xref: /linux/mm/slab_common.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 static LIST_HEAD(slab_caches_to_rcu_destroy);
34 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
35 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
36 		    slab_caches_to_rcu_destroy_workfn);
37 
38 /*
39  * Set of flags that will prevent slab merging
40  */
41 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
42 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
43 		SLAB_FAILSLAB | SLAB_KASAN)
44 
45 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
46 			 SLAB_NOTRACK | SLAB_ACCOUNT)
47 
48 /*
49  * Merge control. If this is set then no merging of slab caches will occur.
50  * (Could be removed. This was introduced to pacify the merge skeptics.)
51  */
52 static int slab_nomerge;
53 
54 static int __init setup_slab_nomerge(char *str)
55 {
56 	slab_nomerge = 1;
57 	return 1;
58 }
59 
60 #ifdef CONFIG_SLUB
61 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62 #endif
63 
64 __setup("slab_nomerge", setup_slab_nomerge);
65 
66 /*
67  * Determine the size of a slab object
68  */
69 unsigned int kmem_cache_size(struct kmem_cache *s)
70 {
71 	return s->object_size;
72 }
73 EXPORT_SYMBOL(kmem_cache_size);
74 
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name, size_t size)
77 {
78 	struct kmem_cache *s = NULL;
79 
80 	if (!name || in_interrupt() || size < sizeof(void *) ||
81 		size > KMALLOC_MAX_SIZE) {
82 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 		return -EINVAL;
84 	}
85 
86 	list_for_each_entry(s, &slab_caches, list) {
87 		char tmp;
88 		int res;
89 
90 		/*
91 		 * This happens when the module gets unloaded and doesn't
92 		 * destroy its slab cache and no-one else reuses the vmalloc
93 		 * area of the module.  Print a warning.
94 		 */
95 		res = probe_kernel_address(s->name, tmp);
96 		if (res) {
97 			pr_err("Slab cache with size %d has lost its name\n",
98 			       s->object_size);
99 			continue;
100 		}
101 	}
102 
103 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
104 	return 0;
105 }
106 #else
107 static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 {
109 	return 0;
110 }
111 #endif
112 
113 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114 {
115 	size_t i;
116 
117 	for (i = 0; i < nr; i++) {
118 		if (s)
119 			kmem_cache_free(s, p[i]);
120 		else
121 			kfree(p[i]);
122 	}
123 }
124 
125 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 								void **p)
127 {
128 	size_t i;
129 
130 	for (i = 0; i < nr; i++) {
131 		void *x = p[i] = kmem_cache_alloc(s, flags);
132 		if (!x) {
133 			__kmem_cache_free_bulk(s, i, p);
134 			return 0;
135 		}
136 	}
137 	return i;
138 }
139 
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141 
142 LIST_HEAD(slab_root_caches);
143 
144 void slab_init_memcg_params(struct kmem_cache *s)
145 {
146 	s->memcg_params.root_cache = NULL;
147 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
148 	INIT_LIST_HEAD(&s->memcg_params.children);
149 }
150 
151 static int init_memcg_params(struct kmem_cache *s,
152 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153 {
154 	struct memcg_cache_array *arr;
155 
156 	if (root_cache) {
157 		s->memcg_params.root_cache = root_cache;
158 		s->memcg_params.memcg = memcg;
159 		INIT_LIST_HEAD(&s->memcg_params.children_node);
160 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 		return 0;
162 	}
163 
164 	slab_init_memcg_params(s);
165 
166 	if (!memcg_nr_cache_ids)
167 		return 0;
168 
169 	arr = kzalloc(sizeof(struct memcg_cache_array) +
170 		      memcg_nr_cache_ids * sizeof(void *),
171 		      GFP_KERNEL);
172 	if (!arr)
173 		return -ENOMEM;
174 
175 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 	return 0;
177 }
178 
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 	if (is_root_cache(s))
182 		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 }
184 
185 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
186 {
187 	struct memcg_cache_array *old, *new;
188 
189 	new = kzalloc(sizeof(struct memcg_cache_array) +
190 		      new_array_size * sizeof(void *), GFP_KERNEL);
191 	if (!new)
192 		return -ENOMEM;
193 
194 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
195 					lockdep_is_held(&slab_mutex));
196 	if (old)
197 		memcpy(new->entries, old->entries,
198 		       memcg_nr_cache_ids * sizeof(void *));
199 
200 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
201 	if (old)
202 		kfree_rcu(old, rcu);
203 	return 0;
204 }
205 
206 int memcg_update_all_caches(int num_memcgs)
207 {
208 	struct kmem_cache *s;
209 	int ret = 0;
210 
211 	mutex_lock(&slab_mutex);
212 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
213 		ret = update_memcg_params(s, num_memcgs);
214 		/*
215 		 * Instead of freeing the memory, we'll just leave the caches
216 		 * up to this point in an updated state.
217 		 */
218 		if (ret)
219 			break;
220 	}
221 	mutex_unlock(&slab_mutex);
222 	return ret;
223 }
224 
225 void memcg_link_cache(struct kmem_cache *s)
226 {
227 	if (is_root_cache(s)) {
228 		list_add(&s->root_caches_node, &slab_root_caches);
229 	} else {
230 		list_add(&s->memcg_params.children_node,
231 			 &s->memcg_params.root_cache->memcg_params.children);
232 		list_add(&s->memcg_params.kmem_caches_node,
233 			 &s->memcg_params.memcg->kmem_caches);
234 	}
235 }
236 
237 static void memcg_unlink_cache(struct kmem_cache *s)
238 {
239 	if (is_root_cache(s)) {
240 		list_del(&s->root_caches_node);
241 	} else {
242 		list_del(&s->memcg_params.children_node);
243 		list_del(&s->memcg_params.kmem_caches_node);
244 	}
245 }
246 #else
247 static inline int init_memcg_params(struct kmem_cache *s,
248 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
249 {
250 	return 0;
251 }
252 
253 static inline void destroy_memcg_params(struct kmem_cache *s)
254 {
255 }
256 
257 static inline void memcg_unlink_cache(struct kmem_cache *s)
258 {
259 }
260 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
261 
262 /*
263  * Find a mergeable slab cache
264  */
265 int slab_unmergeable(struct kmem_cache *s)
266 {
267 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
268 		return 1;
269 
270 	if (!is_root_cache(s))
271 		return 1;
272 
273 	if (s->ctor)
274 		return 1;
275 
276 	/*
277 	 * We may have set a slab to be unmergeable during bootstrap.
278 	 */
279 	if (s->refcount < 0)
280 		return 1;
281 
282 	return 0;
283 }
284 
285 struct kmem_cache *find_mergeable(size_t size, size_t align,
286 		unsigned long flags, const char *name, void (*ctor)(void *))
287 {
288 	struct kmem_cache *s;
289 
290 	if (slab_nomerge)
291 		return NULL;
292 
293 	if (ctor)
294 		return NULL;
295 
296 	size = ALIGN(size, sizeof(void *));
297 	align = calculate_alignment(flags, align, size);
298 	size = ALIGN(size, align);
299 	flags = kmem_cache_flags(size, flags, name, NULL);
300 
301 	if (flags & SLAB_NEVER_MERGE)
302 		return NULL;
303 
304 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
305 		if (slab_unmergeable(s))
306 			continue;
307 
308 		if (size > s->size)
309 			continue;
310 
311 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
312 			continue;
313 		/*
314 		 * Check if alignment is compatible.
315 		 * Courtesy of Adrian Drzewiecki
316 		 */
317 		if ((s->size & ~(align - 1)) != s->size)
318 			continue;
319 
320 		if (s->size - size >= sizeof(void *))
321 			continue;
322 
323 		if (IS_ENABLED(CONFIG_SLAB) && align &&
324 			(align > s->align || s->align % align))
325 			continue;
326 
327 		return s;
328 	}
329 	return NULL;
330 }
331 
332 /*
333  * Figure out what the alignment of the objects will be given a set of
334  * flags, a user specified alignment and the size of the objects.
335  */
336 unsigned long calculate_alignment(unsigned long flags,
337 		unsigned long align, unsigned long size)
338 {
339 	/*
340 	 * If the user wants hardware cache aligned objects then follow that
341 	 * suggestion if the object is sufficiently large.
342 	 *
343 	 * The hardware cache alignment cannot override the specified
344 	 * alignment though. If that is greater then use it.
345 	 */
346 	if (flags & SLAB_HWCACHE_ALIGN) {
347 		unsigned long ralign = cache_line_size();
348 		while (size <= ralign / 2)
349 			ralign /= 2;
350 		align = max(align, ralign);
351 	}
352 
353 	if (align < ARCH_SLAB_MINALIGN)
354 		align = ARCH_SLAB_MINALIGN;
355 
356 	return ALIGN(align, sizeof(void *));
357 }
358 
359 static struct kmem_cache *create_cache(const char *name,
360 		size_t object_size, size_t size, size_t align,
361 		unsigned long flags, void (*ctor)(void *),
362 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
363 {
364 	struct kmem_cache *s;
365 	int err;
366 
367 	err = -ENOMEM;
368 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
369 	if (!s)
370 		goto out;
371 
372 	s->name = name;
373 	s->object_size = object_size;
374 	s->size = size;
375 	s->align = align;
376 	s->ctor = ctor;
377 
378 	err = init_memcg_params(s, memcg, root_cache);
379 	if (err)
380 		goto out_free_cache;
381 
382 	err = __kmem_cache_create(s, flags);
383 	if (err)
384 		goto out_free_cache;
385 
386 	s->refcount = 1;
387 	list_add(&s->list, &slab_caches);
388 	memcg_link_cache(s);
389 out:
390 	if (err)
391 		return ERR_PTR(err);
392 	return s;
393 
394 out_free_cache:
395 	destroy_memcg_params(s);
396 	kmem_cache_free(kmem_cache, s);
397 	goto out;
398 }
399 
400 /*
401  * kmem_cache_create - Create a cache.
402  * @name: A string which is used in /proc/slabinfo to identify this cache.
403  * @size: The size of objects to be created in this cache.
404  * @align: The required alignment for the objects.
405  * @flags: SLAB flags
406  * @ctor: A constructor for the objects.
407  *
408  * Returns a ptr to the cache on success, NULL on failure.
409  * Cannot be called within a interrupt, but can be interrupted.
410  * The @ctor is run when new pages are allocated by the cache.
411  *
412  * The flags are
413  *
414  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
415  * to catch references to uninitialised memory.
416  *
417  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
418  * for buffer overruns.
419  *
420  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
421  * cacheline.  This can be beneficial if you're counting cycles as closely
422  * as davem.
423  */
424 struct kmem_cache *
425 kmem_cache_create(const char *name, size_t size, size_t align,
426 		  unsigned long flags, void (*ctor)(void *))
427 {
428 	struct kmem_cache *s = NULL;
429 	const char *cache_name;
430 	int err;
431 
432 	get_online_cpus();
433 	get_online_mems();
434 	memcg_get_cache_ids();
435 
436 	mutex_lock(&slab_mutex);
437 
438 	err = kmem_cache_sanity_check(name, size);
439 	if (err) {
440 		goto out_unlock;
441 	}
442 
443 	/* Refuse requests with allocator specific flags */
444 	if (flags & ~SLAB_FLAGS_PERMITTED) {
445 		err = -EINVAL;
446 		goto out_unlock;
447 	}
448 
449 	/*
450 	 * Some allocators will constraint the set of valid flags to a subset
451 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
452 	 * case, and we'll just provide them with a sanitized version of the
453 	 * passed flags.
454 	 */
455 	flags &= CACHE_CREATE_MASK;
456 
457 	s = __kmem_cache_alias(name, size, align, flags, ctor);
458 	if (s)
459 		goto out_unlock;
460 
461 	cache_name = kstrdup_const(name, GFP_KERNEL);
462 	if (!cache_name) {
463 		err = -ENOMEM;
464 		goto out_unlock;
465 	}
466 
467 	s = create_cache(cache_name, size, size,
468 			 calculate_alignment(flags, align, size),
469 			 flags, ctor, NULL, NULL);
470 	if (IS_ERR(s)) {
471 		err = PTR_ERR(s);
472 		kfree_const(cache_name);
473 	}
474 
475 out_unlock:
476 	mutex_unlock(&slab_mutex);
477 
478 	memcg_put_cache_ids();
479 	put_online_mems();
480 	put_online_cpus();
481 
482 	if (err) {
483 		if (flags & SLAB_PANIC)
484 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
485 				name, err);
486 		else {
487 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
488 				name, err);
489 			dump_stack();
490 		}
491 		return NULL;
492 	}
493 	return s;
494 }
495 EXPORT_SYMBOL(kmem_cache_create);
496 
497 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
498 {
499 	LIST_HEAD(to_destroy);
500 	struct kmem_cache *s, *s2;
501 
502 	/*
503 	 * On destruction, SLAB_DESTROY_BY_RCU kmem_caches are put on the
504 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
505 	 * through RCU and and the associated kmem_cache are dereferenced
506 	 * while freeing the pages, so the kmem_caches should be freed only
507 	 * after the pending RCU operations are finished.  As rcu_barrier()
508 	 * is a pretty slow operation, we batch all pending destructions
509 	 * asynchronously.
510 	 */
511 	mutex_lock(&slab_mutex);
512 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
513 	mutex_unlock(&slab_mutex);
514 
515 	if (list_empty(&to_destroy))
516 		return;
517 
518 	rcu_barrier();
519 
520 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
521 #ifdef SLAB_SUPPORTS_SYSFS
522 		sysfs_slab_release(s);
523 #else
524 		slab_kmem_cache_release(s);
525 #endif
526 	}
527 }
528 
529 static int shutdown_cache(struct kmem_cache *s)
530 {
531 	/* free asan quarantined objects */
532 	kasan_cache_shutdown(s);
533 
534 	if (__kmem_cache_shutdown(s) != 0)
535 		return -EBUSY;
536 
537 	memcg_unlink_cache(s);
538 	list_del(&s->list);
539 
540 	if (s->flags & SLAB_DESTROY_BY_RCU) {
541 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
542 		schedule_work(&slab_caches_to_rcu_destroy_work);
543 	} else {
544 #ifdef SLAB_SUPPORTS_SYSFS
545 		sysfs_slab_release(s);
546 #else
547 		slab_kmem_cache_release(s);
548 #endif
549 	}
550 
551 	return 0;
552 }
553 
554 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
555 /*
556  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
557  * @memcg: The memory cgroup the new cache is for.
558  * @root_cache: The parent of the new cache.
559  *
560  * This function attempts to create a kmem cache that will serve allocation
561  * requests going from @memcg to @root_cache. The new cache inherits properties
562  * from its parent.
563  */
564 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
565 			     struct kmem_cache *root_cache)
566 {
567 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
568 	struct cgroup_subsys_state *css = &memcg->css;
569 	struct memcg_cache_array *arr;
570 	struct kmem_cache *s = NULL;
571 	char *cache_name;
572 	int idx;
573 
574 	get_online_cpus();
575 	get_online_mems();
576 
577 	mutex_lock(&slab_mutex);
578 
579 	/*
580 	 * The memory cgroup could have been offlined while the cache
581 	 * creation work was pending.
582 	 */
583 	if (memcg->kmem_state != KMEM_ONLINE)
584 		goto out_unlock;
585 
586 	idx = memcg_cache_id(memcg);
587 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
588 					lockdep_is_held(&slab_mutex));
589 
590 	/*
591 	 * Since per-memcg caches are created asynchronously on first
592 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
593 	 * create the same cache, but only one of them may succeed.
594 	 */
595 	if (arr->entries[idx])
596 		goto out_unlock;
597 
598 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
599 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
600 			       css->serial_nr, memcg_name_buf);
601 	if (!cache_name)
602 		goto out_unlock;
603 
604 	s = create_cache(cache_name, root_cache->object_size,
605 			 root_cache->size, root_cache->align,
606 			 root_cache->flags & CACHE_CREATE_MASK,
607 			 root_cache->ctor, memcg, root_cache);
608 	/*
609 	 * If we could not create a memcg cache, do not complain, because
610 	 * that's not critical at all as we can always proceed with the root
611 	 * cache.
612 	 */
613 	if (IS_ERR(s)) {
614 		kfree(cache_name);
615 		goto out_unlock;
616 	}
617 
618 	/*
619 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
620 	 * barrier here to ensure nobody will see the kmem_cache partially
621 	 * initialized.
622 	 */
623 	smp_wmb();
624 	arr->entries[idx] = s;
625 
626 out_unlock:
627 	mutex_unlock(&slab_mutex);
628 
629 	put_online_mems();
630 	put_online_cpus();
631 }
632 
633 static void kmemcg_deactivate_workfn(struct work_struct *work)
634 {
635 	struct kmem_cache *s = container_of(work, struct kmem_cache,
636 					    memcg_params.deact_work);
637 
638 	get_online_cpus();
639 	get_online_mems();
640 
641 	mutex_lock(&slab_mutex);
642 
643 	s->memcg_params.deact_fn(s);
644 
645 	mutex_unlock(&slab_mutex);
646 
647 	put_online_mems();
648 	put_online_cpus();
649 
650 	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
651 	css_put(&s->memcg_params.memcg->css);
652 }
653 
654 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
655 {
656 	struct kmem_cache *s = container_of(head, struct kmem_cache,
657 					    memcg_params.deact_rcu_head);
658 
659 	/*
660 	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
661 	 * work item shares the space with the RCU head and can't be
662 	 * initialized eariler.
663 	 */
664 	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
665 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
666 }
667 
668 /**
669  * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
670  *					   sched RCU grace period
671  * @s: target kmem_cache
672  * @deact_fn: deactivation function to call
673  *
674  * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
675  * held after a sched RCU grace period.  The slab is guaranteed to stay
676  * alive until @deact_fn is finished.  This is to be used from
677  * __kmemcg_cache_deactivate().
678  */
679 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
680 					   void (*deact_fn)(struct kmem_cache *))
681 {
682 	if (WARN_ON_ONCE(is_root_cache(s)) ||
683 	    WARN_ON_ONCE(s->memcg_params.deact_fn))
684 		return;
685 
686 	/* pin memcg so that @s doesn't get destroyed in the middle */
687 	css_get(&s->memcg_params.memcg->css);
688 
689 	s->memcg_params.deact_fn = deact_fn;
690 	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
691 }
692 
693 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
694 {
695 	int idx;
696 	struct memcg_cache_array *arr;
697 	struct kmem_cache *s, *c;
698 
699 	idx = memcg_cache_id(memcg);
700 
701 	get_online_cpus();
702 	get_online_mems();
703 
704 	mutex_lock(&slab_mutex);
705 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
706 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
707 						lockdep_is_held(&slab_mutex));
708 		c = arr->entries[idx];
709 		if (!c)
710 			continue;
711 
712 		__kmemcg_cache_deactivate(c);
713 		arr->entries[idx] = NULL;
714 	}
715 	mutex_unlock(&slab_mutex);
716 
717 	put_online_mems();
718 	put_online_cpus();
719 }
720 
721 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
722 {
723 	struct kmem_cache *s, *s2;
724 
725 	get_online_cpus();
726 	get_online_mems();
727 
728 	mutex_lock(&slab_mutex);
729 	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
730 				 memcg_params.kmem_caches_node) {
731 		/*
732 		 * The cgroup is about to be freed and therefore has no charges
733 		 * left. Hence, all its caches must be empty by now.
734 		 */
735 		BUG_ON(shutdown_cache(s));
736 	}
737 	mutex_unlock(&slab_mutex);
738 
739 	put_online_mems();
740 	put_online_cpus();
741 }
742 
743 static int shutdown_memcg_caches(struct kmem_cache *s)
744 {
745 	struct memcg_cache_array *arr;
746 	struct kmem_cache *c, *c2;
747 	LIST_HEAD(busy);
748 	int i;
749 
750 	BUG_ON(!is_root_cache(s));
751 
752 	/*
753 	 * First, shutdown active caches, i.e. caches that belong to online
754 	 * memory cgroups.
755 	 */
756 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
757 					lockdep_is_held(&slab_mutex));
758 	for_each_memcg_cache_index(i) {
759 		c = arr->entries[i];
760 		if (!c)
761 			continue;
762 		if (shutdown_cache(c))
763 			/*
764 			 * The cache still has objects. Move it to a temporary
765 			 * list so as not to try to destroy it for a second
766 			 * time while iterating over inactive caches below.
767 			 */
768 			list_move(&c->memcg_params.children_node, &busy);
769 		else
770 			/*
771 			 * The cache is empty and will be destroyed soon. Clear
772 			 * the pointer to it in the memcg_caches array so that
773 			 * it will never be accessed even if the root cache
774 			 * stays alive.
775 			 */
776 			arr->entries[i] = NULL;
777 	}
778 
779 	/*
780 	 * Second, shutdown all caches left from memory cgroups that are now
781 	 * offline.
782 	 */
783 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
784 				 memcg_params.children_node)
785 		shutdown_cache(c);
786 
787 	list_splice(&busy, &s->memcg_params.children);
788 
789 	/*
790 	 * A cache being destroyed must be empty. In particular, this means
791 	 * that all per memcg caches attached to it must be empty too.
792 	 */
793 	if (!list_empty(&s->memcg_params.children))
794 		return -EBUSY;
795 	return 0;
796 }
797 #else
798 static inline int shutdown_memcg_caches(struct kmem_cache *s)
799 {
800 	return 0;
801 }
802 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
803 
804 void slab_kmem_cache_release(struct kmem_cache *s)
805 {
806 	__kmem_cache_release(s);
807 	destroy_memcg_params(s);
808 	kfree_const(s->name);
809 	kmem_cache_free(kmem_cache, s);
810 }
811 
812 void kmem_cache_destroy(struct kmem_cache *s)
813 {
814 	int err;
815 
816 	if (unlikely(!s))
817 		return;
818 
819 	get_online_cpus();
820 	get_online_mems();
821 
822 	mutex_lock(&slab_mutex);
823 
824 	s->refcount--;
825 	if (s->refcount)
826 		goto out_unlock;
827 
828 	err = shutdown_memcg_caches(s);
829 	if (!err)
830 		err = shutdown_cache(s);
831 
832 	if (err) {
833 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
834 		       s->name);
835 		dump_stack();
836 	}
837 out_unlock:
838 	mutex_unlock(&slab_mutex);
839 
840 	put_online_mems();
841 	put_online_cpus();
842 }
843 EXPORT_SYMBOL(kmem_cache_destroy);
844 
845 /**
846  * kmem_cache_shrink - Shrink a cache.
847  * @cachep: The cache to shrink.
848  *
849  * Releases as many slabs as possible for a cache.
850  * To help debugging, a zero exit status indicates all slabs were released.
851  */
852 int kmem_cache_shrink(struct kmem_cache *cachep)
853 {
854 	int ret;
855 
856 	get_online_cpus();
857 	get_online_mems();
858 	kasan_cache_shrink(cachep);
859 	ret = __kmem_cache_shrink(cachep);
860 	put_online_mems();
861 	put_online_cpus();
862 	return ret;
863 }
864 EXPORT_SYMBOL(kmem_cache_shrink);
865 
866 bool slab_is_available(void)
867 {
868 	return slab_state >= UP;
869 }
870 
871 #ifndef CONFIG_SLOB
872 /* Create a cache during boot when no slab services are available yet */
873 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
874 		unsigned long flags)
875 {
876 	int err;
877 
878 	s->name = name;
879 	s->size = s->object_size = size;
880 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
881 
882 	slab_init_memcg_params(s);
883 
884 	err = __kmem_cache_create(s, flags);
885 
886 	if (err)
887 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
888 					name, size, err);
889 
890 	s->refcount = -1;	/* Exempt from merging for now */
891 }
892 
893 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
894 				unsigned long flags)
895 {
896 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
897 
898 	if (!s)
899 		panic("Out of memory when creating slab %s\n", name);
900 
901 	create_boot_cache(s, name, size, flags);
902 	list_add(&s->list, &slab_caches);
903 	memcg_link_cache(s);
904 	s->refcount = 1;
905 	return s;
906 }
907 
908 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
909 EXPORT_SYMBOL(kmalloc_caches);
910 
911 #ifdef CONFIG_ZONE_DMA
912 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
913 EXPORT_SYMBOL(kmalloc_dma_caches);
914 #endif
915 
916 /*
917  * Conversion table for small slabs sizes / 8 to the index in the
918  * kmalloc array. This is necessary for slabs < 192 since we have non power
919  * of two cache sizes there. The size of larger slabs can be determined using
920  * fls.
921  */
922 static s8 size_index[24] = {
923 	3,	/* 8 */
924 	4,	/* 16 */
925 	5,	/* 24 */
926 	5,	/* 32 */
927 	6,	/* 40 */
928 	6,	/* 48 */
929 	6,	/* 56 */
930 	6,	/* 64 */
931 	1,	/* 72 */
932 	1,	/* 80 */
933 	1,	/* 88 */
934 	1,	/* 96 */
935 	7,	/* 104 */
936 	7,	/* 112 */
937 	7,	/* 120 */
938 	7,	/* 128 */
939 	2,	/* 136 */
940 	2,	/* 144 */
941 	2,	/* 152 */
942 	2,	/* 160 */
943 	2,	/* 168 */
944 	2,	/* 176 */
945 	2,	/* 184 */
946 	2	/* 192 */
947 };
948 
949 static inline int size_index_elem(size_t bytes)
950 {
951 	return (bytes - 1) / 8;
952 }
953 
954 /*
955  * Find the kmem_cache structure that serves a given size of
956  * allocation
957  */
958 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
959 {
960 	int index;
961 
962 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
963 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
964 		return NULL;
965 	}
966 
967 	if (size <= 192) {
968 		if (!size)
969 			return ZERO_SIZE_PTR;
970 
971 		index = size_index[size_index_elem(size)];
972 	} else
973 		index = fls(size - 1);
974 
975 #ifdef CONFIG_ZONE_DMA
976 	if (unlikely((flags & GFP_DMA)))
977 		return kmalloc_dma_caches[index];
978 
979 #endif
980 	return kmalloc_caches[index];
981 }
982 
983 /*
984  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
985  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
986  * kmalloc-67108864.
987  */
988 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
989 	{NULL,                      0},		{"kmalloc-96",             96},
990 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
991 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
992 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
993 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
994 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
995 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
996 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
997 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
998 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
999 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
1000 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
1001 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
1002 	{"kmalloc-67108864", 67108864}
1003 };
1004 
1005 /*
1006  * Patch up the size_index table if we have strange large alignment
1007  * requirements for the kmalloc array. This is only the case for
1008  * MIPS it seems. The standard arches will not generate any code here.
1009  *
1010  * Largest permitted alignment is 256 bytes due to the way we
1011  * handle the index determination for the smaller caches.
1012  *
1013  * Make sure that nothing crazy happens if someone starts tinkering
1014  * around with ARCH_KMALLOC_MINALIGN
1015  */
1016 void __init setup_kmalloc_cache_index_table(void)
1017 {
1018 	int i;
1019 
1020 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1021 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1022 
1023 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1024 		int elem = size_index_elem(i);
1025 
1026 		if (elem >= ARRAY_SIZE(size_index))
1027 			break;
1028 		size_index[elem] = KMALLOC_SHIFT_LOW;
1029 	}
1030 
1031 	if (KMALLOC_MIN_SIZE >= 64) {
1032 		/*
1033 		 * The 96 byte size cache is not used if the alignment
1034 		 * is 64 byte.
1035 		 */
1036 		for (i = 64 + 8; i <= 96; i += 8)
1037 			size_index[size_index_elem(i)] = 7;
1038 
1039 	}
1040 
1041 	if (KMALLOC_MIN_SIZE >= 128) {
1042 		/*
1043 		 * The 192 byte sized cache is not used if the alignment
1044 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1045 		 * instead.
1046 		 */
1047 		for (i = 128 + 8; i <= 192; i += 8)
1048 			size_index[size_index_elem(i)] = 8;
1049 	}
1050 }
1051 
1052 static void __init new_kmalloc_cache(int idx, unsigned long flags)
1053 {
1054 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1055 					kmalloc_info[idx].size, flags);
1056 }
1057 
1058 /*
1059  * Create the kmalloc array. Some of the regular kmalloc arrays
1060  * may already have been created because they were needed to
1061  * enable allocations for slab creation.
1062  */
1063 void __init create_kmalloc_caches(unsigned long flags)
1064 {
1065 	int i;
1066 
1067 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1068 		if (!kmalloc_caches[i])
1069 			new_kmalloc_cache(i, flags);
1070 
1071 		/*
1072 		 * Caches that are not of the two-to-the-power-of size.
1073 		 * These have to be created immediately after the
1074 		 * earlier power of two caches
1075 		 */
1076 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1077 			new_kmalloc_cache(1, flags);
1078 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1079 			new_kmalloc_cache(2, flags);
1080 	}
1081 
1082 	/* Kmalloc array is now usable */
1083 	slab_state = UP;
1084 
1085 #ifdef CONFIG_ZONE_DMA
1086 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1087 		struct kmem_cache *s = kmalloc_caches[i];
1088 
1089 		if (s) {
1090 			int size = kmalloc_size(i);
1091 			char *n = kasprintf(GFP_NOWAIT,
1092 				 "dma-kmalloc-%d", size);
1093 
1094 			BUG_ON(!n);
1095 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1096 				size, SLAB_CACHE_DMA | flags);
1097 		}
1098 	}
1099 #endif
1100 }
1101 #endif /* !CONFIG_SLOB */
1102 
1103 /*
1104  * To avoid unnecessary overhead, we pass through large allocation requests
1105  * directly to the page allocator. We use __GFP_COMP, because we will need to
1106  * know the allocation order to free the pages properly in kfree.
1107  */
1108 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1109 {
1110 	void *ret;
1111 	struct page *page;
1112 
1113 	flags |= __GFP_COMP;
1114 	page = alloc_pages(flags, order);
1115 	ret = page ? page_address(page) : NULL;
1116 	kmemleak_alloc(ret, size, 1, flags);
1117 	kasan_kmalloc_large(ret, size, flags);
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL(kmalloc_order);
1121 
1122 #ifdef CONFIG_TRACING
1123 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1124 {
1125 	void *ret = kmalloc_order(size, flags, order);
1126 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL(kmalloc_order_trace);
1130 #endif
1131 
1132 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1133 /* Randomize a generic freelist */
1134 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1135 			size_t count)
1136 {
1137 	size_t i;
1138 	unsigned int rand;
1139 
1140 	for (i = 0; i < count; i++)
1141 		list[i] = i;
1142 
1143 	/* Fisher-Yates shuffle */
1144 	for (i = count - 1; i > 0; i--) {
1145 		rand = prandom_u32_state(state);
1146 		rand %= (i + 1);
1147 		swap(list[i], list[rand]);
1148 	}
1149 }
1150 
1151 /* Create a random sequence per cache */
1152 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1153 				    gfp_t gfp)
1154 {
1155 	struct rnd_state state;
1156 
1157 	if (count < 2 || cachep->random_seq)
1158 		return 0;
1159 
1160 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1161 	if (!cachep->random_seq)
1162 		return -ENOMEM;
1163 
1164 	/* Get best entropy at this stage of boot */
1165 	prandom_seed_state(&state, get_random_long());
1166 
1167 	freelist_randomize(&state, cachep->random_seq, count);
1168 	return 0;
1169 }
1170 
1171 /* Destroy the per-cache random freelist sequence */
1172 void cache_random_seq_destroy(struct kmem_cache *cachep)
1173 {
1174 	kfree(cachep->random_seq);
1175 	cachep->random_seq = NULL;
1176 }
1177 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1178 
1179 #ifdef CONFIG_SLABINFO
1180 
1181 #ifdef CONFIG_SLAB
1182 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1183 #else
1184 #define SLABINFO_RIGHTS S_IRUSR
1185 #endif
1186 
1187 static void print_slabinfo_header(struct seq_file *m)
1188 {
1189 	/*
1190 	 * Output format version, so at least we can change it
1191 	 * without _too_ many complaints.
1192 	 */
1193 #ifdef CONFIG_DEBUG_SLAB
1194 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1195 #else
1196 	seq_puts(m, "slabinfo - version: 2.1\n");
1197 #endif
1198 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1199 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1200 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1201 #ifdef CONFIG_DEBUG_SLAB
1202 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1203 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1204 #endif
1205 	seq_putc(m, '\n');
1206 }
1207 
1208 void *slab_start(struct seq_file *m, loff_t *pos)
1209 {
1210 	mutex_lock(&slab_mutex);
1211 	return seq_list_start(&slab_root_caches, *pos);
1212 }
1213 
1214 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1215 {
1216 	return seq_list_next(p, &slab_root_caches, pos);
1217 }
1218 
1219 void slab_stop(struct seq_file *m, void *p)
1220 {
1221 	mutex_unlock(&slab_mutex);
1222 }
1223 
1224 static void
1225 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1226 {
1227 	struct kmem_cache *c;
1228 	struct slabinfo sinfo;
1229 
1230 	if (!is_root_cache(s))
1231 		return;
1232 
1233 	for_each_memcg_cache(c, s) {
1234 		memset(&sinfo, 0, sizeof(sinfo));
1235 		get_slabinfo(c, &sinfo);
1236 
1237 		info->active_slabs += sinfo.active_slabs;
1238 		info->num_slabs += sinfo.num_slabs;
1239 		info->shared_avail += sinfo.shared_avail;
1240 		info->active_objs += sinfo.active_objs;
1241 		info->num_objs += sinfo.num_objs;
1242 	}
1243 }
1244 
1245 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1246 {
1247 	struct slabinfo sinfo;
1248 
1249 	memset(&sinfo, 0, sizeof(sinfo));
1250 	get_slabinfo(s, &sinfo);
1251 
1252 	memcg_accumulate_slabinfo(s, &sinfo);
1253 
1254 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1255 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1256 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1257 
1258 	seq_printf(m, " : tunables %4u %4u %4u",
1259 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1260 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1261 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1262 	slabinfo_show_stats(m, s);
1263 	seq_putc(m, '\n');
1264 }
1265 
1266 static int slab_show(struct seq_file *m, void *p)
1267 {
1268 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1269 
1270 	if (p == slab_root_caches.next)
1271 		print_slabinfo_header(m);
1272 	cache_show(s, m);
1273 	return 0;
1274 }
1275 
1276 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1277 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1278 {
1279 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1280 
1281 	mutex_lock(&slab_mutex);
1282 	return seq_list_start(&memcg->kmem_caches, *pos);
1283 }
1284 
1285 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1286 {
1287 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1288 
1289 	return seq_list_next(p, &memcg->kmem_caches, pos);
1290 }
1291 
1292 void memcg_slab_stop(struct seq_file *m, void *p)
1293 {
1294 	mutex_unlock(&slab_mutex);
1295 }
1296 
1297 int memcg_slab_show(struct seq_file *m, void *p)
1298 {
1299 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1300 					  memcg_params.kmem_caches_node);
1301 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1302 
1303 	if (p == memcg->kmem_caches.next)
1304 		print_slabinfo_header(m);
1305 	cache_show(s, m);
1306 	return 0;
1307 }
1308 #endif
1309 
1310 /*
1311  * slabinfo_op - iterator that generates /proc/slabinfo
1312  *
1313  * Output layout:
1314  * cache-name
1315  * num-active-objs
1316  * total-objs
1317  * object size
1318  * num-active-slabs
1319  * total-slabs
1320  * num-pages-per-slab
1321  * + further values on SMP and with statistics enabled
1322  */
1323 static const struct seq_operations slabinfo_op = {
1324 	.start = slab_start,
1325 	.next = slab_next,
1326 	.stop = slab_stop,
1327 	.show = slab_show,
1328 };
1329 
1330 static int slabinfo_open(struct inode *inode, struct file *file)
1331 {
1332 	return seq_open(file, &slabinfo_op);
1333 }
1334 
1335 static const struct file_operations proc_slabinfo_operations = {
1336 	.open		= slabinfo_open,
1337 	.read		= seq_read,
1338 	.write          = slabinfo_write,
1339 	.llseek		= seq_lseek,
1340 	.release	= seq_release,
1341 };
1342 
1343 static int __init slab_proc_init(void)
1344 {
1345 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1346 						&proc_slabinfo_operations);
1347 	return 0;
1348 }
1349 module_init(slab_proc_init);
1350 #endif /* CONFIG_SLABINFO */
1351 
1352 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1353 					   gfp_t flags)
1354 {
1355 	void *ret;
1356 	size_t ks = 0;
1357 
1358 	if (p)
1359 		ks = ksize(p);
1360 
1361 	if (ks >= new_size) {
1362 		kasan_krealloc((void *)p, new_size, flags);
1363 		return (void *)p;
1364 	}
1365 
1366 	ret = kmalloc_track_caller(new_size, flags);
1367 	if (ret && p)
1368 		memcpy(ret, p, ks);
1369 
1370 	return ret;
1371 }
1372 
1373 /**
1374  * __krealloc - like krealloc() but don't free @p.
1375  * @p: object to reallocate memory for.
1376  * @new_size: how many bytes of memory are required.
1377  * @flags: the type of memory to allocate.
1378  *
1379  * This function is like krealloc() except it never frees the originally
1380  * allocated buffer. Use this if you don't want to free the buffer immediately
1381  * like, for example, with RCU.
1382  */
1383 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1384 {
1385 	if (unlikely(!new_size))
1386 		return ZERO_SIZE_PTR;
1387 
1388 	return __do_krealloc(p, new_size, flags);
1389 
1390 }
1391 EXPORT_SYMBOL(__krealloc);
1392 
1393 /**
1394  * krealloc - reallocate memory. The contents will remain unchanged.
1395  * @p: object to reallocate memory for.
1396  * @new_size: how many bytes of memory are required.
1397  * @flags: the type of memory to allocate.
1398  *
1399  * The contents of the object pointed to are preserved up to the
1400  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1401  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1402  * %NULL pointer, the object pointed to is freed.
1403  */
1404 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1405 {
1406 	void *ret;
1407 
1408 	if (unlikely(!new_size)) {
1409 		kfree(p);
1410 		return ZERO_SIZE_PTR;
1411 	}
1412 
1413 	ret = __do_krealloc(p, new_size, flags);
1414 	if (ret && p != ret)
1415 		kfree(p);
1416 
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(krealloc);
1420 
1421 /**
1422  * kzfree - like kfree but zero memory
1423  * @p: object to free memory of
1424  *
1425  * The memory of the object @p points to is zeroed before freed.
1426  * If @p is %NULL, kzfree() does nothing.
1427  *
1428  * Note: this function zeroes the whole allocated buffer which can be a good
1429  * deal bigger than the requested buffer size passed to kmalloc(). So be
1430  * careful when using this function in performance sensitive code.
1431  */
1432 void kzfree(const void *p)
1433 {
1434 	size_t ks;
1435 	void *mem = (void *)p;
1436 
1437 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1438 		return;
1439 	ks = ksize(mem);
1440 	memset(mem, 0, ks);
1441 	kfree(mem);
1442 }
1443 EXPORT_SYMBOL(kzfree);
1444 
1445 /* Tracepoints definitions. */
1446 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1447 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1448 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1449 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1450 EXPORT_TRACEPOINT_SYMBOL(kfree);
1451 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1452