1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/module.h> 16 #include <linux/cpu.h> 17 #include <linux/uaccess.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/debugfs.h> 21 #include <linux/kasan.h> 22 #include <asm/cacheflush.h> 23 #include <asm/tlbflush.h> 24 #include <asm/page.h> 25 #include <linux/memcontrol.h> 26 27 #define CREATE_TRACE_POINTS 28 #include <trace/events/kmem.h> 29 30 #include "internal.h" 31 32 #include "slab.h" 33 34 enum slab_state slab_state; 35 LIST_HEAD(slab_caches); 36 DEFINE_MUTEX(slab_mutex); 37 struct kmem_cache *kmem_cache; 38 39 #ifdef CONFIG_HARDENED_USERCOPY 40 bool usercopy_fallback __ro_after_init = 41 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 42 module_param(usercopy_fallback, bool, 0400); 43 MODULE_PARM_DESC(usercopy_fallback, 44 "WARN instead of reject usercopy whitelist violations"); 45 #endif 46 47 static LIST_HEAD(slab_caches_to_rcu_destroy); 48 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 49 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 50 slab_caches_to_rcu_destroy_workfn); 51 52 /* 53 * Set of flags that will prevent slab merging 54 */ 55 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 56 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 57 SLAB_FAILSLAB | kasan_never_merge()) 58 59 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 60 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 61 62 /* 63 * Merge control. If this is set then no merging of slab caches will occur. 64 */ 65 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 66 67 static int __init setup_slab_nomerge(char *str) 68 { 69 slab_nomerge = true; 70 return 1; 71 } 72 73 #ifdef CONFIG_SLUB 74 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 75 #endif 76 77 __setup("slab_nomerge", setup_slab_nomerge); 78 79 /* 80 * Determine the size of a slab object 81 */ 82 unsigned int kmem_cache_size(struct kmem_cache *s) 83 { 84 return s->object_size; 85 } 86 EXPORT_SYMBOL(kmem_cache_size); 87 88 #ifdef CONFIG_DEBUG_VM 89 static int kmem_cache_sanity_check(const char *name, unsigned int size) 90 { 91 if (!name || in_interrupt() || size < sizeof(void *) || 92 size > KMALLOC_MAX_SIZE) { 93 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 94 return -EINVAL; 95 } 96 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 98 return 0; 99 } 100 #else 101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 102 { 103 return 0; 104 } 105 #endif 106 107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 108 { 109 size_t i; 110 111 for (i = 0; i < nr; i++) { 112 if (s) 113 kmem_cache_free(s, p[i]); 114 else 115 kfree(p[i]); 116 } 117 } 118 119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 120 void **p) 121 { 122 size_t i; 123 124 for (i = 0; i < nr; i++) { 125 void *x = p[i] = kmem_cache_alloc(s, flags); 126 if (!x) { 127 __kmem_cache_free_bulk(s, i, p); 128 return 0; 129 } 130 } 131 return i; 132 } 133 134 /* 135 * Figure out what the alignment of the objects will be given a set of 136 * flags, a user specified alignment and the size of the objects. 137 */ 138 static unsigned int calculate_alignment(slab_flags_t flags, 139 unsigned int align, unsigned int size) 140 { 141 /* 142 * If the user wants hardware cache aligned objects then follow that 143 * suggestion if the object is sufficiently large. 144 * 145 * The hardware cache alignment cannot override the specified 146 * alignment though. If that is greater then use it. 147 */ 148 if (flags & SLAB_HWCACHE_ALIGN) { 149 unsigned int ralign; 150 151 ralign = cache_line_size(); 152 while (size <= ralign / 2) 153 ralign /= 2; 154 align = max(align, ralign); 155 } 156 157 if (align < ARCH_SLAB_MINALIGN) 158 align = ARCH_SLAB_MINALIGN; 159 160 return ALIGN(align, sizeof(void *)); 161 } 162 163 /* 164 * Find a mergeable slab cache 165 */ 166 int slab_unmergeable(struct kmem_cache *s) 167 { 168 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 169 return 1; 170 171 if (s->ctor) 172 return 1; 173 174 if (s->usersize) 175 return 1; 176 177 /* 178 * We may have set a slab to be unmergeable during bootstrap. 179 */ 180 if (s->refcount < 0) 181 return 1; 182 183 return 0; 184 } 185 186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 187 slab_flags_t flags, const char *name, void (*ctor)(void *)) 188 { 189 struct kmem_cache *s; 190 191 if (slab_nomerge) 192 return NULL; 193 194 if (ctor) 195 return NULL; 196 197 size = ALIGN(size, sizeof(void *)); 198 align = calculate_alignment(flags, align, size); 199 size = ALIGN(size, align); 200 flags = kmem_cache_flags(size, flags, name, NULL); 201 202 if (flags & SLAB_NEVER_MERGE) 203 return NULL; 204 205 list_for_each_entry_reverse(s, &slab_caches, list) { 206 if (slab_unmergeable(s)) 207 continue; 208 209 if (size > s->size) 210 continue; 211 212 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 213 continue; 214 /* 215 * Check if alignment is compatible. 216 * Courtesy of Adrian Drzewiecki 217 */ 218 if ((s->size & ~(align - 1)) != s->size) 219 continue; 220 221 if (s->size - size >= sizeof(void *)) 222 continue; 223 224 if (IS_ENABLED(CONFIG_SLAB) && align && 225 (align > s->align || s->align % align)) 226 continue; 227 228 return s; 229 } 230 return NULL; 231 } 232 233 static struct kmem_cache *create_cache(const char *name, 234 unsigned int object_size, unsigned int align, 235 slab_flags_t flags, unsigned int useroffset, 236 unsigned int usersize, void (*ctor)(void *), 237 struct kmem_cache *root_cache) 238 { 239 struct kmem_cache *s; 240 int err; 241 242 if (WARN_ON(useroffset + usersize > object_size)) 243 useroffset = usersize = 0; 244 245 err = -ENOMEM; 246 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 247 if (!s) 248 goto out; 249 250 s->name = name; 251 s->size = s->object_size = object_size; 252 s->align = align; 253 s->ctor = ctor; 254 s->useroffset = useroffset; 255 s->usersize = usersize; 256 257 err = __kmem_cache_create(s, flags); 258 if (err) 259 goto out_free_cache; 260 261 s->refcount = 1; 262 list_add(&s->list, &slab_caches); 263 out: 264 if (err) 265 return ERR_PTR(err); 266 return s; 267 268 out_free_cache: 269 kmem_cache_free(kmem_cache, s); 270 goto out; 271 } 272 273 /** 274 * kmem_cache_create_usercopy - Create a cache with a region suitable 275 * for copying to userspace 276 * @name: A string which is used in /proc/slabinfo to identify this cache. 277 * @size: The size of objects to be created in this cache. 278 * @align: The required alignment for the objects. 279 * @flags: SLAB flags 280 * @useroffset: Usercopy region offset 281 * @usersize: Usercopy region size 282 * @ctor: A constructor for the objects. 283 * 284 * Cannot be called within a interrupt, but can be interrupted. 285 * The @ctor is run when new pages are allocated by the cache. 286 * 287 * The flags are 288 * 289 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 290 * to catch references to uninitialised memory. 291 * 292 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 293 * for buffer overruns. 294 * 295 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 296 * cacheline. This can be beneficial if you're counting cycles as closely 297 * as davem. 298 * 299 * Return: a pointer to the cache on success, NULL on failure. 300 */ 301 struct kmem_cache * 302 kmem_cache_create_usercopy(const char *name, 303 unsigned int size, unsigned int align, 304 slab_flags_t flags, 305 unsigned int useroffset, unsigned int usersize, 306 void (*ctor)(void *)) 307 { 308 struct kmem_cache *s = NULL; 309 const char *cache_name; 310 int err; 311 312 get_online_cpus(); 313 get_online_mems(); 314 315 mutex_lock(&slab_mutex); 316 317 err = kmem_cache_sanity_check(name, size); 318 if (err) { 319 goto out_unlock; 320 } 321 322 /* Refuse requests with allocator specific flags */ 323 if (flags & ~SLAB_FLAGS_PERMITTED) { 324 err = -EINVAL; 325 goto out_unlock; 326 } 327 328 /* 329 * Some allocators will constraint the set of valid flags to a subset 330 * of all flags. We expect them to define CACHE_CREATE_MASK in this 331 * case, and we'll just provide them with a sanitized version of the 332 * passed flags. 333 */ 334 flags &= CACHE_CREATE_MASK; 335 336 /* Fail closed on bad usersize of useroffset values. */ 337 if (WARN_ON(!usersize && useroffset) || 338 WARN_ON(size < usersize || size - usersize < useroffset)) 339 usersize = useroffset = 0; 340 341 if (!usersize) 342 s = __kmem_cache_alias(name, size, align, flags, ctor); 343 if (s) 344 goto out_unlock; 345 346 cache_name = kstrdup_const(name, GFP_KERNEL); 347 if (!cache_name) { 348 err = -ENOMEM; 349 goto out_unlock; 350 } 351 352 s = create_cache(cache_name, size, 353 calculate_alignment(flags, align, size), 354 flags, useroffset, usersize, ctor, NULL); 355 if (IS_ERR(s)) { 356 err = PTR_ERR(s); 357 kfree_const(cache_name); 358 } 359 360 out_unlock: 361 mutex_unlock(&slab_mutex); 362 363 put_online_mems(); 364 put_online_cpus(); 365 366 if (err) { 367 if (flags & SLAB_PANIC) 368 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 369 name, err); 370 else { 371 pr_warn("kmem_cache_create(%s) failed with error %d\n", 372 name, err); 373 dump_stack(); 374 } 375 return NULL; 376 } 377 return s; 378 } 379 EXPORT_SYMBOL(kmem_cache_create_usercopy); 380 381 /** 382 * kmem_cache_create - Create a cache. 383 * @name: A string which is used in /proc/slabinfo to identify this cache. 384 * @size: The size of objects to be created in this cache. 385 * @align: The required alignment for the objects. 386 * @flags: SLAB flags 387 * @ctor: A constructor for the objects. 388 * 389 * Cannot be called within a interrupt, but can be interrupted. 390 * The @ctor is run when new pages are allocated by the cache. 391 * 392 * The flags are 393 * 394 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 395 * to catch references to uninitialised memory. 396 * 397 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 398 * for buffer overruns. 399 * 400 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 401 * cacheline. This can be beneficial if you're counting cycles as closely 402 * as davem. 403 * 404 * Return: a pointer to the cache on success, NULL on failure. 405 */ 406 struct kmem_cache * 407 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 408 slab_flags_t flags, void (*ctor)(void *)) 409 { 410 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 411 ctor); 412 } 413 EXPORT_SYMBOL(kmem_cache_create); 414 415 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 416 { 417 LIST_HEAD(to_destroy); 418 struct kmem_cache *s, *s2; 419 420 /* 421 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 422 * @slab_caches_to_rcu_destroy list. The slab pages are freed 423 * through RCU and the associated kmem_cache are dereferenced 424 * while freeing the pages, so the kmem_caches should be freed only 425 * after the pending RCU operations are finished. As rcu_barrier() 426 * is a pretty slow operation, we batch all pending destructions 427 * asynchronously. 428 */ 429 mutex_lock(&slab_mutex); 430 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 431 mutex_unlock(&slab_mutex); 432 433 if (list_empty(&to_destroy)) 434 return; 435 436 rcu_barrier(); 437 438 list_for_each_entry_safe(s, s2, &to_destroy, list) { 439 #ifdef SLAB_SUPPORTS_SYSFS 440 sysfs_slab_release(s); 441 #else 442 slab_kmem_cache_release(s); 443 #endif 444 } 445 } 446 447 static int shutdown_cache(struct kmem_cache *s) 448 { 449 /* free asan quarantined objects */ 450 kasan_cache_shutdown(s); 451 452 if (__kmem_cache_shutdown(s) != 0) 453 return -EBUSY; 454 455 list_del(&s->list); 456 457 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 458 #ifdef SLAB_SUPPORTS_SYSFS 459 sysfs_slab_unlink(s); 460 #endif 461 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 462 schedule_work(&slab_caches_to_rcu_destroy_work); 463 } else { 464 #ifdef SLAB_SUPPORTS_SYSFS 465 sysfs_slab_unlink(s); 466 sysfs_slab_release(s); 467 #else 468 slab_kmem_cache_release(s); 469 #endif 470 } 471 472 return 0; 473 } 474 475 void slab_kmem_cache_release(struct kmem_cache *s) 476 { 477 __kmem_cache_release(s); 478 kfree_const(s->name); 479 kmem_cache_free(kmem_cache, s); 480 } 481 482 void kmem_cache_destroy(struct kmem_cache *s) 483 { 484 int err; 485 486 if (unlikely(!s)) 487 return; 488 489 get_online_cpus(); 490 get_online_mems(); 491 492 mutex_lock(&slab_mutex); 493 494 s->refcount--; 495 if (s->refcount) 496 goto out_unlock; 497 498 err = shutdown_cache(s); 499 if (err) { 500 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 501 s->name); 502 dump_stack(); 503 } 504 out_unlock: 505 mutex_unlock(&slab_mutex); 506 507 put_online_mems(); 508 put_online_cpus(); 509 } 510 EXPORT_SYMBOL(kmem_cache_destroy); 511 512 /** 513 * kmem_cache_shrink - Shrink a cache. 514 * @cachep: The cache to shrink. 515 * 516 * Releases as many slabs as possible for a cache. 517 * To help debugging, a zero exit status indicates all slabs were released. 518 * 519 * Return: %0 if all slabs were released, non-zero otherwise 520 */ 521 int kmem_cache_shrink(struct kmem_cache *cachep) 522 { 523 int ret; 524 525 get_online_cpus(); 526 get_online_mems(); 527 kasan_cache_shrink(cachep); 528 ret = __kmem_cache_shrink(cachep); 529 put_online_mems(); 530 put_online_cpus(); 531 return ret; 532 } 533 EXPORT_SYMBOL(kmem_cache_shrink); 534 535 bool slab_is_available(void) 536 { 537 return slab_state >= UP; 538 } 539 540 /** 541 * kmem_valid_obj - does the pointer reference a valid slab object? 542 * @object: pointer to query. 543 * 544 * Return: %true if the pointer is to a not-yet-freed object from 545 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer 546 * is to an already-freed object, and %false otherwise. 547 */ 548 bool kmem_valid_obj(void *object) 549 { 550 struct page *page; 551 552 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ 553 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) 554 return false; 555 page = virt_to_head_page(object); 556 return PageSlab(page); 557 } 558 559 /** 560 * kmem_dump_obj - Print available slab provenance information 561 * @object: slab object for which to find provenance information. 562 * 563 * This function uses pr_cont(), so that the caller is expected to have 564 * printed out whatever preamble is appropriate. The provenance information 565 * depends on the type of object and on how much debugging is enabled. 566 * For a slab-cache object, the fact that it is a slab object is printed, 567 * and, if available, the slab name, return address, and stack trace from 568 * the allocation of that object. 569 * 570 * This function will splat if passed a pointer to a non-slab object. 571 * If you are not sure what type of object you have, you should instead 572 * use mem_dump_obj(). 573 */ 574 void kmem_dump_obj(void *object) 575 { 576 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; 577 int i; 578 struct page *page; 579 unsigned long ptroffset; 580 struct kmem_obj_info kp = { }; 581 582 if (WARN_ON_ONCE(!virt_addr_valid(object))) 583 return; 584 page = virt_to_head_page(object); 585 if (WARN_ON_ONCE(!PageSlab(page))) { 586 pr_cont(" non-slab memory.\n"); 587 return; 588 } 589 kmem_obj_info(&kp, object, page); 590 if (kp.kp_slab_cache) 591 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); 592 else 593 pr_cont(" slab%s", cp); 594 if (kp.kp_objp) 595 pr_cont(" start %px", kp.kp_objp); 596 if (kp.kp_data_offset) 597 pr_cont(" data offset %lu", kp.kp_data_offset); 598 if (kp.kp_objp) { 599 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; 600 pr_cont(" pointer offset %lu", ptroffset); 601 } 602 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize) 603 pr_cont(" size %u", kp.kp_slab_cache->usersize); 604 if (kp.kp_ret) 605 pr_cont(" allocated at %pS\n", kp.kp_ret); 606 else 607 pr_cont("\n"); 608 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { 609 if (!kp.kp_stack[i]) 610 break; 611 pr_info(" %pS\n", kp.kp_stack[i]); 612 } 613 } 614 615 #ifndef CONFIG_SLOB 616 /* Create a cache during boot when no slab services are available yet */ 617 void __init create_boot_cache(struct kmem_cache *s, const char *name, 618 unsigned int size, slab_flags_t flags, 619 unsigned int useroffset, unsigned int usersize) 620 { 621 int err; 622 unsigned int align = ARCH_KMALLOC_MINALIGN; 623 624 s->name = name; 625 s->size = s->object_size = size; 626 627 /* 628 * For power of two sizes, guarantee natural alignment for kmalloc 629 * caches, regardless of SL*B debugging options. 630 */ 631 if (is_power_of_2(size)) 632 align = max(align, size); 633 s->align = calculate_alignment(flags, align, size); 634 635 s->useroffset = useroffset; 636 s->usersize = usersize; 637 638 err = __kmem_cache_create(s, flags); 639 640 if (err) 641 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 642 name, size, err); 643 644 s->refcount = -1; /* Exempt from merging for now */ 645 } 646 647 struct kmem_cache *__init create_kmalloc_cache(const char *name, 648 unsigned int size, slab_flags_t flags, 649 unsigned int useroffset, unsigned int usersize) 650 { 651 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 652 653 if (!s) 654 panic("Out of memory when creating slab %s\n", name); 655 656 create_boot_cache(s, name, size, flags, useroffset, usersize); 657 list_add(&s->list, &slab_caches); 658 s->refcount = 1; 659 return s; 660 } 661 662 struct kmem_cache * 663 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 664 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 665 EXPORT_SYMBOL(kmalloc_caches); 666 667 /* 668 * Conversion table for small slabs sizes / 8 to the index in the 669 * kmalloc array. This is necessary for slabs < 192 since we have non power 670 * of two cache sizes there. The size of larger slabs can be determined using 671 * fls. 672 */ 673 static u8 size_index[24] __ro_after_init = { 674 3, /* 8 */ 675 4, /* 16 */ 676 5, /* 24 */ 677 5, /* 32 */ 678 6, /* 40 */ 679 6, /* 48 */ 680 6, /* 56 */ 681 6, /* 64 */ 682 1, /* 72 */ 683 1, /* 80 */ 684 1, /* 88 */ 685 1, /* 96 */ 686 7, /* 104 */ 687 7, /* 112 */ 688 7, /* 120 */ 689 7, /* 128 */ 690 2, /* 136 */ 691 2, /* 144 */ 692 2, /* 152 */ 693 2, /* 160 */ 694 2, /* 168 */ 695 2, /* 176 */ 696 2, /* 184 */ 697 2 /* 192 */ 698 }; 699 700 static inline unsigned int size_index_elem(unsigned int bytes) 701 { 702 return (bytes - 1) / 8; 703 } 704 705 /* 706 * Find the kmem_cache structure that serves a given size of 707 * allocation 708 */ 709 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 710 { 711 unsigned int index; 712 713 if (size <= 192) { 714 if (!size) 715 return ZERO_SIZE_PTR; 716 717 index = size_index[size_index_elem(size)]; 718 } else { 719 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 720 return NULL; 721 index = fls(size - 1); 722 } 723 724 return kmalloc_caches[kmalloc_type(flags)][index]; 725 } 726 727 #ifdef CONFIG_ZONE_DMA 728 #define INIT_KMALLOC_INFO(__size, __short_size) \ 729 { \ 730 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 731 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 732 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \ 733 .size = __size, \ 734 } 735 #else 736 #define INIT_KMALLOC_INFO(__size, __short_size) \ 737 { \ 738 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 739 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \ 740 .size = __size, \ 741 } 742 #endif 743 744 /* 745 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 746 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 747 * kmalloc-67108864. 748 */ 749 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 750 INIT_KMALLOC_INFO(0, 0), 751 INIT_KMALLOC_INFO(96, 96), 752 INIT_KMALLOC_INFO(192, 192), 753 INIT_KMALLOC_INFO(8, 8), 754 INIT_KMALLOC_INFO(16, 16), 755 INIT_KMALLOC_INFO(32, 32), 756 INIT_KMALLOC_INFO(64, 64), 757 INIT_KMALLOC_INFO(128, 128), 758 INIT_KMALLOC_INFO(256, 256), 759 INIT_KMALLOC_INFO(512, 512), 760 INIT_KMALLOC_INFO(1024, 1k), 761 INIT_KMALLOC_INFO(2048, 2k), 762 INIT_KMALLOC_INFO(4096, 4k), 763 INIT_KMALLOC_INFO(8192, 8k), 764 INIT_KMALLOC_INFO(16384, 16k), 765 INIT_KMALLOC_INFO(32768, 32k), 766 INIT_KMALLOC_INFO(65536, 64k), 767 INIT_KMALLOC_INFO(131072, 128k), 768 INIT_KMALLOC_INFO(262144, 256k), 769 INIT_KMALLOC_INFO(524288, 512k), 770 INIT_KMALLOC_INFO(1048576, 1M), 771 INIT_KMALLOC_INFO(2097152, 2M), 772 INIT_KMALLOC_INFO(4194304, 4M), 773 INIT_KMALLOC_INFO(8388608, 8M), 774 INIT_KMALLOC_INFO(16777216, 16M), 775 INIT_KMALLOC_INFO(33554432, 32M), 776 INIT_KMALLOC_INFO(67108864, 64M) 777 }; 778 779 /* 780 * Patch up the size_index table if we have strange large alignment 781 * requirements for the kmalloc array. This is only the case for 782 * MIPS it seems. The standard arches will not generate any code here. 783 * 784 * Largest permitted alignment is 256 bytes due to the way we 785 * handle the index determination for the smaller caches. 786 * 787 * Make sure that nothing crazy happens if someone starts tinkering 788 * around with ARCH_KMALLOC_MINALIGN 789 */ 790 void __init setup_kmalloc_cache_index_table(void) 791 { 792 unsigned int i; 793 794 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 795 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 796 797 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 798 unsigned int elem = size_index_elem(i); 799 800 if (elem >= ARRAY_SIZE(size_index)) 801 break; 802 size_index[elem] = KMALLOC_SHIFT_LOW; 803 } 804 805 if (KMALLOC_MIN_SIZE >= 64) { 806 /* 807 * The 96 byte size cache is not used if the alignment 808 * is 64 byte. 809 */ 810 for (i = 64 + 8; i <= 96; i += 8) 811 size_index[size_index_elem(i)] = 7; 812 813 } 814 815 if (KMALLOC_MIN_SIZE >= 128) { 816 /* 817 * The 192 byte sized cache is not used if the alignment 818 * is 128 byte. Redirect kmalloc to use the 256 byte cache 819 * instead. 820 */ 821 for (i = 128 + 8; i <= 192; i += 8) 822 size_index[size_index_elem(i)] = 8; 823 } 824 } 825 826 static void __init 827 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) 828 { 829 if (type == KMALLOC_RECLAIM) 830 flags |= SLAB_RECLAIM_ACCOUNT; 831 832 kmalloc_caches[type][idx] = create_kmalloc_cache( 833 kmalloc_info[idx].name[type], 834 kmalloc_info[idx].size, flags, 0, 835 kmalloc_info[idx].size); 836 } 837 838 /* 839 * Create the kmalloc array. Some of the regular kmalloc arrays 840 * may already have been created because they were needed to 841 * enable allocations for slab creation. 842 */ 843 void __init create_kmalloc_caches(slab_flags_t flags) 844 { 845 int i; 846 enum kmalloc_cache_type type; 847 848 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 849 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 850 if (!kmalloc_caches[type][i]) 851 new_kmalloc_cache(i, type, flags); 852 853 /* 854 * Caches that are not of the two-to-the-power-of size. 855 * These have to be created immediately after the 856 * earlier power of two caches 857 */ 858 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 859 !kmalloc_caches[type][1]) 860 new_kmalloc_cache(1, type, flags); 861 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 862 !kmalloc_caches[type][2]) 863 new_kmalloc_cache(2, type, flags); 864 } 865 } 866 867 /* Kmalloc array is now usable */ 868 slab_state = UP; 869 870 #ifdef CONFIG_ZONE_DMA 871 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 872 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 873 874 if (s) { 875 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 876 kmalloc_info[i].name[KMALLOC_DMA], 877 kmalloc_info[i].size, 878 SLAB_CACHE_DMA | flags, 0, 879 kmalloc_info[i].size); 880 } 881 } 882 #endif 883 } 884 #endif /* !CONFIG_SLOB */ 885 886 gfp_t kmalloc_fix_flags(gfp_t flags) 887 { 888 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 889 890 flags &= ~GFP_SLAB_BUG_MASK; 891 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 892 invalid_mask, &invalid_mask, flags, &flags); 893 dump_stack(); 894 895 return flags; 896 } 897 898 /* 899 * To avoid unnecessary overhead, we pass through large allocation requests 900 * directly to the page allocator. We use __GFP_COMP, because we will need to 901 * know the allocation order to free the pages properly in kfree. 902 */ 903 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 904 { 905 void *ret = NULL; 906 struct page *page; 907 908 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 909 flags = kmalloc_fix_flags(flags); 910 911 flags |= __GFP_COMP; 912 page = alloc_pages(flags, order); 913 if (likely(page)) { 914 ret = page_address(page); 915 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, 916 PAGE_SIZE << order); 917 } 918 ret = kasan_kmalloc_large(ret, size, flags); 919 /* As ret might get tagged, call kmemleak hook after KASAN. */ 920 kmemleak_alloc(ret, size, 1, flags); 921 return ret; 922 } 923 EXPORT_SYMBOL(kmalloc_order); 924 925 #ifdef CONFIG_TRACING 926 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 927 { 928 void *ret = kmalloc_order(size, flags, order); 929 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 930 return ret; 931 } 932 EXPORT_SYMBOL(kmalloc_order_trace); 933 #endif 934 935 #ifdef CONFIG_SLAB_FREELIST_RANDOM 936 /* Randomize a generic freelist */ 937 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 938 unsigned int count) 939 { 940 unsigned int rand; 941 unsigned int i; 942 943 for (i = 0; i < count; i++) 944 list[i] = i; 945 946 /* Fisher-Yates shuffle */ 947 for (i = count - 1; i > 0; i--) { 948 rand = prandom_u32_state(state); 949 rand %= (i + 1); 950 swap(list[i], list[rand]); 951 } 952 } 953 954 /* Create a random sequence per cache */ 955 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 956 gfp_t gfp) 957 { 958 struct rnd_state state; 959 960 if (count < 2 || cachep->random_seq) 961 return 0; 962 963 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 964 if (!cachep->random_seq) 965 return -ENOMEM; 966 967 /* Get best entropy at this stage of boot */ 968 prandom_seed_state(&state, get_random_long()); 969 970 freelist_randomize(&state, cachep->random_seq, count); 971 return 0; 972 } 973 974 /* Destroy the per-cache random freelist sequence */ 975 void cache_random_seq_destroy(struct kmem_cache *cachep) 976 { 977 kfree(cachep->random_seq); 978 cachep->random_seq = NULL; 979 } 980 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 981 982 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 983 #ifdef CONFIG_SLAB 984 #define SLABINFO_RIGHTS (0600) 985 #else 986 #define SLABINFO_RIGHTS (0400) 987 #endif 988 989 static void print_slabinfo_header(struct seq_file *m) 990 { 991 /* 992 * Output format version, so at least we can change it 993 * without _too_ many complaints. 994 */ 995 #ifdef CONFIG_DEBUG_SLAB 996 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 997 #else 998 seq_puts(m, "slabinfo - version: 2.1\n"); 999 #endif 1000 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1001 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1002 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1003 #ifdef CONFIG_DEBUG_SLAB 1004 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1005 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1006 #endif 1007 seq_putc(m, '\n'); 1008 } 1009 1010 void *slab_start(struct seq_file *m, loff_t *pos) 1011 { 1012 mutex_lock(&slab_mutex); 1013 return seq_list_start(&slab_caches, *pos); 1014 } 1015 1016 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1017 { 1018 return seq_list_next(p, &slab_caches, pos); 1019 } 1020 1021 void slab_stop(struct seq_file *m, void *p) 1022 { 1023 mutex_unlock(&slab_mutex); 1024 } 1025 1026 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1027 { 1028 struct slabinfo sinfo; 1029 1030 memset(&sinfo, 0, sizeof(sinfo)); 1031 get_slabinfo(s, &sinfo); 1032 1033 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1034 s->name, sinfo.active_objs, sinfo.num_objs, s->size, 1035 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1036 1037 seq_printf(m, " : tunables %4u %4u %4u", 1038 sinfo.limit, sinfo.batchcount, sinfo.shared); 1039 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1040 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1041 slabinfo_show_stats(m, s); 1042 seq_putc(m, '\n'); 1043 } 1044 1045 static int slab_show(struct seq_file *m, void *p) 1046 { 1047 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1048 1049 if (p == slab_caches.next) 1050 print_slabinfo_header(m); 1051 cache_show(s, m); 1052 return 0; 1053 } 1054 1055 void dump_unreclaimable_slab(void) 1056 { 1057 struct kmem_cache *s; 1058 struct slabinfo sinfo; 1059 1060 /* 1061 * Here acquiring slab_mutex is risky since we don't prefer to get 1062 * sleep in oom path. But, without mutex hold, it may introduce a 1063 * risk of crash. 1064 * Use mutex_trylock to protect the list traverse, dump nothing 1065 * without acquiring the mutex. 1066 */ 1067 if (!mutex_trylock(&slab_mutex)) { 1068 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1069 return; 1070 } 1071 1072 pr_info("Unreclaimable slab info:\n"); 1073 pr_info("Name Used Total\n"); 1074 1075 list_for_each_entry(s, &slab_caches, list) { 1076 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1077 continue; 1078 1079 get_slabinfo(s, &sinfo); 1080 1081 if (sinfo.num_objs > 0) 1082 pr_info("%-17s %10luKB %10luKB\n", s->name, 1083 (sinfo.active_objs * s->size) / 1024, 1084 (sinfo.num_objs * s->size) / 1024); 1085 } 1086 mutex_unlock(&slab_mutex); 1087 } 1088 1089 #if defined(CONFIG_MEMCG_KMEM) 1090 int memcg_slab_show(struct seq_file *m, void *p) 1091 { 1092 /* 1093 * Deprecated. 1094 * Please, take a look at tools/cgroup/slabinfo.py . 1095 */ 1096 return 0; 1097 } 1098 #endif 1099 1100 /* 1101 * slabinfo_op - iterator that generates /proc/slabinfo 1102 * 1103 * Output layout: 1104 * cache-name 1105 * num-active-objs 1106 * total-objs 1107 * object size 1108 * num-active-slabs 1109 * total-slabs 1110 * num-pages-per-slab 1111 * + further values on SMP and with statistics enabled 1112 */ 1113 static const struct seq_operations slabinfo_op = { 1114 .start = slab_start, 1115 .next = slab_next, 1116 .stop = slab_stop, 1117 .show = slab_show, 1118 }; 1119 1120 static int slabinfo_open(struct inode *inode, struct file *file) 1121 { 1122 return seq_open(file, &slabinfo_op); 1123 } 1124 1125 static const struct proc_ops slabinfo_proc_ops = { 1126 .proc_flags = PROC_ENTRY_PERMANENT, 1127 .proc_open = slabinfo_open, 1128 .proc_read = seq_read, 1129 .proc_write = slabinfo_write, 1130 .proc_lseek = seq_lseek, 1131 .proc_release = seq_release, 1132 }; 1133 1134 static int __init slab_proc_init(void) 1135 { 1136 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 1137 return 0; 1138 } 1139 module_init(slab_proc_init); 1140 1141 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1142 1143 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1144 gfp_t flags) 1145 { 1146 void *ret; 1147 size_t ks; 1148 1149 ks = ksize(p); 1150 1151 if (ks >= new_size) { 1152 p = kasan_krealloc((void *)p, new_size, flags); 1153 return (void *)p; 1154 } 1155 1156 ret = kmalloc_track_caller(new_size, flags); 1157 if (ret && p) 1158 memcpy(ret, p, ks); 1159 1160 return ret; 1161 } 1162 1163 /** 1164 * krealloc - reallocate memory. The contents will remain unchanged. 1165 * @p: object to reallocate memory for. 1166 * @new_size: how many bytes of memory are required. 1167 * @flags: the type of memory to allocate. 1168 * 1169 * The contents of the object pointed to are preserved up to the 1170 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). 1171 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 1172 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 1173 * 1174 * Return: pointer to the allocated memory or %NULL in case of error 1175 */ 1176 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1177 { 1178 void *ret; 1179 1180 if (unlikely(!new_size)) { 1181 kfree(p); 1182 return ZERO_SIZE_PTR; 1183 } 1184 1185 ret = __do_krealloc(p, new_size, flags); 1186 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1187 kfree(p); 1188 1189 return ret; 1190 } 1191 EXPORT_SYMBOL(krealloc); 1192 1193 /** 1194 * kfree_sensitive - Clear sensitive information in memory before freeing 1195 * @p: object to free memory of 1196 * 1197 * The memory of the object @p points to is zeroed before freed. 1198 * If @p is %NULL, kfree_sensitive() does nothing. 1199 * 1200 * Note: this function zeroes the whole allocated buffer which can be a good 1201 * deal bigger than the requested buffer size passed to kmalloc(). So be 1202 * careful when using this function in performance sensitive code. 1203 */ 1204 void kfree_sensitive(const void *p) 1205 { 1206 size_t ks; 1207 void *mem = (void *)p; 1208 1209 ks = ksize(mem); 1210 if (ks) 1211 memzero_explicit(mem, ks); 1212 kfree(mem); 1213 } 1214 EXPORT_SYMBOL(kfree_sensitive); 1215 1216 /** 1217 * ksize - get the actual amount of memory allocated for a given object 1218 * @objp: Pointer to the object 1219 * 1220 * kmalloc may internally round up allocations and return more memory 1221 * than requested. ksize() can be used to determine the actual amount of 1222 * memory allocated. The caller may use this additional memory, even though 1223 * a smaller amount of memory was initially specified with the kmalloc call. 1224 * The caller must guarantee that objp points to a valid object previously 1225 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1226 * must not be freed during the duration of the call. 1227 * 1228 * Return: size of the actual memory used by @objp in bytes 1229 */ 1230 size_t ksize(const void *objp) 1231 { 1232 size_t size; 1233 1234 /* 1235 * We need to check that the pointed to object is valid, and only then 1236 * unpoison the shadow memory below. We use __kasan_check_read(), to 1237 * generate a more useful report at the time ksize() is called (rather 1238 * than later where behaviour is undefined due to potential 1239 * use-after-free or double-free). 1240 * 1241 * If the pointed to memory is invalid we return 0, to avoid users of 1242 * ksize() writing to and potentially corrupting the memory region. 1243 * 1244 * We want to perform the check before __ksize(), to avoid potentially 1245 * crashing in __ksize() due to accessing invalid metadata. 1246 */ 1247 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1)) 1248 return 0; 1249 1250 size = __ksize(objp); 1251 /* 1252 * We assume that ksize callers could use whole allocated area, 1253 * so we need to unpoison this area. 1254 */ 1255 kasan_unpoison_range(objp, size); 1256 return size; 1257 } 1258 EXPORT_SYMBOL(ksize); 1259 1260 /* Tracepoints definitions. */ 1261 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1262 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1263 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1264 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1265 EXPORT_TRACEPOINT_SYMBOL(kfree); 1266 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1267 1268 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1269 { 1270 if (__should_failslab(s, gfpflags)) 1271 return -ENOMEM; 1272 return 0; 1273 } 1274 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1275