xref: /linux/mm/slab_common.c (revision e061bcd88573863daef2c67888ced5333b2ba536)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 		SLAB_CACHE_DMA | SLAB_NOTRACK)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 #ifdef CONFIG_MEMCG_KMEM
109 static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
110 		struct kmem_cache *s, struct kmem_cache *root_cache)
111 {
112 	size_t size;
113 
114 	if (!memcg_kmem_enabled())
115 		return 0;
116 
117 	if (!memcg) {
118 		size = offsetof(struct memcg_cache_params, memcg_caches);
119 		size += memcg_limited_groups_array_size * sizeof(void *);
120 	} else
121 		size = sizeof(struct memcg_cache_params);
122 
123 	s->memcg_params = kzalloc(size, GFP_KERNEL);
124 	if (!s->memcg_params)
125 		return -ENOMEM;
126 
127 	if (memcg) {
128 		s->memcg_params->memcg = memcg;
129 		s->memcg_params->root_cache = root_cache;
130 	} else
131 		s->memcg_params->is_root_cache = true;
132 
133 	return 0;
134 }
135 
136 static void memcg_free_cache_params(struct kmem_cache *s)
137 {
138 	kfree(s->memcg_params);
139 }
140 
141 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
142 {
143 	int size;
144 	struct memcg_cache_params *new_params, *cur_params;
145 
146 	BUG_ON(!is_root_cache(s));
147 
148 	size = offsetof(struct memcg_cache_params, memcg_caches);
149 	size += num_memcgs * sizeof(void *);
150 
151 	new_params = kzalloc(size, GFP_KERNEL);
152 	if (!new_params)
153 		return -ENOMEM;
154 
155 	cur_params = s->memcg_params;
156 	memcpy(new_params->memcg_caches, cur_params->memcg_caches,
157 	       memcg_limited_groups_array_size * sizeof(void *));
158 
159 	new_params->is_root_cache = true;
160 
161 	rcu_assign_pointer(s->memcg_params, new_params);
162 	if (cur_params)
163 		kfree_rcu(cur_params, rcu_head);
164 
165 	return 0;
166 }
167 
168 int memcg_update_all_caches(int num_memcgs)
169 {
170 	struct kmem_cache *s;
171 	int ret = 0;
172 	mutex_lock(&slab_mutex);
173 
174 	list_for_each_entry(s, &slab_caches, list) {
175 		if (!is_root_cache(s))
176 			continue;
177 
178 		ret = memcg_update_cache_params(s, num_memcgs);
179 		/*
180 		 * Instead of freeing the memory, we'll just leave the caches
181 		 * up to this point in an updated state.
182 		 */
183 		if (ret)
184 			goto out;
185 	}
186 
187 	memcg_update_array_size(num_memcgs);
188 out:
189 	mutex_unlock(&slab_mutex);
190 	return ret;
191 }
192 #else
193 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
194 		struct kmem_cache *s, struct kmem_cache *root_cache)
195 {
196 	return 0;
197 }
198 
199 static inline void memcg_free_cache_params(struct kmem_cache *s)
200 {
201 }
202 #endif /* CONFIG_MEMCG_KMEM */
203 
204 /*
205  * Find a mergeable slab cache
206  */
207 int slab_unmergeable(struct kmem_cache *s)
208 {
209 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
210 		return 1;
211 
212 	if (!is_root_cache(s))
213 		return 1;
214 
215 	if (s->ctor)
216 		return 1;
217 
218 	/*
219 	 * We may have set a slab to be unmergeable during bootstrap.
220 	 */
221 	if (s->refcount < 0)
222 		return 1;
223 
224 	return 0;
225 }
226 
227 struct kmem_cache *find_mergeable(size_t size, size_t align,
228 		unsigned long flags, const char *name, void (*ctor)(void *))
229 {
230 	struct kmem_cache *s;
231 
232 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
233 		return NULL;
234 
235 	if (ctor)
236 		return NULL;
237 
238 	size = ALIGN(size, sizeof(void *));
239 	align = calculate_alignment(flags, align, size);
240 	size = ALIGN(size, align);
241 	flags = kmem_cache_flags(size, flags, name, NULL);
242 
243 	list_for_each_entry(s, &slab_caches, list) {
244 		if (slab_unmergeable(s))
245 			continue;
246 
247 		if (size > s->size)
248 			continue;
249 
250 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
251 			continue;
252 		/*
253 		 * Check if alignment is compatible.
254 		 * Courtesy of Adrian Drzewiecki
255 		 */
256 		if ((s->size & ~(align - 1)) != s->size)
257 			continue;
258 
259 		if (s->size - size >= sizeof(void *))
260 			continue;
261 
262 		return s;
263 	}
264 	return NULL;
265 }
266 
267 /*
268  * Figure out what the alignment of the objects will be given a set of
269  * flags, a user specified alignment and the size of the objects.
270  */
271 unsigned long calculate_alignment(unsigned long flags,
272 		unsigned long align, unsigned long size)
273 {
274 	/*
275 	 * If the user wants hardware cache aligned objects then follow that
276 	 * suggestion if the object is sufficiently large.
277 	 *
278 	 * The hardware cache alignment cannot override the specified
279 	 * alignment though. If that is greater then use it.
280 	 */
281 	if (flags & SLAB_HWCACHE_ALIGN) {
282 		unsigned long ralign = cache_line_size();
283 		while (size <= ralign / 2)
284 			ralign /= 2;
285 		align = max(align, ralign);
286 	}
287 
288 	if (align < ARCH_SLAB_MINALIGN)
289 		align = ARCH_SLAB_MINALIGN;
290 
291 	return ALIGN(align, sizeof(void *));
292 }
293 
294 static struct kmem_cache *
295 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
296 		     unsigned long flags, void (*ctor)(void *),
297 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
298 {
299 	struct kmem_cache *s;
300 	int err;
301 
302 	err = -ENOMEM;
303 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
304 	if (!s)
305 		goto out;
306 
307 	s->name = name;
308 	s->object_size = object_size;
309 	s->size = size;
310 	s->align = align;
311 	s->ctor = ctor;
312 
313 	err = memcg_alloc_cache_params(memcg, s, root_cache);
314 	if (err)
315 		goto out_free_cache;
316 
317 	err = __kmem_cache_create(s, flags);
318 	if (err)
319 		goto out_free_cache;
320 
321 	s->refcount = 1;
322 	list_add(&s->list, &slab_caches);
323 out:
324 	if (err)
325 		return ERR_PTR(err);
326 	return s;
327 
328 out_free_cache:
329 	memcg_free_cache_params(s);
330 	kfree(s);
331 	goto out;
332 }
333 
334 /*
335  * kmem_cache_create - Create a cache.
336  * @name: A string which is used in /proc/slabinfo to identify this cache.
337  * @size: The size of objects to be created in this cache.
338  * @align: The required alignment for the objects.
339  * @flags: SLAB flags
340  * @ctor: A constructor for the objects.
341  *
342  * Returns a ptr to the cache on success, NULL on failure.
343  * Cannot be called within a interrupt, but can be interrupted.
344  * The @ctor is run when new pages are allocated by the cache.
345  *
346  * The flags are
347  *
348  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
349  * to catch references to uninitialised memory.
350  *
351  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
352  * for buffer overruns.
353  *
354  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
355  * cacheline.  This can be beneficial if you're counting cycles as closely
356  * as davem.
357  */
358 struct kmem_cache *
359 kmem_cache_create(const char *name, size_t size, size_t align,
360 		  unsigned long flags, void (*ctor)(void *))
361 {
362 	struct kmem_cache *s;
363 	char *cache_name;
364 	int err;
365 
366 	get_online_cpus();
367 	get_online_mems();
368 
369 	mutex_lock(&slab_mutex);
370 
371 	err = kmem_cache_sanity_check(name, size);
372 	if (err) {
373 		s = NULL;	/* suppress uninit var warning */
374 		goto out_unlock;
375 	}
376 
377 	/*
378 	 * Some allocators will constraint the set of valid flags to a subset
379 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
380 	 * case, and we'll just provide them with a sanitized version of the
381 	 * passed flags.
382 	 */
383 	flags &= CACHE_CREATE_MASK;
384 
385 	s = __kmem_cache_alias(name, size, align, flags, ctor);
386 	if (s)
387 		goto out_unlock;
388 
389 	cache_name = kstrdup(name, GFP_KERNEL);
390 	if (!cache_name) {
391 		err = -ENOMEM;
392 		goto out_unlock;
393 	}
394 
395 	s = do_kmem_cache_create(cache_name, size, size,
396 				 calculate_alignment(flags, align, size),
397 				 flags, ctor, NULL, NULL);
398 	if (IS_ERR(s)) {
399 		err = PTR_ERR(s);
400 		kfree(cache_name);
401 	}
402 
403 out_unlock:
404 	mutex_unlock(&slab_mutex);
405 
406 	put_online_mems();
407 	put_online_cpus();
408 
409 	if (err) {
410 		if (flags & SLAB_PANIC)
411 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
412 				name, err);
413 		else {
414 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
415 				name, err);
416 			dump_stack();
417 		}
418 		return NULL;
419 	}
420 	return s;
421 }
422 EXPORT_SYMBOL(kmem_cache_create);
423 
424 #ifdef CONFIG_MEMCG_KMEM
425 /*
426  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
427  * @memcg: The memory cgroup the new cache is for.
428  * @root_cache: The parent of the new cache.
429  * @memcg_name: The name of the memory cgroup (used for naming the new cache).
430  *
431  * This function attempts to create a kmem cache that will serve allocation
432  * requests going from @memcg to @root_cache. The new cache inherits properties
433  * from its parent.
434  */
435 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
436 					   struct kmem_cache *root_cache,
437 					   const char *memcg_name)
438 {
439 	struct kmem_cache *s = NULL;
440 	char *cache_name;
441 
442 	get_online_cpus();
443 	get_online_mems();
444 
445 	mutex_lock(&slab_mutex);
446 
447 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
448 			       memcg_cache_id(memcg), memcg_name);
449 	if (!cache_name)
450 		goto out_unlock;
451 
452 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
453 				 root_cache->size, root_cache->align,
454 				 root_cache->flags, root_cache->ctor,
455 				 memcg, root_cache);
456 	if (IS_ERR(s)) {
457 		kfree(cache_name);
458 		s = NULL;
459 	}
460 
461 out_unlock:
462 	mutex_unlock(&slab_mutex);
463 
464 	put_online_mems();
465 	put_online_cpus();
466 
467 	return s;
468 }
469 
470 static int memcg_cleanup_cache_params(struct kmem_cache *s)
471 {
472 	int rc;
473 
474 	if (!s->memcg_params ||
475 	    !s->memcg_params->is_root_cache)
476 		return 0;
477 
478 	mutex_unlock(&slab_mutex);
479 	rc = __memcg_cleanup_cache_params(s);
480 	mutex_lock(&slab_mutex);
481 
482 	return rc;
483 }
484 #else
485 static int memcg_cleanup_cache_params(struct kmem_cache *s)
486 {
487 	return 0;
488 }
489 #endif /* CONFIG_MEMCG_KMEM */
490 
491 void slab_kmem_cache_release(struct kmem_cache *s)
492 {
493 	kfree(s->name);
494 	kmem_cache_free(kmem_cache, s);
495 }
496 
497 void kmem_cache_destroy(struct kmem_cache *s)
498 {
499 	get_online_cpus();
500 	get_online_mems();
501 
502 	mutex_lock(&slab_mutex);
503 
504 	s->refcount--;
505 	if (s->refcount)
506 		goto out_unlock;
507 
508 	if (memcg_cleanup_cache_params(s) != 0)
509 		goto out_unlock;
510 
511 	if (__kmem_cache_shutdown(s) != 0) {
512 		printk(KERN_ERR "kmem_cache_destroy %s: "
513 		       "Slab cache still has objects\n", s->name);
514 		dump_stack();
515 		goto out_unlock;
516 	}
517 
518 	list_del(&s->list);
519 
520 	mutex_unlock(&slab_mutex);
521 	if (s->flags & SLAB_DESTROY_BY_RCU)
522 		rcu_barrier();
523 
524 	memcg_free_cache_params(s);
525 #ifdef SLAB_SUPPORTS_SYSFS
526 	sysfs_slab_remove(s);
527 #else
528 	slab_kmem_cache_release(s);
529 #endif
530 	goto out;
531 
532 out_unlock:
533 	mutex_unlock(&slab_mutex);
534 out:
535 	put_online_mems();
536 	put_online_cpus();
537 }
538 EXPORT_SYMBOL(kmem_cache_destroy);
539 
540 /**
541  * kmem_cache_shrink - Shrink a cache.
542  * @cachep: The cache to shrink.
543  *
544  * Releases as many slabs as possible for a cache.
545  * To help debugging, a zero exit status indicates all slabs were released.
546  */
547 int kmem_cache_shrink(struct kmem_cache *cachep)
548 {
549 	int ret;
550 
551 	get_online_cpus();
552 	get_online_mems();
553 	ret = __kmem_cache_shrink(cachep);
554 	put_online_mems();
555 	put_online_cpus();
556 	return ret;
557 }
558 EXPORT_SYMBOL(kmem_cache_shrink);
559 
560 int slab_is_available(void)
561 {
562 	return slab_state >= UP;
563 }
564 
565 #ifndef CONFIG_SLOB
566 /* Create a cache during boot when no slab services are available yet */
567 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
568 		unsigned long flags)
569 {
570 	int err;
571 
572 	s->name = name;
573 	s->size = s->object_size = size;
574 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
575 	err = __kmem_cache_create(s, flags);
576 
577 	if (err)
578 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
579 					name, size, err);
580 
581 	s->refcount = -1;	/* Exempt from merging for now */
582 }
583 
584 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
585 				unsigned long flags)
586 {
587 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
588 
589 	if (!s)
590 		panic("Out of memory when creating slab %s\n", name);
591 
592 	create_boot_cache(s, name, size, flags);
593 	list_add(&s->list, &slab_caches);
594 	s->refcount = 1;
595 	return s;
596 }
597 
598 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
599 EXPORT_SYMBOL(kmalloc_caches);
600 
601 #ifdef CONFIG_ZONE_DMA
602 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
603 EXPORT_SYMBOL(kmalloc_dma_caches);
604 #endif
605 
606 /*
607  * Conversion table for small slabs sizes / 8 to the index in the
608  * kmalloc array. This is necessary for slabs < 192 since we have non power
609  * of two cache sizes there. The size of larger slabs can be determined using
610  * fls.
611  */
612 static s8 size_index[24] = {
613 	3,	/* 8 */
614 	4,	/* 16 */
615 	5,	/* 24 */
616 	5,	/* 32 */
617 	6,	/* 40 */
618 	6,	/* 48 */
619 	6,	/* 56 */
620 	6,	/* 64 */
621 	1,	/* 72 */
622 	1,	/* 80 */
623 	1,	/* 88 */
624 	1,	/* 96 */
625 	7,	/* 104 */
626 	7,	/* 112 */
627 	7,	/* 120 */
628 	7,	/* 128 */
629 	2,	/* 136 */
630 	2,	/* 144 */
631 	2,	/* 152 */
632 	2,	/* 160 */
633 	2,	/* 168 */
634 	2,	/* 176 */
635 	2,	/* 184 */
636 	2	/* 192 */
637 };
638 
639 static inline int size_index_elem(size_t bytes)
640 {
641 	return (bytes - 1) / 8;
642 }
643 
644 /*
645  * Find the kmem_cache structure that serves a given size of
646  * allocation
647  */
648 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
649 {
650 	int index;
651 
652 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
653 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
654 		return NULL;
655 	}
656 
657 	if (size <= 192) {
658 		if (!size)
659 			return ZERO_SIZE_PTR;
660 
661 		index = size_index[size_index_elem(size)];
662 	} else
663 		index = fls(size - 1);
664 
665 #ifdef CONFIG_ZONE_DMA
666 	if (unlikely((flags & GFP_DMA)))
667 		return kmalloc_dma_caches[index];
668 
669 #endif
670 	return kmalloc_caches[index];
671 }
672 
673 /*
674  * Create the kmalloc array. Some of the regular kmalloc arrays
675  * may already have been created because they were needed to
676  * enable allocations for slab creation.
677  */
678 void __init create_kmalloc_caches(unsigned long flags)
679 {
680 	int i;
681 
682 	/*
683 	 * Patch up the size_index table if we have strange large alignment
684 	 * requirements for the kmalloc array. This is only the case for
685 	 * MIPS it seems. The standard arches will not generate any code here.
686 	 *
687 	 * Largest permitted alignment is 256 bytes due to the way we
688 	 * handle the index determination for the smaller caches.
689 	 *
690 	 * Make sure that nothing crazy happens if someone starts tinkering
691 	 * around with ARCH_KMALLOC_MINALIGN
692 	 */
693 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
694 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
695 
696 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
697 		int elem = size_index_elem(i);
698 
699 		if (elem >= ARRAY_SIZE(size_index))
700 			break;
701 		size_index[elem] = KMALLOC_SHIFT_LOW;
702 	}
703 
704 	if (KMALLOC_MIN_SIZE >= 64) {
705 		/*
706 		 * The 96 byte size cache is not used if the alignment
707 		 * is 64 byte.
708 		 */
709 		for (i = 64 + 8; i <= 96; i += 8)
710 			size_index[size_index_elem(i)] = 7;
711 
712 	}
713 
714 	if (KMALLOC_MIN_SIZE >= 128) {
715 		/*
716 		 * The 192 byte sized cache is not used if the alignment
717 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
718 		 * instead.
719 		 */
720 		for (i = 128 + 8; i <= 192; i += 8)
721 			size_index[size_index_elem(i)] = 8;
722 	}
723 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
724 		if (!kmalloc_caches[i]) {
725 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
726 							1 << i, flags);
727 		}
728 
729 		/*
730 		 * Caches that are not of the two-to-the-power-of size.
731 		 * These have to be created immediately after the
732 		 * earlier power of two caches
733 		 */
734 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
735 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
736 
737 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
738 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
739 	}
740 
741 	/* Kmalloc array is now usable */
742 	slab_state = UP;
743 
744 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
745 		struct kmem_cache *s = kmalloc_caches[i];
746 		char *n;
747 
748 		if (s) {
749 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
750 
751 			BUG_ON(!n);
752 			s->name = n;
753 		}
754 	}
755 
756 #ifdef CONFIG_ZONE_DMA
757 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
758 		struct kmem_cache *s = kmalloc_caches[i];
759 
760 		if (s) {
761 			int size = kmalloc_size(i);
762 			char *n = kasprintf(GFP_NOWAIT,
763 				 "dma-kmalloc-%d", size);
764 
765 			BUG_ON(!n);
766 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
767 				size, SLAB_CACHE_DMA | flags);
768 		}
769 	}
770 #endif
771 }
772 #endif /* !CONFIG_SLOB */
773 
774 /*
775  * To avoid unnecessary overhead, we pass through large allocation requests
776  * directly to the page allocator. We use __GFP_COMP, because we will need to
777  * know the allocation order to free the pages properly in kfree.
778  */
779 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
780 {
781 	void *ret;
782 	struct page *page;
783 
784 	flags |= __GFP_COMP;
785 	page = alloc_kmem_pages(flags, order);
786 	ret = page ? page_address(page) : NULL;
787 	kmemleak_alloc(ret, size, 1, flags);
788 	return ret;
789 }
790 EXPORT_SYMBOL(kmalloc_order);
791 
792 #ifdef CONFIG_TRACING
793 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
794 {
795 	void *ret = kmalloc_order(size, flags, order);
796 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
797 	return ret;
798 }
799 EXPORT_SYMBOL(kmalloc_order_trace);
800 #endif
801 
802 #ifdef CONFIG_SLABINFO
803 
804 #ifdef CONFIG_SLAB
805 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
806 #else
807 #define SLABINFO_RIGHTS S_IRUSR
808 #endif
809 
810 void print_slabinfo_header(struct seq_file *m)
811 {
812 	/*
813 	 * Output format version, so at least we can change it
814 	 * without _too_ many complaints.
815 	 */
816 #ifdef CONFIG_DEBUG_SLAB
817 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
818 #else
819 	seq_puts(m, "slabinfo - version: 2.1\n");
820 #endif
821 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
822 		 "<objperslab> <pagesperslab>");
823 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
824 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
825 #ifdef CONFIG_DEBUG_SLAB
826 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
827 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
828 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
829 #endif
830 	seq_putc(m, '\n');
831 }
832 
833 static void *s_start(struct seq_file *m, loff_t *pos)
834 {
835 	loff_t n = *pos;
836 
837 	mutex_lock(&slab_mutex);
838 	if (!n)
839 		print_slabinfo_header(m);
840 
841 	return seq_list_start(&slab_caches, *pos);
842 }
843 
844 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
845 {
846 	return seq_list_next(p, &slab_caches, pos);
847 }
848 
849 void slab_stop(struct seq_file *m, void *p)
850 {
851 	mutex_unlock(&slab_mutex);
852 }
853 
854 static void
855 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
856 {
857 	struct kmem_cache *c;
858 	struct slabinfo sinfo;
859 	int i;
860 
861 	if (!is_root_cache(s))
862 		return;
863 
864 	for_each_memcg_cache_index(i) {
865 		c = cache_from_memcg_idx(s, i);
866 		if (!c)
867 			continue;
868 
869 		memset(&sinfo, 0, sizeof(sinfo));
870 		get_slabinfo(c, &sinfo);
871 
872 		info->active_slabs += sinfo.active_slabs;
873 		info->num_slabs += sinfo.num_slabs;
874 		info->shared_avail += sinfo.shared_avail;
875 		info->active_objs += sinfo.active_objs;
876 		info->num_objs += sinfo.num_objs;
877 	}
878 }
879 
880 int cache_show(struct kmem_cache *s, struct seq_file *m)
881 {
882 	struct slabinfo sinfo;
883 
884 	memset(&sinfo, 0, sizeof(sinfo));
885 	get_slabinfo(s, &sinfo);
886 
887 	memcg_accumulate_slabinfo(s, &sinfo);
888 
889 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
890 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
891 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
892 
893 	seq_printf(m, " : tunables %4u %4u %4u",
894 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
895 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
896 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
897 	slabinfo_show_stats(m, s);
898 	seq_putc(m, '\n');
899 	return 0;
900 }
901 
902 static int s_show(struct seq_file *m, void *p)
903 {
904 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
905 
906 	if (!is_root_cache(s))
907 		return 0;
908 	return cache_show(s, m);
909 }
910 
911 /*
912  * slabinfo_op - iterator that generates /proc/slabinfo
913  *
914  * Output layout:
915  * cache-name
916  * num-active-objs
917  * total-objs
918  * object size
919  * num-active-slabs
920  * total-slabs
921  * num-pages-per-slab
922  * + further values on SMP and with statistics enabled
923  */
924 static const struct seq_operations slabinfo_op = {
925 	.start = s_start,
926 	.next = slab_next,
927 	.stop = slab_stop,
928 	.show = s_show,
929 };
930 
931 static int slabinfo_open(struct inode *inode, struct file *file)
932 {
933 	return seq_open(file, &slabinfo_op);
934 }
935 
936 static const struct file_operations proc_slabinfo_operations = {
937 	.open		= slabinfo_open,
938 	.read		= seq_read,
939 	.write          = slabinfo_write,
940 	.llseek		= seq_lseek,
941 	.release	= seq_release,
942 };
943 
944 static int __init slab_proc_init(void)
945 {
946 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
947 						&proc_slabinfo_operations);
948 	return 0;
949 }
950 module_init(slab_proc_init);
951 #endif /* CONFIG_SLABINFO */
952 
953 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
954 					   gfp_t flags)
955 {
956 	void *ret;
957 	size_t ks = 0;
958 
959 	if (p)
960 		ks = ksize(p);
961 
962 	if (ks >= new_size)
963 		return (void *)p;
964 
965 	ret = kmalloc_track_caller(new_size, flags);
966 	if (ret && p)
967 		memcpy(ret, p, ks);
968 
969 	return ret;
970 }
971 
972 /**
973  * __krealloc - like krealloc() but don't free @p.
974  * @p: object to reallocate memory for.
975  * @new_size: how many bytes of memory are required.
976  * @flags: the type of memory to allocate.
977  *
978  * This function is like krealloc() except it never frees the originally
979  * allocated buffer. Use this if you don't want to free the buffer immediately
980  * like, for example, with RCU.
981  */
982 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
983 {
984 	if (unlikely(!new_size))
985 		return ZERO_SIZE_PTR;
986 
987 	return __do_krealloc(p, new_size, flags);
988 
989 }
990 EXPORT_SYMBOL(__krealloc);
991 
992 /**
993  * krealloc - reallocate memory. The contents will remain unchanged.
994  * @p: object to reallocate memory for.
995  * @new_size: how many bytes of memory are required.
996  * @flags: the type of memory to allocate.
997  *
998  * The contents of the object pointed to are preserved up to the
999  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1000  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1001  * %NULL pointer, the object pointed to is freed.
1002  */
1003 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1004 {
1005 	void *ret;
1006 
1007 	if (unlikely(!new_size)) {
1008 		kfree(p);
1009 		return ZERO_SIZE_PTR;
1010 	}
1011 
1012 	ret = __do_krealloc(p, new_size, flags);
1013 	if (ret && p != ret)
1014 		kfree(p);
1015 
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(krealloc);
1019 
1020 /**
1021  * kzfree - like kfree but zero memory
1022  * @p: object to free memory of
1023  *
1024  * The memory of the object @p points to is zeroed before freed.
1025  * If @p is %NULL, kzfree() does nothing.
1026  *
1027  * Note: this function zeroes the whole allocated buffer which can be a good
1028  * deal bigger than the requested buffer size passed to kmalloc(). So be
1029  * careful when using this function in performance sensitive code.
1030  */
1031 void kzfree(const void *p)
1032 {
1033 	size_t ks;
1034 	void *mem = (void *)p;
1035 
1036 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1037 		return;
1038 	ks = ksize(mem);
1039 	memset(mem, 0, ks);
1040 	kfree(mem);
1041 }
1042 EXPORT_SYMBOL(kzfree);
1043 
1044 /* Tracepoints definitions. */
1045 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1046 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1047 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1048 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1049 EXPORT_TRACEPOINT_SYMBOL(kfree);
1050 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1051