xref: /linux/mm/slab_common.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23 
24 #include "slab.h"
25 
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30 
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(const char *name, size_t size)
33 {
34 	struct kmem_cache *s = NULL;
35 
36 	if (!name || in_interrupt() || size < sizeof(void *) ||
37 		size > KMALLOC_MAX_SIZE) {
38 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 		return -EINVAL;
40 	}
41 
42 	list_for_each_entry(s, &slab_caches, list) {
43 		char tmp;
44 		int res;
45 
46 		/*
47 		 * This happens when the module gets unloaded and doesn't
48 		 * destroy its slab cache and no-one else reuses the vmalloc
49 		 * area of the module.  Print a warning.
50 		 */
51 		res = probe_kernel_address(s->name, tmp);
52 		if (res) {
53 			pr_err("Slab cache with size %d has lost its name\n",
54 			       s->object_size);
55 			continue;
56 		}
57 
58 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59 		if (!strcmp(s->name, name)) {
60 			pr_err("%s (%s): Cache name already exists.\n",
61 			       __func__, name);
62 			dump_stack();
63 			s = NULL;
64 			return -EINVAL;
65 		}
66 #endif
67 	}
68 
69 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
70 	return 0;
71 }
72 #else
73 static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 {
75 	return 0;
76 }
77 #endif
78 
79 #ifdef CONFIG_MEMCG_KMEM
80 int memcg_update_all_caches(int num_memcgs)
81 {
82 	struct kmem_cache *s;
83 	int ret = 0;
84 	mutex_lock(&slab_mutex);
85 
86 	list_for_each_entry(s, &slab_caches, list) {
87 		if (!is_root_cache(s))
88 			continue;
89 
90 		ret = memcg_update_cache_size(s, num_memcgs);
91 		/*
92 		 * See comment in memcontrol.c, memcg_update_cache_size:
93 		 * Instead of freeing the memory, we'll just leave the caches
94 		 * up to this point in an updated state.
95 		 */
96 		if (ret)
97 			goto out;
98 	}
99 
100 	memcg_update_array_size(num_memcgs);
101 out:
102 	mutex_unlock(&slab_mutex);
103 	return ret;
104 }
105 #endif
106 
107 /*
108  * Figure out what the alignment of the objects will be given a set of
109  * flags, a user specified alignment and the size of the objects.
110  */
111 unsigned long calculate_alignment(unsigned long flags,
112 		unsigned long align, unsigned long size)
113 {
114 	/*
115 	 * If the user wants hardware cache aligned objects then follow that
116 	 * suggestion if the object is sufficiently large.
117 	 *
118 	 * The hardware cache alignment cannot override the specified
119 	 * alignment though. If that is greater then use it.
120 	 */
121 	if (flags & SLAB_HWCACHE_ALIGN) {
122 		unsigned long ralign = cache_line_size();
123 		while (size <= ralign / 2)
124 			ralign /= 2;
125 		align = max(align, ralign);
126 	}
127 
128 	if (align < ARCH_SLAB_MINALIGN)
129 		align = ARCH_SLAB_MINALIGN;
130 
131 	return ALIGN(align, sizeof(void *));
132 }
133 
134 static struct kmem_cache *
135 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136 		     unsigned long flags, void (*ctor)(void *),
137 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138 {
139 	struct kmem_cache *s;
140 	int err;
141 
142 	err = -ENOMEM;
143 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144 	if (!s)
145 		goto out;
146 
147 	s->name = name;
148 	s->object_size = object_size;
149 	s->size = size;
150 	s->align = align;
151 	s->ctor = ctor;
152 
153 	err = memcg_alloc_cache_params(memcg, s, root_cache);
154 	if (err)
155 		goto out_free_cache;
156 
157 	err = __kmem_cache_create(s, flags);
158 	if (err)
159 		goto out_free_cache;
160 
161 	s->refcount = 1;
162 	list_add(&s->list, &slab_caches);
163 out:
164 	if (err)
165 		return ERR_PTR(err);
166 	return s;
167 
168 out_free_cache:
169 	memcg_free_cache_params(s);
170 	kfree(s);
171 	goto out;
172 }
173 
174 /*
175  * kmem_cache_create - Create a cache.
176  * @name: A string which is used in /proc/slabinfo to identify this cache.
177  * @size: The size of objects to be created in this cache.
178  * @align: The required alignment for the objects.
179  * @flags: SLAB flags
180  * @ctor: A constructor for the objects.
181  *
182  * Returns a ptr to the cache on success, NULL on failure.
183  * Cannot be called within a interrupt, but can be interrupted.
184  * The @ctor is run when new pages are allocated by the cache.
185  *
186  * The flags are
187  *
188  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
189  * to catch references to uninitialised memory.
190  *
191  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
192  * for buffer overruns.
193  *
194  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
195  * cacheline.  This can be beneficial if you're counting cycles as closely
196  * as davem.
197  */
198 struct kmem_cache *
199 kmem_cache_create(const char *name, size_t size, size_t align,
200 		  unsigned long flags, void (*ctor)(void *))
201 {
202 	struct kmem_cache *s;
203 	char *cache_name;
204 	int err;
205 
206 	get_online_cpus();
207 	get_online_mems();
208 
209 	mutex_lock(&slab_mutex);
210 
211 	err = kmem_cache_sanity_check(name, size);
212 	if (err)
213 		goto out_unlock;
214 
215 	/*
216 	 * Some allocators will constraint the set of valid flags to a subset
217 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
218 	 * case, and we'll just provide them with a sanitized version of the
219 	 * passed flags.
220 	 */
221 	flags &= CACHE_CREATE_MASK;
222 
223 	s = __kmem_cache_alias(name, size, align, flags, ctor);
224 	if (s)
225 		goto out_unlock;
226 
227 	cache_name = kstrdup(name, GFP_KERNEL);
228 	if (!cache_name) {
229 		err = -ENOMEM;
230 		goto out_unlock;
231 	}
232 
233 	s = do_kmem_cache_create(cache_name, size, size,
234 				 calculate_alignment(flags, align, size),
235 				 flags, ctor, NULL, NULL);
236 	if (IS_ERR(s)) {
237 		err = PTR_ERR(s);
238 		kfree(cache_name);
239 	}
240 
241 out_unlock:
242 	mutex_unlock(&slab_mutex);
243 
244 	put_online_mems();
245 	put_online_cpus();
246 
247 	if (err) {
248 		if (flags & SLAB_PANIC)
249 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
250 				name, err);
251 		else {
252 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
253 				name, err);
254 			dump_stack();
255 		}
256 		return NULL;
257 	}
258 	return s;
259 }
260 EXPORT_SYMBOL(kmem_cache_create);
261 
262 #ifdef CONFIG_MEMCG_KMEM
263 /*
264  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
265  * @memcg: The memory cgroup the new cache is for.
266  * @root_cache: The parent of the new cache.
267  * @memcg_name: The name of the memory cgroup (used for naming the new cache).
268  *
269  * This function attempts to create a kmem cache that will serve allocation
270  * requests going from @memcg to @root_cache. The new cache inherits properties
271  * from its parent.
272  */
273 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
274 					   struct kmem_cache *root_cache,
275 					   const char *memcg_name)
276 {
277 	struct kmem_cache *s = NULL;
278 	char *cache_name;
279 
280 	get_online_cpus();
281 	get_online_mems();
282 
283 	mutex_lock(&slab_mutex);
284 
285 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
286 			       memcg_cache_id(memcg), memcg_name);
287 	if (!cache_name)
288 		goto out_unlock;
289 
290 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
291 				 root_cache->size, root_cache->align,
292 				 root_cache->flags, root_cache->ctor,
293 				 memcg, root_cache);
294 	if (IS_ERR(s)) {
295 		kfree(cache_name);
296 		s = NULL;
297 	}
298 
299 out_unlock:
300 	mutex_unlock(&slab_mutex);
301 
302 	put_online_mems();
303 	put_online_cpus();
304 
305 	return s;
306 }
307 
308 static int memcg_cleanup_cache_params(struct kmem_cache *s)
309 {
310 	int rc;
311 
312 	if (!s->memcg_params ||
313 	    !s->memcg_params->is_root_cache)
314 		return 0;
315 
316 	mutex_unlock(&slab_mutex);
317 	rc = __memcg_cleanup_cache_params(s);
318 	mutex_lock(&slab_mutex);
319 
320 	return rc;
321 }
322 #else
323 static int memcg_cleanup_cache_params(struct kmem_cache *s)
324 {
325 	return 0;
326 }
327 #endif /* CONFIG_MEMCG_KMEM */
328 
329 void slab_kmem_cache_release(struct kmem_cache *s)
330 {
331 	kfree(s->name);
332 	kmem_cache_free(kmem_cache, s);
333 }
334 
335 void kmem_cache_destroy(struct kmem_cache *s)
336 {
337 	get_online_cpus();
338 	get_online_mems();
339 
340 	mutex_lock(&slab_mutex);
341 
342 	s->refcount--;
343 	if (s->refcount)
344 		goto out_unlock;
345 
346 	if (memcg_cleanup_cache_params(s) != 0)
347 		goto out_unlock;
348 
349 	if (__kmem_cache_shutdown(s) != 0) {
350 		printk(KERN_ERR "kmem_cache_destroy %s: "
351 		       "Slab cache still has objects\n", s->name);
352 		dump_stack();
353 		goto out_unlock;
354 	}
355 
356 	list_del(&s->list);
357 
358 	mutex_unlock(&slab_mutex);
359 	if (s->flags & SLAB_DESTROY_BY_RCU)
360 		rcu_barrier();
361 
362 	memcg_free_cache_params(s);
363 #ifdef SLAB_SUPPORTS_SYSFS
364 	sysfs_slab_remove(s);
365 #else
366 	slab_kmem_cache_release(s);
367 #endif
368 	goto out;
369 
370 out_unlock:
371 	mutex_unlock(&slab_mutex);
372 out:
373 	put_online_mems();
374 	put_online_cpus();
375 }
376 EXPORT_SYMBOL(kmem_cache_destroy);
377 
378 /**
379  * kmem_cache_shrink - Shrink a cache.
380  * @cachep: The cache to shrink.
381  *
382  * Releases as many slabs as possible for a cache.
383  * To help debugging, a zero exit status indicates all slabs were released.
384  */
385 int kmem_cache_shrink(struct kmem_cache *cachep)
386 {
387 	int ret;
388 
389 	get_online_cpus();
390 	get_online_mems();
391 	ret = __kmem_cache_shrink(cachep);
392 	put_online_mems();
393 	put_online_cpus();
394 	return ret;
395 }
396 EXPORT_SYMBOL(kmem_cache_shrink);
397 
398 int slab_is_available(void)
399 {
400 	return slab_state >= UP;
401 }
402 
403 #ifndef CONFIG_SLOB
404 /* Create a cache during boot when no slab services are available yet */
405 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
406 		unsigned long flags)
407 {
408 	int err;
409 
410 	s->name = name;
411 	s->size = s->object_size = size;
412 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
413 	err = __kmem_cache_create(s, flags);
414 
415 	if (err)
416 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
417 					name, size, err);
418 
419 	s->refcount = -1;	/* Exempt from merging for now */
420 }
421 
422 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
423 				unsigned long flags)
424 {
425 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
426 
427 	if (!s)
428 		panic("Out of memory when creating slab %s\n", name);
429 
430 	create_boot_cache(s, name, size, flags);
431 	list_add(&s->list, &slab_caches);
432 	s->refcount = 1;
433 	return s;
434 }
435 
436 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
437 EXPORT_SYMBOL(kmalloc_caches);
438 
439 #ifdef CONFIG_ZONE_DMA
440 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
441 EXPORT_SYMBOL(kmalloc_dma_caches);
442 #endif
443 
444 /*
445  * Conversion table for small slabs sizes / 8 to the index in the
446  * kmalloc array. This is necessary for slabs < 192 since we have non power
447  * of two cache sizes there. The size of larger slabs can be determined using
448  * fls.
449  */
450 static s8 size_index[24] = {
451 	3,	/* 8 */
452 	4,	/* 16 */
453 	5,	/* 24 */
454 	5,	/* 32 */
455 	6,	/* 40 */
456 	6,	/* 48 */
457 	6,	/* 56 */
458 	6,	/* 64 */
459 	1,	/* 72 */
460 	1,	/* 80 */
461 	1,	/* 88 */
462 	1,	/* 96 */
463 	7,	/* 104 */
464 	7,	/* 112 */
465 	7,	/* 120 */
466 	7,	/* 128 */
467 	2,	/* 136 */
468 	2,	/* 144 */
469 	2,	/* 152 */
470 	2,	/* 160 */
471 	2,	/* 168 */
472 	2,	/* 176 */
473 	2,	/* 184 */
474 	2	/* 192 */
475 };
476 
477 static inline int size_index_elem(size_t bytes)
478 {
479 	return (bytes - 1) / 8;
480 }
481 
482 /*
483  * Find the kmem_cache structure that serves a given size of
484  * allocation
485  */
486 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
487 {
488 	int index;
489 
490 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
491 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
492 		return NULL;
493 	}
494 
495 	if (size <= 192) {
496 		if (!size)
497 			return ZERO_SIZE_PTR;
498 
499 		index = size_index[size_index_elem(size)];
500 	} else
501 		index = fls(size - 1);
502 
503 #ifdef CONFIG_ZONE_DMA
504 	if (unlikely((flags & GFP_DMA)))
505 		return kmalloc_dma_caches[index];
506 
507 #endif
508 	return kmalloc_caches[index];
509 }
510 
511 /*
512  * Create the kmalloc array. Some of the regular kmalloc arrays
513  * may already have been created because they were needed to
514  * enable allocations for slab creation.
515  */
516 void __init create_kmalloc_caches(unsigned long flags)
517 {
518 	int i;
519 
520 	/*
521 	 * Patch up the size_index table if we have strange large alignment
522 	 * requirements for the kmalloc array. This is only the case for
523 	 * MIPS it seems. The standard arches will not generate any code here.
524 	 *
525 	 * Largest permitted alignment is 256 bytes due to the way we
526 	 * handle the index determination for the smaller caches.
527 	 *
528 	 * Make sure that nothing crazy happens if someone starts tinkering
529 	 * around with ARCH_KMALLOC_MINALIGN
530 	 */
531 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
532 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
533 
534 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
535 		int elem = size_index_elem(i);
536 
537 		if (elem >= ARRAY_SIZE(size_index))
538 			break;
539 		size_index[elem] = KMALLOC_SHIFT_LOW;
540 	}
541 
542 	if (KMALLOC_MIN_SIZE >= 64) {
543 		/*
544 		 * The 96 byte size cache is not used if the alignment
545 		 * is 64 byte.
546 		 */
547 		for (i = 64 + 8; i <= 96; i += 8)
548 			size_index[size_index_elem(i)] = 7;
549 
550 	}
551 
552 	if (KMALLOC_MIN_SIZE >= 128) {
553 		/*
554 		 * The 192 byte sized cache is not used if the alignment
555 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
556 		 * instead.
557 		 */
558 		for (i = 128 + 8; i <= 192; i += 8)
559 			size_index[size_index_elem(i)] = 8;
560 	}
561 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
562 		if (!kmalloc_caches[i]) {
563 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
564 							1 << i, flags);
565 		}
566 
567 		/*
568 		 * Caches that are not of the two-to-the-power-of size.
569 		 * These have to be created immediately after the
570 		 * earlier power of two caches
571 		 */
572 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
573 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
574 
575 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
576 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
577 	}
578 
579 	/* Kmalloc array is now usable */
580 	slab_state = UP;
581 
582 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
583 		struct kmem_cache *s = kmalloc_caches[i];
584 		char *n;
585 
586 		if (s) {
587 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
588 
589 			BUG_ON(!n);
590 			s->name = n;
591 		}
592 	}
593 
594 #ifdef CONFIG_ZONE_DMA
595 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
596 		struct kmem_cache *s = kmalloc_caches[i];
597 
598 		if (s) {
599 			int size = kmalloc_size(i);
600 			char *n = kasprintf(GFP_NOWAIT,
601 				 "dma-kmalloc-%d", size);
602 
603 			BUG_ON(!n);
604 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
605 				size, SLAB_CACHE_DMA | flags);
606 		}
607 	}
608 #endif
609 }
610 #endif /* !CONFIG_SLOB */
611 
612 /*
613  * To avoid unnecessary overhead, we pass through large allocation requests
614  * directly to the page allocator. We use __GFP_COMP, because we will need to
615  * know the allocation order to free the pages properly in kfree.
616  */
617 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
618 {
619 	void *ret;
620 	struct page *page;
621 
622 	flags |= __GFP_COMP;
623 	page = alloc_kmem_pages(flags, order);
624 	ret = page ? page_address(page) : NULL;
625 	kmemleak_alloc(ret, size, 1, flags);
626 	return ret;
627 }
628 EXPORT_SYMBOL(kmalloc_order);
629 
630 #ifdef CONFIG_TRACING
631 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
632 {
633 	void *ret = kmalloc_order(size, flags, order);
634 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
635 	return ret;
636 }
637 EXPORT_SYMBOL(kmalloc_order_trace);
638 #endif
639 
640 #ifdef CONFIG_SLABINFO
641 
642 #ifdef CONFIG_SLAB
643 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
644 #else
645 #define SLABINFO_RIGHTS S_IRUSR
646 #endif
647 
648 void print_slabinfo_header(struct seq_file *m)
649 {
650 	/*
651 	 * Output format version, so at least we can change it
652 	 * without _too_ many complaints.
653 	 */
654 #ifdef CONFIG_DEBUG_SLAB
655 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
656 #else
657 	seq_puts(m, "slabinfo - version: 2.1\n");
658 #endif
659 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
660 		 "<objperslab> <pagesperslab>");
661 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
662 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
663 #ifdef CONFIG_DEBUG_SLAB
664 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
665 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
666 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
667 #endif
668 	seq_putc(m, '\n');
669 }
670 
671 static void *s_start(struct seq_file *m, loff_t *pos)
672 {
673 	loff_t n = *pos;
674 
675 	mutex_lock(&slab_mutex);
676 	if (!n)
677 		print_slabinfo_header(m);
678 
679 	return seq_list_start(&slab_caches, *pos);
680 }
681 
682 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
683 {
684 	return seq_list_next(p, &slab_caches, pos);
685 }
686 
687 void slab_stop(struct seq_file *m, void *p)
688 {
689 	mutex_unlock(&slab_mutex);
690 }
691 
692 static void
693 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
694 {
695 	struct kmem_cache *c;
696 	struct slabinfo sinfo;
697 	int i;
698 
699 	if (!is_root_cache(s))
700 		return;
701 
702 	for_each_memcg_cache_index(i) {
703 		c = cache_from_memcg_idx(s, i);
704 		if (!c)
705 			continue;
706 
707 		memset(&sinfo, 0, sizeof(sinfo));
708 		get_slabinfo(c, &sinfo);
709 
710 		info->active_slabs += sinfo.active_slabs;
711 		info->num_slabs += sinfo.num_slabs;
712 		info->shared_avail += sinfo.shared_avail;
713 		info->active_objs += sinfo.active_objs;
714 		info->num_objs += sinfo.num_objs;
715 	}
716 }
717 
718 int cache_show(struct kmem_cache *s, struct seq_file *m)
719 {
720 	struct slabinfo sinfo;
721 
722 	memset(&sinfo, 0, sizeof(sinfo));
723 	get_slabinfo(s, &sinfo);
724 
725 	memcg_accumulate_slabinfo(s, &sinfo);
726 
727 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
728 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
729 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
730 
731 	seq_printf(m, " : tunables %4u %4u %4u",
732 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
733 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
734 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
735 	slabinfo_show_stats(m, s);
736 	seq_putc(m, '\n');
737 	return 0;
738 }
739 
740 static int s_show(struct seq_file *m, void *p)
741 {
742 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
743 
744 	if (!is_root_cache(s))
745 		return 0;
746 	return cache_show(s, m);
747 }
748 
749 /*
750  * slabinfo_op - iterator that generates /proc/slabinfo
751  *
752  * Output layout:
753  * cache-name
754  * num-active-objs
755  * total-objs
756  * object size
757  * num-active-slabs
758  * total-slabs
759  * num-pages-per-slab
760  * + further values on SMP and with statistics enabled
761  */
762 static const struct seq_operations slabinfo_op = {
763 	.start = s_start,
764 	.next = slab_next,
765 	.stop = slab_stop,
766 	.show = s_show,
767 };
768 
769 static int slabinfo_open(struct inode *inode, struct file *file)
770 {
771 	return seq_open(file, &slabinfo_op);
772 }
773 
774 static const struct file_operations proc_slabinfo_operations = {
775 	.open		= slabinfo_open,
776 	.read		= seq_read,
777 	.write          = slabinfo_write,
778 	.llseek		= seq_lseek,
779 	.release	= seq_release,
780 };
781 
782 static int __init slab_proc_init(void)
783 {
784 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
785 						&proc_slabinfo_operations);
786 	return 0;
787 }
788 module_init(slab_proc_init);
789 #endif /* CONFIG_SLABINFO */
790