_ZONE) 1117 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1118 s->inuse - s->object_size); 1119 1120 off = get_info_end(s); 1121 1122 if (s->flags & SLAB_STORE_USER) 1123 off += 2 * sizeof(struct track); 1124 1125 if (slub_debug_orig_size(s)) 1126 off += sizeof(unsigned int); 1127 1128 off += kasan_metadata_size(s, false); 1129 1130 if (off != size_from_object(s)) 1131 /* Beginning of the filler is the free pointer */ 1132 print_section(KERN_ERR, "Padding ", p + off, 1133 size_from_object(s) - off); 1134 } 1135 1136 static void object_err(struct kmem_cache *s, struct slab *slab, 1137 u8 *object, const char *reason) 1138 { 1139 if (slab_add_kunit_errors()) 1140 return; 1141 1142 slab_bug(s, reason); 1143 print_trailer(s, slab, object); 1144 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1145 1146 WARN_ON(1); 1147 } 1148 1149 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1150 void **freelist, void *nextfree) 1151 { 1152 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1153 !check_valid_pointer(s, slab, nextfree) && freelist) { 1154 object_err(s, slab, *freelist, "Freechain corrupt"); 1155 *freelist = NULL; 1156 slab_fix(s, "Isolate corrupted freechain"); 1157 return true; 1158 } 1159 1160 return false; 1161 } 1162 1163 static void __slab_err(struct slab *slab) 1164 { 1165 if (slab_in_kunit_test()) 1166 return; 1167 1168 print_slab_info(slab); 1169 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1170 1171 WARN_ON(1); 1172 } 1173 1174 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1175 const char *fmt, ...) 1176 { 1177 va_list args; 1178 1179 if (slab_add_kunit_errors()) 1180 return; 1181 1182 va_start(args, fmt); 1183 __slab_bug(s, fmt, args); 1184 va_end(args); 1185 1186 __slab_err(slab); 1187 } 1188 1189 static void init_object(struct kmem_cache *s, void *object, u8 val) 1190 { 1191 u8 *p = kasan_reset_tag(object); 1192 unsigned int poison_size = s->object_size; 1193 1194 if (s->flags & SLAB_RED_ZONE) { 1195 /* 1196 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1197 * the shadow makes it possible to distinguish uninit-value 1198 * from use-after-free. 1199 */ 1200 memset_no_sanitize_memory(p - s->red_left_pad, val, 1201 s->red_left_pad); 1202 1203 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1204 /* 1205 * Redzone the extra allocated space by kmalloc than 1206 * requested, and the poison size will be limited to 1207 * the original request size accordingly. 1208 */ 1209 poison_size = get_orig_size(s, object); 1210 } 1211 } 1212 1213 if (s->flags & __OBJECT_POISON) { 1214 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1215 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1216 } 1217 1218 if (s->flags & SLAB_RED_ZONE) 1219 memset_no_sanitize_memory(p + poison_size, val, 1220 s->inuse - poison_size); 1221 } 1222 1223 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1224 void *from, void *to) 1225 { 1226 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1227 memset(from, data, to - from); 1228 } 1229 1230 #ifdef CONFIG_KMSAN 1231 #define pad_check_attributes noinline __no_kmsan_checks 1232 #else 1233 #define pad_check_attributes 1234 #endif 1235 1236 static pad_check_attributes int 1237 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1238 u8 *object, const char *what, u8 *start, unsigned int value, 1239 unsigned int bytes, bool slab_obj_print) 1240 { 1241 u8 *fault; 1242 u8 *end; 1243 u8 *addr = slab_address(slab); 1244 1245 metadata_access_enable(); 1246 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1247 metadata_access_disable(); 1248 if (!fault) 1249 return 1; 1250 1251 end = start + bytes; 1252 while (end > fault && end[-1] == value) 1253 end--; 1254 1255 if (slab_add_kunit_errors()) 1256 goto skip_bug_print; 1257 1258 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1259 what, fault, end - 1, fault - addr, fault[0], value); 1260 1261 if (slab_obj_print) 1262 object_err(s, slab, object, "Object corrupt"); 1263 1264 skip_bug_print: 1265 restore_bytes(s, what, value, fault, end); 1266 return 0; 1267 } 1268 1269 /* 1270 * Object layout: 1271 * 1272 * object address 1273 * Bytes of the object to be managed. 1274 * If the freepointer may overlay the object then the free 1275 * pointer is at the middle of the object. 1276 * 1277 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1278 * 0xa5 (POISON_END) 1279 * 1280 * object + s->object_size 1281 * Padding to reach word boundary. This is also used for Redzoning. 1282 * Padding is extended by another word if Redzoning is enabled and 1283 * object_size == inuse. 1284 * 1285 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1286 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1287 * 1288 * object + s->inuse 1289 * Meta data starts here. 1290 * 1291 * A. Free pointer (if we cannot overwrite object on free) 1292 * B. Tracking data for SLAB_STORE_USER 1293 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1294 * D. Padding to reach required alignment boundary or at minimum 1295 * one word if debugging is on to be able to detect writes 1296 * before the word boundary. 1297 * 1298 * Padding is done using 0x5a (POISON_INUSE) 1299 * 1300 * object + s->size 1301 * Nothing is used beyond s->size. 1302 * 1303 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1304 * ignored. And therefore no slab options that rely on these boundaries 1305 * may be used with merged slabcaches. 1306 */ 1307 1308 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1309 { 1310 unsigned long off = get_info_end(s); /* The end of info */ 1311 1312 if (s->flags & SLAB_STORE_USER) { 1313 /* We also have user information there */ 1314 off += 2 * sizeof(struct track); 1315 1316 if (s->flags & SLAB_KMALLOC) 1317 off += sizeof(unsigned int); 1318 } 1319 1320 off += kasan_metadata_size(s, false); 1321 1322 if (size_from_object(s) == off) 1323 return 1; 1324 1325 return check_bytes_and_report(s, slab, p, "Object padding", 1326 p + off, POISON_INUSE, size_from_object(s) - off, true); 1327 } 1328 1329 /* Check the pad bytes at the end of a slab page */ 1330 static pad_check_attributes void 1331 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1332 { 1333 u8 *start; 1334 u8 *fault; 1335 u8 *end; 1336 u8 *pad; 1337 int length; 1338 int remainder; 1339 1340 if (!(s->flags & SLAB_POISON)) 1341 return; 1342 1343 start = slab_address(slab); 1344 length = slab_size(slab); 1345 end = start + length; 1346 remainder = length % s->size; 1347 if (!remainder) 1348 return; 1349 1350 pad = end - remainder; 1351 metadata_access_enable(); 1352 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1353 metadata_access_disable(); 1354 if (!fault) 1355 return; 1356 while (end > fault && end[-1] == POISON_INUSE) 1357 end--; 1358 1359 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1360 fault, end - 1, fault - start); 1361 print_section(KERN_ERR, "Padding ", pad, remainder); 1362 __slab_err(slab); 1363 1364 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1365 } 1366 1367 static int check_object(struct kmem_cache *s, struct slab *slab, 1368 void *object, u8 val) 1369 { 1370 u8 *p = object; 1371 u8 *endobject = object + s->object_size; 1372 unsigned int orig_size, kasan_meta_size; 1373 int ret = 1; 1374 1375 if (s->flags & SLAB_RED_ZONE) { 1376 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1377 object - s->red_left_pad, val, s->red_left_pad, ret)) 1378 ret = 0; 1379 1380 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1381 endobject, val, s->inuse - s->object_size, ret)) 1382 ret = 0; 1383 1384 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1385 orig_size = get_orig_size(s, object); 1386 1387 if (s->object_size > orig_size && 1388 !check_bytes_and_report(s, slab, object, 1389 "kmalloc Redzone", p + orig_size, 1390 val, s->object_size - orig_size, ret)) { 1391 ret = 0; 1392 } 1393 } 1394 } else { 1395 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1396 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1397 endobject, POISON_INUSE, 1398 s->inuse - s->object_size, ret)) 1399 ret = 0; 1400 } 1401 } 1402 1403 if (s->flags & SLAB_POISON) { 1404 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1405 /* 1406 * KASAN can save its free meta data inside of the 1407 * object at offset 0. Thus, skip checking the part of 1408 * the redzone that overlaps with the meta data. 1409 */ 1410 kasan_meta_size = kasan_metadata_size(s, true); 1411 if (kasan_meta_size < s->object_size - 1 && 1412 !check_bytes_and_report(s, slab, p, "Poison", 1413 p + kasan_meta_size, POISON_FREE, 1414 s->object_size - kasan_meta_size - 1, ret)) 1415 ret = 0; 1416 if (kasan_meta_size < s->object_size && 1417 !check_bytes_and_report(s, slab, p, "End Poison", 1418 p + s->object_size - 1, POISON_END, 1, ret)) 1419 ret = 0; 1420 } 1421 /* 1422 * check_pad_bytes cleans up on its own. 1423 */ 1424 if (!check_pad_bytes(s, slab, p)) 1425 ret = 0; 1426 } 1427 1428 /* 1429 * Cannot check freepointer while object is allocated if 1430 * object and freepointer overlap. 1431 */ 1432 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1433 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1434 object_err(s, slab, p, "Freepointer corrupt"); 1435 /* 1436 * No choice but to zap it and thus lose the remainder 1437 * of the free objects in this slab. May cause 1438 * another error because the object count is now wrong. 1439 */ 1440 set_freepointer(s, p, NULL); 1441 ret = 0; 1442 } 1443 1444 return ret; 1445 } 1446 1447 static int check_slab(struct kmem_cache *s, struct slab *slab) 1448 { 1449 int maxobj; 1450 1451 if (!folio_test_slab(slab_folio(slab))) { 1452 slab_err(s, slab, "Not a valid slab page"); 1453 return 0; 1454 } 1455 1456 maxobj = order_objects(slab_order(slab), s->size); 1457 if (slab->objects > maxobj) { 1458 slab_err(s, slab, "objects %u > max %u", 1459 slab->objects, maxobj); 1460 return 0; 1461 } 1462 if (slab->inuse > slab->objects) { 1463 slab_err(s, slab, "inuse %u > max %u", 1464 slab->inuse, slab->objects); 1465 return 0; 1466 } 1467 if (slab->frozen) { 1468 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1469 return 0; 1470 } 1471 1472 /* Slab_pad_check fixes things up after itself */ 1473 slab_pad_check(s, slab); 1474 return 1; 1475 } 1476 1477 /* 1478 * Determine if a certain object in a slab is on the freelist. Must hold the 1479 * slab lock to guarantee that the chains are in a consistent state. 1480 */ 1481 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1482 { 1483 int nr = 0; 1484 void *fp; 1485 void *object = NULL; 1486 int max_objects; 1487 1488 fp = slab->freelist; 1489 while (fp && nr <= slab->objects) { 1490 if (fp == search) 1491 return true; 1492 if (!check_valid_pointer(s, slab, fp)) { 1493 if (object) { 1494 object_err(s, slab, object, 1495 "Freechain corrupt"); 1496 set_freepointer(s, object, NULL); 1497 break; 1498 } else { 1499 slab_err(s, slab, "Freepointer corrupt"); 1500 slab->freelist = NULL; 1501 slab->inuse = slab->objects; 1502 slab_fix(s, "Freelist cleared"); 1503 return false; 1504 } 1505 } 1506 object = fp; 1507 fp = get_freepointer(s, object); 1508 nr++; 1509 } 1510 1511 if (nr > slab->objects) { 1512 slab_err(s, slab, "Freelist cycle detected"); 1513 slab->freelist = NULL; 1514 slab->inuse = slab->objects; 1515 slab_fix(s, "Freelist cleared"); 1516 return false; 1517 } 1518 1519 max_objects = order_objects(slab_order(slab), s->size); 1520 if (max_objects > MAX_OBJS_PER_PAGE) 1521 max_objects = MAX_OBJS_PER_PAGE; 1522 1523 if (slab->objects != max_objects) { 1524 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1525 slab->objects, max_objects); 1526 slab->objects = max_objects; 1527 slab_fix(s, "Number of objects adjusted"); 1528 } 1529 if (slab->inuse != slab->objects - nr) { 1530 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1531 slab->inuse, slab->objects - nr); 1532 slab->inuse = slab->objects - nr; 1533 slab_fix(s, "Object count adjusted"); 1534 } 1535 return search == NULL; 1536 } 1537 1538 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1539 int alloc) 1540 { 1541 if (s->flags & SLAB_TRACE) { 1542 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1543 s->name, 1544 alloc ? "alloc" : "free", 1545 object, slab->inuse, 1546 slab->freelist); 1547 1548 if (!alloc) 1549 print_section(KERN_INFO, "Object ", (void *)object, 1550 s->object_size); 1551 1552 dump_stack(); 1553 } 1554 } 1555 1556 /* 1557 * Tracking of fully allocated slabs for debugging purposes. 1558 */ 1559 static void add_full(struct kmem_cache *s, 1560 struct kmem_cache_node *n, struct slab *slab) 1561 { 1562 if (!(s->flags & SLAB_STORE_USER)) 1563 return; 1564 1565 lockdep_assert_held(&n->list_lock); 1566 list_add(&slab->slab_list, &n->full); 1567 } 1568 1569 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1570 { 1571 if (!(s->flags & SLAB_STORE_USER)) 1572 return; 1573 1574 lockdep_assert_held(&n->list_lock); 1575 list_del(&slab->slab_list); 1576 } 1577 1578 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1579 { 1580 return atomic_long_read(&n->nr_slabs); 1581 } 1582 1583 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1584 { 1585 struct kmem_cache_node *n = get_node(s, node); 1586 1587 atomic_long_inc(&n->nr_slabs); 1588 atomic_long_add(objects, &n->total_objects); 1589 } 1590 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1591 { 1592 struct kmem_cache_node *n = get_node(s, node); 1593 1594 atomic_long_dec(&n->nr_slabs); 1595 atomic_long_sub(objects, &n->total_objects); 1596 } 1597 1598 /* Object debug checks for alloc/free paths */ 1599 static void setup_object_debug(struct kmem_cache *s, void *object) 1600 { 1601 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1602 return; 1603 1604 init_object(s, object, SLUB_RED_INACTIVE); 1605 init_tracking(s, object); 1606 } 1607 1608 static 1609 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1610 { 1611 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1612 return; 1613 1614 metadata_access_enable(); 1615 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1616 metadata_access_disable(); 1617 } 1618 1619 static inline int alloc_consistency_checks(struct kmem_cache *s, 1620 struct slab *slab, void *object) 1621 { 1622 if (!check_slab(s, slab)) 1623 return 0; 1624 1625 if (!check_valid_pointer(s, slab, object)) { 1626 object_err(s, slab, object, "Freelist Pointer check fails"); 1627 return 0; 1628 } 1629 1630 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1631 return 0; 1632 1633 return 1; 1634 } 1635 1636 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1637 struct slab *slab, void *object, int orig_size) 1638 { 1639 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1640 if (!alloc_consistency_checks(s, slab, object)) 1641 goto bad; 1642 } 1643 1644 /* Success. Perform special debug activities for allocs */ 1645 trace(s, slab, object, 1); 1646 set_orig_size(s, object, orig_size); 1647 init_object(s, object, SLUB_RED_ACTIVE); 1648 return true; 1649 1650 bad: 1651 if (folio_test_slab(slab_folio(slab))) { 1652 /* 1653 * If this is a slab page then lets do the best we can 1654 * to avoid issues in the future. Marking all objects 1655 * as used avoids touching the remaining objects. 1656 */ 1657 slab_fix(s, "Marking all objects used"); 1658 slab->inuse = slab->objects; 1659 slab->freelist = NULL; 1660 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1661 } 1662 return false; 1663 } 1664 1665 static inline int free_consistency_checks(struct kmem_cache *s, 1666 struct slab *slab, void *object, unsigned long addr) 1667 { 1668 if (!check_valid_pointer(s, slab, object)) { 1669 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1670 return 0; 1671 } 1672 1673 if (on_freelist(s, slab, object)) { 1674 object_err(s, slab, object, "Object already free"); 1675 return 0; 1676 } 1677 1678 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1679 return 0; 1680 1681 if (unlikely(s != slab->slab_cache)) { 1682 if (!folio_test_slab(slab_folio(slab))) { 1683 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1684 object); 1685 } else if (!slab->slab_cache) { 1686 slab_err(NULL, slab, "No slab cache for object 0x%p", 1687 object); 1688 } else { 1689 object_err(s, slab, object, 1690 "page slab pointer corrupt."); 1691 } 1692 return 0; 1693 } 1694 return 1; 1695 } 1696 1697 /* 1698 * Parse a block of slab_debug options. Blocks are delimited by ';' 1699 * 1700 * @str: start of block 1701 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1702 * @slabs: return start of list of slabs, or NULL when there's no list 1703 * @init: assume this is initial parsing and not per-kmem-create parsing 1704 * 1705 * returns the start of next block if there's any, or NULL 1706 */ 1707 static char * 1708 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1709 { 1710 bool higher_order_disable = false; 1711 1712 /* Skip any completely empty blocks */ 1713 while (*str && *str == ';') 1714 str++; 1715 1716 if (*str == ',') { 1717 /* 1718 * No options but restriction on slabs. This means full 1719 * debugging for slabs matching a pattern. 1720 */ 1721 *flags = DEBUG_DEFAULT_FLAGS; 1722 goto check_slabs; 1723 } 1724 *flags = 0; 1725 1726 /* Determine which debug features should be switched on */ 1727 for (; *str && *str != ',' && *str != ';'; str++) { 1728 switch (tolower(*str)) { 1729 case '-': 1730 *flags = 0; 1731 break; 1732 case 'f': 1733 *flags |= SLAB_CONSISTENCY_CHECKS; 1734 break; 1735 case 'z': 1736 *flags |= SLAB_RED_ZONE; 1737 break; 1738 case 'p': 1739 *flags |= SLAB_POISON; 1740 break; 1741 case 'u': 1742 *flags |= SLAB_STORE_USER; 1743 break; 1744 case 't': 1745 *flags |= SLAB_TRACE; 1746 break; 1747 case 'a': 1748 *flags |= SLAB_FAILSLAB; 1749 break; 1750 case 'o': 1751 /* 1752 * Avoid enabling debugging on caches if its minimum 1753 * order would increase as a result. 1754 */ 1755 higher_order_disable = true; 1756 break; 1757 default: 1758 if (init) 1759 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1760 } 1761 } 1762 check_slabs: 1763 if (*str == ',') 1764 *slabs = ++str; 1765 else 1766 *slabs = NULL; 1767 1768 /* Skip over the slab list */ 1769 while (*str && *str != ';') 1770 str++; 1771 1772 /* Skip any completely empty blocks */ 1773 while (*str && *str == ';') 1774 str++; 1775 1776 if (init && higher_order_disable) 1777 disable_higher_order_debug = 1; 1778 1779 if (*str) 1780 return str; 1781 else 1782 return NULL; 1783 } 1784 1785 static int __init setup_slub_debug(char *str) 1786 { 1787 slab_flags_t flags; 1788 slab_flags_t global_flags; 1789 char *saved_str; 1790 char *slab_list; 1791 bool global_slub_debug_changed = false; 1792 bool slab_list_specified = false; 1793 1794 global_flags = DEBUG_DEFAULT_FLAGS; 1795 if (*str++ != '=' || !*str) 1796 /* 1797 * No options specified. Switch on full debugging. 1798 */ 1799 goto out; 1800 1801 saved_str = str; 1802 while (str) { 1803 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1804 1805 if (!slab_list) { 1806 global_flags = flags; 1807 global_slub_debug_changed = true; 1808 } else { 1809 slab_list_specified = true; 1810 if (flags & SLAB_STORE_USER) 1811 stack_depot_request_early_init(); 1812 } 1813 } 1814 1815 /* 1816 * For backwards compatibility, a single list of flags with list of 1817 * slabs means debugging is only changed for those slabs, so the global 1818 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1819 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1820 * long as there is no option specifying flags without a slab list. 1821 */ 1822 if (slab_list_specified) { 1823 if (!global_slub_debug_changed) 1824 global_flags = slub_debug; 1825 slub_debug_string = saved_str; 1826 } 1827 out: 1828 slub_debug = global_flags; 1829 if (slub_debug & SLAB_STORE_USER) 1830 stack_depot_request_early_init(); 1831 if (slub_debug != 0 || slub_debug_string) 1832 static_branch_enable(&slub_debug_enabled); 1833 else 1834 static_branch_disable(&slub_debug_enabled); 1835 if ((static_branch_unlikely(&init_on_alloc) || 1836 static_branch_unlikely(&init_on_free)) && 1837 (slub_debug & SLAB_POISON)) 1838 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1839 return 1; 1840 } 1841 1842 __setup("slab_debug", setup_slub_debug); 1843 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1844 1845 /* 1846 * kmem_cache_flags - apply debugging options to the cache 1847 * @flags: flags to set 1848 * @name: name of the cache 1849 * 1850 * Debug option(s) are applied to @flags. In addition to the debug 1851 * option(s), if a slab name (or multiple) is specified i.e. 1852 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1853 * then only the select slabs will receive the debug option(s). 1854 */ 1855 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1856 { 1857 char *iter; 1858 size_t len; 1859 char *next_block; 1860 slab_flags_t block_flags; 1861 slab_flags_t slub_debug_local = slub_debug; 1862 1863 if (flags & SLAB_NO_USER_FLAGS) 1864 return flags; 1865 1866 /* 1867 * If the slab cache is for debugging (e.g. kmemleak) then 1868 * don't store user (stack trace) information by default, 1869 * but let the user enable it via the command line below. 1870 */ 1871 if (flags & SLAB_NOLEAKTRACE) 1872 slub_debug_local &= ~SLAB_STORE_USER; 1873 1874 len = strlen(name); 1875 next_block = slub_debug_string; 1876 /* Go through all blocks of debug options, see if any matches our slab's name */ 1877 while (next_block) { 1878 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1879 if (!iter) 1880 continue; 1881 /* Found a block that has a slab list, search it */ 1882 while (*iter) { 1883 char *end, *glob; 1884 size_t cmplen; 1885 1886 end = strchrnul(iter, ','); 1887 if (next_block && next_block < end) 1888 end = next_block - 1; 1889 1890 glob = strnchr(iter, end - iter, '*'); 1891 if (glob) 1892 cmplen = glob - iter; 1893 else 1894 cmplen = max_t(size_t, len, (end - iter)); 1895 1896 if (!strncmp(name, iter, cmplen)) { 1897 flags |= block_flags; 1898 return flags; 1899 } 1900 1901 if (!*end || *end == ';') 1902 break; 1903 iter = end + 1; 1904 } 1905 } 1906 1907 return flags | slub_debug_local; 1908 } 1909 #else /* !CONFIG_SLUB_DEBUG */ 1910 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1911 static inline 1912 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1913 1914 static inline bool alloc_debug_processing(struct kmem_cache *s, 1915 struct slab *slab, void *object, int orig_size) { return true; } 1916 1917 static inline bool free_debug_processing(struct kmem_cache *s, 1918 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1919 unsigned long addr, depot_stack_handle_t handle) { return true; } 1920 1921 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1922 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1923 void *object, u8 val) { return 1; } 1924 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1925 static inline void set_track(struct kmem_cache *s, void *object, 1926 enum track_item alloc, unsigned long addr) {} 1927 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1928 struct slab *slab) {} 1929 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1930 struct slab *slab) {} 1931 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1932 { 1933 return flags; 1934 } 1935 #define slub_debug 0 1936 1937 #define disable_higher_order_debug 0 1938 1939 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1940 { return 0; } 1941 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1942 int objects) {} 1943 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1944 int objects) {} 1945 #ifndef CONFIG_SLUB_TINY 1946 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1947 void **freelist, void *nextfree) 1948 { 1949 return false; 1950 } 1951 #endif 1952 #endif /* CONFIG_SLUB_DEBUG */ 1953 1954 #ifdef CONFIG_SLAB_OBJ_EXT 1955 1956 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1957 1958 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1959 { 1960 struct slabobj_ext *slab_exts; 1961 struct slab *obj_exts_slab; 1962 1963 obj_exts_slab = virt_to_slab(obj_exts); 1964 slab_exts = slab_obj_exts(obj_exts_slab); 1965 if (slab_exts) { 1966 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1967 obj_exts_slab, obj_exts); 1968 /* codetag should be NULL */ 1969 WARN_ON(slab_exts[offs].ref.ct); 1970 set_codetag_empty(&slab_exts[offs].ref); 1971 } 1972 } 1973 1974 static inline void mark_failed_objexts_alloc(struct slab *slab) 1975 { 1976 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1977 } 1978 1979 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1980 struct slabobj_ext *vec, unsigned int objects) 1981 { 1982 /* 1983 * If vector previously failed to allocate then we have live 1984 * objects with no tag reference. Mark all references in this 1985 * vector as empty to avoid warnings later on. 1986 */ 1987 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1988 unsigned int i; 1989 1990 for (i = 0; i < objects; i++) 1991 set_codetag_empty(&vec[i].ref); 1992 } 1993 } 1994 1995 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1996 1997 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1998 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1999 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2000 struct slabobj_ext *vec, unsigned int objects) {} 2001 2002 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2003 2004 /* 2005 * The allocated objcg pointers array is not accounted directly. 2006 * Moreover, it should not come from DMA buffer and is not readily 2007 * reclaimable. So those GFP bits should be masked off. 2008 */ 2009 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2010 __GFP_ACCOUNT | __GFP_NOFAIL) 2011 2012 static inline void init_slab_obj_exts(struct slab *slab) 2013 { 2014 slab->obj_exts = 0; 2015 } 2016 2017 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2018 gfp_t gfp, bool new_slab) 2019 { 2020 unsigned int objects = objs_per_slab(s, slab); 2021 unsigned long new_exts; 2022 unsigned long old_exts; 2023 struct slabobj_ext *vec; 2024 2025 gfp &= ~OBJCGS_CLEAR_MASK; 2026 /* Prevent recursive extension vector allocation */ 2027 gfp |= __GFP_NO_OBJ_EXT; 2028 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 2029 slab_nid(slab)); 2030 if (!vec) { 2031 /* Mark vectors which failed to allocate */ 2032 if (new_slab) 2033 mark_failed_objexts_alloc(slab); 2034 2035 return -ENOMEM; 2036 } 2037 2038 new_exts = (unsigned long)vec; 2039 #ifdef CONFIG_MEMCG 2040 new_exts |= MEMCG_DATA_OBJEXTS; 2041 #endif 2042 old_exts = READ_ONCE(slab->obj_exts); 2043 handle_failed_objexts_alloc(old_exts, vec, objects); 2044 if (new_slab) { 2045 /* 2046 * If the slab is brand new and nobody can yet access its 2047 * obj_exts, no synchronization is required and obj_exts can 2048 * be simply assigned. 2049 */ 2050 slab->obj_exts = new_exts; 2051 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2052 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2053 /* 2054 * If the slab is already in use, somebody can allocate and 2055 * assign slabobj_exts in parallel. In this case the existing 2056 * objcg vector should be reused. 2057 */ 2058 mark_objexts_empty(vec); 2059 kfree(vec); 2060 return 0; 2061 } 2062 2063 kmemleak_not_leak(vec); 2064 return 0; 2065 } 2066 2067 static inline void free_slab_obj_exts(struct slab *slab) 2068 { 2069 struct slabobj_ext *obj_exts; 2070 2071 obj_exts = slab_obj_exts(slab); 2072 if (!obj_exts) 2073 return; 2074 2075 /* 2076 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2077 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2078 * warning if slab has extensions but the extension of an object is 2079 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2080 * the extension for obj_exts is expected to be NULL. 2081 */ 2082 mark_objexts_empty(obj_exts); 2083 kfree(obj_exts); 2084 slab->obj_exts = 0; 2085 } 2086 2087 #else /* CONFIG_SLAB_OBJ_EXT */ 2088 2089 static inline void init_slab_obj_exts(struct slab *slab) 2090 { 2091 } 2092 2093 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2094 gfp_t gfp, bool new_slab) 2095 { 2096 return 0; 2097 } 2098 2099 static inline void free_slab_obj_exts(struct slab *slab) 2100 { 2101 } 2102 2103 #endif /* CONFIG_SLAB_OBJ_EXT */ 2104 2105 #ifdef CONFIG_MEM_ALLOC_PROFILING 2106 2107 static inline struct slabobj_ext * 2108 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2109 { 2110 struct slab *slab; 2111 2112 if (!p) 2113 return NULL; 2114 2115 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2116 return NULL; 2117 2118 if (flags & __GFP_NO_OBJ_EXT) 2119 return NULL; 2120 2121 slab = virt_to_slab(p); 2122 if (!slab_obj_exts(slab) && 2123 alloc_slab_obj_exts(slab, s, flags, false)) { 2124 pr_warn_once("%s, %s: Failed to create slab extension vector!\n", 2125 __func__, s->name); 2126 return NULL; 2127 } 2128 2129 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2130 } 2131 2132 /* Should be called only if mem_alloc_profiling_enabled() */ 2133 static noinline void 2134 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2135 { 2136 struct slabobj_ext *obj_exts; 2137 2138 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2139 /* 2140 * Currently obj_exts is used only for allocation profiling. 2141 * If other users appear then mem_alloc_profiling_enabled() 2142 * check should be added before alloc_tag_add(). 2143 */ 2144 if (likely(obj_exts)) 2145 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2146 } 2147 2148 static inline void 2149 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2150 { 2151 if (mem_alloc_profiling_enabled()) 2152 __alloc_tagging_slab_alloc_hook(s, object, flags); 2153 } 2154 2155 /* Should be called only if mem_alloc_profiling_enabled() */ 2156 static noinline void 2157 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2158 int objects) 2159 { 2160 struct slabobj_ext *obj_exts; 2161 int i; 2162 2163 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2164 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2165 return; 2166 2167 obj_exts = slab_obj_exts(slab); 2168 if (!obj_exts) 2169 return; 2170 2171 for (i = 0; i < objects; i++) { 2172 unsigned int off = obj_to_index(s, slab, p[i]); 2173 2174 alloc_tag_sub(&obj_exts[off].ref, s->size); 2175 } 2176 } 2177 2178 static inline void 2179 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2180 int objects) 2181 { 2182 if (mem_alloc_profiling_enabled()) 2183 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2184 } 2185 2186 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2187 2188 static inline void 2189 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2190 { 2191 } 2192 2193 static inline void 2194 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2195 int objects) 2196 { 2197 } 2198 2199 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2200 2201 2202 #ifdef CONFIG_MEMCG 2203 2204 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2205 2206 static __fastpath_inline 2207 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2208 gfp_t flags, size_t size, void **p) 2209 { 2210 if (likely(!memcg_kmem_online())) 2211 return true; 2212 2213 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2214 return true; 2215 2216 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2217 return true; 2218 2219 if (likely(size == 1)) { 2220 memcg_alloc_abort_single(s, *p); 2221 *p = NULL; 2222 } else { 2223 kmem_cache_free_bulk(s, size, p); 2224 } 2225 2226 return false; 2227 } 2228 2229 static __fastpath_inline 2230 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2231 int objects) 2232 { 2233 struct slabobj_ext *obj_exts; 2234 2235 if (!memcg_kmem_online()) 2236 return; 2237 2238 obj_exts = slab_obj_exts(slab); 2239 if (likely(!obj_exts)) 2240 return; 2241 2242 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2243 } 2244 2245 static __fastpath_inline 2246 bool memcg_slab_post_charge(void *p, gfp_t flags) 2247 { 2248 struct slabobj_ext *slab_exts; 2249 struct kmem_cache *s; 2250 struct folio *folio; 2251 struct slab *slab; 2252 unsigned long off; 2253 2254 folio = virt_to_folio(p); 2255 if (!folio_test_slab(folio)) { 2256 int size; 2257 2258 if (folio_memcg_kmem(folio)) 2259 return true; 2260 2261 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2262 folio_order(folio))) 2263 return false; 2264 2265 /* 2266 * This folio has already been accounted in the global stats but 2267 * not in the memcg stats. So, subtract from the global and use 2268 * the interface which adds to both global and memcg stats. 2269 */ 2270 size = folio_size(folio); 2271 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2272 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2273 return true; 2274 } 2275 2276 slab = folio_slab(folio); 2277 s = slab->slab_cache; 2278 2279 /* 2280 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2281 * of slab_obj_exts being allocated from the same slab and thus the slab 2282 * becoming effectively unfreeable. 2283 */ 2284 if (is_kmalloc_normal(s)) 2285 return true; 2286 2287 /* Ignore already charged objects. */ 2288 slab_exts = slab_obj_exts(slab); 2289 if (slab_exts) { 2290 off = obj_to_index(s, slab, p); 2291 if (unlikely(slab_exts[off].objcg)) 2292 return true; 2293 } 2294 2295 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2296 } 2297 2298 #else /* CONFIG_MEMCG */ 2299 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2300 struct list_lru *lru, 2301 gfp_t flags, size_t size, 2302 void **p) 2303 { 2304 return true; 2305 } 2306 2307 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2308 void **p, int objects) 2309 { 2310 } 2311 2312 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2313 { 2314 return true; 2315 } 2316 #endif /* CONFIG_MEMCG */ 2317 2318 #ifdef CONFIG_SLUB_RCU_DEBUG 2319 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2320 2321 struct rcu_delayed_free { 2322 struct rcu_head head; 2323 void *object; 2324 }; 2325 #endif 2326 2327 /* 2328 * Hooks for other subsystems that check memory allocations. In a typical 2329 * production configuration these hooks all should produce no code at all. 2330 * 2331 * Returns true if freeing of the object can proceed, false if its reuse 2332 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2333 * to KFENCE. 2334 */ 2335 static __always_inline 2336 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2337 bool after_rcu_delay) 2338 { 2339 /* Are the object contents still accessible? */ 2340 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2341 2342 kmemleak_free_recursive(x, s->flags); 2343 kmsan_slab_free(s, x); 2344 2345 debug_check_no_locks_freed(x, s->object_size); 2346 2347 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2348 debug_check_no_obj_freed(x, s->object_size); 2349 2350 /* Use KCSAN to help debug racy use-after-free. */ 2351 if (!still_accessible) 2352 __kcsan_check_access(x, s->object_size, 2353 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2354 2355 if (kfence_free(x)) 2356 return false; 2357 2358 /* 2359 * Give KASAN a chance to notice an invalid free operation before we 2360 * modify the object. 2361 */ 2362 if (kasan_slab_pre_free(s, x)) 2363 return false; 2364 2365 #ifdef CONFIG_SLUB_RCU_DEBUG 2366 if (still_accessible) { 2367 struct rcu_delayed_free *delayed_free; 2368 2369 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2370 if (delayed_free) { 2371 /* 2372 * Let KASAN track our call stack as a "related work 2373 * creation", just like if the object had been freed 2374 * normally via kfree_rcu(). 2375 * We have to do this manually because the rcu_head is 2376 * not located inside the object. 2377 */ 2378 kasan_record_aux_stack(x); 2379 2380 delayed_free->object = x; 2381 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2382 return false; 2383 } 2384 } 2385 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2386 2387 /* 2388 * As memory initialization might be integrated into KASAN, 2389 * kasan_slab_free and initialization memset's must be 2390 * kept together to avoid discrepancies in behavior. 2391 * 2392 * The initialization memset's clear the object and the metadata, 2393 * but don't touch the SLAB redzone. 2394 * 2395 * The object's freepointer is also avoided if stored outside the 2396 * object. 2397 */ 2398 if (unlikely(init)) { 2399 int rsize; 2400 unsigned int inuse, orig_size; 2401 2402 inuse = get_info_end(s); 2403 orig_size = get_orig_size(s, x); 2404 if (!kasan_has_integrated_init()) 2405 memset(kasan_reset_tag(x), 0, orig_size); 2406 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2407 memset((char *)kasan_reset_tag(x) + inuse, 0, 2408 s->size - inuse - rsize); 2409 /* 2410 * Restore orig_size, otherwize kmalloc redzone overwritten 2411 * would be reported 2412 */ 2413 set_orig_size(s, x, orig_size); 2414 2415 } 2416 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2417 return !kasan_slab_free(s, x, init, still_accessible); 2418 } 2419 2420 static __fastpath_inline 2421 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2422 int *cnt) 2423 { 2424 2425 void *object; 2426 void *next = *head; 2427 void *old_tail = *tail; 2428 bool init; 2429 2430 if (is_kfence_address(next)) { 2431 slab_free_hook(s, next, false, false); 2432 return false; 2433 } 2434 2435 /* Head and tail of the reconstructed freelist */ 2436 *head = NULL; 2437 *tail = NULL; 2438 2439 init = slab_want_init_on_free(s); 2440 2441 do { 2442 object = next; 2443 next = get_freepointer(s, object); 2444 2445 /* If object's reuse doesn't have to be delayed */ 2446 if (likely(slab_free_hook(s, object, init, false))) { 2447 /* Move object to the new freelist */ 2448 set_freepointer(s, object, *head); 2449 *head = object; 2450 if (!*tail) 2451 *tail = object; 2452 } else { 2453 /* 2454 * Adjust the reconstructed freelist depth 2455 * accordingly if object's reuse is delayed. 2456 */ 2457 --(*cnt); 2458 } 2459 } while (object != old_tail); 2460 2461 return *head != NULL; 2462 } 2463 2464 static void *setup_object(struct kmem_cache *s, void *object) 2465 { 2466 setup_object_debug(s, object); 2467 object = kasan_init_slab_obj(s, object); 2468 if (unlikely(s->ctor)) { 2469 kasan_unpoison_new_object(s, object); 2470 s->ctor(object); 2471 kasan_poison_new_object(s, object); 2472 } 2473 return object; 2474 } 2475 2476 /* 2477 * Slab allocation and freeing 2478 */ 2479 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2480 struct kmem_cache_order_objects oo) 2481 { 2482 struct folio *folio; 2483 struct slab *slab; 2484 unsigned int order = oo_order(oo); 2485 2486 if (node == NUMA_NO_NODE) 2487 folio = (struct folio *)alloc_frozen_pages(flags, order); 2488 else 2489 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2490 2491 if (!folio) 2492 return NULL; 2493 2494 slab = folio_slab(folio); 2495 __folio_set_slab(folio); 2496 if (folio_is_pfmemalloc(folio)) 2497 slab_set_pfmemalloc(slab); 2498 2499 return slab; 2500 } 2501 2502 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2503 /* Pre-initialize the random sequence cache */ 2504 static int init_cache_random_seq(struct kmem_cache *s) 2505 { 2506 unsigned int count = oo_objects(s->oo); 2507 int err; 2508 2509 /* Bailout if already initialised */ 2510 if (s->random_seq) 2511 return 0; 2512 2513 err = cache_random_seq_create(s, count, GFP_KERNEL); 2514 if (err) { 2515 pr_err("SLUB: Unable to initialize free list for %s\n", 2516 s->name); 2517 return err; 2518 } 2519 2520 /* Transform to an offset on the set of pages */ 2521 if (s->random_seq) { 2522 unsigned int i; 2523 2524 for (i = 0; i < count; i++) 2525 s->random_seq[i] *= s->size; 2526 } 2527 return 0; 2528 } 2529 2530 /* Initialize each random sequence freelist per cache */ 2531 static void __init init_freelist_randomization(void) 2532 { 2533 struct kmem_cache *s; 2534 2535 mutex_lock(&slab_mutex); 2536 2537 list_for_each_entry(s, &slab_caches, list) 2538 init_cache_random_seq(s); 2539 2540 mutex_unlock(&slab_mutex); 2541 } 2542 2543 /* Get the next entry on the pre-computed freelist randomized */ 2544 static void *next_freelist_entry(struct kmem_cache *s, 2545 unsigned long *pos, void *start, 2546 unsigned long page_limit, 2547 unsigned long freelist_count) 2548 { 2549 unsigned int idx; 2550 2551 /* 2552 * If the target page allocation failed, the number of objects on the 2553 * page might be smaller than the usual size defined by the cache. 2554 */ 2555 do { 2556 idx = s->random_seq[*pos]; 2557 *pos += 1; 2558 if (*pos >= freelist_count) 2559 *pos = 0; 2560 } while (unlikely(idx >= page_limit)); 2561 2562 return (char *)start + idx; 2563 } 2564 2565 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2566 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2567 { 2568 void *start; 2569 void *cur; 2570 void *next; 2571 unsigned long idx, pos, page_limit, freelist_count; 2572 2573 if (slab->objects < 2 || !s->random_seq) 2574 return false; 2575 2576 freelist_count = oo_objects(s->oo); 2577 pos = get_random_u32_below(freelist_count); 2578 2579 page_limit = slab->objects * s->size; 2580 start = fixup_red_left(s, slab_address(slab)); 2581 2582 /* First entry is used as the base of the freelist */ 2583 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2584 cur = setup_object(s, cur); 2585 slab->freelist = cur; 2586 2587 for (idx = 1; idx < slab->objects; idx++) { 2588 next = next_freelist_entry(s, &pos, start, page_limit, 2589 freelist_count); 2590 next = setup_object(s, next); 2591 set_freepointer(s, cur, next); 2592 cur = next; 2593 } 2594 set_freepointer(s, cur, NULL); 2595 2596 return true; 2597 } 2598 #else 2599 static inline int init_cache_random_seq(struct kmem_cache *s) 2600 { 2601 return 0; 2602 } 2603 static inline void init_freelist_randomization(void) { } 2604 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2605 { 2606 return false; 2607 } 2608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2609 2610 static __always_inline void account_slab(struct slab *slab, int order, 2611 struct kmem_cache *s, gfp_t gfp) 2612 { 2613 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2614 alloc_slab_obj_exts(slab, s, gfp, true); 2615 2616 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2617 PAGE_SIZE << order); 2618 } 2619 2620 static __always_inline void unaccount_slab(struct slab *slab, int order, 2621 struct kmem_cache *s) 2622 { 2623 /* 2624 * The slab object extensions should now be freed regardless of 2625 * whether mem_alloc_profiling_enabled() or not because profiling 2626 * might have been disabled after slab->obj_exts got allocated. 2627 */ 2628 free_slab_obj_exts(slab); 2629 2630 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2631 -(PAGE_SIZE << order)); 2632 } 2633 2634 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2635 { 2636 struct slab *slab; 2637 struct kmem_cache_order_objects oo = s->oo; 2638 gfp_t alloc_gfp; 2639 void *start, *p, *next; 2640 int idx; 2641 bool shuffle; 2642 2643 flags &= gfp_allowed_mask; 2644 2645 flags |= s->allocflags; 2646 2647 /* 2648 * Let the initial higher-order allocation fail under memory pressure 2649 * so we fall-back to the minimum order allocation. 2650 */ 2651 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2652 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2653 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2654 2655 slab = alloc_slab_page(alloc_gfp, node, oo); 2656 if (unlikely(!slab)) { 2657 oo = s->min; 2658 alloc_gfp = flags; 2659 /* 2660 * Allocation may have failed due to fragmentation. 2661 * Try a lower order alloc if possible 2662 */ 2663 slab = alloc_slab_page(alloc_gfp, node, oo); 2664 if (unlikely(!slab)) 2665 return NULL; 2666 stat(s, ORDER_FALLBACK); 2667 } 2668 2669 slab->objects = oo_objects(oo); 2670 slab->inuse = 0; 2671 slab->frozen = 0; 2672 init_slab_obj_exts(slab); 2673 2674 account_slab(slab, oo_order(oo), s, flags); 2675 2676 slab->slab_cache = s; 2677 2678 kasan_poison_slab(slab); 2679 2680 start = slab_address(slab); 2681 2682 setup_slab_debug(s, slab, start); 2683 2684 shuffle = shuffle_freelist(s, slab); 2685 2686 if (!shuffle) { 2687 start = fixup_red_left(s, start); 2688 start = setup_object(s, start); 2689 slab->freelist = start; 2690 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2691 next = p + s->size; 2692 next = setup_object(s, next); 2693 set_freepointer(s, p, next); 2694 p = next; 2695 } 2696 set_freepointer(s, p, NULL); 2697 } 2698 2699 return slab; 2700 } 2701 2702 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2703 { 2704 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2705 flags = kmalloc_fix_flags(flags); 2706 2707 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2708 2709 return allocate_slab(s, 2710 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2711 } 2712 2713 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2714 { 2715 struct folio *folio = slab_folio(slab); 2716 int order = folio_order(folio); 2717 int pages = 1 << order; 2718 2719 __slab_clear_pfmemalloc(slab); 2720 folio->mapping = NULL; 2721 __folio_clear_slab(folio); 2722 mm_account_reclaimed_pages(pages); 2723 unaccount_slab(slab, order, s); 2724 free_frozen_pages(&folio->page, order); 2725 } 2726 2727 static void rcu_free_slab(struct rcu_head *h) 2728 { 2729 struct slab *slab = container_of(h, struct slab, rcu_head); 2730 2731 __free_slab(slab->slab_cache, slab); 2732 } 2733 2734 static void free_slab(struct kmem_cache *s, struct slab *slab) 2735 { 2736 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2737 void *p; 2738 2739 slab_pad_check(s, slab); 2740 for_each_object(p, s, slab_address(slab), slab->objects) 2741 check_object(s, slab, p, SLUB_RED_INACTIVE); 2742 } 2743 2744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2745 call_rcu(&slab->rcu_head, rcu_free_slab); 2746 else 2747 __free_slab(s, slab); 2748 } 2749 2750 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2751 { 2752 dec_slabs_node(s, slab_nid(slab), slab->objects); 2753 free_slab(s, slab); 2754 } 2755 2756 static inline bool slab_test_node_partial(const struct slab *slab) 2757 { 2758 return test_bit(SL_partial, &slab->flags); 2759 } 2760 2761 static inline void slab_set_node_partial(struct slab *slab) 2762 { 2763 set_bit(SL_partial, &slab->flags); 2764 } 2765 2766 static inline void slab_clear_node_partial(struct slab *slab) 2767 { 2768 clear_bit(SL_partial, &slab->flags); 2769 } 2770 2771 /* 2772 * Management of partially allocated slabs. 2773 */ 2774 static inline void 2775 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2776 { 2777 n->nr_partial++; 2778 if (tail == DEACTIVATE_TO_TAIL) 2779 list_add_tail(&slab->slab_list, &n->partial); 2780 else 2781 list_add(&slab->slab_list, &n->partial); 2782 slab_set_node_partial(slab); 2783 } 2784 2785 static inline void add_partial(struct kmem_cache_node *n, 2786 struct slab *slab, int tail) 2787 { 2788 lockdep_assert_held(&n->list_lock); 2789 __add_partial(n, slab, tail); 2790 } 2791 2792 static inline void remove_partial(struct kmem_cache_node *n, 2793 struct slab *slab) 2794 { 2795 lockdep_assert_held(&n->list_lock); 2796 list_del(&slab->slab_list); 2797 slab_clear_node_partial(slab); 2798 n->nr_partial--; 2799 } 2800 2801 /* 2802 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2803 * slab from the n->partial list. Remove only a single object from the slab, do 2804 * the alloc_debug_processing() checks and leave the slab on the list, or move 2805 * it to full list if it was the last free object. 2806 */ 2807 static void *alloc_single_from_partial(struct kmem_cache *s, 2808 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2809 { 2810 void *object; 2811 2812 lockdep_assert_held(&n->list_lock); 2813 2814 object = slab->freelist; 2815 slab->freelist = get_freepointer(s, object); 2816 slab->inuse++; 2817 2818 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2819 if (folio_test_slab(slab_folio(slab))) 2820 remove_partial(n, slab); 2821 return NULL; 2822 } 2823 2824 if (slab->inuse == slab->objects) { 2825 remove_partial(n, slab); 2826 add_full(s, n, slab); 2827 } 2828 2829 return object; 2830 } 2831 2832 /* 2833 * Called only for kmem_cache_debug() caches to allocate from a freshly 2834 * allocated slab. Allocate a single object instead of whole freelist 2835 * and put the slab to the partial (or full) list. 2836 */ 2837 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2838 struct slab *slab, int orig_size) 2839 { 2840 int nid = slab_nid(slab); 2841 struct kmem_cache_node *n = get_node(s, nid); 2842 unsigned long flags; 2843 void *object; 2844 2845 2846 object = slab->freelist; 2847 slab->freelist = get_freepointer(s, object); 2848 slab->inuse = 1; 2849 2850 if (!alloc_debug_processing(s, slab, object, orig_size)) 2851 /* 2852 * It's not really expected that this would fail on a 2853 * freshly allocated slab, but a concurrent memory 2854 * corruption in theory could cause that. 2855 */ 2856 return NULL; 2857 2858 spin_lock_irqsave(&n->list_lock, flags); 2859 2860 if (slab->inuse == slab->objects) 2861 add_full(s, n, slab); 2862 else 2863 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2864 2865 inc_slabs_node(s, nid, slab->objects); 2866 spin_unlock_irqrestore(&n->list_lock, flags); 2867 2868 return object; 2869 } 2870 2871 #ifdef CONFIG_SLUB_CPU_PARTIAL 2872 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2873 #else 2874 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2875 int drain) { } 2876 #endif 2877 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2878 2879 /* 2880 * Try to allocate a partial slab from a specific node. 2881 */ 2882 static struct slab *get_partial_node(struct kmem_cache *s, 2883 struct kmem_cache_node *n, 2884 struct partial_context *pc) 2885 { 2886 struct slab *slab, *slab2, *partial = NULL; 2887 unsigned long flags; 2888 unsigned int partial_slabs = 0; 2889 2890 /* 2891 * Racy check. If we mistakenly see no partial slabs then we 2892 * just allocate an empty slab. If we mistakenly try to get a 2893 * partial slab and there is none available then get_partial() 2894 * will return NULL. 2895 */ 2896 if (!n || !n->nr_partial) 2897 return NULL; 2898 2899 spin_lock_irqsave(&n->list_lock, flags); 2900 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2901 if (!pfmemalloc_match(slab, pc->flags)) 2902 continue; 2903 2904 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2905 void *object = alloc_single_from_partial(s, n, slab, 2906 pc->orig_size); 2907 if (object) { 2908 partial = slab; 2909 pc->object = object; 2910 break; 2911 } 2912 continue; 2913 } 2914 2915 remove_partial(n, slab); 2916 2917 if (!partial) { 2918 partial = slab; 2919 stat(s, ALLOC_FROM_PARTIAL); 2920 2921 if ((slub_get_cpu_partial(s) == 0)) { 2922 break; 2923 } 2924 } else { 2925 put_cpu_partial(s, slab, 0); 2926 stat(s, CPU_PARTIAL_NODE); 2927 2928 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2929 break; 2930 } 2931 } 2932 } 2933 spin_unlock_irqrestore(&n->list_lock, flags); 2934 return partial; 2935 } 2936 2937 /* 2938 * Get a slab from somewhere. Search in increasing NUMA distances. 2939 */ 2940 static struct slab *get_any_partial(struct kmem_cache *s, 2941 struct partial_context *pc) 2942 { 2943 #ifdef CONFIG_NUMA 2944 struct zonelist *zonelist; 2945 struct zoneref *z; 2946 struct zone *zone; 2947 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2948 struct slab *slab; 2949 unsigned int cpuset_mems_cookie; 2950 2951 /* 2952 * The defrag ratio allows a configuration of the tradeoffs between 2953 * inter node defragmentation and node local allocations. A lower 2954 * defrag_ratio increases the tendency to do local allocations 2955 * instead of attempting to obtain partial slabs from other nodes. 2956 * 2957 * If the defrag_ratio is set to 0 then kmalloc() always 2958 * returns node local objects. If the ratio is higher then kmalloc() 2959 * may return off node objects because partial slabs are obtained 2960 * from other nodes and filled up. 2961 * 2962 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2963 * (which makes defrag_ratio = 1000) then every (well almost) 2964 * allocation will first attempt to defrag slab caches on other nodes. 2965 * This means scanning over all nodes to look for partial slabs which 2966 * may be expensive if we do it every time we are trying to find a slab 2967 * with available objects. 2968 */ 2969 if (!s->remote_node_defrag_ratio || 2970 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2971 return NULL; 2972 2973 do { 2974 cpuset_mems_cookie = read_mems_allowed_begin(); 2975 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2976 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2977 struct kmem_cache_node *n; 2978 2979 n = get_node(s, zone_to_nid(zone)); 2980 2981 if (n && cpuset_zone_allowed(zone, pc->flags) && 2982 n->nr_partial > s->min_partial) { 2983 slab = get_partial_node(s, n, pc); 2984 if (slab) { 2985 /* 2986 * Don't check read_mems_allowed_retry() 2987 * here - if mems_allowed was updated in 2988 * parallel, that was a harmless race 2989 * between allocation and the cpuset 2990 * update 2991 */ 2992 return slab; 2993 } 2994 } 2995 } 2996 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2997 #endif /* CONFIG_NUMA */ 2998 return NULL; 2999 } 3000 3001 /* 3002 * Get a partial slab, lock it and return it. 3003 */ 3004 static struct slab *get_partial(struct kmem_cache *s, int node, 3005 struct partial_context *pc) 3006 { 3007 struct slab *slab; 3008 int searchnode = node; 3009 3010 if (node == NUMA_NO_NODE) 3011 searchnode = numa_mem_id(); 3012 3013 slab = get_partial_node(s, get_node(s, searchnode), pc); 3014 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 3015 return slab; 3016 3017 return get_any_partial(s, pc); 3018 } 3019 3020 #ifndef CONFIG_SLUB_TINY 3021 3022 #ifdef CONFIG_PREEMPTION 3023 /* 3024 * Calculate the next globally unique transaction for disambiguation 3025 * during cmpxchg. The transactions start with the cpu number and are then 3026 * incremented by CONFIG_NR_CPUS. 3027 */ 3028 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 3029 #else 3030 /* 3031 * No preemption supported therefore also no need to check for 3032 * different cpus. 3033 */ 3034 #define TID_STEP 1 3035 #endif /* CONFIG_PREEMPTION */ 3036 3037 static inline unsigned long next_tid(unsigned long tid) 3038 { 3039 return tid + TID_STEP; 3040 } 3041 3042 #ifdef SLUB_DEBUG_CMPXCHG 3043 static inline unsigned int tid_to_cpu(unsigned long tid) 3044 { 3045 return tid % TID_STEP; 3046 } 3047 3048 static inline unsigned long tid_to_event(unsigned long tid) 3049 { 3050 return tid / TID_STEP; 3051 } 3052 #endif 3053 3054 static inline unsigned int init_tid(int cpu) 3055 { 3056 return cpu; 3057 } 3058 3059 static inline void note_cmpxchg_failure(const char *n, 3060 const struct kmem_cache *s, unsigned long tid) 3061 { 3062 #ifdef SLUB_DEBUG_CMPXCHG 3063 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3064 3065 pr_info("%s %s: cmpxchg redo ", n, s->name); 3066 3067 #ifdef CONFIG_PREEMPTION 3068 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3069 pr_warn("due to cpu change %d -> %d\n", 3070 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3071 else 3072 #endif 3073 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3074 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3075 tid_to_event(tid), tid_to_event(actual_tid)); 3076 else 3077 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3078 actual_tid, tid, next_tid(tid)); 3079 #endif 3080 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3081 } 3082 3083 static void init_kmem_cache_cpus(struct kmem_cache *s) 3084 { 3085 int cpu; 3086 struct kmem_cache_cpu *c; 3087 3088 for_each_possible_cpu(cpu) { 3089 c = per_cpu_ptr(s->cpu_slab, cpu); 3090 local_lock_init(&c->lock); 3091 c->tid = init_tid(cpu); 3092 } 3093 } 3094 3095 /* 3096 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3097 * unfreezes the slabs and puts it on the proper list. 3098 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3099 * by the caller. 3100 */ 3101 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3102 void *freelist) 3103 { 3104 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3105 int free_delta = 0; 3106 void *nextfree, *freelist_iter, *freelist_tail; 3107 int tail = DEACTIVATE_TO_HEAD; 3108 unsigned long flags = 0; 3109 struct slab new; 3110 struct slab old; 3111 3112 if (READ_ONCE(slab->freelist)) { 3113 stat(s, DEACTIVATE_REMOTE_FREES); 3114 tail = DEACTIVATE_TO_TAIL; 3115 } 3116 3117 /* 3118 * Stage one: Count the objects on cpu's freelist as free_delta and 3119 * remember the last object in freelist_tail for later splicing. 3120 */ 3121 freelist_tail = NULL; 3122 freelist_iter = freelist; 3123 while (freelist_iter) { 3124 nextfree = get_freepointer(s, freelist_iter); 3125 3126 /* 3127 * If 'nextfree' is invalid, it is possible that the object at 3128 * 'freelist_iter' is already corrupted. So isolate all objects 3129 * starting at 'freelist_iter' by skipping them. 3130 */ 3131 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3132 break; 3133 3134 freelist_tail = freelist_iter; 3135 free_delta++; 3136 3137 freelist_iter = nextfree; 3138 } 3139 3140 /* 3141 * Stage two: Unfreeze the slab while splicing the per-cpu 3142 * freelist to the head of slab's freelist. 3143 */ 3144 do { 3145 old.freelist = READ_ONCE(slab->freelist); 3146 old.counters = READ_ONCE(slab->counters); 3147 VM_BUG_ON(!old.frozen); 3148 3149 /* Determine target state of the slab */ 3150 new.counters = old.counters; 3151 new.frozen = 0; 3152 if (freelist_tail) { 3153 new.inuse -= free_delta; 3154 set_freepointer(s, freelist_tail, old.freelist); 3155 new.freelist = freelist; 3156 } else { 3157 new.freelist = old.freelist; 3158 } 3159 } while (!slab_update_freelist(s, slab, 3160 old.freelist, old.counters, 3161 new.freelist, new.counters, 3162 "unfreezing slab")); 3163 3164 /* 3165 * Stage three: Manipulate the slab list based on the updated state. 3166 */ 3167 if (!new.inuse && n->nr_partial >= s->min_partial) { 3168 stat(s, DEACTIVATE_EMPTY); 3169 discard_slab(s, slab); 3170 stat(s, FREE_SLAB); 3171 } else if (new.freelist) { 3172 spin_lock_irqsave(&n->list_lock, flags); 3173 add_partial(n, slab, tail); 3174 spin_unlock_irqrestore(&n->list_lock, flags); 3175 stat(s, tail); 3176 } else { 3177 stat(s, DEACTIVATE_FULL); 3178 } 3179 } 3180 3181 #ifdef CONFIG_SLUB_CPU_PARTIAL 3182 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3183 { 3184 struct kmem_cache_node *n = NULL, *n2 = NULL; 3185 struct slab *slab, *slab_to_discard = NULL; 3186 unsigned long flags = 0; 3187 3188 while (partial_slab) { 3189 slab = partial_slab; 3190 partial_slab = slab->next; 3191 3192 n2 = get_node(s, slab_nid(slab)); 3193 if (n != n2) { 3194 if (n) 3195 spin_unlock_irqrestore(&n->list_lock, flags); 3196 3197 n = n2; 3198 spin_lock_irqsave(&n->list_lock, flags); 3199 } 3200 3201 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3202 slab->next = slab_to_discard; 3203 slab_to_discard = slab; 3204 } else { 3205 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3206 stat(s, FREE_ADD_PARTIAL); 3207 } 3208 } 3209 3210 if (n) 3211 spin_unlock_irqrestore(&n->list_lock, flags); 3212 3213 while (slab_to_discard) { 3214 slab = slab_to_discard; 3215 slab_to_discard = slab_to_discard->next; 3216 3217 stat(s, DEACTIVATE_EMPTY); 3218 discard_slab(s, slab); 3219 stat(s, FREE_SLAB); 3220 } 3221 } 3222 3223 /* 3224 * Put all the cpu partial slabs to the node partial list. 3225 */ 3226 static void put_partials(struct kmem_cache *s) 3227 { 3228 struct slab *partial_slab; 3229 unsigned long flags; 3230 3231 local_lock_irqsave(&s->cpu_slab->lock, flags); 3232 partial_slab = this_cpu_read(s->cpu_slab->partial); 3233 this_cpu_write(s->cpu_slab->partial, NULL); 3234 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3235 3236 if (partial_slab) 3237 __put_partials(s, partial_slab); 3238 } 3239 3240 static void put_partials_cpu(struct kmem_cache *s, 3241 struct kmem_cache_cpu *c) 3242 { 3243 struct slab *partial_slab; 3244 3245 partial_slab = slub_percpu_partial(c); 3246 c->partial = NULL; 3247 3248 if (partial_slab) 3249 __put_partials(s, partial_slab); 3250 } 3251 3252 /* 3253 * Put a slab into a partial slab slot if available. 3254 * 3255 * If we did not find a slot then simply move all the partials to the 3256 * per node partial list. 3257 */ 3258 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3259 { 3260 struct slab *oldslab; 3261 struct slab *slab_to_put = NULL; 3262 unsigned long flags; 3263 int slabs = 0; 3264 3265 local_lock_irqsave(&s->cpu_slab->lock, flags); 3266 3267 oldslab = this_cpu_read(s->cpu_slab->partial); 3268 3269 if (oldslab) { 3270 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3271 /* 3272 * Partial array is full. Move the existing set to the 3273 * per node partial list. Postpone the actual unfreezing 3274 * outside of the critical section. 3275 */ 3276 slab_to_put = oldslab; 3277 oldslab = NULL; 3278 } else { 3279 slabs = oldslab->slabs; 3280 } 3281 } 3282 3283 slabs++; 3284 3285 slab->slabs = slabs; 3286 slab->next = oldslab; 3287 3288 this_cpu_write(s->cpu_slab->partial, slab); 3289 3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3291 3292 if (slab_to_put) { 3293 __put_partials(s, slab_to_put); 3294 stat(s, CPU_PARTIAL_DRAIN); 3295 } 3296 } 3297 3298 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3299 3300 static inline void put_partials(struct kmem_cache *s) { } 3301 static inline void put_partials_cpu(struct kmem_cache *s, 3302 struct kmem_cache_cpu *c) { } 3303 3304 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3305 3306 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3307 { 3308 unsigned long flags; 3309 struct slab *slab; 3310 void *freelist; 3311 3312 local_lock_irqsave(&s->cpu_slab->lock, flags); 3313 3314 slab = c->slab; 3315 freelist = c->freelist; 3316 3317 c->slab = NULL; 3318 c->freelist = NULL; 3319 c->tid = next_tid(c->tid); 3320 3321 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3322 3323 if (slab) { 3324 deactivate_slab(s, slab, freelist); 3325 stat(s, CPUSLAB_FLUSH); 3326 } 3327 } 3328 3329 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3330 { 3331 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3332 void *freelist = c->freelist; 3333 struct slab *slab = c->slab; 3334 3335 c->slab = NULL; 3336 c->freelist = NULL; 3337 c->tid = next_tid(c->tid); 3338 3339 if (slab) { 3340 deactivate_slab(s, slab, freelist); 3341 stat(s, CPUSLAB_FLUSH); 3342 } 3343 3344 put_partials_cpu(s, c); 3345 } 3346 3347 struct slub_flush_work { 3348 struct work_struct work; 3349 struct kmem_cache *s; 3350 bool skip; 3351 }; 3352 3353 /* 3354 * Flush cpu slab. 3355 * 3356 * Called from CPU work handler with migration disabled. 3357 */ 3358 static void flush_cpu_slab(struct work_struct *w) 3359 { 3360 struct kmem_cache *s; 3361 struct kmem_cache_cpu *c; 3362 struct slub_flush_work *sfw; 3363 3364 sfw = container_of(w, struct slub_flush_work, work); 3365 3366 s = sfw->s; 3367 c = this_cpu_ptr(s->cpu_slab); 3368 3369 if (c->slab) 3370 flush_slab(s, c); 3371 3372 put_partials(s); 3373 } 3374 3375 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3376 { 3377 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3378 3379 return c->slab || slub_percpu_partial(c); 3380 } 3381 3382 static DEFINE_MUTEX(flush_lock); 3383 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3384 3385 static void flush_all_cpus_locked(struct kmem_cache *s) 3386 { 3387 struct slub_flush_work *sfw; 3388 unsigned int cpu; 3389 3390 lockdep_assert_cpus_held(); 3391 mutex_lock(&flush_lock); 3392 3393 for_each_online_cpu(cpu) { 3394 sfw = &per_cpu(slub_flush, cpu); 3395 if (!has_cpu_slab(cpu, s)) { 3396 sfw->skip = true; 3397 continue; 3398 } 3399 INIT_WORK(&sfw->work, flush_cpu_slab); 3400 sfw->skip = false; 3401 sfw->s = s; 3402 queue_work_on(cpu, flushwq, &sfw->work); 3403 } 3404 3405 for_each_online_cpu(cpu) { 3406 sfw = &per_cpu(slub_flush, cpu); 3407 if (sfw->skip) 3408 continue; 3409 flush_work(&sfw->work); 3410 } 3411 3412 mutex_unlock(&flush_lock); 3413 } 3414 3415 static void flush_all(struct kmem_cache *s) 3416 { 3417 cpus_read_lock(); 3418 flush_all_cpus_locked(s); 3419 cpus_read_unlock(); 3420 } 3421 3422 /* 3423 * Use the cpu notifier to insure that the cpu slabs are flushed when 3424 * necessary. 3425 */ 3426 static int slub_cpu_dead(unsigned int cpu) 3427 { 3428 struct kmem_cache *s; 3429 3430 mutex_lock(&slab_mutex); 3431 list_for_each_entry(s, &slab_caches, list) 3432 __flush_cpu_slab(s, cpu); 3433 mutex_unlock(&slab_mutex); 3434 return 0; 3435 } 3436 3437 #else /* CONFIG_SLUB_TINY */ 3438 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3439 static inline void flush_all(struct kmem_cache *s) { } 3440 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3441 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3442 #endif /* CONFIG_SLUB_TINY */ 3443 3444 /* 3445 * Check if the objects in a per cpu structure fit numa 3446 * locality expectations. 3447 */ 3448 static inline int node_match(struct slab *slab, int node) 3449 { 3450 #ifdef CONFIG_NUMA 3451 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3452 return 0; 3453 #endif 3454 return 1; 3455 } 3456 3457 #ifdef CONFIG_SLUB_DEBUG 3458 static int count_free(struct slab *slab) 3459 { 3460 return slab->objects - slab->inuse; 3461 } 3462 3463 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3464 { 3465 return atomic_long_read(&n->total_objects); 3466 } 3467 3468 /* Supports checking bulk free of a constructed freelist */ 3469 static inline bool free_debug_processing(struct kmem_cache *s, 3470 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3471 unsigned long addr, depot_stack_handle_t handle) 3472 { 3473 bool checks_ok = false; 3474 void *object = head; 3475 int cnt = 0; 3476 3477 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3478 if (!check_slab(s, slab)) 3479 goto out; 3480 } 3481 3482 if (slab->inuse < *bulk_cnt) { 3483 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3484 slab->inuse, *bulk_cnt); 3485 goto out; 3486 } 3487 3488 next_object: 3489 3490 if (++cnt > *bulk_cnt) 3491 goto out_cnt; 3492 3493 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3494 if (!free_consistency_checks(s, slab, object, addr)) 3495 goto out; 3496 } 3497 3498 if (s->flags & SLAB_STORE_USER) 3499 set_track_update(s, object, TRACK_FREE, addr, handle); 3500 trace(s, slab, object, 0); 3501 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3502 init_object(s, object, SLUB_RED_INACTIVE); 3503 3504 /* Reached end of constructed freelist yet? */ 3505 if (object != tail) { 3506 object = get_freepointer(s, object); 3507 goto next_object; 3508 } 3509 checks_ok = true; 3510 3511 out_cnt: 3512 if (cnt != *bulk_cnt) { 3513 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3514 *bulk_cnt, cnt); 3515 *bulk_cnt = cnt; 3516 } 3517 3518 out: 3519 3520 if (!checks_ok) 3521 slab_fix(s, "Object at 0x%p not freed", object); 3522 3523 return checks_ok; 3524 } 3525 #endif /* CONFIG_SLUB_DEBUG */ 3526 3527 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3528 static unsigned long count_partial(struct kmem_cache_node *n, 3529 int (*get_count)(struct slab *)) 3530 { 3531 unsigned long flags; 3532 unsigned long x = 0; 3533 struct slab *slab; 3534 3535 spin_lock_irqsave(&n->list_lock, flags); 3536 list_for_each_entry(slab, &n->partial, slab_list) 3537 x += get_count(slab); 3538 spin_unlock_irqrestore(&n->list_lock, flags); 3539 return x; 3540 } 3541 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3542 3543 #ifdef CONFIG_SLUB_DEBUG 3544 #define MAX_PARTIAL_TO_SCAN 10000 3545 3546 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3547 { 3548 unsigned long flags; 3549 unsigned long x = 0; 3550 struct slab *slab; 3551 3552 spin_lock_irqsave(&n->list_lock, flags); 3553 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3554 list_for_each_entry(slab, &n->partial, slab_list) 3555 x += slab->objects - slab->inuse; 3556 } else { 3557 /* 3558 * For a long list, approximate the total count of objects in 3559 * it to meet the limit on the number of slabs to scan. 3560 * Scan from both the list's head and tail for better accuracy. 3561 */ 3562 unsigned long scanned = 0; 3563 3564 list_for_each_entry(slab, &n->partial, slab_list) { 3565 x += slab->objects - slab->inuse; 3566 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3567 break; 3568 } 3569 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3570 x += slab->objects - slab->inuse; 3571 if (++scanned == MAX_PARTIAL_TO_SCAN) 3572 break; 3573 } 3574 x = mult_frac(x, n->nr_partial, scanned); 3575 x = min(x, node_nr_objs(n)); 3576 } 3577 spin_unlock_irqrestore(&n->list_lock, flags); 3578 return x; 3579 } 3580 3581 static noinline void 3582 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3583 { 3584 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3585 DEFAULT_RATELIMIT_BURST); 3586 int cpu = raw_smp_processor_id(); 3587 int node; 3588 struct kmem_cache_node *n; 3589 3590 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3591 return; 3592 3593 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3594 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3595 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3596 s->name, s->object_size, s->size, oo_order(s->oo), 3597 oo_order(s->min)); 3598 3599 if (oo_order(s->min) > get_order(s->object_size)) 3600 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3601 s->name); 3602 3603 for_each_kmem_cache_node(s, node, n) { 3604 unsigned long nr_slabs; 3605 unsigned long nr_objs; 3606 unsigned long nr_free; 3607 3608 nr_free = count_partial_free_approx(n); 3609 nr_slabs = node_nr_slabs(n); 3610 nr_objs = node_nr_objs(n); 3611 3612 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3613 node, nr_slabs, nr_objs, nr_free); 3614 } 3615 } 3616 #else /* CONFIG_SLUB_DEBUG */ 3617 static inline void 3618 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3619 #endif 3620 3621 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3622 { 3623 if (unlikely(slab_test_pfmemalloc(slab))) 3624 return gfp_pfmemalloc_allowed(gfpflags); 3625 3626 return true; 3627 } 3628 3629 #ifndef CONFIG_SLUB_TINY 3630 static inline bool 3631 __update_cpu_freelist_fast(struct kmem_cache *s, 3632 void *freelist_old, void *freelist_new, 3633 unsigned long tid) 3634 { 3635 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3636 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3637 3638 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3639 &old.full, new.full); 3640 } 3641 3642 /* 3643 * Check the slab->freelist and either transfer the freelist to the 3644 * per cpu freelist or deactivate the slab. 3645 * 3646 * The slab is still frozen if the return value is not NULL. 3647 * 3648 * If this function returns NULL then the slab has been unfrozen. 3649 */ 3650 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3651 { 3652 struct slab new; 3653 unsigned long counters; 3654 void *freelist; 3655 3656 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3657 3658 do { 3659 freelist = slab->freelist; 3660 counters = slab->counters; 3661 3662 new.counters = counters; 3663 3664 new.inuse = slab->objects; 3665 new.frozen = freelist != NULL; 3666 3667 } while (!__slab_update_freelist(s, slab, 3668 freelist, counters, 3669 NULL, new.counters, 3670 "get_freelist")); 3671 3672 return freelist; 3673 } 3674 3675 /* 3676 * Freeze the partial slab and return the pointer to the freelist. 3677 */ 3678 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3679 { 3680 struct slab new; 3681 unsigned long counters; 3682 void *freelist; 3683 3684 do { 3685 freelist = slab->freelist; 3686 counters = slab->counters; 3687 3688 new.counters = counters; 3689 VM_BUG_ON(new.frozen); 3690 3691 new.inuse = slab->objects; 3692 new.frozen = 1; 3693 3694 } while (!slab_update_freelist(s, slab, 3695 freelist, counters, 3696 NULL, new.counters, 3697 "freeze_slab")); 3698 3699 return freelist; 3700 } 3701 3702 /* 3703 * Slow path. The lockless freelist is empty or we need to perform 3704 * debugging duties. 3705 * 3706 * Processing is still very fast if new objects have been freed to the 3707 * regular freelist. In that case we simply take over the regular freelist 3708 * as the lockless freelist and zap the regular freelist. 3709 * 3710 * If that is not working then we fall back to the partial lists. We take the 3711 * first element of the freelist as the object to allocate now and move the 3712 * rest of the freelist to the lockless freelist. 3713 * 3714 * And if we were unable to get a new slab from the partial slab lists then 3715 * we need to allocate a new slab. This is the slowest path since it involves 3716 * a call to the page allocator and the setup of a new slab. 3717 * 3718 * Version of __slab_alloc to use when we know that preemption is 3719 * already disabled (which is the case for bulk allocation). 3720 */ 3721 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3722 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3723 { 3724 void *freelist; 3725 struct slab *slab; 3726 unsigned long flags; 3727 struct partial_context pc; 3728 bool try_thisnode = true; 3729 3730 stat(s, ALLOC_SLOWPATH); 3731 3732 reread_slab: 3733 3734 slab = READ_ONCE(c->slab); 3735 if (!slab) { 3736 /* 3737 * if the node is not online or has no normal memory, just 3738 * ignore the node constraint 3739 */ 3740 if (unlikely(node != NUMA_NO_NODE && 3741 !node_isset(node, slab_nodes))) 3742 node = NUMA_NO_NODE; 3743 goto new_slab; 3744 } 3745 3746 if (unlikely(!node_match(slab, node))) { 3747 /* 3748 * same as above but node_match() being false already 3749 * implies node != NUMA_NO_NODE 3750 */ 3751 if (!node_isset(node, slab_nodes)) { 3752 node = NUMA_NO_NODE; 3753 } else { 3754 stat(s, ALLOC_NODE_MISMATCH); 3755 goto deactivate_slab; 3756 } 3757 } 3758 3759 /* 3760 * By rights, we should be searching for a slab page that was 3761 * PFMEMALLOC but right now, we are losing the pfmemalloc 3762 * information when the page leaves the per-cpu allocator 3763 */ 3764 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3765 goto deactivate_slab; 3766 3767 /* must check again c->slab in case we got preempted and it changed */ 3768 local_lock_irqsave(&s->cpu_slab->lock, flags); 3769 if (unlikely(slab != c->slab)) { 3770 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3771 goto reread_slab; 3772 } 3773 freelist = c->freelist; 3774 if (freelist) 3775 goto load_freelist; 3776 3777 freelist = get_freelist(s, slab); 3778 3779 if (!freelist) { 3780 c->slab = NULL; 3781 c->tid = next_tid(c->tid); 3782 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3783 stat(s, DEACTIVATE_BYPASS); 3784 goto new_slab; 3785 } 3786 3787 stat(s, ALLOC_REFILL); 3788 3789 load_freelist: 3790 3791 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3792 3793 /* 3794 * freelist is pointing to the list of objects to be used. 3795 * slab is pointing to the slab from which the objects are obtained. 3796 * That slab must be frozen for per cpu allocations to work. 3797 */ 3798 VM_BUG_ON(!c->slab->frozen); 3799 c->freelist = get_freepointer(s, freelist); 3800 c->tid = next_tid(c->tid); 3801 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3802 return freelist; 3803 3804 deactivate_slab: 3805 3806 local_lock_irqsave(&s->cpu_slab->lock, flags); 3807 if (slab != c->slab) { 3808 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3809 goto reread_slab; 3810 } 3811 freelist = c->freelist; 3812 c->slab = NULL; 3813 c->freelist = NULL; 3814 c->tid = next_tid(c->tid); 3815 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3816 deactivate_slab(s, slab, freelist); 3817 3818 new_slab: 3819 3820 #ifdef CONFIG_SLUB_CPU_PARTIAL 3821 while (slub_percpu_partial(c)) { 3822 local_lock_irqsave(&s->cpu_slab->lock, flags); 3823 if (unlikely(c->slab)) { 3824 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3825 goto reread_slab; 3826 } 3827 if (unlikely(!slub_percpu_partial(c))) { 3828 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3829 /* we were preempted and partial list got empty */ 3830 goto new_objects; 3831 } 3832 3833 slab = slub_percpu_partial(c); 3834 slub_set_percpu_partial(c, slab); 3835 3836 if (likely(node_match(slab, node) && 3837 pfmemalloc_match(slab, gfpflags))) { 3838 c->slab = slab; 3839 freelist = get_freelist(s, slab); 3840 VM_BUG_ON(!freelist); 3841 stat(s, CPU_PARTIAL_ALLOC); 3842 goto load_freelist; 3843 } 3844 3845 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3846 3847 slab->next = NULL; 3848 __put_partials(s, slab); 3849 } 3850 #endif 3851 3852 new_objects: 3853 3854 pc.flags = gfpflags; 3855 /* 3856 * When a preferred node is indicated but no __GFP_THISNODE 3857 * 3858 * 1) try to get a partial slab from target node only by having 3859 * __GFP_THISNODE in pc.flags for get_partial() 3860 * 2) if 1) failed, try to allocate a new slab from target node with 3861 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3862 * 3) if 2) failed, retry with original gfpflags which will allow 3863 * get_partial() try partial lists of other nodes before potentially 3864 * allocating new page from other nodes 3865 */ 3866 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3867 && try_thisnode)) 3868 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3869 3870 pc.orig_size = orig_size; 3871 slab = get_partial(s, node, &pc); 3872 if (slab) { 3873 if (kmem_cache_debug(s)) { 3874 freelist = pc.object; 3875 /* 3876 * For debug caches here we had to go through 3877 * alloc_single_from_partial() so just store the 3878 * tracking info and return the object. 3879 */ 3880 if (s->flags & SLAB_STORE_USER) 3881 set_track(s, freelist, TRACK_ALLOC, addr); 3882 3883 return freelist; 3884 } 3885 3886 freelist = freeze_slab(s, slab); 3887 goto retry_load_slab; 3888 } 3889 3890 slub_put_cpu_ptr(s->cpu_slab); 3891 slab = new_slab(s, pc.flags, node); 3892 c = slub_get_cpu_ptr(s->cpu_slab); 3893 3894 if (unlikely(!slab)) { 3895 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3896 && try_thisnode) { 3897 try_thisnode = false; 3898 goto new_objects; 3899 } 3900 slab_out_of_memory(s, gfpflags, node); 3901 return NULL; 3902 } 3903 3904 stat(s, ALLOC_SLAB); 3905 3906 if (kmem_cache_debug(s)) { 3907 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3908 3909 if (unlikely(!freelist)) 3910 goto new_objects; 3911 3912 if (s->flags & SLAB_STORE_USER) 3913 set_track(s, freelist, TRACK_ALLOC, addr); 3914 3915 return freelist; 3916 } 3917 3918 /* 3919 * No other reference to the slab yet so we can 3920 * muck around with it freely without cmpxchg 3921 */ 3922 freelist = slab->freelist; 3923 slab->freelist = NULL; 3924 slab->inuse = slab->objects; 3925 slab->frozen = 1; 3926 3927 inc_slabs_node(s, slab_nid(slab), slab->objects); 3928 3929 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3930 /* 3931 * For !pfmemalloc_match() case we don't load freelist so that 3932 * we don't make further mismatched allocations easier. 3933 */ 3934 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3935 return freelist; 3936 } 3937 3938 retry_load_slab: 3939 3940 local_lock_irqsave(&s->cpu_slab->lock, flags); 3941 if (unlikely(c->slab)) { 3942 void *flush_freelist = c->freelist; 3943 struct slab *flush_slab = c->slab; 3944 3945 c->slab = NULL; 3946 c->freelist = NULL; 3947 c->tid = next_tid(c->tid); 3948 3949 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3950 3951 deactivate_slab(s, flush_slab, flush_freelist); 3952 3953 stat(s, CPUSLAB_FLUSH); 3954 3955 goto retry_load_slab; 3956 } 3957 c->slab = slab; 3958 3959 goto load_freelist; 3960 } 3961 3962 /* 3963 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3964 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3965 * pointer. 3966 */ 3967 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3968 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3969 { 3970 void *p; 3971 3972 #ifdef CONFIG_PREEMPT_COUNT 3973 /* 3974 * We may have been preempted and rescheduled on a different 3975 * cpu before disabling preemption. Need to reload cpu area 3976 * pointer. 3977 */ 3978 c = slub_get_cpu_ptr(s->cpu_slab); 3979 #endif 3980 3981 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3982 #ifdef CONFIG_PREEMPT_COUNT 3983 slub_put_cpu_ptr(s->cpu_slab); 3984 #endif 3985 return p; 3986 } 3987 3988 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3989 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3990 { 3991 struct kmem_cache_cpu *c; 3992 struct slab *slab; 3993 unsigned long tid; 3994 void *object; 3995 3996 redo: 3997 /* 3998 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3999 * enabled. We may switch back and forth between cpus while 4000 * reading from one cpu area. That does not matter as long 4001 * as we end up on the original cpu again when doing the cmpxchg. 4002 * 4003 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 4004 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 4005 * the tid. If we are preempted and switched to another cpu between the 4006 * two reads, it's OK as the two are still associated with the same cpu 4007 * and cmpxchg later will validate the cpu. 4008 */ 4009 c = raw_cpu_ptr(s->cpu_slab); 4010 tid = READ_ONCE(c->tid); 4011 4012 /* 4013 * Irqless object alloc/free algorithm used here depends on sequence 4014 * of fetching cpu_slab's data. tid should be fetched before anything 4015 * on c to guarantee that object and slab associated with previous tid 4016 * won't be used with current tid. If we fetch tid first, object and 4017 * slab could be one associated with next tid and our alloc/free 4018 * request will be failed. In this case, we will retry. So, no problem. 4019 */ 4020 barrier(); 4021 4022 /* 4023 * The transaction ids are globally unique per cpu and per operation on 4024 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 4025 * occurs on the right processor and that there was no operation on the 4026 * linked list in between. 4027 */ 4028 4029 object = c->freelist; 4030 slab = c->slab; 4031 4032 #ifdef CONFIG_NUMA 4033 if (static_branch_unlikely(&strict_numa) && 4034 node == NUMA_NO_NODE) { 4035 4036 struct mempolicy *mpol = current->mempolicy; 4037 4038 if (mpol) { 4039 /* 4040 * Special BIND rule support. If existing slab 4041 * is in permitted set then do not redirect 4042 * to a particular node. 4043 * Otherwise we apply the memory policy to get 4044 * the node we need to allocate on. 4045 */ 4046 if (mpol->mode != MPOL_BIND || !slab || 4047 !node_isset(slab_nid(slab), mpol->nodes)) 4048 4049 node = mempolicy_slab_node(); 4050 } 4051 } 4052 #endif 4053 4054 if (!USE_LOCKLESS_FAST_PATH() || 4055 unlikely(!object || !slab || !node_match(slab, node))) { 4056 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4057 } else { 4058 void *next_object = get_freepointer_safe(s, object); 4059 4060 /* 4061 * The cmpxchg will only match if there was no additional 4062 * operation and if we are on the right processor. 4063 * 4064 * The cmpxchg does the following atomically (without lock 4065 * semantics!) 4066 * 1. Relocate first pointer to the current per cpu area. 4067 * 2. Verify that tid and freelist have not been changed 4068 * 3. If they were not changed replace tid and freelist 4069 * 4070 * Since this is without lock semantics the protection is only 4071 * against code executing on this cpu *not* from access by 4072 * other cpus. 4073 */ 4074 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4075 note_cmpxchg_failure("slab_alloc", s, tid); 4076 goto redo; 4077 } 4078 prefetch_freepointer(s, next_object); 4079 stat(s, ALLOC_FASTPATH); 4080 } 4081 4082 return object; 4083 } 4084 #else /* CONFIG_SLUB_TINY */ 4085 static void *__slab_alloc_node(struct kmem_cache *s, 4086 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4087 { 4088 struct partial_context pc; 4089 struct slab *slab; 4090 void *object; 4091 4092 pc.flags = gfpflags; 4093 pc.orig_size = orig_size; 4094 slab = get_partial(s, node, &pc); 4095 4096 if (slab) 4097 return pc.object; 4098 4099 slab = new_slab(s, gfpflags, node); 4100 if (unlikely(!slab)) { 4101 slab_out_of_memory(s, gfpflags, node); 4102 return NULL; 4103 } 4104 4105 object = alloc_single_from_new_slab(s, slab, orig_size); 4106 4107 return object; 4108 } 4109 #endif /* CONFIG_SLUB_TINY */ 4110 4111 /* 4112 * If the object has been wiped upon free, make sure it's fully initialized by 4113 * zeroing out freelist pointer. 4114 * 4115 * Note that we also wipe custom freelist pointers. 4116 */ 4117 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4118 void *obj) 4119 { 4120 if (unlikely(slab_want_init_on_free(s)) && obj && 4121 !freeptr_outside_object(s)) 4122 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4123 0, sizeof(void *)); 4124 } 4125 4126 static __fastpath_inline 4127 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4128 { 4129 flags &= gfp_allowed_mask; 4130 4131 might_alloc(flags); 4132 4133 if (unlikely(should_failslab(s, flags))) 4134 return NULL; 4135 4136 return s; 4137 } 4138 4139 static __fastpath_inline 4140 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4141 gfp_t flags, size_t size, void **p, bool init, 4142 unsigned int orig_size) 4143 { 4144 unsigned int zero_size = s->object_size; 4145 bool kasan_init = init; 4146 size_t i; 4147 gfp_t init_flags = flags & gfp_allowed_mask; 4148 4149 /* 4150 * For kmalloc object, the allocated memory size(object_size) is likely 4151 * larger than the requested size(orig_size). If redzone check is 4152 * enabled for the extra space, don't zero it, as it will be redzoned 4153 * soon. The redzone operation for this extra space could be seen as a 4154 * replacement of current poisoning under certain debug option, and 4155 * won't break other sanity checks. 4156 */ 4157 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4158 (s->flags & SLAB_KMALLOC)) 4159 zero_size = orig_size; 4160 4161 /* 4162 * When slab_debug is enabled, avoid memory initialization integrated 4163 * into KASAN and instead zero out the memory via the memset below with 4164 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4165 * cause false-positive reports. This does not lead to a performance 4166 * penalty on production builds, as slab_debug is not intended to be 4167 * enabled there. 4168 */ 4169 if (__slub_debug_enabled()) 4170 kasan_init = false; 4171 4172 /* 4173 * As memory initialization might be integrated into KASAN, 4174 * kasan_slab_alloc and initialization memset must be 4175 * kept together to avoid discrepancies in behavior. 4176 * 4177 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4178 */ 4179 for (i = 0; i < size; i++) { 4180 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4181 if (p[i] && init && (!kasan_init || 4182 !kasan_has_integrated_init())) 4183 memset(p[i], 0, zero_size); 4184 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4185 s->flags, init_flags); 4186 kmsan_slab_alloc(s, p[i], init_flags); 4187 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4188 } 4189 4190 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4191 } 4192 4193 /* 4194 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4195 * have the fastpath folded into their functions. So no function call 4196 * overhead for requests that can be satisfied on the fastpath. 4197 * 4198 * The fastpath works by first checking if the lockless freelist can be used. 4199 * If not then __slab_alloc is called for slow processing. 4200 * 4201 * Otherwise we can simply pick the next object from the lockless free list. 4202 */ 4203 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4204 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4205 { 4206 void *object; 4207 bool init = false; 4208 4209 s = slab_pre_alloc_hook(s, gfpflags); 4210 if (unlikely(!s)) 4211 return NULL; 4212 4213 object = kfence_alloc(s, orig_size, gfpflags); 4214 if (unlikely(object)) 4215 goto out; 4216 4217 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4218 4219 maybe_wipe_obj_freeptr(s, object); 4220 init = slab_want_init_on_alloc(gfpflags, s); 4221 4222 out: 4223 /* 4224 * When init equals 'true', like for kzalloc() family, only 4225 * @orig_size bytes might be zeroed instead of s->object_size 4226 * In case this fails due to memcg_slab_post_alloc_hook(), 4227 * object is set to NULL 4228 */ 4229 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4230 4231 return object; 4232 } 4233 4234 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4235 { 4236 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4237 s->object_size); 4238 4239 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4240 4241 return ret; 4242 } 4243 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4244 4245 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4246 gfp_t gfpflags) 4247 { 4248 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4249 s->object_size); 4250 4251 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4252 4253 return ret; 4254 } 4255 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4256 4257 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4258 { 4259 if (!memcg_kmem_online()) 4260 return true; 4261 4262 return memcg_slab_post_charge(objp, gfpflags); 4263 } 4264 EXPORT_SYMBOL(kmem_cache_charge); 4265 4266 /** 4267 * kmem_cache_alloc_node - Allocate an object on the specified node 4268 * @s: The cache to allocate from. 4269 * @gfpflags: See kmalloc(). 4270 * @node: node number of the target node. 4271 * 4272 * Identical to kmem_cache_alloc but it will allocate memory on the given 4273 * node, which can improve the performance for cpu bound structures. 4274 * 4275 * Fallback to other node is possible if __GFP_THISNODE is not set. 4276 * 4277 * Return: pointer to the new object or %NULL in case of error 4278 */ 4279 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4280 { 4281 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4282 4283 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4284 4285 return ret; 4286 } 4287 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4288 4289 /* 4290 * To avoid unnecessary overhead, we pass through large allocation requests 4291 * directly to the page allocator. We use __GFP_COMP, because we will need to 4292 * know the allocation order to free the pages properly in kfree. 4293 */ 4294 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4295 { 4296 struct folio *folio; 4297 void *ptr = NULL; 4298 unsigned int order = get_order(size); 4299 4300 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4301 flags = kmalloc_fix_flags(flags); 4302 4303 flags |= __GFP_COMP; 4304 4305 if (node == NUMA_NO_NODE) 4306 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order); 4307 else 4308 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL); 4309 4310 if (folio) { 4311 ptr = folio_address(folio); 4312 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4313 PAGE_SIZE << order); 4314 __folio_set_large_kmalloc(folio); 4315 } 4316 4317 ptr = kasan_kmalloc_large(ptr, size, flags); 4318 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4319 kmemleak_alloc(ptr, size, 1, flags); 4320 kmsan_kmalloc_large(ptr, size, flags); 4321 4322 return ptr; 4323 } 4324 4325 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4326 { 4327 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4328 4329 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4330 flags, NUMA_NO_NODE); 4331 return ret; 4332 } 4333 EXPORT_SYMBOL(__kmalloc_large_noprof); 4334 4335 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4336 { 4337 void *ret = ___kmalloc_large_node(size, flags, node); 4338 4339 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4340 flags, node); 4341 return ret; 4342 } 4343 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4344 4345 static __always_inline 4346 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4347 unsigned long caller) 4348 { 4349 struct kmem_cache *s; 4350 void *ret; 4351 4352 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4353 ret = __kmalloc_large_node_noprof(size, flags, node); 4354 trace_kmalloc(caller, ret, size, 4355 PAGE_SIZE << get_order(size), flags, node); 4356 return ret; 4357 } 4358 4359 if (unlikely(!size)) 4360 return ZERO_SIZE_PTR; 4361 4362 s = kmalloc_slab(size, b, flags, caller); 4363 4364 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4365 ret = kasan_kmalloc(s, ret, size, flags); 4366 trace_kmalloc(caller, ret, size, s->size, flags, node); 4367 return ret; 4368 } 4369 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4370 { 4371 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4372 } 4373 EXPORT_SYMBOL(__kmalloc_node_noprof); 4374 4375 void *__kmalloc_noprof(size_t size, gfp_t flags) 4376 { 4377 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4378 } 4379 EXPORT_SYMBOL(__kmalloc_noprof); 4380 4381 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4382 int node, unsigned long caller) 4383 { 4384 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4385 4386 } 4387 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4388 4389 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4390 { 4391 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4392 _RET_IP_, size); 4393 4394 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4395 4396 ret = kasan_kmalloc(s, ret, size, gfpflags); 4397 return ret; 4398 } 4399 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4400 4401 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4402 int node, size_t size) 4403 { 4404 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4405 4406 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4407 4408 ret = kasan_kmalloc(s, ret, size, gfpflags); 4409 return ret; 4410 } 4411 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4412 4413 static noinline void free_to_partial_list( 4414 struct kmem_cache *s, struct slab *slab, 4415 void *head, void *tail, int bulk_cnt, 4416 unsigned long addr) 4417 { 4418 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4419 struct slab *slab_free = NULL; 4420 int cnt = bulk_cnt; 4421 unsigned long flags; 4422 depot_stack_handle_t handle = 0; 4423 4424 if (s->flags & SLAB_STORE_USER) 4425 handle = set_track_prepare(); 4426 4427 spin_lock_irqsave(&n->list_lock, flags); 4428 4429 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4430 void *prior = slab->freelist; 4431 4432 /* Perform the actual freeing while we still hold the locks */ 4433 slab->inuse -= cnt; 4434 set_freepointer(s, tail, prior); 4435 slab->freelist = head; 4436 4437 /* 4438 * If the slab is empty, and node's partial list is full, 4439 * it should be discarded anyway no matter it's on full or 4440 * partial list. 4441 */ 4442 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4443 slab_free = slab; 4444 4445 if (!prior) { 4446 /* was on full list */ 4447 remove_full(s, n, slab); 4448 if (!slab_free) { 4449 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4450 stat(s, FREE_ADD_PARTIAL); 4451 } 4452 } else if (slab_free) { 4453 remove_partial(n, slab); 4454 stat(s, FREE_REMOVE_PARTIAL); 4455 } 4456 } 4457 4458 if (slab_free) { 4459 /* 4460 * Update the counters while still holding n->list_lock to 4461 * prevent spurious validation warnings 4462 */ 4463 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4464 } 4465 4466 spin_unlock_irqrestore(&n->list_lock, flags); 4467 4468 if (slab_free) { 4469 stat(s, FREE_SLAB); 4470 free_slab(s, slab_free); 4471 } 4472 } 4473 4474 /* 4475 * Slow path handling. This may still be called frequently since objects 4476 * have a longer lifetime than the cpu slabs in most processing loads. 4477 * 4478 * So we still attempt to reduce cache line usage. Just take the slab 4479 * lock and free the item. If there is no additional partial slab 4480 * handling required then we can return immediately. 4481 */ 4482 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4483 void *head, void *tail, int cnt, 4484 unsigned long addr) 4485 4486 { 4487 void *prior; 4488 int was_frozen; 4489 struct slab new; 4490 unsigned long counters; 4491 struct kmem_cache_node *n = NULL; 4492 unsigned long flags; 4493 bool on_node_partial; 4494 4495 stat(s, FREE_SLOWPATH); 4496 4497 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4498 free_to_partial_list(s, slab, head, tail, cnt, addr); 4499 return; 4500 } 4501 4502 do { 4503 if (unlikely(n)) { 4504 spin_unlock_irqrestore(&n->list_lock, flags); 4505 n = NULL; 4506 } 4507 prior = slab->freelist; 4508 counters = slab->counters; 4509 set_freepointer(s, tail, prior); 4510 new.counters = counters; 4511 was_frozen = new.frozen; 4512 new.inuse -= cnt; 4513 if ((!new.inuse || !prior) && !was_frozen) { 4514 /* Needs to be taken off a list */ 4515 if (!kmem_cache_has_cpu_partial(s) || prior) { 4516 4517 n = get_node(s, slab_nid(slab)); 4518 /* 4519 * Speculatively acquire the list_lock. 4520 * If the cmpxchg does not succeed then we may 4521 * drop the list_lock without any processing. 4522 * 4523 * Otherwise the list_lock will synchronize with 4524 * other processors updating the list of slabs. 4525 */ 4526 spin_lock_irqsave(&n->list_lock, flags); 4527 4528 on_node_partial = slab_test_node_partial(slab); 4529 } 4530 } 4531 4532 } while (!slab_update_freelist(s, slab, 4533 prior, counters, 4534 head, new.counters, 4535 "__slab_free")); 4536 4537 if (likely(!n)) { 4538 4539 if (likely(was_frozen)) { 4540 /* 4541 * The list lock was not taken therefore no list 4542 * activity can be necessary. 4543 */ 4544 stat(s, FREE_FROZEN); 4545 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4546 /* 4547 * If we started with a full slab then put it onto the 4548 * per cpu partial list. 4549 */ 4550 put_cpu_partial(s, slab, 1); 4551 stat(s, CPU_PARTIAL_FREE); 4552 } 4553 4554 return; 4555 } 4556 4557 /* 4558 * This slab was partially empty but not on the per-node partial list, 4559 * in which case we shouldn't manipulate its list, just return. 4560 */ 4561 if (prior && !on_node_partial) { 4562 spin_unlock_irqrestore(&n->list_lock, flags); 4563 return; 4564 } 4565 4566 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4567 goto slab_empty; 4568 4569 /* 4570 * Objects left in the slab. If it was not on the partial list before 4571 * then add it. 4572 */ 4573 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4574 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4575 stat(s, FREE_ADD_PARTIAL); 4576 } 4577 spin_unlock_irqrestore(&n->list_lock, flags); 4578 return; 4579 4580 slab_empty: 4581 if (prior) { 4582 /* 4583 * Slab on the partial list. 4584 */ 4585 remove_partial(n, slab); 4586 stat(s, FREE_REMOVE_PARTIAL); 4587 } 4588 4589 spin_unlock_irqrestore(&n->list_lock, flags); 4590 stat(s, FREE_SLAB); 4591 discard_slab(s, slab); 4592 } 4593 4594 #ifndef CONFIG_SLUB_TINY 4595 /* 4596 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4597 * can perform fastpath freeing without additional function calls. 4598 * 4599 * The fastpath is only possible if we are freeing to the current cpu slab 4600 * of this processor. This typically the case if we have just allocated 4601 * the item before. 4602 * 4603 * If fastpath is not possible then fall back to __slab_free where we deal 4604 * with all sorts of special processing. 4605 * 4606 * Bulk free of a freelist with several objects (all pointing to the 4607 * same slab) possible by specifying head and tail ptr, plus objects 4608 * count (cnt). Bulk free indicated by tail pointer being set. 4609 */ 4610 static __always_inline void do_slab_free(struct kmem_cache *s, 4611 struct slab *slab, void *head, void *tail, 4612 int cnt, unsigned long addr) 4613 { 4614 struct kmem_cache_cpu *c; 4615 unsigned long tid; 4616 void **freelist; 4617 4618 redo: 4619 /* 4620 * Determine the currently cpus per cpu slab. 4621 * The cpu may change afterward. However that does not matter since 4622 * data is retrieved via this pointer. If we are on the same cpu 4623 * during the cmpxchg then the free will succeed. 4624 */ 4625 c = raw_cpu_ptr(s->cpu_slab); 4626 tid = READ_ONCE(c->tid); 4627 4628 /* Same with comment on barrier() in __slab_alloc_node() */ 4629 barrier(); 4630 4631 if (unlikely(slab != c->slab)) { 4632 __slab_free(s, slab, head, tail, cnt, addr); 4633 return; 4634 } 4635 4636 if (USE_LOCKLESS_FAST_PATH()) { 4637 freelist = READ_ONCE(c->freelist); 4638 4639 set_freepointer(s, tail, freelist); 4640 4641 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4642 note_cmpxchg_failure("slab_free", s, tid); 4643 goto redo; 4644 } 4645 } else { 4646 /* Update the free list under the local lock */ 4647 local_lock(&s->cpu_slab->lock); 4648 c = this_cpu_ptr(s->cpu_slab); 4649 if (unlikely(slab != c->slab)) { 4650 local_unlock(&s->cpu_slab->lock); 4651 goto redo; 4652 } 4653 tid = c->tid; 4654 freelist = c->freelist; 4655 4656 set_freepointer(s, tail, freelist); 4657 c->freelist = head; 4658 c->tid = next_tid(tid); 4659 4660 local_unlock(&s->cpu_slab->lock); 4661 } 4662 stat_add(s, FREE_FASTPATH, cnt); 4663 } 4664 #else /* CONFIG_SLUB_TINY */ 4665 static void do_slab_free(struct kmem_cache *s, 4666 struct slab *slab, void *head, void *tail, 4667 int cnt, unsigned long addr) 4668 { 4669 __slab_free(s, slab, head, tail, cnt, addr); 4670 } 4671 #endif /* CONFIG_SLUB_TINY */ 4672 4673 static __fastpath_inline 4674 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4675 unsigned long addr) 4676 { 4677 memcg_slab_free_hook(s, slab, &object, 1); 4678 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4679 4680 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4681 do_slab_free(s, slab, object, object, 1, addr); 4682 } 4683 4684 #ifdef CONFIG_MEMCG 4685 /* Do not inline the rare memcg charging failed path into the allocation path */ 4686 static noinline 4687 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4688 { 4689 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4690 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4691 } 4692 #endif 4693 4694 static __fastpath_inline 4695 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4696 void *tail, void **p, int cnt, unsigned long addr) 4697 { 4698 memcg_slab_free_hook(s, slab, p, cnt); 4699 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4700 /* 4701 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4702 * to remove objects, whose reuse must be delayed. 4703 */ 4704 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4705 do_slab_free(s, slab, head, tail, cnt, addr); 4706 } 4707 4708 #ifdef CONFIG_SLUB_RCU_DEBUG 4709 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4710 { 4711 struct rcu_delayed_free *delayed_free = 4712 container_of(rcu_head, struct rcu_delayed_free, head); 4713 void *object = delayed_free->object; 4714 struct slab *slab = virt_to_slab(object); 4715 struct kmem_cache *s; 4716 4717 kfree(delayed_free); 4718 4719 if (WARN_ON(is_kfence_address(object))) 4720 return; 4721 4722 /* find the object and the cache again */ 4723 if (WARN_ON(!slab)) 4724 return; 4725 s = slab->slab_cache; 4726 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4727 return; 4728 4729 /* resume freeing */ 4730 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4731 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4732 } 4733 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4734 4735 #ifdef CONFIG_KASAN_GENERIC 4736 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4737 { 4738 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4739 } 4740 #endif 4741 4742 static inline struct kmem_cache *virt_to_cache(const void *obj) 4743 { 4744 struct slab *slab; 4745 4746 slab = virt_to_slab(obj); 4747 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4748 return NULL; 4749 return slab->slab_cache; 4750 } 4751 4752 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4753 { 4754 struct kmem_cache *cachep; 4755 4756 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4757 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4758 return s; 4759 4760 cachep = virt_to_cache(x); 4761 if (WARN(cachep && cachep != s, 4762 "%s: Wrong slab cache. %s but object is from %s\n", 4763 __func__, s->name, cachep->name)) 4764 print_tracking(cachep, x); 4765 return cachep; 4766 } 4767 4768 /** 4769 * kmem_cache_free - Deallocate an object 4770 * @s: The cache the allocation was from. 4771 * @x: The previously allocated object. 4772 * 4773 * Free an object which was previously allocated from this 4774 * cache. 4775 */ 4776 void kmem_cache_free(struct kmem_cache *s, void *x) 4777 { 4778 s = cache_from_obj(s, x); 4779 if (!s) 4780 return; 4781 trace_kmem_cache_free(_RET_IP_, x, s); 4782 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4783 } 4784 EXPORT_SYMBOL(kmem_cache_free); 4785 4786 static void free_large_kmalloc(struct folio *folio, void *object) 4787 { 4788 unsigned int order = folio_order(folio); 4789 4790 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { 4791 dump_page(&folio->page, "Not a kmalloc allocation"); 4792 return; 4793 } 4794 4795 if (WARN_ON_ONCE(order == 0)) 4796 pr_warn_once("object pointer: 0x%p\n", object); 4797 4798 kmemleak_free(object); 4799 kasan_kfree_large(object); 4800 kmsan_kfree_large(object); 4801 4802 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4803 -(PAGE_SIZE << order)); 4804 __folio_clear_large_kmalloc(folio); 4805 free_frozen_pages(&folio->page, order); 4806 } 4807 4808 /* 4809 * Given an rcu_head embedded within an object obtained from kvmalloc at an 4810 * offset < 4k, free the object in question. 4811 */ 4812 void kvfree_rcu_cb(struct rcu_head *head) 4813 { 4814 void *obj = head; 4815 struct folio *folio; 4816 struct slab *slab; 4817 struct kmem_cache *s; 4818 void *slab_addr; 4819 4820 if (is_vmalloc_addr(obj)) { 4821 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4822 vfree(obj); 4823 return; 4824 } 4825 4826 folio = virt_to_folio(obj); 4827 if (!folio_test_slab(folio)) { 4828 /* 4829 * rcu_head offset can be only less than page size so no need to 4830 * consider folio order 4831 */ 4832 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4833 free_large_kmalloc(folio, obj); 4834 return; 4835 } 4836 4837 slab = folio_slab(folio); 4838 s = slab->slab_cache; 4839 slab_addr = folio_address(folio); 4840 4841 if (is_kfence_address(obj)) { 4842 obj = kfence_object_start(obj); 4843 } else { 4844 unsigned int idx = __obj_to_index(s, slab_addr, obj); 4845 4846 obj = slab_addr + s->size * idx; 4847 obj = fixup_red_left(s, obj); 4848 } 4849 4850 slab_free(s, slab, obj, _RET_IP_); 4851 } 4852 4853 /** 4854 * kfree - free previously allocated memory 4855 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4856 * 4857 * If @object is NULL, no operation is performed. 4858 */ 4859 void kfree(const void *object) 4860 { 4861 struct folio *folio; 4862 struct slab *slab; 4863 struct kmem_cache *s; 4864 void *x = (void *)object; 4865 4866 trace_kfree(_RET_IP_, object); 4867 4868 if (unlikely(ZERO_OR_NULL_PTR(object))) 4869 return; 4870 4871 folio = virt_to_folio(object); 4872 if (unlikely(!folio_test_slab(folio))) { 4873 free_large_kmalloc(folio, (void *)object); 4874 return; 4875 } 4876 4877 slab = folio_slab(folio); 4878 s = slab->slab_cache; 4879 slab_free(s, slab, x, _RET_IP_); 4880 } 4881 EXPORT_SYMBOL(kfree); 4882 4883 static __always_inline __realloc_size(2) void * 4884 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4885 { 4886 void *ret; 4887 size_t ks = 0; 4888 int orig_size = 0; 4889 struct kmem_cache *s = NULL; 4890 4891 if (unlikely(ZERO_OR_NULL_PTR(p))) 4892 goto alloc_new; 4893 4894 /* Check for double-free. */ 4895 if (!kasan_check_byte(p)) 4896 return NULL; 4897 4898 if (is_kfence_address(p)) { 4899 ks = orig_size = kfence_ksize(p); 4900 } else { 4901 struct folio *folio; 4902 4903 folio = virt_to_folio(p); 4904 if (unlikely(!folio_test_slab(folio))) { 4905 /* Big kmalloc object */ 4906 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4907 WARN_ON(p != folio_address(folio)); 4908 ks = folio_size(folio); 4909 } else { 4910 s = folio_slab(folio)->slab_cache; 4911 orig_size = get_orig_size(s, (void *)p); 4912 ks = s->object_size; 4913 } 4914 } 4915 4916 /* If the old object doesn't fit, allocate a bigger one */ 4917 if (new_size > ks) 4918 goto alloc_new; 4919 4920 /* Zero out spare memory. */ 4921 if (want_init_on_alloc(flags)) { 4922 kasan_disable_current(); 4923 if (orig_size && orig_size < new_size) 4924 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4925 else 4926 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4927 kasan_enable_current(); 4928 } 4929 4930 /* Setup kmalloc redzone when needed */ 4931 if (s && slub_debug_orig_size(s)) { 4932 set_orig_size(s, (void *)p, new_size); 4933 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4934 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4935 SLUB_RED_ACTIVE, ks - new_size); 4936 } 4937 4938 p = kasan_krealloc(p, new_size, flags); 4939 return (void *)p; 4940 4941 alloc_new: 4942 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4943 if (ret && p) { 4944 /* Disable KASAN checks as the object's redzone is accessed. */ 4945 kasan_disable_current(); 4946 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4947 kasan_enable_current(); 4948 } 4949 4950 return ret; 4951 } 4952 4953 /** 4954 * krealloc - reallocate memory. The contents will remain unchanged. 4955 * @p: object to reallocate memory for. 4956 * @new_size: how many bytes of memory are required. 4957 * @flags: the type of memory to allocate. 4958 * 4959 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4960 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4961 * 4962 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4963 * initial memory allocation, every subsequent call to this API for the same 4964 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4965 * __GFP_ZERO is not fully honored by this API. 4966 * 4967 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4968 * size of an allocation (but not the exact size it was allocated with) and 4969 * hence implements the following semantics for shrinking and growing buffers 4970 * with __GFP_ZERO:: 4971 * 4972 * new bucket 4973 * 0 size size 4974 * |--------|----------------| 4975 * | keep | zero | 4976 * 4977 * Otherwise, the original allocation size 'orig_size' could be used to 4978 * precisely clear the requested size, and the new size will also be stored 4979 * as the new 'orig_size'. 4980 * 4981 * In any case, the contents of the object pointed to are preserved up to the 4982 * lesser of the new and old sizes. 4983 * 4984 * Return: pointer to the allocated memory or %NULL in case of error 4985 */ 4986 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4987 { 4988 void *ret; 4989 4990 if (unlikely(!new_size)) { 4991 kfree(p); 4992 return ZERO_SIZE_PTR; 4993 } 4994 4995 ret = __do_krealloc(p, new_size, flags); 4996 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4997 kfree(p); 4998 4999 return ret; 5000 } 5001 EXPORT_SYMBOL(krealloc_noprof); 5002 5003 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 5004 { 5005 /* 5006 * We want to attempt a large physically contiguous block first because 5007 * it is less likely to fragment multiple larger blocks and therefore 5008 * contribute to a long term fragmentation less than vmalloc fallback. 5009 * However make sure that larger requests are not too disruptive - i.e. 5010 * do not direct reclaim unless physically continuous memory is preferred 5011 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to 5012 * start working in the background 5013 */ 5014 if (size > PAGE_SIZE) { 5015 flags |= __GFP_NOWARN; 5016 5017 if (!(flags & __GFP_RETRY_MAYFAIL)) 5018 flags &= ~__GFP_DIRECT_RECLAIM; 5019 5020 /* nofail semantic is implemented by the vmalloc fallback */ 5021 flags &= ~__GFP_NOFAIL; 5022 } 5023 5024 return flags; 5025 } 5026 5027 /** 5028 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 5029 * failure, fall back to non-contiguous (vmalloc) allocation. 5030 * @size: size of the request. 5031 * @b: which set of kmalloc buckets to allocate from. 5032 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 5033 * @node: numa node to allocate from 5034 * 5035 * Uses kmalloc to get the memory but if the allocation fails then falls back 5036 * to the vmalloc allocator. Use kvfree for freeing the memory. 5037 * 5038 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 5039 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 5040 * preferable to the vmalloc fallback, due to visible performance drawbacks. 5041 * 5042 * Return: pointer to the allocated memory of %NULL in case of failure 5043 */ 5044 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 5045 { 5046 void *ret; 5047 5048 /* 5049 * It doesn't really make sense to fallback to vmalloc for sub page 5050 * requests 5051 */ 5052 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 5053 kmalloc_gfp_adjust(flags, size), 5054 node, _RET_IP_); 5055 if (ret || size <= PAGE_SIZE) 5056 return ret; 5057 5058 /* non-sleeping allocations are not supported by vmalloc */ 5059 if (!gfpflags_allow_blocking(flags)) 5060 return NULL; 5061 5062 /* Don't even allow crazy sizes */ 5063 if (unlikely(size > INT_MAX)) { 5064 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 5065 return NULL; 5066 } 5067 5068 /* 5069 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 5070 * since the callers already cannot assume anything 5071 * about the resulting pointer, and cannot play 5072 * protection games. 5073 */ 5074 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 5075 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 5076 node, __builtin_return_address(0)); 5077 } 5078 EXPORT_SYMBOL(__kvmalloc_node_noprof); 5079 5080 /** 5081 * kvfree() - Free memory. 5082 * @addr: Pointer to allocated memory. 5083 * 5084 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 5085 * It is slightly more efficient to use kfree() or vfree() if you are certain 5086 * that you know which one to use. 5087 * 5088 * Context: Either preemptible task context or not-NMI interrupt. 5089 */ 5090 void kvfree(const void *addr) 5091 { 5092 if (is_vmalloc_addr(addr)) 5093 vfree(addr); 5094 else 5095 kfree(addr); 5096 } 5097 EXPORT_SYMBOL(kvfree); 5098 5099 /** 5100 * kvfree_sensitive - Free a data object containing sensitive information. 5101 * @addr: address of the data object to be freed. 5102 * @len: length of the data object. 5103 * 5104 * Use the special memzero_explicit() function to clear the content of a 5105 * kvmalloc'ed object containing sensitive data to make sure that the 5106 * compiler won't optimize out the data clearing. 5107 */ 5108 void kvfree_sensitive(const void *addr, size_t len) 5109 { 5110 if (likely(!ZERO_OR_NULL_PTR(addr))) { 5111 memzero_explicit((void *)addr, len); 5112 kvfree(addr); 5113 } 5114 } 5115 EXPORT_SYMBOL(kvfree_sensitive); 5116 5117 /** 5118 * kvrealloc - reallocate memory; contents remain unchanged 5119 * @p: object to reallocate memory for 5120 * @size: the size to reallocate 5121 * @flags: the flags for the page level allocator 5122 * 5123 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 5124 * and @p is not a %NULL pointer, the object pointed to is freed. 5125 * 5126 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 5127 * initial memory allocation, every subsequent call to this API for the same 5128 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 5129 * __GFP_ZERO is not fully honored by this API. 5130 * 5131 * In any case, the contents of the object pointed to are preserved up to the 5132 * lesser of the new and old sizes. 5133 * 5134 * This function must not be called concurrently with itself or kvfree() for the 5135 * same memory allocation. 5136 * 5137 * Return: pointer to the allocated memory or %NULL in case of error 5138 */ 5139 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 5140 { 5141 void *n; 5142 5143 if (is_vmalloc_addr(p)) 5144 return vrealloc_noprof(p, size, flags); 5145 5146 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 5147 if (!n) { 5148 /* We failed to krealloc(), fall back to kvmalloc(). */ 5149 n = kvmalloc_noprof(size, flags); 5150 if (!n) 5151 return NULL; 5152 5153 if (p) { 5154 /* We already know that `p` is not a vmalloc address. */ 5155 kasan_disable_current(); 5156 memcpy(n, kasan_reset_tag(p), ksize(p)); 5157 kasan_enable_current(); 5158 5159 kfree(p); 5160 } 5161 } 5162 5163 return n; 5164 } 5165 EXPORT_SYMBOL(kvrealloc_noprof); 5166 5167 struct detached_freelist { 5168 struct slab *slab; 5169 void *tail; 5170 void *freelist; 5171 int cnt; 5172 struct kmem_cache *s; 5173 }; 5174 5175 /* 5176 * This function progressively scans the array with free objects (with 5177 * a limited look ahead) and extract objects belonging to the same 5178 * slab. It builds a detached freelist directly within the given 5179 * slab/objects. This can happen without any need for 5180 * synchronization, because the objects are owned by running process. 5181 * The freelist is build up as a single linked list in the objects. 5182 * The idea is, that this detached freelist can then be bulk 5183 * transferred to the real freelist(s), but only requiring a single 5184 * synchronization primitive. Look ahead in the array is limited due 5185 * to performance reasons. 5186 */ 5187 static inline 5188 int build_detached_freelist(struct kmem_cache *s, size_t size, 5189 void **p, struct detached_freelist *df) 5190 { 5191 int lookahead = 3; 5192 void *object; 5193 struct folio *folio; 5194 size_t same; 5195 5196 object = p[--size]; 5197 folio = virt_to_folio(object); 5198 if (!s) { 5199 /* Handle kalloc'ed objects */ 5200 if (unlikely(!folio_test_slab(folio))) { 5201 free_large_kmalloc(folio, object); 5202 df->slab = NULL; 5203 return size; 5204 } 5205 /* Derive kmem_cache from object */ 5206 df->slab = folio_slab(folio); 5207 df->s = df->slab->slab_cache; 5208 } else { 5209 df->slab = folio_slab(folio); 5210 df->s = cache_from_obj(s, object); /* Support for memcg */ 5211 } 5212 5213 /* Start new detached freelist */ 5214 df->tail = object; 5215 df->freelist = object; 5216 df->cnt = 1; 5217 5218 if (is_kfence_address(object)) 5219 return size; 5220 5221 set_freepointer(df->s, object, NULL); 5222 5223 same = size; 5224 while (size) { 5225 object = p[--size]; 5226 /* df->slab is always set at this point */ 5227 if (df->slab == virt_to_slab(object)) { 5228 /* Opportunity build freelist */ 5229 set_freepointer(df->s, object, df->freelist); 5230 df->freelist = object; 5231 df->cnt++; 5232 same--; 5233 if (size != same) 5234 swap(p[size], p[same]); 5235 continue; 5236 } 5237 5238 /* Limit look ahead search */ 5239 if (!--lookahead) 5240 break; 5241 } 5242 5243 return same; 5244 } 5245 5246 /* 5247 * Internal bulk free of objects that were not initialised by the post alloc 5248 * hooks and thus should not be processed by the free hooks 5249 */ 5250 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5251 { 5252 if (!size) 5253 return; 5254 5255 do { 5256 struct detached_freelist df; 5257 5258 size = build_detached_freelist(s, size, p, &df); 5259 if (!df.slab) 5260 continue; 5261 5262 if (kfence_free(df.freelist)) 5263 continue; 5264 5265 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 5266 _RET_IP_); 5267 } while (likely(size)); 5268 } 5269 5270 /* Note that interrupts must be enabled when calling this function. */ 5271 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5272 { 5273 if (!size) 5274 return; 5275 5276 do { 5277 struct detached_freelist df; 5278 5279 size = build_detached_freelist(s, size, p, &df); 5280 if (!df.slab) 5281 continue; 5282 5283 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 5284 df.cnt, _RET_IP_); 5285 } while (likely(size)); 5286 } 5287 EXPORT_SYMBOL(kmem_cache_free_bulk); 5288 5289 #ifndef CONFIG_SLUB_TINY 5290 static inline 5291 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5292 void **p) 5293 { 5294 struct kmem_cache_cpu *c; 5295 unsigned long irqflags; 5296 int i; 5297 5298 /* 5299 * Drain objects in the per cpu slab, while disabling local 5300 * IRQs, which protects against PREEMPT and interrupts 5301 * handlers invoking normal fastpath. 5302 */ 5303 c = slub_get_cpu_ptr(s->cpu_slab); 5304 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5305 5306 for (i = 0; i < size; i++) { 5307 void *object = kfence_alloc(s, s->object_size, flags); 5308 5309 if (unlikely(object)) { 5310 p[i] = object; 5311 continue; 5312 } 5313 5314 object = c->freelist; 5315 if (unlikely(!object)) { 5316 /* 5317 * We may have removed an object from c->freelist using 5318 * the fastpath in the previous iteration; in that case, 5319 * c->tid has not been bumped yet. 5320 * Since ___slab_alloc() may reenable interrupts while 5321 * allocating memory, we should bump c->tid now. 5322 */ 5323 c->tid = next_tid(c->tid); 5324 5325 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5326 5327 /* 5328 * Invoking slow path likely have side-effect 5329 * of re-populating per CPU c->freelist 5330 */ 5331 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5332 _RET_IP_, c, s->object_size); 5333 if (unlikely(!p[i])) 5334 goto error; 5335 5336 c = this_cpu_ptr(s->cpu_slab); 5337 maybe_wipe_obj_freeptr(s, p[i]); 5338 5339 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5340 5341 continue; /* goto for-loop */ 5342 } 5343 c->freelist = get_freepointer(s, object); 5344 p[i] = object; 5345 maybe_wipe_obj_freeptr(s, p[i]); 5346 stat(s, ALLOC_FASTPATH); 5347 } 5348 c->tid = next_tid(c->tid); 5349 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5350 slub_put_cpu_ptr(s->cpu_slab); 5351 5352 return i; 5353 5354 error: 5355 slub_put_cpu_ptr(s->cpu_slab); 5356 __kmem_cache_free_bulk(s, i, p); 5357 return 0; 5358 5359 } 5360 #else /* CONFIG_SLUB_TINY */ 5361 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5362 size_t size, void **p) 5363 { 5364 int i; 5365 5366 for (i = 0; i < size; i++) { 5367 void *object = kfence_alloc(s, s->object_size, flags); 5368 5369 if (unlikely(object)) { 5370 p[i] = object; 5371 continue; 5372 } 5373 5374 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5375 _RET_IP_, s->object_size); 5376 if (unlikely(!p[i])) 5377 goto error; 5378 5379 maybe_wipe_obj_freeptr(s, p[i]); 5380 } 5381 5382 return i; 5383 5384 error: 5385 __kmem_cache_free_bulk(s, i, p); 5386 return 0; 5387 } 5388 #endif /* CONFIG_SLUB_TINY */ 5389 5390 /* Note that interrupts must be enabled when calling this function. */ 5391 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5392 void **p) 5393 { 5394 int i; 5395 5396 if (!size) 5397 return 0; 5398 5399 s = slab_pre_alloc_hook(s, flags); 5400 if (unlikely(!s)) 5401 return 0; 5402 5403 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5404 if (unlikely(i == 0)) 5405 return 0; 5406 5407 /* 5408 * memcg and kmem_cache debug support and memory initialization. 5409 * Done outside of the IRQ disabled fastpath loop. 5410 */ 5411 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5412 slab_want_init_on_alloc(flags, s), s->object_size))) { 5413 return 0; 5414 } 5415 return i; 5416 } 5417 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5418 5419 5420 /* 5421 * Object placement in a slab is made very easy because we always start at 5422 * offset 0. If we tune the size of the object to the alignment then we can 5423 * get the required alignment by putting one properly sized object after 5424 * another. 5425 * 5426 * Notice that the allocation order determines the sizes of the per cpu 5427 * caches. Each processor has always one slab available for allocations. 5428 * Increasing the allocation order reduces the number of times that slabs 5429 * must be moved on and off the partial lists and is therefore a factor in 5430 * locking overhead. 5431 */ 5432 5433 /* 5434 * Minimum / Maximum order of slab pages. This influences locking overhead 5435 * and slab fragmentation. A higher order reduces the number of partial slabs 5436 * and increases the number of allocations possible without having to 5437 * take the list_lock. 5438 */ 5439 static unsigned int slub_min_order; 5440 static unsigned int slub_max_order = 5441 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5442 static unsigned int slub_min_objects; 5443 5444 /* 5445 * Calculate the order of allocation given an slab object size. 5446 * 5447 * The order of allocation has significant impact on performance and other 5448 * system components. Generally order 0 allocations should be preferred since 5449 * order 0 does not cause fragmentation in the page allocator. Larger objects 5450 * be problematic to put into order 0 slabs because there may be too much 5451 * unused space left. We go to a higher order if more than 1/16th of the slab 5452 * would be wasted. 5453 * 5454 * In order to reach satisfactory performance we must ensure that a minimum 5455 * number of objects is in one slab. Otherwise we may generate too much 5456 * activity on the partial lists which requires taking the list_lock. This is 5457 * less a concern for large slabs though which are rarely used. 5458 * 5459 * slab_max_order specifies the order where we begin to stop considering the 5460 * number of objects in a slab as critical. If we reach slab_max_order then 5461 * we try to keep the page order as low as possible. So we accept more waste 5462 * of space in favor of a small page order. 5463 * 5464 * Higher order allocations also allow the placement of more objects in a 5465 * slab and thereby reduce object handling overhead. If the user has 5466 * requested a higher minimum order then we start with that one instead of 5467 * the smallest order which will fit the object. 5468 */ 5469 static inline unsigned int calc_slab_order(unsigned int size, 5470 unsigned int min_order, unsigned int max_order, 5471 unsigned int fract_leftover) 5472 { 5473 unsigned int order; 5474 5475 for (order = min_order; order <= max_order; order++) { 5476 5477 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5478 unsigned int rem; 5479 5480 rem = slab_size % size; 5481 5482 if (rem <= slab_size / fract_leftover) 5483 break; 5484 } 5485 5486 return order; 5487 } 5488 5489 static inline int calculate_order(unsigned int size) 5490 { 5491 unsigned int order; 5492 unsigned int min_objects; 5493 unsigned int max_objects; 5494 unsigned int min_order; 5495 5496 min_objects = slub_min_objects; 5497 if (!min_objects) { 5498 /* 5499 * Some architectures will only update present cpus when 5500 * onlining them, so don't trust the number if it's just 1. But 5501 * we also don't want to use nr_cpu_ids always, as on some other 5502 * architectures, there can be many possible cpus, but never 5503 * onlined. Here we compromise between trying to avoid too high 5504 * order on systems that appear larger than they are, and too 5505 * low order on systems that appear smaller than they are. 5506 */ 5507 unsigned int nr_cpus = num_present_cpus(); 5508 if (nr_cpus <= 1) 5509 nr_cpus = nr_cpu_ids; 5510 min_objects = 4 * (fls(nr_cpus) + 1); 5511 } 5512 /* min_objects can't be 0 because get_order(0) is undefined */ 5513 max_objects = max(order_objects(slub_max_order, size), 1U); 5514 min_objects = min(min_objects, max_objects); 5515 5516 min_order = max_t(unsigned int, slub_min_order, 5517 get_order(min_objects * size)); 5518 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5519 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5520 5521 /* 5522 * Attempt to find best configuration for a slab. This works by first 5523 * attempting to generate a layout with the best possible configuration 5524 * and backing off gradually. 5525 * 5526 * We start with accepting at most 1/16 waste and try to find the 5527 * smallest order from min_objects-derived/slab_min_order up to 5528 * slab_max_order that will satisfy the constraint. Note that increasing 5529 * the order can only result in same or less fractional waste, not more. 5530 * 5531 * If that fails, we increase the acceptable fraction of waste and try 5532 * again. The last iteration with fraction of 1/2 would effectively 5533 * accept any waste and give us the order determined by min_objects, as 5534 * long as at least single object fits within slab_max_order. 5535 */ 5536 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5537 order = calc_slab_order(size, min_order, slub_max_order, 5538 fraction); 5539 if (order <= slub_max_order) 5540 return order; 5541 } 5542 5543 /* 5544 * Doh this slab cannot be placed using slab_max_order. 5545 */ 5546 order = get_order(size); 5547 if (order <= MAX_PAGE_ORDER) 5548 return order; 5549 return -ENOSYS; 5550 } 5551 5552 static void 5553 init_kmem_cache_node(struct kmem_cache_node *n) 5554 { 5555 n->nr_partial = 0; 5556 spin_lock_init(&n->list_lock); 5557 INIT_LIST_HEAD(&n->partial); 5558 #ifdef CONFIG_SLUB_DEBUG 5559 atomic_long_set(&n->nr_slabs, 0); 5560 atomic_long_set(&n->total_objects, 0); 5561 INIT_LIST_HEAD(&n->full); 5562 #endif 5563 } 5564 5565 #ifndef CONFIG_SLUB_TINY 5566 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5567 { 5568 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5569 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5570 sizeof(struct kmem_cache_cpu)); 5571 5572 /* 5573 * Must align to double word boundary for the double cmpxchg 5574 * instructions to work; see __pcpu_double_call_return_bool(). 5575 */ 5576 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5577 2 * sizeof(void *)); 5578 5579 if (!s->cpu_slab) 5580 return 0; 5581 5582 init_kmem_cache_cpus(s); 5583 5584 return 1; 5585 } 5586 #else 5587 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5588 { 5589 return 1; 5590 } 5591 #endif /* CONFIG_SLUB_TINY */ 5592 5593 static struct kmem_cache *kmem_cache_node; 5594 5595 /* 5596 * No kmalloc_node yet so do it by hand. We know that this is the first 5597 * slab on the node for this slabcache. There are no concurrent accesses 5598 * possible. 5599 * 5600 * Note that this function only works on the kmem_cache_node 5601 * when allocating for the kmem_cache_node. This is used for bootstrapping 5602 * memory on a fresh node that has no slab structures yet. 5603 */ 5604 static void early_kmem_cache_node_alloc(int node) 5605 { 5606 struct slab *slab; 5607 struct kmem_cache_node *n; 5608 5609 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5610 5611 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5612 5613 BUG_ON(!slab); 5614 if (slab_nid(slab) != node) { 5615 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5616 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5617 } 5618 5619 n = slab->freelist; 5620 BUG_ON(!n); 5621 #ifdef CONFIG_SLUB_DEBUG 5622 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5623 #endif 5624 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5625 slab->freelist = get_freepointer(kmem_cache_node, n); 5626 slab->inuse = 1; 5627 kmem_cache_node->node[node] = n; 5628 init_kmem_cache_node(n); 5629 inc_slabs_node(kmem_cache_node, node, slab->objects); 5630 5631 /* 5632 * No locks need to be taken here as it has just been 5633 * initialized and there is no concurrent access. 5634 */ 5635 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5636 } 5637 5638 static void free_kmem_cache_nodes(struct kmem_cache *s) 5639 { 5640 int node; 5641 struct kmem_cache_node *n; 5642 5643 for_each_kmem_cache_node(s, node, n) { 5644 s->node[node] = NULL; 5645 kmem_cache_free(kmem_cache_node, n); 5646 } 5647 } 5648 5649 void __kmem_cache_release(struct kmem_cache *s) 5650 { 5651 cache_random_seq_destroy(s); 5652 #ifndef CONFIG_SLUB_TINY 5653 free_percpu(s->cpu_slab); 5654 #endif 5655 free_kmem_cache_nodes(s); 5656 } 5657 5658 static int init_kmem_cache_nodes(struct kmem_cache *s) 5659 { 5660 int node; 5661 5662 for_each_node_mask(node, slab_nodes) { 5663 struct kmem_cache_node *n; 5664 5665 if (slab_state == DOWN) { 5666 early_kmem_cache_node_alloc(node); 5667 continue; 5668 } 5669 n = kmem_cache_alloc_node(kmem_cache_node, 5670 GFP_KERNEL, node); 5671 5672 if (!n) { 5673 free_kmem_cache_nodes(s); 5674 return 0; 5675 } 5676 5677 init_kmem_cache_node(n); 5678 s->node[node] = n; 5679 } 5680 return 1; 5681 } 5682 5683 static void set_cpu_partial(struct kmem_cache *s) 5684 { 5685 #ifdef CONFIG_SLUB_CPU_PARTIAL 5686 unsigned int nr_objects; 5687 5688 /* 5689 * cpu_partial determined the maximum number of objects kept in the 5690 * per cpu partial lists of a processor. 5691 * 5692 * Per cpu partial lists mainly contain slabs that just have one 5693 * object freed. If they are used for allocation then they can be 5694 * filled up again with minimal effort. The slab will never hit the 5695 * per node partial lists and therefore no locking will be required. 5696 * 5697 * For backwards compatibility reasons, this is determined as number 5698 * of objects, even though we now limit maximum number of pages, see 5699 * slub_set_cpu_partial() 5700 */ 5701 if (!kmem_cache_has_cpu_partial(s)) 5702 nr_objects = 0; 5703 else if (s->size >= PAGE_SIZE) 5704 nr_objects = 6; 5705 else if (s->size >= 1024) 5706 nr_objects = 24; 5707 else if (s->size >= 256) 5708 nr_objects = 52; 5709 else 5710 nr_objects = 120; 5711 5712 slub_set_cpu_partial(s, nr_objects); 5713 #endif 5714 } 5715 5716 /* 5717 * calculate_sizes() determines the order and the distribution of data within 5718 * a slab object. 5719 */ 5720 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5721 { 5722 slab_flags_t flags = s->flags; 5723 unsigned int size = s->object_size; 5724 unsigned int order; 5725 5726 /* 5727 * Round up object size to the next word boundary. We can only 5728 * place the free pointer at word boundaries and this determines 5729 * the possible location of the free pointer. 5730 */ 5731 size = ALIGN(size, sizeof(void *)); 5732 5733 #ifdef CONFIG_SLUB_DEBUG 5734 /* 5735 * Determine if we can poison the object itself. If the user of 5736 * the slab may touch the object after free or before allocation 5737 * then we should never poison the object itself. 5738 */ 5739 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5740 !s->ctor) 5741 s->flags |= __OBJECT_POISON; 5742 else 5743 s->flags &= ~__OBJECT_POISON; 5744 5745 5746 /* 5747 * If we are Redzoning then check if there is some space between the 5748 * end of the object and the free pointer. If not then add an 5749 * additional word to have some bytes to store Redzone information. 5750 */ 5751 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5752 size += sizeof(void *); 5753 #endif 5754 5755 /* 5756 * With that we have determined the number of bytes in actual use 5757 * by the object and redzoning. 5758 */ 5759 s->inuse = size; 5760 5761 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5762 (flags & SLAB_POISON) || s->ctor || 5763 ((flags & SLAB_RED_ZONE) && 5764 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5765 /* 5766 * Relocate free pointer after the object if it is not 5767 * permitted to overwrite the first word of the object on 5768 * kmem_cache_free. 5769 * 5770 * This is the case if we do RCU, have a constructor or 5771 * destructor, are poisoning the objects, or are 5772 * redzoning an object smaller than sizeof(void *) or are 5773 * redzoning an object with slub_debug_orig_size() enabled, 5774 * in which case the right redzone may be extended. 5775 * 5776 * The assumption that s->offset >= s->inuse means free 5777 * pointer is outside of the object is used in the 5778 * freeptr_outside_object() function. If that is no 5779 * longer true, the function needs to be modified. 5780 */ 5781 s->offset = size; 5782 size += sizeof(void *); 5783 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5784 s->offset = args->freeptr_offset; 5785 } else { 5786 /* 5787 * Store freelist pointer near middle of object to keep 5788 * it away from the edges of the object to avoid small 5789 * sized over/underflows from neighboring allocations. 5790 */ 5791 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5792 } 5793 5794 #ifdef CONFIG_SLUB_DEBUG 5795 if (flags & SLAB_STORE_USER) { 5796 /* 5797 * Need to store information about allocs and frees after 5798 * the object. 5799 */ 5800 size += 2 * sizeof(struct track); 5801 5802 /* Save the original kmalloc request size */ 5803 if (flags & SLAB_KMALLOC) 5804 size += sizeof(unsigned int); 5805 } 5806 #endif 5807 5808 kasan_cache_create(s, &size, &s->flags); 5809 #ifdef CONFIG_SLUB_DEBUG 5810 if (flags & SLAB_RED_ZONE) { 5811 /* 5812 * Add some empty padding so that we can catch 5813 * overwrites from earlier objects rather than let 5814 * tracking information or the free pointer be 5815 * corrupted if a user writes before the start 5816 * of the object. 5817 */ 5818 size += sizeof(void *); 5819 5820 s->red_left_pad = sizeof(void *); 5821 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5822 size += s->red_left_pad; 5823 } 5824 #endif 5825 5826 /* 5827 * SLUB stores one object immediately after another beginning from 5828 * offset 0. In order to align the objects we have to simply size 5829 * each object to conform to the alignment. 5830 */ 5831 size = ALIGN(size, s->align); 5832 s->size = size; 5833 s->reciprocal_size = reciprocal_value(size); 5834 order = calculate_order(size); 5835 5836 if ((int)order < 0) 5837 return 0; 5838 5839 s->allocflags = __GFP_COMP; 5840 5841 if (s->flags & SLAB_CACHE_DMA) 5842 s->allocflags |= GFP_DMA; 5843 5844 if (s->flags & SLAB_CACHE_DMA32) 5845 s->allocflags |= GFP_DMA32; 5846 5847 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5848 s->allocflags |= __GFP_RECLAIMABLE; 5849 5850 /* 5851 * Determine the number of objects per slab 5852 */ 5853 s->oo = oo_make(order, size); 5854 s->min = oo_make(get_order(size), size); 5855 5856 return !!oo_objects(s->oo); 5857 } 5858 5859 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 5860 { 5861 #ifdef CONFIG_SLUB_DEBUG 5862 void *addr = slab_address(slab); 5863 void *p; 5864 5865 if (!slab_add_kunit_errors()) 5866 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 5867 5868 spin_lock(&object_map_lock); 5869 __fill_map(object_map, s, slab); 5870 5871 for_each_object(p, s, addr, slab->objects) { 5872 5873 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5874 if (slab_add_kunit_errors()) 5875 continue; 5876 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5877 print_tracking(s, p); 5878 } 5879 } 5880 spin_unlock(&object_map_lock); 5881 5882 __slab_err(slab); 5883 #endif 5884 } 5885 5886 /* 5887 * Attempt to free all partial slabs on a node. 5888 * This is called from __kmem_cache_shutdown(). We must take list_lock 5889 * because sysfs file might still access partial list after the shutdowning. 5890 */ 5891 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5892 { 5893 LIST_HEAD(discard); 5894 struct slab *slab, *h; 5895 5896 BUG_ON(irqs_disabled()); 5897 spin_lock_irq(&n->list_lock); 5898 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5899 if (!slab->inuse) { 5900 remove_partial(n, slab); 5901 list_add(&slab->slab_list, &discard); 5902 } else { 5903 list_slab_objects(s, slab); 5904 } 5905 } 5906 spin_unlock_irq(&n->list_lock); 5907 5908 list_for_each_entry_safe(slab, h, &discard, slab_list) 5909 discard_slab(s, slab); 5910 } 5911 5912 bool __kmem_cache_empty(struct kmem_cache *s) 5913 { 5914 int node; 5915 struct kmem_cache_node *n; 5916 5917 for_each_kmem_cache_node(s, node, n) 5918 if (n->nr_partial || node_nr_slabs(n)) 5919 return false; 5920 return true; 5921 } 5922 5923 /* 5924 * Release all resources used by a slab cache. 5925 */ 5926 int __kmem_cache_shutdown(struct kmem_cache *s) 5927 { 5928 int node; 5929 struct kmem_cache_node *n; 5930 5931 flush_all_cpus_locked(s); 5932 /* Attempt to free all objects */ 5933 for_each_kmem_cache_node(s, node, n) { 5934 free_partial(s, n); 5935 if (n->nr_partial || node_nr_slabs(n)) 5936 return 1; 5937 } 5938 return 0; 5939 } 5940 5941 #ifdef CONFIG_PRINTK 5942 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5943 { 5944 void *base; 5945 int __maybe_unused i; 5946 unsigned int objnr; 5947 void *objp; 5948 void *objp0; 5949 struct kmem_cache *s = slab->slab_cache; 5950 struct track __maybe_unused *trackp; 5951 5952 kpp->kp_ptr = object; 5953 kpp->kp_slab = slab; 5954 kpp->kp_slab_cache = s; 5955 base = slab_address(slab); 5956 objp0 = kasan_reset_tag(object); 5957 #ifdef CONFIG_SLUB_DEBUG 5958 objp = restore_red_left(s, objp0); 5959 #else 5960 objp = objp0; 5961 #endif 5962 objnr = obj_to_index(s, slab, objp); 5963 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5964 objp = base + s->size * objnr; 5965 kpp->kp_objp = objp; 5966 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5967 || (objp - base) % s->size) || 5968 !(s->flags & SLAB_STORE_USER)) 5969 return; 5970 #ifdef CONFIG_SLUB_DEBUG 5971 objp = fixup_red_left(s, objp); 5972 trackp = get_track(s, objp, TRACK_ALLOC); 5973 kpp->kp_ret = (void *)trackp->addr; 5974 #ifdef CONFIG_STACKDEPOT 5975 { 5976 depot_stack_handle_t handle; 5977 unsigned long *entries; 5978 unsigned int nr_entries; 5979 5980 handle = READ_ONCE(trackp->handle); 5981 if (handle) { 5982 nr_entries = stack_depot_fetch(handle, &entries); 5983 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5984 kpp->kp_stack[i] = (void *)entries[i]; 5985 } 5986 5987 trackp = get_track(s, objp, TRACK_FREE); 5988 handle = READ_ONCE(trackp->handle); 5989 if (handle) { 5990 nr_entries = stack_depot_fetch(handle, &entries); 5991 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5992 kpp->kp_free_stack[i] = (void *)entries[i]; 5993 } 5994 } 5995 #endif 5996 #endif 5997 } 5998 #endif 5999 6000 /******************************************************************** 6001 * Kmalloc subsystem 6002 *******************************************************************/ 6003 6004 static int __init setup_slub_min_order(char *str) 6005 { 6006 get_option(&str, (int *)&slub_min_order); 6007 6008 if (slub_min_order > slub_max_order) 6009 slub_max_order = slub_min_order; 6010 6011 return 1; 6012 } 6013 6014 __setup("slab_min_order=", setup_slub_min_order); 6015 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 6016 6017 6018 static int __init setup_slub_max_order(char *str) 6019 { 6020 get_option(&str, (int *)&slub_max_order); 6021 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 6022 6023 if (slub_min_order > slub_max_order) 6024 slub_min_order = slub_max_order; 6025 6026 return 1; 6027 } 6028 6029 __setup("slab_max_order=", setup_slub_max_order); 6030 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 6031 6032 static int __init setup_slub_min_objects(char *str) 6033 { 6034 get_option(&str, (int *)&slub_min_objects); 6035 6036 return 1; 6037 } 6038 6039 __setup("slab_min_objects=", setup_slub_min_objects); 6040 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 6041 6042 #ifdef CONFIG_NUMA 6043 static int __init setup_slab_strict_numa(char *str) 6044 { 6045 if (nr_node_ids > 1) { 6046 static_branch_enable(&strict_numa); 6047 pr_info("SLUB: Strict NUMA enabled.\n"); 6048 } else { 6049 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 6050 } 6051 6052 return 1; 6053 } 6054 6055 __setup("slab_strict_numa", setup_slab_strict_numa); 6056 #endif 6057 6058 6059 #ifdef CONFIG_HARDENED_USERCOPY 6060 /* 6061 * Rejects incorrectly sized objects and objects that are to be copied 6062 * to/from userspace but do not fall entirely within the containing slab 6063 * cache's usercopy region. 6064 * 6065 * Returns NULL if check passes, otherwise const char * to name of cache 6066 * to indicate an error. 6067 */ 6068 void __check_heap_object(const void *ptr, unsigned long n, 6069 const struct slab *slab, bool to_user) 6070 { 6071 struct kmem_cache *s; 6072 unsigned int offset; 6073 bool is_kfence = is_kfence_address(ptr); 6074 6075 ptr = kasan_reset_tag(ptr); 6076 6077 /* Find object and usable object size. */ 6078 s = slab->slab_cache; 6079 6080 /* Reject impossible pointers. */ 6081 if (ptr < slab_address(slab)) 6082 usercopy_abort("SLUB object not in SLUB page?!", NULL, 6083 to_user, 0, n); 6084 6085 /* Find offset within object. */ 6086 if (is_kfence) 6087 offset = ptr - kfence_object_start(ptr); 6088 else 6089 offset = (ptr - slab_address(slab)) % s->size; 6090 6091 /* Adjust for redzone and reject if within the redzone. */ 6092 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 6093 if (offset < s->red_left_pad) 6094 usercopy_abort("SLUB object in left red zone", 6095 s->name, to_user, offset, n); 6096 offset -= s->red_left_pad; 6097 } 6098 6099 /* Allow address range falling entirely within usercopy region. */ 6100 if (offset >= s->useroffset && 6101 offset - s->useroffset <= s->usersize && 6102 n <= s->useroffset - offset + s->usersize) 6103 return; 6104 6105 usercopy_abort("SLUB object", s->name, to_user, offset, n); 6106 } 6107 #endif /* CONFIG_HARDENED_USERCOPY */ 6108 6109 #define SHRINK_PROMOTE_MAX 32 6110 6111 /* 6112 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 6113 * up most to the head of the partial lists. New allocations will then 6114 * fill those up and thus they can be removed from the partial lists. 6115 * 6116 * The slabs with the least items are placed last. This results in them 6117 * being allocated from last increasing the chance that the last objects 6118 * are freed in them. 6119 */ 6120 static int __kmem_cache_do_shrink(struct kmem_cache *s) 6121 { 6122 int node; 6123 int i; 6124 struct kmem_cache_node *n; 6125 struct slab *slab; 6126 struct slab *t; 6127 struct list_head discard; 6128 struct list_head promote[SHRINK_PROMOTE_MAX]; 6129 unsigned long flags; 6130 int ret = 0; 6131 6132 for_each_kmem_cache_node(s, node, n) { 6133 INIT_LIST_HEAD(&discard); 6134 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 6135 INIT_LIST_HEAD(promote + i); 6136 6137 spin_lock_irqsave(&n->list_lock, flags); 6138 6139 /* 6140 * Build lists of slabs to discard or promote. 6141 * 6142 * Note that concurrent frees may occur while we hold the 6143 * list_lock. slab->inuse here is the upper limit. 6144 */ 6145 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 6146 int free = slab->objects - slab->inuse; 6147 6148 /* Do not reread slab->inuse */ 6149 barrier(); 6150 6151 /* We do not keep full slabs on the list */ 6152 BUG_ON(free <= 0); 6153 6154 if (free == slab->objects) { 6155 list_move(&slab->slab_list, &discard); 6156 slab_clear_node_partial(slab); 6157 n->nr_partial--; 6158 dec_slabs_node(s, node, slab->objects); 6159 } else if (free <= SHRINK_PROMOTE_MAX) 6160 list_move(&slab->slab_list, promote + free - 1); 6161 } 6162 6163 /* 6164 * Promote the slabs filled up most to the head of the 6165 * partial list. 6166 */ 6167 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 6168 list_splice(promote + i, &n->partial); 6169 6170 spin_unlock_irqrestore(&n->list_lock, flags); 6171 6172 /* Release empty slabs */ 6173 list_for_each_entry_safe(slab, t, &discard, slab_list) 6174 free_slab(s, slab); 6175 6176 if (node_nr_slabs(n)) 6177 ret = 1; 6178 } 6179 6180 return ret; 6181 } 6182 6183 int __kmem_cache_shrink(struct kmem_cache *s) 6184 { 6185 flush_all(s); 6186 return __kmem_cache_do_shrink(s); 6187 } 6188 6189 static int slab_mem_going_offline_callback(void) 6190 { 6191 struct kmem_cache *s; 6192 6193 mutex_lock(&slab_mutex); 6194 list_for_each_entry(s, &slab_caches, list) { 6195 flush_all_cpus_locked(s); 6196 __kmem_cache_do_shrink(s); 6197 } 6198 mutex_unlock(&slab_mutex); 6199 6200 return 0; 6201 } 6202 6203 static int slab_mem_going_online_callback(int nid) 6204 { 6205 struct kmem_cache_node *n; 6206 struct kmem_cache *s; 6207 int ret = 0; 6208 6209 /* 6210 * We are bringing a node online. No memory is available yet. We must 6211 * allocate a kmem_cache_node structure in order to bring the node 6212 * online. 6213 */ 6214 mutex_lock(&slab_mutex); 6215 list_for_each_entry(s, &slab_caches, list) { 6216 /* 6217 * The structure may already exist if the node was previously 6218 * onlined and offlined. 6219 */ 6220 if (get_node(s, nid)) 6221 continue; 6222 /* 6223 * XXX: kmem_cache_alloc_node will fallback to other nodes 6224 * since memory is not yet available from the node that 6225 * is brought up. 6226 */ 6227 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 6228 if (!n) { 6229 ret = -ENOMEM; 6230 goto out; 6231 } 6232 init_kmem_cache_node(n); 6233 s->node[nid] = n; 6234 } 6235 /* 6236 * Any cache created after this point will also have kmem_cache_node 6237 * initialized for the new node. 6238 */ 6239 node_set(nid, slab_nodes); 6240 out: 6241 mutex_unlock(&slab_mutex); 6242 return ret; 6243 } 6244 6245 static int slab_memory_callback(struct notifier_block *self, 6246 unsigned long action, void *arg) 6247 { 6248 struct node_notify *nn = arg; 6249 int nid = nn->nid; 6250 int ret = 0; 6251 6252 switch (action) { 6253 case NODE_ADDING_FIRST_MEMORY: 6254 ret = slab_mem_going_online_callback(nid); 6255 break; 6256 case NODE_REMOVING_LAST_MEMORY: 6257 ret = slab_mem_going_offline_callback(); 6258 break; 6259 } 6260 if (ret) 6261 ret = notifier_from_errno(ret); 6262 else 6263 ret = NOTIFY_OK; 6264 return ret; 6265 } 6266 6267 /******************************************************************** 6268 * Basic setup of slabs 6269 *******************************************************************/ 6270 6271 /* 6272 * Used for early kmem_cache structures that were allocated using 6273 * the page allocator. Allocate them properly then fix up the pointers 6274 * that may be pointing to the wrong kmem_cache structure. 6275 */ 6276 6277 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6278 { 6279 int node; 6280 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6281 struct kmem_cache_node *n; 6282 6283 memcpy(s, static_cache, kmem_cache->object_size); 6284 6285 /* 6286 * This runs very early, and only the boot processor is supposed to be 6287 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6288 * IPIs around. 6289 */ 6290 __flush_cpu_slab(s, smp_processor_id()); 6291 for_each_kmem_cache_node(s, node, n) { 6292 struct slab *p; 6293 6294 list_for_each_entry(p, &n->partial, slab_list) 6295 p->slab_cache = s; 6296 6297 #ifdef CONFIG_SLUB_DEBUG 6298 list_for_each_entry(p, &n->full, slab_list) 6299 p->slab_cache = s; 6300 #endif 6301 } 6302 list_add(&s->list, &slab_caches); 6303 return s; 6304 } 6305 6306 void __init kmem_cache_init(void) 6307 { 6308 static __initdata struct kmem_cache boot_kmem_cache, 6309 boot_kmem_cache_node; 6310 int node; 6311 6312 if (debug_guardpage_minorder()) 6313 slub_max_order = 0; 6314 6315 /* Inform pointer hashing choice about slub debugging state. */ 6316 hash_pointers_finalize(__slub_debug_enabled()); 6317 6318 kmem_cache_node = &boot_kmem_cache_node; 6319 kmem_cache = &boot_kmem_cache; 6320 6321 /* 6322 * Initialize the nodemask for which we will allocate per node 6323 * structures. Here we don't need taking slab_mutex yet. 6324 */ 6325 for_each_node_state(node, N_MEMORY) 6326 node_set(node, slab_nodes); 6327 6328 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6329 sizeof(struct kmem_cache_node), 6330 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6331 6332 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6333 6334 /* Able to allocate the per node structures */ 6335 slab_state = PARTIAL; 6336 6337 create_boot_cache(kmem_cache, "kmem_cache", 6338 offsetof(struct kmem_cache, node) + 6339 nr_node_ids * sizeof(struct kmem_cache_node *), 6340 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6341 6342 kmem_cache = bootstrap(&boot_kmem_cache); 6343 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6344 6345 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6346 setup_kmalloc_cache_index_table(); 6347 create_kmalloc_caches(); 6348 6349 /* Setup random freelists for each cache */ 6350 init_freelist_randomization(); 6351 6352 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6353 slub_cpu_dead); 6354 6355 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6356 cache_line_size(), 6357 slub_min_order, slub_max_order, slub_min_objects, 6358 nr_cpu_ids, nr_node_ids); 6359 } 6360 6361 void __init kmem_cache_init_late(void) 6362 { 6363 #ifndef CONFIG_SLUB_TINY 6364 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6365 WARN_ON(!flushwq); 6366 #endif 6367 } 6368 6369 struct kmem_cache * 6370 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6371 slab_flags_t flags, void (*ctor)(void *)) 6372 { 6373 struct kmem_cache *s; 6374 6375 s = find_mergeable(size, align, flags, name, ctor); 6376 if (s) { 6377 if (sysfs_slab_alias(s, name)) 6378 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6379 name); 6380 6381 s->refcount++; 6382 6383 /* 6384 * Adjust the object sizes so that we clear 6385 * the complete object on kzalloc. 6386 */ 6387 s->object_size = max(s->object_size, size); 6388 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6389 } 6390 6391 return s; 6392 } 6393 6394 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6395 unsigned int size, struct kmem_cache_args *args, 6396 slab_flags_t flags) 6397 { 6398 int err = -EINVAL; 6399 6400 s->name = name; 6401 s->size = s->object_size = size; 6402 6403 s->flags = kmem_cache_flags(flags, s->name); 6404 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6405 s->random = get_random_long(); 6406 #endif 6407 s->align = args->align; 6408 s->ctor = args->ctor; 6409 #ifdef CONFIG_HARDENED_USERCOPY 6410 s->useroffset = args->useroffset; 6411 s->usersize = args->usersize; 6412 #endif 6413 6414 if (!calculate_sizes(args, s)) 6415 goto out; 6416 if (disable_higher_order_debug) { 6417 /* 6418 * Disable debugging flags that store metadata if the min slab 6419 * order increased. 6420 */ 6421 if (get_order(s->size) > get_order(s->object_size)) { 6422 s->flags &= ~DEBUG_METADATA_FLAGS; 6423 s->offset = 0; 6424 if (!calculate_sizes(args, s)) 6425 goto out; 6426 } 6427 } 6428 6429 #ifdef system_has_freelist_aba 6430 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6431 /* Enable fast mode */ 6432 s->flags |= __CMPXCHG_DOUBLE; 6433 } 6434 #endif 6435 6436 /* 6437 * The larger the object size is, the more slabs we want on the partial 6438 * list to avoid pounding the page allocator excessively. 6439 */ 6440 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6441 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6442 6443 set_cpu_partial(s); 6444 6445 #ifdef CONFIG_NUMA 6446 s->remote_node_defrag_ratio = 1000; 6447 #endif 6448 6449 /* Initialize the pre-computed randomized freelist if slab is up */ 6450 if (slab_state >= UP) { 6451 if (init_cache_random_seq(s)) 6452 goto out; 6453 } 6454 6455 if (!init_kmem_cache_nodes(s)) 6456 goto out; 6457 6458 if (!alloc_kmem_cache_cpus(s)) 6459 goto out; 6460 6461 err = 0; 6462 6463 /* Mutex is not taken during early boot */ 6464 if (slab_state <= UP) 6465 goto out; 6466 6467 /* 6468 * Failing to create sysfs files is not critical to SLUB functionality. 6469 * If it fails, proceed with cache creation without these files. 6470 */ 6471 if (sysfs_slab_add(s)) 6472 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6473 6474 if (s->flags & SLAB_STORE_USER) 6475 debugfs_slab_add(s); 6476 6477 out: 6478 if (err) 6479 __kmem_cache_release(s); 6480 return err; 6481 } 6482 6483 #ifdef SLAB_SUPPORTS_SYSFS 6484 static int count_inuse(struct slab *slab) 6485 { 6486 return slab->inuse; 6487 } 6488 6489 static int count_total(struct slab *slab) 6490 { 6491 return slab->objects; 6492 } 6493 #endif 6494 6495 #ifdef CONFIG_SLUB_DEBUG 6496 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6497 unsigned long *obj_map) 6498 { 6499 void *p; 6500 void *addr = slab_address(slab); 6501 6502 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6503 return; 6504 6505 /* Now we know that a valid freelist exists */ 6506 __fill_map(obj_map, s, slab); 6507 for_each_object(p, s, addr, slab->objects) { 6508 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6509 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6510 6511 if (!check_object(s, slab, p, val)) 6512 break; 6513 } 6514 } 6515 6516 static int validate_slab_node(struct kmem_cache *s, 6517 struct kmem_cache_node *n, unsigned long *obj_map) 6518 { 6519 unsigned long count = 0; 6520 struct slab *slab; 6521 unsigned long flags; 6522 6523 spin_lock_irqsave(&n->list_lock, flags); 6524 6525 list_for_each_entry(slab, &n->partial, slab_list) { 6526 validate_slab(s, slab, obj_map); 6527 count++; 6528 } 6529 if (count != n->nr_partial) { 6530 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6531 s->name, count, n->nr_partial); 6532 slab_add_kunit_errors(); 6533 } 6534 6535 if (!(s->flags & SLAB_STORE_USER)) 6536 goto out; 6537 6538 list_for_each_entry(slab, &n->full, slab_list) { 6539 validate_slab(s, slab, obj_map); 6540 count++; 6541 } 6542 if (count != node_nr_slabs(n)) { 6543 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6544 s->name, count, node_nr_slabs(n)); 6545 slab_add_kunit_errors(); 6546 } 6547 6548 out: 6549 spin_unlock_irqrestore(&n->list_lock, flags); 6550 return count; 6551 } 6552 6553 long validate_slab_cache(struct kmem_cache *s) 6554 { 6555 int node; 6556 unsigned long count = 0; 6557 struct kmem_cache_node *n; 6558 unsigned long *obj_map; 6559 6560 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6561 if (!obj_map) 6562 return -ENOMEM; 6563 6564 flush_all(s); 6565 for_each_kmem_cache_node(s, node, n) 6566 count += validate_slab_node(s, n, obj_map); 6567 6568 bitmap_free(obj_map); 6569 6570 return count; 6571 } 6572 EXPORT_SYMBOL(validate_slab_cache); 6573 6574 #ifdef CONFIG_DEBUG_FS 6575 /* 6576 * Generate lists of code addresses where slabcache objects are allocated 6577 * and freed. 6578 */ 6579 6580 struct location { 6581 depot_stack_handle_t handle; 6582 unsigned long count; 6583 unsigned long addr; 6584 unsigned long waste; 6585 long long sum_time; 6586 long min_time; 6587 long max_time; 6588 long min_pid; 6589 long max_pid; 6590 DECLARE_BITMAP(cpus, NR_CPUS); 6591 nodemask_t nodes; 6592 }; 6593 6594 struct loc_track { 6595 unsigned long max; 6596 unsigned long count; 6597 struct location *loc; 6598 loff_t idx; 6599 }; 6600 6601 static struct dentry *slab_debugfs_root; 6602 6603 static void free_loc_track(struct loc_track *t) 6604 { 6605 if (t->max) 6606 free_pages((unsigned long)t->loc, 6607 get_order(sizeof(struct location) * t->max)); 6608 } 6609 6610 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6611 { 6612 struct location *l; 6613 int order; 6614 6615 order = get_order(sizeof(struct location) * max); 6616 6617 l = (void *)__get_free_pages(flags, order); 6618 if (!l) 6619 return 0; 6620 6621 if (t->count) { 6622 memcpy(l, t->loc, sizeof(struct location) * t->count); 6623 free_loc_track(t); 6624 } 6625 t->max = max; 6626 t->loc = l; 6627 return 1; 6628 } 6629 6630 static int add_location(struct loc_track *t, struct kmem_cache *s, 6631 const struct track *track, 6632 unsigned int orig_size) 6633 { 6634 long start, end, pos; 6635 struct location *l; 6636 unsigned long caddr, chandle, cwaste; 6637 unsigned long age = jiffies - track->when; 6638 depot_stack_handle_t handle = 0; 6639 unsigned int waste = s->object_size - orig_size; 6640 6641 #ifdef CONFIG_STACKDEPOT 6642 handle = READ_ONCE(track->handle); 6643 #endif 6644 start = -1; 6645 end = t->count; 6646 6647 for ( ; ; ) { 6648 pos = start + (end - start + 1) / 2; 6649 6650 /* 6651 * There is nothing at "end". If we end up there 6652 * we need to add something to before end. 6653 */ 6654 if (pos == end) 6655 break; 6656 6657 l = &t->loc[pos]; 6658 caddr = l->addr; 6659 chandle = l->handle; 6660 cwaste = l->waste; 6661 if ((track->addr == caddr) && (handle == chandle) && 6662 (waste == cwaste)) { 6663 6664 l->count++; 6665 if (track->when) { 6666 l->sum_time += age; 6667 if (age < l->min_time) 6668 l->min_time = age; 6669 if (age > l->max_time) 6670 l->max_time = age; 6671 6672 if (track->pid < l->min_pid) 6673 l->min_pid = track->pid; 6674 if (track->pid > l->max_pid) 6675 l->max_pid = track->pid; 6676 6677 cpumask_set_cpu(track->cpu, 6678 to_cpumask(l->cpus)); 6679 } 6680 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6681 return 1; 6682 } 6683 6684 if (track->addr < caddr) 6685 end = pos; 6686 else if (track->addr == caddr && handle < chandle) 6687 end = pos; 6688 else if (track->addr == caddr && handle == chandle && 6689 waste < cwaste) 6690 end = pos; 6691 else 6692 start = pos; 6693 } 6694 6695 /* 6696 * Not found. Insert new tracking element. 6697 */ 6698 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6699 return 0; 6700 6701 l = t->loc + pos; 6702 if (pos < t->count) 6703 memmove(l + 1, l, 6704 (t->count - pos) * sizeof(struct location)); 6705 t->count++; 6706 l->count = 1; 6707 l->addr = track->addr; 6708 l->sum_time = age; 6709 l->min_time = age; 6710 l->max_time = age; 6711 l->min_pid = track->pid; 6712 l->max_pid = track->pid; 6713 l->handle = handle; 6714 l->waste = waste; 6715 cpumask_clear(to_cpumask(l->cpus)); 6716 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6717 nodes_clear(l->nodes); 6718 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6719 return 1; 6720 } 6721 6722 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6723 struct slab *slab, enum track_item alloc, 6724 unsigned long *obj_map) 6725 { 6726 void *addr = slab_address(slab); 6727 bool is_alloc = (alloc == TRACK_ALLOC); 6728 void *p; 6729 6730 __fill_map(obj_map, s, slab); 6731 6732 for_each_object(p, s, addr, slab->objects) 6733 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6734 add_location(t, s, get_track(s, p, alloc), 6735 is_alloc ? get_orig_size(s, p) : 6736 s->object_size); 6737 } 6738 #endif /* CONFIG_DEBUG_FS */ 6739 #endif /* CONFIG_SLUB_DEBUG */ 6740 6741 #ifdef SLAB_SUPPORTS_SYSFS 6742 enum slab_stat_type { 6743 SL_ALL, /* All slabs */ 6744 SL_PARTIAL, /* Only partially allocated slabs */ 6745 SL_CPU, /* Only slabs used for cpu caches */ 6746 SL_OBJECTS, /* Determine allocated objects not slabs */ 6747 SL_TOTAL /* Determine object capacity not slabs */ 6748 }; 6749 6750 #define SO_ALL (1 << SL_ALL) 6751 #define SO_PARTIAL (1 << SL_PARTIAL) 6752 #define SO_CPU (1 << SL_CPU) 6753 #define SO_OBJECTS (1 << SL_OBJECTS) 6754 #define SO_TOTAL (1 << SL_TOTAL) 6755 6756 static ssize_t show_slab_objects(struct kmem_cache *s, 6757 char *buf, unsigned long flags) 6758 { 6759 unsigned long total = 0; 6760 int node; 6761 int x; 6762 unsigned long *nodes; 6763 int len = 0; 6764 6765 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6766 if (!nodes) 6767 return -ENOMEM; 6768 6769 if (flags & SO_CPU) { 6770 int cpu; 6771 6772 for_each_possible_cpu(cpu) { 6773 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6774 cpu); 6775 int node; 6776 struct slab *slab; 6777 6778 slab = READ_ONCE(c->slab); 6779 if (!slab) 6780 continue; 6781 6782 node = slab_nid(slab); 6783 if (flags & SO_TOTAL) 6784 x = slab->objects; 6785 else if (flags & SO_OBJECTS) 6786 x = slab->inuse; 6787 else 6788 x = 1; 6789 6790 total += x; 6791 nodes[node] += x; 6792 6793 #ifdef CONFIG_SLUB_CPU_PARTIAL 6794 slab = slub_percpu_partial_read_once(c); 6795 if (slab) { 6796 node = slab_nid(slab); 6797 if (flags & SO_TOTAL) 6798 WARN_ON_ONCE(1); 6799 else if (flags & SO_OBJECTS) 6800 WARN_ON_ONCE(1); 6801 else 6802 x = data_race(slab->slabs); 6803 total += x; 6804 nodes[node] += x; 6805 } 6806 #endif 6807 } 6808 } 6809 6810 /* 6811 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6812 * already held which will conflict with an existing lock order: 6813 * 6814 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6815 * 6816 * We don't really need mem_hotplug_lock (to hold off 6817 * slab_mem_going_offline_callback) here because slab's memory hot 6818 * unplug code doesn't destroy the kmem_cache->node[] data. 6819 */ 6820 6821 #ifdef CONFIG_SLUB_DEBUG 6822 if (flags & SO_ALL) { 6823 struct kmem_cache_node *n; 6824 6825 for_each_kmem_cache_node(s, node, n) { 6826 6827 if (flags & SO_TOTAL) 6828 x = node_nr_objs(n); 6829 else if (flags & SO_OBJECTS) 6830 x = node_nr_objs(n) - count_partial(n, count_free); 6831 else 6832 x = node_nr_slabs(n); 6833 total += x; 6834 nodes[node] += x; 6835 } 6836 6837 } else 6838 #endif 6839 if (flags & SO_PARTIAL) { 6840 struct kmem_cache_node *n; 6841 6842 for_each_kmem_cache_node(s, node, n) { 6843 if (flags & SO_TOTAL) 6844 x = count_partial(n, count_total); 6845 else if (flags & SO_OBJECTS) 6846 x = count_partial(n, count_inuse); 6847 else 6848 x = n->nr_partial; 6849 total += x; 6850 nodes[node] += x; 6851 } 6852 } 6853 6854 len += sysfs_emit_at(buf, len, "%lu", total); 6855 #ifdef CONFIG_NUMA 6856 for (node = 0; node < nr_node_ids; node++) { 6857 if (nodes[node]) 6858 len += sysfs_emit_at(buf, len, " N%d=%lu", 6859 node, nodes[node]); 6860 } 6861 #endif 6862 len += sysfs_emit_at(buf, len, "\n"); 6863 kfree(nodes); 6864 6865 return len; 6866 } 6867 6868 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6869 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6870 6871 struct slab_attribute { 6872 struct attribute attr; 6873 ssize_t (*show)(struct kmem_cache *s, char *buf); 6874 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6875 }; 6876 6877 #define SLAB_ATTR_RO(_name) \ 6878 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6879 6880 #define SLAB_ATTR(_name) \ 6881 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6882 6883 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6884 { 6885 return sysfs_emit(buf, "%u\n", s->size); 6886 } 6887 SLAB_ATTR_RO(slab_size); 6888 6889 static ssize_t align_show(struct kmem_cache *s, char *buf) 6890 { 6891 return sysfs_emit(buf, "%u\n", s->align); 6892 } 6893 SLAB_ATTR_RO(align); 6894 6895 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6896 { 6897 return sysfs_emit(buf, "%u\n", s->object_size); 6898 } 6899 SLAB_ATTR_RO(object_size); 6900 6901 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6902 { 6903 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6904 } 6905 SLAB_ATTR_RO(objs_per_slab); 6906 6907 static ssize_t order_show(struct kmem_cache *s, char *buf) 6908 { 6909 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6910 } 6911 SLAB_ATTR_RO(order); 6912 6913 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6914 { 6915 return sysfs_emit(buf, "%lu\n", s->min_partial); 6916 } 6917 6918 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6919 size_t length) 6920 { 6921 unsigned long min; 6922 int err; 6923 6924 err = kstrtoul(buf, 10, &min); 6925 if (err) 6926 return err; 6927 6928 s->min_partial = min; 6929 return length; 6930 } 6931 SLAB_ATTR(min_partial); 6932 6933 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6934 { 6935 unsigned int nr_partial = 0; 6936 #ifdef CONFIG_SLUB_CPU_PARTIAL 6937 nr_partial = s->cpu_partial; 6938 #endif 6939 6940 return sysfs_emit(buf, "%u\n", nr_partial); 6941 } 6942 6943 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6944 size_t length) 6945 { 6946 unsigned int objects; 6947 int err; 6948 6949 err = kstrtouint(buf, 10, &objects); 6950 if (err) 6951 return err; 6952 if (objects && !kmem_cache_has_cpu_partial(s)) 6953 return -EINVAL; 6954 6955 slub_set_cpu_partial(s, objects); 6956 flush_all(s); 6957 return length; 6958 } 6959 SLAB_ATTR(cpu_partial); 6960 6961 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6962 { 6963 if (!s->ctor) 6964 return 0; 6965 return sysfs_emit(buf, "%pS\n", s->ctor); 6966 } 6967 SLAB_ATTR_RO(ctor); 6968 6969 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6970 { 6971 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6972 } 6973 SLAB_ATTR_RO(aliases); 6974 6975 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6976 { 6977 return show_slab_objects(s, buf, SO_PARTIAL); 6978 } 6979 SLAB_ATTR_RO(partial); 6980 6981 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6982 { 6983 return show_slab_objects(s, buf, SO_CPU); 6984 } 6985 SLAB_ATTR_RO(cpu_slabs); 6986 6987 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6988 { 6989 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6990 } 6991 SLAB_ATTR_RO(objects_partial); 6992 6993 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6994 { 6995 int objects = 0; 6996 int slabs = 0; 6997 int cpu __maybe_unused; 6998 int len = 0; 6999 7000 #ifdef CONFIG_SLUB_CPU_PARTIAL 7001 for_each_online_cpu(cpu) { 7002 struct slab *slab; 7003 7004 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7005 7006 if (slab) 7007 slabs += data_race(slab->slabs); 7008 } 7009 #endif 7010 7011 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 7012 objects = (slabs * oo_objects(s->oo)) / 2; 7013 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 7014 7015 #ifdef CONFIG_SLUB_CPU_PARTIAL 7016 for_each_online_cpu(cpu) { 7017 struct slab *slab; 7018 7019 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7020 if (slab) { 7021 slabs = data_race(slab->slabs); 7022 objects = (slabs * oo_objects(s->oo)) / 2; 7023 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 7024 cpu, objects, slabs); 7025 } 7026 } 7027 #endif 7028 len += sysfs_emit_at(buf, len, "\n"); 7029 7030 return len; 7031 } 7032 SLAB_ATTR_RO(slabs_cpu_partial); 7033 7034 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 7035 { 7036 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 7037 } 7038 SLAB_ATTR_RO(reclaim_account); 7039 7040 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 7041 { 7042 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 7043 } 7044 SLAB_ATTR_RO(hwcache_align); 7045 7046 #ifdef CONFIG_ZONE_DMA 7047 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 7048 { 7049 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 7050 } 7051 SLAB_ATTR_RO(cache_dma); 7052 #endif 7053 7054 #ifdef CONFIG_HARDENED_USERCOPY 7055 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 7056 { 7057 return sysfs_emit(buf, "%u\n", s->usersize); 7058 } 7059 SLAB_ATTR_RO(usersize); 7060 #endif 7061 7062 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 7063 { 7064 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 7065 } 7066 SLAB_ATTR_RO(destroy_by_rcu); 7067 7068 #ifdef CONFIG_SLUB_DEBUG 7069 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 7070 { 7071 return show_slab_objects(s, buf, SO_ALL); 7072 } 7073 SLAB_ATTR_RO(slabs); 7074 7075 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 7076 { 7077 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 7078 } 7079 SLAB_ATTR_RO(total_objects); 7080 7081 static ssize_t objects_show(struct kmem_cache *s, char *buf) 7082 { 7083 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 7084 } 7085 SLAB_ATTR_RO(objects); 7086 7087 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 7088 { 7089 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 7090 } 7091 SLAB_ATTR_RO(sanity_checks); 7092 7093 static ssize_t trace_show(struct kmem_cache *s, char *buf) 7094 { 7095 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 7096 } 7097 SLAB_ATTR_RO(trace); 7098 7099 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 7100 { 7101 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 7102 } 7103 7104 SLAB_ATTR_RO(red_zone); 7105 7106 static ssize_t poison_show(struct kmem_cache *s, char *buf) 7107 { 7108 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 7109 } 7110 7111 SLAB_ATTR_RO(poison); 7112 7113 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 7114 { 7115 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 7116 } 7117 7118 SLAB_ATTR_RO(store_user); 7119 7120 static ssize_t validate_show(struct kmem_cache *s, char *buf) 7121 { 7122 return 0; 7123 } 7124 7125 static ssize_t validate_store(struct kmem_cache *s, 7126 const char *buf, size_t length) 7127 { 7128 int ret = -EINVAL; 7129 7130 if (buf[0] == '1' && kmem_cache_debug(s)) { 7131 ret = validate_slab_cache(s); 7132 if (ret >= 0) 7133 ret = length; 7134 } 7135 return ret; 7136 } 7137 SLAB_ATTR(validate); 7138 7139 #endif /* CONFIG_SLUB_DEBUG */ 7140 7141 #ifdef CONFIG_FAILSLAB 7142 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 7143 { 7144 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 7145 } 7146 7147 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 7148 size_t length) 7149 { 7150 if (s->refcount > 1) 7151 return -EINVAL; 7152 7153 if (buf[0] == '1') 7154 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 7155 else 7156 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 7157 7158 return length; 7159 } 7160 SLAB_ATTR(failslab); 7161 #endif 7162 7163 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 7164 { 7165 return 0; 7166 } 7167 7168 static ssize_t shrink_store(struct kmem_cache *s, 7169 const char *buf, size_t length) 7170 { 7171 if (buf[0] == '1') 7172 kmem_cache_shrink(s); 7173 else 7174 return -EINVAL; 7175 return length; 7176 } 7177 SLAB_ATTR(shrink); 7178 7179 #ifdef CONFIG_NUMA 7180 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 7181 { 7182 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 7183 } 7184 7185 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 7186 const char *buf, size_t length) 7187 { 7188 unsigned int ratio; 7189 int err; 7190 7191 err = kstrtouint(buf, 10, &ratio); 7192 if (err) 7193 return err; 7194 if (ratio > 100) 7195 return -ERANGE; 7196 7197 s->remote_node_defrag_ratio = ratio * 10; 7198 7199 return length; 7200 } 7201 SLAB_ATTR(remote_node_defrag_ratio); 7202 #endif 7203 7204 #ifdef CONFIG_SLUB_STATS 7205 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 7206 { 7207 unsigned long sum = 0; 7208 int cpu; 7209 int len = 0; 7210 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 7211 7212 if (!data) 7213 return -ENOMEM; 7214 7215 for_each_online_cpu(cpu) { 7216 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 7217 7218 data[cpu] = x; 7219 sum += x; 7220 } 7221 7222 len += sysfs_emit_at(buf, len, "%lu", sum); 7223 7224 #ifdef CONFIG_SMP 7225 for_each_online_cpu(cpu) { 7226 if (data[cpu]) 7227 len += sysfs_emit_at(buf, len, " C%d=%u", 7228 cpu, data[cpu]); 7229 } 7230 #endif 7231 kfree(data); 7232 len += sysfs_emit_at(buf, len, "\n"); 7233 7234 return len; 7235 } 7236 7237 static void clear_stat(struct kmem_cache *s, enum stat_item si) 7238 { 7239 int cpu; 7240 7241 for_each_online_cpu(cpu) 7242 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 7243 } 7244 7245 #define STAT_ATTR(si, text) \ 7246 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 7247 { \ 7248 return show_stat(s, buf, si); \ 7249 } \ 7250 static ssize_t text##_store(struct kmem_cache *s, \ 7251 const char *buf, size_t length) \ 7252 { \ 7253 if (buf[0] != '0') \ 7254 return -EINVAL; \ 7255 clear_stat(s, si); \ 7256 return length; \ 7257 } \ 7258 SLAB_ATTR(text); \ 7259 7260 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7261 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7262 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7263 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7264 STAT_ATTR(FREE_FROZEN, free_frozen); 7265 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7266 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7267 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7268 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7269 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7270 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7271 STAT_ATTR(FREE_SLAB, free_slab); 7272 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7273 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7274 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7275 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7276 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7277 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7278 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7279 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7280 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7281 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7282 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7283 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7284 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7285 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7286 #endif /* CONFIG_SLUB_STATS */ 7287 7288 #ifdef CONFIG_KFENCE 7289 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7290 { 7291 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7292 } 7293 7294 static ssize_t skip_kfence_store(struct kmem_cache *s, 7295 const char *buf, size_t length) 7296 { 7297 int ret = length; 7298 7299 if (buf[0] == '0') 7300 s->flags &= ~SLAB_SKIP_KFENCE; 7301 else if (buf[0] == '1') 7302 s->flags |= SLAB_SKIP_KFENCE; 7303 else 7304 ret = -EINVAL; 7305 7306 return ret; 7307 } 7308 SLAB_ATTR(skip_kfence); 7309 #endif 7310 7311 static struct attribute *slab_attrs[] = { 7312 &slab_size_attr.attr, 7313 &object_size_attr.attr, 7314 &objs_per_slab_attr.attr, 7315 &order_attr.attr, 7316 &min_partial_attr.attr, 7317 &cpu_partial_attr.attr, 7318 &objects_partial_attr.attr, 7319 &partial_attr.attr, 7320 &cpu_slabs_attr.attr, 7321 &ctor_attr.attr, 7322 &aliases_attr.attr, 7323 &align_attr.attr, 7324 &hwcache_align_attr.attr, 7325 &reclaim_account_attr.attr, 7326 &destroy_by_rcu_attr.attr, 7327 &shrink_attr.attr, 7328 &slabs_cpu_partial_attr.attr, 7329 #ifdef CONFIG_SLUB_DEBUG 7330 &total_objects_attr.attr, 7331 &objects_attr.attr, 7332 &slabs_attr.attr, 7333 &sanity_checks_attr.attr, 7334 &trace_attr.attr, 7335 &red_zone_attr.attr, 7336 &poison_attr.attr, 7337 &store_user_attr.attr, 7338 &validate_attr.attr, 7339 #endif 7340 #ifdef CONFIG_ZONE_DMA 7341 &cache_dma_attr.attr, 7342 #endif 7343 #ifdef CONFIG_NUMA 7344 &remote_node_defrag_ratio_attr.attr, 7345 #endif 7346 #ifdef CONFIG_SLUB_STATS 7347 &alloc_fastpath_attr.attr, 7348 &alloc_slowpath_attr.attr, 7349 &free_fastpath_attr.attr, 7350 &free_slowpath_attr.attr, 7351 &free_frozen_attr.attr, 7352 &free_add_partial_attr.attr, 7353 &free_remove_partial_attr.attr, 7354 &alloc_from_partial_attr.attr, 7355 &alloc_slab_attr.attr, 7356 &alloc_refill_attr.attr, 7357 &alloc_node_mismatch_attr.attr, 7358 &free_slab_attr.attr, 7359 &cpuslab_flush_attr.attr, 7360 &deactivate_full_attr.attr, 7361 &deactivate_empty_attr.attr, 7362 &deactivate_to_head_attr.attr, 7363 &deactivate_to_tail_attr.attr, 7364 &deactivate_remote_frees_attr.attr, 7365 &deactivate_bypass_attr.attr, 7366 &order_fallback_attr.attr, 7367 &cmpxchg_double_fail_attr.attr, 7368 &cmpxchg_double_cpu_fail_attr.attr, 7369 &cpu_partial_alloc_attr.attr, 7370 &cpu_partial_free_attr.attr, 7371 &cpu_partial_node_attr.attr, 7372 &cpu_partial_drain_attr.attr, 7373 #endif 7374 #ifdef CONFIG_FAILSLAB 7375 &failslab_attr.attr, 7376 #endif 7377 #ifdef CONFIG_HARDENED_USERCOPY 7378 &usersize_attr.attr, 7379 #endif 7380 #ifdef CONFIG_KFENCE 7381 &skip_kfence_attr.attr, 7382 #endif 7383 7384 NULL 7385 }; 7386 7387 static const struct attribute_group slab_attr_group = { 7388 .attrs = slab_attrs, 7389 }; 7390 7391 static ssize_t slab_attr_show(struct kobject *kobj, 7392 struct attribute *attr, 7393 char *buf) 7394 { 7395 struct slab_attribute *attribute; 7396 struct kmem_cache *s; 7397 7398 attribute = to_slab_attr(attr); 7399 s = to_slab(kobj); 7400 7401 if (!attribute->show) 7402 return -EIO; 7403 7404 return attribute->show(s, buf); 7405 } 7406 7407 static ssize_t slab_attr_store(struct kobject *kobj, 7408 struct attribute *attr, 7409 const char *buf, size_t len) 7410 { 7411 struct slab_attribute *attribute; 7412 struct kmem_cache *s; 7413 7414 attribute = to_slab_attr(attr); 7415 s = to_slab(kobj); 7416 7417 if (!attribute->store) 7418 return -EIO; 7419 7420 return attribute->store(s, buf, len); 7421 } 7422 7423 static void kmem_cache_release(struct kobject *k) 7424 { 7425 slab_kmem_cache_release(to_slab(k)); 7426 } 7427 7428 static const struct sysfs_ops slab_sysfs_ops = { 7429 .show = slab_attr_show, 7430 .store = slab_attr_store, 7431 }; 7432 7433 static const struct kobj_type slab_ktype = { 7434 .sysfs_ops = &slab_sysfs_ops, 7435 .release = kmem_cache_release, 7436 }; 7437 7438 static struct kset *slab_kset; 7439 7440 static inline struct kset *cache_kset(struct kmem_cache *s) 7441 { 7442 return slab_kset; 7443 } 7444 7445 #define ID_STR_LENGTH 32 7446 7447 /* Create a unique string id for a slab cache: 7448 * 7449 * Format :[flags-]size 7450 */ 7451 static char *create_unique_id(struct kmem_cache *s) 7452 { 7453 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7454 char *p = name; 7455 7456 if (!name) 7457 return ERR_PTR(-ENOMEM); 7458 7459 *p++ = ':'; 7460 /* 7461 * First flags affecting slabcache operations. We will only 7462 * get here for aliasable slabs so we do not need to support 7463 * too many flags. The flags here must cover all flags that 7464 * are matched during merging to guarantee that the id is 7465 * unique. 7466 */ 7467 if (s->flags & SLAB_CACHE_DMA) 7468 *p++ = 'd'; 7469 if (s->flags & SLAB_CACHE_DMA32) 7470 *p++ = 'D'; 7471 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7472 *p++ = 'a'; 7473 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7474 *p++ = 'F'; 7475 if (s->flags & SLAB_ACCOUNT) 7476 *p++ = 'A'; 7477 if (p != name + 1) 7478 *p++ = '-'; 7479 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7480 7481 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7482 kfree(name); 7483 return ERR_PTR(-EINVAL); 7484 } 7485 kmsan_unpoison_memory(name, p - name); 7486 return name; 7487 } 7488 7489 static int sysfs_slab_add(struct kmem_cache *s) 7490 { 7491 int err; 7492 const char *name; 7493 struct kset *kset = cache_kset(s); 7494 int unmergeable = slab_unmergeable(s); 7495 7496 if (!unmergeable && disable_higher_order_debug && 7497 (slub_debug & DEBUG_METADATA_FLAGS)) 7498 unmergeable = 1; 7499 7500 if (unmergeable) { 7501 /* 7502 * Slabcache can never be merged so we can use the name proper. 7503 * This is typically the case for debug situations. In that 7504 * case we can catch duplicate names easily. 7505 */ 7506 sysfs_remove_link(&slab_kset->kobj, s->name); 7507 name = s->name; 7508 } else { 7509 /* 7510 * Create a unique name for the slab as a target 7511 * for the symlinks. 7512 */ 7513 name = create_unique_id(s); 7514 if (IS_ERR(name)) 7515 return PTR_ERR(name); 7516 } 7517 7518 s->kobj.kset = kset; 7519 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7520 if (err) 7521 goto out; 7522 7523 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7524 if (err) 7525 goto out_del_kobj; 7526 7527 if (!unmergeable) { 7528 /* Setup first alias */ 7529 sysfs_slab_alias(s, s->name); 7530 } 7531 out: 7532 if (!unmergeable) 7533 kfree(name); 7534 return err; 7535 out_del_kobj: 7536 kobject_del(&s->kobj); 7537 goto out; 7538 } 7539 7540 void sysfs_slab_unlink(struct kmem_cache *s) 7541 { 7542 if (s->kobj.state_in_sysfs) 7543 kobject_del(&s->kobj); 7544 } 7545 7546 void sysfs_slab_release(struct kmem_cache *s) 7547 { 7548 kobject_put(&s->kobj); 7549 } 7550 7551 /* 7552 * Need to buffer aliases during bootup until sysfs becomes 7553 * available lest we lose that information. 7554 */ 7555 struct saved_alias { 7556 struct kmem_cache *s; 7557 const char *name; 7558 struct saved_alias *next; 7559 }; 7560 7561 static struct saved_alias *alias_list; 7562 7563 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7564 { 7565 struct saved_alias *al; 7566 7567 if (slab_state == FULL) { 7568 /* 7569 * If we have a leftover link then remove it. 7570 */ 7571 sysfs_remove_link(&slab_kset->kobj, name); 7572 /* 7573 * The original cache may have failed to generate sysfs file. 7574 * In that case, sysfs_create_link() returns -ENOENT and 7575 * symbolic link creation is skipped. 7576 */ 7577 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7578 } 7579 7580 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7581 if (!al) 7582 return -ENOMEM; 7583 7584 al->s = s; 7585 al->name = name; 7586 al->next = alias_list; 7587 alias_list = al; 7588 kmsan_unpoison_memory(al, sizeof(*al)); 7589 return 0; 7590 } 7591 7592 static int __init slab_sysfs_init(void) 7593 { 7594 struct kmem_cache *s; 7595 int err; 7596 7597 mutex_lock(&slab_mutex); 7598 7599 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7600 if (!slab_kset) { 7601 mutex_unlock(&slab_mutex); 7602 pr_err("Cannot register slab subsystem.\n"); 7603 return -ENOMEM; 7604 } 7605 7606 slab_state = FULL; 7607 7608 list_for_each_entry(s, &slab_caches, list) { 7609 err = sysfs_slab_add(s); 7610 if (err) 7611 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7612 s->name); 7613 } 7614 7615 while (alias_list) { 7616 struct saved_alias *al = alias_list; 7617 7618 alias_list = alias_list->next; 7619 err = sysfs_slab_alias(al->s, al->name); 7620 if (err) 7621 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7622 al->name); 7623 kfree(al); 7624 } 7625 7626 mutex_unlock(&slab_mutex); 7627 return 0; 7628 } 7629 late_initcall(slab_sysfs_init); 7630 #endif /* SLAB_SUPPORTS_SYSFS */ 7631 7632 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7633 static int slab_debugfs_show(struct seq_file *seq, void *v) 7634 { 7635 struct loc_track *t = seq->private; 7636 struct location *l; 7637 unsigned long idx; 7638 7639 idx = (unsigned long) t->idx; 7640 if (idx < t->count) { 7641 l = &t->loc[idx]; 7642 7643 seq_printf(seq, "%7ld ", l->count); 7644 7645 if (l->addr) 7646 seq_printf(seq, "%pS", (void *)l->addr); 7647 else 7648 seq_puts(seq, "<not-available>"); 7649 7650 if (l->waste) 7651 seq_printf(seq, " waste=%lu/%lu", 7652 l->count * l->waste, l->waste); 7653 7654 if (l->sum_time != l->min_time) { 7655 seq_printf(seq, " age=%ld/%llu/%ld", 7656 l->min_time, div_u64(l->sum_time, l->count), 7657 l->max_time); 7658 } else 7659 seq_printf(seq, " age=%ld", l->min_time); 7660 7661 if (l->min_pid != l->max_pid) 7662 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7663 else 7664 seq_printf(seq, " pid=%ld", 7665 l->min_pid); 7666 7667 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7668 seq_printf(seq, " cpus=%*pbl", 7669 cpumask_pr_args(to_cpumask(l->cpus))); 7670 7671 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7672 seq_printf(seq, " nodes=%*pbl", 7673 nodemask_pr_args(&l->nodes)); 7674 7675 #ifdef CONFIG_STACKDEPOT 7676 { 7677 depot_stack_handle_t handle; 7678 unsigned long *entries; 7679 unsigned int nr_entries, j; 7680 7681 handle = READ_ONCE(l->handle); 7682 if (handle) { 7683 nr_entries = stack_depot_fetch(handle, &entries); 7684 seq_puts(seq, "\n"); 7685 for (j = 0; j < nr_entries; j++) 7686 seq_printf(seq, " %pS\n", (void *)entries[j]); 7687 } 7688 } 7689 #endif 7690 seq_puts(seq, "\n"); 7691 } 7692 7693 if (!idx && !t->count) 7694 seq_puts(seq, "No data\n"); 7695 7696 return 0; 7697 } 7698 7699 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7700 { 7701 } 7702 7703 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7704 { 7705 struct loc_track *t = seq->private; 7706 7707 t->idx = ++(*ppos); 7708 if (*ppos <= t->count) 7709 return ppos; 7710 7711 return NULL; 7712 } 7713 7714 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7715 { 7716 struct location *loc1 = (struct location *)a; 7717 struct location *loc2 = (struct location *)b; 7718 7719 if (loc1->count > loc2->count) 7720 return -1; 7721 else 7722 return 1; 7723 } 7724 7725 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7726 { 7727 struct loc_track *t = seq->private; 7728 7729 t->idx = *ppos; 7730 return ppos; 7731 } 7732 7733 static const struct seq_operations slab_debugfs_sops = { 7734 .start = slab_debugfs_start, 7735 .next = slab_debugfs_next, 7736 .stop = slab_debugfs_stop, 7737 .show = slab_debugfs_show, 7738 }; 7739 7740 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7741 { 7742 7743 struct kmem_cache_node *n; 7744 enum track_item alloc; 7745 int node; 7746 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7747 sizeof(struct loc_track)); 7748 struct kmem_cache *s = file_inode(filep)->i_private; 7749 unsigned long *obj_map; 7750 7751 if (!t) 7752 return -ENOMEM; 7753 7754 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7755 if (!obj_map) { 7756 seq_release_private(inode, filep); 7757 return -ENOMEM; 7758 } 7759 7760 alloc = debugfs_get_aux_num(filep); 7761 7762 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7763 bitmap_free(obj_map); 7764 seq_release_private(inode, filep); 7765 return -ENOMEM; 7766 } 7767 7768 for_each_kmem_cache_node(s, node, n) { 7769 unsigned long flags; 7770 struct slab *slab; 7771 7772 if (!node_nr_slabs(n)) 7773 continue; 7774 7775 spin_lock_irqsave(&n->list_lock, flags); 7776 list_for_each_entry(slab, &n->partial, slab_list) 7777 process_slab(t, s, slab, alloc, obj_map); 7778 list_for_each_entry(slab, &n->full, slab_list) 7779 process_slab(t, s, slab, alloc, obj_map); 7780 spin_unlock_irqrestore(&n->list_lock, flags); 7781 } 7782 7783 /* Sort locations by count */ 7784 sort_r(t->loc, t->count, sizeof(struct location), 7785 cmp_loc_by_count, NULL, NULL); 7786 7787 bitmap_free(obj_map); 7788 return 0; 7789 } 7790 7791 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7792 { 7793 struct seq_file *seq = file->private_data; 7794 struct loc_track *t = seq->private; 7795 7796 free_loc_track(t); 7797 return seq_release_private(inode, file); 7798 } 7799 7800 static const struct file_operations slab_debugfs_fops = { 7801 .open = slab_debug_trace_open, 7802 .read = seq_read, 7803 .llseek = seq_lseek, 7804 .release = slab_debug_trace_release, 7805 }; 7806 7807 static void debugfs_slab_add(struct kmem_cache *s) 7808 { 7809 struct dentry *slab_cache_dir; 7810 7811 if (unlikely(!slab_debugfs_root)) 7812 return; 7813 7814 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7815 7816 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7817 TRACK_ALLOC, &slab_debugfs_fops); 7818 7819 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7820 TRACK_FREE, &slab_debugfs_fops); 7821 } 7822 7823 void debugfs_slab_release(struct kmem_cache *s) 7824 { 7825 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7826 } 7827 7828 static int __init slab_debugfs_init(void) 7829 { 7830 struct kmem_cache *s; 7831 7832 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7833 7834 list_for_each_entry(s, &slab_caches, list) 7835 if (s->flags & SLAB_STORE_USER) 7836 debugfs_slab_add(s); 7837 7838 return 0; 7839 7840 } 7841 __initcall(slab_debugfs_init); 7842 #endif 7843 /* 7844 * The /proc/slabinfo ABI 7845 */ 7846 #ifdef CONFIG_SLUB_DEBUG 7847 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7848 { 7849 unsigned long nr_slabs = 0; 7850 unsigned long nr_objs = 0; 7851 unsigned long nr_free = 0; 7852 int node; 7853 struct kmem_cache_node *n; 7854 7855 for_each_kmem_cache_node(s, node, n) { 7856 nr_slabs += node_nr_slabs(n); 7857 nr_objs += node_nr_objs(n); 7858 nr_free += count_partial_free_approx(n); 7859 } 7860 7861 sinfo->active_objs = nr_objs - nr_free; 7862 sinfo->num_objs = nr_objs; 7863 sinfo->active_slabs = nr_slabs; 7864 sinfo->num_slabs = nr_slabs; 7865 sinfo->objects_per_slab = oo_objects(s->oo); 7866 sinfo->cache_order = oo_order(s->oo); 7867 } 7868 #endif /* CONFIG_SLUB_DEBUG */ 7869