1 /* 2 * Slab allocator functions that are independent of the allocator strategy 3 * 4 * (C) 2012 Christoph Lameter <cl@linux.com> 5 */ 6 #include <linux/slab.h> 7 8 #include <linux/mm.h> 9 #include <linux/poison.h> 10 #include <linux/interrupt.h> 11 #include <linux/memory.h> 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/cpu.h> 15 #include <linux/uaccess.h> 16 #include <linux/seq_file.h> 17 #include <linux/proc_fs.h> 18 #include <asm/cacheflush.h> 19 #include <asm/tlbflush.h> 20 #include <asm/page.h> 21 #include <linux/memcontrol.h> 22 #include <trace/events/kmem.h> 23 24 #include "slab.h" 25 26 enum slab_state slab_state; 27 LIST_HEAD(slab_caches); 28 DEFINE_MUTEX(slab_mutex); 29 struct kmem_cache *kmem_cache; 30 31 #ifdef CONFIG_DEBUG_VM 32 static int kmem_cache_sanity_check(const char *name, size_t size) 33 { 34 struct kmem_cache *s = NULL; 35 36 if (!name || in_interrupt() || size < sizeof(void *) || 37 size > KMALLOC_MAX_SIZE) { 38 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 39 return -EINVAL; 40 } 41 42 list_for_each_entry(s, &slab_caches, list) { 43 char tmp; 44 int res; 45 46 /* 47 * This happens when the module gets unloaded and doesn't 48 * destroy its slab cache and no-one else reuses the vmalloc 49 * area of the module. Print a warning. 50 */ 51 res = probe_kernel_address(s->name, tmp); 52 if (res) { 53 pr_err("Slab cache with size %d has lost its name\n", 54 s->object_size); 55 continue; 56 } 57 58 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON) 59 if (!strcmp(s->name, name)) { 60 pr_err("%s (%s): Cache name already exists.\n", 61 __func__, name); 62 dump_stack(); 63 s = NULL; 64 return -EINVAL; 65 } 66 #endif 67 } 68 69 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 70 return 0; 71 } 72 #else 73 static inline int kmem_cache_sanity_check(const char *name, size_t size) 74 { 75 return 0; 76 } 77 #endif 78 79 #ifdef CONFIG_MEMCG_KMEM 80 int memcg_update_all_caches(int num_memcgs) 81 { 82 struct kmem_cache *s; 83 int ret = 0; 84 mutex_lock(&slab_mutex); 85 86 list_for_each_entry(s, &slab_caches, list) { 87 if (!is_root_cache(s)) 88 continue; 89 90 ret = memcg_update_cache_size(s, num_memcgs); 91 /* 92 * See comment in memcontrol.c, memcg_update_cache_size: 93 * Instead of freeing the memory, we'll just leave the caches 94 * up to this point in an updated state. 95 */ 96 if (ret) 97 goto out; 98 } 99 100 memcg_update_array_size(num_memcgs); 101 out: 102 mutex_unlock(&slab_mutex); 103 return ret; 104 } 105 #endif 106 107 /* 108 * Figure out what the alignment of the objects will be given a set of 109 * flags, a user specified alignment and the size of the objects. 110 */ 111 unsigned long calculate_alignment(unsigned long flags, 112 unsigned long align, unsigned long size) 113 { 114 /* 115 * If the user wants hardware cache aligned objects then follow that 116 * suggestion if the object is sufficiently large. 117 * 118 * The hardware cache alignment cannot override the specified 119 * alignment though. If that is greater then use it. 120 */ 121 if (flags & SLAB_HWCACHE_ALIGN) { 122 unsigned long ralign = cache_line_size(); 123 while (size <= ralign / 2) 124 ralign /= 2; 125 align = max(align, ralign); 126 } 127 128 if (align < ARCH_SLAB_MINALIGN) 129 align = ARCH_SLAB_MINALIGN; 130 131 return ALIGN(align, sizeof(void *)); 132 } 133 134 static struct kmem_cache * 135 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align, 136 unsigned long flags, void (*ctor)(void *), 137 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 138 { 139 struct kmem_cache *s; 140 int err; 141 142 err = -ENOMEM; 143 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 144 if (!s) 145 goto out; 146 147 s->name = name; 148 s->object_size = object_size; 149 s->size = size; 150 s->align = align; 151 s->ctor = ctor; 152 153 err = memcg_alloc_cache_params(memcg, s, root_cache); 154 if (err) 155 goto out_free_cache; 156 157 err = __kmem_cache_create(s, flags); 158 if (err) 159 goto out_free_cache; 160 161 s->refcount = 1; 162 list_add(&s->list, &slab_caches); 163 out: 164 if (err) 165 return ERR_PTR(err); 166 return s; 167 168 out_free_cache: 169 memcg_free_cache_params(s); 170 kfree(s); 171 goto out; 172 } 173 174 /* 175 * kmem_cache_create - Create a cache. 176 * @name: A string which is used in /proc/slabinfo to identify this cache. 177 * @size: The size of objects to be created in this cache. 178 * @align: The required alignment for the objects. 179 * @flags: SLAB flags 180 * @ctor: A constructor for the objects. 181 * 182 * Returns a ptr to the cache on success, NULL on failure. 183 * Cannot be called within a interrupt, but can be interrupted. 184 * The @ctor is run when new pages are allocated by the cache. 185 * 186 * The flags are 187 * 188 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 189 * to catch references to uninitialised memory. 190 * 191 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 192 * for buffer overruns. 193 * 194 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 195 * cacheline. This can be beneficial if you're counting cycles as closely 196 * as davem. 197 */ 198 struct kmem_cache * 199 kmem_cache_create(const char *name, size_t size, size_t align, 200 unsigned long flags, void (*ctor)(void *)) 201 { 202 struct kmem_cache *s; 203 char *cache_name; 204 int err; 205 206 get_online_cpus(); 207 get_online_mems(); 208 209 mutex_lock(&slab_mutex); 210 211 err = kmem_cache_sanity_check(name, size); 212 if (err) 213 goto out_unlock; 214 215 /* 216 * Some allocators will constraint the set of valid flags to a subset 217 * of all flags. We expect them to define CACHE_CREATE_MASK in this 218 * case, and we'll just provide them with a sanitized version of the 219 * passed flags. 220 */ 221 flags &= CACHE_CREATE_MASK; 222 223 s = __kmem_cache_alias(name, size, align, flags, ctor); 224 if (s) 225 goto out_unlock; 226 227 cache_name = kstrdup(name, GFP_KERNEL); 228 if (!cache_name) { 229 err = -ENOMEM; 230 goto out_unlock; 231 } 232 233 s = do_kmem_cache_create(cache_name, size, size, 234 calculate_alignment(flags, align, size), 235 flags, ctor, NULL, NULL); 236 if (IS_ERR(s)) { 237 err = PTR_ERR(s); 238 kfree(cache_name); 239 } 240 241 out_unlock: 242 mutex_unlock(&slab_mutex); 243 244 put_online_mems(); 245 put_online_cpus(); 246 247 if (err) { 248 if (flags & SLAB_PANIC) 249 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 250 name, err); 251 else { 252 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", 253 name, err); 254 dump_stack(); 255 } 256 return NULL; 257 } 258 return s; 259 } 260 EXPORT_SYMBOL(kmem_cache_create); 261 262 #ifdef CONFIG_MEMCG_KMEM 263 /* 264 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 265 * @memcg: The memory cgroup the new cache is for. 266 * @root_cache: The parent of the new cache. 267 * @memcg_name: The name of the memory cgroup (used for naming the new cache). 268 * 269 * This function attempts to create a kmem cache that will serve allocation 270 * requests going from @memcg to @root_cache. The new cache inherits properties 271 * from its parent. 272 */ 273 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 274 struct kmem_cache *root_cache, 275 const char *memcg_name) 276 { 277 struct kmem_cache *s = NULL; 278 char *cache_name; 279 280 get_online_cpus(); 281 get_online_mems(); 282 283 mutex_lock(&slab_mutex); 284 285 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 286 memcg_cache_id(memcg), memcg_name); 287 if (!cache_name) 288 goto out_unlock; 289 290 s = do_kmem_cache_create(cache_name, root_cache->object_size, 291 root_cache->size, root_cache->align, 292 root_cache->flags, root_cache->ctor, 293 memcg, root_cache); 294 if (IS_ERR(s)) { 295 kfree(cache_name); 296 s = NULL; 297 } 298 299 out_unlock: 300 mutex_unlock(&slab_mutex); 301 302 put_online_mems(); 303 put_online_cpus(); 304 305 return s; 306 } 307 308 static int memcg_cleanup_cache_params(struct kmem_cache *s) 309 { 310 int rc; 311 312 if (!s->memcg_params || 313 !s->memcg_params->is_root_cache) 314 return 0; 315 316 mutex_unlock(&slab_mutex); 317 rc = __memcg_cleanup_cache_params(s); 318 mutex_lock(&slab_mutex); 319 320 return rc; 321 } 322 #else 323 static int memcg_cleanup_cache_params(struct kmem_cache *s) 324 { 325 return 0; 326 } 327 #endif /* CONFIG_MEMCG_KMEM */ 328 329 void slab_kmem_cache_release(struct kmem_cache *s) 330 { 331 kfree(s->name); 332 kmem_cache_free(kmem_cache, s); 333 } 334 335 void kmem_cache_destroy(struct kmem_cache *s) 336 { 337 get_online_cpus(); 338 get_online_mems(); 339 340 mutex_lock(&slab_mutex); 341 342 s->refcount--; 343 if (s->refcount) 344 goto out_unlock; 345 346 if (memcg_cleanup_cache_params(s) != 0) 347 goto out_unlock; 348 349 if (__kmem_cache_shutdown(s) != 0) { 350 printk(KERN_ERR "kmem_cache_destroy %s: " 351 "Slab cache still has objects\n", s->name); 352 dump_stack(); 353 goto out_unlock; 354 } 355 356 list_del(&s->list); 357 358 mutex_unlock(&slab_mutex); 359 if (s->flags & SLAB_DESTROY_BY_RCU) 360 rcu_barrier(); 361 362 memcg_free_cache_params(s); 363 #ifdef SLAB_SUPPORTS_SYSFS 364 sysfs_slab_remove(s); 365 #else 366 slab_kmem_cache_release(s); 367 #endif 368 goto out; 369 370 out_unlock: 371 mutex_unlock(&slab_mutex); 372 out: 373 put_online_mems(); 374 put_online_cpus(); 375 } 376 EXPORT_SYMBOL(kmem_cache_destroy); 377 378 /** 379 * kmem_cache_shrink - Shrink a cache. 380 * @cachep: The cache to shrink. 381 * 382 * Releases as many slabs as possible for a cache. 383 * To help debugging, a zero exit status indicates all slabs were released. 384 */ 385 int kmem_cache_shrink(struct kmem_cache *cachep) 386 { 387 int ret; 388 389 get_online_cpus(); 390 get_online_mems(); 391 ret = __kmem_cache_shrink(cachep); 392 put_online_mems(); 393 put_online_cpus(); 394 return ret; 395 } 396 EXPORT_SYMBOL(kmem_cache_shrink); 397 398 int slab_is_available(void) 399 { 400 return slab_state >= UP; 401 } 402 403 #ifndef CONFIG_SLOB 404 /* Create a cache during boot when no slab services are available yet */ 405 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, 406 unsigned long flags) 407 { 408 int err; 409 410 s->name = name; 411 s->size = s->object_size = size; 412 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 413 err = __kmem_cache_create(s, flags); 414 415 if (err) 416 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", 417 name, size, err); 418 419 s->refcount = -1; /* Exempt from merging for now */ 420 } 421 422 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, 423 unsigned long flags) 424 { 425 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 426 427 if (!s) 428 panic("Out of memory when creating slab %s\n", name); 429 430 create_boot_cache(s, name, size, flags); 431 list_add(&s->list, &slab_caches); 432 s->refcount = 1; 433 return s; 434 } 435 436 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 437 EXPORT_SYMBOL(kmalloc_caches); 438 439 #ifdef CONFIG_ZONE_DMA 440 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 441 EXPORT_SYMBOL(kmalloc_dma_caches); 442 #endif 443 444 /* 445 * Conversion table for small slabs sizes / 8 to the index in the 446 * kmalloc array. This is necessary for slabs < 192 since we have non power 447 * of two cache sizes there. The size of larger slabs can be determined using 448 * fls. 449 */ 450 static s8 size_index[24] = { 451 3, /* 8 */ 452 4, /* 16 */ 453 5, /* 24 */ 454 5, /* 32 */ 455 6, /* 40 */ 456 6, /* 48 */ 457 6, /* 56 */ 458 6, /* 64 */ 459 1, /* 72 */ 460 1, /* 80 */ 461 1, /* 88 */ 462 1, /* 96 */ 463 7, /* 104 */ 464 7, /* 112 */ 465 7, /* 120 */ 466 7, /* 128 */ 467 2, /* 136 */ 468 2, /* 144 */ 469 2, /* 152 */ 470 2, /* 160 */ 471 2, /* 168 */ 472 2, /* 176 */ 473 2, /* 184 */ 474 2 /* 192 */ 475 }; 476 477 static inline int size_index_elem(size_t bytes) 478 { 479 return (bytes - 1) / 8; 480 } 481 482 /* 483 * Find the kmem_cache structure that serves a given size of 484 * allocation 485 */ 486 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 487 { 488 int index; 489 490 if (unlikely(size > KMALLOC_MAX_SIZE)) { 491 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 492 return NULL; 493 } 494 495 if (size <= 192) { 496 if (!size) 497 return ZERO_SIZE_PTR; 498 499 index = size_index[size_index_elem(size)]; 500 } else 501 index = fls(size - 1); 502 503 #ifdef CONFIG_ZONE_DMA 504 if (unlikely((flags & GFP_DMA))) 505 return kmalloc_dma_caches[index]; 506 507 #endif 508 return kmalloc_caches[index]; 509 } 510 511 /* 512 * Create the kmalloc array. Some of the regular kmalloc arrays 513 * may already have been created because they were needed to 514 * enable allocations for slab creation. 515 */ 516 void __init create_kmalloc_caches(unsigned long flags) 517 { 518 int i; 519 520 /* 521 * Patch up the size_index table if we have strange large alignment 522 * requirements for the kmalloc array. This is only the case for 523 * MIPS it seems. The standard arches will not generate any code here. 524 * 525 * Largest permitted alignment is 256 bytes due to the way we 526 * handle the index determination for the smaller caches. 527 * 528 * Make sure that nothing crazy happens if someone starts tinkering 529 * around with ARCH_KMALLOC_MINALIGN 530 */ 531 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 532 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 533 534 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 535 int elem = size_index_elem(i); 536 537 if (elem >= ARRAY_SIZE(size_index)) 538 break; 539 size_index[elem] = KMALLOC_SHIFT_LOW; 540 } 541 542 if (KMALLOC_MIN_SIZE >= 64) { 543 /* 544 * The 96 byte size cache is not used if the alignment 545 * is 64 byte. 546 */ 547 for (i = 64 + 8; i <= 96; i += 8) 548 size_index[size_index_elem(i)] = 7; 549 550 } 551 552 if (KMALLOC_MIN_SIZE >= 128) { 553 /* 554 * The 192 byte sized cache is not used if the alignment 555 * is 128 byte. Redirect kmalloc to use the 256 byte cache 556 * instead. 557 */ 558 for (i = 128 + 8; i <= 192; i += 8) 559 size_index[size_index_elem(i)] = 8; 560 } 561 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 562 if (!kmalloc_caches[i]) { 563 kmalloc_caches[i] = create_kmalloc_cache(NULL, 564 1 << i, flags); 565 } 566 567 /* 568 * Caches that are not of the two-to-the-power-of size. 569 * These have to be created immediately after the 570 * earlier power of two caches 571 */ 572 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) 573 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); 574 575 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) 576 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); 577 } 578 579 /* Kmalloc array is now usable */ 580 slab_state = UP; 581 582 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 583 struct kmem_cache *s = kmalloc_caches[i]; 584 char *n; 585 586 if (s) { 587 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); 588 589 BUG_ON(!n); 590 s->name = n; 591 } 592 } 593 594 #ifdef CONFIG_ZONE_DMA 595 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 596 struct kmem_cache *s = kmalloc_caches[i]; 597 598 if (s) { 599 int size = kmalloc_size(i); 600 char *n = kasprintf(GFP_NOWAIT, 601 "dma-kmalloc-%d", size); 602 603 BUG_ON(!n); 604 kmalloc_dma_caches[i] = create_kmalloc_cache(n, 605 size, SLAB_CACHE_DMA | flags); 606 } 607 } 608 #endif 609 } 610 #endif /* !CONFIG_SLOB */ 611 612 /* 613 * To avoid unnecessary overhead, we pass through large allocation requests 614 * directly to the page allocator. We use __GFP_COMP, because we will need to 615 * know the allocation order to free the pages properly in kfree. 616 */ 617 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 618 { 619 void *ret; 620 struct page *page; 621 622 flags |= __GFP_COMP; 623 page = alloc_kmem_pages(flags, order); 624 ret = page ? page_address(page) : NULL; 625 kmemleak_alloc(ret, size, 1, flags); 626 return ret; 627 } 628 EXPORT_SYMBOL(kmalloc_order); 629 630 #ifdef CONFIG_TRACING 631 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 632 { 633 void *ret = kmalloc_order(size, flags, order); 634 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 635 return ret; 636 } 637 EXPORT_SYMBOL(kmalloc_order_trace); 638 #endif 639 640 #ifdef CONFIG_SLABINFO 641 642 #ifdef CONFIG_SLAB 643 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) 644 #else 645 #define SLABINFO_RIGHTS S_IRUSR 646 #endif 647 648 void print_slabinfo_header(struct seq_file *m) 649 { 650 /* 651 * Output format version, so at least we can change it 652 * without _too_ many complaints. 653 */ 654 #ifdef CONFIG_DEBUG_SLAB 655 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 656 #else 657 seq_puts(m, "slabinfo - version: 2.1\n"); 658 #endif 659 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 660 "<objperslab> <pagesperslab>"); 661 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 662 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 663 #ifdef CONFIG_DEBUG_SLAB 664 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 665 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 666 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 667 #endif 668 seq_putc(m, '\n'); 669 } 670 671 static void *s_start(struct seq_file *m, loff_t *pos) 672 { 673 loff_t n = *pos; 674 675 mutex_lock(&slab_mutex); 676 if (!n) 677 print_slabinfo_header(m); 678 679 return seq_list_start(&slab_caches, *pos); 680 } 681 682 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 683 { 684 return seq_list_next(p, &slab_caches, pos); 685 } 686 687 void slab_stop(struct seq_file *m, void *p) 688 { 689 mutex_unlock(&slab_mutex); 690 } 691 692 static void 693 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 694 { 695 struct kmem_cache *c; 696 struct slabinfo sinfo; 697 int i; 698 699 if (!is_root_cache(s)) 700 return; 701 702 for_each_memcg_cache_index(i) { 703 c = cache_from_memcg_idx(s, i); 704 if (!c) 705 continue; 706 707 memset(&sinfo, 0, sizeof(sinfo)); 708 get_slabinfo(c, &sinfo); 709 710 info->active_slabs += sinfo.active_slabs; 711 info->num_slabs += sinfo.num_slabs; 712 info->shared_avail += sinfo.shared_avail; 713 info->active_objs += sinfo.active_objs; 714 info->num_objs += sinfo.num_objs; 715 } 716 } 717 718 int cache_show(struct kmem_cache *s, struct seq_file *m) 719 { 720 struct slabinfo sinfo; 721 722 memset(&sinfo, 0, sizeof(sinfo)); 723 get_slabinfo(s, &sinfo); 724 725 memcg_accumulate_slabinfo(s, &sinfo); 726 727 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 728 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 729 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 730 731 seq_printf(m, " : tunables %4u %4u %4u", 732 sinfo.limit, sinfo.batchcount, sinfo.shared); 733 seq_printf(m, " : slabdata %6lu %6lu %6lu", 734 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 735 slabinfo_show_stats(m, s); 736 seq_putc(m, '\n'); 737 return 0; 738 } 739 740 static int s_show(struct seq_file *m, void *p) 741 { 742 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 743 744 if (!is_root_cache(s)) 745 return 0; 746 return cache_show(s, m); 747 } 748 749 /* 750 * slabinfo_op - iterator that generates /proc/slabinfo 751 * 752 * Output layout: 753 * cache-name 754 * num-active-objs 755 * total-objs 756 * object size 757 * num-active-slabs 758 * total-slabs 759 * num-pages-per-slab 760 * + further values on SMP and with statistics enabled 761 */ 762 static const struct seq_operations slabinfo_op = { 763 .start = s_start, 764 .next = slab_next, 765 .stop = slab_stop, 766 .show = s_show, 767 }; 768 769 static int slabinfo_open(struct inode *inode, struct file *file) 770 { 771 return seq_open(file, &slabinfo_op); 772 } 773 774 static const struct file_operations proc_slabinfo_operations = { 775 .open = slabinfo_open, 776 .read = seq_read, 777 .write = slabinfo_write, 778 .llseek = seq_lseek, 779 .release = seq_release, 780 }; 781 782 static int __init slab_proc_init(void) 783 { 784 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 785 &proc_slabinfo_operations); 786 return 0; 787 } 788 module_init(slab_proc_init); 789 #endif /* CONFIG_SLABINFO */ 790