xref: /linux/mm/slab_common.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/page.h>
22 #include <linux/memcontrol.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
26 
27 #include "slab.h"
28 
29 enum slab_state slab_state;
30 LIST_HEAD(slab_caches);
31 DEFINE_MUTEX(slab_mutex);
32 struct kmem_cache *kmem_cache;
33 
34 static LIST_HEAD(slab_caches_to_rcu_destroy);
35 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 		    slab_caches_to_rcu_destroy_workfn);
38 
39 /*
40  * Set of flags that will prevent slab merging
41  */
42 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
44 		SLAB_FAILSLAB | SLAB_KASAN)
45 
46 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
47 			 SLAB_ACCOUNT)
48 
49 /*
50  * Merge control. If this is set then no merging of slab caches will occur.
51  */
52 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
53 
54 static int __init setup_slab_nomerge(char *str)
55 {
56 	slab_nomerge = true;
57 	return 1;
58 }
59 
60 #ifdef CONFIG_SLUB
61 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62 #endif
63 
64 __setup("slab_nomerge", setup_slab_nomerge);
65 
66 /*
67  * Determine the size of a slab object
68  */
69 unsigned int kmem_cache_size(struct kmem_cache *s)
70 {
71 	return s->object_size;
72 }
73 EXPORT_SYMBOL(kmem_cache_size);
74 
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name, size_t size)
77 {
78 	struct kmem_cache *s = NULL;
79 
80 	if (!name || in_interrupt() || size < sizeof(void *) ||
81 		size > KMALLOC_MAX_SIZE) {
82 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 		return -EINVAL;
84 	}
85 
86 	list_for_each_entry(s, &slab_caches, list) {
87 		char tmp;
88 		int res;
89 
90 		/*
91 		 * This happens when the module gets unloaded and doesn't
92 		 * destroy its slab cache and no-one else reuses the vmalloc
93 		 * area of the module.  Print a warning.
94 		 */
95 		res = probe_kernel_address(s->name, tmp);
96 		if (res) {
97 			pr_err("Slab cache with size %d has lost its name\n",
98 			       s->object_size);
99 			continue;
100 		}
101 	}
102 
103 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 	return 0;
105 }
106 #else
107 static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 {
109 	return 0;
110 }
111 #endif
112 
113 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114 {
115 	size_t i;
116 
117 	for (i = 0; i < nr; i++) {
118 		if (s)
119 			kmem_cache_free(s, p[i]);
120 		else
121 			kfree(p[i]);
122 	}
123 }
124 
125 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 								void **p)
127 {
128 	size_t i;
129 
130 	for (i = 0; i < nr; i++) {
131 		void *x = p[i] = kmem_cache_alloc(s, flags);
132 		if (!x) {
133 			__kmem_cache_free_bulk(s, i, p);
134 			return 0;
135 		}
136 	}
137 	return i;
138 }
139 
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141 
142 LIST_HEAD(slab_root_caches);
143 
144 void slab_init_memcg_params(struct kmem_cache *s)
145 {
146 	s->memcg_params.root_cache = NULL;
147 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
148 	INIT_LIST_HEAD(&s->memcg_params.children);
149 }
150 
151 static int init_memcg_params(struct kmem_cache *s,
152 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153 {
154 	struct memcg_cache_array *arr;
155 
156 	if (root_cache) {
157 		s->memcg_params.root_cache = root_cache;
158 		s->memcg_params.memcg = memcg;
159 		INIT_LIST_HEAD(&s->memcg_params.children_node);
160 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 		return 0;
162 	}
163 
164 	slab_init_memcg_params(s);
165 
166 	if (!memcg_nr_cache_ids)
167 		return 0;
168 
169 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 		       memcg_nr_cache_ids * sizeof(void *),
171 		       GFP_KERNEL);
172 	if (!arr)
173 		return -ENOMEM;
174 
175 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 	return 0;
177 }
178 
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 	if (is_root_cache(s))
182 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 }
184 
185 static void free_memcg_params(struct rcu_head *rcu)
186 {
187 	struct memcg_cache_array *old;
188 
189 	old = container_of(rcu, struct memcg_cache_array, rcu);
190 	kvfree(old);
191 }
192 
193 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
194 {
195 	struct memcg_cache_array *old, *new;
196 
197 	new = kvzalloc(sizeof(struct memcg_cache_array) +
198 		       new_array_size * sizeof(void *), GFP_KERNEL);
199 	if (!new)
200 		return -ENOMEM;
201 
202 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 					lockdep_is_held(&slab_mutex));
204 	if (old)
205 		memcpy(new->entries, old->entries,
206 		       memcg_nr_cache_ids * sizeof(void *));
207 
208 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 	if (old)
210 		call_rcu(&old->rcu, free_memcg_params);
211 	return 0;
212 }
213 
214 int memcg_update_all_caches(int num_memcgs)
215 {
216 	struct kmem_cache *s;
217 	int ret = 0;
218 
219 	mutex_lock(&slab_mutex);
220 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
221 		ret = update_memcg_params(s, num_memcgs);
222 		/*
223 		 * Instead of freeing the memory, we'll just leave the caches
224 		 * up to this point in an updated state.
225 		 */
226 		if (ret)
227 			break;
228 	}
229 	mutex_unlock(&slab_mutex);
230 	return ret;
231 }
232 
233 void memcg_link_cache(struct kmem_cache *s)
234 {
235 	if (is_root_cache(s)) {
236 		list_add(&s->root_caches_node, &slab_root_caches);
237 	} else {
238 		list_add(&s->memcg_params.children_node,
239 			 &s->memcg_params.root_cache->memcg_params.children);
240 		list_add(&s->memcg_params.kmem_caches_node,
241 			 &s->memcg_params.memcg->kmem_caches);
242 	}
243 }
244 
245 static void memcg_unlink_cache(struct kmem_cache *s)
246 {
247 	if (is_root_cache(s)) {
248 		list_del(&s->root_caches_node);
249 	} else {
250 		list_del(&s->memcg_params.children_node);
251 		list_del(&s->memcg_params.kmem_caches_node);
252 	}
253 }
254 #else
255 static inline int init_memcg_params(struct kmem_cache *s,
256 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
257 {
258 	return 0;
259 }
260 
261 static inline void destroy_memcg_params(struct kmem_cache *s)
262 {
263 }
264 
265 static inline void memcg_unlink_cache(struct kmem_cache *s)
266 {
267 }
268 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
269 
270 /*
271  * Find a mergeable slab cache
272  */
273 int slab_unmergeable(struct kmem_cache *s)
274 {
275 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 		return 1;
277 
278 	if (!is_root_cache(s))
279 		return 1;
280 
281 	if (s->ctor)
282 		return 1;
283 
284 	/*
285 	 * We may have set a slab to be unmergeable during bootstrap.
286 	 */
287 	if (s->refcount < 0)
288 		return 1;
289 
290 	return 0;
291 }
292 
293 struct kmem_cache *find_mergeable(size_t size, size_t align,
294 		slab_flags_t flags, const char *name, void (*ctor)(void *))
295 {
296 	struct kmem_cache *s;
297 
298 	if (slab_nomerge)
299 		return NULL;
300 
301 	if (ctor)
302 		return NULL;
303 
304 	size = ALIGN(size, sizeof(void *));
305 	align = calculate_alignment(flags, align, size);
306 	size = ALIGN(size, align);
307 	flags = kmem_cache_flags(size, flags, name, NULL);
308 
309 	if (flags & SLAB_NEVER_MERGE)
310 		return NULL;
311 
312 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
313 		if (slab_unmergeable(s))
314 			continue;
315 
316 		if (size > s->size)
317 			continue;
318 
319 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
320 			continue;
321 		/*
322 		 * Check if alignment is compatible.
323 		 * Courtesy of Adrian Drzewiecki
324 		 */
325 		if ((s->size & ~(align - 1)) != s->size)
326 			continue;
327 
328 		if (s->size - size >= sizeof(void *))
329 			continue;
330 
331 		if (IS_ENABLED(CONFIG_SLAB) && align &&
332 			(align > s->align || s->align % align))
333 			continue;
334 
335 		return s;
336 	}
337 	return NULL;
338 }
339 
340 /*
341  * Figure out what the alignment of the objects will be given a set of
342  * flags, a user specified alignment and the size of the objects.
343  */
344 unsigned long calculate_alignment(slab_flags_t flags,
345 		unsigned long align, unsigned long size)
346 {
347 	/*
348 	 * If the user wants hardware cache aligned objects then follow that
349 	 * suggestion if the object is sufficiently large.
350 	 *
351 	 * The hardware cache alignment cannot override the specified
352 	 * alignment though. If that is greater then use it.
353 	 */
354 	if (flags & SLAB_HWCACHE_ALIGN) {
355 		unsigned long ralign = cache_line_size();
356 		while (size <= ralign / 2)
357 			ralign /= 2;
358 		align = max(align, ralign);
359 	}
360 
361 	if (align < ARCH_SLAB_MINALIGN)
362 		align = ARCH_SLAB_MINALIGN;
363 
364 	return ALIGN(align, sizeof(void *));
365 }
366 
367 static struct kmem_cache *create_cache(const char *name,
368 		size_t object_size, size_t size, size_t align,
369 		slab_flags_t flags, void (*ctor)(void *),
370 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
371 {
372 	struct kmem_cache *s;
373 	int err;
374 
375 	err = -ENOMEM;
376 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 	if (!s)
378 		goto out;
379 
380 	s->name = name;
381 	s->object_size = object_size;
382 	s->size = size;
383 	s->align = align;
384 	s->ctor = ctor;
385 
386 	err = init_memcg_params(s, memcg, root_cache);
387 	if (err)
388 		goto out_free_cache;
389 
390 	err = __kmem_cache_create(s, flags);
391 	if (err)
392 		goto out_free_cache;
393 
394 	s->refcount = 1;
395 	list_add(&s->list, &slab_caches);
396 	memcg_link_cache(s);
397 out:
398 	if (err)
399 		return ERR_PTR(err);
400 	return s;
401 
402 out_free_cache:
403 	destroy_memcg_params(s);
404 	kmem_cache_free(kmem_cache, s);
405 	goto out;
406 }
407 
408 /*
409  * kmem_cache_create - Create a cache.
410  * @name: A string which is used in /proc/slabinfo to identify this cache.
411  * @size: The size of objects to be created in this cache.
412  * @align: The required alignment for the objects.
413  * @flags: SLAB flags
414  * @ctor: A constructor for the objects.
415  *
416  * Returns a ptr to the cache on success, NULL on failure.
417  * Cannot be called within a interrupt, but can be interrupted.
418  * The @ctor is run when new pages are allocated by the cache.
419  *
420  * The flags are
421  *
422  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423  * to catch references to uninitialised memory.
424  *
425  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426  * for buffer overruns.
427  *
428  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429  * cacheline.  This can be beneficial if you're counting cycles as closely
430  * as davem.
431  */
432 struct kmem_cache *
433 kmem_cache_create(const char *name, size_t size, size_t align,
434 		  slab_flags_t flags, void (*ctor)(void *))
435 {
436 	struct kmem_cache *s = NULL;
437 	const char *cache_name;
438 	int err;
439 
440 	get_online_cpus();
441 	get_online_mems();
442 	memcg_get_cache_ids();
443 
444 	mutex_lock(&slab_mutex);
445 
446 	err = kmem_cache_sanity_check(name, size);
447 	if (err) {
448 		goto out_unlock;
449 	}
450 
451 	/* Refuse requests with allocator specific flags */
452 	if (flags & ~SLAB_FLAGS_PERMITTED) {
453 		err = -EINVAL;
454 		goto out_unlock;
455 	}
456 
457 	/*
458 	 * Some allocators will constraint the set of valid flags to a subset
459 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 	 * case, and we'll just provide them with a sanitized version of the
461 	 * passed flags.
462 	 */
463 	flags &= CACHE_CREATE_MASK;
464 
465 	s = __kmem_cache_alias(name, size, align, flags, ctor);
466 	if (s)
467 		goto out_unlock;
468 
469 	cache_name = kstrdup_const(name, GFP_KERNEL);
470 	if (!cache_name) {
471 		err = -ENOMEM;
472 		goto out_unlock;
473 	}
474 
475 	s = create_cache(cache_name, size, size,
476 			 calculate_alignment(flags, align, size),
477 			 flags, ctor, NULL, NULL);
478 	if (IS_ERR(s)) {
479 		err = PTR_ERR(s);
480 		kfree_const(cache_name);
481 	}
482 
483 out_unlock:
484 	mutex_unlock(&slab_mutex);
485 
486 	memcg_put_cache_ids();
487 	put_online_mems();
488 	put_online_cpus();
489 
490 	if (err) {
491 		if (flags & SLAB_PANIC)
492 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
493 				name, err);
494 		else {
495 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
496 				name, err);
497 			dump_stack();
498 		}
499 		return NULL;
500 	}
501 	return s;
502 }
503 EXPORT_SYMBOL(kmem_cache_create);
504 
505 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
506 {
507 	LIST_HEAD(to_destroy);
508 	struct kmem_cache *s, *s2;
509 
510 	/*
511 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
512 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
513 	 * through RCU and and the associated kmem_cache are dereferenced
514 	 * while freeing the pages, so the kmem_caches should be freed only
515 	 * after the pending RCU operations are finished.  As rcu_barrier()
516 	 * is a pretty slow operation, we batch all pending destructions
517 	 * asynchronously.
518 	 */
519 	mutex_lock(&slab_mutex);
520 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
521 	mutex_unlock(&slab_mutex);
522 
523 	if (list_empty(&to_destroy))
524 		return;
525 
526 	rcu_barrier();
527 
528 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
529 #ifdef SLAB_SUPPORTS_SYSFS
530 		sysfs_slab_release(s);
531 #else
532 		slab_kmem_cache_release(s);
533 #endif
534 	}
535 }
536 
537 static int shutdown_cache(struct kmem_cache *s)
538 {
539 	/* free asan quarantined objects */
540 	kasan_cache_shutdown(s);
541 
542 	if (__kmem_cache_shutdown(s) != 0)
543 		return -EBUSY;
544 
545 	memcg_unlink_cache(s);
546 	list_del(&s->list);
547 
548 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
549 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
550 		schedule_work(&slab_caches_to_rcu_destroy_work);
551 	} else {
552 #ifdef SLAB_SUPPORTS_SYSFS
553 		sysfs_slab_release(s);
554 #else
555 		slab_kmem_cache_release(s);
556 #endif
557 	}
558 
559 	return 0;
560 }
561 
562 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
563 /*
564  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
565  * @memcg: The memory cgroup the new cache is for.
566  * @root_cache: The parent of the new cache.
567  *
568  * This function attempts to create a kmem cache that will serve allocation
569  * requests going from @memcg to @root_cache. The new cache inherits properties
570  * from its parent.
571  */
572 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
573 			     struct kmem_cache *root_cache)
574 {
575 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
576 	struct cgroup_subsys_state *css = &memcg->css;
577 	struct memcg_cache_array *arr;
578 	struct kmem_cache *s = NULL;
579 	char *cache_name;
580 	int idx;
581 
582 	get_online_cpus();
583 	get_online_mems();
584 
585 	mutex_lock(&slab_mutex);
586 
587 	/*
588 	 * The memory cgroup could have been offlined while the cache
589 	 * creation work was pending.
590 	 */
591 	if (memcg->kmem_state != KMEM_ONLINE)
592 		goto out_unlock;
593 
594 	idx = memcg_cache_id(memcg);
595 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
596 					lockdep_is_held(&slab_mutex));
597 
598 	/*
599 	 * Since per-memcg caches are created asynchronously on first
600 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
601 	 * create the same cache, but only one of them may succeed.
602 	 */
603 	if (arr->entries[idx])
604 		goto out_unlock;
605 
606 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
607 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
608 			       css->serial_nr, memcg_name_buf);
609 	if (!cache_name)
610 		goto out_unlock;
611 
612 	s = create_cache(cache_name, root_cache->object_size,
613 			 root_cache->size, root_cache->align,
614 			 root_cache->flags & CACHE_CREATE_MASK,
615 			 root_cache->ctor, memcg, root_cache);
616 	/*
617 	 * If we could not create a memcg cache, do not complain, because
618 	 * that's not critical at all as we can always proceed with the root
619 	 * cache.
620 	 */
621 	if (IS_ERR(s)) {
622 		kfree(cache_name);
623 		goto out_unlock;
624 	}
625 
626 	/*
627 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
628 	 * barrier here to ensure nobody will see the kmem_cache partially
629 	 * initialized.
630 	 */
631 	smp_wmb();
632 	arr->entries[idx] = s;
633 
634 out_unlock:
635 	mutex_unlock(&slab_mutex);
636 
637 	put_online_mems();
638 	put_online_cpus();
639 }
640 
641 static void kmemcg_deactivate_workfn(struct work_struct *work)
642 {
643 	struct kmem_cache *s = container_of(work, struct kmem_cache,
644 					    memcg_params.deact_work);
645 
646 	get_online_cpus();
647 	get_online_mems();
648 
649 	mutex_lock(&slab_mutex);
650 
651 	s->memcg_params.deact_fn(s);
652 
653 	mutex_unlock(&slab_mutex);
654 
655 	put_online_mems();
656 	put_online_cpus();
657 
658 	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
659 	css_put(&s->memcg_params.memcg->css);
660 }
661 
662 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
663 {
664 	struct kmem_cache *s = container_of(head, struct kmem_cache,
665 					    memcg_params.deact_rcu_head);
666 
667 	/*
668 	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
669 	 * work item shares the space with the RCU head and can't be
670 	 * initialized eariler.
671 	 */
672 	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
673 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
674 }
675 
676 /**
677  * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
678  *					   sched RCU grace period
679  * @s: target kmem_cache
680  * @deact_fn: deactivation function to call
681  *
682  * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
683  * held after a sched RCU grace period.  The slab is guaranteed to stay
684  * alive until @deact_fn is finished.  This is to be used from
685  * __kmemcg_cache_deactivate().
686  */
687 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
688 					   void (*deact_fn)(struct kmem_cache *))
689 {
690 	if (WARN_ON_ONCE(is_root_cache(s)) ||
691 	    WARN_ON_ONCE(s->memcg_params.deact_fn))
692 		return;
693 
694 	/* pin memcg so that @s doesn't get destroyed in the middle */
695 	css_get(&s->memcg_params.memcg->css);
696 
697 	s->memcg_params.deact_fn = deact_fn;
698 	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
699 }
700 
701 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
702 {
703 	int idx;
704 	struct memcg_cache_array *arr;
705 	struct kmem_cache *s, *c;
706 
707 	idx = memcg_cache_id(memcg);
708 
709 	get_online_cpus();
710 	get_online_mems();
711 
712 	mutex_lock(&slab_mutex);
713 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
714 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
715 						lockdep_is_held(&slab_mutex));
716 		c = arr->entries[idx];
717 		if (!c)
718 			continue;
719 
720 		__kmemcg_cache_deactivate(c);
721 		arr->entries[idx] = NULL;
722 	}
723 	mutex_unlock(&slab_mutex);
724 
725 	put_online_mems();
726 	put_online_cpus();
727 }
728 
729 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
730 {
731 	struct kmem_cache *s, *s2;
732 
733 	get_online_cpus();
734 	get_online_mems();
735 
736 	mutex_lock(&slab_mutex);
737 	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
738 				 memcg_params.kmem_caches_node) {
739 		/*
740 		 * The cgroup is about to be freed and therefore has no charges
741 		 * left. Hence, all its caches must be empty by now.
742 		 */
743 		BUG_ON(shutdown_cache(s));
744 	}
745 	mutex_unlock(&slab_mutex);
746 
747 	put_online_mems();
748 	put_online_cpus();
749 }
750 
751 static int shutdown_memcg_caches(struct kmem_cache *s)
752 {
753 	struct memcg_cache_array *arr;
754 	struct kmem_cache *c, *c2;
755 	LIST_HEAD(busy);
756 	int i;
757 
758 	BUG_ON(!is_root_cache(s));
759 
760 	/*
761 	 * First, shutdown active caches, i.e. caches that belong to online
762 	 * memory cgroups.
763 	 */
764 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
765 					lockdep_is_held(&slab_mutex));
766 	for_each_memcg_cache_index(i) {
767 		c = arr->entries[i];
768 		if (!c)
769 			continue;
770 		if (shutdown_cache(c))
771 			/*
772 			 * The cache still has objects. Move it to a temporary
773 			 * list so as not to try to destroy it for a second
774 			 * time while iterating over inactive caches below.
775 			 */
776 			list_move(&c->memcg_params.children_node, &busy);
777 		else
778 			/*
779 			 * The cache is empty and will be destroyed soon. Clear
780 			 * the pointer to it in the memcg_caches array so that
781 			 * it will never be accessed even if the root cache
782 			 * stays alive.
783 			 */
784 			arr->entries[i] = NULL;
785 	}
786 
787 	/*
788 	 * Second, shutdown all caches left from memory cgroups that are now
789 	 * offline.
790 	 */
791 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
792 				 memcg_params.children_node)
793 		shutdown_cache(c);
794 
795 	list_splice(&busy, &s->memcg_params.children);
796 
797 	/*
798 	 * A cache being destroyed must be empty. In particular, this means
799 	 * that all per memcg caches attached to it must be empty too.
800 	 */
801 	if (!list_empty(&s->memcg_params.children))
802 		return -EBUSY;
803 	return 0;
804 }
805 #else
806 static inline int shutdown_memcg_caches(struct kmem_cache *s)
807 {
808 	return 0;
809 }
810 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
811 
812 void slab_kmem_cache_release(struct kmem_cache *s)
813 {
814 	__kmem_cache_release(s);
815 	destroy_memcg_params(s);
816 	kfree_const(s->name);
817 	kmem_cache_free(kmem_cache, s);
818 }
819 
820 void kmem_cache_destroy(struct kmem_cache *s)
821 {
822 	int err;
823 
824 	if (unlikely(!s))
825 		return;
826 
827 	get_online_cpus();
828 	get_online_mems();
829 
830 	mutex_lock(&slab_mutex);
831 
832 	s->refcount--;
833 	if (s->refcount)
834 		goto out_unlock;
835 
836 	err = shutdown_memcg_caches(s);
837 	if (!err)
838 		err = shutdown_cache(s);
839 
840 	if (err) {
841 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
842 		       s->name);
843 		dump_stack();
844 	}
845 out_unlock:
846 	mutex_unlock(&slab_mutex);
847 
848 	put_online_mems();
849 	put_online_cpus();
850 }
851 EXPORT_SYMBOL(kmem_cache_destroy);
852 
853 /**
854  * kmem_cache_shrink - Shrink a cache.
855  * @cachep: The cache to shrink.
856  *
857  * Releases as many slabs as possible for a cache.
858  * To help debugging, a zero exit status indicates all slabs were released.
859  */
860 int kmem_cache_shrink(struct kmem_cache *cachep)
861 {
862 	int ret;
863 
864 	get_online_cpus();
865 	get_online_mems();
866 	kasan_cache_shrink(cachep);
867 	ret = __kmem_cache_shrink(cachep);
868 	put_online_mems();
869 	put_online_cpus();
870 	return ret;
871 }
872 EXPORT_SYMBOL(kmem_cache_shrink);
873 
874 bool slab_is_available(void)
875 {
876 	return slab_state >= UP;
877 }
878 
879 #ifndef CONFIG_SLOB
880 /* Create a cache during boot when no slab services are available yet */
881 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
882 		slab_flags_t flags)
883 {
884 	int err;
885 
886 	s->name = name;
887 	s->size = s->object_size = size;
888 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
889 
890 	slab_init_memcg_params(s);
891 
892 	err = __kmem_cache_create(s, flags);
893 
894 	if (err)
895 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
896 					name, size, err);
897 
898 	s->refcount = -1;	/* Exempt from merging for now */
899 }
900 
901 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
902 				slab_flags_t flags)
903 {
904 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
905 
906 	if (!s)
907 		panic("Out of memory when creating slab %s\n", name);
908 
909 	create_boot_cache(s, name, size, flags);
910 	list_add(&s->list, &slab_caches);
911 	memcg_link_cache(s);
912 	s->refcount = 1;
913 	return s;
914 }
915 
916 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
917 EXPORT_SYMBOL(kmalloc_caches);
918 
919 #ifdef CONFIG_ZONE_DMA
920 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
921 EXPORT_SYMBOL(kmalloc_dma_caches);
922 #endif
923 
924 /*
925  * Conversion table for small slabs sizes / 8 to the index in the
926  * kmalloc array. This is necessary for slabs < 192 since we have non power
927  * of two cache sizes there. The size of larger slabs can be determined using
928  * fls.
929  */
930 static s8 size_index[24] = {
931 	3,	/* 8 */
932 	4,	/* 16 */
933 	5,	/* 24 */
934 	5,	/* 32 */
935 	6,	/* 40 */
936 	6,	/* 48 */
937 	6,	/* 56 */
938 	6,	/* 64 */
939 	1,	/* 72 */
940 	1,	/* 80 */
941 	1,	/* 88 */
942 	1,	/* 96 */
943 	7,	/* 104 */
944 	7,	/* 112 */
945 	7,	/* 120 */
946 	7,	/* 128 */
947 	2,	/* 136 */
948 	2,	/* 144 */
949 	2,	/* 152 */
950 	2,	/* 160 */
951 	2,	/* 168 */
952 	2,	/* 176 */
953 	2,	/* 184 */
954 	2	/* 192 */
955 };
956 
957 static inline int size_index_elem(size_t bytes)
958 {
959 	return (bytes - 1) / 8;
960 }
961 
962 /*
963  * Find the kmem_cache structure that serves a given size of
964  * allocation
965  */
966 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
967 {
968 	int index;
969 
970 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
971 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
972 		return NULL;
973 	}
974 
975 	if (size <= 192) {
976 		if (!size)
977 			return ZERO_SIZE_PTR;
978 
979 		index = size_index[size_index_elem(size)];
980 	} else
981 		index = fls(size - 1);
982 
983 #ifdef CONFIG_ZONE_DMA
984 	if (unlikely((flags & GFP_DMA)))
985 		return kmalloc_dma_caches[index];
986 
987 #endif
988 	return kmalloc_caches[index];
989 }
990 
991 /*
992  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
993  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
994  * kmalloc-67108864.
995  */
996 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
997 	{NULL,                      0},		{"kmalloc-96",             96},
998 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
999 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
1000 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1001 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1002 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
1003 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
1004 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
1005 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
1006 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
1007 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
1008 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
1009 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
1010 	{"kmalloc-67108864", 67108864}
1011 };
1012 
1013 /*
1014  * Patch up the size_index table if we have strange large alignment
1015  * requirements for the kmalloc array. This is only the case for
1016  * MIPS it seems. The standard arches will not generate any code here.
1017  *
1018  * Largest permitted alignment is 256 bytes due to the way we
1019  * handle the index determination for the smaller caches.
1020  *
1021  * Make sure that nothing crazy happens if someone starts tinkering
1022  * around with ARCH_KMALLOC_MINALIGN
1023  */
1024 void __init setup_kmalloc_cache_index_table(void)
1025 {
1026 	int i;
1027 
1028 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1029 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1030 
1031 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1032 		int elem = size_index_elem(i);
1033 
1034 		if (elem >= ARRAY_SIZE(size_index))
1035 			break;
1036 		size_index[elem] = KMALLOC_SHIFT_LOW;
1037 	}
1038 
1039 	if (KMALLOC_MIN_SIZE >= 64) {
1040 		/*
1041 		 * The 96 byte size cache is not used if the alignment
1042 		 * is 64 byte.
1043 		 */
1044 		for (i = 64 + 8; i <= 96; i += 8)
1045 			size_index[size_index_elem(i)] = 7;
1046 
1047 	}
1048 
1049 	if (KMALLOC_MIN_SIZE >= 128) {
1050 		/*
1051 		 * The 192 byte sized cache is not used if the alignment
1052 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1053 		 * instead.
1054 		 */
1055 		for (i = 128 + 8; i <= 192; i += 8)
1056 			size_index[size_index_elem(i)] = 8;
1057 	}
1058 }
1059 
1060 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1061 {
1062 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1063 					kmalloc_info[idx].size, flags);
1064 }
1065 
1066 /*
1067  * Create the kmalloc array. Some of the regular kmalloc arrays
1068  * may already have been created because they were needed to
1069  * enable allocations for slab creation.
1070  */
1071 void __init create_kmalloc_caches(slab_flags_t flags)
1072 {
1073 	int i;
1074 
1075 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1076 		if (!kmalloc_caches[i])
1077 			new_kmalloc_cache(i, flags);
1078 
1079 		/*
1080 		 * Caches that are not of the two-to-the-power-of size.
1081 		 * These have to be created immediately after the
1082 		 * earlier power of two caches
1083 		 */
1084 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1085 			new_kmalloc_cache(1, flags);
1086 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1087 			new_kmalloc_cache(2, flags);
1088 	}
1089 
1090 	/* Kmalloc array is now usable */
1091 	slab_state = UP;
1092 
1093 #ifdef CONFIG_ZONE_DMA
1094 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1095 		struct kmem_cache *s = kmalloc_caches[i];
1096 
1097 		if (s) {
1098 			int size = kmalloc_size(i);
1099 			char *n = kasprintf(GFP_NOWAIT,
1100 				 "dma-kmalloc-%d", size);
1101 
1102 			BUG_ON(!n);
1103 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1104 				size, SLAB_CACHE_DMA | flags);
1105 		}
1106 	}
1107 #endif
1108 }
1109 #endif /* !CONFIG_SLOB */
1110 
1111 /*
1112  * To avoid unnecessary overhead, we pass through large allocation requests
1113  * directly to the page allocator. We use __GFP_COMP, because we will need to
1114  * know the allocation order to free the pages properly in kfree.
1115  */
1116 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1117 {
1118 	void *ret;
1119 	struct page *page;
1120 
1121 	flags |= __GFP_COMP;
1122 	page = alloc_pages(flags, order);
1123 	ret = page ? page_address(page) : NULL;
1124 	kmemleak_alloc(ret, size, 1, flags);
1125 	kasan_kmalloc_large(ret, size, flags);
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(kmalloc_order);
1129 
1130 #ifdef CONFIG_TRACING
1131 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1132 {
1133 	void *ret = kmalloc_order(size, flags, order);
1134 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL(kmalloc_order_trace);
1138 #endif
1139 
1140 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1141 /* Randomize a generic freelist */
1142 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1143 			size_t count)
1144 {
1145 	size_t i;
1146 	unsigned int rand;
1147 
1148 	for (i = 0; i < count; i++)
1149 		list[i] = i;
1150 
1151 	/* Fisher-Yates shuffle */
1152 	for (i = count - 1; i > 0; i--) {
1153 		rand = prandom_u32_state(state);
1154 		rand %= (i + 1);
1155 		swap(list[i], list[rand]);
1156 	}
1157 }
1158 
1159 /* Create a random sequence per cache */
1160 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1161 				    gfp_t gfp)
1162 {
1163 	struct rnd_state state;
1164 
1165 	if (count < 2 || cachep->random_seq)
1166 		return 0;
1167 
1168 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1169 	if (!cachep->random_seq)
1170 		return -ENOMEM;
1171 
1172 	/* Get best entropy at this stage of boot */
1173 	prandom_seed_state(&state, get_random_long());
1174 
1175 	freelist_randomize(&state, cachep->random_seq, count);
1176 	return 0;
1177 }
1178 
1179 /* Destroy the per-cache random freelist sequence */
1180 void cache_random_seq_destroy(struct kmem_cache *cachep)
1181 {
1182 	kfree(cachep->random_seq);
1183 	cachep->random_seq = NULL;
1184 }
1185 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1186 
1187 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1188 #ifdef CONFIG_SLAB
1189 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1190 #else
1191 #define SLABINFO_RIGHTS S_IRUSR
1192 #endif
1193 
1194 static void print_slabinfo_header(struct seq_file *m)
1195 {
1196 	/*
1197 	 * Output format version, so at least we can change it
1198 	 * without _too_ many complaints.
1199 	 */
1200 #ifdef CONFIG_DEBUG_SLAB
1201 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1202 #else
1203 	seq_puts(m, "slabinfo - version: 2.1\n");
1204 #endif
1205 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1207 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1208 #ifdef CONFIG_DEBUG_SLAB
1209 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1211 #endif
1212 	seq_putc(m, '\n');
1213 }
1214 
1215 void *slab_start(struct seq_file *m, loff_t *pos)
1216 {
1217 	mutex_lock(&slab_mutex);
1218 	return seq_list_start(&slab_root_caches, *pos);
1219 }
1220 
1221 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222 {
1223 	return seq_list_next(p, &slab_root_caches, pos);
1224 }
1225 
1226 void slab_stop(struct seq_file *m, void *p)
1227 {
1228 	mutex_unlock(&slab_mutex);
1229 }
1230 
1231 static void
1232 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1233 {
1234 	struct kmem_cache *c;
1235 	struct slabinfo sinfo;
1236 
1237 	if (!is_root_cache(s))
1238 		return;
1239 
1240 	for_each_memcg_cache(c, s) {
1241 		memset(&sinfo, 0, sizeof(sinfo));
1242 		get_slabinfo(c, &sinfo);
1243 
1244 		info->active_slabs += sinfo.active_slabs;
1245 		info->num_slabs += sinfo.num_slabs;
1246 		info->shared_avail += sinfo.shared_avail;
1247 		info->active_objs += sinfo.active_objs;
1248 		info->num_objs += sinfo.num_objs;
1249 	}
1250 }
1251 
1252 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253 {
1254 	struct slabinfo sinfo;
1255 
1256 	memset(&sinfo, 0, sizeof(sinfo));
1257 	get_slabinfo(s, &sinfo);
1258 
1259 	memcg_accumulate_slabinfo(s, &sinfo);
1260 
1261 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264 
1265 	seq_printf(m, " : tunables %4u %4u %4u",
1266 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 	slabinfo_show_stats(m, s);
1270 	seq_putc(m, '\n');
1271 }
1272 
1273 static int slab_show(struct seq_file *m, void *p)
1274 {
1275 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276 
1277 	if (p == slab_root_caches.next)
1278 		print_slabinfo_header(m);
1279 	cache_show(s, m);
1280 	return 0;
1281 }
1282 
1283 void dump_unreclaimable_slab(void)
1284 {
1285 	struct kmem_cache *s, *s2;
1286 	struct slabinfo sinfo;
1287 
1288 	/*
1289 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1290 	 * sleep in oom path. But, without mutex hold, it may introduce a
1291 	 * risk of crash.
1292 	 * Use mutex_trylock to protect the list traverse, dump nothing
1293 	 * without acquiring the mutex.
1294 	 */
1295 	if (!mutex_trylock(&slab_mutex)) {
1296 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1297 		return;
1298 	}
1299 
1300 	pr_info("Unreclaimable slab info:\n");
1301 	pr_info("Name                      Used          Total\n");
1302 
1303 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1304 		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1305 			continue;
1306 
1307 		get_slabinfo(s, &sinfo);
1308 
1309 		if (sinfo.num_objs > 0)
1310 			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1311 				(sinfo.active_objs * s->size) / 1024,
1312 				(sinfo.num_objs * s->size) / 1024);
1313 	}
1314 	mutex_unlock(&slab_mutex);
1315 }
1316 
1317 #if defined(CONFIG_MEMCG)
1318 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1319 {
1320 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1321 
1322 	mutex_lock(&slab_mutex);
1323 	return seq_list_start(&memcg->kmem_caches, *pos);
1324 }
1325 
1326 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1327 {
1328 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1329 
1330 	return seq_list_next(p, &memcg->kmem_caches, pos);
1331 }
1332 
1333 void memcg_slab_stop(struct seq_file *m, void *p)
1334 {
1335 	mutex_unlock(&slab_mutex);
1336 }
1337 
1338 int memcg_slab_show(struct seq_file *m, void *p)
1339 {
1340 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1341 					  memcg_params.kmem_caches_node);
1342 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1343 
1344 	if (p == memcg->kmem_caches.next)
1345 		print_slabinfo_header(m);
1346 	cache_show(s, m);
1347 	return 0;
1348 }
1349 #endif
1350 
1351 /*
1352  * slabinfo_op - iterator that generates /proc/slabinfo
1353  *
1354  * Output layout:
1355  * cache-name
1356  * num-active-objs
1357  * total-objs
1358  * object size
1359  * num-active-slabs
1360  * total-slabs
1361  * num-pages-per-slab
1362  * + further values on SMP and with statistics enabled
1363  */
1364 static const struct seq_operations slabinfo_op = {
1365 	.start = slab_start,
1366 	.next = slab_next,
1367 	.stop = slab_stop,
1368 	.show = slab_show,
1369 };
1370 
1371 static int slabinfo_open(struct inode *inode, struct file *file)
1372 {
1373 	return seq_open(file, &slabinfo_op);
1374 }
1375 
1376 static const struct file_operations proc_slabinfo_operations = {
1377 	.open		= slabinfo_open,
1378 	.read		= seq_read,
1379 	.write          = slabinfo_write,
1380 	.llseek		= seq_lseek,
1381 	.release	= seq_release,
1382 };
1383 
1384 static int __init slab_proc_init(void)
1385 {
1386 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1387 						&proc_slabinfo_operations);
1388 	return 0;
1389 }
1390 module_init(slab_proc_init);
1391 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1392 
1393 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1394 					   gfp_t flags)
1395 {
1396 	void *ret;
1397 	size_t ks = 0;
1398 
1399 	if (p)
1400 		ks = ksize(p);
1401 
1402 	if (ks >= new_size) {
1403 		kasan_krealloc((void *)p, new_size, flags);
1404 		return (void *)p;
1405 	}
1406 
1407 	ret = kmalloc_track_caller(new_size, flags);
1408 	if (ret && p)
1409 		memcpy(ret, p, ks);
1410 
1411 	return ret;
1412 }
1413 
1414 /**
1415  * __krealloc - like krealloc() but don't free @p.
1416  * @p: object to reallocate memory for.
1417  * @new_size: how many bytes of memory are required.
1418  * @flags: the type of memory to allocate.
1419  *
1420  * This function is like krealloc() except it never frees the originally
1421  * allocated buffer. Use this if you don't want to free the buffer immediately
1422  * like, for example, with RCU.
1423  */
1424 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1425 {
1426 	if (unlikely(!new_size))
1427 		return ZERO_SIZE_PTR;
1428 
1429 	return __do_krealloc(p, new_size, flags);
1430 
1431 }
1432 EXPORT_SYMBOL(__krealloc);
1433 
1434 /**
1435  * krealloc - reallocate memory. The contents will remain unchanged.
1436  * @p: object to reallocate memory for.
1437  * @new_size: how many bytes of memory are required.
1438  * @flags: the type of memory to allocate.
1439  *
1440  * The contents of the object pointed to are preserved up to the
1441  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1442  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1443  * %NULL pointer, the object pointed to is freed.
1444  */
1445 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1446 {
1447 	void *ret;
1448 
1449 	if (unlikely(!new_size)) {
1450 		kfree(p);
1451 		return ZERO_SIZE_PTR;
1452 	}
1453 
1454 	ret = __do_krealloc(p, new_size, flags);
1455 	if (ret && p != ret)
1456 		kfree(p);
1457 
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL(krealloc);
1461 
1462 /**
1463  * kzfree - like kfree but zero memory
1464  * @p: object to free memory of
1465  *
1466  * The memory of the object @p points to is zeroed before freed.
1467  * If @p is %NULL, kzfree() does nothing.
1468  *
1469  * Note: this function zeroes the whole allocated buffer which can be a good
1470  * deal bigger than the requested buffer size passed to kmalloc(). So be
1471  * careful when using this function in performance sensitive code.
1472  */
1473 void kzfree(const void *p)
1474 {
1475 	size_t ks;
1476 	void *mem = (void *)p;
1477 
1478 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1479 		return;
1480 	ks = ksize(mem);
1481 	memset(mem, 0, ks);
1482 	kfree(mem);
1483 }
1484 EXPORT_SYMBOL(kzfree);
1485 
1486 /* Tracepoints definitions. */
1487 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1488 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1489 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1490 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1491 EXPORT_TRACEPOINT_SYMBOL(kfree);
1492 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1493