xref: /linux/mm/slab_common.c (revision cad151904379b302a62e8967b7db6ba2e883a212)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kmemleak.h>
25 #include <linux/kasan.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/page.h>
29 #include <linux/memcontrol.h>
30 #include <linux/stackdepot.h>
31 
32 #include "internal.h"
33 #include "slab.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/kmem.h>
37 
38 enum slab_state slab_state;
39 LIST_HEAD(slab_caches);
40 DEFINE_MUTEX(slab_mutex);
41 struct kmem_cache *kmem_cache;
42 
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 		    slab_caches_to_rcu_destroy_workfn);
47 
48 /*
49  * Set of flags that will prevent slab merging
50  */
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 		SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge())
54 
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57 
58 /*
59  * Merge control. If this is set then no merging of slab caches will occur.
60  */
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 
63 static int __init setup_slab_nomerge(char *str)
64 {
65 	slab_nomerge = true;
66 	return 1;
67 }
68 
69 static int __init setup_slab_merge(char *str)
70 {
71 	slab_nomerge = false;
72 	return 1;
73 }
74 
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 /*
109  * Figure out what the alignment of the objects will be given a set of
110  * flags, a user specified alignment and the size of the objects.
111  */
112 static unsigned int calculate_alignment(slab_flags_t flags,
113 		unsigned int align, unsigned int size)
114 {
115 	/*
116 	 * If the user wants hardware cache aligned objects then follow that
117 	 * suggestion if the object is sufficiently large.
118 	 *
119 	 * The hardware cache alignment cannot override the specified
120 	 * alignment though. If that is greater then use it.
121 	 */
122 	if (flags & SLAB_HWCACHE_ALIGN) {
123 		unsigned int ralign;
124 
125 		ralign = cache_line_size();
126 		while (size <= ralign / 2)
127 			ralign /= 2;
128 		align = max(align, ralign);
129 	}
130 
131 	align = max(align, arch_slab_minalign());
132 
133 	return ALIGN(align, sizeof(void *));
134 }
135 
136 /*
137  * Find a mergeable slab cache
138  */
139 int slab_unmergeable(struct kmem_cache *s)
140 {
141 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 		return 1;
143 
144 	if (s->ctor)
145 		return 1;
146 
147 #ifdef CONFIG_HARDENED_USERCOPY
148 	if (s->usersize)
149 		return 1;
150 #endif
151 
152 	/*
153 	 * We may have set a slab to be unmergeable during bootstrap.
154 	 */
155 	if (s->refcount < 0)
156 		return 1;
157 
158 	return 0;
159 }
160 
161 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
162 		slab_flags_t flags, const char *name, void (*ctor)(void *))
163 {
164 	struct kmem_cache *s;
165 
166 	if (slab_nomerge)
167 		return NULL;
168 
169 	if (ctor)
170 		return NULL;
171 
172 	size = ALIGN(size, sizeof(void *));
173 	align = calculate_alignment(flags, align, size);
174 	size = ALIGN(size, align);
175 	flags = kmem_cache_flags(size, flags, name);
176 
177 	if (flags & SLAB_NEVER_MERGE)
178 		return NULL;
179 
180 	list_for_each_entry_reverse(s, &slab_caches, list) {
181 		if (slab_unmergeable(s))
182 			continue;
183 
184 		if (size > s->size)
185 			continue;
186 
187 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 			continue;
189 		/*
190 		 * Check if alignment is compatible.
191 		 * Courtesy of Adrian Drzewiecki
192 		 */
193 		if ((s->size & ~(align - 1)) != s->size)
194 			continue;
195 
196 		if (s->size - size >= sizeof(void *))
197 			continue;
198 
199 		return s;
200 	}
201 	return NULL;
202 }
203 
204 static struct kmem_cache *create_cache(const char *name,
205 		unsigned int object_size, unsigned int align,
206 		slab_flags_t flags, unsigned int useroffset,
207 		unsigned int usersize, void (*ctor)(void *),
208 		struct kmem_cache *root_cache)
209 {
210 	struct kmem_cache *s;
211 	int err;
212 
213 	if (WARN_ON(useroffset + usersize > object_size))
214 		useroffset = usersize = 0;
215 
216 	err = -ENOMEM;
217 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218 	if (!s)
219 		goto out;
220 
221 	s->name = name;
222 	s->size = s->object_size = object_size;
223 	s->align = align;
224 	s->ctor = ctor;
225 #ifdef CONFIG_HARDENED_USERCOPY
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 #endif
229 
230 	err = __kmem_cache_create(s, flags);
231 	if (err)
232 		goto out_free_cache;
233 
234 	s->refcount = 1;
235 	list_add(&s->list, &slab_caches);
236 	return s;
237 
238 out_free_cache:
239 	kmem_cache_free(kmem_cache, s);
240 out:
241 	return ERR_PTR(err);
242 }
243 
244 /**
245  * kmem_cache_create_usercopy - Create a cache with a region suitable
246  * for copying to userspace
247  * @name: A string which is used in /proc/slabinfo to identify this cache.
248  * @size: The size of objects to be created in this cache.
249  * @align: The required alignment for the objects.
250  * @flags: SLAB flags
251  * @useroffset: Usercopy region offset
252  * @usersize: Usercopy region size
253  * @ctor: A constructor for the objects.
254  *
255  * Cannot be called within a interrupt, but can be interrupted.
256  * The @ctor is run when new pages are allocated by the cache.
257  *
258  * The flags are
259  *
260  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261  * to catch references to uninitialised memory.
262  *
263  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
264  * for buffer overruns.
265  *
266  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267  * cacheline.  This can be beneficial if you're counting cycles as closely
268  * as davem.
269  *
270  * Return: a pointer to the cache on success, NULL on failure.
271  */
272 struct kmem_cache *
273 kmem_cache_create_usercopy(const char *name,
274 		  unsigned int size, unsigned int align,
275 		  slab_flags_t flags,
276 		  unsigned int useroffset, unsigned int usersize,
277 		  void (*ctor)(void *))
278 {
279 	struct kmem_cache *s = NULL;
280 	const char *cache_name;
281 	int err;
282 
283 #ifdef CONFIG_SLUB_DEBUG
284 	/*
285 	 * If no slub_debug was enabled globally, the static key is not yet
286 	 * enabled by setup_slub_debug(). Enable it if the cache is being
287 	 * created with any of the debugging flags passed explicitly.
288 	 * It's also possible that this is the first cache created with
289 	 * SLAB_STORE_USER and we should init stack_depot for it.
290 	 */
291 	if (flags & SLAB_DEBUG_FLAGS)
292 		static_branch_enable(&slub_debug_enabled);
293 	if (flags & SLAB_STORE_USER)
294 		stack_depot_init();
295 #endif
296 
297 	mutex_lock(&slab_mutex);
298 
299 	err = kmem_cache_sanity_check(name, size);
300 	if (err) {
301 		goto out_unlock;
302 	}
303 
304 	/* Refuse requests with allocator specific flags */
305 	if (flags & ~SLAB_FLAGS_PERMITTED) {
306 		err = -EINVAL;
307 		goto out_unlock;
308 	}
309 
310 	/*
311 	 * Some allocators will constraint the set of valid flags to a subset
312 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313 	 * case, and we'll just provide them with a sanitized version of the
314 	 * passed flags.
315 	 */
316 	flags &= CACHE_CREATE_MASK;
317 
318 	/* Fail closed on bad usersize of useroffset values. */
319 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320 	    WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 #ifdef SLAB_SUPPORTS_SYSFS
396 /*
397  * For a given kmem_cache, kmem_cache_destroy() should only be called
398  * once or there will be a use-after-free problem. The actual deletion
399  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400  * protection. So they are now done without holding those locks.
401  *
402  * Note that there will be a slight delay in the deletion of sysfs files
403  * if kmem_cache_release() is called indrectly from a work function.
404  */
405 static void kmem_cache_release(struct kmem_cache *s)
406 {
407 	sysfs_slab_unlink(s);
408 	sysfs_slab_release(s);
409 }
410 #else
411 static void kmem_cache_release(struct kmem_cache *s)
412 {
413 	slab_kmem_cache_release(s);
414 }
415 #endif
416 
417 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
418 {
419 	LIST_HEAD(to_destroy);
420 	struct kmem_cache *s, *s2;
421 
422 	/*
423 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
424 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
425 	 * through RCU and the associated kmem_cache are dereferenced
426 	 * while freeing the pages, so the kmem_caches should be freed only
427 	 * after the pending RCU operations are finished.  As rcu_barrier()
428 	 * is a pretty slow operation, we batch all pending destructions
429 	 * asynchronously.
430 	 */
431 	mutex_lock(&slab_mutex);
432 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
433 	mutex_unlock(&slab_mutex);
434 
435 	if (list_empty(&to_destroy))
436 		return;
437 
438 	rcu_barrier();
439 
440 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
441 		debugfs_slab_release(s);
442 		kfence_shutdown_cache(s);
443 		kmem_cache_release(s);
444 	}
445 }
446 
447 static int shutdown_cache(struct kmem_cache *s)
448 {
449 	/* free asan quarantined objects */
450 	kasan_cache_shutdown(s);
451 
452 	if (__kmem_cache_shutdown(s) != 0)
453 		return -EBUSY;
454 
455 	list_del(&s->list);
456 
457 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
459 		schedule_work(&slab_caches_to_rcu_destroy_work);
460 	} else {
461 		kfence_shutdown_cache(s);
462 		debugfs_slab_release(s);
463 	}
464 
465 	return 0;
466 }
467 
468 void slab_kmem_cache_release(struct kmem_cache *s)
469 {
470 	__kmem_cache_release(s);
471 	kfree_const(s->name);
472 	kmem_cache_free(kmem_cache, s);
473 }
474 
475 void kmem_cache_destroy(struct kmem_cache *s)
476 {
477 	int err = -EBUSY;
478 	bool rcu_set;
479 
480 	if (unlikely(!s) || !kasan_check_byte(s))
481 		return;
482 
483 	cpus_read_lock();
484 	mutex_lock(&slab_mutex);
485 
486 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
487 
488 	s->refcount--;
489 	if (s->refcount)
490 		goto out_unlock;
491 
492 	err = shutdown_cache(s);
493 	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
494 	     __func__, s->name, (void *)_RET_IP_);
495 out_unlock:
496 	mutex_unlock(&slab_mutex);
497 	cpus_read_unlock();
498 	if (!err && !rcu_set)
499 		kmem_cache_release(s);
500 }
501 EXPORT_SYMBOL(kmem_cache_destroy);
502 
503 /**
504  * kmem_cache_shrink - Shrink a cache.
505  * @cachep: The cache to shrink.
506  *
507  * Releases as many slabs as possible for a cache.
508  * To help debugging, a zero exit status indicates all slabs were released.
509  *
510  * Return: %0 if all slabs were released, non-zero otherwise
511  */
512 int kmem_cache_shrink(struct kmem_cache *cachep)
513 {
514 	kasan_cache_shrink(cachep);
515 
516 	return __kmem_cache_shrink(cachep);
517 }
518 EXPORT_SYMBOL(kmem_cache_shrink);
519 
520 bool slab_is_available(void)
521 {
522 	return slab_state >= UP;
523 }
524 
525 #ifdef CONFIG_PRINTK
526 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
527 {
528 	if (__kfence_obj_info(kpp, object, slab))
529 		return;
530 	__kmem_obj_info(kpp, object, slab);
531 }
532 
533 /**
534  * kmem_dump_obj - Print available slab provenance information
535  * @object: slab object for which to find provenance information.
536  *
537  * This function uses pr_cont(), so that the caller is expected to have
538  * printed out whatever preamble is appropriate.  The provenance information
539  * depends on the type of object and on how much debugging is enabled.
540  * For a slab-cache object, the fact that it is a slab object is printed,
541  * and, if available, the slab name, return address, and stack trace from
542  * the allocation and last free path of that object.
543  *
544  * Return: %true if the pointer is to a not-yet-freed object from
545  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
546  * is to an already-freed object, and %false otherwise.
547  */
548 bool kmem_dump_obj(void *object)
549 {
550 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
551 	int i;
552 	struct slab *slab;
553 	unsigned long ptroffset;
554 	struct kmem_obj_info kp = { };
555 
556 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
557 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
558 		return false;
559 	slab = virt_to_slab(object);
560 	if (!slab)
561 		return false;
562 
563 	kmem_obj_info(&kp, object, slab);
564 	if (kp.kp_slab_cache)
565 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
566 	else
567 		pr_cont(" slab%s", cp);
568 	if (is_kfence_address(object))
569 		pr_cont(" (kfence)");
570 	if (kp.kp_objp)
571 		pr_cont(" start %px", kp.kp_objp);
572 	if (kp.kp_data_offset)
573 		pr_cont(" data offset %lu", kp.kp_data_offset);
574 	if (kp.kp_objp) {
575 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
576 		pr_cont(" pointer offset %lu", ptroffset);
577 	}
578 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
579 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
580 	if (kp.kp_ret)
581 		pr_cont(" allocated at %pS\n", kp.kp_ret);
582 	else
583 		pr_cont("\n");
584 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
585 		if (!kp.kp_stack[i])
586 			break;
587 		pr_info("    %pS\n", kp.kp_stack[i]);
588 	}
589 
590 	if (kp.kp_free_stack[0])
591 		pr_cont(" Free path:\n");
592 
593 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
594 		if (!kp.kp_free_stack[i])
595 			break;
596 		pr_info("    %pS\n", kp.kp_free_stack[i]);
597 	}
598 
599 	return true;
600 }
601 EXPORT_SYMBOL_GPL(kmem_dump_obj);
602 #endif
603 
604 /* Create a cache during boot when no slab services are available yet */
605 void __init create_boot_cache(struct kmem_cache *s, const char *name,
606 		unsigned int size, slab_flags_t flags,
607 		unsigned int useroffset, unsigned int usersize)
608 {
609 	int err;
610 	unsigned int align = ARCH_KMALLOC_MINALIGN;
611 
612 	s->name = name;
613 	s->size = s->object_size = size;
614 
615 	/*
616 	 * For power of two sizes, guarantee natural alignment for kmalloc
617 	 * caches, regardless of SL*B debugging options.
618 	 */
619 	if (is_power_of_2(size))
620 		align = max(align, size);
621 	s->align = calculate_alignment(flags, align, size);
622 
623 #ifdef CONFIG_HARDENED_USERCOPY
624 	s->useroffset = useroffset;
625 	s->usersize = usersize;
626 #endif
627 
628 	err = __kmem_cache_create(s, flags);
629 
630 	if (err)
631 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
632 					name, size, err);
633 
634 	s->refcount = -1;	/* Exempt from merging for now */
635 }
636 
637 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
638 						      unsigned int size,
639 						      slab_flags_t flags)
640 {
641 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
642 
643 	if (!s)
644 		panic("Out of memory when creating slab %s\n", name);
645 
646 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
647 	list_add(&s->list, &slab_caches);
648 	s->refcount = 1;
649 	return s;
650 }
651 
652 struct kmem_cache *
653 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
654 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
655 EXPORT_SYMBOL(kmalloc_caches);
656 
657 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
658 unsigned long random_kmalloc_seed __ro_after_init;
659 EXPORT_SYMBOL(random_kmalloc_seed);
660 #endif
661 
662 /*
663  * Conversion table for small slabs sizes / 8 to the index in the
664  * kmalloc array. This is necessary for slabs < 192 since we have non power
665  * of two cache sizes there. The size of larger slabs can be determined using
666  * fls.
667  */
668 u8 kmalloc_size_index[24] __ro_after_init = {
669 	3,	/* 8 */
670 	4,	/* 16 */
671 	5,	/* 24 */
672 	5,	/* 32 */
673 	6,	/* 40 */
674 	6,	/* 48 */
675 	6,	/* 56 */
676 	6,	/* 64 */
677 	1,	/* 72 */
678 	1,	/* 80 */
679 	1,	/* 88 */
680 	1,	/* 96 */
681 	7,	/* 104 */
682 	7,	/* 112 */
683 	7,	/* 120 */
684 	7,	/* 128 */
685 	2,	/* 136 */
686 	2,	/* 144 */
687 	2,	/* 152 */
688 	2,	/* 160 */
689 	2,	/* 168 */
690 	2,	/* 176 */
691 	2,	/* 184 */
692 	2	/* 192 */
693 };
694 
695 size_t kmalloc_size_roundup(size_t size)
696 {
697 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
698 		/*
699 		 * The flags don't matter since size_index is common to all.
700 		 * Neither does the caller for just getting ->object_size.
701 		 */
702 		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
703 	}
704 
705 	/* Above the smaller buckets, size is a multiple of page size. */
706 	if (size && size <= KMALLOC_MAX_SIZE)
707 		return PAGE_SIZE << get_order(size);
708 
709 	/*
710 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
711 	 * and very large size - kmalloc() may fail.
712 	 */
713 	return size;
714 
715 }
716 EXPORT_SYMBOL(kmalloc_size_roundup);
717 
718 #ifdef CONFIG_ZONE_DMA
719 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
720 #else
721 #define KMALLOC_DMA_NAME(sz)
722 #endif
723 
724 #ifdef CONFIG_MEMCG_KMEM
725 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
726 #else
727 #define KMALLOC_CGROUP_NAME(sz)
728 #endif
729 
730 #ifndef CONFIG_SLUB_TINY
731 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
732 #else
733 #define KMALLOC_RCL_NAME(sz)
734 #endif
735 
736 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
737 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
738 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
739 #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
740 #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
741 #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
742 #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
743 #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
744 #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
745 #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
746 #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
747 #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
748 #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
749 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
750 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
751 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
752 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
753 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
754 #else // CONFIG_RANDOM_KMALLOC_CACHES
755 #define KMALLOC_RANDOM_NAME(N, sz)
756 #endif
757 
758 #define INIT_KMALLOC_INFO(__size, __short_size)			\
759 {								\
760 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
761 	KMALLOC_RCL_NAME(__short_size)				\
762 	KMALLOC_CGROUP_NAME(__short_size)			\
763 	KMALLOC_DMA_NAME(__short_size)				\
764 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
765 	.size = __size,						\
766 }
767 
768 /*
769  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
770  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
771  * kmalloc-2M.
772  */
773 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
774 	INIT_KMALLOC_INFO(0, 0),
775 	INIT_KMALLOC_INFO(96, 96),
776 	INIT_KMALLOC_INFO(192, 192),
777 	INIT_KMALLOC_INFO(8, 8),
778 	INIT_KMALLOC_INFO(16, 16),
779 	INIT_KMALLOC_INFO(32, 32),
780 	INIT_KMALLOC_INFO(64, 64),
781 	INIT_KMALLOC_INFO(128, 128),
782 	INIT_KMALLOC_INFO(256, 256),
783 	INIT_KMALLOC_INFO(512, 512),
784 	INIT_KMALLOC_INFO(1024, 1k),
785 	INIT_KMALLOC_INFO(2048, 2k),
786 	INIT_KMALLOC_INFO(4096, 4k),
787 	INIT_KMALLOC_INFO(8192, 8k),
788 	INIT_KMALLOC_INFO(16384, 16k),
789 	INIT_KMALLOC_INFO(32768, 32k),
790 	INIT_KMALLOC_INFO(65536, 64k),
791 	INIT_KMALLOC_INFO(131072, 128k),
792 	INIT_KMALLOC_INFO(262144, 256k),
793 	INIT_KMALLOC_INFO(524288, 512k),
794 	INIT_KMALLOC_INFO(1048576, 1M),
795 	INIT_KMALLOC_INFO(2097152, 2M)
796 };
797 
798 /*
799  * Patch up the size_index table if we have strange large alignment
800  * requirements for the kmalloc array. This is only the case for
801  * MIPS it seems. The standard arches will not generate any code here.
802  *
803  * Largest permitted alignment is 256 bytes due to the way we
804  * handle the index determination for the smaller caches.
805  *
806  * Make sure that nothing crazy happens if someone starts tinkering
807  * around with ARCH_KMALLOC_MINALIGN
808  */
809 void __init setup_kmalloc_cache_index_table(void)
810 {
811 	unsigned int i;
812 
813 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
814 		!is_power_of_2(KMALLOC_MIN_SIZE));
815 
816 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
817 		unsigned int elem = size_index_elem(i);
818 
819 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
820 			break;
821 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
822 	}
823 
824 	if (KMALLOC_MIN_SIZE >= 64) {
825 		/*
826 		 * The 96 byte sized cache is not used if the alignment
827 		 * is 64 byte.
828 		 */
829 		for (i = 64 + 8; i <= 96; i += 8)
830 			kmalloc_size_index[size_index_elem(i)] = 7;
831 
832 	}
833 
834 	if (KMALLOC_MIN_SIZE >= 128) {
835 		/*
836 		 * The 192 byte sized cache is not used if the alignment
837 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
838 		 * instead.
839 		 */
840 		for (i = 128 + 8; i <= 192; i += 8)
841 			kmalloc_size_index[size_index_elem(i)] = 8;
842 	}
843 }
844 
845 static unsigned int __kmalloc_minalign(void)
846 {
847 	unsigned int minalign = dma_get_cache_alignment();
848 
849 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
850 	    is_swiotlb_allocated())
851 		minalign = ARCH_KMALLOC_MINALIGN;
852 
853 	return max(minalign, arch_slab_minalign());
854 }
855 
856 void __init
857 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
858 {
859 	unsigned int minalign = __kmalloc_minalign();
860 	unsigned int aligned_size = kmalloc_info[idx].size;
861 	int aligned_idx = idx;
862 
863 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
864 		flags |= SLAB_RECLAIM_ACCOUNT;
865 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
866 		if (mem_cgroup_kmem_disabled()) {
867 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
868 			return;
869 		}
870 		flags |= SLAB_ACCOUNT;
871 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
872 		flags |= SLAB_CACHE_DMA;
873 	}
874 
875 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
876 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
877 		flags |= SLAB_NO_MERGE;
878 #endif
879 
880 	/*
881 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
882 	 * KMALLOC_NORMAL caches.
883 	 */
884 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
885 		flags |= SLAB_NO_MERGE;
886 
887 	if (minalign > ARCH_KMALLOC_MINALIGN) {
888 		aligned_size = ALIGN(aligned_size, minalign);
889 		aligned_idx = __kmalloc_index(aligned_size, false);
890 	}
891 
892 	if (!kmalloc_caches[type][aligned_idx])
893 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
894 					kmalloc_info[aligned_idx].name[type],
895 					aligned_size, flags);
896 	if (idx != aligned_idx)
897 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
898 }
899 
900 /*
901  * Create the kmalloc array. Some of the regular kmalloc arrays
902  * may already have been created because they were needed to
903  * enable allocations for slab creation.
904  */
905 void __init create_kmalloc_caches(slab_flags_t flags)
906 {
907 	int i;
908 	enum kmalloc_cache_type type;
909 
910 	/*
911 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
912 	 */
913 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
914 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
915 			if (!kmalloc_caches[type][i])
916 				new_kmalloc_cache(i, type, flags);
917 
918 			/*
919 			 * Caches that are not of the two-to-the-power-of size.
920 			 * These have to be created immediately after the
921 			 * earlier power of two caches
922 			 */
923 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
924 					!kmalloc_caches[type][1])
925 				new_kmalloc_cache(1, type, flags);
926 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
927 					!kmalloc_caches[type][2])
928 				new_kmalloc_cache(2, type, flags);
929 		}
930 	}
931 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
932 	random_kmalloc_seed = get_random_u64();
933 #endif
934 
935 	/* Kmalloc array is now usable */
936 	slab_state = UP;
937 }
938 
939 /**
940  * __ksize -- Report full size of underlying allocation
941  * @object: pointer to the object
942  *
943  * This should only be used internally to query the true size of allocations.
944  * It is not meant to be a way to discover the usable size of an allocation
945  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
946  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
947  * and/or FORTIFY_SOURCE.
948  *
949  * Return: size of the actual memory used by @object in bytes
950  */
951 size_t __ksize(const void *object)
952 {
953 	struct folio *folio;
954 
955 	if (unlikely(object == ZERO_SIZE_PTR))
956 		return 0;
957 
958 	folio = virt_to_folio(object);
959 
960 	if (unlikely(!folio_test_slab(folio))) {
961 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
962 			return 0;
963 		if (WARN_ON(object != folio_address(folio)))
964 			return 0;
965 		return folio_size(folio);
966 	}
967 
968 #ifdef CONFIG_SLUB_DEBUG
969 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
970 #endif
971 
972 	return slab_ksize(folio_slab(folio)->slab_cache);
973 }
974 
975 gfp_t kmalloc_fix_flags(gfp_t flags)
976 {
977 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
978 
979 	flags &= ~GFP_SLAB_BUG_MASK;
980 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
981 			invalid_mask, &invalid_mask, flags, &flags);
982 	dump_stack();
983 
984 	return flags;
985 }
986 
987 #ifdef CONFIG_SLAB_FREELIST_RANDOM
988 /* Randomize a generic freelist */
989 static void freelist_randomize(unsigned int *list,
990 			       unsigned int count)
991 {
992 	unsigned int rand;
993 	unsigned int i;
994 
995 	for (i = 0; i < count; i++)
996 		list[i] = i;
997 
998 	/* Fisher-Yates shuffle */
999 	for (i = count - 1; i > 0; i--) {
1000 		rand = get_random_u32_below(i + 1);
1001 		swap(list[i], list[rand]);
1002 	}
1003 }
1004 
1005 /* Create a random sequence per cache */
1006 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1007 				    gfp_t gfp)
1008 {
1009 
1010 	if (count < 2 || cachep->random_seq)
1011 		return 0;
1012 
1013 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1014 	if (!cachep->random_seq)
1015 		return -ENOMEM;
1016 
1017 	freelist_randomize(cachep->random_seq, count);
1018 	return 0;
1019 }
1020 
1021 /* Destroy the per-cache random freelist sequence */
1022 void cache_random_seq_destroy(struct kmem_cache *cachep)
1023 {
1024 	kfree(cachep->random_seq);
1025 	cachep->random_seq = NULL;
1026 }
1027 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1028 
1029 #ifdef CONFIG_SLUB_DEBUG
1030 #define SLABINFO_RIGHTS (0400)
1031 
1032 static void print_slabinfo_header(struct seq_file *m)
1033 {
1034 	/*
1035 	 * Output format version, so at least we can change it
1036 	 * without _too_ many complaints.
1037 	 */
1038 	seq_puts(m, "slabinfo - version: 2.1\n");
1039 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1040 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1041 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1042 	seq_putc(m, '\n');
1043 }
1044 
1045 static void *slab_start(struct seq_file *m, loff_t *pos)
1046 {
1047 	mutex_lock(&slab_mutex);
1048 	return seq_list_start(&slab_caches, *pos);
1049 }
1050 
1051 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1052 {
1053 	return seq_list_next(p, &slab_caches, pos);
1054 }
1055 
1056 static void slab_stop(struct seq_file *m, void *p)
1057 {
1058 	mutex_unlock(&slab_mutex);
1059 }
1060 
1061 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1062 {
1063 	struct slabinfo sinfo;
1064 
1065 	memset(&sinfo, 0, sizeof(sinfo));
1066 	get_slabinfo(s, &sinfo);
1067 
1068 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1069 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1070 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1071 
1072 	seq_printf(m, " : tunables %4u %4u %4u",
1073 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1074 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1075 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1076 	slabinfo_show_stats(m, s);
1077 	seq_putc(m, '\n');
1078 }
1079 
1080 static int slab_show(struct seq_file *m, void *p)
1081 {
1082 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1083 
1084 	if (p == slab_caches.next)
1085 		print_slabinfo_header(m);
1086 	cache_show(s, m);
1087 	return 0;
1088 }
1089 
1090 void dump_unreclaimable_slab(void)
1091 {
1092 	struct kmem_cache *s;
1093 	struct slabinfo sinfo;
1094 
1095 	/*
1096 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1097 	 * sleep in oom path. But, without mutex hold, it may introduce a
1098 	 * risk of crash.
1099 	 * Use mutex_trylock to protect the list traverse, dump nothing
1100 	 * without acquiring the mutex.
1101 	 */
1102 	if (!mutex_trylock(&slab_mutex)) {
1103 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1104 		return;
1105 	}
1106 
1107 	pr_info("Unreclaimable slab info:\n");
1108 	pr_info("Name                      Used          Total\n");
1109 
1110 	list_for_each_entry(s, &slab_caches, list) {
1111 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1112 			continue;
1113 
1114 		get_slabinfo(s, &sinfo);
1115 
1116 		if (sinfo.num_objs > 0)
1117 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1118 				(sinfo.active_objs * s->size) / 1024,
1119 				(sinfo.num_objs * s->size) / 1024);
1120 	}
1121 	mutex_unlock(&slab_mutex);
1122 }
1123 
1124 /*
1125  * slabinfo_op - iterator that generates /proc/slabinfo
1126  *
1127  * Output layout:
1128  * cache-name
1129  * num-active-objs
1130  * total-objs
1131  * object size
1132  * num-active-slabs
1133  * total-slabs
1134  * num-pages-per-slab
1135  * + further values on SMP and with statistics enabled
1136  */
1137 static const struct seq_operations slabinfo_op = {
1138 	.start = slab_start,
1139 	.next = slab_next,
1140 	.stop = slab_stop,
1141 	.show = slab_show,
1142 };
1143 
1144 static int slabinfo_open(struct inode *inode, struct file *file)
1145 {
1146 	return seq_open(file, &slabinfo_op);
1147 }
1148 
1149 static const struct proc_ops slabinfo_proc_ops = {
1150 	.proc_flags	= PROC_ENTRY_PERMANENT,
1151 	.proc_open	= slabinfo_open,
1152 	.proc_read	= seq_read,
1153 	.proc_write	= slabinfo_write,
1154 	.proc_lseek	= seq_lseek,
1155 	.proc_release	= seq_release,
1156 };
1157 
1158 static int __init slab_proc_init(void)
1159 {
1160 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1161 	return 0;
1162 }
1163 module_init(slab_proc_init);
1164 
1165 #endif /* CONFIG_SLUB_DEBUG */
1166 
1167 static __always_inline __realloc_size(2) void *
1168 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1169 {
1170 	void *ret;
1171 	size_t ks;
1172 
1173 	/* Check for double-free before calling ksize. */
1174 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1175 		if (!kasan_check_byte(p))
1176 			return NULL;
1177 		ks = ksize(p);
1178 	} else
1179 		ks = 0;
1180 
1181 	/* If the object still fits, repoison it precisely. */
1182 	if (ks >= new_size) {
1183 		p = kasan_krealloc((void *)p, new_size, flags);
1184 		return (void *)p;
1185 	}
1186 
1187 	ret = kmalloc_track_caller(new_size, flags);
1188 	if (ret && p) {
1189 		/* Disable KASAN checks as the object's redzone is accessed. */
1190 		kasan_disable_current();
1191 		memcpy(ret, kasan_reset_tag(p), ks);
1192 		kasan_enable_current();
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 /**
1199  * krealloc - reallocate memory. The contents will remain unchanged.
1200  * @p: object to reallocate memory for.
1201  * @new_size: how many bytes of memory are required.
1202  * @flags: the type of memory to allocate.
1203  *
1204  * The contents of the object pointed to are preserved up to the
1205  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1206  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1207  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1208  *
1209  * Return: pointer to the allocated memory or %NULL in case of error
1210  */
1211 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1212 {
1213 	void *ret;
1214 
1215 	if (unlikely(!new_size)) {
1216 		kfree(p);
1217 		return ZERO_SIZE_PTR;
1218 	}
1219 
1220 	ret = __do_krealloc(p, new_size, flags);
1221 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1222 		kfree(p);
1223 
1224 	return ret;
1225 }
1226 EXPORT_SYMBOL(krealloc);
1227 
1228 /**
1229  * kfree_sensitive - Clear sensitive information in memory before freeing
1230  * @p: object to free memory of
1231  *
1232  * The memory of the object @p points to is zeroed before freed.
1233  * If @p is %NULL, kfree_sensitive() does nothing.
1234  *
1235  * Note: this function zeroes the whole allocated buffer which can be a good
1236  * deal bigger than the requested buffer size passed to kmalloc(). So be
1237  * careful when using this function in performance sensitive code.
1238  */
1239 void kfree_sensitive(const void *p)
1240 {
1241 	size_t ks;
1242 	void *mem = (void *)p;
1243 
1244 	ks = ksize(mem);
1245 	if (ks) {
1246 		kasan_unpoison_range(mem, ks);
1247 		memzero_explicit(mem, ks);
1248 	}
1249 	kfree(mem);
1250 }
1251 EXPORT_SYMBOL(kfree_sensitive);
1252 
1253 size_t ksize(const void *objp)
1254 {
1255 	/*
1256 	 * We need to first check that the pointer to the object is valid.
1257 	 * The KASAN report printed from ksize() is more useful, then when
1258 	 * it's printed later when the behaviour could be undefined due to
1259 	 * a potential use-after-free or double-free.
1260 	 *
1261 	 * We use kasan_check_byte(), which is supported for the hardware
1262 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1263 	 *
1264 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1265 	 * ksize() writing to and potentially corrupting the memory region.
1266 	 *
1267 	 * We want to perform the check before __ksize(), to avoid potentially
1268 	 * crashing in __ksize() due to accessing invalid metadata.
1269 	 */
1270 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1271 		return 0;
1272 
1273 	return kfence_ksize(objp) ?: __ksize(objp);
1274 }
1275 EXPORT_SYMBOL(ksize);
1276 
1277 /* Tracepoints definitions. */
1278 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1279 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1280 EXPORT_TRACEPOINT_SYMBOL(kfree);
1281 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1282 
1283