1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/vmalloc.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/kasan.h> 26 #include <linux/node.h> 27 #include <linux/kmsan.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/mempolicy.h> 31 #include <linux/ctype.h> 32 #include <linux/stackdepot.h> 33 #include <linux/debugobjects.h> 34 #include <linux/kallsyms.h> 35 #include <linux/kfence.h> 36 #include <linux/memory.h> 37 #include <linux/math64.h> 38 #include <linux/fault-inject.h> 39 #include <linux/kmemleak.h> 40 #include <linux/stacktrace.h> 41 #include <linux/prefetch.h> 42 #include <linux/memcontrol.h> 43 #include <linux/random.h> 44 #include <kunit/test.h> 45 #include <kunit/test-bug.h> 46 #include <linux/sort.h> 47 #include <linux/irq_work.h> 48 #include <linux/kprobes.h> 49 #include <linux/debugfs.h> 50 #include <trace/events/kmem.h> 51 52 #include "internal.h" 53 54 /* 55 * Lock order: 56 * 1. slab_mutex (Global Mutex) 57 * 2. node->list_lock (Spinlock) 58 * 3. kmem_cache->cpu_slab->lock (Local lock) 59 * 4. slab_lock(slab) (Only on some arches) 60 * 5. object_map_lock (Only for debugging) 61 * 62 * slab_mutex 63 * 64 * The role of the slab_mutex is to protect the list of all the slabs 65 * and to synchronize major metadata changes to slab cache structures. 66 * Also synchronizes memory hotplug callbacks. 67 * 68 * slab_lock 69 * 70 * The slab_lock is a wrapper around the page lock, thus it is a bit 71 * spinlock. 72 * 73 * The slab_lock is only used on arches that do not have the ability 74 * to do a cmpxchg_double. It only protects: 75 * 76 * A. slab->freelist -> List of free objects in a slab 77 * B. slab->inuse -> Number of objects in use 78 * C. slab->objects -> Number of objects in slab 79 * D. slab->frozen -> frozen state 80 * 81 * Frozen slabs 82 * 83 * If a slab is frozen then it is exempt from list management. It is 84 * the cpu slab which is actively allocated from by the processor that 85 * froze it and it is not on any list. The processor that froze the 86 * slab is the one who can perform list operations on the slab. Other 87 * processors may put objects onto the freelist but the processor that 88 * froze the slab is the only one that can retrieve the objects from the 89 * slab's freelist. 90 * 91 * CPU partial slabs 92 * 93 * The partially empty slabs cached on the CPU partial list are used 94 * for performance reasons, which speeds up the allocation process. 95 * These slabs are not frozen, but are also exempt from list management, 96 * by clearing the SL_partial flag when moving out of the node 97 * partial list. Please see __slab_free() for more details. 98 * 99 * To sum up, the current scheme is: 100 * - node partial slab: SL_partial && !frozen 101 * - cpu partial slab: !SL_partial && !frozen 102 * - cpu slab: !SL_partial && frozen 103 * - full slab: !SL_partial && !frozen 104 * 105 * list_lock 106 * 107 * The list_lock protects the partial and full list on each node and 108 * the partial slab counter. If taken then no new slabs may be added or 109 * removed from the lists nor make the number of partial slabs be modified. 110 * (Note that the total number of slabs is an atomic value that may be 111 * modified without taking the list lock). 112 * 113 * The list_lock is a centralized lock and thus we avoid taking it as 114 * much as possible. As long as SLUB does not have to handle partial 115 * slabs, operations can continue without any centralized lock. F.e. 116 * allocating a long series of objects that fill up slabs does not require 117 * the list lock. 118 * 119 * For debug caches, all allocations are forced to go through a list_lock 120 * protected region to serialize against concurrent validation. 121 * 122 * cpu_slab->lock local lock 123 * 124 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 125 * except the stat counters. This is a percpu structure manipulated only by 126 * the local cpu, so the lock protects against being preempted or interrupted 127 * by an irq. Fast path operations rely on lockless operations instead. 128 * 129 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 130 * which means the lockless fastpath cannot be used as it might interfere with 131 * an in-progress slow path operations. In this case the local lock is always 132 * taken but it still utilizes the freelist for the common operations. 133 * 134 * lockless fastpaths 135 * 136 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 137 * are fully lockless when satisfied from the percpu slab (and when 138 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 139 * They also don't disable preemption or migration or irqs. They rely on 140 * the transaction id (tid) field to detect being preempted or moved to 141 * another cpu. 142 * 143 * irq, preemption, migration considerations 144 * 145 * Interrupts are disabled as part of list_lock or local_lock operations, or 146 * around the slab_lock operation, in order to make the slab allocator safe 147 * to use in the context of an irq. 148 * 149 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 150 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 151 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 152 * doesn't have to be revalidated in each section protected by the local lock. 153 * 154 * SLUB assigns one slab for allocation to each processor. 155 * Allocations only occur from these slabs called cpu slabs. 156 * 157 * Slabs with free elements are kept on a partial list and during regular 158 * operations no list for full slabs is used. If an object in a full slab is 159 * freed then the slab will show up again on the partial lists. 160 * We track full slabs for debugging purposes though because otherwise we 161 * cannot scan all objects. 162 * 163 * Slabs are freed when they become empty. Teardown and setup is 164 * minimal so we rely on the page allocators per cpu caches for 165 * fast frees and allocs. 166 * 167 * slab->frozen The slab is frozen and exempt from list processing. 168 * This means that the slab is dedicated to a purpose 169 * such as satisfying allocations for a specific 170 * processor. Objects may be freed in the slab while 171 * it is frozen but slab_free will then skip the usual 172 * list operations. It is up to the processor holding 173 * the slab to integrate the slab into the slab lists 174 * when the slab is no longer needed. 175 * 176 * One use of this flag is to mark slabs that are 177 * used for allocations. Then such a slab becomes a cpu 178 * slab. The cpu slab may be equipped with an additional 179 * freelist that allows lockless access to 180 * free objects in addition to the regular freelist 181 * that requires the slab lock. 182 * 183 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 184 * options set. This moves slab handling out of 185 * the fast path and disables lockless freelists. 186 */ 187 188 /** 189 * enum slab_flags - How the slab flags bits are used. 190 * @SL_locked: Is locked with slab_lock() 191 * @SL_partial: On the per-node partial list 192 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves 193 * 194 * The slab flags share space with the page flags but some bits have 195 * different interpretations. The high bits are used for information 196 * like zone/node/section. 197 */ 198 enum slab_flags { 199 SL_locked = PG_locked, 200 SL_partial = PG_workingset, /* Historical reasons for this bit */ 201 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */ 202 }; 203 204 /* 205 * We could simply use migrate_disable()/enable() but as long as it's a 206 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 207 */ 208 #ifndef CONFIG_PREEMPT_RT 209 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 210 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 211 #define USE_LOCKLESS_FAST_PATH() (true) 212 #else 213 #define slub_get_cpu_ptr(var) \ 214 ({ \ 215 migrate_disable(); \ 216 this_cpu_ptr(var); \ 217 }) 218 #define slub_put_cpu_ptr(var) \ 219 do { \ 220 (void)(var); \ 221 migrate_enable(); \ 222 } while (0) 223 #define USE_LOCKLESS_FAST_PATH() (false) 224 #endif 225 226 #ifndef CONFIG_SLUB_TINY 227 #define __fastpath_inline __always_inline 228 #else 229 #define __fastpath_inline 230 #endif 231 232 #ifdef CONFIG_SLUB_DEBUG 233 #ifdef CONFIG_SLUB_DEBUG_ON 234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 235 #else 236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 237 #endif 238 #endif /* CONFIG_SLUB_DEBUG */ 239 240 #ifdef CONFIG_NUMA 241 static DEFINE_STATIC_KEY_FALSE(strict_numa); 242 #endif 243 244 /* Structure holding parameters for get_partial() call chain */ 245 struct partial_context { 246 gfp_t flags; 247 unsigned int orig_size; 248 void *object; 249 }; 250 251 static inline bool kmem_cache_debug(struct kmem_cache *s) 252 { 253 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 254 } 255 256 void *fixup_red_left(struct kmem_cache *s, void *p) 257 { 258 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 259 p += s->red_left_pad; 260 261 return p; 262 } 263 264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 265 { 266 #ifdef CONFIG_SLUB_CPU_PARTIAL 267 return !kmem_cache_debug(s); 268 #else 269 return false; 270 #endif 271 } 272 273 /* 274 * Issues still to be resolved: 275 * 276 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 277 * 278 * - Variable sizing of the per node arrays 279 */ 280 281 /* Enable to log cmpxchg failures */ 282 #undef SLUB_DEBUG_CMPXCHG 283 284 #ifndef CONFIG_SLUB_TINY 285 /* 286 * Minimum number of partial slabs. These will be left on the partial 287 * lists even if they are empty. kmem_cache_shrink may reclaim them. 288 */ 289 #define MIN_PARTIAL 5 290 291 /* 292 * Maximum number of desirable partial slabs. 293 * The existence of more partial slabs makes kmem_cache_shrink 294 * sort the partial list by the number of objects in use. 295 */ 296 #define MAX_PARTIAL 10 297 #else 298 #define MIN_PARTIAL 0 299 #define MAX_PARTIAL 0 300 #endif 301 302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 303 SLAB_POISON | SLAB_STORE_USER) 304 305 /* 306 * These debug flags cannot use CMPXCHG because there might be consistency 307 * issues when checking or reading debug information 308 */ 309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 310 SLAB_TRACE) 311 312 313 /* 314 * Debugging flags that require metadata to be stored in the slab. These get 315 * disabled when slab_debug=O is used and a cache's min order increases with 316 * metadata. 317 */ 318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 319 320 #define OO_SHIFT 16 321 #define OO_MASK ((1 << OO_SHIFT) - 1) 322 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 323 324 /* Internal SLUB flags */ 325 /* Poison object */ 326 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 327 /* Use cmpxchg_double */ 328 329 #ifdef system_has_freelist_aba 330 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 331 #else 332 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 333 #endif 334 335 /* 336 * Tracking user of a slab. 337 */ 338 #define TRACK_ADDRS_COUNT 16 339 struct track { 340 unsigned long addr; /* Called from address */ 341 #ifdef CONFIG_STACKDEPOT 342 depot_stack_handle_t handle; 343 #endif 344 int cpu; /* Was running on cpu */ 345 int pid; /* Pid context */ 346 unsigned long when; /* When did the operation occur */ 347 }; 348 349 enum track_item { TRACK_ALLOC, TRACK_FREE }; 350 351 #ifdef SLAB_SUPPORTS_SYSFS 352 static int sysfs_slab_add(struct kmem_cache *); 353 static int sysfs_slab_alias(struct kmem_cache *, const char *); 354 #else 355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 357 { return 0; } 358 #endif 359 360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 361 static void debugfs_slab_add(struct kmem_cache *); 362 #else 363 static inline void debugfs_slab_add(struct kmem_cache *s) { } 364 #endif 365 366 enum stat_item { 367 ALLOC_PCS, /* Allocation from percpu sheaf */ 368 ALLOC_FASTPATH, /* Allocation from cpu slab */ 369 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 370 FREE_PCS, /* Free to percpu sheaf */ 371 FREE_RCU_SHEAF, /* Free to rcu_free sheaf */ 372 FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */ 373 FREE_FASTPATH, /* Free to cpu slab */ 374 FREE_SLOWPATH, /* Freeing not to cpu slab */ 375 FREE_FROZEN, /* Freeing to frozen slab */ 376 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 377 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 378 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 379 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 380 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 381 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 382 FREE_SLAB, /* Slab freed to the page allocator */ 383 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 384 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 385 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 386 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 387 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 388 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 389 DEACTIVATE_BYPASS, /* Implicit deactivation */ 390 ORDER_FALLBACK, /* Number of times fallback was necessary */ 391 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 392 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 393 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 394 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 395 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 396 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 397 SHEAF_FLUSH, /* Objects flushed from a sheaf */ 398 SHEAF_REFILL, /* Objects refilled to a sheaf */ 399 SHEAF_ALLOC, /* Allocation of an empty sheaf */ 400 SHEAF_FREE, /* Freeing of an empty sheaf */ 401 BARN_GET, /* Got full sheaf from barn */ 402 BARN_GET_FAIL, /* Failed to get full sheaf from barn */ 403 BARN_PUT, /* Put full sheaf to barn */ 404 BARN_PUT_FAIL, /* Failed to put full sheaf to barn */ 405 SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */ 406 SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */ 407 SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */ 408 SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */ 409 SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */ 410 NR_SLUB_STAT_ITEMS 411 }; 412 413 #ifndef CONFIG_SLUB_TINY 414 /* 415 * When changing the layout, make sure freelist and tid are still compatible 416 * with this_cpu_cmpxchg_double() alignment requirements. 417 */ 418 struct kmem_cache_cpu { 419 union { 420 struct { 421 void **freelist; /* Pointer to next available object */ 422 unsigned long tid; /* Globally unique transaction id */ 423 }; 424 freelist_aba_t freelist_tid; 425 }; 426 struct slab *slab; /* The slab from which we are allocating */ 427 #ifdef CONFIG_SLUB_CPU_PARTIAL 428 struct slab *partial; /* Partially allocated slabs */ 429 #endif 430 local_trylock_t lock; /* Protects the fields above */ 431 #ifdef CONFIG_SLUB_STATS 432 unsigned int stat[NR_SLUB_STAT_ITEMS]; 433 #endif 434 }; 435 #endif /* CONFIG_SLUB_TINY */ 436 437 static inline void stat(const struct kmem_cache *s, enum stat_item si) 438 { 439 #ifdef CONFIG_SLUB_STATS 440 /* 441 * The rmw is racy on a preemptible kernel but this is acceptable, so 442 * avoid this_cpu_add()'s irq-disable overhead. 443 */ 444 raw_cpu_inc(s->cpu_slab->stat[si]); 445 #endif 446 } 447 448 static inline 449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 450 { 451 #ifdef CONFIG_SLUB_STATS 452 raw_cpu_add(s->cpu_slab->stat[si], v); 453 #endif 454 } 455 456 #define MAX_FULL_SHEAVES 10 457 #define MAX_EMPTY_SHEAVES 10 458 459 struct node_barn { 460 spinlock_t lock; 461 struct list_head sheaves_full; 462 struct list_head sheaves_empty; 463 unsigned int nr_full; 464 unsigned int nr_empty; 465 }; 466 467 struct slab_sheaf { 468 union { 469 struct rcu_head rcu_head; 470 struct list_head barn_list; 471 /* only used for prefilled sheafs */ 472 unsigned int capacity; 473 }; 474 struct kmem_cache *cache; 475 unsigned int size; 476 int node; /* only used for rcu_sheaf */ 477 void *objects[]; 478 }; 479 480 struct slub_percpu_sheaves { 481 local_trylock_t lock; 482 struct slab_sheaf *main; /* never NULL when unlocked */ 483 struct slab_sheaf *spare; /* empty or full, may be NULL */ 484 struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */ 485 }; 486 487 /* 488 * The slab lists for all objects. 489 */ 490 struct kmem_cache_node { 491 spinlock_t list_lock; 492 unsigned long nr_partial; 493 struct list_head partial; 494 #ifdef CONFIG_SLUB_DEBUG 495 atomic_long_t nr_slabs; 496 atomic_long_t total_objects; 497 struct list_head full; 498 #endif 499 struct node_barn *barn; 500 }; 501 502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 503 { 504 return s->node[node]; 505 } 506 507 /* 508 * Get the barn of the current cpu's closest memory node. It may not exist on 509 * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES 510 */ 511 static inline struct node_barn *get_barn(struct kmem_cache *s) 512 { 513 struct kmem_cache_node *n = get_node(s, numa_mem_id()); 514 515 if (!n) 516 return NULL; 517 518 return n->barn; 519 } 520 521 /* 522 * Iterator over all nodes. The body will be executed for each node that has 523 * a kmem_cache_node structure allocated (which is true for all online nodes) 524 */ 525 #define for_each_kmem_cache_node(__s, __node, __n) \ 526 for (__node = 0; __node < nr_node_ids; __node++) \ 527 if ((__n = get_node(__s, __node))) 528 529 /* 530 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 531 * Corresponds to node_state[N_MEMORY], but can temporarily 532 * differ during memory hotplug/hotremove operations. 533 * Protected by slab_mutex. 534 */ 535 static nodemask_t slab_nodes; 536 537 /* 538 * Workqueue used for flush_cpu_slab(). 539 */ 540 static struct workqueue_struct *flushwq; 541 542 struct slub_flush_work { 543 struct work_struct work; 544 struct kmem_cache *s; 545 bool skip; 546 }; 547 548 static DEFINE_MUTEX(flush_lock); 549 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 550 551 /******************************************************************** 552 * Core slab cache functions 553 *******************************************************************/ 554 555 /* 556 * Returns freelist pointer (ptr). With hardening, this is obfuscated 557 * with an XOR of the address where the pointer is held and a per-cache 558 * random number. 559 */ 560 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 561 void *ptr, unsigned long ptr_addr) 562 { 563 unsigned long encoded; 564 565 #ifdef CONFIG_SLAB_FREELIST_HARDENED 566 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 567 #else 568 encoded = (unsigned long)ptr; 569 #endif 570 return (freeptr_t){.v = encoded}; 571 } 572 573 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 574 freeptr_t ptr, unsigned long ptr_addr) 575 { 576 void *decoded; 577 578 #ifdef CONFIG_SLAB_FREELIST_HARDENED 579 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 580 #else 581 decoded = (void *)ptr.v; 582 #endif 583 return decoded; 584 } 585 586 static inline void *get_freepointer(struct kmem_cache *s, void *object) 587 { 588 unsigned long ptr_addr; 589 freeptr_t p; 590 591 object = kasan_reset_tag(object); 592 ptr_addr = (unsigned long)object + s->offset; 593 p = *(freeptr_t *)(ptr_addr); 594 return freelist_ptr_decode(s, p, ptr_addr); 595 } 596 597 #ifndef CONFIG_SLUB_TINY 598 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 599 { 600 prefetchw(object + s->offset); 601 } 602 #endif 603 604 /* 605 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 606 * pointer value in the case the current thread loses the race for the next 607 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 608 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 609 * KMSAN will still check all arguments of cmpxchg because of imperfect 610 * handling of inline assembly. 611 * To work around this problem, we apply __no_kmsan_checks to ensure that 612 * get_freepointer_safe() returns initialized memory. 613 */ 614 __no_kmsan_checks 615 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 616 { 617 unsigned long freepointer_addr; 618 freeptr_t p; 619 620 if (!debug_pagealloc_enabled_static()) 621 return get_freepointer(s, object); 622 623 object = kasan_reset_tag(object); 624 freepointer_addr = (unsigned long)object + s->offset; 625 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 626 return freelist_ptr_decode(s, p, freepointer_addr); 627 } 628 629 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 630 { 631 unsigned long freeptr_addr = (unsigned long)object + s->offset; 632 633 #ifdef CONFIG_SLAB_FREELIST_HARDENED 634 BUG_ON(object == fp); /* naive detection of double free or corruption */ 635 #endif 636 637 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 638 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 639 } 640 641 /* 642 * See comment in calculate_sizes(). 643 */ 644 static inline bool freeptr_outside_object(struct kmem_cache *s) 645 { 646 return s->offset >= s->inuse; 647 } 648 649 /* 650 * Return offset of the end of info block which is inuse + free pointer if 651 * not overlapping with object. 652 */ 653 static inline unsigned int get_info_end(struct kmem_cache *s) 654 { 655 if (freeptr_outside_object(s)) 656 return s->inuse + sizeof(void *); 657 else 658 return s->inuse; 659 } 660 661 /* Loop over all objects in a slab */ 662 #define for_each_object(__p, __s, __addr, __objects) \ 663 for (__p = fixup_red_left(__s, __addr); \ 664 __p < (__addr) + (__objects) * (__s)->size; \ 665 __p += (__s)->size) 666 667 static inline unsigned int order_objects(unsigned int order, unsigned int size) 668 { 669 return ((unsigned int)PAGE_SIZE << order) / size; 670 } 671 672 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 673 unsigned int size) 674 { 675 struct kmem_cache_order_objects x = { 676 (order << OO_SHIFT) + order_objects(order, size) 677 }; 678 679 return x; 680 } 681 682 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 683 { 684 return x.x >> OO_SHIFT; 685 } 686 687 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 688 { 689 return x.x & OO_MASK; 690 } 691 692 #ifdef CONFIG_SLUB_CPU_PARTIAL 693 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 694 { 695 unsigned int nr_slabs; 696 697 s->cpu_partial = nr_objects; 698 699 /* 700 * We take the number of objects but actually limit the number of 701 * slabs on the per cpu partial list, in order to limit excessive 702 * growth of the list. For simplicity we assume that the slabs will 703 * be half-full. 704 */ 705 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 706 s->cpu_partial_slabs = nr_slabs; 707 } 708 709 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 710 { 711 return s->cpu_partial_slabs; 712 } 713 #else 714 static inline void 715 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 716 { 717 } 718 719 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 720 { 721 return 0; 722 } 723 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 724 725 /* 726 * If network-based swap is enabled, slub must keep track of whether memory 727 * were allocated from pfmemalloc reserves. 728 */ 729 static inline bool slab_test_pfmemalloc(const struct slab *slab) 730 { 731 return test_bit(SL_pfmemalloc, &slab->flags.f); 732 } 733 734 static inline void slab_set_pfmemalloc(struct slab *slab) 735 { 736 set_bit(SL_pfmemalloc, &slab->flags.f); 737 } 738 739 static inline void __slab_clear_pfmemalloc(struct slab *slab) 740 { 741 __clear_bit(SL_pfmemalloc, &slab->flags.f); 742 } 743 744 /* 745 * Per slab locking using the pagelock 746 */ 747 static __always_inline void slab_lock(struct slab *slab) 748 { 749 bit_spin_lock(SL_locked, &slab->flags.f); 750 } 751 752 static __always_inline void slab_unlock(struct slab *slab) 753 { 754 bit_spin_unlock(SL_locked, &slab->flags.f); 755 } 756 757 static inline bool 758 __update_freelist_fast(struct slab *slab, 759 void *freelist_old, unsigned long counters_old, 760 void *freelist_new, unsigned long counters_new) 761 { 762 #ifdef system_has_freelist_aba 763 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 764 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 765 766 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 767 #else 768 return false; 769 #endif 770 } 771 772 static inline bool 773 __update_freelist_slow(struct slab *slab, 774 void *freelist_old, unsigned long counters_old, 775 void *freelist_new, unsigned long counters_new) 776 { 777 bool ret = false; 778 779 slab_lock(slab); 780 if (slab->freelist == freelist_old && 781 slab->counters == counters_old) { 782 slab->freelist = freelist_new; 783 slab->counters = counters_new; 784 ret = true; 785 } 786 slab_unlock(slab); 787 788 return ret; 789 } 790 791 /* 792 * Interrupts must be disabled (for the fallback code to work right), typically 793 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 794 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 795 * allocation/ free operation in hardirq context. Therefore nothing can 796 * interrupt the operation. 797 */ 798 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 799 void *freelist_old, unsigned long counters_old, 800 void *freelist_new, unsigned long counters_new, 801 const char *n) 802 { 803 bool ret; 804 805 if (USE_LOCKLESS_FAST_PATH()) 806 lockdep_assert_irqs_disabled(); 807 808 if (s->flags & __CMPXCHG_DOUBLE) { 809 ret = __update_freelist_fast(slab, freelist_old, counters_old, 810 freelist_new, counters_new); 811 } else { 812 ret = __update_freelist_slow(slab, freelist_old, counters_old, 813 freelist_new, counters_new); 814 } 815 if (likely(ret)) 816 return true; 817 818 cpu_relax(); 819 stat(s, CMPXCHG_DOUBLE_FAIL); 820 821 #ifdef SLUB_DEBUG_CMPXCHG 822 pr_info("%s %s: cmpxchg double redo ", n, s->name); 823 #endif 824 825 return false; 826 } 827 828 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 829 void *freelist_old, unsigned long counters_old, 830 void *freelist_new, unsigned long counters_new, 831 const char *n) 832 { 833 bool ret; 834 835 if (s->flags & __CMPXCHG_DOUBLE) { 836 ret = __update_freelist_fast(slab, freelist_old, counters_old, 837 freelist_new, counters_new); 838 } else { 839 unsigned long flags; 840 841 local_irq_save(flags); 842 ret = __update_freelist_slow(slab, freelist_old, counters_old, 843 freelist_new, counters_new); 844 local_irq_restore(flags); 845 } 846 if (likely(ret)) 847 return true; 848 849 cpu_relax(); 850 stat(s, CMPXCHG_DOUBLE_FAIL); 851 852 #ifdef SLUB_DEBUG_CMPXCHG 853 pr_info("%s %s: cmpxchg double redo ", n, s->name); 854 #endif 855 856 return false; 857 } 858 859 /* 860 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 861 * family will round up the real request size to these fixed ones, so 862 * there could be an extra area than what is requested. Save the original 863 * request size in the meta data area, for better debug and sanity check. 864 */ 865 static inline void set_orig_size(struct kmem_cache *s, 866 void *object, unsigned int orig_size) 867 { 868 void *p = kasan_reset_tag(object); 869 870 if (!slub_debug_orig_size(s)) 871 return; 872 873 p += get_info_end(s); 874 p += sizeof(struct track) * 2; 875 876 *(unsigned int *)p = orig_size; 877 } 878 879 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 880 { 881 void *p = kasan_reset_tag(object); 882 883 if (is_kfence_address(object)) 884 return kfence_ksize(object); 885 886 if (!slub_debug_orig_size(s)) 887 return s->object_size; 888 889 p += get_info_end(s); 890 p += sizeof(struct track) * 2; 891 892 return *(unsigned int *)p; 893 } 894 895 #ifdef CONFIG_SLUB_DEBUG 896 897 /* 898 * For debugging context when we want to check if the struct slab pointer 899 * appears to be valid. 900 */ 901 static inline bool validate_slab_ptr(struct slab *slab) 902 { 903 return PageSlab(slab_page(slab)); 904 } 905 906 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 907 static DEFINE_SPINLOCK(object_map_lock); 908 909 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 910 struct slab *slab) 911 { 912 void *addr = slab_address(slab); 913 void *p; 914 915 bitmap_zero(obj_map, slab->objects); 916 917 for (p = slab->freelist; p; p = get_freepointer(s, p)) 918 set_bit(__obj_to_index(s, addr, p), obj_map); 919 } 920 921 #if IS_ENABLED(CONFIG_KUNIT) 922 static bool slab_add_kunit_errors(void) 923 { 924 struct kunit_resource *resource; 925 926 if (!kunit_get_current_test()) 927 return false; 928 929 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 930 if (!resource) 931 return false; 932 933 (*(int *)resource->data)++; 934 kunit_put_resource(resource); 935 return true; 936 } 937 938 bool slab_in_kunit_test(void) 939 { 940 struct kunit_resource *resource; 941 942 if (!kunit_get_current_test()) 943 return false; 944 945 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 946 if (!resource) 947 return false; 948 949 kunit_put_resource(resource); 950 return true; 951 } 952 #else 953 static inline bool slab_add_kunit_errors(void) { return false; } 954 #endif 955 956 static inline unsigned int size_from_object(struct kmem_cache *s) 957 { 958 if (s->flags & SLAB_RED_ZONE) 959 return s->size - s->red_left_pad; 960 961 return s->size; 962 } 963 964 static inline void *restore_red_left(struct kmem_cache *s, void *p) 965 { 966 if (s->flags & SLAB_RED_ZONE) 967 p -= s->red_left_pad; 968 969 return p; 970 } 971 972 /* 973 * Debug settings: 974 */ 975 #if defined(CONFIG_SLUB_DEBUG_ON) 976 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 977 #else 978 static slab_flags_t slub_debug; 979 #endif 980 981 static char *slub_debug_string; 982 static int disable_higher_order_debug; 983 984 /* 985 * slub is about to manipulate internal object metadata. This memory lies 986 * outside the range of the allocated object, so accessing it would normally 987 * be reported by kasan as a bounds error. metadata_access_enable() is used 988 * to tell kasan that these accesses are OK. 989 */ 990 static inline void metadata_access_enable(void) 991 { 992 kasan_disable_current(); 993 kmsan_disable_current(); 994 } 995 996 static inline void metadata_access_disable(void) 997 { 998 kmsan_enable_current(); 999 kasan_enable_current(); 1000 } 1001 1002 /* 1003 * Object debugging 1004 */ 1005 1006 /* Verify that a pointer has an address that is valid within a slab page */ 1007 static inline int check_valid_pointer(struct kmem_cache *s, 1008 struct slab *slab, void *object) 1009 { 1010 void *base; 1011 1012 if (!object) 1013 return 1; 1014 1015 base = slab_address(slab); 1016 object = kasan_reset_tag(object); 1017 object = restore_red_left(s, object); 1018 if (object < base || object >= base + slab->objects * s->size || 1019 (object - base) % s->size) { 1020 return 0; 1021 } 1022 1023 return 1; 1024 } 1025 1026 static void print_section(char *level, char *text, u8 *addr, 1027 unsigned int length) 1028 { 1029 metadata_access_enable(); 1030 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 1031 16, 1, kasan_reset_tag((void *)addr), length, 1); 1032 metadata_access_disable(); 1033 } 1034 1035 static struct track *get_track(struct kmem_cache *s, void *object, 1036 enum track_item alloc) 1037 { 1038 struct track *p; 1039 1040 p = object + get_info_end(s); 1041 1042 return kasan_reset_tag(p + alloc); 1043 } 1044 1045 #ifdef CONFIG_STACKDEPOT 1046 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 1047 { 1048 depot_stack_handle_t handle; 1049 unsigned long entries[TRACK_ADDRS_COUNT]; 1050 unsigned int nr_entries; 1051 1052 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 1053 handle = stack_depot_save(entries, nr_entries, gfp_flags); 1054 1055 return handle; 1056 } 1057 #else 1058 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) 1059 { 1060 return 0; 1061 } 1062 #endif 1063 1064 static void set_track_update(struct kmem_cache *s, void *object, 1065 enum track_item alloc, unsigned long addr, 1066 depot_stack_handle_t handle) 1067 { 1068 struct track *p = get_track(s, object, alloc); 1069 1070 #ifdef CONFIG_STACKDEPOT 1071 p->handle = handle; 1072 #endif 1073 p->addr = addr; 1074 p->cpu = smp_processor_id(); 1075 p->pid = current->pid; 1076 p->when = jiffies; 1077 } 1078 1079 static __always_inline void set_track(struct kmem_cache *s, void *object, 1080 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) 1081 { 1082 depot_stack_handle_t handle = set_track_prepare(gfp_flags); 1083 1084 set_track_update(s, object, alloc, addr, handle); 1085 } 1086 1087 static void init_tracking(struct kmem_cache *s, void *object) 1088 { 1089 struct track *p; 1090 1091 if (!(s->flags & SLAB_STORE_USER)) 1092 return; 1093 1094 p = get_track(s, object, TRACK_ALLOC); 1095 memset(p, 0, 2*sizeof(struct track)); 1096 } 1097 1098 static void print_track(const char *s, struct track *t, unsigned long pr_time) 1099 { 1100 depot_stack_handle_t handle __maybe_unused; 1101 1102 if (!t->addr) 1103 return; 1104 1105 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 1106 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 1107 #ifdef CONFIG_STACKDEPOT 1108 handle = READ_ONCE(t->handle); 1109 if (handle) 1110 stack_depot_print(handle); 1111 else 1112 pr_err("object allocation/free stack trace missing\n"); 1113 #endif 1114 } 1115 1116 void print_tracking(struct kmem_cache *s, void *object) 1117 { 1118 unsigned long pr_time = jiffies; 1119 if (!(s->flags & SLAB_STORE_USER)) 1120 return; 1121 1122 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1123 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1124 } 1125 1126 static void print_slab_info(const struct slab *slab) 1127 { 1128 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1129 slab, slab->objects, slab->inuse, slab->freelist, 1130 &slab->flags.f); 1131 } 1132 1133 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1134 { 1135 set_orig_size(s, (void *)object, s->object_size); 1136 } 1137 1138 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1139 { 1140 struct va_format vaf; 1141 va_list args; 1142 1143 va_copy(args, argsp); 1144 vaf.fmt = fmt; 1145 vaf.va = &args; 1146 pr_err("=============================================================================\n"); 1147 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1148 pr_err("-----------------------------------------------------------------------------\n\n"); 1149 va_end(args); 1150 } 1151 1152 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1153 { 1154 va_list args; 1155 1156 va_start(args, fmt); 1157 __slab_bug(s, fmt, args); 1158 va_end(args); 1159 } 1160 1161 __printf(2, 3) 1162 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1163 { 1164 struct va_format vaf; 1165 va_list args; 1166 1167 if (slab_add_kunit_errors()) 1168 return; 1169 1170 va_start(args, fmt); 1171 vaf.fmt = fmt; 1172 vaf.va = &args; 1173 pr_err("FIX %s: %pV\n", s->name, &vaf); 1174 va_end(args); 1175 } 1176 1177 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1178 { 1179 unsigned int off; /* Offset of last byte */ 1180 u8 *addr = slab_address(slab); 1181 1182 print_tracking(s, p); 1183 1184 print_slab_info(slab); 1185 1186 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1187 p, p - addr, get_freepointer(s, p)); 1188 1189 if (s->flags & SLAB_RED_ZONE) 1190 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1191 s->red_left_pad); 1192 else if (p > addr + 16) 1193 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1194 1195 print_section(KERN_ERR, "Object ", p, 1196 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1197 if (s->flags & SLAB_RED_ZONE) 1198 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1199 s->inuse - s->object_size); 1200 1201 off = get_info_end(s); 1202 1203 if (s->flags & SLAB_STORE_USER) 1204 off += 2 * sizeof(struct track); 1205 1206 if (slub_debug_orig_size(s)) 1207 off += sizeof(unsigned int); 1208 1209 off += kasan_metadata_size(s, false); 1210 1211 if (off != size_from_object(s)) 1212 /* Beginning of the filler is the free pointer */ 1213 print_section(KERN_ERR, "Padding ", p + off, 1214 size_from_object(s) - off); 1215 } 1216 1217 static void object_err(struct kmem_cache *s, struct slab *slab, 1218 u8 *object, const char *reason) 1219 { 1220 if (slab_add_kunit_errors()) 1221 return; 1222 1223 slab_bug(s, reason); 1224 if (!object || !check_valid_pointer(s, slab, object)) { 1225 print_slab_info(slab); 1226 pr_err("Invalid pointer 0x%p\n", object); 1227 } else { 1228 print_trailer(s, slab, object); 1229 } 1230 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1231 1232 WARN_ON(1); 1233 } 1234 1235 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1236 void **freelist, void *nextfree) 1237 { 1238 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1239 !check_valid_pointer(s, slab, nextfree) && freelist) { 1240 object_err(s, slab, *freelist, "Freechain corrupt"); 1241 *freelist = NULL; 1242 slab_fix(s, "Isolate corrupted freechain"); 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 1249 static void __slab_err(struct slab *slab) 1250 { 1251 if (slab_in_kunit_test()) 1252 return; 1253 1254 print_slab_info(slab); 1255 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1256 1257 WARN_ON(1); 1258 } 1259 1260 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1261 const char *fmt, ...) 1262 { 1263 va_list args; 1264 1265 if (slab_add_kunit_errors()) 1266 return; 1267 1268 va_start(args, fmt); 1269 __slab_bug(s, fmt, args); 1270 va_end(args); 1271 1272 __slab_err(slab); 1273 } 1274 1275 static void init_object(struct kmem_cache *s, void *object, u8 val) 1276 { 1277 u8 *p = kasan_reset_tag(object); 1278 unsigned int poison_size = s->object_size; 1279 1280 if (s->flags & SLAB_RED_ZONE) { 1281 /* 1282 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1283 * the shadow makes it possible to distinguish uninit-value 1284 * from use-after-free. 1285 */ 1286 memset_no_sanitize_memory(p - s->red_left_pad, val, 1287 s->red_left_pad); 1288 1289 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1290 /* 1291 * Redzone the extra allocated space by kmalloc than 1292 * requested, and the poison size will be limited to 1293 * the original request size accordingly. 1294 */ 1295 poison_size = get_orig_size(s, object); 1296 } 1297 } 1298 1299 if (s->flags & __OBJECT_POISON) { 1300 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1301 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1302 } 1303 1304 if (s->flags & SLAB_RED_ZONE) 1305 memset_no_sanitize_memory(p + poison_size, val, 1306 s->inuse - poison_size); 1307 } 1308 1309 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1310 void *from, void *to) 1311 { 1312 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1313 memset(from, data, to - from); 1314 } 1315 1316 #ifdef CONFIG_KMSAN 1317 #define pad_check_attributes noinline __no_kmsan_checks 1318 #else 1319 #define pad_check_attributes 1320 #endif 1321 1322 static pad_check_attributes int 1323 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1324 u8 *object, const char *what, u8 *start, unsigned int value, 1325 unsigned int bytes, bool slab_obj_print) 1326 { 1327 u8 *fault; 1328 u8 *end; 1329 u8 *addr = slab_address(slab); 1330 1331 metadata_access_enable(); 1332 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1333 metadata_access_disable(); 1334 if (!fault) 1335 return 1; 1336 1337 end = start + bytes; 1338 while (end > fault && end[-1] == value) 1339 end--; 1340 1341 if (slab_add_kunit_errors()) 1342 goto skip_bug_print; 1343 1344 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1345 what, fault, end - 1, fault - addr, fault[0], value); 1346 1347 if (slab_obj_print) 1348 object_err(s, slab, object, "Object corrupt"); 1349 1350 skip_bug_print: 1351 restore_bytes(s, what, value, fault, end); 1352 return 0; 1353 } 1354 1355 /* 1356 * Object layout: 1357 * 1358 * object address 1359 * Bytes of the object to be managed. 1360 * If the freepointer may overlay the object then the free 1361 * pointer is at the middle of the object. 1362 * 1363 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1364 * 0xa5 (POISON_END) 1365 * 1366 * object + s->object_size 1367 * Padding to reach word boundary. This is also used for Redzoning. 1368 * Padding is extended by another word if Redzoning is enabled and 1369 * object_size == inuse. 1370 * 1371 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1372 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1373 * 1374 * object + s->inuse 1375 * Meta data starts here. 1376 * 1377 * A. Free pointer (if we cannot overwrite object on free) 1378 * B. Tracking data for SLAB_STORE_USER 1379 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1380 * D. Padding to reach required alignment boundary or at minimum 1381 * one word if debugging is on to be able to detect writes 1382 * before the word boundary. 1383 * 1384 * Padding is done using 0x5a (POISON_INUSE) 1385 * 1386 * object + s->size 1387 * Nothing is used beyond s->size. 1388 * 1389 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1390 * ignored. And therefore no slab options that rely on these boundaries 1391 * may be used with merged slabcaches. 1392 */ 1393 1394 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1395 { 1396 unsigned long off = get_info_end(s); /* The end of info */ 1397 1398 if (s->flags & SLAB_STORE_USER) { 1399 /* We also have user information there */ 1400 off += 2 * sizeof(struct track); 1401 1402 if (s->flags & SLAB_KMALLOC) 1403 off += sizeof(unsigned int); 1404 } 1405 1406 off += kasan_metadata_size(s, false); 1407 1408 if (size_from_object(s) == off) 1409 return 1; 1410 1411 return check_bytes_and_report(s, slab, p, "Object padding", 1412 p + off, POISON_INUSE, size_from_object(s) - off, true); 1413 } 1414 1415 /* Check the pad bytes at the end of a slab page */ 1416 static pad_check_attributes void 1417 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1418 { 1419 u8 *start; 1420 u8 *fault; 1421 u8 *end; 1422 u8 *pad; 1423 int length; 1424 int remainder; 1425 1426 if (!(s->flags & SLAB_POISON)) 1427 return; 1428 1429 start = slab_address(slab); 1430 length = slab_size(slab); 1431 end = start + length; 1432 remainder = length % s->size; 1433 if (!remainder) 1434 return; 1435 1436 pad = end - remainder; 1437 metadata_access_enable(); 1438 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1439 metadata_access_disable(); 1440 if (!fault) 1441 return; 1442 while (end > fault && end[-1] == POISON_INUSE) 1443 end--; 1444 1445 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1446 fault, end - 1, fault - start); 1447 print_section(KERN_ERR, "Padding ", pad, remainder); 1448 __slab_err(slab); 1449 1450 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1451 } 1452 1453 static int check_object(struct kmem_cache *s, struct slab *slab, 1454 void *object, u8 val) 1455 { 1456 u8 *p = object; 1457 u8 *endobject = object + s->object_size; 1458 unsigned int orig_size, kasan_meta_size; 1459 int ret = 1; 1460 1461 if (s->flags & SLAB_RED_ZONE) { 1462 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1463 object - s->red_left_pad, val, s->red_left_pad, ret)) 1464 ret = 0; 1465 1466 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1467 endobject, val, s->inuse - s->object_size, ret)) 1468 ret = 0; 1469 1470 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1471 orig_size = get_orig_size(s, object); 1472 1473 if (s->object_size > orig_size && 1474 !check_bytes_and_report(s, slab, object, 1475 "kmalloc Redzone", p + orig_size, 1476 val, s->object_size - orig_size, ret)) { 1477 ret = 0; 1478 } 1479 } 1480 } else { 1481 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1482 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1483 endobject, POISON_INUSE, 1484 s->inuse - s->object_size, ret)) 1485 ret = 0; 1486 } 1487 } 1488 1489 if (s->flags & SLAB_POISON) { 1490 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1491 /* 1492 * KASAN can save its free meta data inside of the 1493 * object at offset 0. Thus, skip checking the part of 1494 * the redzone that overlaps with the meta data. 1495 */ 1496 kasan_meta_size = kasan_metadata_size(s, true); 1497 if (kasan_meta_size < s->object_size - 1 && 1498 !check_bytes_and_report(s, slab, p, "Poison", 1499 p + kasan_meta_size, POISON_FREE, 1500 s->object_size - kasan_meta_size - 1, ret)) 1501 ret = 0; 1502 if (kasan_meta_size < s->object_size && 1503 !check_bytes_and_report(s, slab, p, "End Poison", 1504 p + s->object_size - 1, POISON_END, 1, ret)) 1505 ret = 0; 1506 } 1507 /* 1508 * check_pad_bytes cleans up on its own. 1509 */ 1510 if (!check_pad_bytes(s, slab, p)) 1511 ret = 0; 1512 } 1513 1514 /* 1515 * Cannot check freepointer while object is allocated if 1516 * object and freepointer overlap. 1517 */ 1518 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1519 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1520 object_err(s, slab, p, "Freepointer corrupt"); 1521 /* 1522 * No choice but to zap it and thus lose the remainder 1523 * of the free objects in this slab. May cause 1524 * another error because the object count is now wrong. 1525 */ 1526 set_freepointer(s, p, NULL); 1527 ret = 0; 1528 } 1529 1530 return ret; 1531 } 1532 1533 /* 1534 * Checks if the slab state looks sane. Assumes the struct slab pointer 1535 * was either obtained in a way that ensures it's valid, or validated 1536 * by validate_slab_ptr() 1537 */ 1538 static int check_slab(struct kmem_cache *s, struct slab *slab) 1539 { 1540 int maxobj; 1541 1542 maxobj = order_objects(slab_order(slab), s->size); 1543 if (slab->objects > maxobj) { 1544 slab_err(s, slab, "objects %u > max %u", 1545 slab->objects, maxobj); 1546 return 0; 1547 } 1548 if (slab->inuse > slab->objects) { 1549 slab_err(s, slab, "inuse %u > max %u", 1550 slab->inuse, slab->objects); 1551 return 0; 1552 } 1553 if (slab->frozen) { 1554 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1555 return 0; 1556 } 1557 1558 /* Slab_pad_check fixes things up after itself */ 1559 slab_pad_check(s, slab); 1560 return 1; 1561 } 1562 1563 /* 1564 * Determine if a certain object in a slab is on the freelist. Must hold the 1565 * slab lock to guarantee that the chains are in a consistent state. 1566 */ 1567 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1568 { 1569 int nr = 0; 1570 void *fp; 1571 void *object = NULL; 1572 int max_objects; 1573 1574 fp = slab->freelist; 1575 while (fp && nr <= slab->objects) { 1576 if (fp == search) 1577 return true; 1578 if (!check_valid_pointer(s, slab, fp)) { 1579 if (object) { 1580 object_err(s, slab, object, 1581 "Freechain corrupt"); 1582 set_freepointer(s, object, NULL); 1583 break; 1584 } else { 1585 slab_err(s, slab, "Freepointer corrupt"); 1586 slab->freelist = NULL; 1587 slab->inuse = slab->objects; 1588 slab_fix(s, "Freelist cleared"); 1589 return false; 1590 } 1591 } 1592 object = fp; 1593 fp = get_freepointer(s, object); 1594 nr++; 1595 } 1596 1597 if (nr > slab->objects) { 1598 slab_err(s, slab, "Freelist cycle detected"); 1599 slab->freelist = NULL; 1600 slab->inuse = slab->objects; 1601 slab_fix(s, "Freelist cleared"); 1602 return false; 1603 } 1604 1605 max_objects = order_objects(slab_order(slab), s->size); 1606 if (max_objects > MAX_OBJS_PER_PAGE) 1607 max_objects = MAX_OBJS_PER_PAGE; 1608 1609 if (slab->objects != max_objects) { 1610 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1611 slab->objects, max_objects); 1612 slab->objects = max_objects; 1613 slab_fix(s, "Number of objects adjusted"); 1614 } 1615 if (slab->inuse != slab->objects - nr) { 1616 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1617 slab->inuse, slab->objects - nr); 1618 slab->inuse = slab->objects - nr; 1619 slab_fix(s, "Object count adjusted"); 1620 } 1621 return search == NULL; 1622 } 1623 1624 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1625 int alloc) 1626 { 1627 if (s->flags & SLAB_TRACE) { 1628 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1629 s->name, 1630 alloc ? "alloc" : "free", 1631 object, slab->inuse, 1632 slab->freelist); 1633 1634 if (!alloc) 1635 print_section(KERN_INFO, "Object ", (void *)object, 1636 s->object_size); 1637 1638 dump_stack(); 1639 } 1640 } 1641 1642 /* 1643 * Tracking of fully allocated slabs for debugging purposes. 1644 */ 1645 static void add_full(struct kmem_cache *s, 1646 struct kmem_cache_node *n, struct slab *slab) 1647 { 1648 if (!(s->flags & SLAB_STORE_USER)) 1649 return; 1650 1651 lockdep_assert_held(&n->list_lock); 1652 list_add(&slab->slab_list, &n->full); 1653 } 1654 1655 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1656 { 1657 if (!(s->flags & SLAB_STORE_USER)) 1658 return; 1659 1660 lockdep_assert_held(&n->list_lock); 1661 list_del(&slab->slab_list); 1662 } 1663 1664 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1665 { 1666 return atomic_long_read(&n->nr_slabs); 1667 } 1668 1669 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1670 { 1671 struct kmem_cache_node *n = get_node(s, node); 1672 1673 atomic_long_inc(&n->nr_slabs); 1674 atomic_long_add(objects, &n->total_objects); 1675 } 1676 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1677 { 1678 struct kmem_cache_node *n = get_node(s, node); 1679 1680 atomic_long_dec(&n->nr_slabs); 1681 atomic_long_sub(objects, &n->total_objects); 1682 } 1683 1684 /* Object debug checks for alloc/free paths */ 1685 static void setup_object_debug(struct kmem_cache *s, void *object) 1686 { 1687 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1688 return; 1689 1690 init_object(s, object, SLUB_RED_INACTIVE); 1691 init_tracking(s, object); 1692 } 1693 1694 static 1695 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1696 { 1697 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1698 return; 1699 1700 metadata_access_enable(); 1701 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1702 metadata_access_disable(); 1703 } 1704 1705 static inline int alloc_consistency_checks(struct kmem_cache *s, 1706 struct slab *slab, void *object) 1707 { 1708 if (!check_slab(s, slab)) 1709 return 0; 1710 1711 if (!check_valid_pointer(s, slab, object)) { 1712 object_err(s, slab, object, "Freelist Pointer check fails"); 1713 return 0; 1714 } 1715 1716 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1717 return 0; 1718 1719 return 1; 1720 } 1721 1722 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1723 struct slab *slab, void *object, int orig_size) 1724 { 1725 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1726 if (!alloc_consistency_checks(s, slab, object)) 1727 goto bad; 1728 } 1729 1730 /* Success. Perform special debug activities for allocs */ 1731 trace(s, slab, object, 1); 1732 set_orig_size(s, object, orig_size); 1733 init_object(s, object, SLUB_RED_ACTIVE); 1734 return true; 1735 1736 bad: 1737 /* 1738 * Let's do the best we can to avoid issues in the future. Marking all 1739 * objects as used avoids touching the remaining objects. 1740 */ 1741 slab_fix(s, "Marking all objects used"); 1742 slab->inuse = slab->objects; 1743 slab->freelist = NULL; 1744 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1745 1746 return false; 1747 } 1748 1749 static inline int free_consistency_checks(struct kmem_cache *s, 1750 struct slab *slab, void *object, unsigned long addr) 1751 { 1752 if (!check_valid_pointer(s, slab, object)) { 1753 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1754 return 0; 1755 } 1756 1757 if (on_freelist(s, slab, object)) { 1758 object_err(s, slab, object, "Object already free"); 1759 return 0; 1760 } 1761 1762 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1763 return 0; 1764 1765 if (unlikely(s != slab->slab_cache)) { 1766 if (!slab->slab_cache) { 1767 slab_err(NULL, slab, "No slab cache for object 0x%p", 1768 object); 1769 } else { 1770 object_err(s, slab, object, 1771 "page slab pointer corrupt."); 1772 } 1773 return 0; 1774 } 1775 return 1; 1776 } 1777 1778 /* 1779 * Parse a block of slab_debug options. Blocks are delimited by ';' 1780 * 1781 * @str: start of block 1782 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1783 * @slabs: return start of list of slabs, or NULL when there's no list 1784 * @init: assume this is initial parsing and not per-kmem-create parsing 1785 * 1786 * returns the start of next block if there's any, or NULL 1787 */ 1788 static char * 1789 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1790 { 1791 bool higher_order_disable = false; 1792 1793 /* Skip any completely empty blocks */ 1794 while (*str && *str == ';') 1795 str++; 1796 1797 if (*str == ',') { 1798 /* 1799 * No options but restriction on slabs. This means full 1800 * debugging for slabs matching a pattern. 1801 */ 1802 *flags = DEBUG_DEFAULT_FLAGS; 1803 goto check_slabs; 1804 } 1805 *flags = 0; 1806 1807 /* Determine which debug features should be switched on */ 1808 for (; *str && *str != ',' && *str != ';'; str++) { 1809 switch (tolower(*str)) { 1810 case '-': 1811 *flags = 0; 1812 break; 1813 case 'f': 1814 *flags |= SLAB_CONSISTENCY_CHECKS; 1815 break; 1816 case 'z': 1817 *flags |= SLAB_RED_ZONE; 1818 break; 1819 case 'p': 1820 *flags |= SLAB_POISON; 1821 break; 1822 case 'u': 1823 *flags |= SLAB_STORE_USER; 1824 break; 1825 case 't': 1826 *flags |= SLAB_TRACE; 1827 break; 1828 case 'a': 1829 *flags |= SLAB_FAILSLAB; 1830 break; 1831 case 'o': 1832 /* 1833 * Avoid enabling debugging on caches if its minimum 1834 * order would increase as a result. 1835 */ 1836 higher_order_disable = true; 1837 break; 1838 default: 1839 if (init) 1840 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1841 } 1842 } 1843 check_slabs: 1844 if (*str == ',') 1845 *slabs = ++str; 1846 else 1847 *slabs = NULL; 1848 1849 /* Skip over the slab list */ 1850 while (*str && *str != ';') 1851 str++; 1852 1853 /* Skip any completely empty blocks */ 1854 while (*str && *str == ';') 1855 str++; 1856 1857 if (init && higher_order_disable) 1858 disable_higher_order_debug = 1; 1859 1860 if (*str) 1861 return str; 1862 else 1863 return NULL; 1864 } 1865 1866 static int __init setup_slub_debug(char *str) 1867 { 1868 slab_flags_t flags; 1869 slab_flags_t global_flags; 1870 char *saved_str; 1871 char *slab_list; 1872 bool global_slub_debug_changed = false; 1873 bool slab_list_specified = false; 1874 1875 global_flags = DEBUG_DEFAULT_FLAGS; 1876 if (*str++ != '=' || !*str) 1877 /* 1878 * No options specified. Switch on full debugging. 1879 */ 1880 goto out; 1881 1882 saved_str = str; 1883 while (str) { 1884 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1885 1886 if (!slab_list) { 1887 global_flags = flags; 1888 global_slub_debug_changed = true; 1889 } else { 1890 slab_list_specified = true; 1891 if (flags & SLAB_STORE_USER) 1892 stack_depot_request_early_init(); 1893 } 1894 } 1895 1896 /* 1897 * For backwards compatibility, a single list of flags with list of 1898 * slabs means debugging is only changed for those slabs, so the global 1899 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1900 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1901 * long as there is no option specifying flags without a slab list. 1902 */ 1903 if (slab_list_specified) { 1904 if (!global_slub_debug_changed) 1905 global_flags = slub_debug; 1906 slub_debug_string = saved_str; 1907 } 1908 out: 1909 slub_debug = global_flags; 1910 if (slub_debug & SLAB_STORE_USER) 1911 stack_depot_request_early_init(); 1912 if (slub_debug != 0 || slub_debug_string) 1913 static_branch_enable(&slub_debug_enabled); 1914 else 1915 static_branch_disable(&slub_debug_enabled); 1916 if ((static_branch_unlikely(&init_on_alloc) || 1917 static_branch_unlikely(&init_on_free)) && 1918 (slub_debug & SLAB_POISON)) 1919 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1920 return 1; 1921 } 1922 1923 __setup("slab_debug", setup_slub_debug); 1924 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1925 1926 /* 1927 * kmem_cache_flags - apply debugging options to the cache 1928 * @flags: flags to set 1929 * @name: name of the cache 1930 * 1931 * Debug option(s) are applied to @flags. In addition to the debug 1932 * option(s), if a slab name (or multiple) is specified i.e. 1933 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1934 * then only the select slabs will receive the debug option(s). 1935 */ 1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1937 { 1938 char *iter; 1939 size_t len; 1940 char *next_block; 1941 slab_flags_t block_flags; 1942 slab_flags_t slub_debug_local = slub_debug; 1943 1944 if (flags & SLAB_NO_USER_FLAGS) 1945 return flags; 1946 1947 /* 1948 * If the slab cache is for debugging (e.g. kmemleak) then 1949 * don't store user (stack trace) information by default, 1950 * but let the user enable it via the command line below. 1951 */ 1952 if (flags & SLAB_NOLEAKTRACE) 1953 slub_debug_local &= ~SLAB_STORE_USER; 1954 1955 len = strlen(name); 1956 next_block = slub_debug_string; 1957 /* Go through all blocks of debug options, see if any matches our slab's name */ 1958 while (next_block) { 1959 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1960 if (!iter) 1961 continue; 1962 /* Found a block that has a slab list, search it */ 1963 while (*iter) { 1964 char *end, *glob; 1965 size_t cmplen; 1966 1967 end = strchrnul(iter, ','); 1968 if (next_block && next_block < end) 1969 end = next_block - 1; 1970 1971 glob = strnchr(iter, end - iter, '*'); 1972 if (glob) 1973 cmplen = glob - iter; 1974 else 1975 cmplen = max_t(size_t, len, (end - iter)); 1976 1977 if (!strncmp(name, iter, cmplen)) { 1978 flags |= block_flags; 1979 return flags; 1980 } 1981 1982 if (!*end || *end == ';') 1983 break; 1984 iter = end + 1; 1985 } 1986 } 1987 1988 return flags | slub_debug_local; 1989 } 1990 #else /* !CONFIG_SLUB_DEBUG */ 1991 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1992 static inline 1993 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1994 1995 static inline bool alloc_debug_processing(struct kmem_cache *s, 1996 struct slab *slab, void *object, int orig_size) { return true; } 1997 1998 static inline bool free_debug_processing(struct kmem_cache *s, 1999 struct slab *slab, void *head, void *tail, int *bulk_cnt, 2000 unsigned long addr, depot_stack_handle_t handle) { return true; } 2001 2002 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 2003 static inline int check_object(struct kmem_cache *s, struct slab *slab, 2004 void *object, u8 val) { return 1; } 2005 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; } 2006 static inline void set_track(struct kmem_cache *s, void *object, 2007 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {} 2008 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 2009 struct slab *slab) {} 2010 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 2011 struct slab *slab) {} 2012 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 2013 { 2014 return flags; 2015 } 2016 #define slub_debug 0 2017 2018 #define disable_higher_order_debug 0 2019 2020 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 2021 { return 0; } 2022 static inline void inc_slabs_node(struct kmem_cache *s, int node, 2023 int objects) {} 2024 static inline void dec_slabs_node(struct kmem_cache *s, int node, 2025 int objects) {} 2026 #ifndef CONFIG_SLUB_TINY 2027 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 2028 void **freelist, void *nextfree) 2029 { 2030 return false; 2031 } 2032 #endif 2033 #endif /* CONFIG_SLUB_DEBUG */ 2034 2035 #ifdef CONFIG_SLAB_OBJ_EXT 2036 2037 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 2038 2039 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 2040 { 2041 struct slabobj_ext *slab_exts; 2042 struct slab *obj_exts_slab; 2043 2044 obj_exts_slab = virt_to_slab(obj_exts); 2045 slab_exts = slab_obj_exts(obj_exts_slab); 2046 if (slab_exts) { 2047 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 2048 obj_exts_slab, obj_exts); 2049 /* codetag should be NULL */ 2050 WARN_ON(slab_exts[offs].ref.ct); 2051 set_codetag_empty(&slab_exts[offs].ref); 2052 } 2053 } 2054 2055 static inline void mark_failed_objexts_alloc(struct slab *slab) 2056 { 2057 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 2058 } 2059 2060 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2061 struct slabobj_ext *vec, unsigned int objects) 2062 { 2063 /* 2064 * If vector previously failed to allocate then we have live 2065 * objects with no tag reference. Mark all references in this 2066 * vector as empty to avoid warnings later on. 2067 */ 2068 if (obj_exts == OBJEXTS_ALLOC_FAIL) { 2069 unsigned int i; 2070 2071 for (i = 0; i < objects; i++) 2072 set_codetag_empty(&vec[i].ref); 2073 } 2074 } 2075 2076 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2077 2078 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 2079 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 2080 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 2081 struct slabobj_ext *vec, unsigned int objects) {} 2082 2083 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 2084 2085 /* 2086 * The allocated objcg pointers array is not accounted directly. 2087 * Moreover, it should not come from DMA buffer and is not readily 2088 * reclaimable. So those GFP bits should be masked off. 2089 */ 2090 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 2091 __GFP_ACCOUNT | __GFP_NOFAIL) 2092 2093 static inline void init_slab_obj_exts(struct slab *slab) 2094 { 2095 slab->obj_exts = 0; 2096 } 2097 2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2099 gfp_t gfp, bool new_slab) 2100 { 2101 bool allow_spin = gfpflags_allow_spinning(gfp); 2102 unsigned int objects = objs_per_slab(s, slab); 2103 unsigned long new_exts; 2104 unsigned long old_exts; 2105 struct slabobj_ext *vec; 2106 2107 gfp &= ~OBJCGS_CLEAR_MASK; 2108 /* Prevent recursive extension vector allocation */ 2109 gfp |= __GFP_NO_OBJ_EXT; 2110 2111 /* 2112 * Note that allow_spin may be false during early boot and its 2113 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting 2114 * architectures with cmpxchg16b, early obj_exts will be missing for 2115 * very early allocations on those. 2116 */ 2117 if (unlikely(!allow_spin)) { 2118 size_t sz = objects * sizeof(struct slabobj_ext); 2119 2120 vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT, 2121 slab_nid(slab)); 2122 } else { 2123 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 2124 slab_nid(slab)); 2125 } 2126 if (!vec) { 2127 /* Mark vectors which failed to allocate */ 2128 mark_failed_objexts_alloc(slab); 2129 2130 return -ENOMEM; 2131 } 2132 2133 new_exts = (unsigned long)vec; 2134 if (unlikely(!allow_spin)) 2135 new_exts |= OBJEXTS_NOSPIN_ALLOC; 2136 #ifdef CONFIG_MEMCG 2137 new_exts |= MEMCG_DATA_OBJEXTS; 2138 #endif 2139 old_exts = READ_ONCE(slab->obj_exts); 2140 handle_failed_objexts_alloc(old_exts, vec, objects); 2141 if (new_slab) { 2142 /* 2143 * If the slab is brand new and nobody can yet access its 2144 * obj_exts, no synchronization is required and obj_exts can 2145 * be simply assigned. 2146 */ 2147 slab->obj_exts = new_exts; 2148 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2149 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2150 /* 2151 * If the slab is already in use, somebody can allocate and 2152 * assign slabobj_exts in parallel. In this case the existing 2153 * objcg vector should be reused. 2154 */ 2155 mark_objexts_empty(vec); 2156 if (unlikely(!allow_spin)) 2157 kfree_nolock(vec); 2158 else 2159 kfree(vec); 2160 return 0; 2161 } 2162 2163 if (allow_spin) 2164 kmemleak_not_leak(vec); 2165 return 0; 2166 } 2167 2168 static inline void free_slab_obj_exts(struct slab *slab) 2169 { 2170 struct slabobj_ext *obj_exts; 2171 2172 obj_exts = slab_obj_exts(slab); 2173 if (!obj_exts) { 2174 /* 2175 * If obj_exts allocation failed, slab->obj_exts is set to 2176 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should 2177 * clear the flag. 2178 */ 2179 slab->obj_exts = 0; 2180 return; 2181 } 2182 2183 /* 2184 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2185 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2186 * warning if slab has extensions but the extension of an object is 2187 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2188 * the extension for obj_exts is expected to be NULL. 2189 */ 2190 mark_objexts_empty(obj_exts); 2191 if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC)) 2192 kfree_nolock(obj_exts); 2193 else 2194 kfree(obj_exts); 2195 slab->obj_exts = 0; 2196 } 2197 2198 #else /* CONFIG_SLAB_OBJ_EXT */ 2199 2200 static inline void init_slab_obj_exts(struct slab *slab) 2201 { 2202 } 2203 2204 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2205 gfp_t gfp, bool new_slab) 2206 { 2207 return 0; 2208 } 2209 2210 static inline void free_slab_obj_exts(struct slab *slab) 2211 { 2212 } 2213 2214 #endif /* CONFIG_SLAB_OBJ_EXT */ 2215 2216 #ifdef CONFIG_MEM_ALLOC_PROFILING 2217 2218 static inline struct slabobj_ext * 2219 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2220 { 2221 struct slab *slab; 2222 2223 slab = virt_to_slab(p); 2224 if (!slab_obj_exts(slab) && 2225 alloc_slab_obj_exts(slab, s, flags, false)) { 2226 pr_warn_once("%s, %s: Failed to create slab extension vector!\n", 2227 __func__, s->name); 2228 return NULL; 2229 } 2230 2231 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2232 } 2233 2234 /* Should be called only if mem_alloc_profiling_enabled() */ 2235 static noinline void 2236 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2237 { 2238 struct slabobj_ext *obj_exts; 2239 2240 if (!object) 2241 return; 2242 2243 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2244 return; 2245 2246 if (flags & __GFP_NO_OBJ_EXT) 2247 return; 2248 2249 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2250 /* 2251 * Currently obj_exts is used only for allocation profiling. 2252 * If other users appear then mem_alloc_profiling_enabled() 2253 * check should be added before alloc_tag_add(). 2254 */ 2255 if (likely(obj_exts)) 2256 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2257 else 2258 alloc_tag_set_inaccurate(current->alloc_tag); 2259 } 2260 2261 static inline void 2262 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2263 { 2264 if (mem_alloc_profiling_enabled()) 2265 __alloc_tagging_slab_alloc_hook(s, object, flags); 2266 } 2267 2268 /* Should be called only if mem_alloc_profiling_enabled() */ 2269 static noinline void 2270 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2271 int objects) 2272 { 2273 struct slabobj_ext *obj_exts; 2274 int i; 2275 2276 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2277 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2278 return; 2279 2280 obj_exts = slab_obj_exts(slab); 2281 if (!obj_exts) 2282 return; 2283 2284 for (i = 0; i < objects; i++) { 2285 unsigned int off = obj_to_index(s, slab, p[i]); 2286 2287 alloc_tag_sub(&obj_exts[off].ref, s->size); 2288 } 2289 } 2290 2291 static inline void 2292 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2293 int objects) 2294 { 2295 if (mem_alloc_profiling_enabled()) 2296 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2297 } 2298 2299 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2300 2301 static inline void 2302 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2303 { 2304 } 2305 2306 static inline void 2307 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2308 int objects) 2309 { 2310 } 2311 2312 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2313 2314 2315 #ifdef CONFIG_MEMCG 2316 2317 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2318 2319 static __fastpath_inline 2320 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2321 gfp_t flags, size_t size, void **p) 2322 { 2323 if (likely(!memcg_kmem_online())) 2324 return true; 2325 2326 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2327 return true; 2328 2329 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2330 return true; 2331 2332 if (likely(size == 1)) { 2333 memcg_alloc_abort_single(s, *p); 2334 *p = NULL; 2335 } else { 2336 kmem_cache_free_bulk(s, size, p); 2337 } 2338 2339 return false; 2340 } 2341 2342 static __fastpath_inline 2343 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2344 int objects) 2345 { 2346 struct slabobj_ext *obj_exts; 2347 2348 if (!memcg_kmem_online()) 2349 return; 2350 2351 obj_exts = slab_obj_exts(slab); 2352 if (likely(!obj_exts)) 2353 return; 2354 2355 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2356 } 2357 2358 static __fastpath_inline 2359 bool memcg_slab_post_charge(void *p, gfp_t flags) 2360 { 2361 struct slabobj_ext *slab_exts; 2362 struct kmem_cache *s; 2363 struct folio *folio; 2364 struct slab *slab; 2365 unsigned long off; 2366 2367 folio = virt_to_folio(p); 2368 if (!folio_test_slab(folio)) { 2369 int size; 2370 2371 if (folio_memcg_kmem(folio)) 2372 return true; 2373 2374 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2375 folio_order(folio))) 2376 return false; 2377 2378 /* 2379 * This folio has already been accounted in the global stats but 2380 * not in the memcg stats. So, subtract from the global and use 2381 * the interface which adds to both global and memcg stats. 2382 */ 2383 size = folio_size(folio); 2384 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2385 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2386 return true; 2387 } 2388 2389 slab = folio_slab(folio); 2390 s = slab->slab_cache; 2391 2392 /* 2393 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2394 * of slab_obj_exts being allocated from the same slab and thus the slab 2395 * becoming effectively unfreeable. 2396 */ 2397 if (is_kmalloc_normal(s)) 2398 return true; 2399 2400 /* Ignore already charged objects. */ 2401 slab_exts = slab_obj_exts(slab); 2402 if (slab_exts) { 2403 off = obj_to_index(s, slab, p); 2404 if (unlikely(slab_exts[off].objcg)) 2405 return true; 2406 } 2407 2408 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2409 } 2410 2411 #else /* CONFIG_MEMCG */ 2412 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2413 struct list_lru *lru, 2414 gfp_t flags, size_t size, 2415 void **p) 2416 { 2417 return true; 2418 } 2419 2420 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2421 void **p, int objects) 2422 { 2423 } 2424 2425 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2426 { 2427 return true; 2428 } 2429 #endif /* CONFIG_MEMCG */ 2430 2431 #ifdef CONFIG_SLUB_RCU_DEBUG 2432 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2433 2434 struct rcu_delayed_free { 2435 struct rcu_head head; 2436 void *object; 2437 }; 2438 #endif 2439 2440 /* 2441 * Hooks for other subsystems that check memory allocations. In a typical 2442 * production configuration these hooks all should produce no code at all. 2443 * 2444 * Returns true if freeing of the object can proceed, false if its reuse 2445 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2446 * to KFENCE. 2447 */ 2448 static __always_inline 2449 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2450 bool after_rcu_delay) 2451 { 2452 /* Are the object contents still accessible? */ 2453 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2454 2455 kmemleak_free_recursive(x, s->flags); 2456 kmsan_slab_free(s, x); 2457 2458 debug_check_no_locks_freed(x, s->object_size); 2459 2460 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2461 debug_check_no_obj_freed(x, s->object_size); 2462 2463 /* Use KCSAN to help debug racy use-after-free. */ 2464 if (!still_accessible) 2465 __kcsan_check_access(x, s->object_size, 2466 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2467 2468 if (kfence_free(x)) 2469 return false; 2470 2471 /* 2472 * Give KASAN a chance to notice an invalid free operation before we 2473 * modify the object. 2474 */ 2475 if (kasan_slab_pre_free(s, x)) 2476 return false; 2477 2478 #ifdef CONFIG_SLUB_RCU_DEBUG 2479 if (still_accessible) { 2480 struct rcu_delayed_free *delayed_free; 2481 2482 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2483 if (delayed_free) { 2484 /* 2485 * Let KASAN track our call stack as a "related work 2486 * creation", just like if the object had been freed 2487 * normally via kfree_rcu(). 2488 * We have to do this manually because the rcu_head is 2489 * not located inside the object. 2490 */ 2491 kasan_record_aux_stack(x); 2492 2493 delayed_free->object = x; 2494 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2495 return false; 2496 } 2497 } 2498 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2499 2500 /* 2501 * As memory initialization might be integrated into KASAN, 2502 * kasan_slab_free and initialization memset's must be 2503 * kept together to avoid discrepancies in behavior. 2504 * 2505 * The initialization memset's clear the object and the metadata, 2506 * but don't touch the SLAB redzone. 2507 * 2508 * The object's freepointer is also avoided if stored outside the 2509 * object. 2510 */ 2511 if (unlikely(init)) { 2512 int rsize; 2513 unsigned int inuse, orig_size; 2514 2515 inuse = get_info_end(s); 2516 orig_size = get_orig_size(s, x); 2517 if (!kasan_has_integrated_init()) 2518 memset(kasan_reset_tag(x), 0, orig_size); 2519 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2520 memset((char *)kasan_reset_tag(x) + inuse, 0, 2521 s->size - inuse - rsize); 2522 /* 2523 * Restore orig_size, otherwize kmalloc redzone overwritten 2524 * would be reported 2525 */ 2526 set_orig_size(s, x, orig_size); 2527 2528 } 2529 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2530 return !kasan_slab_free(s, x, init, still_accessible, false); 2531 } 2532 2533 static __fastpath_inline 2534 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2535 int *cnt) 2536 { 2537 2538 void *object; 2539 void *next = *head; 2540 void *old_tail = *tail; 2541 bool init; 2542 2543 if (is_kfence_address(next)) { 2544 slab_free_hook(s, next, false, false); 2545 return false; 2546 } 2547 2548 /* Head and tail of the reconstructed freelist */ 2549 *head = NULL; 2550 *tail = NULL; 2551 2552 init = slab_want_init_on_free(s); 2553 2554 do { 2555 object = next; 2556 next = get_freepointer(s, object); 2557 2558 /* If object's reuse doesn't have to be delayed */ 2559 if (likely(slab_free_hook(s, object, init, false))) { 2560 /* Move object to the new freelist */ 2561 set_freepointer(s, object, *head); 2562 *head = object; 2563 if (!*tail) 2564 *tail = object; 2565 } else { 2566 /* 2567 * Adjust the reconstructed freelist depth 2568 * accordingly if object's reuse is delayed. 2569 */ 2570 --(*cnt); 2571 } 2572 } while (object != old_tail); 2573 2574 return *head != NULL; 2575 } 2576 2577 static void *setup_object(struct kmem_cache *s, void *object) 2578 { 2579 setup_object_debug(s, object); 2580 object = kasan_init_slab_obj(s, object); 2581 if (unlikely(s->ctor)) { 2582 kasan_unpoison_new_object(s, object); 2583 s->ctor(object); 2584 kasan_poison_new_object(s, object); 2585 } 2586 return object; 2587 } 2588 2589 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp) 2590 { 2591 struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects, 2592 s->sheaf_capacity), gfp); 2593 2594 if (unlikely(!sheaf)) 2595 return NULL; 2596 2597 sheaf->cache = s; 2598 2599 stat(s, SHEAF_ALLOC); 2600 2601 return sheaf; 2602 } 2603 2604 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf) 2605 { 2606 kfree(sheaf); 2607 2608 stat(s, SHEAF_FREE); 2609 } 2610 2611 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 2612 size_t size, void **p); 2613 2614 2615 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf, 2616 gfp_t gfp) 2617 { 2618 int to_fill = s->sheaf_capacity - sheaf->size; 2619 int filled; 2620 2621 if (!to_fill) 2622 return 0; 2623 2624 filled = __kmem_cache_alloc_bulk(s, gfp, to_fill, 2625 &sheaf->objects[sheaf->size]); 2626 2627 sheaf->size += filled; 2628 2629 stat_add(s, SHEAF_REFILL, filled); 2630 2631 if (filled < to_fill) 2632 return -ENOMEM; 2633 2634 return 0; 2635 } 2636 2637 2638 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp) 2639 { 2640 struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp); 2641 2642 if (!sheaf) 2643 return NULL; 2644 2645 if (refill_sheaf(s, sheaf, gfp)) { 2646 free_empty_sheaf(s, sheaf); 2647 return NULL; 2648 } 2649 2650 return sheaf; 2651 } 2652 2653 /* 2654 * Maximum number of objects freed during a single flush of main pcs sheaf. 2655 * Translates directly to an on-stack array size. 2656 */ 2657 #define PCS_BATCH_MAX 32U 2658 2659 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 2660 2661 /* 2662 * Free all objects from the main sheaf. In order to perform 2663 * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where 2664 * object pointers are moved to a on-stack array under the lock. To bound the 2665 * stack usage, limit each batch to PCS_BATCH_MAX. 2666 * 2667 * returns true if at least partially flushed 2668 */ 2669 static bool sheaf_flush_main(struct kmem_cache *s) 2670 { 2671 struct slub_percpu_sheaves *pcs; 2672 unsigned int batch, remaining; 2673 void *objects[PCS_BATCH_MAX]; 2674 struct slab_sheaf *sheaf; 2675 bool ret = false; 2676 2677 next_batch: 2678 if (!local_trylock(&s->cpu_sheaves->lock)) 2679 return ret; 2680 2681 pcs = this_cpu_ptr(s->cpu_sheaves); 2682 sheaf = pcs->main; 2683 2684 batch = min(PCS_BATCH_MAX, sheaf->size); 2685 2686 sheaf->size -= batch; 2687 memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *)); 2688 2689 remaining = sheaf->size; 2690 2691 local_unlock(&s->cpu_sheaves->lock); 2692 2693 __kmem_cache_free_bulk(s, batch, &objects[0]); 2694 2695 stat_add(s, SHEAF_FLUSH, batch); 2696 2697 ret = true; 2698 2699 if (remaining) 2700 goto next_batch; 2701 2702 return ret; 2703 } 2704 2705 /* 2706 * Free all objects from a sheaf that's unused, i.e. not linked to any 2707 * cpu_sheaves, so we need no locking and batching. The locking is also not 2708 * necessary when flushing cpu's sheaves (both spare and main) during cpu 2709 * hotremove as the cpu is not executing anymore. 2710 */ 2711 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf) 2712 { 2713 if (!sheaf->size) 2714 return; 2715 2716 stat_add(s, SHEAF_FLUSH, sheaf->size); 2717 2718 __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]); 2719 2720 sheaf->size = 0; 2721 } 2722 2723 static void __rcu_free_sheaf_prepare(struct kmem_cache *s, 2724 struct slab_sheaf *sheaf) 2725 { 2726 bool init = slab_want_init_on_free(s); 2727 void **p = &sheaf->objects[0]; 2728 unsigned int i = 0; 2729 2730 while (i < sheaf->size) { 2731 struct slab *slab = virt_to_slab(p[i]); 2732 2733 memcg_slab_free_hook(s, slab, p + i, 1); 2734 alloc_tagging_slab_free_hook(s, slab, p + i, 1); 2735 2736 if (unlikely(!slab_free_hook(s, p[i], init, true))) { 2737 p[i] = p[--sheaf->size]; 2738 continue; 2739 } 2740 2741 i++; 2742 } 2743 } 2744 2745 static void rcu_free_sheaf_nobarn(struct rcu_head *head) 2746 { 2747 struct slab_sheaf *sheaf; 2748 struct kmem_cache *s; 2749 2750 sheaf = container_of(head, struct slab_sheaf, rcu_head); 2751 s = sheaf->cache; 2752 2753 __rcu_free_sheaf_prepare(s, sheaf); 2754 2755 sheaf_flush_unused(s, sheaf); 2756 2757 free_empty_sheaf(s, sheaf); 2758 } 2759 2760 /* 2761 * Caller needs to make sure migration is disabled in order to fully flush 2762 * single cpu's sheaves 2763 * 2764 * must not be called from an irq 2765 * 2766 * flushing operations are rare so let's keep it simple and flush to slabs 2767 * directly, skipping the barn 2768 */ 2769 static void pcs_flush_all(struct kmem_cache *s) 2770 { 2771 struct slub_percpu_sheaves *pcs; 2772 struct slab_sheaf *spare, *rcu_free; 2773 2774 local_lock(&s->cpu_sheaves->lock); 2775 pcs = this_cpu_ptr(s->cpu_sheaves); 2776 2777 spare = pcs->spare; 2778 pcs->spare = NULL; 2779 2780 rcu_free = pcs->rcu_free; 2781 pcs->rcu_free = NULL; 2782 2783 local_unlock(&s->cpu_sheaves->lock); 2784 2785 if (spare) { 2786 sheaf_flush_unused(s, spare); 2787 free_empty_sheaf(s, spare); 2788 } 2789 2790 if (rcu_free) 2791 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); 2792 2793 sheaf_flush_main(s); 2794 } 2795 2796 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu) 2797 { 2798 struct slub_percpu_sheaves *pcs; 2799 2800 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 2801 2802 /* The cpu is not executing anymore so we don't need pcs->lock */ 2803 sheaf_flush_unused(s, pcs->main); 2804 if (pcs->spare) { 2805 sheaf_flush_unused(s, pcs->spare); 2806 free_empty_sheaf(s, pcs->spare); 2807 pcs->spare = NULL; 2808 } 2809 2810 if (pcs->rcu_free) { 2811 call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn); 2812 pcs->rcu_free = NULL; 2813 } 2814 } 2815 2816 static void pcs_destroy(struct kmem_cache *s) 2817 { 2818 int cpu; 2819 2820 for_each_possible_cpu(cpu) { 2821 struct slub_percpu_sheaves *pcs; 2822 2823 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 2824 2825 /* can happen when unwinding failed create */ 2826 if (!pcs->main) 2827 continue; 2828 2829 /* 2830 * We have already passed __kmem_cache_shutdown() so everything 2831 * was flushed and there should be no objects allocated from 2832 * slabs, otherwise kmem_cache_destroy() would have aborted. 2833 * Therefore something would have to be really wrong if the 2834 * warnings here trigger, and we should rather leave objects and 2835 * sheaves to leak in that case. 2836 */ 2837 2838 WARN_ON(pcs->spare); 2839 WARN_ON(pcs->rcu_free); 2840 2841 if (!WARN_ON(pcs->main->size)) { 2842 free_empty_sheaf(s, pcs->main); 2843 pcs->main = NULL; 2844 } 2845 } 2846 2847 free_percpu(s->cpu_sheaves); 2848 s->cpu_sheaves = NULL; 2849 } 2850 2851 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn) 2852 { 2853 struct slab_sheaf *empty = NULL; 2854 unsigned long flags; 2855 2856 if (!data_race(barn->nr_empty)) 2857 return NULL; 2858 2859 spin_lock_irqsave(&barn->lock, flags); 2860 2861 if (likely(barn->nr_empty)) { 2862 empty = list_first_entry(&barn->sheaves_empty, 2863 struct slab_sheaf, barn_list); 2864 list_del(&empty->barn_list); 2865 barn->nr_empty--; 2866 } 2867 2868 spin_unlock_irqrestore(&barn->lock, flags); 2869 2870 return empty; 2871 } 2872 2873 /* 2874 * The following two functions are used mainly in cases where we have to undo an 2875 * intended action due to a race or cpu migration. Thus they do not check the 2876 * empty or full sheaf limits for simplicity. 2877 */ 2878 2879 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf) 2880 { 2881 unsigned long flags; 2882 2883 spin_lock_irqsave(&barn->lock, flags); 2884 2885 list_add(&sheaf->barn_list, &barn->sheaves_empty); 2886 barn->nr_empty++; 2887 2888 spin_unlock_irqrestore(&barn->lock, flags); 2889 } 2890 2891 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf) 2892 { 2893 unsigned long flags; 2894 2895 spin_lock_irqsave(&barn->lock, flags); 2896 2897 list_add(&sheaf->barn_list, &barn->sheaves_full); 2898 barn->nr_full++; 2899 2900 spin_unlock_irqrestore(&barn->lock, flags); 2901 } 2902 2903 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn) 2904 { 2905 struct slab_sheaf *sheaf = NULL; 2906 unsigned long flags; 2907 2908 if (!data_race(barn->nr_full) && !data_race(barn->nr_empty)) 2909 return NULL; 2910 2911 spin_lock_irqsave(&barn->lock, flags); 2912 2913 if (barn->nr_full) { 2914 sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf, 2915 barn_list); 2916 list_del(&sheaf->barn_list); 2917 barn->nr_full--; 2918 } else if (barn->nr_empty) { 2919 sheaf = list_first_entry(&barn->sheaves_empty, 2920 struct slab_sheaf, barn_list); 2921 list_del(&sheaf->barn_list); 2922 barn->nr_empty--; 2923 } 2924 2925 spin_unlock_irqrestore(&barn->lock, flags); 2926 2927 return sheaf; 2928 } 2929 2930 /* 2931 * If a full sheaf is available, return it and put the supplied empty one to 2932 * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't 2933 * change. 2934 */ 2935 static struct slab_sheaf * 2936 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty) 2937 { 2938 struct slab_sheaf *full = NULL; 2939 unsigned long flags; 2940 2941 if (!data_race(barn->nr_full)) 2942 return NULL; 2943 2944 spin_lock_irqsave(&barn->lock, flags); 2945 2946 if (likely(barn->nr_full)) { 2947 full = list_first_entry(&barn->sheaves_full, struct slab_sheaf, 2948 barn_list); 2949 list_del(&full->barn_list); 2950 list_add(&empty->barn_list, &barn->sheaves_empty); 2951 barn->nr_full--; 2952 barn->nr_empty++; 2953 } 2954 2955 spin_unlock_irqrestore(&barn->lock, flags); 2956 2957 return full; 2958 } 2959 2960 /* 2961 * If an empty sheaf is available, return it and put the supplied full one to 2962 * barn. But if there are too many full sheaves, reject this with -E2BIG. 2963 */ 2964 static struct slab_sheaf * 2965 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full) 2966 { 2967 struct slab_sheaf *empty; 2968 unsigned long flags; 2969 2970 /* we don't repeat this check under barn->lock as it's not critical */ 2971 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES) 2972 return ERR_PTR(-E2BIG); 2973 if (!data_race(barn->nr_empty)) 2974 return ERR_PTR(-ENOMEM); 2975 2976 spin_lock_irqsave(&barn->lock, flags); 2977 2978 if (likely(barn->nr_empty)) { 2979 empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf, 2980 barn_list); 2981 list_del(&empty->barn_list); 2982 list_add(&full->barn_list, &barn->sheaves_full); 2983 barn->nr_empty--; 2984 barn->nr_full++; 2985 } else { 2986 empty = ERR_PTR(-ENOMEM); 2987 } 2988 2989 spin_unlock_irqrestore(&barn->lock, flags); 2990 2991 return empty; 2992 } 2993 2994 static void barn_init(struct node_barn *barn) 2995 { 2996 spin_lock_init(&barn->lock); 2997 INIT_LIST_HEAD(&barn->sheaves_full); 2998 INIT_LIST_HEAD(&barn->sheaves_empty); 2999 barn->nr_full = 0; 3000 barn->nr_empty = 0; 3001 } 3002 3003 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn) 3004 { 3005 struct list_head empty_list; 3006 struct list_head full_list; 3007 struct slab_sheaf *sheaf, *sheaf2; 3008 unsigned long flags; 3009 3010 INIT_LIST_HEAD(&empty_list); 3011 INIT_LIST_HEAD(&full_list); 3012 3013 spin_lock_irqsave(&barn->lock, flags); 3014 3015 list_splice_init(&barn->sheaves_full, &full_list); 3016 barn->nr_full = 0; 3017 list_splice_init(&barn->sheaves_empty, &empty_list); 3018 barn->nr_empty = 0; 3019 3020 spin_unlock_irqrestore(&barn->lock, flags); 3021 3022 list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) { 3023 sheaf_flush_unused(s, sheaf); 3024 free_empty_sheaf(s, sheaf); 3025 } 3026 3027 list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list) 3028 free_empty_sheaf(s, sheaf); 3029 } 3030 3031 /* 3032 * Slab allocation and freeing 3033 */ 3034 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 3035 struct kmem_cache_order_objects oo, 3036 bool allow_spin) 3037 { 3038 struct folio *folio; 3039 struct slab *slab; 3040 unsigned int order = oo_order(oo); 3041 3042 if (unlikely(!allow_spin)) 3043 folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */, 3044 node, order); 3045 else if (node == NUMA_NO_NODE) 3046 folio = (struct folio *)alloc_frozen_pages(flags, order); 3047 else 3048 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 3049 3050 if (!folio) 3051 return NULL; 3052 3053 slab = folio_slab(folio); 3054 __folio_set_slab(folio); 3055 if (folio_is_pfmemalloc(folio)) 3056 slab_set_pfmemalloc(slab); 3057 3058 return slab; 3059 } 3060 3061 #ifdef CONFIG_SLAB_FREELIST_RANDOM 3062 /* Pre-initialize the random sequence cache */ 3063 static int init_cache_random_seq(struct kmem_cache *s) 3064 { 3065 unsigned int count = oo_objects(s->oo); 3066 int err; 3067 3068 /* Bailout if already initialised */ 3069 if (s->random_seq) 3070 return 0; 3071 3072 err = cache_random_seq_create(s, count, GFP_KERNEL); 3073 if (err) { 3074 pr_err("SLUB: Unable to initialize free list for %s\n", 3075 s->name); 3076 return err; 3077 } 3078 3079 /* Transform to an offset on the set of pages */ 3080 if (s->random_seq) { 3081 unsigned int i; 3082 3083 for (i = 0; i < count; i++) 3084 s->random_seq[i] *= s->size; 3085 } 3086 return 0; 3087 } 3088 3089 /* Initialize each random sequence freelist per cache */ 3090 static void __init init_freelist_randomization(void) 3091 { 3092 struct kmem_cache *s; 3093 3094 mutex_lock(&slab_mutex); 3095 3096 list_for_each_entry(s, &slab_caches, list) 3097 init_cache_random_seq(s); 3098 3099 mutex_unlock(&slab_mutex); 3100 } 3101 3102 /* Get the next entry on the pre-computed freelist randomized */ 3103 static void *next_freelist_entry(struct kmem_cache *s, 3104 unsigned long *pos, void *start, 3105 unsigned long page_limit, 3106 unsigned long freelist_count) 3107 { 3108 unsigned int idx; 3109 3110 /* 3111 * If the target page allocation failed, the number of objects on the 3112 * page might be smaller than the usual size defined by the cache. 3113 */ 3114 do { 3115 idx = s->random_seq[*pos]; 3116 *pos += 1; 3117 if (*pos >= freelist_count) 3118 *pos = 0; 3119 } while (unlikely(idx >= page_limit)); 3120 3121 return (char *)start + idx; 3122 } 3123 3124 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 3125 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 3126 { 3127 void *start; 3128 void *cur; 3129 void *next; 3130 unsigned long idx, pos, page_limit, freelist_count; 3131 3132 if (slab->objects < 2 || !s->random_seq) 3133 return false; 3134 3135 freelist_count = oo_objects(s->oo); 3136 pos = get_random_u32_below(freelist_count); 3137 3138 page_limit = slab->objects * s->size; 3139 start = fixup_red_left(s, slab_address(slab)); 3140 3141 /* First entry is used as the base of the freelist */ 3142 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 3143 cur = setup_object(s, cur); 3144 slab->freelist = cur; 3145 3146 for (idx = 1; idx < slab->objects; idx++) { 3147 next = next_freelist_entry(s, &pos, start, page_limit, 3148 freelist_count); 3149 next = setup_object(s, next); 3150 set_freepointer(s, cur, next); 3151 cur = next; 3152 } 3153 set_freepointer(s, cur, NULL); 3154 3155 return true; 3156 } 3157 #else 3158 static inline int init_cache_random_seq(struct kmem_cache *s) 3159 { 3160 return 0; 3161 } 3162 static inline void init_freelist_randomization(void) { } 3163 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 3164 { 3165 return false; 3166 } 3167 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 3168 3169 static __always_inline void account_slab(struct slab *slab, int order, 3170 struct kmem_cache *s, gfp_t gfp) 3171 { 3172 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 3173 alloc_slab_obj_exts(slab, s, gfp, true); 3174 3175 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 3176 PAGE_SIZE << order); 3177 } 3178 3179 static __always_inline void unaccount_slab(struct slab *slab, int order, 3180 struct kmem_cache *s) 3181 { 3182 /* 3183 * The slab object extensions should now be freed regardless of 3184 * whether mem_alloc_profiling_enabled() or not because profiling 3185 * might have been disabled after slab->obj_exts got allocated. 3186 */ 3187 free_slab_obj_exts(slab); 3188 3189 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 3190 -(PAGE_SIZE << order)); 3191 } 3192 3193 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 3194 { 3195 bool allow_spin = gfpflags_allow_spinning(flags); 3196 struct slab *slab; 3197 struct kmem_cache_order_objects oo = s->oo; 3198 gfp_t alloc_gfp; 3199 void *start, *p, *next; 3200 int idx; 3201 bool shuffle; 3202 3203 flags &= gfp_allowed_mask; 3204 3205 flags |= s->allocflags; 3206 3207 /* 3208 * Let the initial higher-order allocation fail under memory pressure 3209 * so we fall-back to the minimum order allocation. 3210 */ 3211 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 3212 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 3213 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 3214 3215 /* 3216 * __GFP_RECLAIM could be cleared on the first allocation attempt, 3217 * so pass allow_spin flag directly. 3218 */ 3219 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin); 3220 if (unlikely(!slab)) { 3221 oo = s->min; 3222 alloc_gfp = flags; 3223 /* 3224 * Allocation may have failed due to fragmentation. 3225 * Try a lower order alloc if possible 3226 */ 3227 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin); 3228 if (unlikely(!slab)) 3229 return NULL; 3230 stat(s, ORDER_FALLBACK); 3231 } 3232 3233 slab->objects = oo_objects(oo); 3234 slab->inuse = 0; 3235 slab->frozen = 0; 3236 init_slab_obj_exts(slab); 3237 3238 account_slab(slab, oo_order(oo), s, flags); 3239 3240 slab->slab_cache = s; 3241 3242 kasan_poison_slab(slab); 3243 3244 start = slab_address(slab); 3245 3246 setup_slab_debug(s, slab, start); 3247 3248 shuffle = shuffle_freelist(s, slab); 3249 3250 if (!shuffle) { 3251 start = fixup_red_left(s, start); 3252 start = setup_object(s, start); 3253 slab->freelist = start; 3254 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 3255 next = p + s->size; 3256 next = setup_object(s, next); 3257 set_freepointer(s, p, next); 3258 p = next; 3259 } 3260 set_freepointer(s, p, NULL); 3261 } 3262 3263 return slab; 3264 } 3265 3266 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 3267 { 3268 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 3269 flags = kmalloc_fix_flags(flags); 3270 3271 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 3272 3273 return allocate_slab(s, 3274 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 3275 } 3276 3277 static void __free_slab(struct kmem_cache *s, struct slab *slab) 3278 { 3279 struct folio *folio = slab_folio(slab); 3280 int order = folio_order(folio); 3281 int pages = 1 << order; 3282 3283 __slab_clear_pfmemalloc(slab); 3284 folio->mapping = NULL; 3285 __folio_clear_slab(folio); 3286 mm_account_reclaimed_pages(pages); 3287 unaccount_slab(slab, order, s); 3288 free_frozen_pages(&folio->page, order); 3289 } 3290 3291 static void rcu_free_slab(struct rcu_head *h) 3292 { 3293 struct slab *slab = container_of(h, struct slab, rcu_head); 3294 3295 __free_slab(slab->slab_cache, slab); 3296 } 3297 3298 static void free_slab(struct kmem_cache *s, struct slab *slab) 3299 { 3300 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 3301 void *p; 3302 3303 slab_pad_check(s, slab); 3304 for_each_object(p, s, slab_address(slab), slab->objects) 3305 check_object(s, slab, p, SLUB_RED_INACTIVE); 3306 } 3307 3308 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 3309 call_rcu(&slab->rcu_head, rcu_free_slab); 3310 else 3311 __free_slab(s, slab); 3312 } 3313 3314 static void discard_slab(struct kmem_cache *s, struct slab *slab) 3315 { 3316 dec_slabs_node(s, slab_nid(slab), slab->objects); 3317 free_slab(s, slab); 3318 } 3319 3320 static inline bool slab_test_node_partial(const struct slab *slab) 3321 { 3322 return test_bit(SL_partial, &slab->flags.f); 3323 } 3324 3325 static inline void slab_set_node_partial(struct slab *slab) 3326 { 3327 set_bit(SL_partial, &slab->flags.f); 3328 } 3329 3330 static inline void slab_clear_node_partial(struct slab *slab) 3331 { 3332 clear_bit(SL_partial, &slab->flags.f); 3333 } 3334 3335 /* 3336 * Management of partially allocated slabs. 3337 */ 3338 static inline void 3339 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 3340 { 3341 n->nr_partial++; 3342 if (tail == DEACTIVATE_TO_TAIL) 3343 list_add_tail(&slab->slab_list, &n->partial); 3344 else 3345 list_add(&slab->slab_list, &n->partial); 3346 slab_set_node_partial(slab); 3347 } 3348 3349 static inline void add_partial(struct kmem_cache_node *n, 3350 struct slab *slab, int tail) 3351 { 3352 lockdep_assert_held(&n->list_lock); 3353 __add_partial(n, slab, tail); 3354 } 3355 3356 static inline void remove_partial(struct kmem_cache_node *n, 3357 struct slab *slab) 3358 { 3359 lockdep_assert_held(&n->list_lock); 3360 list_del(&slab->slab_list); 3361 slab_clear_node_partial(slab); 3362 n->nr_partial--; 3363 } 3364 3365 /* 3366 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 3367 * slab from the n->partial list. Remove only a single object from the slab, do 3368 * the alloc_debug_processing() checks and leave the slab on the list, or move 3369 * it to full list if it was the last free object. 3370 */ 3371 static void *alloc_single_from_partial(struct kmem_cache *s, 3372 struct kmem_cache_node *n, struct slab *slab, int orig_size) 3373 { 3374 void *object; 3375 3376 lockdep_assert_held(&n->list_lock); 3377 3378 #ifdef CONFIG_SLUB_DEBUG 3379 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3380 if (!validate_slab_ptr(slab)) { 3381 slab_err(s, slab, "Not a valid slab page"); 3382 return NULL; 3383 } 3384 } 3385 #endif 3386 3387 object = slab->freelist; 3388 slab->freelist = get_freepointer(s, object); 3389 slab->inuse++; 3390 3391 if (!alloc_debug_processing(s, slab, object, orig_size)) { 3392 remove_partial(n, slab); 3393 return NULL; 3394 } 3395 3396 if (slab->inuse == slab->objects) { 3397 remove_partial(n, slab); 3398 add_full(s, n, slab); 3399 } 3400 3401 return object; 3402 } 3403 3404 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist); 3405 3406 /* 3407 * Called only for kmem_cache_debug() caches to allocate from a freshly 3408 * allocated slab. Allocate a single object instead of whole freelist 3409 * and put the slab to the partial (or full) list. 3410 */ 3411 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab, 3412 int orig_size, gfp_t gfpflags) 3413 { 3414 bool allow_spin = gfpflags_allow_spinning(gfpflags); 3415 int nid = slab_nid(slab); 3416 struct kmem_cache_node *n = get_node(s, nid); 3417 unsigned long flags; 3418 void *object; 3419 3420 if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) { 3421 /* Unlucky, discard newly allocated slab */ 3422 slab->frozen = 1; 3423 defer_deactivate_slab(slab, NULL); 3424 return NULL; 3425 } 3426 3427 object = slab->freelist; 3428 slab->freelist = get_freepointer(s, object); 3429 slab->inuse = 1; 3430 3431 if (!alloc_debug_processing(s, slab, object, orig_size)) { 3432 /* 3433 * It's not really expected that this would fail on a 3434 * freshly allocated slab, but a concurrent memory 3435 * corruption in theory could cause that. 3436 * Leak memory of allocated slab. 3437 */ 3438 if (!allow_spin) 3439 spin_unlock_irqrestore(&n->list_lock, flags); 3440 return NULL; 3441 } 3442 3443 if (allow_spin) 3444 spin_lock_irqsave(&n->list_lock, flags); 3445 3446 if (slab->inuse == slab->objects) 3447 add_full(s, n, slab); 3448 else 3449 add_partial(n, slab, DEACTIVATE_TO_HEAD); 3450 3451 inc_slabs_node(s, nid, slab->objects); 3452 spin_unlock_irqrestore(&n->list_lock, flags); 3453 3454 return object; 3455 } 3456 3457 #ifdef CONFIG_SLUB_CPU_PARTIAL 3458 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 3459 #else 3460 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 3461 int drain) { } 3462 #endif 3463 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 3464 3465 /* 3466 * Try to allocate a partial slab from a specific node. 3467 */ 3468 static struct slab *get_partial_node(struct kmem_cache *s, 3469 struct kmem_cache_node *n, 3470 struct partial_context *pc) 3471 { 3472 struct slab *slab, *slab2, *partial = NULL; 3473 unsigned long flags; 3474 unsigned int partial_slabs = 0; 3475 3476 /* 3477 * Racy check. If we mistakenly see no partial slabs then we 3478 * just allocate an empty slab. If we mistakenly try to get a 3479 * partial slab and there is none available then get_partial() 3480 * will return NULL. 3481 */ 3482 if (!n || !n->nr_partial) 3483 return NULL; 3484 3485 if (gfpflags_allow_spinning(pc->flags)) 3486 spin_lock_irqsave(&n->list_lock, flags); 3487 else if (!spin_trylock_irqsave(&n->list_lock, flags)) 3488 return NULL; 3489 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 3490 if (!pfmemalloc_match(slab, pc->flags)) 3491 continue; 3492 3493 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 3494 void *object = alloc_single_from_partial(s, n, slab, 3495 pc->orig_size); 3496 if (object) { 3497 partial = slab; 3498 pc->object = object; 3499 break; 3500 } 3501 continue; 3502 } 3503 3504 remove_partial(n, slab); 3505 3506 if (!partial) { 3507 partial = slab; 3508 stat(s, ALLOC_FROM_PARTIAL); 3509 3510 if ((slub_get_cpu_partial(s) == 0)) { 3511 break; 3512 } 3513 } else { 3514 put_cpu_partial(s, slab, 0); 3515 stat(s, CPU_PARTIAL_NODE); 3516 3517 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 3518 break; 3519 } 3520 } 3521 } 3522 spin_unlock_irqrestore(&n->list_lock, flags); 3523 return partial; 3524 } 3525 3526 /* 3527 * Get a slab from somewhere. Search in increasing NUMA distances. 3528 */ 3529 static struct slab *get_any_partial(struct kmem_cache *s, 3530 struct partial_context *pc) 3531 { 3532 #ifdef CONFIG_NUMA 3533 struct zonelist *zonelist; 3534 struct zoneref *z; 3535 struct zone *zone; 3536 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 3537 struct slab *slab; 3538 unsigned int cpuset_mems_cookie; 3539 3540 /* 3541 * The defrag ratio allows a configuration of the tradeoffs between 3542 * inter node defragmentation and node local allocations. A lower 3543 * defrag_ratio increases the tendency to do local allocations 3544 * instead of attempting to obtain partial slabs from other nodes. 3545 * 3546 * If the defrag_ratio is set to 0 then kmalloc() always 3547 * returns node local objects. If the ratio is higher then kmalloc() 3548 * may return off node objects because partial slabs are obtained 3549 * from other nodes and filled up. 3550 * 3551 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 3552 * (which makes defrag_ratio = 1000) then every (well almost) 3553 * allocation will first attempt to defrag slab caches on other nodes. 3554 * This means scanning over all nodes to look for partial slabs which 3555 * may be expensive if we do it every time we are trying to find a slab 3556 * with available objects. 3557 */ 3558 if (!s->remote_node_defrag_ratio || 3559 get_cycles() % 1024 > s->remote_node_defrag_ratio) 3560 return NULL; 3561 3562 do { 3563 cpuset_mems_cookie = read_mems_allowed_begin(); 3564 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 3565 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 3566 struct kmem_cache_node *n; 3567 3568 n = get_node(s, zone_to_nid(zone)); 3569 3570 if (n && cpuset_zone_allowed(zone, pc->flags) && 3571 n->nr_partial > s->min_partial) { 3572 slab = get_partial_node(s, n, pc); 3573 if (slab) { 3574 /* 3575 * Don't check read_mems_allowed_retry() 3576 * here - if mems_allowed was updated in 3577 * parallel, that was a harmless race 3578 * between allocation and the cpuset 3579 * update 3580 */ 3581 return slab; 3582 } 3583 } 3584 } 3585 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3586 #endif /* CONFIG_NUMA */ 3587 return NULL; 3588 } 3589 3590 /* 3591 * Get a partial slab, lock it and return it. 3592 */ 3593 static struct slab *get_partial(struct kmem_cache *s, int node, 3594 struct partial_context *pc) 3595 { 3596 struct slab *slab; 3597 int searchnode = node; 3598 3599 if (node == NUMA_NO_NODE) 3600 searchnode = numa_mem_id(); 3601 3602 slab = get_partial_node(s, get_node(s, searchnode), pc); 3603 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 3604 return slab; 3605 3606 return get_any_partial(s, pc); 3607 } 3608 3609 #ifndef CONFIG_SLUB_TINY 3610 3611 #ifdef CONFIG_PREEMPTION 3612 /* 3613 * Calculate the next globally unique transaction for disambiguation 3614 * during cmpxchg. The transactions start with the cpu number and are then 3615 * incremented by CONFIG_NR_CPUS. 3616 */ 3617 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 3618 #else 3619 /* 3620 * No preemption supported therefore also no need to check for 3621 * different cpus. 3622 */ 3623 #define TID_STEP 1 3624 #endif /* CONFIG_PREEMPTION */ 3625 3626 static inline unsigned long next_tid(unsigned long tid) 3627 { 3628 return tid + TID_STEP; 3629 } 3630 3631 #ifdef SLUB_DEBUG_CMPXCHG 3632 static inline unsigned int tid_to_cpu(unsigned long tid) 3633 { 3634 return tid % TID_STEP; 3635 } 3636 3637 static inline unsigned long tid_to_event(unsigned long tid) 3638 { 3639 return tid / TID_STEP; 3640 } 3641 #endif 3642 3643 static inline unsigned int init_tid(int cpu) 3644 { 3645 return cpu; 3646 } 3647 3648 static inline void note_cmpxchg_failure(const char *n, 3649 const struct kmem_cache *s, unsigned long tid) 3650 { 3651 #ifdef SLUB_DEBUG_CMPXCHG 3652 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3653 3654 pr_info("%s %s: cmpxchg redo ", n, s->name); 3655 3656 if (IS_ENABLED(CONFIG_PREEMPTION) && 3657 tid_to_cpu(tid) != tid_to_cpu(actual_tid)) { 3658 pr_warn("due to cpu change %d -> %d\n", 3659 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3660 } else if (tid_to_event(tid) != tid_to_event(actual_tid)) { 3661 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3662 tid_to_event(tid), tid_to_event(actual_tid)); 3663 } else { 3664 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3665 actual_tid, tid, next_tid(tid)); 3666 } 3667 #endif 3668 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3669 } 3670 3671 static void init_kmem_cache_cpus(struct kmem_cache *s) 3672 { 3673 #ifdef CONFIG_PREEMPT_RT 3674 /* 3675 * Register lockdep key for non-boot kmem caches to avoid 3676 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key() 3677 */ 3678 bool finegrain_lockdep = !init_section_contains(s, 1); 3679 #else 3680 /* 3681 * Don't bother with different lockdep classes for each 3682 * kmem_cache, since we only use local_trylock_irqsave(). 3683 */ 3684 bool finegrain_lockdep = false; 3685 #endif 3686 int cpu; 3687 struct kmem_cache_cpu *c; 3688 3689 if (finegrain_lockdep) 3690 lockdep_register_key(&s->lock_key); 3691 for_each_possible_cpu(cpu) { 3692 c = per_cpu_ptr(s->cpu_slab, cpu); 3693 local_trylock_init(&c->lock); 3694 if (finegrain_lockdep) 3695 lockdep_set_class(&c->lock, &s->lock_key); 3696 c->tid = init_tid(cpu); 3697 } 3698 } 3699 3700 /* 3701 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3702 * unfreezes the slabs and puts it on the proper list. 3703 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3704 * by the caller. 3705 */ 3706 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3707 void *freelist) 3708 { 3709 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3710 int free_delta = 0; 3711 void *nextfree, *freelist_iter, *freelist_tail; 3712 int tail = DEACTIVATE_TO_HEAD; 3713 unsigned long flags = 0; 3714 struct slab new; 3715 struct slab old; 3716 3717 if (READ_ONCE(slab->freelist)) { 3718 stat(s, DEACTIVATE_REMOTE_FREES); 3719 tail = DEACTIVATE_TO_TAIL; 3720 } 3721 3722 /* 3723 * Stage one: Count the objects on cpu's freelist as free_delta and 3724 * remember the last object in freelist_tail for later splicing. 3725 */ 3726 freelist_tail = NULL; 3727 freelist_iter = freelist; 3728 while (freelist_iter) { 3729 nextfree = get_freepointer(s, freelist_iter); 3730 3731 /* 3732 * If 'nextfree' is invalid, it is possible that the object at 3733 * 'freelist_iter' is already corrupted. So isolate all objects 3734 * starting at 'freelist_iter' by skipping them. 3735 */ 3736 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3737 break; 3738 3739 freelist_tail = freelist_iter; 3740 free_delta++; 3741 3742 freelist_iter = nextfree; 3743 } 3744 3745 /* 3746 * Stage two: Unfreeze the slab while splicing the per-cpu 3747 * freelist to the head of slab's freelist. 3748 */ 3749 do { 3750 old.freelist = READ_ONCE(slab->freelist); 3751 old.counters = READ_ONCE(slab->counters); 3752 VM_BUG_ON(!old.frozen); 3753 3754 /* Determine target state of the slab */ 3755 new.counters = old.counters; 3756 new.frozen = 0; 3757 if (freelist_tail) { 3758 new.inuse -= free_delta; 3759 set_freepointer(s, freelist_tail, old.freelist); 3760 new.freelist = freelist; 3761 } else { 3762 new.freelist = old.freelist; 3763 } 3764 } while (!slab_update_freelist(s, slab, 3765 old.freelist, old.counters, 3766 new.freelist, new.counters, 3767 "unfreezing slab")); 3768 3769 /* 3770 * Stage three: Manipulate the slab list based on the updated state. 3771 */ 3772 if (!new.inuse && n->nr_partial >= s->min_partial) { 3773 stat(s, DEACTIVATE_EMPTY); 3774 discard_slab(s, slab); 3775 stat(s, FREE_SLAB); 3776 } else if (new.freelist) { 3777 spin_lock_irqsave(&n->list_lock, flags); 3778 add_partial(n, slab, tail); 3779 spin_unlock_irqrestore(&n->list_lock, flags); 3780 stat(s, tail); 3781 } else { 3782 stat(s, DEACTIVATE_FULL); 3783 } 3784 } 3785 3786 /* 3787 * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock 3788 * can be acquired without a deadlock before invoking the function. 3789 * 3790 * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is 3791 * using local_lock_is_locked() properly before calling local_lock_cpu_slab(), 3792 * and kmalloc() is not used in an unsupported context. 3793 * 3794 * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave(). 3795 * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but 3796 * lockdep_assert() will catch a bug in case: 3797 * #1 3798 * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock() 3799 * or 3800 * #2 3801 * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock() 3802 * 3803 * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt 3804 * disabled context. The lock will always be acquired and if needed it 3805 * block and sleep until the lock is available. 3806 * #1 is possible in !PREEMPT_RT only. 3807 * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock: 3808 * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) -> 3809 * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B) 3810 * 3811 * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B 3812 */ 3813 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP) 3814 #define local_lock_cpu_slab(s, flags) \ 3815 local_lock_irqsave(&(s)->cpu_slab->lock, flags) 3816 #else 3817 #define local_lock_cpu_slab(s, flags) \ 3818 do { \ 3819 bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \ 3820 lockdep_assert(__l); \ 3821 } while (0) 3822 #endif 3823 3824 #define local_unlock_cpu_slab(s, flags) \ 3825 local_unlock_irqrestore(&(s)->cpu_slab->lock, flags) 3826 3827 #ifdef CONFIG_SLUB_CPU_PARTIAL 3828 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3829 { 3830 struct kmem_cache_node *n = NULL, *n2 = NULL; 3831 struct slab *slab, *slab_to_discard = NULL; 3832 unsigned long flags = 0; 3833 3834 while (partial_slab) { 3835 slab = partial_slab; 3836 partial_slab = slab->next; 3837 3838 n2 = get_node(s, slab_nid(slab)); 3839 if (n != n2) { 3840 if (n) 3841 spin_unlock_irqrestore(&n->list_lock, flags); 3842 3843 n = n2; 3844 spin_lock_irqsave(&n->list_lock, flags); 3845 } 3846 3847 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3848 slab->next = slab_to_discard; 3849 slab_to_discard = slab; 3850 } else { 3851 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3852 stat(s, FREE_ADD_PARTIAL); 3853 } 3854 } 3855 3856 if (n) 3857 spin_unlock_irqrestore(&n->list_lock, flags); 3858 3859 while (slab_to_discard) { 3860 slab = slab_to_discard; 3861 slab_to_discard = slab_to_discard->next; 3862 3863 stat(s, DEACTIVATE_EMPTY); 3864 discard_slab(s, slab); 3865 stat(s, FREE_SLAB); 3866 } 3867 } 3868 3869 /* 3870 * Put all the cpu partial slabs to the node partial list. 3871 */ 3872 static void put_partials(struct kmem_cache *s) 3873 { 3874 struct slab *partial_slab; 3875 unsigned long flags; 3876 3877 local_lock_irqsave(&s->cpu_slab->lock, flags); 3878 partial_slab = this_cpu_read(s->cpu_slab->partial); 3879 this_cpu_write(s->cpu_slab->partial, NULL); 3880 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3881 3882 if (partial_slab) 3883 __put_partials(s, partial_slab); 3884 } 3885 3886 static void put_partials_cpu(struct kmem_cache *s, 3887 struct kmem_cache_cpu *c) 3888 { 3889 struct slab *partial_slab; 3890 3891 partial_slab = slub_percpu_partial(c); 3892 c->partial = NULL; 3893 3894 if (partial_slab) 3895 __put_partials(s, partial_slab); 3896 } 3897 3898 /* 3899 * Put a slab into a partial slab slot if available. 3900 * 3901 * If we did not find a slot then simply move all the partials to the 3902 * per node partial list. 3903 */ 3904 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3905 { 3906 struct slab *oldslab; 3907 struct slab *slab_to_put = NULL; 3908 unsigned long flags; 3909 int slabs = 0; 3910 3911 local_lock_cpu_slab(s, flags); 3912 3913 oldslab = this_cpu_read(s->cpu_slab->partial); 3914 3915 if (oldslab) { 3916 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3917 /* 3918 * Partial array is full. Move the existing set to the 3919 * per node partial list. Postpone the actual unfreezing 3920 * outside of the critical section. 3921 */ 3922 slab_to_put = oldslab; 3923 oldslab = NULL; 3924 } else { 3925 slabs = oldslab->slabs; 3926 } 3927 } 3928 3929 slabs++; 3930 3931 slab->slabs = slabs; 3932 slab->next = oldslab; 3933 3934 this_cpu_write(s->cpu_slab->partial, slab); 3935 3936 local_unlock_cpu_slab(s, flags); 3937 3938 if (slab_to_put) { 3939 __put_partials(s, slab_to_put); 3940 stat(s, CPU_PARTIAL_DRAIN); 3941 } 3942 } 3943 3944 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3945 3946 static inline void put_partials(struct kmem_cache *s) { } 3947 static inline void put_partials_cpu(struct kmem_cache *s, 3948 struct kmem_cache_cpu *c) { } 3949 3950 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3951 3952 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3953 { 3954 unsigned long flags; 3955 struct slab *slab; 3956 void *freelist; 3957 3958 local_lock_irqsave(&s->cpu_slab->lock, flags); 3959 3960 slab = c->slab; 3961 freelist = c->freelist; 3962 3963 c->slab = NULL; 3964 c->freelist = NULL; 3965 c->tid = next_tid(c->tid); 3966 3967 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3968 3969 if (slab) { 3970 deactivate_slab(s, slab, freelist); 3971 stat(s, CPUSLAB_FLUSH); 3972 } 3973 } 3974 3975 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3976 { 3977 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3978 void *freelist = c->freelist; 3979 struct slab *slab = c->slab; 3980 3981 c->slab = NULL; 3982 c->freelist = NULL; 3983 c->tid = next_tid(c->tid); 3984 3985 if (slab) { 3986 deactivate_slab(s, slab, freelist); 3987 stat(s, CPUSLAB_FLUSH); 3988 } 3989 3990 put_partials_cpu(s, c); 3991 } 3992 3993 static inline void flush_this_cpu_slab(struct kmem_cache *s) 3994 { 3995 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 3996 3997 if (c->slab) 3998 flush_slab(s, c); 3999 4000 put_partials(s); 4001 } 4002 4003 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 4004 { 4005 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4006 4007 return c->slab || slub_percpu_partial(c); 4008 } 4009 4010 #else /* CONFIG_SLUB_TINY */ 4011 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 4012 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; } 4013 static inline void flush_this_cpu_slab(struct kmem_cache *s) { } 4014 #endif /* CONFIG_SLUB_TINY */ 4015 4016 static bool has_pcs_used(int cpu, struct kmem_cache *s) 4017 { 4018 struct slub_percpu_sheaves *pcs; 4019 4020 if (!s->cpu_sheaves) 4021 return false; 4022 4023 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 4024 4025 return (pcs->spare || pcs->rcu_free || pcs->main->size); 4026 } 4027 4028 /* 4029 * Flush cpu slab. 4030 * 4031 * Called from CPU work handler with migration disabled. 4032 */ 4033 static void flush_cpu_slab(struct work_struct *w) 4034 { 4035 struct kmem_cache *s; 4036 struct slub_flush_work *sfw; 4037 4038 sfw = container_of(w, struct slub_flush_work, work); 4039 4040 s = sfw->s; 4041 4042 if (s->cpu_sheaves) 4043 pcs_flush_all(s); 4044 4045 flush_this_cpu_slab(s); 4046 } 4047 4048 static void flush_all_cpus_locked(struct kmem_cache *s) 4049 { 4050 struct slub_flush_work *sfw; 4051 unsigned int cpu; 4052 4053 lockdep_assert_cpus_held(); 4054 mutex_lock(&flush_lock); 4055 4056 for_each_online_cpu(cpu) { 4057 sfw = &per_cpu(slub_flush, cpu); 4058 if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) { 4059 sfw->skip = true; 4060 continue; 4061 } 4062 INIT_WORK(&sfw->work, flush_cpu_slab); 4063 sfw->skip = false; 4064 sfw->s = s; 4065 queue_work_on(cpu, flushwq, &sfw->work); 4066 } 4067 4068 for_each_online_cpu(cpu) { 4069 sfw = &per_cpu(slub_flush, cpu); 4070 if (sfw->skip) 4071 continue; 4072 flush_work(&sfw->work); 4073 } 4074 4075 mutex_unlock(&flush_lock); 4076 } 4077 4078 static void flush_all(struct kmem_cache *s) 4079 { 4080 cpus_read_lock(); 4081 flush_all_cpus_locked(s); 4082 cpus_read_unlock(); 4083 } 4084 4085 static void flush_rcu_sheaf(struct work_struct *w) 4086 { 4087 struct slub_percpu_sheaves *pcs; 4088 struct slab_sheaf *rcu_free; 4089 struct slub_flush_work *sfw; 4090 struct kmem_cache *s; 4091 4092 sfw = container_of(w, struct slub_flush_work, work); 4093 s = sfw->s; 4094 4095 local_lock(&s->cpu_sheaves->lock); 4096 pcs = this_cpu_ptr(s->cpu_sheaves); 4097 4098 rcu_free = pcs->rcu_free; 4099 pcs->rcu_free = NULL; 4100 4101 local_unlock(&s->cpu_sheaves->lock); 4102 4103 if (rcu_free) 4104 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); 4105 } 4106 4107 4108 /* needed for kvfree_rcu_barrier() */ 4109 void flush_all_rcu_sheaves(void) 4110 { 4111 struct slub_flush_work *sfw; 4112 struct kmem_cache *s; 4113 unsigned int cpu; 4114 4115 cpus_read_lock(); 4116 mutex_lock(&slab_mutex); 4117 4118 list_for_each_entry(s, &slab_caches, list) { 4119 if (!s->cpu_sheaves) 4120 continue; 4121 4122 mutex_lock(&flush_lock); 4123 4124 for_each_online_cpu(cpu) { 4125 sfw = &per_cpu(slub_flush, cpu); 4126 4127 /* 4128 * we don't check if rcu_free sheaf exists - racing 4129 * __kfree_rcu_sheaf() might have just removed it. 4130 * by executing flush_rcu_sheaf() on the cpu we make 4131 * sure the __kfree_rcu_sheaf() finished its call_rcu() 4132 */ 4133 4134 INIT_WORK(&sfw->work, flush_rcu_sheaf); 4135 sfw->s = s; 4136 queue_work_on(cpu, flushwq, &sfw->work); 4137 } 4138 4139 for_each_online_cpu(cpu) { 4140 sfw = &per_cpu(slub_flush, cpu); 4141 flush_work(&sfw->work); 4142 } 4143 4144 mutex_unlock(&flush_lock); 4145 } 4146 4147 mutex_unlock(&slab_mutex); 4148 cpus_read_unlock(); 4149 4150 rcu_barrier(); 4151 } 4152 4153 /* 4154 * Use the cpu notifier to insure that the cpu slabs are flushed when 4155 * necessary. 4156 */ 4157 static int slub_cpu_dead(unsigned int cpu) 4158 { 4159 struct kmem_cache *s; 4160 4161 mutex_lock(&slab_mutex); 4162 list_for_each_entry(s, &slab_caches, list) { 4163 __flush_cpu_slab(s, cpu); 4164 if (s->cpu_sheaves) 4165 __pcs_flush_all_cpu(s, cpu); 4166 } 4167 mutex_unlock(&slab_mutex); 4168 return 0; 4169 } 4170 4171 /* 4172 * Check if the objects in a per cpu structure fit numa 4173 * locality expectations. 4174 */ 4175 static inline int node_match(struct slab *slab, int node) 4176 { 4177 #ifdef CONFIG_NUMA 4178 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 4179 return 0; 4180 #endif 4181 return 1; 4182 } 4183 4184 #ifdef CONFIG_SLUB_DEBUG 4185 static int count_free(struct slab *slab) 4186 { 4187 return slab->objects - slab->inuse; 4188 } 4189 4190 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 4191 { 4192 return atomic_long_read(&n->total_objects); 4193 } 4194 4195 /* Supports checking bulk free of a constructed freelist */ 4196 static inline bool free_debug_processing(struct kmem_cache *s, 4197 struct slab *slab, void *head, void *tail, int *bulk_cnt, 4198 unsigned long addr, depot_stack_handle_t handle) 4199 { 4200 bool checks_ok = false; 4201 void *object = head; 4202 int cnt = 0; 4203 4204 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 4205 if (!check_slab(s, slab)) 4206 goto out; 4207 } 4208 4209 if (slab->inuse < *bulk_cnt) { 4210 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 4211 slab->inuse, *bulk_cnt); 4212 goto out; 4213 } 4214 4215 next_object: 4216 4217 if (++cnt > *bulk_cnt) 4218 goto out_cnt; 4219 4220 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 4221 if (!free_consistency_checks(s, slab, object, addr)) 4222 goto out; 4223 } 4224 4225 if (s->flags & SLAB_STORE_USER) 4226 set_track_update(s, object, TRACK_FREE, addr, handle); 4227 trace(s, slab, object, 0); 4228 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 4229 init_object(s, object, SLUB_RED_INACTIVE); 4230 4231 /* Reached end of constructed freelist yet? */ 4232 if (object != tail) { 4233 object = get_freepointer(s, object); 4234 goto next_object; 4235 } 4236 checks_ok = true; 4237 4238 out_cnt: 4239 if (cnt != *bulk_cnt) { 4240 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 4241 *bulk_cnt, cnt); 4242 *bulk_cnt = cnt; 4243 } 4244 4245 out: 4246 4247 if (!checks_ok) 4248 slab_fix(s, "Object at 0x%p not freed", object); 4249 4250 return checks_ok; 4251 } 4252 #endif /* CONFIG_SLUB_DEBUG */ 4253 4254 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 4255 static unsigned long count_partial(struct kmem_cache_node *n, 4256 int (*get_count)(struct slab *)) 4257 { 4258 unsigned long flags; 4259 unsigned long x = 0; 4260 struct slab *slab; 4261 4262 spin_lock_irqsave(&n->list_lock, flags); 4263 list_for_each_entry(slab, &n->partial, slab_list) 4264 x += get_count(slab); 4265 spin_unlock_irqrestore(&n->list_lock, flags); 4266 return x; 4267 } 4268 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 4269 4270 #ifdef CONFIG_SLUB_DEBUG 4271 #define MAX_PARTIAL_TO_SCAN 10000 4272 4273 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 4274 { 4275 unsigned long flags; 4276 unsigned long x = 0; 4277 struct slab *slab; 4278 4279 spin_lock_irqsave(&n->list_lock, flags); 4280 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 4281 list_for_each_entry(slab, &n->partial, slab_list) 4282 x += slab->objects - slab->inuse; 4283 } else { 4284 /* 4285 * For a long list, approximate the total count of objects in 4286 * it to meet the limit on the number of slabs to scan. 4287 * Scan from both the list's head and tail for better accuracy. 4288 */ 4289 unsigned long scanned = 0; 4290 4291 list_for_each_entry(slab, &n->partial, slab_list) { 4292 x += slab->objects - slab->inuse; 4293 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 4294 break; 4295 } 4296 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 4297 x += slab->objects - slab->inuse; 4298 if (++scanned == MAX_PARTIAL_TO_SCAN) 4299 break; 4300 } 4301 x = mult_frac(x, n->nr_partial, scanned); 4302 x = min(x, node_nr_objs(n)); 4303 } 4304 spin_unlock_irqrestore(&n->list_lock, flags); 4305 return x; 4306 } 4307 4308 static noinline void 4309 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 4310 { 4311 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 4312 DEFAULT_RATELIMIT_BURST); 4313 int cpu = raw_smp_processor_id(); 4314 int node; 4315 struct kmem_cache_node *n; 4316 4317 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 4318 return; 4319 4320 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 4321 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 4322 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 4323 s->name, s->object_size, s->size, oo_order(s->oo), 4324 oo_order(s->min)); 4325 4326 if (oo_order(s->min) > get_order(s->object_size)) 4327 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 4328 s->name); 4329 4330 for_each_kmem_cache_node(s, node, n) { 4331 unsigned long nr_slabs; 4332 unsigned long nr_objs; 4333 unsigned long nr_free; 4334 4335 nr_free = count_partial_free_approx(n); 4336 nr_slabs = node_nr_slabs(n); 4337 nr_objs = node_nr_objs(n); 4338 4339 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 4340 node, nr_slabs, nr_objs, nr_free); 4341 } 4342 } 4343 #else /* CONFIG_SLUB_DEBUG */ 4344 static inline void 4345 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 4346 #endif 4347 4348 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 4349 { 4350 if (unlikely(slab_test_pfmemalloc(slab))) 4351 return gfp_pfmemalloc_allowed(gfpflags); 4352 4353 return true; 4354 } 4355 4356 #ifndef CONFIG_SLUB_TINY 4357 static inline bool 4358 __update_cpu_freelist_fast(struct kmem_cache *s, 4359 void *freelist_old, void *freelist_new, 4360 unsigned long tid) 4361 { 4362 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 4363 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 4364 4365 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 4366 &old.full, new.full); 4367 } 4368 4369 /* 4370 * Check the slab->freelist and either transfer the freelist to the 4371 * per cpu freelist or deactivate the slab. 4372 * 4373 * The slab is still frozen if the return value is not NULL. 4374 * 4375 * If this function returns NULL then the slab has been unfrozen. 4376 */ 4377 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 4378 { 4379 struct slab new; 4380 unsigned long counters; 4381 void *freelist; 4382 4383 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 4384 4385 do { 4386 freelist = slab->freelist; 4387 counters = slab->counters; 4388 4389 new.counters = counters; 4390 4391 new.inuse = slab->objects; 4392 new.frozen = freelist != NULL; 4393 4394 } while (!__slab_update_freelist(s, slab, 4395 freelist, counters, 4396 NULL, new.counters, 4397 "get_freelist")); 4398 4399 return freelist; 4400 } 4401 4402 /* 4403 * Freeze the partial slab and return the pointer to the freelist. 4404 */ 4405 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 4406 { 4407 struct slab new; 4408 unsigned long counters; 4409 void *freelist; 4410 4411 do { 4412 freelist = slab->freelist; 4413 counters = slab->counters; 4414 4415 new.counters = counters; 4416 VM_BUG_ON(new.frozen); 4417 4418 new.inuse = slab->objects; 4419 new.frozen = 1; 4420 4421 } while (!slab_update_freelist(s, slab, 4422 freelist, counters, 4423 NULL, new.counters, 4424 "freeze_slab")); 4425 4426 return freelist; 4427 } 4428 4429 /* 4430 * Slow path. The lockless freelist is empty or we need to perform 4431 * debugging duties. 4432 * 4433 * Processing is still very fast if new objects have been freed to the 4434 * regular freelist. In that case we simply take over the regular freelist 4435 * as the lockless freelist and zap the regular freelist. 4436 * 4437 * If that is not working then we fall back to the partial lists. We take the 4438 * first element of the freelist as the object to allocate now and move the 4439 * rest of the freelist to the lockless freelist. 4440 * 4441 * And if we were unable to get a new slab from the partial slab lists then 4442 * we need to allocate a new slab. This is the slowest path since it involves 4443 * a call to the page allocator and the setup of a new slab. 4444 * 4445 * Version of __slab_alloc to use when we know that preemption is 4446 * already disabled (which is the case for bulk allocation). 4447 */ 4448 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 4449 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 4450 { 4451 bool allow_spin = gfpflags_allow_spinning(gfpflags); 4452 void *freelist; 4453 struct slab *slab; 4454 unsigned long flags; 4455 struct partial_context pc; 4456 bool try_thisnode = true; 4457 4458 stat(s, ALLOC_SLOWPATH); 4459 4460 reread_slab: 4461 4462 slab = READ_ONCE(c->slab); 4463 if (!slab) { 4464 /* 4465 * if the node is not online or has no normal memory, just 4466 * ignore the node constraint 4467 */ 4468 if (unlikely(node != NUMA_NO_NODE && 4469 !node_isset(node, slab_nodes))) 4470 node = NUMA_NO_NODE; 4471 goto new_slab; 4472 } 4473 4474 if (unlikely(!node_match(slab, node))) { 4475 /* 4476 * same as above but node_match() being false already 4477 * implies node != NUMA_NO_NODE. 4478 * 4479 * We don't strictly honor pfmemalloc and NUMA preferences 4480 * when !allow_spin because: 4481 * 4482 * 1. Most kmalloc() users allocate objects on the local node, 4483 * so kmalloc_nolock() tries not to interfere with them by 4484 * deactivating the cpu slab. 4485 * 4486 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause 4487 * unnecessary slab allocations even when n->partial list 4488 * is not empty. 4489 */ 4490 if (!node_isset(node, slab_nodes) || 4491 !allow_spin) { 4492 node = NUMA_NO_NODE; 4493 } else { 4494 stat(s, ALLOC_NODE_MISMATCH); 4495 goto deactivate_slab; 4496 } 4497 } 4498 4499 /* 4500 * By rights, we should be searching for a slab page that was 4501 * PFMEMALLOC but right now, we are losing the pfmemalloc 4502 * information when the page leaves the per-cpu allocator 4503 */ 4504 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) 4505 goto deactivate_slab; 4506 4507 /* must check again c->slab in case we got preempted and it changed */ 4508 local_lock_cpu_slab(s, flags); 4509 4510 if (unlikely(slab != c->slab)) { 4511 local_unlock_cpu_slab(s, flags); 4512 goto reread_slab; 4513 } 4514 freelist = c->freelist; 4515 if (freelist) 4516 goto load_freelist; 4517 4518 freelist = get_freelist(s, slab); 4519 4520 if (!freelist) { 4521 c->slab = NULL; 4522 c->tid = next_tid(c->tid); 4523 local_unlock_cpu_slab(s, flags); 4524 stat(s, DEACTIVATE_BYPASS); 4525 goto new_slab; 4526 } 4527 4528 stat(s, ALLOC_REFILL); 4529 4530 load_freelist: 4531 4532 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 4533 4534 /* 4535 * freelist is pointing to the list of objects to be used. 4536 * slab is pointing to the slab from which the objects are obtained. 4537 * That slab must be frozen for per cpu allocations to work. 4538 */ 4539 VM_BUG_ON(!c->slab->frozen); 4540 c->freelist = get_freepointer(s, freelist); 4541 c->tid = next_tid(c->tid); 4542 local_unlock_cpu_slab(s, flags); 4543 return freelist; 4544 4545 deactivate_slab: 4546 4547 local_lock_cpu_slab(s, flags); 4548 if (slab != c->slab) { 4549 local_unlock_cpu_slab(s, flags); 4550 goto reread_slab; 4551 } 4552 freelist = c->freelist; 4553 c->slab = NULL; 4554 c->freelist = NULL; 4555 c->tid = next_tid(c->tid); 4556 local_unlock_cpu_slab(s, flags); 4557 deactivate_slab(s, slab, freelist); 4558 4559 new_slab: 4560 4561 #ifdef CONFIG_SLUB_CPU_PARTIAL 4562 while (slub_percpu_partial(c)) { 4563 local_lock_cpu_slab(s, flags); 4564 if (unlikely(c->slab)) { 4565 local_unlock_cpu_slab(s, flags); 4566 goto reread_slab; 4567 } 4568 if (unlikely(!slub_percpu_partial(c))) { 4569 local_unlock_cpu_slab(s, flags); 4570 /* we were preempted and partial list got empty */ 4571 goto new_objects; 4572 } 4573 4574 slab = slub_percpu_partial(c); 4575 slub_set_percpu_partial(c, slab); 4576 4577 if (likely(node_match(slab, node) && 4578 pfmemalloc_match(slab, gfpflags)) || 4579 !allow_spin) { 4580 c->slab = slab; 4581 freelist = get_freelist(s, slab); 4582 VM_BUG_ON(!freelist); 4583 stat(s, CPU_PARTIAL_ALLOC); 4584 goto load_freelist; 4585 } 4586 4587 local_unlock_cpu_slab(s, flags); 4588 4589 slab->next = NULL; 4590 __put_partials(s, slab); 4591 } 4592 #endif 4593 4594 new_objects: 4595 4596 pc.flags = gfpflags; 4597 /* 4598 * When a preferred node is indicated but no __GFP_THISNODE 4599 * 4600 * 1) try to get a partial slab from target node only by having 4601 * __GFP_THISNODE in pc.flags for get_partial() 4602 * 2) if 1) failed, try to allocate a new slab from target node with 4603 * GPF_NOWAIT | __GFP_THISNODE opportunistically 4604 * 3) if 2) failed, retry with original gfpflags which will allow 4605 * get_partial() try partial lists of other nodes before potentially 4606 * allocating new page from other nodes 4607 */ 4608 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 4609 && try_thisnode)) { 4610 if (unlikely(!allow_spin)) 4611 /* Do not upgrade gfp to NOWAIT from more restrictive mode */ 4612 pc.flags = gfpflags | __GFP_THISNODE; 4613 else 4614 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 4615 } 4616 4617 pc.orig_size = orig_size; 4618 slab = get_partial(s, node, &pc); 4619 if (slab) { 4620 if (kmem_cache_debug(s)) { 4621 freelist = pc.object; 4622 /* 4623 * For debug caches here we had to go through 4624 * alloc_single_from_partial() so just store the 4625 * tracking info and return the object. 4626 * 4627 * Due to disabled preemption we need to disallow 4628 * blocking. The flags are further adjusted by 4629 * gfp_nested_mask() in stack_depot itself. 4630 */ 4631 if (s->flags & SLAB_STORE_USER) 4632 set_track(s, freelist, TRACK_ALLOC, addr, 4633 gfpflags & ~(__GFP_DIRECT_RECLAIM)); 4634 4635 return freelist; 4636 } 4637 4638 freelist = freeze_slab(s, slab); 4639 goto retry_load_slab; 4640 } 4641 4642 slub_put_cpu_ptr(s->cpu_slab); 4643 slab = new_slab(s, pc.flags, node); 4644 c = slub_get_cpu_ptr(s->cpu_slab); 4645 4646 if (unlikely(!slab)) { 4647 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 4648 && try_thisnode) { 4649 try_thisnode = false; 4650 goto new_objects; 4651 } 4652 slab_out_of_memory(s, gfpflags, node); 4653 return NULL; 4654 } 4655 4656 stat(s, ALLOC_SLAB); 4657 4658 if (kmem_cache_debug(s)) { 4659 freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags); 4660 4661 if (unlikely(!freelist)) 4662 goto new_objects; 4663 4664 if (s->flags & SLAB_STORE_USER) 4665 set_track(s, freelist, TRACK_ALLOC, addr, 4666 gfpflags & ~(__GFP_DIRECT_RECLAIM)); 4667 4668 return freelist; 4669 } 4670 4671 /* 4672 * No other reference to the slab yet so we can 4673 * muck around with it freely without cmpxchg 4674 */ 4675 freelist = slab->freelist; 4676 slab->freelist = NULL; 4677 slab->inuse = slab->objects; 4678 slab->frozen = 1; 4679 4680 inc_slabs_node(s, slab_nid(slab), slab->objects); 4681 4682 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) { 4683 /* 4684 * For !pfmemalloc_match() case we don't load freelist so that 4685 * we don't make further mismatched allocations easier. 4686 */ 4687 deactivate_slab(s, slab, get_freepointer(s, freelist)); 4688 return freelist; 4689 } 4690 4691 retry_load_slab: 4692 4693 local_lock_cpu_slab(s, flags); 4694 if (unlikely(c->slab)) { 4695 void *flush_freelist = c->freelist; 4696 struct slab *flush_slab = c->slab; 4697 4698 c->slab = NULL; 4699 c->freelist = NULL; 4700 c->tid = next_tid(c->tid); 4701 4702 local_unlock_cpu_slab(s, flags); 4703 4704 if (unlikely(!allow_spin)) { 4705 /* Reentrant slub cannot take locks, defer */ 4706 defer_deactivate_slab(flush_slab, flush_freelist); 4707 } else { 4708 deactivate_slab(s, flush_slab, flush_freelist); 4709 } 4710 4711 stat(s, CPUSLAB_FLUSH); 4712 4713 goto retry_load_slab; 4714 } 4715 c->slab = slab; 4716 4717 goto load_freelist; 4718 } 4719 /* 4720 * We disallow kprobes in ___slab_alloc() to prevent reentrance 4721 * 4722 * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of 4723 * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf -> 4724 * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast() 4725 * manipulating c->freelist without lock. 4726 * 4727 * This does not prevent kprobe in functions called from ___slab_alloc() such as 4728 * local_lock_irqsave() itself, and that is fine, we only need to protect the 4729 * c->freelist manipulation in ___slab_alloc() itself. 4730 */ 4731 NOKPROBE_SYMBOL(___slab_alloc); 4732 4733 /* 4734 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 4735 * disabled. Compensates for possible cpu changes by refetching the per cpu area 4736 * pointer. 4737 */ 4738 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 4739 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 4740 { 4741 void *p; 4742 4743 #ifdef CONFIG_PREEMPT_COUNT 4744 /* 4745 * We may have been preempted and rescheduled on a different 4746 * cpu before disabling preemption. Need to reload cpu area 4747 * pointer. 4748 */ 4749 c = slub_get_cpu_ptr(s->cpu_slab); 4750 #endif 4751 if (unlikely(!gfpflags_allow_spinning(gfpflags))) { 4752 if (local_lock_is_locked(&s->cpu_slab->lock)) { 4753 /* 4754 * EBUSY is an internal signal to kmalloc_nolock() to 4755 * retry a different bucket. It's not propagated 4756 * to the caller. 4757 */ 4758 p = ERR_PTR(-EBUSY); 4759 goto out; 4760 } 4761 } 4762 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 4763 out: 4764 #ifdef CONFIG_PREEMPT_COUNT 4765 slub_put_cpu_ptr(s->cpu_slab); 4766 #endif 4767 return p; 4768 } 4769 4770 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 4771 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4772 { 4773 struct kmem_cache_cpu *c; 4774 struct slab *slab; 4775 unsigned long tid; 4776 void *object; 4777 4778 redo: 4779 /* 4780 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 4781 * enabled. We may switch back and forth between cpus while 4782 * reading from one cpu area. That does not matter as long 4783 * as we end up on the original cpu again when doing the cmpxchg. 4784 * 4785 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 4786 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 4787 * the tid. If we are preempted and switched to another cpu between the 4788 * two reads, it's OK as the two are still associated with the same cpu 4789 * and cmpxchg later will validate the cpu. 4790 */ 4791 c = raw_cpu_ptr(s->cpu_slab); 4792 tid = READ_ONCE(c->tid); 4793 4794 /* 4795 * Irqless object alloc/free algorithm used here depends on sequence 4796 * of fetching cpu_slab's data. tid should be fetched before anything 4797 * on c to guarantee that object and slab associated with previous tid 4798 * won't be used with current tid. If we fetch tid first, object and 4799 * slab could be one associated with next tid and our alloc/free 4800 * request will be failed. In this case, we will retry. So, no problem. 4801 */ 4802 barrier(); 4803 4804 /* 4805 * The transaction ids are globally unique per cpu and per operation on 4806 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 4807 * occurs on the right processor and that there was no operation on the 4808 * linked list in between. 4809 */ 4810 4811 object = c->freelist; 4812 slab = c->slab; 4813 4814 #ifdef CONFIG_NUMA 4815 if (static_branch_unlikely(&strict_numa) && 4816 node == NUMA_NO_NODE) { 4817 4818 struct mempolicy *mpol = current->mempolicy; 4819 4820 if (mpol) { 4821 /* 4822 * Special BIND rule support. If existing slab 4823 * is in permitted set then do not redirect 4824 * to a particular node. 4825 * Otherwise we apply the memory policy to get 4826 * the node we need to allocate on. 4827 */ 4828 if (mpol->mode != MPOL_BIND || !slab || 4829 !node_isset(slab_nid(slab), mpol->nodes)) 4830 4831 node = mempolicy_slab_node(); 4832 } 4833 } 4834 #endif 4835 4836 if (!USE_LOCKLESS_FAST_PATH() || 4837 unlikely(!object || !slab || !node_match(slab, node))) { 4838 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4839 } else { 4840 void *next_object = get_freepointer_safe(s, object); 4841 4842 /* 4843 * The cmpxchg will only match if there was no additional 4844 * operation and if we are on the right processor. 4845 * 4846 * The cmpxchg does the following atomically (without lock 4847 * semantics!) 4848 * 1. Relocate first pointer to the current per cpu area. 4849 * 2. Verify that tid and freelist have not been changed 4850 * 3. If they were not changed replace tid and freelist 4851 * 4852 * Since this is without lock semantics the protection is only 4853 * against code executing on this cpu *not* from access by 4854 * other cpus. 4855 */ 4856 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4857 note_cmpxchg_failure("slab_alloc", s, tid); 4858 goto redo; 4859 } 4860 prefetch_freepointer(s, next_object); 4861 stat(s, ALLOC_FASTPATH); 4862 } 4863 4864 return object; 4865 } 4866 #else /* CONFIG_SLUB_TINY */ 4867 static void *__slab_alloc_node(struct kmem_cache *s, 4868 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4869 { 4870 struct partial_context pc; 4871 struct slab *slab; 4872 void *object; 4873 4874 pc.flags = gfpflags; 4875 pc.orig_size = orig_size; 4876 slab = get_partial(s, node, &pc); 4877 4878 if (slab) 4879 return pc.object; 4880 4881 slab = new_slab(s, gfpflags, node); 4882 if (unlikely(!slab)) { 4883 slab_out_of_memory(s, gfpflags, node); 4884 return NULL; 4885 } 4886 4887 object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags); 4888 4889 return object; 4890 } 4891 #endif /* CONFIG_SLUB_TINY */ 4892 4893 /* 4894 * If the object has been wiped upon free, make sure it's fully initialized by 4895 * zeroing out freelist pointer. 4896 * 4897 * Note that we also wipe custom freelist pointers. 4898 */ 4899 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4900 void *obj) 4901 { 4902 if (unlikely(slab_want_init_on_free(s)) && obj && 4903 !freeptr_outside_object(s)) 4904 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4905 0, sizeof(void *)); 4906 } 4907 4908 static __fastpath_inline 4909 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4910 { 4911 flags &= gfp_allowed_mask; 4912 4913 might_alloc(flags); 4914 4915 if (unlikely(should_failslab(s, flags))) 4916 return NULL; 4917 4918 return s; 4919 } 4920 4921 static __fastpath_inline 4922 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4923 gfp_t flags, size_t size, void **p, bool init, 4924 unsigned int orig_size) 4925 { 4926 unsigned int zero_size = s->object_size; 4927 bool kasan_init = init; 4928 size_t i; 4929 gfp_t init_flags = flags & gfp_allowed_mask; 4930 4931 /* 4932 * For kmalloc object, the allocated memory size(object_size) is likely 4933 * larger than the requested size(orig_size). If redzone check is 4934 * enabled for the extra space, don't zero it, as it will be redzoned 4935 * soon. The redzone operation for this extra space could be seen as a 4936 * replacement of current poisoning under certain debug option, and 4937 * won't break other sanity checks. 4938 */ 4939 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4940 (s->flags & SLAB_KMALLOC)) 4941 zero_size = orig_size; 4942 4943 /* 4944 * When slab_debug is enabled, avoid memory initialization integrated 4945 * into KASAN and instead zero out the memory via the memset below with 4946 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4947 * cause false-positive reports. This does not lead to a performance 4948 * penalty on production builds, as slab_debug is not intended to be 4949 * enabled there. 4950 */ 4951 if (__slub_debug_enabled()) 4952 kasan_init = false; 4953 4954 /* 4955 * As memory initialization might be integrated into KASAN, 4956 * kasan_slab_alloc and initialization memset must be 4957 * kept together to avoid discrepancies in behavior. 4958 * 4959 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4960 */ 4961 for (i = 0; i < size; i++) { 4962 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4963 if (p[i] && init && (!kasan_init || 4964 !kasan_has_integrated_init())) 4965 memset(p[i], 0, zero_size); 4966 if (gfpflags_allow_spinning(flags)) 4967 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4968 s->flags, init_flags); 4969 kmsan_slab_alloc(s, p[i], init_flags); 4970 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4971 } 4972 4973 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4974 } 4975 4976 /* 4977 * Replace the empty main sheaf with a (at least partially) full sheaf. 4978 * 4979 * Must be called with the cpu_sheaves local lock locked. If successful, returns 4980 * the pcs pointer and the local lock locked (possibly on a different cpu than 4981 * initially called). If not successful, returns NULL and the local lock 4982 * unlocked. 4983 */ 4984 static struct slub_percpu_sheaves * 4985 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp) 4986 { 4987 struct slab_sheaf *empty = NULL; 4988 struct slab_sheaf *full; 4989 struct node_barn *barn; 4990 bool can_alloc; 4991 4992 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 4993 4994 if (pcs->spare && pcs->spare->size > 0) { 4995 swap(pcs->main, pcs->spare); 4996 return pcs; 4997 } 4998 4999 barn = get_barn(s); 5000 if (!barn) { 5001 local_unlock(&s->cpu_sheaves->lock); 5002 return NULL; 5003 } 5004 5005 full = barn_replace_empty_sheaf(barn, pcs->main); 5006 5007 if (full) { 5008 stat(s, BARN_GET); 5009 pcs->main = full; 5010 return pcs; 5011 } 5012 5013 stat(s, BARN_GET_FAIL); 5014 5015 can_alloc = gfpflags_allow_blocking(gfp); 5016 5017 if (can_alloc) { 5018 if (pcs->spare) { 5019 empty = pcs->spare; 5020 pcs->spare = NULL; 5021 } else { 5022 empty = barn_get_empty_sheaf(barn); 5023 } 5024 } 5025 5026 local_unlock(&s->cpu_sheaves->lock); 5027 5028 if (!can_alloc) 5029 return NULL; 5030 5031 if (empty) { 5032 if (!refill_sheaf(s, empty, gfp)) { 5033 full = empty; 5034 } else { 5035 /* 5036 * we must be very low on memory so don't bother 5037 * with the barn 5038 */ 5039 free_empty_sheaf(s, empty); 5040 } 5041 } else { 5042 full = alloc_full_sheaf(s, gfp); 5043 } 5044 5045 if (!full) 5046 return NULL; 5047 5048 /* 5049 * we can reach here only when gfpflags_allow_blocking 5050 * so this must not be an irq 5051 */ 5052 local_lock(&s->cpu_sheaves->lock); 5053 pcs = this_cpu_ptr(s->cpu_sheaves); 5054 5055 /* 5056 * If we are returning empty sheaf, we either got it from the 5057 * barn or had to allocate one. If we are returning a full 5058 * sheaf, it's due to racing or being migrated to a different 5059 * cpu. Breaching the barn's sheaf limits should be thus rare 5060 * enough so just ignore them to simplify the recovery. 5061 */ 5062 5063 if (pcs->main->size == 0) { 5064 barn_put_empty_sheaf(barn, pcs->main); 5065 pcs->main = full; 5066 return pcs; 5067 } 5068 5069 if (!pcs->spare) { 5070 pcs->spare = full; 5071 return pcs; 5072 } 5073 5074 if (pcs->spare->size == 0) { 5075 barn_put_empty_sheaf(barn, pcs->spare); 5076 pcs->spare = full; 5077 return pcs; 5078 } 5079 5080 barn_put_full_sheaf(barn, full); 5081 stat(s, BARN_PUT); 5082 5083 return pcs; 5084 } 5085 5086 static __fastpath_inline 5087 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node) 5088 { 5089 struct slub_percpu_sheaves *pcs; 5090 bool node_requested; 5091 void *object; 5092 5093 #ifdef CONFIG_NUMA 5094 if (static_branch_unlikely(&strict_numa) && 5095 node == NUMA_NO_NODE) { 5096 5097 struct mempolicy *mpol = current->mempolicy; 5098 5099 if (mpol) { 5100 /* 5101 * Special BIND rule support. If the local node 5102 * is in permitted set then do not redirect 5103 * to a particular node. 5104 * Otherwise we apply the memory policy to get 5105 * the node we need to allocate on. 5106 */ 5107 if (mpol->mode != MPOL_BIND || 5108 !node_isset(numa_mem_id(), mpol->nodes)) 5109 5110 node = mempolicy_slab_node(); 5111 } 5112 } 5113 #endif 5114 5115 node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE; 5116 5117 /* 5118 * We assume the percpu sheaves contain only local objects although it's 5119 * not completely guaranteed, so we verify later. 5120 */ 5121 if (unlikely(node_requested && node != numa_mem_id())) 5122 return NULL; 5123 5124 if (!local_trylock(&s->cpu_sheaves->lock)) 5125 return NULL; 5126 5127 pcs = this_cpu_ptr(s->cpu_sheaves); 5128 5129 if (unlikely(pcs->main->size == 0)) { 5130 pcs = __pcs_replace_empty_main(s, pcs, gfp); 5131 if (unlikely(!pcs)) 5132 return NULL; 5133 } 5134 5135 object = pcs->main->objects[pcs->main->size - 1]; 5136 5137 if (unlikely(node_requested)) { 5138 /* 5139 * Verify that the object was from the node we want. This could 5140 * be false because of cpu migration during an unlocked part of 5141 * the current allocation or previous freeing process. 5142 */ 5143 if (folio_nid(virt_to_folio(object)) != node) { 5144 local_unlock(&s->cpu_sheaves->lock); 5145 return NULL; 5146 } 5147 } 5148 5149 pcs->main->size--; 5150 5151 local_unlock(&s->cpu_sheaves->lock); 5152 5153 stat(s, ALLOC_PCS); 5154 5155 return object; 5156 } 5157 5158 static __fastpath_inline 5159 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p) 5160 { 5161 struct slub_percpu_sheaves *pcs; 5162 struct slab_sheaf *main; 5163 unsigned int allocated = 0; 5164 unsigned int batch; 5165 5166 next_batch: 5167 if (!local_trylock(&s->cpu_sheaves->lock)) 5168 return allocated; 5169 5170 pcs = this_cpu_ptr(s->cpu_sheaves); 5171 5172 if (unlikely(pcs->main->size == 0)) { 5173 5174 struct slab_sheaf *full; 5175 struct node_barn *barn; 5176 5177 if (pcs->spare && pcs->spare->size > 0) { 5178 swap(pcs->main, pcs->spare); 5179 goto do_alloc; 5180 } 5181 5182 barn = get_barn(s); 5183 if (!barn) { 5184 local_unlock(&s->cpu_sheaves->lock); 5185 return allocated; 5186 } 5187 5188 full = barn_replace_empty_sheaf(barn, pcs->main); 5189 5190 if (full) { 5191 stat(s, BARN_GET); 5192 pcs->main = full; 5193 goto do_alloc; 5194 } 5195 5196 stat(s, BARN_GET_FAIL); 5197 5198 local_unlock(&s->cpu_sheaves->lock); 5199 5200 /* 5201 * Once full sheaves in barn are depleted, let the bulk 5202 * allocation continue from slab pages, otherwise we would just 5203 * be copying arrays of pointers twice. 5204 */ 5205 return allocated; 5206 } 5207 5208 do_alloc: 5209 5210 main = pcs->main; 5211 batch = min(size, main->size); 5212 5213 main->size -= batch; 5214 memcpy(p, main->objects + main->size, batch * sizeof(void *)); 5215 5216 local_unlock(&s->cpu_sheaves->lock); 5217 5218 stat_add(s, ALLOC_PCS, batch); 5219 5220 allocated += batch; 5221 5222 if (batch < size) { 5223 p += batch; 5224 size -= batch; 5225 goto next_batch; 5226 } 5227 5228 return allocated; 5229 } 5230 5231 5232 /* 5233 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 5234 * have the fastpath folded into their functions. So no function call 5235 * overhead for requests that can be satisfied on the fastpath. 5236 * 5237 * The fastpath works by first checking if the lockless freelist can be used. 5238 * If not then __slab_alloc is called for slow processing. 5239 * 5240 * Otherwise we can simply pick the next object from the lockless free list. 5241 */ 5242 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 5243 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 5244 { 5245 void *object; 5246 bool init = false; 5247 5248 s = slab_pre_alloc_hook(s, gfpflags); 5249 if (unlikely(!s)) 5250 return NULL; 5251 5252 object = kfence_alloc(s, orig_size, gfpflags); 5253 if (unlikely(object)) 5254 goto out; 5255 5256 if (s->cpu_sheaves) 5257 object = alloc_from_pcs(s, gfpflags, node); 5258 5259 if (!object) 5260 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 5261 5262 maybe_wipe_obj_freeptr(s, object); 5263 init = slab_want_init_on_alloc(gfpflags, s); 5264 5265 out: 5266 /* 5267 * When init equals 'true', like for kzalloc() family, only 5268 * @orig_size bytes might be zeroed instead of s->object_size 5269 * In case this fails due to memcg_slab_post_alloc_hook(), 5270 * object is set to NULL 5271 */ 5272 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 5273 5274 return object; 5275 } 5276 5277 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 5278 { 5279 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 5280 s->object_size); 5281 5282 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 5283 5284 return ret; 5285 } 5286 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 5287 5288 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 5289 gfp_t gfpflags) 5290 { 5291 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 5292 s->object_size); 5293 5294 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 5295 5296 return ret; 5297 } 5298 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 5299 5300 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 5301 { 5302 if (!memcg_kmem_online()) 5303 return true; 5304 5305 return memcg_slab_post_charge(objp, gfpflags); 5306 } 5307 EXPORT_SYMBOL(kmem_cache_charge); 5308 5309 /** 5310 * kmem_cache_alloc_node - Allocate an object on the specified node 5311 * @s: The cache to allocate from. 5312 * @gfpflags: See kmalloc(). 5313 * @node: node number of the target node. 5314 * 5315 * Identical to kmem_cache_alloc but it will allocate memory on the given 5316 * node, which can improve the performance for cpu bound structures. 5317 * 5318 * Fallback to other node is possible if __GFP_THISNODE is not set. 5319 * 5320 * Return: pointer to the new object or %NULL in case of error 5321 */ 5322 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 5323 { 5324 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 5325 5326 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 5327 5328 return ret; 5329 } 5330 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 5331 5332 /* 5333 * returns a sheaf that has at least the requested size 5334 * when prefilling is needed, do so with given gfp flags 5335 * 5336 * return NULL if sheaf allocation or prefilling failed 5337 */ 5338 struct slab_sheaf * 5339 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size) 5340 { 5341 struct slub_percpu_sheaves *pcs; 5342 struct slab_sheaf *sheaf = NULL; 5343 struct node_barn *barn; 5344 5345 if (unlikely(size > s->sheaf_capacity)) { 5346 5347 /* 5348 * slab_debug disables cpu sheaves intentionally so all 5349 * prefilled sheaves become "oversize" and we give up on 5350 * performance for the debugging. Same with SLUB_TINY. 5351 * Creating a cache without sheaves and then requesting a 5352 * prefilled sheaf is however not expected, so warn. 5353 */ 5354 WARN_ON_ONCE(s->sheaf_capacity == 0 && 5355 !IS_ENABLED(CONFIG_SLUB_TINY) && 5356 !(s->flags & SLAB_DEBUG_FLAGS)); 5357 5358 sheaf = kzalloc(struct_size(sheaf, objects, size), gfp); 5359 if (!sheaf) 5360 return NULL; 5361 5362 stat(s, SHEAF_PREFILL_OVERSIZE); 5363 sheaf->cache = s; 5364 sheaf->capacity = size; 5365 5366 if (!__kmem_cache_alloc_bulk(s, gfp, size, 5367 &sheaf->objects[0])) { 5368 kfree(sheaf); 5369 return NULL; 5370 } 5371 5372 sheaf->size = size; 5373 5374 return sheaf; 5375 } 5376 5377 local_lock(&s->cpu_sheaves->lock); 5378 pcs = this_cpu_ptr(s->cpu_sheaves); 5379 5380 if (pcs->spare) { 5381 sheaf = pcs->spare; 5382 pcs->spare = NULL; 5383 stat(s, SHEAF_PREFILL_FAST); 5384 } else { 5385 barn = get_barn(s); 5386 5387 stat(s, SHEAF_PREFILL_SLOW); 5388 if (barn) 5389 sheaf = barn_get_full_or_empty_sheaf(barn); 5390 if (sheaf && sheaf->size) 5391 stat(s, BARN_GET); 5392 else 5393 stat(s, BARN_GET_FAIL); 5394 } 5395 5396 local_unlock(&s->cpu_sheaves->lock); 5397 5398 5399 if (!sheaf) 5400 sheaf = alloc_empty_sheaf(s, gfp); 5401 5402 if (sheaf && sheaf->size < size) { 5403 if (refill_sheaf(s, sheaf, gfp)) { 5404 sheaf_flush_unused(s, sheaf); 5405 free_empty_sheaf(s, sheaf); 5406 sheaf = NULL; 5407 } 5408 } 5409 5410 if (sheaf) 5411 sheaf->capacity = s->sheaf_capacity; 5412 5413 return sheaf; 5414 } 5415 5416 /* 5417 * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf() 5418 * 5419 * If the sheaf cannot simply become the percpu spare sheaf, but there's space 5420 * for a full sheaf in the barn, we try to refill the sheaf back to the cache's 5421 * sheaf_capacity to avoid handling partially full sheaves. 5422 * 5423 * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the 5424 * sheaf is instead flushed and freed. 5425 */ 5426 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp, 5427 struct slab_sheaf *sheaf) 5428 { 5429 struct slub_percpu_sheaves *pcs; 5430 struct node_barn *barn; 5431 5432 if (unlikely(sheaf->capacity != s->sheaf_capacity)) { 5433 sheaf_flush_unused(s, sheaf); 5434 kfree(sheaf); 5435 return; 5436 } 5437 5438 local_lock(&s->cpu_sheaves->lock); 5439 pcs = this_cpu_ptr(s->cpu_sheaves); 5440 barn = get_barn(s); 5441 5442 if (!pcs->spare) { 5443 pcs->spare = sheaf; 5444 sheaf = NULL; 5445 stat(s, SHEAF_RETURN_FAST); 5446 } 5447 5448 local_unlock(&s->cpu_sheaves->lock); 5449 5450 if (!sheaf) 5451 return; 5452 5453 stat(s, SHEAF_RETURN_SLOW); 5454 5455 /* 5456 * If the barn has too many full sheaves or we fail to refill the sheaf, 5457 * simply flush and free it. 5458 */ 5459 if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES || 5460 refill_sheaf(s, sheaf, gfp)) { 5461 sheaf_flush_unused(s, sheaf); 5462 free_empty_sheaf(s, sheaf); 5463 return; 5464 } 5465 5466 barn_put_full_sheaf(barn, sheaf); 5467 stat(s, BARN_PUT); 5468 } 5469 5470 /* 5471 * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least 5472 * the given size 5473 * 5474 * the sheaf might be replaced by a new one when requesting more than 5475 * s->sheaf_capacity objects if such replacement is necessary, but the refill 5476 * fails (returning -ENOMEM), the existing sheaf is left intact 5477 * 5478 * In practice we always refill to full sheaf's capacity. 5479 */ 5480 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp, 5481 struct slab_sheaf **sheafp, unsigned int size) 5482 { 5483 struct slab_sheaf *sheaf; 5484 5485 /* 5486 * TODO: do we want to support *sheaf == NULL to be equivalent of 5487 * kmem_cache_prefill_sheaf() ? 5488 */ 5489 if (!sheafp || !(*sheafp)) 5490 return -EINVAL; 5491 5492 sheaf = *sheafp; 5493 if (sheaf->size >= size) 5494 return 0; 5495 5496 if (likely(sheaf->capacity >= size)) { 5497 if (likely(sheaf->capacity == s->sheaf_capacity)) 5498 return refill_sheaf(s, sheaf, gfp); 5499 5500 if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size, 5501 &sheaf->objects[sheaf->size])) { 5502 return -ENOMEM; 5503 } 5504 sheaf->size = sheaf->capacity; 5505 5506 return 0; 5507 } 5508 5509 /* 5510 * We had a regular sized sheaf and need an oversize one, or we had an 5511 * oversize one already but need a larger one now. 5512 * This should be a very rare path so let's not complicate it. 5513 */ 5514 sheaf = kmem_cache_prefill_sheaf(s, gfp, size); 5515 if (!sheaf) 5516 return -ENOMEM; 5517 5518 kmem_cache_return_sheaf(s, gfp, *sheafp); 5519 *sheafp = sheaf; 5520 return 0; 5521 } 5522 5523 /* 5524 * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf() 5525 * 5526 * Guaranteed not to fail as many allocations as was the requested size. 5527 * After the sheaf is emptied, it fails - no fallback to the slab cache itself. 5528 * 5529 * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT 5530 * memcg charging is forced over limit if necessary, to avoid failure. 5531 */ 5532 void * 5533 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp, 5534 struct slab_sheaf *sheaf) 5535 { 5536 void *ret = NULL; 5537 bool init; 5538 5539 if (sheaf->size == 0) 5540 goto out; 5541 5542 ret = sheaf->objects[--sheaf->size]; 5543 5544 init = slab_want_init_on_alloc(gfp, s); 5545 5546 /* add __GFP_NOFAIL to force successful memcg charging */ 5547 slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size); 5548 out: 5549 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE); 5550 5551 return ret; 5552 } 5553 5554 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf) 5555 { 5556 return sheaf->size; 5557 } 5558 /* 5559 * To avoid unnecessary overhead, we pass through large allocation requests 5560 * directly to the page allocator. We use __GFP_COMP, because we will need to 5561 * know the allocation order to free the pages properly in kfree. 5562 */ 5563 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 5564 { 5565 struct folio *folio; 5566 void *ptr = NULL; 5567 unsigned int order = get_order(size); 5568 5569 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 5570 flags = kmalloc_fix_flags(flags); 5571 5572 flags |= __GFP_COMP; 5573 5574 if (node == NUMA_NO_NODE) 5575 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order); 5576 else 5577 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL); 5578 5579 if (folio) { 5580 ptr = folio_address(folio); 5581 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 5582 PAGE_SIZE << order); 5583 __folio_set_large_kmalloc(folio); 5584 } 5585 5586 ptr = kasan_kmalloc_large(ptr, size, flags); 5587 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 5588 kmemleak_alloc(ptr, size, 1, flags); 5589 kmsan_kmalloc_large(ptr, size, flags); 5590 5591 return ptr; 5592 } 5593 5594 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 5595 { 5596 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 5597 5598 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 5599 flags, NUMA_NO_NODE); 5600 return ret; 5601 } 5602 EXPORT_SYMBOL(__kmalloc_large_noprof); 5603 5604 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 5605 { 5606 void *ret = ___kmalloc_large_node(size, flags, node); 5607 5608 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 5609 flags, node); 5610 return ret; 5611 } 5612 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 5613 5614 static __always_inline 5615 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 5616 unsigned long caller) 5617 { 5618 struct kmem_cache *s; 5619 void *ret; 5620 5621 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 5622 ret = __kmalloc_large_node_noprof(size, flags, node); 5623 trace_kmalloc(caller, ret, size, 5624 PAGE_SIZE << get_order(size), flags, node); 5625 return ret; 5626 } 5627 5628 if (unlikely(!size)) 5629 return ZERO_SIZE_PTR; 5630 5631 s = kmalloc_slab(size, b, flags, caller); 5632 5633 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 5634 ret = kasan_kmalloc(s, ret, size, flags); 5635 trace_kmalloc(caller, ret, size, s->size, flags, node); 5636 return ret; 5637 } 5638 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 5639 { 5640 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 5641 } 5642 EXPORT_SYMBOL(__kmalloc_node_noprof); 5643 5644 void *__kmalloc_noprof(size_t size, gfp_t flags) 5645 { 5646 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 5647 } 5648 EXPORT_SYMBOL(__kmalloc_noprof); 5649 5650 /** 5651 * kmalloc_nolock - Allocate an object of given size from any context. 5652 * @size: size to allocate 5653 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT 5654 * allowed. 5655 * @node: node number of the target node. 5656 * 5657 * Return: pointer to the new object or NULL in case of error. 5658 * NULL does not mean EBUSY or EAGAIN. It means ENOMEM. 5659 * There is no reason to call it again and expect !NULL. 5660 */ 5661 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node) 5662 { 5663 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags; 5664 struct kmem_cache *s; 5665 bool can_retry = true; 5666 void *ret = ERR_PTR(-EBUSY); 5667 5668 VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO | 5669 __GFP_NO_OBJ_EXT)); 5670 5671 if (unlikely(!size)) 5672 return ZERO_SIZE_PTR; 5673 5674 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 5675 /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */ 5676 return NULL; 5677 retry: 5678 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 5679 return NULL; 5680 s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_); 5681 5682 if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s)) 5683 /* 5684 * kmalloc_nolock() is not supported on architectures that 5685 * don't implement cmpxchg16b, but debug caches don't use 5686 * per-cpu slab and per-cpu partial slabs. They rely on 5687 * kmem_cache_node->list_lock, so kmalloc_nolock() can 5688 * attempt to allocate from debug caches by 5689 * spin_trylock_irqsave(&n->list_lock, ...) 5690 */ 5691 return NULL; 5692 5693 /* 5694 * Do not call slab_alloc_node(), since trylock mode isn't 5695 * compatible with slab_pre_alloc_hook/should_failslab and 5696 * kfence_alloc. Hence call __slab_alloc_node() (at most twice) 5697 * and slab_post_alloc_hook() directly. 5698 * 5699 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair 5700 * in irq saved region. It assumes that the same cpu will not 5701 * __update_cpu_freelist_fast() into the same (freelist,tid) pair. 5702 * Therefore use in_nmi() to check whether particular bucket is in 5703 * irq protected section. 5704 * 5705 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that 5706 * this cpu was interrupted somewhere inside ___slab_alloc() after 5707 * it did local_lock_irqsave(&s->cpu_slab->lock, flags). 5708 * In this case fast path with __update_cpu_freelist_fast() is not safe. 5709 */ 5710 #ifndef CONFIG_SLUB_TINY 5711 if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock)) 5712 #endif 5713 ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size); 5714 5715 if (PTR_ERR(ret) == -EBUSY) { 5716 if (can_retry) { 5717 /* pick the next kmalloc bucket */ 5718 size = s->object_size + 1; 5719 /* 5720 * Another alternative is to 5721 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT; 5722 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT; 5723 * to retry from bucket of the same size. 5724 */ 5725 can_retry = false; 5726 goto retry; 5727 } 5728 ret = NULL; 5729 } 5730 5731 maybe_wipe_obj_freeptr(s, ret); 5732 slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret, 5733 slab_want_init_on_alloc(alloc_gfp, s), size); 5734 5735 ret = kasan_kmalloc(s, ret, size, alloc_gfp); 5736 return ret; 5737 } 5738 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof); 5739 5740 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 5741 int node, unsigned long caller) 5742 { 5743 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 5744 5745 } 5746 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 5747 5748 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 5749 { 5750 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 5751 _RET_IP_, size); 5752 5753 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 5754 5755 ret = kasan_kmalloc(s, ret, size, gfpflags); 5756 return ret; 5757 } 5758 EXPORT_SYMBOL(__kmalloc_cache_noprof); 5759 5760 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 5761 int node, size_t size) 5762 { 5763 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 5764 5765 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 5766 5767 ret = kasan_kmalloc(s, ret, size, gfpflags); 5768 return ret; 5769 } 5770 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 5771 5772 static noinline void free_to_partial_list( 5773 struct kmem_cache *s, struct slab *slab, 5774 void *head, void *tail, int bulk_cnt, 5775 unsigned long addr) 5776 { 5777 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 5778 struct slab *slab_free = NULL; 5779 int cnt = bulk_cnt; 5780 unsigned long flags; 5781 depot_stack_handle_t handle = 0; 5782 5783 /* 5784 * We cannot use GFP_NOWAIT as there are callsites where waking up 5785 * kswapd could deadlock 5786 */ 5787 if (s->flags & SLAB_STORE_USER) 5788 handle = set_track_prepare(__GFP_NOWARN); 5789 5790 spin_lock_irqsave(&n->list_lock, flags); 5791 5792 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 5793 void *prior = slab->freelist; 5794 5795 /* Perform the actual freeing while we still hold the locks */ 5796 slab->inuse -= cnt; 5797 set_freepointer(s, tail, prior); 5798 slab->freelist = head; 5799 5800 /* 5801 * If the slab is empty, and node's partial list is full, 5802 * it should be discarded anyway no matter it's on full or 5803 * partial list. 5804 */ 5805 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 5806 slab_free = slab; 5807 5808 if (!prior) { 5809 /* was on full list */ 5810 remove_full(s, n, slab); 5811 if (!slab_free) { 5812 add_partial(n, slab, DEACTIVATE_TO_TAIL); 5813 stat(s, FREE_ADD_PARTIAL); 5814 } 5815 } else if (slab_free) { 5816 remove_partial(n, slab); 5817 stat(s, FREE_REMOVE_PARTIAL); 5818 } 5819 } 5820 5821 if (slab_free) { 5822 /* 5823 * Update the counters while still holding n->list_lock to 5824 * prevent spurious validation warnings 5825 */ 5826 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 5827 } 5828 5829 spin_unlock_irqrestore(&n->list_lock, flags); 5830 5831 if (slab_free) { 5832 stat(s, FREE_SLAB); 5833 free_slab(s, slab_free); 5834 } 5835 } 5836 5837 /* 5838 * Slow path handling. This may still be called frequently since objects 5839 * have a longer lifetime than the cpu slabs in most processing loads. 5840 * 5841 * So we still attempt to reduce cache line usage. Just take the slab 5842 * lock and free the item. If there is no additional partial slab 5843 * handling required then we can return immediately. 5844 */ 5845 static void __slab_free(struct kmem_cache *s, struct slab *slab, 5846 void *head, void *tail, int cnt, 5847 unsigned long addr) 5848 5849 { 5850 void *prior; 5851 int was_frozen; 5852 struct slab new; 5853 unsigned long counters; 5854 struct kmem_cache_node *n = NULL; 5855 unsigned long flags; 5856 bool on_node_partial; 5857 5858 stat(s, FREE_SLOWPATH); 5859 5860 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 5861 free_to_partial_list(s, slab, head, tail, cnt, addr); 5862 return; 5863 } 5864 5865 do { 5866 if (unlikely(n)) { 5867 spin_unlock_irqrestore(&n->list_lock, flags); 5868 n = NULL; 5869 } 5870 prior = slab->freelist; 5871 counters = slab->counters; 5872 set_freepointer(s, tail, prior); 5873 new.counters = counters; 5874 was_frozen = new.frozen; 5875 new.inuse -= cnt; 5876 if ((!new.inuse || !prior) && !was_frozen) { 5877 /* Needs to be taken off a list */ 5878 if (!kmem_cache_has_cpu_partial(s) || prior) { 5879 5880 n = get_node(s, slab_nid(slab)); 5881 /* 5882 * Speculatively acquire the list_lock. 5883 * If the cmpxchg does not succeed then we may 5884 * drop the list_lock without any processing. 5885 * 5886 * Otherwise the list_lock will synchronize with 5887 * other processors updating the list of slabs. 5888 */ 5889 spin_lock_irqsave(&n->list_lock, flags); 5890 5891 on_node_partial = slab_test_node_partial(slab); 5892 } 5893 } 5894 5895 } while (!slab_update_freelist(s, slab, 5896 prior, counters, 5897 head, new.counters, 5898 "__slab_free")); 5899 5900 if (likely(!n)) { 5901 5902 if (likely(was_frozen)) { 5903 /* 5904 * The list lock was not taken therefore no list 5905 * activity can be necessary. 5906 */ 5907 stat(s, FREE_FROZEN); 5908 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 5909 /* 5910 * If we started with a full slab then put it onto the 5911 * per cpu partial list. 5912 */ 5913 put_cpu_partial(s, slab, 1); 5914 stat(s, CPU_PARTIAL_FREE); 5915 } 5916 5917 return; 5918 } 5919 5920 /* 5921 * This slab was partially empty but not on the per-node partial list, 5922 * in which case we shouldn't manipulate its list, just return. 5923 */ 5924 if (prior && !on_node_partial) { 5925 spin_unlock_irqrestore(&n->list_lock, flags); 5926 return; 5927 } 5928 5929 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 5930 goto slab_empty; 5931 5932 /* 5933 * Objects left in the slab. If it was not on the partial list before 5934 * then add it. 5935 */ 5936 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 5937 add_partial(n, slab, DEACTIVATE_TO_TAIL); 5938 stat(s, FREE_ADD_PARTIAL); 5939 } 5940 spin_unlock_irqrestore(&n->list_lock, flags); 5941 return; 5942 5943 slab_empty: 5944 if (prior) { 5945 /* 5946 * Slab on the partial list. 5947 */ 5948 remove_partial(n, slab); 5949 stat(s, FREE_REMOVE_PARTIAL); 5950 } 5951 5952 spin_unlock_irqrestore(&n->list_lock, flags); 5953 stat(s, FREE_SLAB); 5954 discard_slab(s, slab); 5955 } 5956 5957 /* 5958 * pcs is locked. We should have get rid of the spare sheaf and obtained an 5959 * empty sheaf, while the main sheaf is full. We want to install the empty sheaf 5960 * as a main sheaf, and make the current main sheaf a spare sheaf. 5961 * 5962 * However due to having relinquished the cpu_sheaves lock when obtaining 5963 * the empty sheaf, we need to handle some unlikely but possible cases. 5964 * 5965 * If we put any sheaf to barn here, it's because we were interrupted or have 5966 * been migrated to a different cpu, which should be rare enough so just ignore 5967 * the barn's limits to simplify the handling. 5968 * 5969 * An alternative scenario that gets us here is when we fail 5970 * barn_replace_full_sheaf(), because there's no empty sheaf available in the 5971 * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the 5972 * limit on full sheaves was not exceeded, we assume it didn't change and just 5973 * put the full sheaf there. 5974 */ 5975 static void __pcs_install_empty_sheaf(struct kmem_cache *s, 5976 struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty, 5977 struct node_barn *barn) 5978 { 5979 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 5980 5981 /* This is what we expect to find if nobody interrupted us. */ 5982 if (likely(!pcs->spare)) { 5983 pcs->spare = pcs->main; 5984 pcs->main = empty; 5985 return; 5986 } 5987 5988 /* 5989 * Unlikely because if the main sheaf had space, we would have just 5990 * freed to it. Get rid of our empty sheaf. 5991 */ 5992 if (pcs->main->size < s->sheaf_capacity) { 5993 barn_put_empty_sheaf(barn, empty); 5994 return; 5995 } 5996 5997 /* Also unlikely for the same reason */ 5998 if (pcs->spare->size < s->sheaf_capacity) { 5999 swap(pcs->main, pcs->spare); 6000 barn_put_empty_sheaf(barn, empty); 6001 return; 6002 } 6003 6004 /* 6005 * We probably failed barn_replace_full_sheaf() due to no empty sheaf 6006 * available there, but we allocated one, so finish the job. 6007 */ 6008 barn_put_full_sheaf(barn, pcs->main); 6009 stat(s, BARN_PUT); 6010 pcs->main = empty; 6011 } 6012 6013 /* 6014 * Replace the full main sheaf with a (at least partially) empty sheaf. 6015 * 6016 * Must be called with the cpu_sheaves local lock locked. If successful, returns 6017 * the pcs pointer and the local lock locked (possibly on a different cpu than 6018 * initially called). If not successful, returns NULL and the local lock 6019 * unlocked. 6020 */ 6021 static struct slub_percpu_sheaves * 6022 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs) 6023 { 6024 struct slab_sheaf *empty; 6025 struct node_barn *barn; 6026 bool put_fail; 6027 6028 restart: 6029 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock)); 6030 6031 barn = get_barn(s); 6032 if (!barn) { 6033 local_unlock(&s->cpu_sheaves->lock); 6034 return NULL; 6035 } 6036 6037 put_fail = false; 6038 6039 if (!pcs->spare) { 6040 empty = barn_get_empty_sheaf(barn); 6041 if (empty) { 6042 pcs->spare = pcs->main; 6043 pcs->main = empty; 6044 return pcs; 6045 } 6046 goto alloc_empty; 6047 } 6048 6049 if (pcs->spare->size < s->sheaf_capacity) { 6050 swap(pcs->main, pcs->spare); 6051 return pcs; 6052 } 6053 6054 empty = barn_replace_full_sheaf(barn, pcs->main); 6055 6056 if (!IS_ERR(empty)) { 6057 stat(s, BARN_PUT); 6058 pcs->main = empty; 6059 return pcs; 6060 } 6061 6062 if (PTR_ERR(empty) == -E2BIG) { 6063 /* Since we got here, spare exists and is full */ 6064 struct slab_sheaf *to_flush = pcs->spare; 6065 6066 stat(s, BARN_PUT_FAIL); 6067 6068 pcs->spare = NULL; 6069 local_unlock(&s->cpu_sheaves->lock); 6070 6071 sheaf_flush_unused(s, to_flush); 6072 empty = to_flush; 6073 goto got_empty; 6074 } 6075 6076 /* 6077 * We could not replace full sheaf because barn had no empty 6078 * sheaves. We can still allocate it and put the full sheaf in 6079 * __pcs_install_empty_sheaf(), but if we fail to allocate it, 6080 * make sure to count the fail. 6081 */ 6082 put_fail = true; 6083 6084 alloc_empty: 6085 local_unlock(&s->cpu_sheaves->lock); 6086 6087 empty = alloc_empty_sheaf(s, GFP_NOWAIT); 6088 if (empty) 6089 goto got_empty; 6090 6091 if (put_fail) 6092 stat(s, BARN_PUT_FAIL); 6093 6094 if (!sheaf_flush_main(s)) 6095 return NULL; 6096 6097 if (!local_trylock(&s->cpu_sheaves->lock)) 6098 return NULL; 6099 6100 pcs = this_cpu_ptr(s->cpu_sheaves); 6101 6102 /* 6103 * we flushed the main sheaf so it should be empty now, 6104 * but in case we got preempted or migrated, we need to 6105 * check again 6106 */ 6107 if (pcs->main->size == s->sheaf_capacity) 6108 goto restart; 6109 6110 return pcs; 6111 6112 got_empty: 6113 if (!local_trylock(&s->cpu_sheaves->lock)) { 6114 barn_put_empty_sheaf(barn, empty); 6115 return NULL; 6116 } 6117 6118 pcs = this_cpu_ptr(s->cpu_sheaves); 6119 __pcs_install_empty_sheaf(s, pcs, empty, barn); 6120 6121 return pcs; 6122 } 6123 6124 /* 6125 * Free an object to the percpu sheaves. 6126 * The object is expected to have passed slab_free_hook() already. 6127 */ 6128 static __fastpath_inline 6129 bool free_to_pcs(struct kmem_cache *s, void *object) 6130 { 6131 struct slub_percpu_sheaves *pcs; 6132 6133 if (!local_trylock(&s->cpu_sheaves->lock)) 6134 return false; 6135 6136 pcs = this_cpu_ptr(s->cpu_sheaves); 6137 6138 if (unlikely(pcs->main->size == s->sheaf_capacity)) { 6139 6140 pcs = __pcs_replace_full_main(s, pcs); 6141 if (unlikely(!pcs)) 6142 return false; 6143 } 6144 6145 pcs->main->objects[pcs->main->size++] = object; 6146 6147 local_unlock(&s->cpu_sheaves->lock); 6148 6149 stat(s, FREE_PCS); 6150 6151 return true; 6152 } 6153 6154 static void rcu_free_sheaf(struct rcu_head *head) 6155 { 6156 struct kmem_cache_node *n; 6157 struct slab_sheaf *sheaf; 6158 struct node_barn *barn = NULL; 6159 struct kmem_cache *s; 6160 6161 sheaf = container_of(head, struct slab_sheaf, rcu_head); 6162 6163 s = sheaf->cache; 6164 6165 /* 6166 * This may remove some objects due to slab_free_hook() returning false, 6167 * so that the sheaf might no longer be completely full. But it's easier 6168 * to handle it as full (unless it became completely empty), as the code 6169 * handles it fine. The only downside is that sheaf will serve fewer 6170 * allocations when reused. It only happens due to debugging, which is a 6171 * performance hit anyway. 6172 */ 6173 __rcu_free_sheaf_prepare(s, sheaf); 6174 6175 n = get_node(s, sheaf->node); 6176 if (!n) 6177 goto flush; 6178 6179 barn = n->barn; 6180 6181 /* due to slab_free_hook() */ 6182 if (unlikely(sheaf->size == 0)) 6183 goto empty; 6184 6185 /* 6186 * Checking nr_full/nr_empty outside lock avoids contention in case the 6187 * barn is at the respective limit. Due to the race we might go over the 6188 * limit but that should be rare and harmless. 6189 */ 6190 6191 if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) { 6192 stat(s, BARN_PUT); 6193 barn_put_full_sheaf(barn, sheaf); 6194 return; 6195 } 6196 6197 flush: 6198 stat(s, BARN_PUT_FAIL); 6199 sheaf_flush_unused(s, sheaf); 6200 6201 empty: 6202 if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) { 6203 barn_put_empty_sheaf(barn, sheaf); 6204 return; 6205 } 6206 6207 free_empty_sheaf(s, sheaf); 6208 } 6209 6210 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj) 6211 { 6212 struct slub_percpu_sheaves *pcs; 6213 struct slab_sheaf *rcu_sheaf; 6214 6215 if (!local_trylock(&s->cpu_sheaves->lock)) 6216 goto fail; 6217 6218 pcs = this_cpu_ptr(s->cpu_sheaves); 6219 6220 if (unlikely(!pcs->rcu_free)) { 6221 6222 struct slab_sheaf *empty; 6223 struct node_barn *barn; 6224 6225 if (pcs->spare && pcs->spare->size == 0) { 6226 pcs->rcu_free = pcs->spare; 6227 pcs->spare = NULL; 6228 goto do_free; 6229 } 6230 6231 barn = get_barn(s); 6232 if (!barn) { 6233 local_unlock(&s->cpu_sheaves->lock); 6234 goto fail; 6235 } 6236 6237 empty = barn_get_empty_sheaf(barn); 6238 6239 if (empty) { 6240 pcs->rcu_free = empty; 6241 goto do_free; 6242 } 6243 6244 local_unlock(&s->cpu_sheaves->lock); 6245 6246 empty = alloc_empty_sheaf(s, GFP_NOWAIT); 6247 6248 if (!empty) 6249 goto fail; 6250 6251 if (!local_trylock(&s->cpu_sheaves->lock)) { 6252 barn_put_empty_sheaf(barn, empty); 6253 goto fail; 6254 } 6255 6256 pcs = this_cpu_ptr(s->cpu_sheaves); 6257 6258 if (unlikely(pcs->rcu_free)) 6259 barn_put_empty_sheaf(barn, empty); 6260 else 6261 pcs->rcu_free = empty; 6262 } 6263 6264 do_free: 6265 6266 rcu_sheaf = pcs->rcu_free; 6267 6268 /* 6269 * Since we flush immediately when size reaches capacity, we never reach 6270 * this with size already at capacity, so no OOB write is possible. 6271 */ 6272 rcu_sheaf->objects[rcu_sheaf->size++] = obj; 6273 6274 if (likely(rcu_sheaf->size < s->sheaf_capacity)) { 6275 rcu_sheaf = NULL; 6276 } else { 6277 pcs->rcu_free = NULL; 6278 rcu_sheaf->node = numa_mem_id(); 6279 } 6280 6281 /* 6282 * we flush before local_unlock to make sure a racing 6283 * flush_all_rcu_sheaves() doesn't miss this sheaf 6284 */ 6285 if (rcu_sheaf) 6286 call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf); 6287 6288 local_unlock(&s->cpu_sheaves->lock); 6289 6290 stat(s, FREE_RCU_SHEAF); 6291 return true; 6292 6293 fail: 6294 stat(s, FREE_RCU_SHEAF_FAIL); 6295 return false; 6296 } 6297 6298 /* 6299 * Bulk free objects to the percpu sheaves. 6300 * Unlike free_to_pcs() this includes the calls to all necessary hooks 6301 * and the fallback to freeing to slab pages. 6302 */ 6303 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p) 6304 { 6305 struct slub_percpu_sheaves *pcs; 6306 struct slab_sheaf *main, *empty; 6307 bool init = slab_want_init_on_free(s); 6308 unsigned int batch, i = 0; 6309 struct node_barn *barn; 6310 void *remote_objects[PCS_BATCH_MAX]; 6311 unsigned int remote_nr = 0; 6312 int node = numa_mem_id(); 6313 6314 next_remote_batch: 6315 while (i < size) { 6316 struct slab *slab = virt_to_slab(p[i]); 6317 6318 memcg_slab_free_hook(s, slab, p + i, 1); 6319 alloc_tagging_slab_free_hook(s, slab, p + i, 1); 6320 6321 if (unlikely(!slab_free_hook(s, p[i], init, false))) { 6322 p[i] = p[--size]; 6323 if (!size) 6324 goto flush_remote; 6325 continue; 6326 } 6327 6328 if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) { 6329 remote_objects[remote_nr] = p[i]; 6330 p[i] = p[--size]; 6331 if (++remote_nr >= PCS_BATCH_MAX) 6332 goto flush_remote; 6333 continue; 6334 } 6335 6336 i++; 6337 } 6338 6339 next_batch: 6340 if (!local_trylock(&s->cpu_sheaves->lock)) 6341 goto fallback; 6342 6343 pcs = this_cpu_ptr(s->cpu_sheaves); 6344 6345 if (likely(pcs->main->size < s->sheaf_capacity)) 6346 goto do_free; 6347 6348 barn = get_barn(s); 6349 if (!barn) 6350 goto no_empty; 6351 6352 if (!pcs->spare) { 6353 empty = barn_get_empty_sheaf(barn); 6354 if (!empty) 6355 goto no_empty; 6356 6357 pcs->spare = pcs->main; 6358 pcs->main = empty; 6359 goto do_free; 6360 } 6361 6362 if (pcs->spare->size < s->sheaf_capacity) { 6363 swap(pcs->main, pcs->spare); 6364 goto do_free; 6365 } 6366 6367 empty = barn_replace_full_sheaf(barn, pcs->main); 6368 if (IS_ERR(empty)) { 6369 stat(s, BARN_PUT_FAIL); 6370 goto no_empty; 6371 } 6372 6373 stat(s, BARN_PUT); 6374 pcs->main = empty; 6375 6376 do_free: 6377 main = pcs->main; 6378 batch = min(size, s->sheaf_capacity - main->size); 6379 6380 memcpy(main->objects + main->size, p, batch * sizeof(void *)); 6381 main->size += batch; 6382 6383 local_unlock(&s->cpu_sheaves->lock); 6384 6385 stat_add(s, FREE_PCS, batch); 6386 6387 if (batch < size) { 6388 p += batch; 6389 size -= batch; 6390 goto next_batch; 6391 } 6392 6393 return; 6394 6395 no_empty: 6396 local_unlock(&s->cpu_sheaves->lock); 6397 6398 /* 6399 * if we depleted all empty sheaves in the barn or there are too 6400 * many full sheaves, free the rest to slab pages 6401 */ 6402 fallback: 6403 __kmem_cache_free_bulk(s, size, p); 6404 6405 flush_remote: 6406 if (remote_nr) { 6407 __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]); 6408 if (i < size) { 6409 remote_nr = 0; 6410 goto next_remote_batch; 6411 } 6412 } 6413 } 6414 6415 struct defer_free { 6416 struct llist_head objects; 6417 struct llist_head slabs; 6418 struct irq_work work; 6419 }; 6420 6421 static void free_deferred_objects(struct irq_work *work); 6422 6423 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = { 6424 .objects = LLIST_HEAD_INIT(objects), 6425 .slabs = LLIST_HEAD_INIT(slabs), 6426 .work = IRQ_WORK_INIT(free_deferred_objects), 6427 }; 6428 6429 /* 6430 * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe 6431 * to take sleeping spin_locks from __slab_free() and deactivate_slab(). 6432 * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore(). 6433 */ 6434 static void free_deferred_objects(struct irq_work *work) 6435 { 6436 struct defer_free *df = container_of(work, struct defer_free, work); 6437 struct llist_head *objs = &df->objects; 6438 struct llist_head *slabs = &df->slabs; 6439 struct llist_node *llnode, *pos, *t; 6440 6441 if (llist_empty(objs) && llist_empty(slabs)) 6442 return; 6443 6444 llnode = llist_del_all(objs); 6445 llist_for_each_safe(pos, t, llnode) { 6446 struct kmem_cache *s; 6447 struct slab *slab; 6448 void *x = pos; 6449 6450 slab = virt_to_slab(x); 6451 s = slab->slab_cache; 6452 6453 /* Point 'x' back to the beginning of allocated object */ 6454 x -= s->offset; 6455 6456 /* 6457 * We used freepointer in 'x' to link 'x' into df->objects. 6458 * Clear it to NULL to avoid false positive detection 6459 * of "Freepointer corruption". 6460 */ 6461 set_freepointer(s, x, NULL); 6462 6463 __slab_free(s, slab, x, x, 1, _THIS_IP_); 6464 } 6465 6466 llnode = llist_del_all(slabs); 6467 llist_for_each_safe(pos, t, llnode) { 6468 struct slab *slab = container_of(pos, struct slab, llnode); 6469 6470 #ifdef CONFIG_SLUB_TINY 6471 discard_slab(slab->slab_cache, slab); 6472 #else 6473 deactivate_slab(slab->slab_cache, slab, slab->flush_freelist); 6474 #endif 6475 } 6476 } 6477 6478 static void defer_free(struct kmem_cache *s, void *head) 6479 { 6480 struct defer_free *df; 6481 6482 guard(preempt)(); 6483 6484 df = this_cpu_ptr(&defer_free_objects); 6485 if (llist_add(head + s->offset, &df->objects)) 6486 irq_work_queue(&df->work); 6487 } 6488 6489 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist) 6490 { 6491 struct defer_free *df; 6492 6493 slab->flush_freelist = flush_freelist; 6494 6495 guard(preempt)(); 6496 6497 df = this_cpu_ptr(&defer_free_objects); 6498 if (llist_add(&slab->llnode, &df->slabs)) 6499 irq_work_queue(&df->work); 6500 } 6501 6502 void defer_free_barrier(void) 6503 { 6504 int cpu; 6505 6506 for_each_possible_cpu(cpu) 6507 irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work); 6508 } 6509 6510 #ifndef CONFIG_SLUB_TINY 6511 /* 6512 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 6513 * can perform fastpath freeing without additional function calls. 6514 * 6515 * The fastpath is only possible if we are freeing to the current cpu slab 6516 * of this processor. This typically the case if we have just allocated 6517 * the item before. 6518 * 6519 * If fastpath is not possible then fall back to __slab_free where we deal 6520 * with all sorts of special processing. 6521 * 6522 * Bulk free of a freelist with several objects (all pointing to the 6523 * same slab) possible by specifying head and tail ptr, plus objects 6524 * count (cnt). Bulk free indicated by tail pointer being set. 6525 */ 6526 static __always_inline void do_slab_free(struct kmem_cache *s, 6527 struct slab *slab, void *head, void *tail, 6528 int cnt, unsigned long addr) 6529 { 6530 /* cnt == 0 signals that it's called from kfree_nolock() */ 6531 bool allow_spin = cnt; 6532 struct kmem_cache_cpu *c; 6533 unsigned long tid; 6534 void **freelist; 6535 6536 redo: 6537 /* 6538 * Determine the currently cpus per cpu slab. 6539 * The cpu may change afterward. However that does not matter since 6540 * data is retrieved via this pointer. If we are on the same cpu 6541 * during the cmpxchg then the free will succeed. 6542 */ 6543 c = raw_cpu_ptr(s->cpu_slab); 6544 tid = READ_ONCE(c->tid); 6545 6546 /* Same with comment on barrier() in __slab_alloc_node() */ 6547 barrier(); 6548 6549 if (unlikely(slab != c->slab)) { 6550 if (unlikely(!allow_spin)) { 6551 /* 6552 * __slab_free() can locklessly cmpxchg16 into a slab, 6553 * but then it might need to take spin_lock or local_lock 6554 * in put_cpu_partial() for further processing. 6555 * Avoid the complexity and simply add to a deferred list. 6556 */ 6557 defer_free(s, head); 6558 } else { 6559 __slab_free(s, slab, head, tail, cnt, addr); 6560 } 6561 return; 6562 } 6563 6564 if (unlikely(!allow_spin)) { 6565 if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) && 6566 local_lock_is_locked(&s->cpu_slab->lock)) { 6567 defer_free(s, head); 6568 return; 6569 } 6570 cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */ 6571 } 6572 6573 if (USE_LOCKLESS_FAST_PATH()) { 6574 freelist = READ_ONCE(c->freelist); 6575 6576 set_freepointer(s, tail, freelist); 6577 6578 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 6579 note_cmpxchg_failure("slab_free", s, tid); 6580 goto redo; 6581 } 6582 } else { 6583 __maybe_unused unsigned long flags = 0; 6584 6585 /* Update the free list under the local lock */ 6586 local_lock_cpu_slab(s, flags); 6587 c = this_cpu_ptr(s->cpu_slab); 6588 if (unlikely(slab != c->slab)) { 6589 local_unlock_cpu_slab(s, flags); 6590 goto redo; 6591 } 6592 tid = c->tid; 6593 freelist = c->freelist; 6594 6595 set_freepointer(s, tail, freelist); 6596 c->freelist = head; 6597 c->tid = next_tid(tid); 6598 6599 local_unlock_cpu_slab(s, flags); 6600 } 6601 stat_add(s, FREE_FASTPATH, cnt); 6602 } 6603 #else /* CONFIG_SLUB_TINY */ 6604 static void do_slab_free(struct kmem_cache *s, 6605 struct slab *slab, void *head, void *tail, 6606 int cnt, unsigned long addr) 6607 { 6608 __slab_free(s, slab, head, tail, cnt, addr); 6609 } 6610 #endif /* CONFIG_SLUB_TINY */ 6611 6612 static __fastpath_inline 6613 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 6614 unsigned long addr) 6615 { 6616 memcg_slab_free_hook(s, slab, &object, 1); 6617 alloc_tagging_slab_free_hook(s, slab, &object, 1); 6618 6619 if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false))) 6620 return; 6621 6622 if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) || 6623 slab_nid(slab) == numa_mem_id())) { 6624 if (likely(free_to_pcs(s, object))) 6625 return; 6626 } 6627 6628 do_slab_free(s, slab, object, object, 1, addr); 6629 } 6630 6631 #ifdef CONFIG_MEMCG 6632 /* Do not inline the rare memcg charging failed path into the allocation path */ 6633 static noinline 6634 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 6635 { 6636 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 6637 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 6638 } 6639 #endif 6640 6641 static __fastpath_inline 6642 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 6643 void *tail, void **p, int cnt, unsigned long addr) 6644 { 6645 memcg_slab_free_hook(s, slab, p, cnt); 6646 alloc_tagging_slab_free_hook(s, slab, p, cnt); 6647 /* 6648 * With KASAN enabled slab_free_freelist_hook modifies the freelist 6649 * to remove objects, whose reuse must be delayed. 6650 */ 6651 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 6652 do_slab_free(s, slab, head, tail, cnt, addr); 6653 } 6654 6655 #ifdef CONFIG_SLUB_RCU_DEBUG 6656 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 6657 { 6658 struct rcu_delayed_free *delayed_free = 6659 container_of(rcu_head, struct rcu_delayed_free, head); 6660 void *object = delayed_free->object; 6661 struct slab *slab = virt_to_slab(object); 6662 struct kmem_cache *s; 6663 6664 kfree(delayed_free); 6665 6666 if (WARN_ON(is_kfence_address(object))) 6667 return; 6668 6669 /* find the object and the cache again */ 6670 if (WARN_ON(!slab)) 6671 return; 6672 s = slab->slab_cache; 6673 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 6674 return; 6675 6676 /* resume freeing */ 6677 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 6678 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 6679 } 6680 #endif /* CONFIG_SLUB_RCU_DEBUG */ 6681 6682 #ifdef CONFIG_KASAN_GENERIC 6683 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 6684 { 6685 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 6686 } 6687 #endif 6688 6689 static inline struct kmem_cache *virt_to_cache(const void *obj) 6690 { 6691 struct slab *slab; 6692 6693 slab = virt_to_slab(obj); 6694 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 6695 return NULL; 6696 return slab->slab_cache; 6697 } 6698 6699 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 6700 { 6701 struct kmem_cache *cachep; 6702 6703 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 6704 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 6705 return s; 6706 6707 cachep = virt_to_cache(x); 6708 if (WARN(cachep && cachep != s, 6709 "%s: Wrong slab cache. %s but object is from %s\n", 6710 __func__, s->name, cachep->name)) 6711 print_tracking(cachep, x); 6712 return cachep; 6713 } 6714 6715 /** 6716 * kmem_cache_free - Deallocate an object 6717 * @s: The cache the allocation was from. 6718 * @x: The previously allocated object. 6719 * 6720 * Free an object which was previously allocated from this 6721 * cache. 6722 */ 6723 void kmem_cache_free(struct kmem_cache *s, void *x) 6724 { 6725 s = cache_from_obj(s, x); 6726 if (!s) 6727 return; 6728 trace_kmem_cache_free(_RET_IP_, x, s); 6729 slab_free(s, virt_to_slab(x), x, _RET_IP_); 6730 } 6731 EXPORT_SYMBOL(kmem_cache_free); 6732 6733 static void free_large_kmalloc(struct folio *folio, void *object) 6734 { 6735 unsigned int order = folio_order(folio); 6736 6737 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { 6738 dump_page(&folio->page, "Not a kmalloc allocation"); 6739 return; 6740 } 6741 6742 if (WARN_ON_ONCE(order == 0)) 6743 pr_warn_once("object pointer: 0x%p\n", object); 6744 6745 kmemleak_free(object); 6746 kasan_kfree_large(object); 6747 kmsan_kfree_large(object); 6748 6749 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 6750 -(PAGE_SIZE << order)); 6751 __folio_clear_large_kmalloc(folio); 6752 free_frozen_pages(&folio->page, order); 6753 } 6754 6755 /* 6756 * Given an rcu_head embedded within an object obtained from kvmalloc at an 6757 * offset < 4k, free the object in question. 6758 */ 6759 void kvfree_rcu_cb(struct rcu_head *head) 6760 { 6761 void *obj = head; 6762 struct folio *folio; 6763 struct slab *slab; 6764 struct kmem_cache *s; 6765 void *slab_addr; 6766 6767 if (is_vmalloc_addr(obj)) { 6768 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 6769 vfree(obj); 6770 return; 6771 } 6772 6773 folio = virt_to_folio(obj); 6774 if (!folio_test_slab(folio)) { 6775 /* 6776 * rcu_head offset can be only less than page size so no need to 6777 * consider folio order 6778 */ 6779 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 6780 free_large_kmalloc(folio, obj); 6781 return; 6782 } 6783 6784 slab = folio_slab(folio); 6785 s = slab->slab_cache; 6786 slab_addr = folio_address(folio); 6787 6788 if (is_kfence_address(obj)) { 6789 obj = kfence_object_start(obj); 6790 } else { 6791 unsigned int idx = __obj_to_index(s, slab_addr, obj); 6792 6793 obj = slab_addr + s->size * idx; 6794 obj = fixup_red_left(s, obj); 6795 } 6796 6797 slab_free(s, slab, obj, _RET_IP_); 6798 } 6799 6800 /** 6801 * kfree - free previously allocated memory 6802 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 6803 * 6804 * If @object is NULL, no operation is performed. 6805 */ 6806 void kfree(const void *object) 6807 { 6808 struct folio *folio; 6809 struct slab *slab; 6810 struct kmem_cache *s; 6811 void *x = (void *)object; 6812 6813 trace_kfree(_RET_IP_, object); 6814 6815 if (unlikely(ZERO_OR_NULL_PTR(object))) 6816 return; 6817 6818 folio = virt_to_folio(object); 6819 if (unlikely(!folio_test_slab(folio))) { 6820 free_large_kmalloc(folio, (void *)object); 6821 return; 6822 } 6823 6824 slab = folio_slab(folio); 6825 s = slab->slab_cache; 6826 slab_free(s, slab, x, _RET_IP_); 6827 } 6828 EXPORT_SYMBOL(kfree); 6829 6830 /* 6831 * Can be called while holding raw_spinlock_t or from IRQ and NMI, 6832 * but ONLY for objects allocated by kmalloc_nolock(). 6833 * Debug checks (like kmemleak and kfence) were skipped on allocation, 6834 * hence 6835 * obj = kmalloc(); kfree_nolock(obj); 6836 * will miss kmemleak/kfence book keeping and will cause false positives. 6837 * large_kmalloc is not supported either. 6838 */ 6839 void kfree_nolock(const void *object) 6840 { 6841 struct folio *folio; 6842 struct slab *slab; 6843 struct kmem_cache *s; 6844 void *x = (void *)object; 6845 6846 if (unlikely(ZERO_OR_NULL_PTR(object))) 6847 return; 6848 6849 folio = virt_to_folio(object); 6850 if (unlikely(!folio_test_slab(folio))) { 6851 WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()"); 6852 return; 6853 } 6854 6855 slab = folio_slab(folio); 6856 s = slab->slab_cache; 6857 6858 memcg_slab_free_hook(s, slab, &x, 1); 6859 alloc_tagging_slab_free_hook(s, slab, &x, 1); 6860 /* 6861 * Unlike slab_free() do NOT call the following: 6862 * kmemleak_free_recursive(x, s->flags); 6863 * debug_check_no_locks_freed(x, s->object_size); 6864 * debug_check_no_obj_freed(x, s->object_size); 6865 * __kcsan_check_access(x, s->object_size, ..); 6866 * kfence_free(x); 6867 * since they take spinlocks or not safe from any context. 6868 */ 6869 kmsan_slab_free(s, x); 6870 /* 6871 * If KASAN finds a kernel bug it will do kasan_report_invalid_free() 6872 * which will call raw_spin_lock_irqsave() which is technically 6873 * unsafe from NMI, but take chance and report kernel bug. 6874 * The sequence of 6875 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI 6876 * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU 6877 * is double buggy and deserves to deadlock. 6878 */ 6879 if (kasan_slab_pre_free(s, x)) 6880 return; 6881 /* 6882 * memcg, kasan_slab_pre_free are done for 'x'. 6883 * The only thing left is kasan_poison without quarantine, 6884 * since kasan quarantine takes locks and not supported from NMI. 6885 */ 6886 kasan_slab_free(s, x, false, false, /* skip quarantine */true); 6887 #ifndef CONFIG_SLUB_TINY 6888 do_slab_free(s, slab, x, x, 0, _RET_IP_); 6889 #else 6890 defer_free(s, x); 6891 #endif 6892 } 6893 EXPORT_SYMBOL_GPL(kfree_nolock); 6894 6895 static __always_inline __realloc_size(2) void * 6896 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid) 6897 { 6898 void *ret; 6899 size_t ks = 0; 6900 int orig_size = 0; 6901 struct kmem_cache *s = NULL; 6902 6903 if (unlikely(ZERO_OR_NULL_PTR(p))) 6904 goto alloc_new; 6905 6906 /* Check for double-free. */ 6907 if (!kasan_check_byte(p)) 6908 return NULL; 6909 6910 /* 6911 * If reallocation is not necessary (e. g. the new size is less 6912 * than the current allocated size), the current allocation will be 6913 * preserved unless __GFP_THISNODE is set. In the latter case a new 6914 * allocation on the requested node will be attempted. 6915 */ 6916 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE && 6917 nid != page_to_nid(virt_to_page(p))) 6918 goto alloc_new; 6919 6920 if (is_kfence_address(p)) { 6921 ks = orig_size = kfence_ksize(p); 6922 } else { 6923 struct folio *folio; 6924 6925 folio = virt_to_folio(p); 6926 if (unlikely(!folio_test_slab(folio))) { 6927 /* Big kmalloc object */ 6928 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 6929 WARN_ON(p != folio_address(folio)); 6930 ks = folio_size(folio); 6931 } else { 6932 s = folio_slab(folio)->slab_cache; 6933 orig_size = get_orig_size(s, (void *)p); 6934 ks = s->object_size; 6935 } 6936 } 6937 6938 /* If the old object doesn't fit, allocate a bigger one */ 6939 if (new_size > ks) 6940 goto alloc_new; 6941 6942 /* If the old object doesn't satisfy the new alignment, allocate a new one */ 6943 if (!IS_ALIGNED((unsigned long)p, align)) 6944 goto alloc_new; 6945 6946 /* Zero out spare memory. */ 6947 if (want_init_on_alloc(flags)) { 6948 kasan_disable_current(); 6949 if (orig_size && orig_size < new_size) 6950 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 6951 else 6952 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 6953 kasan_enable_current(); 6954 } 6955 6956 /* Setup kmalloc redzone when needed */ 6957 if (s && slub_debug_orig_size(s)) { 6958 set_orig_size(s, (void *)p, new_size); 6959 if (s->flags & SLAB_RED_ZONE && new_size < ks) 6960 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 6961 SLUB_RED_ACTIVE, ks - new_size); 6962 } 6963 6964 p = kasan_krealloc(p, new_size, flags); 6965 return (void *)p; 6966 6967 alloc_new: 6968 ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_); 6969 if (ret && p) { 6970 /* Disable KASAN checks as the object's redzone is accessed. */ 6971 kasan_disable_current(); 6972 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 6973 kasan_enable_current(); 6974 } 6975 6976 return ret; 6977 } 6978 6979 /** 6980 * krealloc_node_align - reallocate memory. The contents will remain unchanged. 6981 * @p: object to reallocate memory for. 6982 * @new_size: how many bytes of memory are required. 6983 * @align: desired alignment. 6984 * @flags: the type of memory to allocate. 6985 * @nid: NUMA node or NUMA_NO_NODE 6986 * 6987 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 6988 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 6989 * 6990 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 6991 * Documentation/core-api/memory-allocation.rst for more details. 6992 * 6993 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 6994 * initial memory allocation, every subsequent call to this API for the same 6995 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 6996 * __GFP_ZERO is not fully honored by this API. 6997 * 6998 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 6999 * size of an allocation (but not the exact size it was allocated with) and 7000 * hence implements the following semantics for shrinking and growing buffers 7001 * with __GFP_ZERO:: 7002 * 7003 * new bucket 7004 * 0 size size 7005 * |--------|----------------| 7006 * | keep | zero | 7007 * 7008 * Otherwise, the original allocation size 'orig_size' could be used to 7009 * precisely clear the requested size, and the new size will also be stored 7010 * as the new 'orig_size'. 7011 * 7012 * In any case, the contents of the object pointed to are preserved up to the 7013 * lesser of the new and old sizes. 7014 * 7015 * Return: pointer to the allocated memory or %NULL in case of error 7016 */ 7017 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align, 7018 gfp_t flags, int nid) 7019 { 7020 void *ret; 7021 7022 if (unlikely(!new_size)) { 7023 kfree(p); 7024 return ZERO_SIZE_PTR; 7025 } 7026 7027 ret = __do_krealloc(p, new_size, align, flags, nid); 7028 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 7029 kfree(p); 7030 7031 return ret; 7032 } 7033 EXPORT_SYMBOL(krealloc_node_align_noprof); 7034 7035 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 7036 { 7037 /* 7038 * We want to attempt a large physically contiguous block first because 7039 * it is less likely to fragment multiple larger blocks and therefore 7040 * contribute to a long term fragmentation less than vmalloc fallback. 7041 * However make sure that larger requests are not too disruptive - i.e. 7042 * do not direct reclaim unless physically continuous memory is preferred 7043 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to 7044 * start working in the background 7045 */ 7046 if (size > PAGE_SIZE) { 7047 flags |= __GFP_NOWARN; 7048 7049 if (!(flags & __GFP_RETRY_MAYFAIL)) 7050 flags &= ~__GFP_DIRECT_RECLAIM; 7051 7052 /* nofail semantic is implemented by the vmalloc fallback */ 7053 flags &= ~__GFP_NOFAIL; 7054 } 7055 7056 return flags; 7057 } 7058 7059 /** 7060 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 7061 * failure, fall back to non-contiguous (vmalloc) allocation. 7062 * @size: size of the request. 7063 * @b: which set of kmalloc buckets to allocate from. 7064 * @align: desired alignment. 7065 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 7066 * @node: numa node to allocate from 7067 * 7068 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 7069 * Documentation/core-api/memory-allocation.rst for more details. 7070 * 7071 * Uses kmalloc to get the memory but if the allocation fails then falls back 7072 * to the vmalloc allocator. Use kvfree for freeing the memory. 7073 * 7074 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 7075 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 7076 * preferable to the vmalloc fallback, due to visible performance drawbacks. 7077 * 7078 * Return: pointer to the allocated memory of %NULL in case of failure 7079 */ 7080 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align, 7081 gfp_t flags, int node) 7082 { 7083 void *ret; 7084 7085 /* 7086 * It doesn't really make sense to fallback to vmalloc for sub page 7087 * requests 7088 */ 7089 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 7090 kmalloc_gfp_adjust(flags, size), 7091 node, _RET_IP_); 7092 if (ret || size <= PAGE_SIZE) 7093 return ret; 7094 7095 /* non-sleeping allocations are not supported by vmalloc */ 7096 if (!gfpflags_allow_blocking(flags)) 7097 return NULL; 7098 7099 /* Don't even allow crazy sizes */ 7100 if (unlikely(size > INT_MAX)) { 7101 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 7102 return NULL; 7103 } 7104 7105 /* 7106 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 7107 * since the callers already cannot assume anything 7108 * about the resulting pointer, and cannot play 7109 * protection games. 7110 */ 7111 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 7112 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 7113 node, __builtin_return_address(0)); 7114 } 7115 EXPORT_SYMBOL(__kvmalloc_node_noprof); 7116 7117 /** 7118 * kvfree() - Free memory. 7119 * @addr: Pointer to allocated memory. 7120 * 7121 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 7122 * It is slightly more efficient to use kfree() or vfree() if you are certain 7123 * that you know which one to use. 7124 * 7125 * Context: Either preemptible task context or not-NMI interrupt. 7126 */ 7127 void kvfree(const void *addr) 7128 { 7129 if (is_vmalloc_addr(addr)) 7130 vfree(addr); 7131 else 7132 kfree(addr); 7133 } 7134 EXPORT_SYMBOL(kvfree); 7135 7136 /** 7137 * kvfree_sensitive - Free a data object containing sensitive information. 7138 * @addr: address of the data object to be freed. 7139 * @len: length of the data object. 7140 * 7141 * Use the special memzero_explicit() function to clear the content of a 7142 * kvmalloc'ed object containing sensitive data to make sure that the 7143 * compiler won't optimize out the data clearing. 7144 */ 7145 void kvfree_sensitive(const void *addr, size_t len) 7146 { 7147 if (likely(!ZERO_OR_NULL_PTR(addr))) { 7148 memzero_explicit((void *)addr, len); 7149 kvfree(addr); 7150 } 7151 } 7152 EXPORT_SYMBOL(kvfree_sensitive); 7153 7154 /** 7155 * kvrealloc_node_align - reallocate memory; contents remain unchanged 7156 * @p: object to reallocate memory for 7157 * @size: the size to reallocate 7158 * @align: desired alignment 7159 * @flags: the flags for the page level allocator 7160 * @nid: NUMA node id 7161 * 7162 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 7163 * and @p is not a %NULL pointer, the object pointed to is freed. 7164 * 7165 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see 7166 * Documentation/core-api/memory-allocation.rst for more details. 7167 * 7168 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 7169 * initial memory allocation, every subsequent call to this API for the same 7170 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 7171 * __GFP_ZERO is not fully honored by this API. 7172 * 7173 * In any case, the contents of the object pointed to are preserved up to the 7174 * lesser of the new and old sizes. 7175 * 7176 * This function must not be called concurrently with itself or kvfree() for the 7177 * same memory allocation. 7178 * 7179 * Return: pointer to the allocated memory or %NULL in case of error 7180 */ 7181 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align, 7182 gfp_t flags, int nid) 7183 { 7184 void *n; 7185 7186 if (is_vmalloc_addr(p)) 7187 return vrealloc_node_align_noprof(p, size, align, flags, nid); 7188 7189 n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid); 7190 if (!n) { 7191 /* We failed to krealloc(), fall back to kvmalloc(). */ 7192 n = kvmalloc_node_align_noprof(size, align, flags, nid); 7193 if (!n) 7194 return NULL; 7195 7196 if (p) { 7197 /* We already know that `p` is not a vmalloc address. */ 7198 kasan_disable_current(); 7199 memcpy(n, kasan_reset_tag(p), ksize(p)); 7200 kasan_enable_current(); 7201 7202 kfree(p); 7203 } 7204 } 7205 7206 return n; 7207 } 7208 EXPORT_SYMBOL(kvrealloc_node_align_noprof); 7209 7210 struct detached_freelist { 7211 struct slab *slab; 7212 void *tail; 7213 void *freelist; 7214 int cnt; 7215 struct kmem_cache *s; 7216 }; 7217 7218 /* 7219 * This function progressively scans the array with free objects (with 7220 * a limited look ahead) and extract objects belonging to the same 7221 * slab. It builds a detached freelist directly within the given 7222 * slab/objects. This can happen without any need for 7223 * synchronization, because the objects are owned by running process. 7224 * The freelist is build up as a single linked list in the objects. 7225 * The idea is, that this detached freelist can then be bulk 7226 * transferred to the real freelist(s), but only requiring a single 7227 * synchronization primitive. Look ahead in the array is limited due 7228 * to performance reasons. 7229 */ 7230 static inline 7231 int build_detached_freelist(struct kmem_cache *s, size_t size, 7232 void **p, struct detached_freelist *df) 7233 { 7234 int lookahead = 3; 7235 void *object; 7236 struct folio *folio; 7237 size_t same; 7238 7239 object = p[--size]; 7240 folio = virt_to_folio(object); 7241 if (!s) { 7242 /* Handle kalloc'ed objects */ 7243 if (unlikely(!folio_test_slab(folio))) { 7244 free_large_kmalloc(folio, object); 7245 df->slab = NULL; 7246 return size; 7247 } 7248 /* Derive kmem_cache from object */ 7249 df->slab = folio_slab(folio); 7250 df->s = df->slab->slab_cache; 7251 } else { 7252 df->slab = folio_slab(folio); 7253 df->s = cache_from_obj(s, object); /* Support for memcg */ 7254 } 7255 7256 /* Start new detached freelist */ 7257 df->tail = object; 7258 df->freelist = object; 7259 df->cnt = 1; 7260 7261 if (is_kfence_address(object)) 7262 return size; 7263 7264 set_freepointer(df->s, object, NULL); 7265 7266 same = size; 7267 while (size) { 7268 object = p[--size]; 7269 /* df->slab is always set at this point */ 7270 if (df->slab == virt_to_slab(object)) { 7271 /* Opportunity build freelist */ 7272 set_freepointer(df->s, object, df->freelist); 7273 df->freelist = object; 7274 df->cnt++; 7275 same--; 7276 if (size != same) 7277 swap(p[size], p[same]); 7278 continue; 7279 } 7280 7281 /* Limit look ahead search */ 7282 if (!--lookahead) 7283 break; 7284 } 7285 7286 return same; 7287 } 7288 7289 /* 7290 * Internal bulk free of objects that were not initialised by the post alloc 7291 * hooks and thus should not be processed by the free hooks 7292 */ 7293 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 7294 { 7295 if (!size) 7296 return; 7297 7298 do { 7299 struct detached_freelist df; 7300 7301 size = build_detached_freelist(s, size, p, &df); 7302 if (!df.slab) 7303 continue; 7304 7305 if (kfence_free(df.freelist)) 7306 continue; 7307 7308 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 7309 _RET_IP_); 7310 } while (likely(size)); 7311 } 7312 7313 /* Note that interrupts must be enabled when calling this function. */ 7314 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 7315 { 7316 if (!size) 7317 return; 7318 7319 /* 7320 * freeing to sheaves is so incompatible with the detached freelist so 7321 * once we go that way, we have to do everything differently 7322 */ 7323 if (s && s->cpu_sheaves) { 7324 free_to_pcs_bulk(s, size, p); 7325 return; 7326 } 7327 7328 do { 7329 struct detached_freelist df; 7330 7331 size = build_detached_freelist(s, size, p, &df); 7332 if (!df.slab) 7333 continue; 7334 7335 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 7336 df.cnt, _RET_IP_); 7337 } while (likely(size)); 7338 } 7339 EXPORT_SYMBOL(kmem_cache_free_bulk); 7340 7341 #ifndef CONFIG_SLUB_TINY 7342 static inline 7343 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 7344 void **p) 7345 { 7346 struct kmem_cache_cpu *c; 7347 unsigned long irqflags; 7348 int i; 7349 7350 /* 7351 * Drain objects in the per cpu slab, while disabling local 7352 * IRQs, which protects against PREEMPT and interrupts 7353 * handlers invoking normal fastpath. 7354 */ 7355 c = slub_get_cpu_ptr(s->cpu_slab); 7356 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 7357 7358 for (i = 0; i < size; i++) { 7359 void *object = kfence_alloc(s, s->object_size, flags); 7360 7361 if (unlikely(object)) { 7362 p[i] = object; 7363 continue; 7364 } 7365 7366 object = c->freelist; 7367 if (unlikely(!object)) { 7368 /* 7369 * We may have removed an object from c->freelist using 7370 * the fastpath in the previous iteration; in that case, 7371 * c->tid has not been bumped yet. 7372 * Since ___slab_alloc() may reenable interrupts while 7373 * allocating memory, we should bump c->tid now. 7374 */ 7375 c->tid = next_tid(c->tid); 7376 7377 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 7378 7379 /* 7380 * Invoking slow path likely have side-effect 7381 * of re-populating per CPU c->freelist 7382 */ 7383 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 7384 _RET_IP_, c, s->object_size); 7385 if (unlikely(!p[i])) 7386 goto error; 7387 7388 c = this_cpu_ptr(s->cpu_slab); 7389 maybe_wipe_obj_freeptr(s, p[i]); 7390 7391 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 7392 7393 continue; /* goto for-loop */ 7394 } 7395 c->freelist = get_freepointer(s, object); 7396 p[i] = object; 7397 maybe_wipe_obj_freeptr(s, p[i]); 7398 stat(s, ALLOC_FASTPATH); 7399 } 7400 c->tid = next_tid(c->tid); 7401 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 7402 slub_put_cpu_ptr(s->cpu_slab); 7403 7404 return i; 7405 7406 error: 7407 slub_put_cpu_ptr(s->cpu_slab); 7408 __kmem_cache_free_bulk(s, i, p); 7409 return 0; 7410 7411 } 7412 #else /* CONFIG_SLUB_TINY */ 7413 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 7414 size_t size, void **p) 7415 { 7416 int i; 7417 7418 for (i = 0; i < size; i++) { 7419 void *object = kfence_alloc(s, s->object_size, flags); 7420 7421 if (unlikely(object)) { 7422 p[i] = object; 7423 continue; 7424 } 7425 7426 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 7427 _RET_IP_, s->object_size); 7428 if (unlikely(!p[i])) 7429 goto error; 7430 7431 maybe_wipe_obj_freeptr(s, p[i]); 7432 } 7433 7434 return i; 7435 7436 error: 7437 __kmem_cache_free_bulk(s, i, p); 7438 return 0; 7439 } 7440 #endif /* CONFIG_SLUB_TINY */ 7441 7442 /* Note that interrupts must be enabled when calling this function. */ 7443 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 7444 void **p) 7445 { 7446 unsigned int i = 0; 7447 7448 if (!size) 7449 return 0; 7450 7451 s = slab_pre_alloc_hook(s, flags); 7452 if (unlikely(!s)) 7453 return 0; 7454 7455 if (s->cpu_sheaves) 7456 i = alloc_from_pcs_bulk(s, size, p); 7457 7458 if (i < size) { 7459 /* 7460 * If we ran out of memory, don't bother with freeing back to 7461 * the percpu sheaves, we have bigger problems. 7462 */ 7463 if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) { 7464 if (i > 0) 7465 __kmem_cache_free_bulk(s, i, p); 7466 return 0; 7467 } 7468 } 7469 7470 /* 7471 * memcg and kmem_cache debug support and memory initialization. 7472 * Done outside of the IRQ disabled fastpath loop. 7473 */ 7474 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 7475 slab_want_init_on_alloc(flags, s), s->object_size))) { 7476 return 0; 7477 } 7478 7479 return size; 7480 } 7481 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 7482 7483 /* 7484 * Object placement in a slab is made very easy because we always start at 7485 * offset 0. If we tune the size of the object to the alignment then we can 7486 * get the required alignment by putting one properly sized object after 7487 * another. 7488 * 7489 * Notice that the allocation order determines the sizes of the per cpu 7490 * caches. Each processor has always one slab available for allocations. 7491 * Increasing the allocation order reduces the number of times that slabs 7492 * must be moved on and off the partial lists and is therefore a factor in 7493 * locking overhead. 7494 */ 7495 7496 /* 7497 * Minimum / Maximum order of slab pages. This influences locking overhead 7498 * and slab fragmentation. A higher order reduces the number of partial slabs 7499 * and increases the number of allocations possible without having to 7500 * take the list_lock. 7501 */ 7502 static unsigned int slub_min_order; 7503 static unsigned int slub_max_order = 7504 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 7505 static unsigned int slub_min_objects; 7506 7507 /* 7508 * Calculate the order of allocation given an slab object size. 7509 * 7510 * The order of allocation has significant impact on performance and other 7511 * system components. Generally order 0 allocations should be preferred since 7512 * order 0 does not cause fragmentation in the page allocator. Larger objects 7513 * be problematic to put into order 0 slabs because there may be too much 7514 * unused space left. We go to a higher order if more than 1/16th of the slab 7515 * would be wasted. 7516 * 7517 * In order to reach satisfactory performance we must ensure that a minimum 7518 * number of objects is in one slab. Otherwise we may generate too much 7519 * activity on the partial lists which requires taking the list_lock. This is 7520 * less a concern for large slabs though which are rarely used. 7521 * 7522 * slab_max_order specifies the order where we begin to stop considering the 7523 * number of objects in a slab as critical. If we reach slab_max_order then 7524 * we try to keep the page order as low as possible. So we accept more waste 7525 * of space in favor of a small page order. 7526 * 7527 * Higher order allocations also allow the placement of more objects in a 7528 * slab and thereby reduce object handling overhead. If the user has 7529 * requested a higher minimum order then we start with that one instead of 7530 * the smallest order which will fit the object. 7531 */ 7532 static inline unsigned int calc_slab_order(unsigned int size, 7533 unsigned int min_order, unsigned int max_order, 7534 unsigned int fract_leftover) 7535 { 7536 unsigned int order; 7537 7538 for (order = min_order; order <= max_order; order++) { 7539 7540 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 7541 unsigned int rem; 7542 7543 rem = slab_size % size; 7544 7545 if (rem <= slab_size / fract_leftover) 7546 break; 7547 } 7548 7549 return order; 7550 } 7551 7552 static inline int calculate_order(unsigned int size) 7553 { 7554 unsigned int order; 7555 unsigned int min_objects; 7556 unsigned int max_objects; 7557 unsigned int min_order; 7558 7559 min_objects = slub_min_objects; 7560 if (!min_objects) { 7561 /* 7562 * Some architectures will only update present cpus when 7563 * onlining them, so don't trust the number if it's just 1. But 7564 * we also don't want to use nr_cpu_ids always, as on some other 7565 * architectures, there can be many possible cpus, but never 7566 * onlined. Here we compromise between trying to avoid too high 7567 * order on systems that appear larger than they are, and too 7568 * low order on systems that appear smaller than they are. 7569 */ 7570 unsigned int nr_cpus = num_present_cpus(); 7571 if (nr_cpus <= 1) 7572 nr_cpus = nr_cpu_ids; 7573 min_objects = 4 * (fls(nr_cpus) + 1); 7574 } 7575 /* min_objects can't be 0 because get_order(0) is undefined */ 7576 max_objects = max(order_objects(slub_max_order, size), 1U); 7577 min_objects = min(min_objects, max_objects); 7578 7579 min_order = max_t(unsigned int, slub_min_order, 7580 get_order(min_objects * size)); 7581 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 7582 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 7583 7584 /* 7585 * Attempt to find best configuration for a slab. This works by first 7586 * attempting to generate a layout with the best possible configuration 7587 * and backing off gradually. 7588 * 7589 * We start with accepting at most 1/16 waste and try to find the 7590 * smallest order from min_objects-derived/slab_min_order up to 7591 * slab_max_order that will satisfy the constraint. Note that increasing 7592 * the order can only result in same or less fractional waste, not more. 7593 * 7594 * If that fails, we increase the acceptable fraction of waste and try 7595 * again. The last iteration with fraction of 1/2 would effectively 7596 * accept any waste and give us the order determined by min_objects, as 7597 * long as at least single object fits within slab_max_order. 7598 */ 7599 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 7600 order = calc_slab_order(size, min_order, slub_max_order, 7601 fraction); 7602 if (order <= slub_max_order) 7603 return order; 7604 } 7605 7606 /* 7607 * Doh this slab cannot be placed using slab_max_order. 7608 */ 7609 order = get_order(size); 7610 if (order <= MAX_PAGE_ORDER) 7611 return order; 7612 return -ENOSYS; 7613 } 7614 7615 static void 7616 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn) 7617 { 7618 n->nr_partial = 0; 7619 spin_lock_init(&n->list_lock); 7620 INIT_LIST_HEAD(&n->partial); 7621 #ifdef CONFIG_SLUB_DEBUG 7622 atomic_long_set(&n->nr_slabs, 0); 7623 atomic_long_set(&n->total_objects, 0); 7624 INIT_LIST_HEAD(&n->full); 7625 #endif 7626 n->barn = barn; 7627 if (barn) 7628 barn_init(barn); 7629 } 7630 7631 #ifndef CONFIG_SLUB_TINY 7632 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 7633 { 7634 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 7635 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 7636 sizeof(struct kmem_cache_cpu)); 7637 7638 /* 7639 * Must align to double word boundary for the double cmpxchg 7640 * instructions to work; see __pcpu_double_call_return_bool(). 7641 */ 7642 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 7643 2 * sizeof(void *)); 7644 7645 if (!s->cpu_slab) 7646 return 0; 7647 7648 init_kmem_cache_cpus(s); 7649 7650 return 1; 7651 } 7652 #else 7653 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 7654 { 7655 return 1; 7656 } 7657 #endif /* CONFIG_SLUB_TINY */ 7658 7659 static int init_percpu_sheaves(struct kmem_cache *s) 7660 { 7661 int cpu; 7662 7663 for_each_possible_cpu(cpu) { 7664 struct slub_percpu_sheaves *pcs; 7665 7666 pcs = per_cpu_ptr(s->cpu_sheaves, cpu); 7667 7668 local_trylock_init(&pcs->lock); 7669 7670 pcs->main = alloc_empty_sheaf(s, GFP_KERNEL); 7671 7672 if (!pcs->main) 7673 return -ENOMEM; 7674 } 7675 7676 return 0; 7677 } 7678 7679 static struct kmem_cache *kmem_cache_node; 7680 7681 /* 7682 * No kmalloc_node yet so do it by hand. We know that this is the first 7683 * slab on the node for this slabcache. There are no concurrent accesses 7684 * possible. 7685 * 7686 * Note that this function only works on the kmem_cache_node 7687 * when allocating for the kmem_cache_node. This is used for bootstrapping 7688 * memory on a fresh node that has no slab structures yet. 7689 */ 7690 static void early_kmem_cache_node_alloc(int node) 7691 { 7692 struct slab *slab; 7693 struct kmem_cache_node *n; 7694 7695 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 7696 7697 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 7698 7699 BUG_ON(!slab); 7700 if (slab_nid(slab) != node) { 7701 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 7702 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 7703 } 7704 7705 n = slab->freelist; 7706 BUG_ON(!n); 7707 #ifdef CONFIG_SLUB_DEBUG 7708 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 7709 #endif 7710 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 7711 slab->freelist = get_freepointer(kmem_cache_node, n); 7712 slab->inuse = 1; 7713 kmem_cache_node->node[node] = n; 7714 init_kmem_cache_node(n, NULL); 7715 inc_slabs_node(kmem_cache_node, node, slab->objects); 7716 7717 /* 7718 * No locks need to be taken here as it has just been 7719 * initialized and there is no concurrent access. 7720 */ 7721 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 7722 } 7723 7724 static void free_kmem_cache_nodes(struct kmem_cache *s) 7725 { 7726 int node; 7727 struct kmem_cache_node *n; 7728 7729 for_each_kmem_cache_node(s, node, n) { 7730 if (n->barn) { 7731 WARN_ON(n->barn->nr_full); 7732 WARN_ON(n->barn->nr_empty); 7733 kfree(n->barn); 7734 n->barn = NULL; 7735 } 7736 7737 s->node[node] = NULL; 7738 kmem_cache_free(kmem_cache_node, n); 7739 } 7740 } 7741 7742 void __kmem_cache_release(struct kmem_cache *s) 7743 { 7744 cache_random_seq_destroy(s); 7745 if (s->cpu_sheaves) 7746 pcs_destroy(s); 7747 #ifndef CONFIG_SLUB_TINY 7748 #ifdef CONFIG_PREEMPT_RT 7749 if (s->cpu_slab) 7750 lockdep_unregister_key(&s->lock_key); 7751 #endif 7752 free_percpu(s->cpu_slab); 7753 #endif 7754 free_kmem_cache_nodes(s); 7755 } 7756 7757 static int init_kmem_cache_nodes(struct kmem_cache *s) 7758 { 7759 int node; 7760 7761 for_each_node_mask(node, slab_nodes) { 7762 struct kmem_cache_node *n; 7763 struct node_barn *barn = NULL; 7764 7765 if (slab_state == DOWN) { 7766 early_kmem_cache_node_alloc(node); 7767 continue; 7768 } 7769 7770 if (s->cpu_sheaves) { 7771 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node); 7772 7773 if (!barn) 7774 return 0; 7775 } 7776 7777 n = kmem_cache_alloc_node(kmem_cache_node, 7778 GFP_KERNEL, node); 7779 if (!n) { 7780 kfree(barn); 7781 return 0; 7782 } 7783 7784 init_kmem_cache_node(n, barn); 7785 7786 s->node[node] = n; 7787 } 7788 return 1; 7789 } 7790 7791 static void set_cpu_partial(struct kmem_cache *s) 7792 { 7793 #ifdef CONFIG_SLUB_CPU_PARTIAL 7794 unsigned int nr_objects; 7795 7796 /* 7797 * cpu_partial determined the maximum number of objects kept in the 7798 * per cpu partial lists of a processor. 7799 * 7800 * Per cpu partial lists mainly contain slabs that just have one 7801 * object freed. If they are used for allocation then they can be 7802 * filled up again with minimal effort. The slab will never hit the 7803 * per node partial lists and therefore no locking will be required. 7804 * 7805 * For backwards compatibility reasons, this is determined as number 7806 * of objects, even though we now limit maximum number of pages, see 7807 * slub_set_cpu_partial() 7808 */ 7809 if (!kmem_cache_has_cpu_partial(s)) 7810 nr_objects = 0; 7811 else if (s->size >= PAGE_SIZE) 7812 nr_objects = 6; 7813 else if (s->size >= 1024) 7814 nr_objects = 24; 7815 else if (s->size >= 256) 7816 nr_objects = 52; 7817 else 7818 nr_objects = 120; 7819 7820 slub_set_cpu_partial(s, nr_objects); 7821 #endif 7822 } 7823 7824 /* 7825 * calculate_sizes() determines the order and the distribution of data within 7826 * a slab object. 7827 */ 7828 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 7829 { 7830 slab_flags_t flags = s->flags; 7831 unsigned int size = s->object_size; 7832 unsigned int order; 7833 7834 /* 7835 * Round up object size to the next word boundary. We can only 7836 * place the free pointer at word boundaries and this determines 7837 * the possible location of the free pointer. 7838 */ 7839 size = ALIGN(size, sizeof(void *)); 7840 7841 #ifdef CONFIG_SLUB_DEBUG 7842 /* 7843 * Determine if we can poison the object itself. If the user of 7844 * the slab may touch the object after free or before allocation 7845 * then we should never poison the object itself. 7846 */ 7847 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 7848 !s->ctor) 7849 s->flags |= __OBJECT_POISON; 7850 else 7851 s->flags &= ~__OBJECT_POISON; 7852 7853 7854 /* 7855 * If we are Redzoning then check if there is some space between the 7856 * end of the object and the free pointer. If not then add an 7857 * additional word to have some bytes to store Redzone information. 7858 */ 7859 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 7860 size += sizeof(void *); 7861 #endif 7862 7863 /* 7864 * With that we have determined the number of bytes in actual use 7865 * by the object and redzoning. 7866 */ 7867 s->inuse = size; 7868 7869 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 7870 (flags & SLAB_POISON) || s->ctor || 7871 ((flags & SLAB_RED_ZONE) && 7872 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 7873 /* 7874 * Relocate free pointer after the object if it is not 7875 * permitted to overwrite the first word of the object on 7876 * kmem_cache_free. 7877 * 7878 * This is the case if we do RCU, have a constructor or 7879 * destructor, are poisoning the objects, or are 7880 * redzoning an object smaller than sizeof(void *) or are 7881 * redzoning an object with slub_debug_orig_size() enabled, 7882 * in which case the right redzone may be extended. 7883 * 7884 * The assumption that s->offset >= s->inuse means free 7885 * pointer is outside of the object is used in the 7886 * freeptr_outside_object() function. If that is no 7887 * longer true, the function needs to be modified. 7888 */ 7889 s->offset = size; 7890 size += sizeof(void *); 7891 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 7892 s->offset = args->freeptr_offset; 7893 } else { 7894 /* 7895 * Store freelist pointer near middle of object to keep 7896 * it away from the edges of the object to avoid small 7897 * sized over/underflows from neighboring allocations. 7898 */ 7899 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 7900 } 7901 7902 #ifdef CONFIG_SLUB_DEBUG 7903 if (flags & SLAB_STORE_USER) { 7904 /* 7905 * Need to store information about allocs and frees after 7906 * the object. 7907 */ 7908 size += 2 * sizeof(struct track); 7909 7910 /* Save the original kmalloc request size */ 7911 if (flags & SLAB_KMALLOC) 7912 size += sizeof(unsigned int); 7913 } 7914 #endif 7915 7916 kasan_cache_create(s, &size, &s->flags); 7917 #ifdef CONFIG_SLUB_DEBUG 7918 if (flags & SLAB_RED_ZONE) { 7919 /* 7920 * Add some empty padding so that we can catch 7921 * overwrites from earlier objects rather than let 7922 * tracking information or the free pointer be 7923 * corrupted if a user writes before the start 7924 * of the object. 7925 */ 7926 size += sizeof(void *); 7927 7928 s->red_left_pad = sizeof(void *); 7929 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 7930 size += s->red_left_pad; 7931 } 7932 #endif 7933 7934 /* 7935 * SLUB stores one object immediately after another beginning from 7936 * offset 0. In order to align the objects we have to simply size 7937 * each object to conform to the alignment. 7938 */ 7939 size = ALIGN(size, s->align); 7940 s->size = size; 7941 s->reciprocal_size = reciprocal_value(size); 7942 order = calculate_order(size); 7943 7944 if ((int)order < 0) 7945 return 0; 7946 7947 s->allocflags = __GFP_COMP; 7948 7949 if (s->flags & SLAB_CACHE_DMA) 7950 s->allocflags |= GFP_DMA; 7951 7952 if (s->flags & SLAB_CACHE_DMA32) 7953 s->allocflags |= GFP_DMA32; 7954 7955 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7956 s->allocflags |= __GFP_RECLAIMABLE; 7957 7958 /* 7959 * Determine the number of objects per slab 7960 */ 7961 s->oo = oo_make(order, size); 7962 s->min = oo_make(get_order(size), size); 7963 7964 return !!oo_objects(s->oo); 7965 } 7966 7967 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 7968 { 7969 #ifdef CONFIG_SLUB_DEBUG 7970 void *addr = slab_address(slab); 7971 void *p; 7972 7973 if (!slab_add_kunit_errors()) 7974 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 7975 7976 spin_lock(&object_map_lock); 7977 __fill_map(object_map, s, slab); 7978 7979 for_each_object(p, s, addr, slab->objects) { 7980 7981 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 7982 if (slab_add_kunit_errors()) 7983 continue; 7984 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 7985 print_tracking(s, p); 7986 } 7987 } 7988 spin_unlock(&object_map_lock); 7989 7990 __slab_err(slab); 7991 #endif 7992 } 7993 7994 /* 7995 * Attempt to free all partial slabs on a node. 7996 * This is called from __kmem_cache_shutdown(). We must take list_lock 7997 * because sysfs file might still access partial list after the shutdowning. 7998 */ 7999 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 8000 { 8001 LIST_HEAD(discard); 8002 struct slab *slab, *h; 8003 8004 BUG_ON(irqs_disabled()); 8005 spin_lock_irq(&n->list_lock); 8006 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 8007 if (!slab->inuse) { 8008 remove_partial(n, slab); 8009 list_add(&slab->slab_list, &discard); 8010 } else { 8011 list_slab_objects(s, slab); 8012 } 8013 } 8014 spin_unlock_irq(&n->list_lock); 8015 8016 list_for_each_entry_safe(slab, h, &discard, slab_list) 8017 discard_slab(s, slab); 8018 } 8019 8020 bool __kmem_cache_empty(struct kmem_cache *s) 8021 { 8022 int node; 8023 struct kmem_cache_node *n; 8024 8025 for_each_kmem_cache_node(s, node, n) 8026 if (n->nr_partial || node_nr_slabs(n)) 8027 return false; 8028 return true; 8029 } 8030 8031 /* 8032 * Release all resources used by a slab cache. 8033 */ 8034 int __kmem_cache_shutdown(struct kmem_cache *s) 8035 { 8036 int node; 8037 struct kmem_cache_node *n; 8038 8039 flush_all_cpus_locked(s); 8040 8041 /* we might have rcu sheaves in flight */ 8042 if (s->cpu_sheaves) 8043 rcu_barrier(); 8044 8045 /* Attempt to free all objects */ 8046 for_each_kmem_cache_node(s, node, n) { 8047 if (n->barn) 8048 barn_shrink(s, n->barn); 8049 free_partial(s, n); 8050 if (n->nr_partial || node_nr_slabs(n)) 8051 return 1; 8052 } 8053 return 0; 8054 } 8055 8056 #ifdef CONFIG_PRINTK 8057 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 8058 { 8059 void *base; 8060 int __maybe_unused i; 8061 unsigned int objnr; 8062 void *objp; 8063 void *objp0; 8064 struct kmem_cache *s = slab->slab_cache; 8065 struct track __maybe_unused *trackp; 8066 8067 kpp->kp_ptr = object; 8068 kpp->kp_slab = slab; 8069 kpp->kp_slab_cache = s; 8070 base = slab_address(slab); 8071 objp0 = kasan_reset_tag(object); 8072 #ifdef CONFIG_SLUB_DEBUG 8073 objp = restore_red_left(s, objp0); 8074 #else 8075 objp = objp0; 8076 #endif 8077 objnr = obj_to_index(s, slab, objp); 8078 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 8079 objp = base + s->size * objnr; 8080 kpp->kp_objp = objp; 8081 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 8082 || (objp - base) % s->size) || 8083 !(s->flags & SLAB_STORE_USER)) 8084 return; 8085 #ifdef CONFIG_SLUB_DEBUG 8086 objp = fixup_red_left(s, objp); 8087 trackp = get_track(s, objp, TRACK_ALLOC); 8088 kpp->kp_ret = (void *)trackp->addr; 8089 #ifdef CONFIG_STACKDEPOT 8090 { 8091 depot_stack_handle_t handle; 8092 unsigned long *entries; 8093 unsigned int nr_entries; 8094 8095 handle = READ_ONCE(trackp->handle); 8096 if (handle) { 8097 nr_entries = stack_depot_fetch(handle, &entries); 8098 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 8099 kpp->kp_stack[i] = (void *)entries[i]; 8100 } 8101 8102 trackp = get_track(s, objp, TRACK_FREE); 8103 handle = READ_ONCE(trackp->handle); 8104 if (handle) { 8105 nr_entries = stack_depot_fetch(handle, &entries); 8106 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 8107 kpp->kp_free_stack[i] = (void *)entries[i]; 8108 } 8109 } 8110 #endif 8111 #endif 8112 } 8113 #endif 8114 8115 /******************************************************************** 8116 * Kmalloc subsystem 8117 *******************************************************************/ 8118 8119 static int __init setup_slub_min_order(char *str) 8120 { 8121 get_option(&str, (int *)&slub_min_order); 8122 8123 if (slub_min_order > slub_max_order) 8124 slub_max_order = slub_min_order; 8125 8126 return 1; 8127 } 8128 8129 __setup("slab_min_order=", setup_slub_min_order); 8130 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 8131 8132 8133 static int __init setup_slub_max_order(char *str) 8134 { 8135 get_option(&str, (int *)&slub_max_order); 8136 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 8137 8138 if (slub_min_order > slub_max_order) 8139 slub_min_order = slub_max_order; 8140 8141 return 1; 8142 } 8143 8144 __setup("slab_max_order=", setup_slub_max_order); 8145 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 8146 8147 static int __init setup_slub_min_objects(char *str) 8148 { 8149 get_option(&str, (int *)&slub_min_objects); 8150 8151 return 1; 8152 } 8153 8154 __setup("slab_min_objects=", setup_slub_min_objects); 8155 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 8156 8157 #ifdef CONFIG_NUMA 8158 static int __init setup_slab_strict_numa(char *str) 8159 { 8160 if (nr_node_ids > 1) { 8161 static_branch_enable(&strict_numa); 8162 pr_info("SLUB: Strict NUMA enabled.\n"); 8163 } else { 8164 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 8165 } 8166 8167 return 1; 8168 } 8169 8170 __setup("slab_strict_numa", setup_slab_strict_numa); 8171 #endif 8172 8173 8174 #ifdef CONFIG_HARDENED_USERCOPY 8175 /* 8176 * Rejects incorrectly sized objects and objects that are to be copied 8177 * to/from userspace but do not fall entirely within the containing slab 8178 * cache's usercopy region. 8179 * 8180 * Returns NULL if check passes, otherwise const char * to name of cache 8181 * to indicate an error. 8182 */ 8183 void __check_heap_object(const void *ptr, unsigned long n, 8184 const struct slab *slab, bool to_user) 8185 { 8186 struct kmem_cache *s; 8187 unsigned int offset; 8188 bool is_kfence = is_kfence_address(ptr); 8189 8190 ptr = kasan_reset_tag(ptr); 8191 8192 /* Find object and usable object size. */ 8193 s = slab->slab_cache; 8194 8195 /* Reject impossible pointers. */ 8196 if (ptr < slab_address(slab)) 8197 usercopy_abort("SLUB object not in SLUB page?!", NULL, 8198 to_user, 0, n); 8199 8200 /* Find offset within object. */ 8201 if (is_kfence) 8202 offset = ptr - kfence_object_start(ptr); 8203 else 8204 offset = (ptr - slab_address(slab)) % s->size; 8205 8206 /* Adjust for redzone and reject if within the redzone. */ 8207 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 8208 if (offset < s->red_left_pad) 8209 usercopy_abort("SLUB object in left red zone", 8210 s->name, to_user, offset, n); 8211 offset -= s->red_left_pad; 8212 } 8213 8214 /* Allow address range falling entirely within usercopy region. */ 8215 if (offset >= s->useroffset && 8216 offset - s->useroffset <= s->usersize && 8217 n <= s->useroffset - offset + s->usersize) 8218 return; 8219 8220 usercopy_abort("SLUB object", s->name, to_user, offset, n); 8221 } 8222 #endif /* CONFIG_HARDENED_USERCOPY */ 8223 8224 #define SHRINK_PROMOTE_MAX 32 8225 8226 /* 8227 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 8228 * up most to the head of the partial lists. New allocations will then 8229 * fill those up and thus they can be removed from the partial lists. 8230 * 8231 * The slabs with the least items are placed last. This results in them 8232 * being allocated from last increasing the chance that the last objects 8233 * are freed in them. 8234 */ 8235 static int __kmem_cache_do_shrink(struct kmem_cache *s) 8236 { 8237 int node; 8238 int i; 8239 struct kmem_cache_node *n; 8240 struct slab *slab; 8241 struct slab *t; 8242 struct list_head discard; 8243 struct list_head promote[SHRINK_PROMOTE_MAX]; 8244 unsigned long flags; 8245 int ret = 0; 8246 8247 for_each_kmem_cache_node(s, node, n) { 8248 INIT_LIST_HEAD(&discard); 8249 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 8250 INIT_LIST_HEAD(promote + i); 8251 8252 if (n->barn) 8253 barn_shrink(s, n->barn); 8254 8255 spin_lock_irqsave(&n->list_lock, flags); 8256 8257 /* 8258 * Build lists of slabs to discard or promote. 8259 * 8260 * Note that concurrent frees may occur while we hold the 8261 * list_lock. slab->inuse here is the upper limit. 8262 */ 8263 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 8264 int free = slab->objects - slab->inuse; 8265 8266 /* Do not reread slab->inuse */ 8267 barrier(); 8268 8269 /* We do not keep full slabs on the list */ 8270 BUG_ON(free <= 0); 8271 8272 if (free == slab->objects) { 8273 list_move(&slab->slab_list, &discard); 8274 slab_clear_node_partial(slab); 8275 n->nr_partial--; 8276 dec_slabs_node(s, node, slab->objects); 8277 } else if (free <= SHRINK_PROMOTE_MAX) 8278 list_move(&slab->slab_list, promote + free - 1); 8279 } 8280 8281 /* 8282 * Promote the slabs filled up most to the head of the 8283 * partial list. 8284 */ 8285 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 8286 list_splice(promote + i, &n->partial); 8287 8288 spin_unlock_irqrestore(&n->list_lock, flags); 8289 8290 /* Release empty slabs */ 8291 list_for_each_entry_safe(slab, t, &discard, slab_list) 8292 free_slab(s, slab); 8293 8294 if (node_nr_slabs(n)) 8295 ret = 1; 8296 } 8297 8298 return ret; 8299 } 8300 8301 int __kmem_cache_shrink(struct kmem_cache *s) 8302 { 8303 flush_all(s); 8304 return __kmem_cache_do_shrink(s); 8305 } 8306 8307 static int slab_mem_going_offline_callback(void) 8308 { 8309 struct kmem_cache *s; 8310 8311 mutex_lock(&slab_mutex); 8312 list_for_each_entry(s, &slab_caches, list) { 8313 flush_all_cpus_locked(s); 8314 __kmem_cache_do_shrink(s); 8315 } 8316 mutex_unlock(&slab_mutex); 8317 8318 return 0; 8319 } 8320 8321 static int slab_mem_going_online_callback(int nid) 8322 { 8323 struct kmem_cache_node *n; 8324 struct kmem_cache *s; 8325 int ret = 0; 8326 8327 /* 8328 * We are bringing a node online. No memory is available yet. We must 8329 * allocate a kmem_cache_node structure in order to bring the node 8330 * online. 8331 */ 8332 mutex_lock(&slab_mutex); 8333 list_for_each_entry(s, &slab_caches, list) { 8334 struct node_barn *barn = NULL; 8335 8336 /* 8337 * The structure may already exist if the node was previously 8338 * onlined and offlined. 8339 */ 8340 if (get_node(s, nid)) 8341 continue; 8342 8343 if (s->cpu_sheaves) { 8344 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid); 8345 8346 if (!barn) { 8347 ret = -ENOMEM; 8348 goto out; 8349 } 8350 } 8351 8352 /* 8353 * XXX: kmem_cache_alloc_node will fallback to other nodes 8354 * since memory is not yet available from the node that 8355 * is brought up. 8356 */ 8357 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 8358 if (!n) { 8359 kfree(barn); 8360 ret = -ENOMEM; 8361 goto out; 8362 } 8363 8364 init_kmem_cache_node(n, barn); 8365 8366 s->node[nid] = n; 8367 } 8368 /* 8369 * Any cache created after this point will also have kmem_cache_node 8370 * initialized for the new node. 8371 */ 8372 node_set(nid, slab_nodes); 8373 out: 8374 mutex_unlock(&slab_mutex); 8375 return ret; 8376 } 8377 8378 static int slab_memory_callback(struct notifier_block *self, 8379 unsigned long action, void *arg) 8380 { 8381 struct node_notify *nn = arg; 8382 int nid = nn->nid; 8383 int ret = 0; 8384 8385 switch (action) { 8386 case NODE_ADDING_FIRST_MEMORY: 8387 ret = slab_mem_going_online_callback(nid); 8388 break; 8389 case NODE_REMOVING_LAST_MEMORY: 8390 ret = slab_mem_going_offline_callback(); 8391 break; 8392 } 8393 if (ret) 8394 ret = notifier_from_errno(ret); 8395 else 8396 ret = NOTIFY_OK; 8397 return ret; 8398 } 8399 8400 /******************************************************************** 8401 * Basic setup of slabs 8402 *******************************************************************/ 8403 8404 /* 8405 * Used for early kmem_cache structures that were allocated using 8406 * the page allocator. Allocate them properly then fix up the pointers 8407 * that may be pointing to the wrong kmem_cache structure. 8408 */ 8409 8410 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 8411 { 8412 int node; 8413 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 8414 struct kmem_cache_node *n; 8415 8416 memcpy(s, static_cache, kmem_cache->object_size); 8417 8418 /* 8419 * This runs very early, and only the boot processor is supposed to be 8420 * up. Even if it weren't true, IRQs are not up so we couldn't fire 8421 * IPIs around. 8422 */ 8423 __flush_cpu_slab(s, smp_processor_id()); 8424 for_each_kmem_cache_node(s, node, n) { 8425 struct slab *p; 8426 8427 list_for_each_entry(p, &n->partial, slab_list) 8428 p->slab_cache = s; 8429 8430 #ifdef CONFIG_SLUB_DEBUG 8431 list_for_each_entry(p, &n->full, slab_list) 8432 p->slab_cache = s; 8433 #endif 8434 } 8435 list_add(&s->list, &slab_caches); 8436 return s; 8437 } 8438 8439 void __init kmem_cache_init(void) 8440 { 8441 static __initdata struct kmem_cache boot_kmem_cache, 8442 boot_kmem_cache_node; 8443 int node; 8444 8445 if (debug_guardpage_minorder()) 8446 slub_max_order = 0; 8447 8448 /* Inform pointer hashing choice about slub debugging state. */ 8449 hash_pointers_finalize(__slub_debug_enabled()); 8450 8451 kmem_cache_node = &boot_kmem_cache_node; 8452 kmem_cache = &boot_kmem_cache; 8453 8454 /* 8455 * Initialize the nodemask for which we will allocate per node 8456 * structures. Here we don't need taking slab_mutex yet. 8457 */ 8458 for_each_node_state(node, N_MEMORY) 8459 node_set(node, slab_nodes); 8460 8461 create_boot_cache(kmem_cache_node, "kmem_cache_node", 8462 sizeof(struct kmem_cache_node), 8463 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 8464 8465 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 8466 8467 /* Able to allocate the per node structures */ 8468 slab_state = PARTIAL; 8469 8470 create_boot_cache(kmem_cache, "kmem_cache", 8471 offsetof(struct kmem_cache, node) + 8472 nr_node_ids * sizeof(struct kmem_cache_node *), 8473 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 8474 8475 kmem_cache = bootstrap(&boot_kmem_cache); 8476 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 8477 8478 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 8479 setup_kmalloc_cache_index_table(); 8480 create_kmalloc_caches(); 8481 8482 /* Setup random freelists for each cache */ 8483 init_freelist_randomization(); 8484 8485 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 8486 slub_cpu_dead); 8487 8488 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 8489 cache_line_size(), 8490 slub_min_order, slub_max_order, slub_min_objects, 8491 nr_cpu_ids, nr_node_ids); 8492 } 8493 8494 void __init kmem_cache_init_late(void) 8495 { 8496 #ifndef CONFIG_SLUB_TINY 8497 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 8498 WARN_ON(!flushwq); 8499 #endif 8500 } 8501 8502 struct kmem_cache * 8503 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 8504 slab_flags_t flags, void (*ctor)(void *)) 8505 { 8506 struct kmem_cache *s; 8507 8508 s = find_mergeable(size, align, flags, name, ctor); 8509 if (s) { 8510 if (sysfs_slab_alias(s, name)) 8511 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 8512 name); 8513 8514 s->refcount++; 8515 8516 /* 8517 * Adjust the object sizes so that we clear 8518 * the complete object on kzalloc. 8519 */ 8520 s->object_size = max(s->object_size, size); 8521 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 8522 } 8523 8524 return s; 8525 } 8526 8527 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 8528 unsigned int size, struct kmem_cache_args *args, 8529 slab_flags_t flags) 8530 { 8531 int err = -EINVAL; 8532 8533 s->name = name; 8534 s->size = s->object_size = size; 8535 8536 s->flags = kmem_cache_flags(flags, s->name); 8537 #ifdef CONFIG_SLAB_FREELIST_HARDENED 8538 s->random = get_random_long(); 8539 #endif 8540 s->align = args->align; 8541 s->ctor = args->ctor; 8542 #ifdef CONFIG_HARDENED_USERCOPY 8543 s->useroffset = args->useroffset; 8544 s->usersize = args->usersize; 8545 #endif 8546 8547 if (!calculate_sizes(args, s)) 8548 goto out; 8549 if (disable_higher_order_debug) { 8550 /* 8551 * Disable debugging flags that store metadata if the min slab 8552 * order increased. 8553 */ 8554 if (get_order(s->size) > get_order(s->object_size)) { 8555 s->flags &= ~DEBUG_METADATA_FLAGS; 8556 s->offset = 0; 8557 if (!calculate_sizes(args, s)) 8558 goto out; 8559 } 8560 } 8561 8562 #ifdef system_has_freelist_aba 8563 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 8564 /* Enable fast mode */ 8565 s->flags |= __CMPXCHG_DOUBLE; 8566 } 8567 #endif 8568 8569 /* 8570 * The larger the object size is, the more slabs we want on the partial 8571 * list to avoid pounding the page allocator excessively. 8572 */ 8573 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 8574 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 8575 8576 set_cpu_partial(s); 8577 8578 if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY) 8579 && !(s->flags & SLAB_DEBUG_FLAGS)) { 8580 s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves); 8581 if (!s->cpu_sheaves) { 8582 err = -ENOMEM; 8583 goto out; 8584 } 8585 // TODO: increase capacity to grow slab_sheaf up to next kmalloc size? 8586 s->sheaf_capacity = args->sheaf_capacity; 8587 } 8588 8589 #ifdef CONFIG_NUMA 8590 s->remote_node_defrag_ratio = 1000; 8591 #endif 8592 8593 /* Initialize the pre-computed randomized freelist if slab is up */ 8594 if (slab_state >= UP) { 8595 if (init_cache_random_seq(s)) 8596 goto out; 8597 } 8598 8599 if (!init_kmem_cache_nodes(s)) 8600 goto out; 8601 8602 if (!alloc_kmem_cache_cpus(s)) 8603 goto out; 8604 8605 if (s->cpu_sheaves) { 8606 err = init_percpu_sheaves(s); 8607 if (err) 8608 goto out; 8609 } 8610 8611 err = 0; 8612 8613 /* Mutex is not taken during early boot */ 8614 if (slab_state <= UP) 8615 goto out; 8616 8617 /* 8618 * Failing to create sysfs files is not critical to SLUB functionality. 8619 * If it fails, proceed with cache creation without these files. 8620 */ 8621 if (sysfs_slab_add(s)) 8622 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 8623 8624 if (s->flags & SLAB_STORE_USER) 8625 debugfs_slab_add(s); 8626 8627 out: 8628 if (err) 8629 __kmem_cache_release(s); 8630 return err; 8631 } 8632 8633 #ifdef SLAB_SUPPORTS_SYSFS 8634 static int count_inuse(struct slab *slab) 8635 { 8636 return slab->inuse; 8637 } 8638 8639 static int count_total(struct slab *slab) 8640 { 8641 return slab->objects; 8642 } 8643 #endif 8644 8645 #ifdef CONFIG_SLUB_DEBUG 8646 static void validate_slab(struct kmem_cache *s, struct slab *slab, 8647 unsigned long *obj_map) 8648 { 8649 void *p; 8650 void *addr = slab_address(slab); 8651 8652 if (!validate_slab_ptr(slab)) { 8653 slab_err(s, slab, "Not a valid slab page"); 8654 return; 8655 } 8656 8657 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 8658 return; 8659 8660 /* Now we know that a valid freelist exists */ 8661 __fill_map(obj_map, s, slab); 8662 for_each_object(p, s, addr, slab->objects) { 8663 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 8664 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 8665 8666 if (!check_object(s, slab, p, val)) 8667 break; 8668 } 8669 } 8670 8671 static int validate_slab_node(struct kmem_cache *s, 8672 struct kmem_cache_node *n, unsigned long *obj_map) 8673 { 8674 unsigned long count = 0; 8675 struct slab *slab; 8676 unsigned long flags; 8677 8678 spin_lock_irqsave(&n->list_lock, flags); 8679 8680 list_for_each_entry(slab, &n->partial, slab_list) { 8681 validate_slab(s, slab, obj_map); 8682 count++; 8683 } 8684 if (count != n->nr_partial) { 8685 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 8686 s->name, count, n->nr_partial); 8687 slab_add_kunit_errors(); 8688 } 8689 8690 if (!(s->flags & SLAB_STORE_USER)) 8691 goto out; 8692 8693 list_for_each_entry(slab, &n->full, slab_list) { 8694 validate_slab(s, slab, obj_map); 8695 count++; 8696 } 8697 if (count != node_nr_slabs(n)) { 8698 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 8699 s->name, count, node_nr_slabs(n)); 8700 slab_add_kunit_errors(); 8701 } 8702 8703 out: 8704 spin_unlock_irqrestore(&n->list_lock, flags); 8705 return count; 8706 } 8707 8708 long validate_slab_cache(struct kmem_cache *s) 8709 { 8710 int node; 8711 unsigned long count = 0; 8712 struct kmem_cache_node *n; 8713 unsigned long *obj_map; 8714 8715 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 8716 if (!obj_map) 8717 return -ENOMEM; 8718 8719 flush_all(s); 8720 for_each_kmem_cache_node(s, node, n) 8721 count += validate_slab_node(s, n, obj_map); 8722 8723 bitmap_free(obj_map); 8724 8725 return count; 8726 } 8727 EXPORT_SYMBOL(validate_slab_cache); 8728 8729 #ifdef CONFIG_DEBUG_FS 8730 /* 8731 * Generate lists of code addresses where slabcache objects are allocated 8732 * and freed. 8733 */ 8734 8735 struct location { 8736 depot_stack_handle_t handle; 8737 unsigned long count; 8738 unsigned long addr; 8739 unsigned long waste; 8740 long long sum_time; 8741 long min_time; 8742 long max_time; 8743 long min_pid; 8744 long max_pid; 8745 DECLARE_BITMAP(cpus, NR_CPUS); 8746 nodemask_t nodes; 8747 }; 8748 8749 struct loc_track { 8750 unsigned long max; 8751 unsigned long count; 8752 struct location *loc; 8753 loff_t idx; 8754 }; 8755 8756 static struct dentry *slab_debugfs_root; 8757 8758 static void free_loc_track(struct loc_track *t) 8759 { 8760 if (t->max) 8761 free_pages((unsigned long)t->loc, 8762 get_order(sizeof(struct location) * t->max)); 8763 } 8764 8765 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 8766 { 8767 struct location *l; 8768 int order; 8769 8770 order = get_order(sizeof(struct location) * max); 8771 8772 l = (void *)__get_free_pages(flags, order); 8773 if (!l) 8774 return 0; 8775 8776 if (t->count) { 8777 memcpy(l, t->loc, sizeof(struct location) * t->count); 8778 free_loc_track(t); 8779 } 8780 t->max = max; 8781 t->loc = l; 8782 return 1; 8783 } 8784 8785 static int add_location(struct loc_track *t, struct kmem_cache *s, 8786 const struct track *track, 8787 unsigned int orig_size) 8788 { 8789 long start, end, pos; 8790 struct location *l; 8791 unsigned long caddr, chandle, cwaste; 8792 unsigned long age = jiffies - track->when; 8793 depot_stack_handle_t handle = 0; 8794 unsigned int waste = s->object_size - orig_size; 8795 8796 #ifdef CONFIG_STACKDEPOT 8797 handle = READ_ONCE(track->handle); 8798 #endif 8799 start = -1; 8800 end = t->count; 8801 8802 for ( ; ; ) { 8803 pos = start + (end - start + 1) / 2; 8804 8805 /* 8806 * There is nothing at "end". If we end up there 8807 * we need to add something to before end. 8808 */ 8809 if (pos == end) 8810 break; 8811 8812 l = &t->loc[pos]; 8813 caddr = l->addr; 8814 chandle = l->handle; 8815 cwaste = l->waste; 8816 if ((track->addr == caddr) && (handle == chandle) && 8817 (waste == cwaste)) { 8818 8819 l->count++; 8820 if (track->when) { 8821 l->sum_time += age; 8822 if (age < l->min_time) 8823 l->min_time = age; 8824 if (age > l->max_time) 8825 l->max_time = age; 8826 8827 if (track->pid < l->min_pid) 8828 l->min_pid = track->pid; 8829 if (track->pid > l->max_pid) 8830 l->max_pid = track->pid; 8831 8832 cpumask_set_cpu(track->cpu, 8833 to_cpumask(l->cpus)); 8834 } 8835 node_set(page_to_nid(virt_to_page(track)), l->nodes); 8836 return 1; 8837 } 8838 8839 if (track->addr < caddr) 8840 end = pos; 8841 else if (track->addr == caddr && handle < chandle) 8842 end = pos; 8843 else if (track->addr == caddr && handle == chandle && 8844 waste < cwaste) 8845 end = pos; 8846 else 8847 start = pos; 8848 } 8849 8850 /* 8851 * Not found. Insert new tracking element. 8852 */ 8853 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 8854 return 0; 8855 8856 l = t->loc + pos; 8857 if (pos < t->count) 8858 memmove(l + 1, l, 8859 (t->count - pos) * sizeof(struct location)); 8860 t->count++; 8861 l->count = 1; 8862 l->addr = track->addr; 8863 l->sum_time = age; 8864 l->min_time = age; 8865 l->max_time = age; 8866 l->min_pid = track->pid; 8867 l->max_pid = track->pid; 8868 l->handle = handle; 8869 l->waste = waste; 8870 cpumask_clear(to_cpumask(l->cpus)); 8871 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 8872 nodes_clear(l->nodes); 8873 node_set(page_to_nid(virt_to_page(track)), l->nodes); 8874 return 1; 8875 } 8876 8877 static void process_slab(struct loc_track *t, struct kmem_cache *s, 8878 struct slab *slab, enum track_item alloc, 8879 unsigned long *obj_map) 8880 { 8881 void *addr = slab_address(slab); 8882 bool is_alloc = (alloc == TRACK_ALLOC); 8883 void *p; 8884 8885 __fill_map(obj_map, s, slab); 8886 8887 for_each_object(p, s, addr, slab->objects) 8888 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 8889 add_location(t, s, get_track(s, p, alloc), 8890 is_alloc ? get_orig_size(s, p) : 8891 s->object_size); 8892 } 8893 #endif /* CONFIG_DEBUG_FS */ 8894 #endif /* CONFIG_SLUB_DEBUG */ 8895 8896 #ifdef SLAB_SUPPORTS_SYSFS 8897 enum slab_stat_type { 8898 SL_ALL, /* All slabs */ 8899 SL_PARTIAL, /* Only partially allocated slabs */ 8900 SL_CPU, /* Only slabs used for cpu caches */ 8901 SL_OBJECTS, /* Determine allocated objects not slabs */ 8902 SL_TOTAL /* Determine object capacity not slabs */ 8903 }; 8904 8905 #define SO_ALL (1 << SL_ALL) 8906 #define SO_PARTIAL (1 << SL_PARTIAL) 8907 #define SO_CPU (1 << SL_CPU) 8908 #define SO_OBJECTS (1 << SL_OBJECTS) 8909 #define SO_TOTAL (1 << SL_TOTAL) 8910 8911 static ssize_t show_slab_objects(struct kmem_cache *s, 8912 char *buf, unsigned long flags) 8913 { 8914 unsigned long total = 0; 8915 int node; 8916 int x; 8917 unsigned long *nodes; 8918 int len = 0; 8919 8920 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 8921 if (!nodes) 8922 return -ENOMEM; 8923 8924 if (flags & SO_CPU) { 8925 int cpu; 8926 8927 for_each_possible_cpu(cpu) { 8928 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 8929 cpu); 8930 int node; 8931 struct slab *slab; 8932 8933 slab = READ_ONCE(c->slab); 8934 if (!slab) 8935 continue; 8936 8937 node = slab_nid(slab); 8938 if (flags & SO_TOTAL) 8939 x = slab->objects; 8940 else if (flags & SO_OBJECTS) 8941 x = slab->inuse; 8942 else 8943 x = 1; 8944 8945 total += x; 8946 nodes[node] += x; 8947 8948 #ifdef CONFIG_SLUB_CPU_PARTIAL 8949 slab = slub_percpu_partial_read_once(c); 8950 if (slab) { 8951 node = slab_nid(slab); 8952 if (flags & SO_TOTAL) 8953 WARN_ON_ONCE(1); 8954 else if (flags & SO_OBJECTS) 8955 WARN_ON_ONCE(1); 8956 else 8957 x = data_race(slab->slabs); 8958 total += x; 8959 nodes[node] += x; 8960 } 8961 #endif 8962 } 8963 } 8964 8965 /* 8966 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 8967 * already held which will conflict with an existing lock order: 8968 * 8969 * mem_hotplug_lock->slab_mutex->kernfs_mutex 8970 * 8971 * We don't really need mem_hotplug_lock (to hold off 8972 * slab_mem_going_offline_callback) here because slab's memory hot 8973 * unplug code doesn't destroy the kmem_cache->node[] data. 8974 */ 8975 8976 #ifdef CONFIG_SLUB_DEBUG 8977 if (flags & SO_ALL) { 8978 struct kmem_cache_node *n; 8979 8980 for_each_kmem_cache_node(s, node, n) { 8981 8982 if (flags & SO_TOTAL) 8983 x = node_nr_objs(n); 8984 else if (flags & SO_OBJECTS) 8985 x = node_nr_objs(n) - count_partial(n, count_free); 8986 else 8987 x = node_nr_slabs(n); 8988 total += x; 8989 nodes[node] += x; 8990 } 8991 8992 } else 8993 #endif 8994 if (flags & SO_PARTIAL) { 8995 struct kmem_cache_node *n; 8996 8997 for_each_kmem_cache_node(s, node, n) { 8998 if (flags & SO_TOTAL) 8999 x = count_partial(n, count_total); 9000 else if (flags & SO_OBJECTS) 9001 x = count_partial(n, count_inuse); 9002 else 9003 x = n->nr_partial; 9004 total += x; 9005 nodes[node] += x; 9006 } 9007 } 9008 9009 len += sysfs_emit_at(buf, len, "%lu", total); 9010 #ifdef CONFIG_NUMA 9011 for (node = 0; node < nr_node_ids; node++) { 9012 if (nodes[node]) 9013 len += sysfs_emit_at(buf, len, " N%d=%lu", 9014 node, nodes[node]); 9015 } 9016 #endif 9017 len += sysfs_emit_at(buf, len, "\n"); 9018 kfree(nodes); 9019 9020 return len; 9021 } 9022 9023 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 9024 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 9025 9026 struct slab_attribute { 9027 struct attribute attr; 9028 ssize_t (*show)(struct kmem_cache *s, char *buf); 9029 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 9030 }; 9031 9032 #define SLAB_ATTR_RO(_name) \ 9033 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 9034 9035 #define SLAB_ATTR(_name) \ 9036 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 9037 9038 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 9039 { 9040 return sysfs_emit(buf, "%u\n", s->size); 9041 } 9042 SLAB_ATTR_RO(slab_size); 9043 9044 static ssize_t align_show(struct kmem_cache *s, char *buf) 9045 { 9046 return sysfs_emit(buf, "%u\n", s->align); 9047 } 9048 SLAB_ATTR_RO(align); 9049 9050 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 9051 { 9052 return sysfs_emit(buf, "%u\n", s->object_size); 9053 } 9054 SLAB_ATTR_RO(object_size); 9055 9056 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 9057 { 9058 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 9059 } 9060 SLAB_ATTR_RO(objs_per_slab); 9061 9062 static ssize_t order_show(struct kmem_cache *s, char *buf) 9063 { 9064 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 9065 } 9066 SLAB_ATTR_RO(order); 9067 9068 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf) 9069 { 9070 return sysfs_emit(buf, "%u\n", s->sheaf_capacity); 9071 } 9072 SLAB_ATTR_RO(sheaf_capacity); 9073 9074 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 9075 { 9076 return sysfs_emit(buf, "%lu\n", s->min_partial); 9077 } 9078 9079 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 9080 size_t length) 9081 { 9082 unsigned long min; 9083 int err; 9084 9085 err = kstrtoul(buf, 10, &min); 9086 if (err) 9087 return err; 9088 9089 s->min_partial = min; 9090 return length; 9091 } 9092 SLAB_ATTR(min_partial); 9093 9094 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 9095 { 9096 unsigned int nr_partial = 0; 9097 #ifdef CONFIG_SLUB_CPU_PARTIAL 9098 nr_partial = s->cpu_partial; 9099 #endif 9100 9101 return sysfs_emit(buf, "%u\n", nr_partial); 9102 } 9103 9104 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 9105 size_t length) 9106 { 9107 unsigned int objects; 9108 int err; 9109 9110 err = kstrtouint(buf, 10, &objects); 9111 if (err) 9112 return err; 9113 if (objects && !kmem_cache_has_cpu_partial(s)) 9114 return -EINVAL; 9115 9116 slub_set_cpu_partial(s, objects); 9117 flush_all(s); 9118 return length; 9119 } 9120 SLAB_ATTR(cpu_partial); 9121 9122 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 9123 { 9124 if (!s->ctor) 9125 return 0; 9126 return sysfs_emit(buf, "%pS\n", s->ctor); 9127 } 9128 SLAB_ATTR_RO(ctor); 9129 9130 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 9131 { 9132 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 9133 } 9134 SLAB_ATTR_RO(aliases); 9135 9136 static ssize_t partial_show(struct kmem_cache *s, char *buf) 9137 { 9138 return show_slab_objects(s, buf, SO_PARTIAL); 9139 } 9140 SLAB_ATTR_RO(partial); 9141 9142 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 9143 { 9144 return show_slab_objects(s, buf, SO_CPU); 9145 } 9146 SLAB_ATTR_RO(cpu_slabs); 9147 9148 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 9149 { 9150 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 9151 } 9152 SLAB_ATTR_RO(objects_partial); 9153 9154 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 9155 { 9156 int objects = 0; 9157 int slabs = 0; 9158 int cpu __maybe_unused; 9159 int len = 0; 9160 9161 #ifdef CONFIG_SLUB_CPU_PARTIAL 9162 for_each_online_cpu(cpu) { 9163 struct slab *slab; 9164 9165 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 9166 9167 if (slab) 9168 slabs += data_race(slab->slabs); 9169 } 9170 #endif 9171 9172 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 9173 objects = (slabs * oo_objects(s->oo)) / 2; 9174 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 9175 9176 #ifdef CONFIG_SLUB_CPU_PARTIAL 9177 for_each_online_cpu(cpu) { 9178 struct slab *slab; 9179 9180 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 9181 if (slab) { 9182 slabs = data_race(slab->slabs); 9183 objects = (slabs * oo_objects(s->oo)) / 2; 9184 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 9185 cpu, objects, slabs); 9186 } 9187 } 9188 #endif 9189 len += sysfs_emit_at(buf, len, "\n"); 9190 9191 return len; 9192 } 9193 SLAB_ATTR_RO(slabs_cpu_partial); 9194 9195 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 9196 { 9197 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 9198 } 9199 SLAB_ATTR_RO(reclaim_account); 9200 9201 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 9202 { 9203 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 9204 } 9205 SLAB_ATTR_RO(hwcache_align); 9206 9207 #ifdef CONFIG_ZONE_DMA 9208 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 9209 { 9210 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 9211 } 9212 SLAB_ATTR_RO(cache_dma); 9213 #endif 9214 9215 #ifdef CONFIG_HARDENED_USERCOPY 9216 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 9217 { 9218 return sysfs_emit(buf, "%u\n", s->usersize); 9219 } 9220 SLAB_ATTR_RO(usersize); 9221 #endif 9222 9223 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 9224 { 9225 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 9226 } 9227 SLAB_ATTR_RO(destroy_by_rcu); 9228 9229 #ifdef CONFIG_SLUB_DEBUG 9230 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 9231 { 9232 return show_slab_objects(s, buf, SO_ALL); 9233 } 9234 SLAB_ATTR_RO(slabs); 9235 9236 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 9237 { 9238 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 9239 } 9240 SLAB_ATTR_RO(total_objects); 9241 9242 static ssize_t objects_show(struct kmem_cache *s, char *buf) 9243 { 9244 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 9245 } 9246 SLAB_ATTR_RO(objects); 9247 9248 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 9249 { 9250 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 9251 } 9252 SLAB_ATTR_RO(sanity_checks); 9253 9254 static ssize_t trace_show(struct kmem_cache *s, char *buf) 9255 { 9256 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 9257 } 9258 SLAB_ATTR_RO(trace); 9259 9260 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 9261 { 9262 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 9263 } 9264 9265 SLAB_ATTR_RO(red_zone); 9266 9267 static ssize_t poison_show(struct kmem_cache *s, char *buf) 9268 { 9269 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 9270 } 9271 9272 SLAB_ATTR_RO(poison); 9273 9274 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 9275 { 9276 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 9277 } 9278 9279 SLAB_ATTR_RO(store_user); 9280 9281 static ssize_t validate_show(struct kmem_cache *s, char *buf) 9282 { 9283 return 0; 9284 } 9285 9286 static ssize_t validate_store(struct kmem_cache *s, 9287 const char *buf, size_t length) 9288 { 9289 int ret = -EINVAL; 9290 9291 if (buf[0] == '1' && kmem_cache_debug(s)) { 9292 ret = validate_slab_cache(s); 9293 if (ret >= 0) 9294 ret = length; 9295 } 9296 return ret; 9297 } 9298 SLAB_ATTR(validate); 9299 9300 #endif /* CONFIG_SLUB_DEBUG */ 9301 9302 #ifdef CONFIG_FAILSLAB 9303 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 9304 { 9305 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 9306 } 9307 9308 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 9309 size_t length) 9310 { 9311 if (s->refcount > 1) 9312 return -EINVAL; 9313 9314 if (buf[0] == '1') 9315 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 9316 else 9317 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 9318 9319 return length; 9320 } 9321 SLAB_ATTR(failslab); 9322 #endif 9323 9324 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 9325 { 9326 return 0; 9327 } 9328 9329 static ssize_t shrink_store(struct kmem_cache *s, 9330 const char *buf, size_t length) 9331 { 9332 if (buf[0] == '1') 9333 kmem_cache_shrink(s); 9334 else 9335 return -EINVAL; 9336 return length; 9337 } 9338 SLAB_ATTR(shrink); 9339 9340 #ifdef CONFIG_NUMA 9341 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 9342 { 9343 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 9344 } 9345 9346 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 9347 const char *buf, size_t length) 9348 { 9349 unsigned int ratio; 9350 int err; 9351 9352 err = kstrtouint(buf, 10, &ratio); 9353 if (err) 9354 return err; 9355 if (ratio > 100) 9356 return -ERANGE; 9357 9358 s->remote_node_defrag_ratio = ratio * 10; 9359 9360 return length; 9361 } 9362 SLAB_ATTR(remote_node_defrag_ratio); 9363 #endif 9364 9365 #ifdef CONFIG_SLUB_STATS 9366 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 9367 { 9368 unsigned long sum = 0; 9369 int cpu; 9370 int len = 0; 9371 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 9372 9373 if (!data) 9374 return -ENOMEM; 9375 9376 for_each_online_cpu(cpu) { 9377 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 9378 9379 data[cpu] = x; 9380 sum += x; 9381 } 9382 9383 len += sysfs_emit_at(buf, len, "%lu", sum); 9384 9385 #ifdef CONFIG_SMP 9386 for_each_online_cpu(cpu) { 9387 if (data[cpu]) 9388 len += sysfs_emit_at(buf, len, " C%d=%u", 9389 cpu, data[cpu]); 9390 } 9391 #endif 9392 kfree(data); 9393 len += sysfs_emit_at(buf, len, "\n"); 9394 9395 return len; 9396 } 9397 9398 static void clear_stat(struct kmem_cache *s, enum stat_item si) 9399 { 9400 int cpu; 9401 9402 for_each_online_cpu(cpu) 9403 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 9404 } 9405 9406 #define STAT_ATTR(si, text) \ 9407 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 9408 { \ 9409 return show_stat(s, buf, si); \ 9410 } \ 9411 static ssize_t text##_store(struct kmem_cache *s, \ 9412 const char *buf, size_t length) \ 9413 { \ 9414 if (buf[0] != '0') \ 9415 return -EINVAL; \ 9416 clear_stat(s, si); \ 9417 return length; \ 9418 } \ 9419 SLAB_ATTR(text); \ 9420 9421 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf); 9422 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 9423 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 9424 STAT_ATTR(FREE_PCS, free_cpu_sheaf); 9425 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf); 9426 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail); 9427 STAT_ATTR(FREE_FASTPATH, free_fastpath); 9428 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 9429 STAT_ATTR(FREE_FROZEN, free_frozen); 9430 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 9431 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 9432 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 9433 STAT_ATTR(ALLOC_SLAB, alloc_slab); 9434 STAT_ATTR(ALLOC_REFILL, alloc_refill); 9435 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 9436 STAT_ATTR(FREE_SLAB, free_slab); 9437 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 9438 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 9439 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 9440 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 9441 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 9442 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 9443 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 9444 STAT_ATTR(ORDER_FALLBACK, order_fallback); 9445 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 9446 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 9447 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 9448 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 9449 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 9450 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 9451 STAT_ATTR(SHEAF_FLUSH, sheaf_flush); 9452 STAT_ATTR(SHEAF_REFILL, sheaf_refill); 9453 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc); 9454 STAT_ATTR(SHEAF_FREE, sheaf_free); 9455 STAT_ATTR(BARN_GET, barn_get); 9456 STAT_ATTR(BARN_GET_FAIL, barn_get_fail); 9457 STAT_ATTR(BARN_PUT, barn_put); 9458 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail); 9459 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast); 9460 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow); 9461 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize); 9462 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast); 9463 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow); 9464 #endif /* CONFIG_SLUB_STATS */ 9465 9466 #ifdef CONFIG_KFENCE 9467 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 9468 { 9469 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 9470 } 9471 9472 static ssize_t skip_kfence_store(struct kmem_cache *s, 9473 const char *buf, size_t length) 9474 { 9475 int ret = length; 9476 9477 if (buf[0] == '0') 9478 s->flags &= ~SLAB_SKIP_KFENCE; 9479 else if (buf[0] == '1') 9480 s->flags |= SLAB_SKIP_KFENCE; 9481 else 9482 ret = -EINVAL; 9483 9484 return ret; 9485 } 9486 SLAB_ATTR(skip_kfence); 9487 #endif 9488 9489 static struct attribute *slab_attrs[] = { 9490 &slab_size_attr.attr, 9491 &object_size_attr.attr, 9492 &objs_per_slab_attr.attr, 9493 &order_attr.attr, 9494 &sheaf_capacity_attr.attr, 9495 &min_partial_attr.attr, 9496 &cpu_partial_attr.attr, 9497 &objects_partial_attr.attr, 9498 &partial_attr.attr, 9499 &cpu_slabs_attr.attr, 9500 &ctor_attr.attr, 9501 &aliases_attr.attr, 9502 &align_attr.attr, 9503 &hwcache_align_attr.attr, 9504 &reclaim_account_attr.attr, 9505 &destroy_by_rcu_attr.attr, 9506 &shrink_attr.attr, 9507 &slabs_cpu_partial_attr.attr, 9508 #ifdef CONFIG_SLUB_DEBUG 9509 &total_objects_attr.attr, 9510 &objects_attr.attr, 9511 &slabs_attr.attr, 9512 &sanity_checks_attr.attr, 9513 &trace_attr.attr, 9514 &red_zone_attr.attr, 9515 &poison_attr.attr, 9516 &store_user_attr.attr, 9517 &validate_attr.attr, 9518 #endif 9519 #ifdef CONFIG_ZONE_DMA 9520 &cache_dma_attr.attr, 9521 #endif 9522 #ifdef CONFIG_NUMA 9523 &remote_node_defrag_ratio_attr.attr, 9524 #endif 9525 #ifdef CONFIG_SLUB_STATS 9526 &alloc_cpu_sheaf_attr.attr, 9527 &alloc_fastpath_attr.attr, 9528 &alloc_slowpath_attr.attr, 9529 &free_cpu_sheaf_attr.attr, 9530 &free_rcu_sheaf_attr.attr, 9531 &free_rcu_sheaf_fail_attr.attr, 9532 &free_fastpath_attr.attr, 9533 &free_slowpath_attr.attr, 9534 &free_frozen_attr.attr, 9535 &free_add_partial_attr.attr, 9536 &free_remove_partial_attr.attr, 9537 &alloc_from_partial_attr.attr, 9538 &alloc_slab_attr.attr, 9539 &alloc_refill_attr.attr, 9540 &alloc_node_mismatch_attr.attr, 9541 &free_slab_attr.attr, 9542 &cpuslab_flush_attr.attr, 9543 &deactivate_full_attr.attr, 9544 &deactivate_empty_attr.attr, 9545 &deactivate_to_head_attr.attr, 9546 &deactivate_to_tail_attr.attr, 9547 &deactivate_remote_frees_attr.attr, 9548 &deactivate_bypass_attr.attr, 9549 &order_fallback_attr.attr, 9550 &cmpxchg_double_fail_attr.attr, 9551 &cmpxchg_double_cpu_fail_attr.attr, 9552 &cpu_partial_alloc_attr.attr, 9553 &cpu_partial_free_attr.attr, 9554 &cpu_partial_node_attr.attr, 9555 &cpu_partial_drain_attr.attr, 9556 &sheaf_flush_attr.attr, 9557 &sheaf_refill_attr.attr, 9558 &sheaf_alloc_attr.attr, 9559 &sheaf_free_attr.attr, 9560 &barn_get_attr.attr, 9561 &barn_get_fail_attr.attr, 9562 &barn_put_attr.attr, 9563 &barn_put_fail_attr.attr, 9564 &sheaf_prefill_fast_attr.attr, 9565 &sheaf_prefill_slow_attr.attr, 9566 &sheaf_prefill_oversize_attr.attr, 9567 &sheaf_return_fast_attr.attr, 9568 &sheaf_return_slow_attr.attr, 9569 #endif 9570 #ifdef CONFIG_FAILSLAB 9571 &failslab_attr.attr, 9572 #endif 9573 #ifdef CONFIG_HARDENED_USERCOPY 9574 &usersize_attr.attr, 9575 #endif 9576 #ifdef CONFIG_KFENCE 9577 &skip_kfence_attr.attr, 9578 #endif 9579 9580 NULL 9581 }; 9582 9583 static const struct attribute_group slab_attr_group = { 9584 .attrs = slab_attrs, 9585 }; 9586 9587 static ssize_t slab_attr_show(struct kobject *kobj, 9588 struct attribute *attr, 9589 char *buf) 9590 { 9591 struct slab_attribute *attribute; 9592 struct kmem_cache *s; 9593 9594 attribute = to_slab_attr(attr); 9595 s = to_slab(kobj); 9596 9597 if (!attribute->show) 9598 return -EIO; 9599 9600 return attribute->show(s, buf); 9601 } 9602 9603 static ssize_t slab_attr_store(struct kobject *kobj, 9604 struct attribute *attr, 9605 const char *buf, size_t len) 9606 { 9607 struct slab_attribute *attribute; 9608 struct kmem_cache *s; 9609 9610 attribute = to_slab_attr(attr); 9611 s = to_slab(kobj); 9612 9613 if (!attribute->store) 9614 return -EIO; 9615 9616 return attribute->store(s, buf, len); 9617 } 9618 9619 static void kmem_cache_release(struct kobject *k) 9620 { 9621 slab_kmem_cache_release(to_slab(k)); 9622 } 9623 9624 static const struct sysfs_ops slab_sysfs_ops = { 9625 .show = slab_attr_show, 9626 .store = slab_attr_store, 9627 }; 9628 9629 static const struct kobj_type slab_ktype = { 9630 .sysfs_ops = &slab_sysfs_ops, 9631 .release = kmem_cache_release, 9632 }; 9633 9634 static struct kset *slab_kset; 9635 9636 static inline struct kset *cache_kset(struct kmem_cache *s) 9637 { 9638 return slab_kset; 9639 } 9640 9641 #define ID_STR_LENGTH 32 9642 9643 /* Create a unique string id for a slab cache: 9644 * 9645 * Format :[flags-]size 9646 */ 9647 static char *create_unique_id(struct kmem_cache *s) 9648 { 9649 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 9650 char *p = name; 9651 9652 if (!name) 9653 return ERR_PTR(-ENOMEM); 9654 9655 *p++ = ':'; 9656 /* 9657 * First flags affecting slabcache operations. We will only 9658 * get here for aliasable slabs so we do not need to support 9659 * too many flags. The flags here must cover all flags that 9660 * are matched during merging to guarantee that the id is 9661 * unique. 9662 */ 9663 if (s->flags & SLAB_CACHE_DMA) 9664 *p++ = 'd'; 9665 if (s->flags & SLAB_CACHE_DMA32) 9666 *p++ = 'D'; 9667 if (s->flags & SLAB_RECLAIM_ACCOUNT) 9668 *p++ = 'a'; 9669 if (s->flags & SLAB_CONSISTENCY_CHECKS) 9670 *p++ = 'F'; 9671 if (s->flags & SLAB_ACCOUNT) 9672 *p++ = 'A'; 9673 if (p != name + 1) 9674 *p++ = '-'; 9675 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 9676 9677 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 9678 kfree(name); 9679 return ERR_PTR(-EINVAL); 9680 } 9681 kmsan_unpoison_memory(name, p - name); 9682 return name; 9683 } 9684 9685 static int sysfs_slab_add(struct kmem_cache *s) 9686 { 9687 int err; 9688 const char *name; 9689 struct kset *kset = cache_kset(s); 9690 int unmergeable = slab_unmergeable(s); 9691 9692 if (!unmergeable && disable_higher_order_debug && 9693 (slub_debug & DEBUG_METADATA_FLAGS)) 9694 unmergeable = 1; 9695 9696 if (unmergeable) { 9697 /* 9698 * Slabcache can never be merged so we can use the name proper. 9699 * This is typically the case for debug situations. In that 9700 * case we can catch duplicate names easily. 9701 */ 9702 sysfs_remove_link(&slab_kset->kobj, s->name); 9703 name = s->name; 9704 } else { 9705 /* 9706 * Create a unique name for the slab as a target 9707 * for the symlinks. 9708 */ 9709 name = create_unique_id(s); 9710 if (IS_ERR(name)) 9711 return PTR_ERR(name); 9712 } 9713 9714 s->kobj.kset = kset; 9715 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 9716 if (err) 9717 goto out; 9718 9719 err = sysfs_create_group(&s->kobj, &slab_attr_group); 9720 if (err) 9721 goto out_del_kobj; 9722 9723 if (!unmergeable) { 9724 /* Setup first alias */ 9725 sysfs_slab_alias(s, s->name); 9726 } 9727 out: 9728 if (!unmergeable) 9729 kfree(name); 9730 return err; 9731 out_del_kobj: 9732 kobject_del(&s->kobj); 9733 goto out; 9734 } 9735 9736 void sysfs_slab_unlink(struct kmem_cache *s) 9737 { 9738 if (s->kobj.state_in_sysfs) 9739 kobject_del(&s->kobj); 9740 } 9741 9742 void sysfs_slab_release(struct kmem_cache *s) 9743 { 9744 kobject_put(&s->kobj); 9745 } 9746 9747 /* 9748 * Need to buffer aliases during bootup until sysfs becomes 9749 * available lest we lose that information. 9750 */ 9751 struct saved_alias { 9752 struct kmem_cache *s; 9753 const char *name; 9754 struct saved_alias *next; 9755 }; 9756 9757 static struct saved_alias *alias_list; 9758 9759 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 9760 { 9761 struct saved_alias *al; 9762 9763 if (slab_state == FULL) { 9764 /* 9765 * If we have a leftover link then remove it. 9766 */ 9767 sysfs_remove_link(&slab_kset->kobj, name); 9768 /* 9769 * The original cache may have failed to generate sysfs file. 9770 * In that case, sysfs_create_link() returns -ENOENT and 9771 * symbolic link creation is skipped. 9772 */ 9773 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 9774 } 9775 9776 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 9777 if (!al) 9778 return -ENOMEM; 9779 9780 al->s = s; 9781 al->name = name; 9782 al->next = alias_list; 9783 alias_list = al; 9784 kmsan_unpoison_memory(al, sizeof(*al)); 9785 return 0; 9786 } 9787 9788 static int __init slab_sysfs_init(void) 9789 { 9790 struct kmem_cache *s; 9791 int err; 9792 9793 mutex_lock(&slab_mutex); 9794 9795 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 9796 if (!slab_kset) { 9797 mutex_unlock(&slab_mutex); 9798 pr_err("Cannot register slab subsystem.\n"); 9799 return -ENOMEM; 9800 } 9801 9802 slab_state = FULL; 9803 9804 list_for_each_entry(s, &slab_caches, list) { 9805 err = sysfs_slab_add(s); 9806 if (err) 9807 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 9808 s->name); 9809 } 9810 9811 while (alias_list) { 9812 struct saved_alias *al = alias_list; 9813 9814 alias_list = alias_list->next; 9815 err = sysfs_slab_alias(al->s, al->name); 9816 if (err) 9817 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 9818 al->name); 9819 kfree(al); 9820 } 9821 9822 mutex_unlock(&slab_mutex); 9823 return 0; 9824 } 9825 late_initcall(slab_sysfs_init); 9826 #endif /* SLAB_SUPPORTS_SYSFS */ 9827 9828 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 9829 static int slab_debugfs_show(struct seq_file *seq, void *v) 9830 { 9831 struct loc_track *t = seq->private; 9832 struct location *l; 9833 unsigned long idx; 9834 9835 idx = (unsigned long) t->idx; 9836 if (idx < t->count) { 9837 l = &t->loc[idx]; 9838 9839 seq_printf(seq, "%7ld ", l->count); 9840 9841 if (l->addr) 9842 seq_printf(seq, "%pS", (void *)l->addr); 9843 else 9844 seq_puts(seq, "<not-available>"); 9845 9846 if (l->waste) 9847 seq_printf(seq, " waste=%lu/%lu", 9848 l->count * l->waste, l->waste); 9849 9850 if (l->sum_time != l->min_time) { 9851 seq_printf(seq, " age=%ld/%llu/%ld", 9852 l->min_time, div_u64(l->sum_time, l->count), 9853 l->max_time); 9854 } else 9855 seq_printf(seq, " age=%ld", l->min_time); 9856 9857 if (l->min_pid != l->max_pid) 9858 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 9859 else 9860 seq_printf(seq, " pid=%ld", 9861 l->min_pid); 9862 9863 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 9864 seq_printf(seq, " cpus=%*pbl", 9865 cpumask_pr_args(to_cpumask(l->cpus))); 9866 9867 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 9868 seq_printf(seq, " nodes=%*pbl", 9869 nodemask_pr_args(&l->nodes)); 9870 9871 #ifdef CONFIG_STACKDEPOT 9872 { 9873 depot_stack_handle_t handle; 9874 unsigned long *entries; 9875 unsigned int nr_entries, j; 9876 9877 handle = READ_ONCE(l->handle); 9878 if (handle) { 9879 nr_entries = stack_depot_fetch(handle, &entries); 9880 seq_puts(seq, "\n"); 9881 for (j = 0; j < nr_entries; j++) 9882 seq_printf(seq, " %pS\n", (void *)entries[j]); 9883 } 9884 } 9885 #endif 9886 seq_puts(seq, "\n"); 9887 } 9888 9889 if (!idx && !t->count) 9890 seq_puts(seq, "No data\n"); 9891 9892 return 0; 9893 } 9894 9895 static void slab_debugfs_stop(struct seq_file *seq, void *v) 9896 { 9897 } 9898 9899 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 9900 { 9901 struct loc_track *t = seq->private; 9902 9903 t->idx = ++(*ppos); 9904 if (*ppos <= t->count) 9905 return ppos; 9906 9907 return NULL; 9908 } 9909 9910 static int cmp_loc_by_count(const void *a, const void *b) 9911 { 9912 struct location *loc1 = (struct location *)a; 9913 struct location *loc2 = (struct location *)b; 9914 9915 return cmp_int(loc2->count, loc1->count); 9916 } 9917 9918 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 9919 { 9920 struct loc_track *t = seq->private; 9921 9922 t->idx = *ppos; 9923 return ppos; 9924 } 9925 9926 static const struct seq_operations slab_debugfs_sops = { 9927 .start = slab_debugfs_start, 9928 .next = slab_debugfs_next, 9929 .stop = slab_debugfs_stop, 9930 .show = slab_debugfs_show, 9931 }; 9932 9933 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 9934 { 9935 9936 struct kmem_cache_node *n; 9937 enum track_item alloc; 9938 int node; 9939 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 9940 sizeof(struct loc_track)); 9941 struct kmem_cache *s = file_inode(filep)->i_private; 9942 unsigned long *obj_map; 9943 9944 if (!t) 9945 return -ENOMEM; 9946 9947 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 9948 if (!obj_map) { 9949 seq_release_private(inode, filep); 9950 return -ENOMEM; 9951 } 9952 9953 alloc = debugfs_get_aux_num(filep); 9954 9955 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 9956 bitmap_free(obj_map); 9957 seq_release_private(inode, filep); 9958 return -ENOMEM; 9959 } 9960 9961 for_each_kmem_cache_node(s, node, n) { 9962 unsigned long flags; 9963 struct slab *slab; 9964 9965 if (!node_nr_slabs(n)) 9966 continue; 9967 9968 spin_lock_irqsave(&n->list_lock, flags); 9969 list_for_each_entry(slab, &n->partial, slab_list) 9970 process_slab(t, s, slab, alloc, obj_map); 9971 list_for_each_entry(slab, &n->full, slab_list) 9972 process_slab(t, s, slab, alloc, obj_map); 9973 spin_unlock_irqrestore(&n->list_lock, flags); 9974 } 9975 9976 /* Sort locations by count */ 9977 sort(t->loc, t->count, sizeof(struct location), 9978 cmp_loc_by_count, NULL); 9979 9980 bitmap_free(obj_map); 9981 return 0; 9982 } 9983 9984 static int slab_debug_trace_release(struct inode *inode, struct file *file) 9985 { 9986 struct seq_file *seq = file->private_data; 9987 struct loc_track *t = seq->private; 9988 9989 free_loc_track(t); 9990 return seq_release_private(inode, file); 9991 } 9992 9993 static const struct file_operations slab_debugfs_fops = { 9994 .open = slab_debug_trace_open, 9995 .read = seq_read, 9996 .llseek = seq_lseek, 9997 .release = slab_debug_trace_release, 9998 }; 9999 10000 static void debugfs_slab_add(struct kmem_cache *s) 10001 { 10002 struct dentry *slab_cache_dir; 10003 10004 if (unlikely(!slab_debugfs_root)) 10005 return; 10006 10007 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 10008 10009 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 10010 TRACK_ALLOC, &slab_debugfs_fops); 10011 10012 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 10013 TRACK_FREE, &slab_debugfs_fops); 10014 } 10015 10016 void debugfs_slab_release(struct kmem_cache *s) 10017 { 10018 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 10019 } 10020 10021 static int __init slab_debugfs_init(void) 10022 { 10023 struct kmem_cache *s; 10024 10025 slab_debugfs_root = debugfs_create_dir("slab", NULL); 10026 10027 list_for_each_entry(s, &slab_caches, list) 10028 if (s->flags & SLAB_STORE_USER) 10029 debugfs_slab_add(s); 10030 10031 return 0; 10032 10033 } 10034 __initcall(slab_debugfs_init); 10035 #endif 10036 /* 10037 * The /proc/slabinfo ABI 10038 */ 10039 #ifdef CONFIG_SLUB_DEBUG 10040 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 10041 { 10042 unsigned long nr_slabs = 0; 10043 unsigned long nr_objs = 0; 10044 unsigned long nr_free = 0; 10045 int node; 10046 struct kmem_cache_node *n; 10047 10048 for_each_kmem_cache_node(s, node, n) { 10049 nr_slabs += node_nr_slabs(n); 10050 nr_objs += node_nr_objs(n); 10051 nr_free += count_partial_free_approx(n); 10052 } 10053 10054 sinfo->active_objs = nr_objs - nr_free; 10055 sinfo->num_objs = nr_objs; 10056 sinfo->active_slabs = nr_slabs; 10057 sinfo->num_slabs = nr_slabs; 10058 sinfo->objects_per_slab = oo_objects(s->oo); 10059 sinfo->cache_order = oo_order(s->oo); 10060 } 10061 #endif /* CONFIG_SLUB_DEBUG */ 10062