xref: /linux/mm/slab_common.c (revision e21f9e2e862e9eb3dd64eaddb6256b3e5098660f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
22 #include <asm/page.h>
23 #include <linux/memcontrol.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
27 
28 #include "slab.h"
29 
30 enum slab_state slab_state;
31 LIST_HEAD(slab_caches);
32 DEFINE_MUTEX(slab_mutex);
33 struct kmem_cache *kmem_cache;
34 
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init =
37 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38 module_param(usercopy_fallback, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback,
40 		"WARN instead of reject usercopy whitelist violations");
41 #endif
42 
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 		    slab_caches_to_rcu_destroy_workfn);
47 
48 /*
49  * Set of flags that will prevent slab merging
50  */
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 		SLAB_FAILSLAB | SLAB_KASAN)
54 
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 			 SLAB_ACCOUNT)
57 
58 /*
59  * Merge control. If this is set then no merging of slab caches will occur.
60  */
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 
63 static int __init setup_slab_nomerge(char *str)
64 {
65 	slab_nomerge = true;
66 	return 1;
67 }
68 
69 #ifdef CONFIG_SLUB
70 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71 #endif
72 
73 __setup("slab_nomerge", setup_slab_nomerge);
74 
75 /*
76  * Determine the size of a slab object
77  */
78 unsigned int kmem_cache_size(struct kmem_cache *s)
79 {
80 	return s->object_size;
81 }
82 EXPORT_SYMBOL(kmem_cache_size);
83 
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name, unsigned int size)
86 {
87 	if (!name || in_interrupt() || size < sizeof(void *) ||
88 		size > KMALLOC_MAX_SIZE) {
89 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 		return -EINVAL;
91 	}
92 
93 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
94 	return 0;
95 }
96 #else
97 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98 {
99 	return 0;
100 }
101 #endif
102 
103 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104 {
105 	size_t i;
106 
107 	for (i = 0; i < nr; i++) {
108 		if (s)
109 			kmem_cache_free(s, p[i]);
110 		else
111 			kfree(p[i]);
112 	}
113 }
114 
115 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 								void **p)
117 {
118 	size_t i;
119 
120 	for (i = 0; i < nr; i++) {
121 		void *x = p[i] = kmem_cache_alloc(s, flags);
122 		if (!x) {
123 			__kmem_cache_free_bulk(s, i, p);
124 			return 0;
125 		}
126 	}
127 	return i;
128 }
129 
130 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
131 
132 LIST_HEAD(slab_root_caches);
133 
134 void slab_init_memcg_params(struct kmem_cache *s)
135 {
136 	s->memcg_params.root_cache = NULL;
137 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
138 	INIT_LIST_HEAD(&s->memcg_params.children);
139 }
140 
141 static int init_memcg_params(struct kmem_cache *s,
142 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
143 {
144 	struct memcg_cache_array *arr;
145 
146 	if (root_cache) {
147 		s->memcg_params.root_cache = root_cache;
148 		s->memcg_params.memcg = memcg;
149 		INIT_LIST_HEAD(&s->memcg_params.children_node);
150 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
151 		return 0;
152 	}
153 
154 	slab_init_memcg_params(s);
155 
156 	if (!memcg_nr_cache_ids)
157 		return 0;
158 
159 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
160 		       memcg_nr_cache_ids * sizeof(void *),
161 		       GFP_KERNEL);
162 	if (!arr)
163 		return -ENOMEM;
164 
165 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
166 	return 0;
167 }
168 
169 static void destroy_memcg_params(struct kmem_cache *s)
170 {
171 	if (is_root_cache(s))
172 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
173 }
174 
175 static void free_memcg_params(struct rcu_head *rcu)
176 {
177 	struct memcg_cache_array *old;
178 
179 	old = container_of(rcu, struct memcg_cache_array, rcu);
180 	kvfree(old);
181 }
182 
183 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
184 {
185 	struct memcg_cache_array *old, *new;
186 
187 	new = kvzalloc(sizeof(struct memcg_cache_array) +
188 		       new_array_size * sizeof(void *), GFP_KERNEL);
189 	if (!new)
190 		return -ENOMEM;
191 
192 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
193 					lockdep_is_held(&slab_mutex));
194 	if (old)
195 		memcpy(new->entries, old->entries,
196 		       memcg_nr_cache_ids * sizeof(void *));
197 
198 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
199 	if (old)
200 		call_rcu(&old->rcu, free_memcg_params);
201 	return 0;
202 }
203 
204 int memcg_update_all_caches(int num_memcgs)
205 {
206 	struct kmem_cache *s;
207 	int ret = 0;
208 
209 	mutex_lock(&slab_mutex);
210 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
211 		ret = update_memcg_params(s, num_memcgs);
212 		/*
213 		 * Instead of freeing the memory, we'll just leave the caches
214 		 * up to this point in an updated state.
215 		 */
216 		if (ret)
217 			break;
218 	}
219 	mutex_unlock(&slab_mutex);
220 	return ret;
221 }
222 
223 void memcg_link_cache(struct kmem_cache *s)
224 {
225 	if (is_root_cache(s)) {
226 		list_add(&s->root_caches_node, &slab_root_caches);
227 	} else {
228 		list_add(&s->memcg_params.children_node,
229 			 &s->memcg_params.root_cache->memcg_params.children);
230 		list_add(&s->memcg_params.kmem_caches_node,
231 			 &s->memcg_params.memcg->kmem_caches);
232 	}
233 }
234 
235 static void memcg_unlink_cache(struct kmem_cache *s)
236 {
237 	if (is_root_cache(s)) {
238 		list_del(&s->root_caches_node);
239 	} else {
240 		list_del(&s->memcg_params.children_node);
241 		list_del(&s->memcg_params.kmem_caches_node);
242 	}
243 }
244 #else
245 static inline int init_memcg_params(struct kmem_cache *s,
246 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
247 {
248 	return 0;
249 }
250 
251 static inline void destroy_memcg_params(struct kmem_cache *s)
252 {
253 }
254 
255 static inline void memcg_unlink_cache(struct kmem_cache *s)
256 {
257 }
258 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
259 
260 /*
261  * Figure out what the alignment of the objects will be given a set of
262  * flags, a user specified alignment and the size of the objects.
263  */
264 static unsigned int calculate_alignment(slab_flags_t flags,
265 		unsigned int align, unsigned int size)
266 {
267 	/*
268 	 * If the user wants hardware cache aligned objects then follow that
269 	 * suggestion if the object is sufficiently large.
270 	 *
271 	 * The hardware cache alignment cannot override the specified
272 	 * alignment though. If that is greater then use it.
273 	 */
274 	if (flags & SLAB_HWCACHE_ALIGN) {
275 		unsigned int ralign;
276 
277 		ralign = cache_line_size();
278 		while (size <= ralign / 2)
279 			ralign /= 2;
280 		align = max(align, ralign);
281 	}
282 
283 	if (align < ARCH_SLAB_MINALIGN)
284 		align = ARCH_SLAB_MINALIGN;
285 
286 	return ALIGN(align, sizeof(void *));
287 }
288 
289 /*
290  * Find a mergeable slab cache
291  */
292 int slab_unmergeable(struct kmem_cache *s)
293 {
294 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
295 		return 1;
296 
297 	if (!is_root_cache(s))
298 		return 1;
299 
300 	if (s->ctor)
301 		return 1;
302 
303 	if (s->usersize)
304 		return 1;
305 
306 	/*
307 	 * We may have set a slab to be unmergeable during bootstrap.
308 	 */
309 	if (s->refcount < 0)
310 		return 1;
311 
312 	return 0;
313 }
314 
315 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
316 		slab_flags_t flags, const char *name, void (*ctor)(void *))
317 {
318 	struct kmem_cache *s;
319 
320 	if (slab_nomerge)
321 		return NULL;
322 
323 	if (ctor)
324 		return NULL;
325 
326 	size = ALIGN(size, sizeof(void *));
327 	align = calculate_alignment(flags, align, size);
328 	size = ALIGN(size, align);
329 	flags = kmem_cache_flags(size, flags, name, NULL);
330 
331 	if (flags & SLAB_NEVER_MERGE)
332 		return NULL;
333 
334 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
335 		if (slab_unmergeable(s))
336 			continue;
337 
338 		if (size > s->size)
339 			continue;
340 
341 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
342 			continue;
343 		/*
344 		 * Check if alignment is compatible.
345 		 * Courtesy of Adrian Drzewiecki
346 		 */
347 		if ((s->size & ~(align - 1)) != s->size)
348 			continue;
349 
350 		if (s->size - size >= sizeof(void *))
351 			continue;
352 
353 		if (IS_ENABLED(CONFIG_SLAB) && align &&
354 			(align > s->align || s->align % align))
355 			continue;
356 
357 		return s;
358 	}
359 	return NULL;
360 }
361 
362 static struct kmem_cache *create_cache(const char *name,
363 		unsigned int object_size, unsigned int align,
364 		slab_flags_t flags, unsigned int useroffset,
365 		unsigned int usersize, void (*ctor)(void *),
366 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
367 {
368 	struct kmem_cache *s;
369 	int err;
370 
371 	if (WARN_ON(useroffset + usersize > object_size))
372 		useroffset = usersize = 0;
373 
374 	err = -ENOMEM;
375 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
376 	if (!s)
377 		goto out;
378 
379 	s->name = name;
380 	s->size = s->object_size = object_size;
381 	s->align = align;
382 	s->ctor = ctor;
383 	s->useroffset = useroffset;
384 	s->usersize = usersize;
385 
386 	err = init_memcg_params(s, memcg, root_cache);
387 	if (err)
388 		goto out_free_cache;
389 
390 	err = __kmem_cache_create(s, flags);
391 	if (err)
392 		goto out_free_cache;
393 
394 	s->refcount = 1;
395 	list_add(&s->list, &slab_caches);
396 	memcg_link_cache(s);
397 out:
398 	if (err)
399 		return ERR_PTR(err);
400 	return s;
401 
402 out_free_cache:
403 	destroy_memcg_params(s);
404 	kmem_cache_free(kmem_cache, s);
405 	goto out;
406 }
407 
408 /*
409  * kmem_cache_create_usercopy - Create a cache.
410  * @name: A string which is used in /proc/slabinfo to identify this cache.
411  * @size: The size of objects to be created in this cache.
412  * @align: The required alignment for the objects.
413  * @flags: SLAB flags
414  * @useroffset: Usercopy region offset
415  * @usersize: Usercopy region size
416  * @ctor: A constructor for the objects.
417  *
418  * Returns a ptr to the cache on success, NULL on failure.
419  * Cannot be called within a interrupt, but can be interrupted.
420  * The @ctor is run when new pages are allocated by the cache.
421  *
422  * The flags are
423  *
424  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
425  * to catch references to uninitialised memory.
426  *
427  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
428  * for buffer overruns.
429  *
430  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
431  * cacheline.  This can be beneficial if you're counting cycles as closely
432  * as davem.
433  */
434 struct kmem_cache *
435 kmem_cache_create_usercopy(const char *name,
436 		  unsigned int size, unsigned int align,
437 		  slab_flags_t flags,
438 		  unsigned int useroffset, unsigned int usersize,
439 		  void (*ctor)(void *))
440 {
441 	struct kmem_cache *s = NULL;
442 	const char *cache_name;
443 	int err;
444 
445 	get_online_cpus();
446 	get_online_mems();
447 	memcg_get_cache_ids();
448 
449 	mutex_lock(&slab_mutex);
450 
451 	err = kmem_cache_sanity_check(name, size);
452 	if (err) {
453 		goto out_unlock;
454 	}
455 
456 	/* Refuse requests with allocator specific flags */
457 	if (flags & ~SLAB_FLAGS_PERMITTED) {
458 		err = -EINVAL;
459 		goto out_unlock;
460 	}
461 
462 	/*
463 	 * Some allocators will constraint the set of valid flags to a subset
464 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
465 	 * case, and we'll just provide them with a sanitized version of the
466 	 * passed flags.
467 	 */
468 	flags &= CACHE_CREATE_MASK;
469 
470 	/* Fail closed on bad usersize of useroffset values. */
471 	if (WARN_ON(!usersize && useroffset) ||
472 	    WARN_ON(size < usersize || size - usersize < useroffset))
473 		usersize = useroffset = 0;
474 
475 	if (!usersize)
476 		s = __kmem_cache_alias(name, size, align, flags, ctor);
477 	if (s)
478 		goto out_unlock;
479 
480 	cache_name = kstrdup_const(name, GFP_KERNEL);
481 	if (!cache_name) {
482 		err = -ENOMEM;
483 		goto out_unlock;
484 	}
485 
486 	s = create_cache(cache_name, size,
487 			 calculate_alignment(flags, align, size),
488 			 flags, useroffset, usersize, ctor, NULL, NULL);
489 	if (IS_ERR(s)) {
490 		err = PTR_ERR(s);
491 		kfree_const(cache_name);
492 	}
493 
494 out_unlock:
495 	mutex_unlock(&slab_mutex);
496 
497 	memcg_put_cache_ids();
498 	put_online_mems();
499 	put_online_cpus();
500 
501 	if (err) {
502 		if (flags & SLAB_PANIC)
503 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
504 				name, err);
505 		else {
506 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
507 				name, err);
508 			dump_stack();
509 		}
510 		return NULL;
511 	}
512 	return s;
513 }
514 EXPORT_SYMBOL(kmem_cache_create_usercopy);
515 
516 struct kmem_cache *
517 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
518 		slab_flags_t flags, void (*ctor)(void *))
519 {
520 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
521 					  ctor);
522 }
523 EXPORT_SYMBOL(kmem_cache_create);
524 
525 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
526 {
527 	LIST_HEAD(to_destroy);
528 	struct kmem_cache *s, *s2;
529 
530 	/*
531 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
532 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
533 	 * through RCU and and the associated kmem_cache are dereferenced
534 	 * while freeing the pages, so the kmem_caches should be freed only
535 	 * after the pending RCU operations are finished.  As rcu_barrier()
536 	 * is a pretty slow operation, we batch all pending destructions
537 	 * asynchronously.
538 	 */
539 	mutex_lock(&slab_mutex);
540 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
541 	mutex_unlock(&slab_mutex);
542 
543 	if (list_empty(&to_destroy))
544 		return;
545 
546 	rcu_barrier();
547 
548 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
549 #ifdef SLAB_SUPPORTS_SYSFS
550 		sysfs_slab_release(s);
551 #else
552 		slab_kmem_cache_release(s);
553 #endif
554 	}
555 }
556 
557 static int shutdown_cache(struct kmem_cache *s)
558 {
559 	/* free asan quarantined objects */
560 	kasan_cache_shutdown(s);
561 
562 	if (__kmem_cache_shutdown(s) != 0)
563 		return -EBUSY;
564 
565 	memcg_unlink_cache(s);
566 	list_del(&s->list);
567 
568 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
569 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
570 		schedule_work(&slab_caches_to_rcu_destroy_work);
571 	} else {
572 #ifdef SLAB_SUPPORTS_SYSFS
573 		sysfs_slab_release(s);
574 #else
575 		slab_kmem_cache_release(s);
576 #endif
577 	}
578 
579 	return 0;
580 }
581 
582 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
583 /*
584  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
585  * @memcg: The memory cgroup the new cache is for.
586  * @root_cache: The parent of the new cache.
587  *
588  * This function attempts to create a kmem cache that will serve allocation
589  * requests going from @memcg to @root_cache. The new cache inherits properties
590  * from its parent.
591  */
592 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
593 			     struct kmem_cache *root_cache)
594 {
595 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
596 	struct cgroup_subsys_state *css = &memcg->css;
597 	struct memcg_cache_array *arr;
598 	struct kmem_cache *s = NULL;
599 	char *cache_name;
600 	int idx;
601 
602 	get_online_cpus();
603 	get_online_mems();
604 
605 	mutex_lock(&slab_mutex);
606 
607 	/*
608 	 * The memory cgroup could have been offlined while the cache
609 	 * creation work was pending.
610 	 */
611 	if (memcg->kmem_state != KMEM_ONLINE)
612 		goto out_unlock;
613 
614 	idx = memcg_cache_id(memcg);
615 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
616 					lockdep_is_held(&slab_mutex));
617 
618 	/*
619 	 * Since per-memcg caches are created asynchronously on first
620 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
621 	 * create the same cache, but only one of them may succeed.
622 	 */
623 	if (arr->entries[idx])
624 		goto out_unlock;
625 
626 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
627 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
628 			       css->serial_nr, memcg_name_buf);
629 	if (!cache_name)
630 		goto out_unlock;
631 
632 	s = create_cache(cache_name, root_cache->object_size,
633 			 root_cache->align,
634 			 root_cache->flags & CACHE_CREATE_MASK,
635 			 root_cache->useroffset, root_cache->usersize,
636 			 root_cache->ctor, memcg, root_cache);
637 	/*
638 	 * If we could not create a memcg cache, do not complain, because
639 	 * that's not critical at all as we can always proceed with the root
640 	 * cache.
641 	 */
642 	if (IS_ERR(s)) {
643 		kfree(cache_name);
644 		goto out_unlock;
645 	}
646 
647 	/*
648 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
649 	 * barrier here to ensure nobody will see the kmem_cache partially
650 	 * initialized.
651 	 */
652 	smp_wmb();
653 	arr->entries[idx] = s;
654 
655 out_unlock:
656 	mutex_unlock(&slab_mutex);
657 
658 	put_online_mems();
659 	put_online_cpus();
660 }
661 
662 static void kmemcg_deactivate_workfn(struct work_struct *work)
663 {
664 	struct kmem_cache *s = container_of(work, struct kmem_cache,
665 					    memcg_params.deact_work);
666 
667 	get_online_cpus();
668 	get_online_mems();
669 
670 	mutex_lock(&slab_mutex);
671 
672 	s->memcg_params.deact_fn(s);
673 
674 	mutex_unlock(&slab_mutex);
675 
676 	put_online_mems();
677 	put_online_cpus();
678 
679 	/* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
680 	css_put(&s->memcg_params.memcg->css);
681 }
682 
683 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
684 {
685 	struct kmem_cache *s = container_of(head, struct kmem_cache,
686 					    memcg_params.deact_rcu_head);
687 
688 	/*
689 	 * We need to grab blocking locks.  Bounce to ->deact_work.  The
690 	 * work item shares the space with the RCU head and can't be
691 	 * initialized eariler.
692 	 */
693 	INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
694 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
695 }
696 
697 /**
698  * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
699  *					   sched RCU grace period
700  * @s: target kmem_cache
701  * @deact_fn: deactivation function to call
702  *
703  * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
704  * held after a sched RCU grace period.  The slab is guaranteed to stay
705  * alive until @deact_fn is finished.  This is to be used from
706  * __kmemcg_cache_deactivate().
707  */
708 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
709 					   void (*deact_fn)(struct kmem_cache *))
710 {
711 	if (WARN_ON_ONCE(is_root_cache(s)) ||
712 	    WARN_ON_ONCE(s->memcg_params.deact_fn))
713 		return;
714 
715 	/* pin memcg so that @s doesn't get destroyed in the middle */
716 	css_get(&s->memcg_params.memcg->css);
717 
718 	s->memcg_params.deact_fn = deact_fn;
719 	call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
720 }
721 
722 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
723 {
724 	int idx;
725 	struct memcg_cache_array *arr;
726 	struct kmem_cache *s, *c;
727 
728 	idx = memcg_cache_id(memcg);
729 
730 	get_online_cpus();
731 	get_online_mems();
732 
733 	mutex_lock(&slab_mutex);
734 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
735 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
736 						lockdep_is_held(&slab_mutex));
737 		c = arr->entries[idx];
738 		if (!c)
739 			continue;
740 
741 		__kmemcg_cache_deactivate(c);
742 		arr->entries[idx] = NULL;
743 	}
744 	mutex_unlock(&slab_mutex);
745 
746 	put_online_mems();
747 	put_online_cpus();
748 }
749 
750 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
751 {
752 	struct kmem_cache *s, *s2;
753 
754 	get_online_cpus();
755 	get_online_mems();
756 
757 	mutex_lock(&slab_mutex);
758 	list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
759 				 memcg_params.kmem_caches_node) {
760 		/*
761 		 * The cgroup is about to be freed and therefore has no charges
762 		 * left. Hence, all its caches must be empty by now.
763 		 */
764 		BUG_ON(shutdown_cache(s));
765 	}
766 	mutex_unlock(&slab_mutex);
767 
768 	put_online_mems();
769 	put_online_cpus();
770 }
771 
772 static int shutdown_memcg_caches(struct kmem_cache *s)
773 {
774 	struct memcg_cache_array *arr;
775 	struct kmem_cache *c, *c2;
776 	LIST_HEAD(busy);
777 	int i;
778 
779 	BUG_ON(!is_root_cache(s));
780 
781 	/*
782 	 * First, shutdown active caches, i.e. caches that belong to online
783 	 * memory cgroups.
784 	 */
785 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
786 					lockdep_is_held(&slab_mutex));
787 	for_each_memcg_cache_index(i) {
788 		c = arr->entries[i];
789 		if (!c)
790 			continue;
791 		if (shutdown_cache(c))
792 			/*
793 			 * The cache still has objects. Move it to a temporary
794 			 * list so as not to try to destroy it for a second
795 			 * time while iterating over inactive caches below.
796 			 */
797 			list_move(&c->memcg_params.children_node, &busy);
798 		else
799 			/*
800 			 * The cache is empty and will be destroyed soon. Clear
801 			 * the pointer to it in the memcg_caches array so that
802 			 * it will never be accessed even if the root cache
803 			 * stays alive.
804 			 */
805 			arr->entries[i] = NULL;
806 	}
807 
808 	/*
809 	 * Second, shutdown all caches left from memory cgroups that are now
810 	 * offline.
811 	 */
812 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
813 				 memcg_params.children_node)
814 		shutdown_cache(c);
815 
816 	list_splice(&busy, &s->memcg_params.children);
817 
818 	/*
819 	 * A cache being destroyed must be empty. In particular, this means
820 	 * that all per memcg caches attached to it must be empty too.
821 	 */
822 	if (!list_empty(&s->memcg_params.children))
823 		return -EBUSY;
824 	return 0;
825 }
826 #else
827 static inline int shutdown_memcg_caches(struct kmem_cache *s)
828 {
829 	return 0;
830 }
831 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
832 
833 void slab_kmem_cache_release(struct kmem_cache *s)
834 {
835 	__kmem_cache_release(s);
836 	destroy_memcg_params(s);
837 	kfree_const(s->name);
838 	kmem_cache_free(kmem_cache, s);
839 }
840 
841 void kmem_cache_destroy(struct kmem_cache *s)
842 {
843 	int err;
844 
845 	if (unlikely(!s))
846 		return;
847 
848 	get_online_cpus();
849 	get_online_mems();
850 
851 	mutex_lock(&slab_mutex);
852 
853 	s->refcount--;
854 	if (s->refcount)
855 		goto out_unlock;
856 
857 	err = shutdown_memcg_caches(s);
858 	if (!err)
859 		err = shutdown_cache(s);
860 
861 	if (err) {
862 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
863 		       s->name);
864 		dump_stack();
865 	}
866 out_unlock:
867 	mutex_unlock(&slab_mutex);
868 
869 	put_online_mems();
870 	put_online_cpus();
871 }
872 EXPORT_SYMBOL(kmem_cache_destroy);
873 
874 /**
875  * kmem_cache_shrink - Shrink a cache.
876  * @cachep: The cache to shrink.
877  *
878  * Releases as many slabs as possible for a cache.
879  * To help debugging, a zero exit status indicates all slabs were released.
880  */
881 int kmem_cache_shrink(struct kmem_cache *cachep)
882 {
883 	int ret;
884 
885 	get_online_cpus();
886 	get_online_mems();
887 	kasan_cache_shrink(cachep);
888 	ret = __kmem_cache_shrink(cachep);
889 	put_online_mems();
890 	put_online_cpus();
891 	return ret;
892 }
893 EXPORT_SYMBOL(kmem_cache_shrink);
894 
895 bool slab_is_available(void)
896 {
897 	return slab_state >= UP;
898 }
899 
900 #ifndef CONFIG_SLOB
901 /* Create a cache during boot when no slab services are available yet */
902 void __init create_boot_cache(struct kmem_cache *s, const char *name,
903 		unsigned int size, slab_flags_t flags,
904 		unsigned int useroffset, unsigned int usersize)
905 {
906 	int err;
907 
908 	s->name = name;
909 	s->size = s->object_size = size;
910 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
911 	s->useroffset = useroffset;
912 	s->usersize = usersize;
913 
914 	slab_init_memcg_params(s);
915 
916 	err = __kmem_cache_create(s, flags);
917 
918 	if (err)
919 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
920 					name, size, err);
921 
922 	s->refcount = -1;	/* Exempt from merging for now */
923 }
924 
925 struct kmem_cache *__init create_kmalloc_cache(const char *name,
926 		unsigned int size, slab_flags_t flags,
927 		unsigned int useroffset, unsigned int usersize)
928 {
929 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
930 
931 	if (!s)
932 		panic("Out of memory when creating slab %s\n", name);
933 
934 	create_boot_cache(s, name, size, flags, useroffset, usersize);
935 	list_add(&s->list, &slab_caches);
936 	memcg_link_cache(s);
937 	s->refcount = 1;
938 	return s;
939 }
940 
941 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
942 EXPORT_SYMBOL(kmalloc_caches);
943 
944 #ifdef CONFIG_ZONE_DMA
945 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
946 EXPORT_SYMBOL(kmalloc_dma_caches);
947 #endif
948 
949 /*
950  * Conversion table for small slabs sizes / 8 to the index in the
951  * kmalloc array. This is necessary for slabs < 192 since we have non power
952  * of two cache sizes there. The size of larger slabs can be determined using
953  * fls.
954  */
955 static u8 size_index[24] __ro_after_init = {
956 	3,	/* 8 */
957 	4,	/* 16 */
958 	5,	/* 24 */
959 	5,	/* 32 */
960 	6,	/* 40 */
961 	6,	/* 48 */
962 	6,	/* 56 */
963 	6,	/* 64 */
964 	1,	/* 72 */
965 	1,	/* 80 */
966 	1,	/* 88 */
967 	1,	/* 96 */
968 	7,	/* 104 */
969 	7,	/* 112 */
970 	7,	/* 120 */
971 	7,	/* 128 */
972 	2,	/* 136 */
973 	2,	/* 144 */
974 	2,	/* 152 */
975 	2,	/* 160 */
976 	2,	/* 168 */
977 	2,	/* 176 */
978 	2,	/* 184 */
979 	2	/* 192 */
980 };
981 
982 static inline unsigned int size_index_elem(unsigned int bytes)
983 {
984 	return (bytes - 1) / 8;
985 }
986 
987 /*
988  * Find the kmem_cache structure that serves a given size of
989  * allocation
990  */
991 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
992 {
993 	unsigned int index;
994 
995 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
996 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
997 		return NULL;
998 	}
999 
1000 	if (size <= 192) {
1001 		if (!size)
1002 			return ZERO_SIZE_PTR;
1003 
1004 		index = size_index[size_index_elem(size)];
1005 	} else
1006 		index = fls(size - 1);
1007 
1008 #ifdef CONFIG_ZONE_DMA
1009 	if (unlikely((flags & GFP_DMA)))
1010 		return kmalloc_dma_caches[index];
1011 
1012 #endif
1013 	return kmalloc_caches[index];
1014 }
1015 
1016 /*
1017  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1018  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1019  * kmalloc-67108864.
1020  */
1021 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1022 	{NULL,                      0},		{"kmalloc-96",             96},
1023 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
1024 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
1025 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1026 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1027 	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
1028 	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
1029 	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
1030 	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
1031 	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
1032 	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
1033 	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
1034 	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
1035 	{"kmalloc-67108864", 67108864}
1036 };
1037 
1038 /*
1039  * Patch up the size_index table if we have strange large alignment
1040  * requirements for the kmalloc array. This is only the case for
1041  * MIPS it seems. The standard arches will not generate any code here.
1042  *
1043  * Largest permitted alignment is 256 bytes due to the way we
1044  * handle the index determination for the smaller caches.
1045  *
1046  * Make sure that nothing crazy happens if someone starts tinkering
1047  * around with ARCH_KMALLOC_MINALIGN
1048  */
1049 void __init setup_kmalloc_cache_index_table(void)
1050 {
1051 	unsigned int i;
1052 
1053 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1054 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1055 
1056 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1057 		unsigned int elem = size_index_elem(i);
1058 
1059 		if (elem >= ARRAY_SIZE(size_index))
1060 			break;
1061 		size_index[elem] = KMALLOC_SHIFT_LOW;
1062 	}
1063 
1064 	if (KMALLOC_MIN_SIZE >= 64) {
1065 		/*
1066 		 * The 96 byte size cache is not used if the alignment
1067 		 * is 64 byte.
1068 		 */
1069 		for (i = 64 + 8; i <= 96; i += 8)
1070 			size_index[size_index_elem(i)] = 7;
1071 
1072 	}
1073 
1074 	if (KMALLOC_MIN_SIZE >= 128) {
1075 		/*
1076 		 * The 192 byte sized cache is not used if the alignment
1077 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1078 		 * instead.
1079 		 */
1080 		for (i = 128 + 8; i <= 192; i += 8)
1081 			size_index[size_index_elem(i)] = 8;
1082 	}
1083 }
1084 
1085 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1086 {
1087 	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1088 					kmalloc_info[idx].size, flags, 0,
1089 					kmalloc_info[idx].size);
1090 }
1091 
1092 /*
1093  * Create the kmalloc array. Some of the regular kmalloc arrays
1094  * may already have been created because they were needed to
1095  * enable allocations for slab creation.
1096  */
1097 void __init create_kmalloc_caches(slab_flags_t flags)
1098 {
1099 	int i;
1100 
1101 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1102 		if (!kmalloc_caches[i])
1103 			new_kmalloc_cache(i, flags);
1104 
1105 		/*
1106 		 * Caches that are not of the two-to-the-power-of size.
1107 		 * These have to be created immediately after the
1108 		 * earlier power of two caches
1109 		 */
1110 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1111 			new_kmalloc_cache(1, flags);
1112 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1113 			new_kmalloc_cache(2, flags);
1114 	}
1115 
1116 	/* Kmalloc array is now usable */
1117 	slab_state = UP;
1118 
1119 #ifdef CONFIG_ZONE_DMA
1120 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1121 		struct kmem_cache *s = kmalloc_caches[i];
1122 
1123 		if (s) {
1124 			unsigned int size = kmalloc_size(i);
1125 			char *n = kasprintf(GFP_NOWAIT,
1126 				 "dma-kmalloc-%u", size);
1127 
1128 			BUG_ON(!n);
1129 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1130 				size, SLAB_CACHE_DMA | flags, 0, 0);
1131 		}
1132 	}
1133 #endif
1134 }
1135 #endif /* !CONFIG_SLOB */
1136 
1137 /*
1138  * To avoid unnecessary overhead, we pass through large allocation requests
1139  * directly to the page allocator. We use __GFP_COMP, because we will need to
1140  * know the allocation order to free the pages properly in kfree.
1141  */
1142 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1143 {
1144 	void *ret;
1145 	struct page *page;
1146 
1147 	flags |= __GFP_COMP;
1148 	page = alloc_pages(flags, order);
1149 	ret = page ? page_address(page) : NULL;
1150 	kmemleak_alloc(ret, size, 1, flags);
1151 	kasan_kmalloc_large(ret, size, flags);
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL(kmalloc_order);
1155 
1156 #ifdef CONFIG_TRACING
1157 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1158 {
1159 	void *ret = kmalloc_order(size, flags, order);
1160 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(kmalloc_order_trace);
1164 #endif
1165 
1166 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1167 /* Randomize a generic freelist */
1168 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1169 			       unsigned int count)
1170 {
1171 	unsigned int rand;
1172 	unsigned int i;
1173 
1174 	for (i = 0; i < count; i++)
1175 		list[i] = i;
1176 
1177 	/* Fisher-Yates shuffle */
1178 	for (i = count - 1; i > 0; i--) {
1179 		rand = prandom_u32_state(state);
1180 		rand %= (i + 1);
1181 		swap(list[i], list[rand]);
1182 	}
1183 }
1184 
1185 /* Create a random sequence per cache */
1186 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1187 				    gfp_t gfp)
1188 {
1189 	struct rnd_state state;
1190 
1191 	if (count < 2 || cachep->random_seq)
1192 		return 0;
1193 
1194 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1195 	if (!cachep->random_seq)
1196 		return -ENOMEM;
1197 
1198 	/* Get best entropy at this stage of boot */
1199 	prandom_seed_state(&state, get_random_long());
1200 
1201 	freelist_randomize(&state, cachep->random_seq, count);
1202 	return 0;
1203 }
1204 
1205 /* Destroy the per-cache random freelist sequence */
1206 void cache_random_seq_destroy(struct kmem_cache *cachep)
1207 {
1208 	kfree(cachep->random_seq);
1209 	cachep->random_seq = NULL;
1210 }
1211 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1212 
1213 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1214 #ifdef CONFIG_SLAB
1215 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1216 #else
1217 #define SLABINFO_RIGHTS S_IRUSR
1218 #endif
1219 
1220 static void print_slabinfo_header(struct seq_file *m)
1221 {
1222 	/*
1223 	 * Output format version, so at least we can change it
1224 	 * without _too_ many complaints.
1225 	 */
1226 #ifdef CONFIG_DEBUG_SLAB
1227 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1228 #else
1229 	seq_puts(m, "slabinfo - version: 2.1\n");
1230 #endif
1231 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1232 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1233 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1234 #ifdef CONFIG_DEBUG_SLAB
1235 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1236 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1237 #endif
1238 	seq_putc(m, '\n');
1239 }
1240 
1241 void *slab_start(struct seq_file *m, loff_t *pos)
1242 {
1243 	mutex_lock(&slab_mutex);
1244 	return seq_list_start(&slab_root_caches, *pos);
1245 }
1246 
1247 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1248 {
1249 	return seq_list_next(p, &slab_root_caches, pos);
1250 }
1251 
1252 void slab_stop(struct seq_file *m, void *p)
1253 {
1254 	mutex_unlock(&slab_mutex);
1255 }
1256 
1257 static void
1258 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1259 {
1260 	struct kmem_cache *c;
1261 	struct slabinfo sinfo;
1262 
1263 	if (!is_root_cache(s))
1264 		return;
1265 
1266 	for_each_memcg_cache(c, s) {
1267 		memset(&sinfo, 0, sizeof(sinfo));
1268 		get_slabinfo(c, &sinfo);
1269 
1270 		info->active_slabs += sinfo.active_slabs;
1271 		info->num_slabs += sinfo.num_slabs;
1272 		info->shared_avail += sinfo.shared_avail;
1273 		info->active_objs += sinfo.active_objs;
1274 		info->num_objs += sinfo.num_objs;
1275 	}
1276 }
1277 
1278 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1279 {
1280 	struct slabinfo sinfo;
1281 
1282 	memset(&sinfo, 0, sizeof(sinfo));
1283 	get_slabinfo(s, &sinfo);
1284 
1285 	memcg_accumulate_slabinfo(s, &sinfo);
1286 
1287 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1288 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1289 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1290 
1291 	seq_printf(m, " : tunables %4u %4u %4u",
1292 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1293 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1294 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1295 	slabinfo_show_stats(m, s);
1296 	seq_putc(m, '\n');
1297 }
1298 
1299 static int slab_show(struct seq_file *m, void *p)
1300 {
1301 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1302 
1303 	if (p == slab_root_caches.next)
1304 		print_slabinfo_header(m);
1305 	cache_show(s, m);
1306 	return 0;
1307 }
1308 
1309 void dump_unreclaimable_slab(void)
1310 {
1311 	struct kmem_cache *s, *s2;
1312 	struct slabinfo sinfo;
1313 
1314 	/*
1315 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1316 	 * sleep in oom path. But, without mutex hold, it may introduce a
1317 	 * risk of crash.
1318 	 * Use mutex_trylock to protect the list traverse, dump nothing
1319 	 * without acquiring the mutex.
1320 	 */
1321 	if (!mutex_trylock(&slab_mutex)) {
1322 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1323 		return;
1324 	}
1325 
1326 	pr_info("Unreclaimable slab info:\n");
1327 	pr_info("Name                      Used          Total\n");
1328 
1329 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1330 		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1331 			continue;
1332 
1333 		get_slabinfo(s, &sinfo);
1334 
1335 		if (sinfo.num_objs > 0)
1336 			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1337 				(sinfo.active_objs * s->size) / 1024,
1338 				(sinfo.num_objs * s->size) / 1024);
1339 	}
1340 	mutex_unlock(&slab_mutex);
1341 }
1342 
1343 #if defined(CONFIG_MEMCG)
1344 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1345 {
1346 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1347 
1348 	mutex_lock(&slab_mutex);
1349 	return seq_list_start(&memcg->kmem_caches, *pos);
1350 }
1351 
1352 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1353 {
1354 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1355 
1356 	return seq_list_next(p, &memcg->kmem_caches, pos);
1357 }
1358 
1359 void memcg_slab_stop(struct seq_file *m, void *p)
1360 {
1361 	mutex_unlock(&slab_mutex);
1362 }
1363 
1364 int memcg_slab_show(struct seq_file *m, void *p)
1365 {
1366 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1367 					  memcg_params.kmem_caches_node);
1368 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1369 
1370 	if (p == memcg->kmem_caches.next)
1371 		print_slabinfo_header(m);
1372 	cache_show(s, m);
1373 	return 0;
1374 }
1375 #endif
1376 
1377 /*
1378  * slabinfo_op - iterator that generates /proc/slabinfo
1379  *
1380  * Output layout:
1381  * cache-name
1382  * num-active-objs
1383  * total-objs
1384  * object size
1385  * num-active-slabs
1386  * total-slabs
1387  * num-pages-per-slab
1388  * + further values on SMP and with statistics enabled
1389  */
1390 static const struct seq_operations slabinfo_op = {
1391 	.start = slab_start,
1392 	.next = slab_next,
1393 	.stop = slab_stop,
1394 	.show = slab_show,
1395 };
1396 
1397 static int slabinfo_open(struct inode *inode, struct file *file)
1398 {
1399 	return seq_open(file, &slabinfo_op);
1400 }
1401 
1402 static const struct file_operations proc_slabinfo_operations = {
1403 	.open		= slabinfo_open,
1404 	.read		= seq_read,
1405 	.write          = slabinfo_write,
1406 	.llseek		= seq_lseek,
1407 	.release	= seq_release,
1408 };
1409 
1410 static int __init slab_proc_init(void)
1411 {
1412 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1413 						&proc_slabinfo_operations);
1414 	return 0;
1415 }
1416 module_init(slab_proc_init);
1417 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1418 
1419 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1420 					   gfp_t flags)
1421 {
1422 	void *ret;
1423 	size_t ks = 0;
1424 
1425 	if (p)
1426 		ks = ksize(p);
1427 
1428 	if (ks >= new_size) {
1429 		kasan_krealloc((void *)p, new_size, flags);
1430 		return (void *)p;
1431 	}
1432 
1433 	ret = kmalloc_track_caller(new_size, flags);
1434 	if (ret && p)
1435 		memcpy(ret, p, ks);
1436 
1437 	return ret;
1438 }
1439 
1440 /**
1441  * __krealloc - like krealloc() but don't free @p.
1442  * @p: object to reallocate memory for.
1443  * @new_size: how many bytes of memory are required.
1444  * @flags: the type of memory to allocate.
1445  *
1446  * This function is like krealloc() except it never frees the originally
1447  * allocated buffer. Use this if you don't want to free the buffer immediately
1448  * like, for example, with RCU.
1449  */
1450 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1451 {
1452 	if (unlikely(!new_size))
1453 		return ZERO_SIZE_PTR;
1454 
1455 	return __do_krealloc(p, new_size, flags);
1456 
1457 }
1458 EXPORT_SYMBOL(__krealloc);
1459 
1460 /**
1461  * krealloc - reallocate memory. The contents will remain unchanged.
1462  * @p: object to reallocate memory for.
1463  * @new_size: how many bytes of memory are required.
1464  * @flags: the type of memory to allocate.
1465  *
1466  * The contents of the object pointed to are preserved up to the
1467  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1468  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1469  * %NULL pointer, the object pointed to is freed.
1470  */
1471 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1472 {
1473 	void *ret;
1474 
1475 	if (unlikely(!new_size)) {
1476 		kfree(p);
1477 		return ZERO_SIZE_PTR;
1478 	}
1479 
1480 	ret = __do_krealloc(p, new_size, flags);
1481 	if (ret && p != ret)
1482 		kfree(p);
1483 
1484 	return ret;
1485 }
1486 EXPORT_SYMBOL(krealloc);
1487 
1488 /**
1489  * kzfree - like kfree but zero memory
1490  * @p: object to free memory of
1491  *
1492  * The memory of the object @p points to is zeroed before freed.
1493  * If @p is %NULL, kzfree() does nothing.
1494  *
1495  * Note: this function zeroes the whole allocated buffer which can be a good
1496  * deal bigger than the requested buffer size passed to kmalloc(). So be
1497  * careful when using this function in performance sensitive code.
1498  */
1499 void kzfree(const void *p)
1500 {
1501 	size_t ks;
1502 	void *mem = (void *)p;
1503 
1504 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1505 		return;
1506 	ks = ksize(mem);
1507 	memset(mem, 0, ks);
1508 	kfree(mem);
1509 }
1510 EXPORT_SYMBOL(kzfree);
1511 
1512 /* Tracepoints definitions. */
1513 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1514 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1515 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1516 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1517 EXPORT_TRACEPOINT_SYMBOL(kfree);
1518 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1519 
1520 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1521 {
1522 	if (__should_failslab(s, gfpflags))
1523 		return -ENOMEM;
1524 	return 0;
1525 }
1526 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1527