xref: /linux/mm/slab_common.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <linux/kasan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/page.h>
25 #include <linux/memcontrol.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/kmem.h>
29 
30 #include "internal.h"
31 
32 #include "slab.h"
33 
34 enum slab_state slab_state;
35 LIST_HEAD(slab_caches);
36 DEFINE_MUTEX(slab_mutex);
37 struct kmem_cache *kmem_cache;
38 
39 #ifdef CONFIG_HARDENED_USERCOPY
40 bool usercopy_fallback __ro_after_init =
41 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
42 module_param(usercopy_fallback, bool, 0400);
43 MODULE_PARM_DESC(usercopy_fallback,
44 		"WARN instead of reject usercopy whitelist violations");
45 #endif
46 
47 static LIST_HEAD(slab_caches_to_rcu_destroy);
48 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
49 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
50 		    slab_caches_to_rcu_destroy_workfn);
51 
52 /*
53  * Set of flags that will prevent slab merging
54  */
55 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
56 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
57 		SLAB_FAILSLAB | kasan_never_merge())
58 
59 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
60 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
61 
62 /*
63  * Merge control. If this is set then no merging of slab caches will occur.
64  */
65 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
66 
67 static int __init setup_slab_nomerge(char *str)
68 {
69 	slab_nomerge = true;
70 	return 1;
71 }
72 
73 #ifdef CONFIG_SLUB
74 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
75 #endif
76 
77 __setup("slab_nomerge", setup_slab_nomerge);
78 
79 /*
80  * Determine the size of a slab object
81  */
82 unsigned int kmem_cache_size(struct kmem_cache *s)
83 {
84 	return s->object_size;
85 }
86 EXPORT_SYMBOL(kmem_cache_size);
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int kmem_cache_sanity_check(const char *name, unsigned int size)
90 {
91 	if (!name || in_interrupt() || size < sizeof(void *) ||
92 		size > KMALLOC_MAX_SIZE) {
93 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108 {
109 	size_t i;
110 
111 	for (i = 0; i < nr; i++) {
112 		if (s)
113 			kmem_cache_free(s, p[i]);
114 		else
115 			kfree(p[i]);
116 	}
117 }
118 
119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
120 								void **p)
121 {
122 	size_t i;
123 
124 	for (i = 0; i < nr; i++) {
125 		void *x = p[i] = kmem_cache_alloc(s, flags);
126 		if (!x) {
127 			__kmem_cache_free_bulk(s, i, p);
128 			return 0;
129 		}
130 	}
131 	return i;
132 }
133 
134 /*
135  * Figure out what the alignment of the objects will be given a set of
136  * flags, a user specified alignment and the size of the objects.
137  */
138 static unsigned int calculate_alignment(slab_flags_t flags,
139 		unsigned int align, unsigned int size)
140 {
141 	/*
142 	 * If the user wants hardware cache aligned objects then follow that
143 	 * suggestion if the object is sufficiently large.
144 	 *
145 	 * The hardware cache alignment cannot override the specified
146 	 * alignment though. If that is greater then use it.
147 	 */
148 	if (flags & SLAB_HWCACHE_ALIGN) {
149 		unsigned int ralign;
150 
151 		ralign = cache_line_size();
152 		while (size <= ralign / 2)
153 			ralign /= 2;
154 		align = max(align, ralign);
155 	}
156 
157 	if (align < ARCH_SLAB_MINALIGN)
158 		align = ARCH_SLAB_MINALIGN;
159 
160 	return ALIGN(align, sizeof(void *));
161 }
162 
163 /*
164  * Find a mergeable slab cache
165  */
166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 		return 1;
170 
171 	if (s->ctor)
172 		return 1;
173 
174 	if (s->usersize)
175 		return 1;
176 
177 	/*
178 	 * We may have set a slab to be unmergeable during bootstrap.
179 	 */
180 	if (s->refcount < 0)
181 		return 1;
182 
183 	return 0;
184 }
185 
186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 		slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 	struct kmem_cache *s;
190 
191 	if (slab_nomerge)
192 		return NULL;
193 
194 	if (ctor)
195 		return NULL;
196 
197 	size = ALIGN(size, sizeof(void *));
198 	align = calculate_alignment(flags, align, size);
199 	size = ALIGN(size, align);
200 	flags = kmem_cache_flags(size, flags, name, NULL);
201 
202 	if (flags & SLAB_NEVER_MERGE)
203 		return NULL;
204 
205 	list_for_each_entry_reverse(s, &slab_caches, list) {
206 		if (slab_unmergeable(s))
207 			continue;
208 
209 		if (size > s->size)
210 			continue;
211 
212 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 			continue;
214 		/*
215 		 * Check if alignment is compatible.
216 		 * Courtesy of Adrian Drzewiecki
217 		 */
218 		if ((s->size & ~(align - 1)) != s->size)
219 			continue;
220 
221 		if (s->size - size >= sizeof(void *))
222 			continue;
223 
224 		if (IS_ENABLED(CONFIG_SLAB) && align &&
225 			(align > s->align || s->align % align))
226 			continue;
227 
228 		return s;
229 	}
230 	return NULL;
231 }
232 
233 static struct kmem_cache *create_cache(const char *name,
234 		unsigned int object_size, unsigned int align,
235 		slab_flags_t flags, unsigned int useroffset,
236 		unsigned int usersize, void (*ctor)(void *),
237 		struct kmem_cache *root_cache)
238 {
239 	struct kmem_cache *s;
240 	int err;
241 
242 	if (WARN_ON(useroffset + usersize > object_size))
243 		useroffset = usersize = 0;
244 
245 	err = -ENOMEM;
246 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 	if (!s)
248 		goto out;
249 
250 	s->name = name;
251 	s->size = s->object_size = object_size;
252 	s->align = align;
253 	s->ctor = ctor;
254 	s->useroffset = useroffset;
255 	s->usersize = usersize;
256 
257 	err = __kmem_cache_create(s, flags);
258 	if (err)
259 		goto out_free_cache;
260 
261 	s->refcount = 1;
262 	list_add(&s->list, &slab_caches);
263 out:
264 	if (err)
265 		return ERR_PTR(err);
266 	return s;
267 
268 out_free_cache:
269 	kmem_cache_free(kmem_cache, s);
270 	goto out;
271 }
272 
273 /**
274  * kmem_cache_create_usercopy - Create a cache with a region suitable
275  * for copying to userspace
276  * @name: A string which is used in /proc/slabinfo to identify this cache.
277  * @size: The size of objects to be created in this cache.
278  * @align: The required alignment for the objects.
279  * @flags: SLAB flags
280  * @useroffset: Usercopy region offset
281  * @usersize: Usercopy region size
282  * @ctor: A constructor for the objects.
283  *
284  * Cannot be called within a interrupt, but can be interrupted.
285  * The @ctor is run when new pages are allocated by the cache.
286  *
287  * The flags are
288  *
289  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290  * to catch references to uninitialised memory.
291  *
292  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293  * for buffer overruns.
294  *
295  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296  * cacheline.  This can be beneficial if you're counting cycles as closely
297  * as davem.
298  *
299  * Return: a pointer to the cache on success, NULL on failure.
300  */
301 struct kmem_cache *
302 kmem_cache_create_usercopy(const char *name,
303 		  unsigned int size, unsigned int align,
304 		  slab_flags_t flags,
305 		  unsigned int useroffset, unsigned int usersize,
306 		  void (*ctor)(void *))
307 {
308 	struct kmem_cache *s = NULL;
309 	const char *cache_name;
310 	int err;
311 
312 	get_online_cpus();
313 	get_online_mems();
314 
315 	mutex_lock(&slab_mutex);
316 
317 	err = kmem_cache_sanity_check(name, size);
318 	if (err) {
319 		goto out_unlock;
320 	}
321 
322 	/* Refuse requests with allocator specific flags */
323 	if (flags & ~SLAB_FLAGS_PERMITTED) {
324 		err = -EINVAL;
325 		goto out_unlock;
326 	}
327 
328 	/*
329 	 * Some allocators will constraint the set of valid flags to a subset
330 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
331 	 * case, and we'll just provide them with a sanitized version of the
332 	 * passed flags.
333 	 */
334 	flags &= CACHE_CREATE_MASK;
335 
336 	/* Fail closed on bad usersize of useroffset values. */
337 	if (WARN_ON(!usersize && useroffset) ||
338 	    WARN_ON(size < usersize || size - usersize < useroffset))
339 		usersize = useroffset = 0;
340 
341 	if (!usersize)
342 		s = __kmem_cache_alias(name, size, align, flags, ctor);
343 	if (s)
344 		goto out_unlock;
345 
346 	cache_name = kstrdup_const(name, GFP_KERNEL);
347 	if (!cache_name) {
348 		err = -ENOMEM;
349 		goto out_unlock;
350 	}
351 
352 	s = create_cache(cache_name, size,
353 			 calculate_alignment(flags, align, size),
354 			 flags, useroffset, usersize, ctor, NULL);
355 	if (IS_ERR(s)) {
356 		err = PTR_ERR(s);
357 		kfree_const(cache_name);
358 	}
359 
360 out_unlock:
361 	mutex_unlock(&slab_mutex);
362 
363 	put_online_mems();
364 	put_online_cpus();
365 
366 	if (err) {
367 		if (flags & SLAB_PANIC)
368 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
369 				name, err);
370 		else {
371 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
372 				name, err);
373 			dump_stack();
374 		}
375 		return NULL;
376 	}
377 	return s;
378 }
379 EXPORT_SYMBOL(kmem_cache_create_usercopy);
380 
381 /**
382  * kmem_cache_create - Create a cache.
383  * @name: A string which is used in /proc/slabinfo to identify this cache.
384  * @size: The size of objects to be created in this cache.
385  * @align: The required alignment for the objects.
386  * @flags: SLAB flags
387  * @ctor: A constructor for the objects.
388  *
389  * Cannot be called within a interrupt, but can be interrupted.
390  * The @ctor is run when new pages are allocated by the cache.
391  *
392  * The flags are
393  *
394  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
395  * to catch references to uninitialised memory.
396  *
397  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
398  * for buffer overruns.
399  *
400  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
401  * cacheline.  This can be beneficial if you're counting cycles as closely
402  * as davem.
403  *
404  * Return: a pointer to the cache on success, NULL on failure.
405  */
406 struct kmem_cache *
407 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
408 		slab_flags_t flags, void (*ctor)(void *))
409 {
410 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
411 					  ctor);
412 }
413 EXPORT_SYMBOL(kmem_cache_create);
414 
415 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
416 {
417 	LIST_HEAD(to_destroy);
418 	struct kmem_cache *s, *s2;
419 
420 	/*
421 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
422 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
423 	 * through RCU and the associated kmem_cache are dereferenced
424 	 * while freeing the pages, so the kmem_caches should be freed only
425 	 * after the pending RCU operations are finished.  As rcu_barrier()
426 	 * is a pretty slow operation, we batch all pending destructions
427 	 * asynchronously.
428 	 */
429 	mutex_lock(&slab_mutex);
430 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
431 	mutex_unlock(&slab_mutex);
432 
433 	if (list_empty(&to_destroy))
434 		return;
435 
436 	rcu_barrier();
437 
438 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
439 #ifdef SLAB_SUPPORTS_SYSFS
440 		sysfs_slab_release(s);
441 #else
442 		slab_kmem_cache_release(s);
443 #endif
444 	}
445 }
446 
447 static int shutdown_cache(struct kmem_cache *s)
448 {
449 	/* free asan quarantined objects */
450 	kasan_cache_shutdown(s);
451 
452 	if (__kmem_cache_shutdown(s) != 0)
453 		return -EBUSY;
454 
455 	list_del(&s->list);
456 
457 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 #ifdef SLAB_SUPPORTS_SYSFS
459 		sysfs_slab_unlink(s);
460 #endif
461 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
462 		schedule_work(&slab_caches_to_rcu_destroy_work);
463 	} else {
464 #ifdef SLAB_SUPPORTS_SYSFS
465 		sysfs_slab_unlink(s);
466 		sysfs_slab_release(s);
467 #else
468 		slab_kmem_cache_release(s);
469 #endif
470 	}
471 
472 	return 0;
473 }
474 
475 void slab_kmem_cache_release(struct kmem_cache *s)
476 {
477 	__kmem_cache_release(s);
478 	kfree_const(s->name);
479 	kmem_cache_free(kmem_cache, s);
480 }
481 
482 void kmem_cache_destroy(struct kmem_cache *s)
483 {
484 	int err;
485 
486 	if (unlikely(!s))
487 		return;
488 
489 	get_online_cpus();
490 	get_online_mems();
491 
492 	mutex_lock(&slab_mutex);
493 
494 	s->refcount--;
495 	if (s->refcount)
496 		goto out_unlock;
497 
498 	err = shutdown_cache(s);
499 	if (err) {
500 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
501 		       s->name);
502 		dump_stack();
503 	}
504 out_unlock:
505 	mutex_unlock(&slab_mutex);
506 
507 	put_online_mems();
508 	put_online_cpus();
509 }
510 EXPORT_SYMBOL(kmem_cache_destroy);
511 
512 /**
513  * kmem_cache_shrink - Shrink a cache.
514  * @cachep: The cache to shrink.
515  *
516  * Releases as many slabs as possible for a cache.
517  * To help debugging, a zero exit status indicates all slabs were released.
518  *
519  * Return: %0 if all slabs were released, non-zero otherwise
520  */
521 int kmem_cache_shrink(struct kmem_cache *cachep)
522 {
523 	int ret;
524 
525 	get_online_cpus();
526 	get_online_mems();
527 	kasan_cache_shrink(cachep);
528 	ret = __kmem_cache_shrink(cachep);
529 	put_online_mems();
530 	put_online_cpus();
531 	return ret;
532 }
533 EXPORT_SYMBOL(kmem_cache_shrink);
534 
535 bool slab_is_available(void)
536 {
537 	return slab_state >= UP;
538 }
539 
540 /**
541  * kmem_valid_obj - does the pointer reference a valid slab object?
542  * @object: pointer to query.
543  *
544  * Return: %true if the pointer is to a not-yet-freed object from
545  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
546  * is to an already-freed object, and %false otherwise.
547  */
548 bool kmem_valid_obj(void *object)
549 {
550 	struct page *page;
551 
552 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
553 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
554 		return false;
555 	page = virt_to_head_page(object);
556 	return PageSlab(page);
557 }
558 
559 /**
560  * kmem_dump_obj - Print available slab provenance information
561  * @object: slab object for which to find provenance information.
562  *
563  * This function uses pr_cont(), so that the caller is expected to have
564  * printed out whatever preamble is appropriate.  The provenance information
565  * depends on the type of object and on how much debugging is enabled.
566  * For a slab-cache object, the fact that it is a slab object is printed,
567  * and, if available, the slab name, return address, and stack trace from
568  * the allocation of that object.
569  *
570  * This function will splat if passed a pointer to a non-slab object.
571  * If you are not sure what type of object you have, you should instead
572  * use mem_dump_obj().
573  */
574 void kmem_dump_obj(void *object)
575 {
576 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
577 	int i;
578 	struct page *page;
579 	unsigned long ptroffset;
580 	struct kmem_obj_info kp = { };
581 
582 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
583 		return;
584 	page = virt_to_head_page(object);
585 	if (WARN_ON_ONCE(!PageSlab(page))) {
586 		pr_cont(" non-slab memory.\n");
587 		return;
588 	}
589 	kmem_obj_info(&kp, object, page);
590 	if (kp.kp_slab_cache)
591 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
592 	else
593 		pr_cont(" slab%s", cp);
594 	if (kp.kp_objp)
595 		pr_cont(" start %px", kp.kp_objp);
596 	if (kp.kp_data_offset)
597 		pr_cont(" data offset %lu", kp.kp_data_offset);
598 	if (kp.kp_objp) {
599 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
600 		pr_cont(" pointer offset %lu", ptroffset);
601 	}
602 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
603 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
604 	if (kp.kp_ret)
605 		pr_cont(" allocated at %pS\n", kp.kp_ret);
606 	else
607 		pr_cont("\n");
608 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
609 		if (!kp.kp_stack[i])
610 			break;
611 		pr_info("    %pS\n", kp.kp_stack[i]);
612 	}
613 }
614 
615 #ifndef CONFIG_SLOB
616 /* Create a cache during boot when no slab services are available yet */
617 void __init create_boot_cache(struct kmem_cache *s, const char *name,
618 		unsigned int size, slab_flags_t flags,
619 		unsigned int useroffset, unsigned int usersize)
620 {
621 	int err;
622 	unsigned int align = ARCH_KMALLOC_MINALIGN;
623 
624 	s->name = name;
625 	s->size = s->object_size = size;
626 
627 	/*
628 	 * For power of two sizes, guarantee natural alignment for kmalloc
629 	 * caches, regardless of SL*B debugging options.
630 	 */
631 	if (is_power_of_2(size))
632 		align = max(align, size);
633 	s->align = calculate_alignment(flags, align, size);
634 
635 	s->useroffset = useroffset;
636 	s->usersize = usersize;
637 
638 	err = __kmem_cache_create(s, flags);
639 
640 	if (err)
641 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
642 					name, size, err);
643 
644 	s->refcount = -1;	/* Exempt from merging for now */
645 }
646 
647 struct kmem_cache *__init create_kmalloc_cache(const char *name,
648 		unsigned int size, slab_flags_t flags,
649 		unsigned int useroffset, unsigned int usersize)
650 {
651 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
652 
653 	if (!s)
654 		panic("Out of memory when creating slab %s\n", name);
655 
656 	create_boot_cache(s, name, size, flags, useroffset, usersize);
657 	list_add(&s->list, &slab_caches);
658 	s->refcount = 1;
659 	return s;
660 }
661 
662 struct kmem_cache *
663 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
664 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
665 EXPORT_SYMBOL(kmalloc_caches);
666 
667 /*
668  * Conversion table for small slabs sizes / 8 to the index in the
669  * kmalloc array. This is necessary for slabs < 192 since we have non power
670  * of two cache sizes there. The size of larger slabs can be determined using
671  * fls.
672  */
673 static u8 size_index[24] __ro_after_init = {
674 	3,	/* 8 */
675 	4,	/* 16 */
676 	5,	/* 24 */
677 	5,	/* 32 */
678 	6,	/* 40 */
679 	6,	/* 48 */
680 	6,	/* 56 */
681 	6,	/* 64 */
682 	1,	/* 72 */
683 	1,	/* 80 */
684 	1,	/* 88 */
685 	1,	/* 96 */
686 	7,	/* 104 */
687 	7,	/* 112 */
688 	7,	/* 120 */
689 	7,	/* 128 */
690 	2,	/* 136 */
691 	2,	/* 144 */
692 	2,	/* 152 */
693 	2,	/* 160 */
694 	2,	/* 168 */
695 	2,	/* 176 */
696 	2,	/* 184 */
697 	2	/* 192 */
698 };
699 
700 static inline unsigned int size_index_elem(unsigned int bytes)
701 {
702 	return (bytes - 1) / 8;
703 }
704 
705 /*
706  * Find the kmem_cache structure that serves a given size of
707  * allocation
708  */
709 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
710 {
711 	unsigned int index;
712 
713 	if (size <= 192) {
714 		if (!size)
715 			return ZERO_SIZE_PTR;
716 
717 		index = size_index[size_index_elem(size)];
718 	} else {
719 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
720 			return NULL;
721 		index = fls(size - 1);
722 	}
723 
724 	return kmalloc_caches[kmalloc_type(flags)][index];
725 }
726 
727 #ifdef CONFIG_ZONE_DMA
728 #define INIT_KMALLOC_INFO(__size, __short_size)			\
729 {								\
730 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
731 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
732 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
733 	.size = __size,						\
734 }
735 #else
736 #define INIT_KMALLOC_INFO(__size, __short_size)			\
737 {								\
738 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
739 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
740 	.size = __size,						\
741 }
742 #endif
743 
744 /*
745  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
746  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
747  * kmalloc-67108864.
748  */
749 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
750 	INIT_KMALLOC_INFO(0, 0),
751 	INIT_KMALLOC_INFO(96, 96),
752 	INIT_KMALLOC_INFO(192, 192),
753 	INIT_KMALLOC_INFO(8, 8),
754 	INIT_KMALLOC_INFO(16, 16),
755 	INIT_KMALLOC_INFO(32, 32),
756 	INIT_KMALLOC_INFO(64, 64),
757 	INIT_KMALLOC_INFO(128, 128),
758 	INIT_KMALLOC_INFO(256, 256),
759 	INIT_KMALLOC_INFO(512, 512),
760 	INIT_KMALLOC_INFO(1024, 1k),
761 	INIT_KMALLOC_INFO(2048, 2k),
762 	INIT_KMALLOC_INFO(4096, 4k),
763 	INIT_KMALLOC_INFO(8192, 8k),
764 	INIT_KMALLOC_INFO(16384, 16k),
765 	INIT_KMALLOC_INFO(32768, 32k),
766 	INIT_KMALLOC_INFO(65536, 64k),
767 	INIT_KMALLOC_INFO(131072, 128k),
768 	INIT_KMALLOC_INFO(262144, 256k),
769 	INIT_KMALLOC_INFO(524288, 512k),
770 	INIT_KMALLOC_INFO(1048576, 1M),
771 	INIT_KMALLOC_INFO(2097152, 2M),
772 	INIT_KMALLOC_INFO(4194304, 4M),
773 	INIT_KMALLOC_INFO(8388608, 8M),
774 	INIT_KMALLOC_INFO(16777216, 16M),
775 	INIT_KMALLOC_INFO(33554432, 32M),
776 	INIT_KMALLOC_INFO(67108864, 64M)
777 };
778 
779 /*
780  * Patch up the size_index table if we have strange large alignment
781  * requirements for the kmalloc array. This is only the case for
782  * MIPS it seems. The standard arches will not generate any code here.
783  *
784  * Largest permitted alignment is 256 bytes due to the way we
785  * handle the index determination for the smaller caches.
786  *
787  * Make sure that nothing crazy happens if someone starts tinkering
788  * around with ARCH_KMALLOC_MINALIGN
789  */
790 void __init setup_kmalloc_cache_index_table(void)
791 {
792 	unsigned int i;
793 
794 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
795 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
796 
797 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
798 		unsigned int elem = size_index_elem(i);
799 
800 		if (elem >= ARRAY_SIZE(size_index))
801 			break;
802 		size_index[elem] = KMALLOC_SHIFT_LOW;
803 	}
804 
805 	if (KMALLOC_MIN_SIZE >= 64) {
806 		/*
807 		 * The 96 byte size cache is not used if the alignment
808 		 * is 64 byte.
809 		 */
810 		for (i = 64 + 8; i <= 96; i += 8)
811 			size_index[size_index_elem(i)] = 7;
812 
813 	}
814 
815 	if (KMALLOC_MIN_SIZE >= 128) {
816 		/*
817 		 * The 192 byte sized cache is not used if the alignment
818 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
819 		 * instead.
820 		 */
821 		for (i = 128 + 8; i <= 192; i += 8)
822 			size_index[size_index_elem(i)] = 8;
823 	}
824 }
825 
826 static void __init
827 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
828 {
829 	if (type == KMALLOC_RECLAIM)
830 		flags |= SLAB_RECLAIM_ACCOUNT;
831 
832 	kmalloc_caches[type][idx] = create_kmalloc_cache(
833 					kmalloc_info[idx].name[type],
834 					kmalloc_info[idx].size, flags, 0,
835 					kmalloc_info[idx].size);
836 }
837 
838 /*
839  * Create the kmalloc array. Some of the regular kmalloc arrays
840  * may already have been created because they were needed to
841  * enable allocations for slab creation.
842  */
843 void __init create_kmalloc_caches(slab_flags_t flags)
844 {
845 	int i;
846 	enum kmalloc_cache_type type;
847 
848 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
849 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
850 			if (!kmalloc_caches[type][i])
851 				new_kmalloc_cache(i, type, flags);
852 
853 			/*
854 			 * Caches that are not of the two-to-the-power-of size.
855 			 * These have to be created immediately after the
856 			 * earlier power of two caches
857 			 */
858 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
859 					!kmalloc_caches[type][1])
860 				new_kmalloc_cache(1, type, flags);
861 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
862 					!kmalloc_caches[type][2])
863 				new_kmalloc_cache(2, type, flags);
864 		}
865 	}
866 
867 	/* Kmalloc array is now usable */
868 	slab_state = UP;
869 
870 #ifdef CONFIG_ZONE_DMA
871 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
872 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
873 
874 		if (s) {
875 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
876 				kmalloc_info[i].name[KMALLOC_DMA],
877 				kmalloc_info[i].size,
878 				SLAB_CACHE_DMA | flags, 0,
879 				kmalloc_info[i].size);
880 		}
881 	}
882 #endif
883 }
884 #endif /* !CONFIG_SLOB */
885 
886 gfp_t kmalloc_fix_flags(gfp_t flags)
887 {
888 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
889 
890 	flags &= ~GFP_SLAB_BUG_MASK;
891 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
892 			invalid_mask, &invalid_mask, flags, &flags);
893 	dump_stack();
894 
895 	return flags;
896 }
897 
898 /*
899  * To avoid unnecessary overhead, we pass through large allocation requests
900  * directly to the page allocator. We use __GFP_COMP, because we will need to
901  * know the allocation order to free the pages properly in kfree.
902  */
903 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
904 {
905 	void *ret = NULL;
906 	struct page *page;
907 
908 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
909 		flags = kmalloc_fix_flags(flags);
910 
911 	flags |= __GFP_COMP;
912 	page = alloc_pages(flags, order);
913 	if (likely(page)) {
914 		ret = page_address(page);
915 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
916 				    PAGE_SIZE << order);
917 	}
918 	ret = kasan_kmalloc_large(ret, size, flags);
919 	/* As ret might get tagged, call kmemleak hook after KASAN. */
920 	kmemleak_alloc(ret, size, 1, flags);
921 	return ret;
922 }
923 EXPORT_SYMBOL(kmalloc_order);
924 
925 #ifdef CONFIG_TRACING
926 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
927 {
928 	void *ret = kmalloc_order(size, flags, order);
929 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
930 	return ret;
931 }
932 EXPORT_SYMBOL(kmalloc_order_trace);
933 #endif
934 
935 #ifdef CONFIG_SLAB_FREELIST_RANDOM
936 /* Randomize a generic freelist */
937 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
938 			       unsigned int count)
939 {
940 	unsigned int rand;
941 	unsigned int i;
942 
943 	for (i = 0; i < count; i++)
944 		list[i] = i;
945 
946 	/* Fisher-Yates shuffle */
947 	for (i = count - 1; i > 0; i--) {
948 		rand = prandom_u32_state(state);
949 		rand %= (i + 1);
950 		swap(list[i], list[rand]);
951 	}
952 }
953 
954 /* Create a random sequence per cache */
955 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
956 				    gfp_t gfp)
957 {
958 	struct rnd_state state;
959 
960 	if (count < 2 || cachep->random_seq)
961 		return 0;
962 
963 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
964 	if (!cachep->random_seq)
965 		return -ENOMEM;
966 
967 	/* Get best entropy at this stage of boot */
968 	prandom_seed_state(&state, get_random_long());
969 
970 	freelist_randomize(&state, cachep->random_seq, count);
971 	return 0;
972 }
973 
974 /* Destroy the per-cache random freelist sequence */
975 void cache_random_seq_destroy(struct kmem_cache *cachep)
976 {
977 	kfree(cachep->random_seq);
978 	cachep->random_seq = NULL;
979 }
980 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
981 
982 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
983 #ifdef CONFIG_SLAB
984 #define SLABINFO_RIGHTS (0600)
985 #else
986 #define SLABINFO_RIGHTS (0400)
987 #endif
988 
989 static void print_slabinfo_header(struct seq_file *m)
990 {
991 	/*
992 	 * Output format version, so at least we can change it
993 	 * without _too_ many complaints.
994 	 */
995 #ifdef CONFIG_DEBUG_SLAB
996 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
997 #else
998 	seq_puts(m, "slabinfo - version: 2.1\n");
999 #endif
1000 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1001 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1002 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1003 #ifdef CONFIG_DEBUG_SLAB
1004 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1005 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1006 #endif
1007 	seq_putc(m, '\n');
1008 }
1009 
1010 void *slab_start(struct seq_file *m, loff_t *pos)
1011 {
1012 	mutex_lock(&slab_mutex);
1013 	return seq_list_start(&slab_caches, *pos);
1014 }
1015 
1016 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1017 {
1018 	return seq_list_next(p, &slab_caches, pos);
1019 }
1020 
1021 void slab_stop(struct seq_file *m, void *p)
1022 {
1023 	mutex_unlock(&slab_mutex);
1024 }
1025 
1026 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1027 {
1028 	struct slabinfo sinfo;
1029 
1030 	memset(&sinfo, 0, sizeof(sinfo));
1031 	get_slabinfo(s, &sinfo);
1032 
1033 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1034 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1035 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1036 
1037 	seq_printf(m, " : tunables %4u %4u %4u",
1038 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1039 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1040 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1041 	slabinfo_show_stats(m, s);
1042 	seq_putc(m, '\n');
1043 }
1044 
1045 static int slab_show(struct seq_file *m, void *p)
1046 {
1047 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1048 
1049 	if (p == slab_caches.next)
1050 		print_slabinfo_header(m);
1051 	cache_show(s, m);
1052 	return 0;
1053 }
1054 
1055 void dump_unreclaimable_slab(void)
1056 {
1057 	struct kmem_cache *s;
1058 	struct slabinfo sinfo;
1059 
1060 	/*
1061 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1062 	 * sleep in oom path. But, without mutex hold, it may introduce a
1063 	 * risk of crash.
1064 	 * Use mutex_trylock to protect the list traverse, dump nothing
1065 	 * without acquiring the mutex.
1066 	 */
1067 	if (!mutex_trylock(&slab_mutex)) {
1068 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1069 		return;
1070 	}
1071 
1072 	pr_info("Unreclaimable slab info:\n");
1073 	pr_info("Name                      Used          Total\n");
1074 
1075 	list_for_each_entry(s, &slab_caches, list) {
1076 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1077 			continue;
1078 
1079 		get_slabinfo(s, &sinfo);
1080 
1081 		if (sinfo.num_objs > 0)
1082 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1083 				(sinfo.active_objs * s->size) / 1024,
1084 				(sinfo.num_objs * s->size) / 1024);
1085 	}
1086 	mutex_unlock(&slab_mutex);
1087 }
1088 
1089 #if defined(CONFIG_MEMCG_KMEM)
1090 int memcg_slab_show(struct seq_file *m, void *p)
1091 {
1092 	/*
1093 	 * Deprecated.
1094 	 * Please, take a look at tools/cgroup/slabinfo.py .
1095 	 */
1096 	return 0;
1097 }
1098 #endif
1099 
1100 /*
1101  * slabinfo_op - iterator that generates /proc/slabinfo
1102  *
1103  * Output layout:
1104  * cache-name
1105  * num-active-objs
1106  * total-objs
1107  * object size
1108  * num-active-slabs
1109  * total-slabs
1110  * num-pages-per-slab
1111  * + further values on SMP and with statistics enabled
1112  */
1113 static const struct seq_operations slabinfo_op = {
1114 	.start = slab_start,
1115 	.next = slab_next,
1116 	.stop = slab_stop,
1117 	.show = slab_show,
1118 };
1119 
1120 static int slabinfo_open(struct inode *inode, struct file *file)
1121 {
1122 	return seq_open(file, &slabinfo_op);
1123 }
1124 
1125 static const struct proc_ops slabinfo_proc_ops = {
1126 	.proc_flags	= PROC_ENTRY_PERMANENT,
1127 	.proc_open	= slabinfo_open,
1128 	.proc_read	= seq_read,
1129 	.proc_write	= slabinfo_write,
1130 	.proc_lseek	= seq_lseek,
1131 	.proc_release	= seq_release,
1132 };
1133 
1134 static int __init slab_proc_init(void)
1135 {
1136 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1137 	return 0;
1138 }
1139 module_init(slab_proc_init);
1140 
1141 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1142 
1143 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1144 					   gfp_t flags)
1145 {
1146 	void *ret;
1147 	size_t ks;
1148 
1149 	ks = ksize(p);
1150 
1151 	if (ks >= new_size) {
1152 		p = kasan_krealloc((void *)p, new_size, flags);
1153 		return (void *)p;
1154 	}
1155 
1156 	ret = kmalloc_track_caller(new_size, flags);
1157 	if (ret && p)
1158 		memcpy(ret, p, ks);
1159 
1160 	return ret;
1161 }
1162 
1163 /**
1164  * krealloc - reallocate memory. The contents will remain unchanged.
1165  * @p: object to reallocate memory for.
1166  * @new_size: how many bytes of memory are required.
1167  * @flags: the type of memory to allocate.
1168  *
1169  * The contents of the object pointed to are preserved up to the
1170  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1171  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1172  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1173  *
1174  * Return: pointer to the allocated memory or %NULL in case of error
1175  */
1176 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1177 {
1178 	void *ret;
1179 
1180 	if (unlikely(!new_size)) {
1181 		kfree(p);
1182 		return ZERO_SIZE_PTR;
1183 	}
1184 
1185 	ret = __do_krealloc(p, new_size, flags);
1186 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1187 		kfree(p);
1188 
1189 	return ret;
1190 }
1191 EXPORT_SYMBOL(krealloc);
1192 
1193 /**
1194  * kfree_sensitive - Clear sensitive information in memory before freeing
1195  * @p: object to free memory of
1196  *
1197  * The memory of the object @p points to is zeroed before freed.
1198  * If @p is %NULL, kfree_sensitive() does nothing.
1199  *
1200  * Note: this function zeroes the whole allocated buffer which can be a good
1201  * deal bigger than the requested buffer size passed to kmalloc(). So be
1202  * careful when using this function in performance sensitive code.
1203  */
1204 void kfree_sensitive(const void *p)
1205 {
1206 	size_t ks;
1207 	void *mem = (void *)p;
1208 
1209 	ks = ksize(mem);
1210 	if (ks)
1211 		memzero_explicit(mem, ks);
1212 	kfree(mem);
1213 }
1214 EXPORT_SYMBOL(kfree_sensitive);
1215 
1216 /**
1217  * ksize - get the actual amount of memory allocated for a given object
1218  * @objp: Pointer to the object
1219  *
1220  * kmalloc may internally round up allocations and return more memory
1221  * than requested. ksize() can be used to determine the actual amount of
1222  * memory allocated. The caller may use this additional memory, even though
1223  * a smaller amount of memory was initially specified with the kmalloc call.
1224  * The caller must guarantee that objp points to a valid object previously
1225  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1226  * must not be freed during the duration of the call.
1227  *
1228  * Return: size of the actual memory used by @objp in bytes
1229  */
1230 size_t ksize(const void *objp)
1231 {
1232 	size_t size;
1233 
1234 	/*
1235 	 * We need to check that the pointed to object is valid, and only then
1236 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1237 	 * generate a more useful report at the time ksize() is called (rather
1238 	 * than later where behaviour is undefined due to potential
1239 	 * use-after-free or double-free).
1240 	 *
1241 	 * If the pointed to memory is invalid we return 0, to avoid users of
1242 	 * ksize() writing to and potentially corrupting the memory region.
1243 	 *
1244 	 * We want to perform the check before __ksize(), to avoid potentially
1245 	 * crashing in __ksize() due to accessing invalid metadata.
1246 	 */
1247 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1248 		return 0;
1249 
1250 	size = __ksize(objp);
1251 	/*
1252 	 * We assume that ksize callers could use whole allocated area,
1253 	 * so we need to unpoison this area.
1254 	 */
1255 	kasan_unpoison_range(objp, size);
1256 	return size;
1257 }
1258 EXPORT_SYMBOL(ksize);
1259 
1260 /* Tracepoints definitions. */
1261 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1262 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1263 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1264 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1265 EXPORT_TRACEPOINT_SYMBOL(kfree);
1266 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1267 
1268 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1269 {
1270 	if (__should_failslab(s, gfpflags))
1271 		return -ENOMEM;
1272 	return 0;
1273 }
1274 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1275