xref: /linux/mm/slab_common.c (revision b5bee6ced21ca98389000b7017dd41b0cc37fa50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
28 
29 #include "internal.h"
30 #include "slab.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
34 
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39 
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 		    slab_caches_to_rcu_destroy_workfn);
44 
45 /*
46  * Set of flags that will prevent slab merging
47  */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 		SLAB_FAILSLAB | kasan_never_merge())
51 
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54 
55 /*
56  * Merge control. If this is set then no merging of slab caches will occur.
57  */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59 
60 static int __init setup_slab_nomerge(char *str)
61 {
62 	slab_nomerge = true;
63 	return 1;
64 }
65 
66 static int __init setup_slab_merge(char *str)
67 {
68 	slab_nomerge = false;
69 	return 1;
70 }
71 
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76 
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79 
80 /*
81  * Determine the size of a slab object
82  */
83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 	return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 		return -EINVAL;
95 	}
96 
97 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 	return 0;
99 }
100 #else
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 	return 0;
104 }
105 #endif
106 
107 /*
108  * Figure out what the alignment of the objects will be given a set of
109  * flags, a user specified alignment and the size of the objects.
110  */
111 static unsigned int calculate_alignment(slab_flags_t flags,
112 		unsigned int align, unsigned int size)
113 {
114 	/*
115 	 * If the user wants hardware cache aligned objects then follow that
116 	 * suggestion if the object is sufficiently large.
117 	 *
118 	 * The hardware cache alignment cannot override the specified
119 	 * alignment though. If that is greater then use it.
120 	 */
121 	if (flags & SLAB_HWCACHE_ALIGN) {
122 		unsigned int ralign;
123 
124 		ralign = cache_line_size();
125 		while (size <= ralign / 2)
126 			ralign /= 2;
127 		align = max(align, ralign);
128 	}
129 
130 	align = max(align, arch_slab_minalign());
131 
132 	return ALIGN(align, sizeof(void *));
133 }
134 
135 /*
136  * Find a mergeable slab cache
137  */
138 int slab_unmergeable(struct kmem_cache *s)
139 {
140 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
141 		return 1;
142 
143 	if (s->ctor)
144 		return 1;
145 
146 	if (s->usersize)
147 		return 1;
148 
149 	/*
150 	 * We may have set a slab to be unmergeable during bootstrap.
151 	 */
152 	if (s->refcount < 0)
153 		return 1;
154 
155 	return 0;
156 }
157 
158 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
159 		slab_flags_t flags, const char *name, void (*ctor)(void *))
160 {
161 	struct kmem_cache *s;
162 
163 	if (slab_nomerge)
164 		return NULL;
165 
166 	if (ctor)
167 		return NULL;
168 
169 	size = ALIGN(size, sizeof(void *));
170 	align = calculate_alignment(flags, align, size);
171 	size = ALIGN(size, align);
172 	flags = kmem_cache_flags(size, flags, name);
173 
174 	if (flags & SLAB_NEVER_MERGE)
175 		return NULL;
176 
177 	list_for_each_entry_reverse(s, &slab_caches, list) {
178 		if (slab_unmergeable(s))
179 			continue;
180 
181 		if (size > s->size)
182 			continue;
183 
184 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
185 			continue;
186 		/*
187 		 * Check if alignment is compatible.
188 		 * Courtesy of Adrian Drzewiecki
189 		 */
190 		if ((s->size & ~(align - 1)) != s->size)
191 			continue;
192 
193 		if (s->size - size >= sizeof(void *))
194 			continue;
195 
196 		if (IS_ENABLED(CONFIG_SLAB) && align &&
197 			(align > s->align || s->align % align))
198 			continue;
199 
200 		return s;
201 	}
202 	return NULL;
203 }
204 
205 static struct kmem_cache *create_cache(const char *name,
206 		unsigned int object_size, unsigned int align,
207 		slab_flags_t flags, unsigned int useroffset,
208 		unsigned int usersize, void (*ctor)(void *),
209 		struct kmem_cache *root_cache)
210 {
211 	struct kmem_cache *s;
212 	int err;
213 
214 	if (WARN_ON(useroffset + usersize > object_size))
215 		useroffset = usersize = 0;
216 
217 	err = -ENOMEM;
218 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
219 	if (!s)
220 		goto out;
221 
222 	s->name = name;
223 	s->size = s->object_size = object_size;
224 	s->align = align;
225 	s->ctor = ctor;
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 
229 	err = __kmem_cache_create(s, flags);
230 	if (err)
231 		goto out_free_cache;
232 
233 	s->refcount = 1;
234 	list_add(&s->list, &slab_caches);
235 out:
236 	if (err)
237 		return ERR_PTR(err);
238 	return s;
239 
240 out_free_cache:
241 	kmem_cache_free(kmem_cache, s);
242 	goto out;
243 }
244 
245 /**
246  * kmem_cache_create_usercopy - Create a cache with a region suitable
247  * for copying to userspace
248  * @name: A string which is used in /proc/slabinfo to identify this cache.
249  * @size: The size of objects to be created in this cache.
250  * @align: The required alignment for the objects.
251  * @flags: SLAB flags
252  * @useroffset: Usercopy region offset
253  * @usersize: Usercopy region size
254  * @ctor: A constructor for the objects.
255  *
256  * Cannot be called within a interrupt, but can be interrupted.
257  * The @ctor is run when new pages are allocated by the cache.
258  *
259  * The flags are
260  *
261  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
262  * to catch references to uninitialised memory.
263  *
264  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
265  * for buffer overruns.
266  *
267  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
268  * cacheline.  This can be beneficial if you're counting cycles as closely
269  * as davem.
270  *
271  * Return: a pointer to the cache on success, NULL on failure.
272  */
273 struct kmem_cache *
274 kmem_cache_create_usercopy(const char *name,
275 		  unsigned int size, unsigned int align,
276 		  slab_flags_t flags,
277 		  unsigned int useroffset, unsigned int usersize,
278 		  void (*ctor)(void *))
279 {
280 	struct kmem_cache *s = NULL;
281 	const char *cache_name;
282 	int err;
283 
284 #ifdef CONFIG_SLUB_DEBUG
285 	/*
286 	 * If no slub_debug was enabled globally, the static key is not yet
287 	 * enabled by setup_slub_debug(). Enable it if the cache is being
288 	 * created with any of the debugging flags passed explicitly.
289 	 * It's also possible that this is the first cache created with
290 	 * SLAB_STORE_USER and we should init stack_depot for it.
291 	 */
292 	if (flags & SLAB_DEBUG_FLAGS)
293 		static_branch_enable(&slub_debug_enabled);
294 	if (flags & SLAB_STORE_USER)
295 		stack_depot_init();
296 #endif
297 
298 	mutex_lock(&slab_mutex);
299 
300 	err = kmem_cache_sanity_check(name, size);
301 	if (err) {
302 		goto out_unlock;
303 	}
304 
305 	/* Refuse requests with allocator specific flags */
306 	if (flags & ~SLAB_FLAGS_PERMITTED) {
307 		err = -EINVAL;
308 		goto out_unlock;
309 	}
310 
311 	/*
312 	 * Some allocators will constraint the set of valid flags to a subset
313 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
314 	 * case, and we'll just provide them with a sanitized version of the
315 	 * passed flags.
316 	 */
317 	flags &= CACHE_CREATE_MASK;
318 
319 	/* Fail closed on bad usersize of useroffset values. */
320 	if (WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 #ifdef SLAB_SUPPORTS_SYSFS
396 /*
397  * For a given kmem_cache, kmem_cache_destroy() should only be called
398  * once or there will be a use-after-free problem. The actual deletion
399  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400  * protection. So they are now done without holding those locks.
401  *
402  * Note that there will be a slight delay in the deletion of sysfs files
403  * if kmem_cache_release() is called indrectly from a work function.
404  */
405 static void kmem_cache_release(struct kmem_cache *s)
406 {
407 	sysfs_slab_unlink(s);
408 	sysfs_slab_release(s);
409 }
410 #else
411 static void kmem_cache_release(struct kmem_cache *s)
412 {
413 	slab_kmem_cache_release(s);
414 }
415 #endif
416 
417 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
418 {
419 	LIST_HEAD(to_destroy);
420 	struct kmem_cache *s, *s2;
421 
422 	/*
423 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
424 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
425 	 * through RCU and the associated kmem_cache are dereferenced
426 	 * while freeing the pages, so the kmem_caches should be freed only
427 	 * after the pending RCU operations are finished.  As rcu_barrier()
428 	 * is a pretty slow operation, we batch all pending destructions
429 	 * asynchronously.
430 	 */
431 	mutex_lock(&slab_mutex);
432 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
433 	mutex_unlock(&slab_mutex);
434 
435 	if (list_empty(&to_destroy))
436 		return;
437 
438 	rcu_barrier();
439 
440 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
441 		debugfs_slab_release(s);
442 		kfence_shutdown_cache(s);
443 		kmem_cache_release(s);
444 	}
445 }
446 
447 static int shutdown_cache(struct kmem_cache *s)
448 {
449 	/* free asan quarantined objects */
450 	kasan_cache_shutdown(s);
451 
452 	if (__kmem_cache_shutdown(s) != 0)
453 		return -EBUSY;
454 
455 	list_del(&s->list);
456 
457 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
458 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
459 		schedule_work(&slab_caches_to_rcu_destroy_work);
460 	} else {
461 		kfence_shutdown_cache(s);
462 		debugfs_slab_release(s);
463 	}
464 
465 	return 0;
466 }
467 
468 void slab_kmem_cache_release(struct kmem_cache *s)
469 {
470 	__kmem_cache_release(s);
471 	kfree_const(s->name);
472 	kmem_cache_free(kmem_cache, s);
473 }
474 
475 void kmem_cache_destroy(struct kmem_cache *s)
476 {
477 	int refcnt;
478 
479 	if (unlikely(!s) || !kasan_check_byte(s))
480 		return;
481 
482 	cpus_read_lock();
483 	mutex_lock(&slab_mutex);
484 
485 	refcnt = --s->refcount;
486 	if (refcnt)
487 		goto out_unlock;
488 
489 	WARN(shutdown_cache(s),
490 	     "%s %s: Slab cache still has objects when called from %pS",
491 	     __func__, s->name, (void *)_RET_IP_);
492 out_unlock:
493 	mutex_unlock(&slab_mutex);
494 	cpus_read_unlock();
495 	if (!refcnt && !(s->flags & SLAB_TYPESAFE_BY_RCU))
496 		kmem_cache_release(s);
497 }
498 EXPORT_SYMBOL(kmem_cache_destroy);
499 
500 /**
501  * kmem_cache_shrink - Shrink a cache.
502  * @cachep: The cache to shrink.
503  *
504  * Releases as many slabs as possible for a cache.
505  * To help debugging, a zero exit status indicates all slabs were released.
506  *
507  * Return: %0 if all slabs were released, non-zero otherwise
508  */
509 int kmem_cache_shrink(struct kmem_cache *cachep)
510 {
511 	int ret;
512 
513 
514 	kasan_cache_shrink(cachep);
515 	ret = __kmem_cache_shrink(cachep);
516 
517 	return ret;
518 }
519 EXPORT_SYMBOL(kmem_cache_shrink);
520 
521 bool slab_is_available(void)
522 {
523 	return slab_state >= UP;
524 }
525 
526 #ifdef CONFIG_PRINTK
527 /**
528  * kmem_valid_obj - does the pointer reference a valid slab object?
529  * @object: pointer to query.
530  *
531  * Return: %true if the pointer is to a not-yet-freed object from
532  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
533  * is to an already-freed object, and %false otherwise.
534  */
535 bool kmem_valid_obj(void *object)
536 {
537 	struct folio *folio;
538 
539 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
540 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
541 		return false;
542 	folio = virt_to_folio(object);
543 	return folio_test_slab(folio);
544 }
545 EXPORT_SYMBOL_GPL(kmem_valid_obj);
546 
547 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
548 {
549 	if (__kfence_obj_info(kpp, object, slab))
550 		return;
551 	__kmem_obj_info(kpp, object, slab);
552 }
553 
554 /**
555  * kmem_dump_obj - Print available slab provenance information
556  * @object: slab object for which to find provenance information.
557  *
558  * This function uses pr_cont(), so that the caller is expected to have
559  * printed out whatever preamble is appropriate.  The provenance information
560  * depends on the type of object and on how much debugging is enabled.
561  * For a slab-cache object, the fact that it is a slab object is printed,
562  * and, if available, the slab name, return address, and stack trace from
563  * the allocation and last free path of that object.
564  *
565  * This function will splat if passed a pointer to a non-slab object.
566  * If you are not sure what type of object you have, you should instead
567  * use mem_dump_obj().
568  */
569 void kmem_dump_obj(void *object)
570 {
571 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
572 	int i;
573 	struct slab *slab;
574 	unsigned long ptroffset;
575 	struct kmem_obj_info kp = { };
576 
577 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
578 		return;
579 	slab = virt_to_slab(object);
580 	if (WARN_ON_ONCE(!slab)) {
581 		pr_cont(" non-slab memory.\n");
582 		return;
583 	}
584 	kmem_obj_info(&kp, object, slab);
585 	if (kp.kp_slab_cache)
586 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
587 	else
588 		pr_cont(" slab%s", cp);
589 	if (is_kfence_address(object))
590 		pr_cont(" (kfence)");
591 	if (kp.kp_objp)
592 		pr_cont(" start %px", kp.kp_objp);
593 	if (kp.kp_data_offset)
594 		pr_cont(" data offset %lu", kp.kp_data_offset);
595 	if (kp.kp_objp) {
596 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
597 		pr_cont(" pointer offset %lu", ptroffset);
598 	}
599 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
600 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
601 	if (kp.kp_ret)
602 		pr_cont(" allocated at %pS\n", kp.kp_ret);
603 	else
604 		pr_cont("\n");
605 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
606 		if (!kp.kp_stack[i])
607 			break;
608 		pr_info("    %pS\n", kp.kp_stack[i]);
609 	}
610 
611 	if (kp.kp_free_stack[0])
612 		pr_cont(" Free path:\n");
613 
614 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
615 		if (!kp.kp_free_stack[i])
616 			break;
617 		pr_info("    %pS\n", kp.kp_free_stack[i]);
618 	}
619 
620 }
621 EXPORT_SYMBOL_GPL(kmem_dump_obj);
622 #endif
623 
624 #ifndef CONFIG_SLOB
625 /* Create a cache during boot when no slab services are available yet */
626 void __init create_boot_cache(struct kmem_cache *s, const char *name,
627 		unsigned int size, slab_flags_t flags,
628 		unsigned int useroffset, unsigned int usersize)
629 {
630 	int err;
631 	unsigned int align = ARCH_KMALLOC_MINALIGN;
632 
633 	s->name = name;
634 	s->size = s->object_size = size;
635 
636 	/*
637 	 * For power of two sizes, guarantee natural alignment for kmalloc
638 	 * caches, regardless of SL*B debugging options.
639 	 */
640 	if (is_power_of_2(size))
641 		align = max(align, size);
642 	s->align = calculate_alignment(flags, align, size);
643 
644 	s->useroffset = useroffset;
645 	s->usersize = usersize;
646 
647 	err = __kmem_cache_create(s, flags);
648 
649 	if (err)
650 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
651 					name, size, err);
652 
653 	s->refcount = -1;	/* Exempt from merging for now */
654 }
655 
656 struct kmem_cache *__init create_kmalloc_cache(const char *name,
657 		unsigned int size, slab_flags_t flags,
658 		unsigned int useroffset, unsigned int usersize)
659 {
660 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
661 
662 	if (!s)
663 		panic("Out of memory when creating slab %s\n", name);
664 
665 	create_boot_cache(s, name, size, flags, useroffset, usersize);
666 	kasan_cache_create_kmalloc(s);
667 	list_add(&s->list, &slab_caches);
668 	s->refcount = 1;
669 	return s;
670 }
671 
672 struct kmem_cache *
673 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
674 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
675 EXPORT_SYMBOL(kmalloc_caches);
676 
677 /*
678  * Conversion table for small slabs sizes / 8 to the index in the
679  * kmalloc array. This is necessary for slabs < 192 since we have non power
680  * of two cache sizes there. The size of larger slabs can be determined using
681  * fls.
682  */
683 static u8 size_index[24] __ro_after_init = {
684 	3,	/* 8 */
685 	4,	/* 16 */
686 	5,	/* 24 */
687 	5,	/* 32 */
688 	6,	/* 40 */
689 	6,	/* 48 */
690 	6,	/* 56 */
691 	6,	/* 64 */
692 	1,	/* 72 */
693 	1,	/* 80 */
694 	1,	/* 88 */
695 	1,	/* 96 */
696 	7,	/* 104 */
697 	7,	/* 112 */
698 	7,	/* 120 */
699 	7,	/* 128 */
700 	2,	/* 136 */
701 	2,	/* 144 */
702 	2,	/* 152 */
703 	2,	/* 160 */
704 	2,	/* 168 */
705 	2,	/* 176 */
706 	2,	/* 184 */
707 	2	/* 192 */
708 };
709 
710 static inline unsigned int size_index_elem(unsigned int bytes)
711 {
712 	return (bytes - 1) / 8;
713 }
714 
715 /*
716  * Find the kmem_cache structure that serves a given size of
717  * allocation
718  */
719 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
720 {
721 	unsigned int index;
722 
723 	if (size <= 192) {
724 		if (!size)
725 			return ZERO_SIZE_PTR;
726 
727 		index = size_index[size_index_elem(size)];
728 	} else {
729 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
730 			return NULL;
731 		index = fls(size - 1);
732 	}
733 
734 	return kmalloc_caches[kmalloc_type(flags)][index];
735 }
736 
737 #ifdef CONFIG_ZONE_DMA
738 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
739 #else
740 #define KMALLOC_DMA_NAME(sz)
741 #endif
742 
743 #ifdef CONFIG_MEMCG_KMEM
744 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
745 #else
746 #define KMALLOC_CGROUP_NAME(sz)
747 #endif
748 
749 #define INIT_KMALLOC_INFO(__size, __short_size)			\
750 {								\
751 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
752 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
753 	KMALLOC_CGROUP_NAME(__short_size)			\
754 	KMALLOC_DMA_NAME(__short_size)				\
755 	.size = __size,						\
756 }
757 
758 /*
759  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
760  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
761  * kmalloc-32M.
762  */
763 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
764 	INIT_KMALLOC_INFO(0, 0),
765 	INIT_KMALLOC_INFO(96, 96),
766 	INIT_KMALLOC_INFO(192, 192),
767 	INIT_KMALLOC_INFO(8, 8),
768 	INIT_KMALLOC_INFO(16, 16),
769 	INIT_KMALLOC_INFO(32, 32),
770 	INIT_KMALLOC_INFO(64, 64),
771 	INIT_KMALLOC_INFO(128, 128),
772 	INIT_KMALLOC_INFO(256, 256),
773 	INIT_KMALLOC_INFO(512, 512),
774 	INIT_KMALLOC_INFO(1024, 1k),
775 	INIT_KMALLOC_INFO(2048, 2k),
776 	INIT_KMALLOC_INFO(4096, 4k),
777 	INIT_KMALLOC_INFO(8192, 8k),
778 	INIT_KMALLOC_INFO(16384, 16k),
779 	INIT_KMALLOC_INFO(32768, 32k),
780 	INIT_KMALLOC_INFO(65536, 64k),
781 	INIT_KMALLOC_INFO(131072, 128k),
782 	INIT_KMALLOC_INFO(262144, 256k),
783 	INIT_KMALLOC_INFO(524288, 512k),
784 	INIT_KMALLOC_INFO(1048576, 1M),
785 	INIT_KMALLOC_INFO(2097152, 2M),
786 	INIT_KMALLOC_INFO(4194304, 4M),
787 	INIT_KMALLOC_INFO(8388608, 8M),
788 	INIT_KMALLOC_INFO(16777216, 16M),
789 	INIT_KMALLOC_INFO(33554432, 32M)
790 };
791 
792 /*
793  * Patch up the size_index table if we have strange large alignment
794  * requirements for the kmalloc array. This is only the case for
795  * MIPS it seems. The standard arches will not generate any code here.
796  *
797  * Largest permitted alignment is 256 bytes due to the way we
798  * handle the index determination for the smaller caches.
799  *
800  * Make sure that nothing crazy happens if someone starts tinkering
801  * around with ARCH_KMALLOC_MINALIGN
802  */
803 void __init setup_kmalloc_cache_index_table(void)
804 {
805 	unsigned int i;
806 
807 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
808 		!is_power_of_2(KMALLOC_MIN_SIZE));
809 
810 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
811 		unsigned int elem = size_index_elem(i);
812 
813 		if (elem >= ARRAY_SIZE(size_index))
814 			break;
815 		size_index[elem] = KMALLOC_SHIFT_LOW;
816 	}
817 
818 	if (KMALLOC_MIN_SIZE >= 64) {
819 		/*
820 		 * The 96 byte sized cache is not used if the alignment
821 		 * is 64 byte.
822 		 */
823 		for (i = 64 + 8; i <= 96; i += 8)
824 			size_index[size_index_elem(i)] = 7;
825 
826 	}
827 
828 	if (KMALLOC_MIN_SIZE >= 128) {
829 		/*
830 		 * The 192 byte sized cache is not used if the alignment
831 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
832 		 * instead.
833 		 */
834 		for (i = 128 + 8; i <= 192; i += 8)
835 			size_index[size_index_elem(i)] = 8;
836 	}
837 }
838 
839 static void __init
840 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
841 {
842 	if (type == KMALLOC_RECLAIM) {
843 		flags |= SLAB_RECLAIM_ACCOUNT;
844 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
845 		if (mem_cgroup_kmem_disabled()) {
846 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
847 			return;
848 		}
849 		flags |= SLAB_ACCOUNT;
850 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
851 		flags |= SLAB_CACHE_DMA;
852 	}
853 
854 	kmalloc_caches[type][idx] = create_kmalloc_cache(
855 					kmalloc_info[idx].name[type],
856 					kmalloc_info[idx].size, flags, 0,
857 					kmalloc_info[idx].size);
858 
859 	/*
860 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
861 	 * KMALLOC_NORMAL caches.
862 	 */
863 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
864 		kmalloc_caches[type][idx]->refcount = -1;
865 }
866 
867 /*
868  * Create the kmalloc array. Some of the regular kmalloc arrays
869  * may already have been created because they were needed to
870  * enable allocations for slab creation.
871  */
872 void __init create_kmalloc_caches(slab_flags_t flags)
873 {
874 	int i;
875 	enum kmalloc_cache_type type;
876 
877 	/*
878 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
879 	 */
880 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
881 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
882 			if (!kmalloc_caches[type][i])
883 				new_kmalloc_cache(i, type, flags);
884 
885 			/*
886 			 * Caches that are not of the two-to-the-power-of size.
887 			 * These have to be created immediately after the
888 			 * earlier power of two caches
889 			 */
890 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
891 					!kmalloc_caches[type][1])
892 				new_kmalloc_cache(1, type, flags);
893 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
894 					!kmalloc_caches[type][2])
895 				new_kmalloc_cache(2, type, flags);
896 		}
897 	}
898 
899 	/* Kmalloc array is now usable */
900 	slab_state = UP;
901 }
902 #endif /* !CONFIG_SLOB */
903 
904 gfp_t kmalloc_fix_flags(gfp_t flags)
905 {
906 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
907 
908 	flags &= ~GFP_SLAB_BUG_MASK;
909 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
910 			invalid_mask, &invalid_mask, flags, &flags);
911 	dump_stack();
912 
913 	return flags;
914 }
915 
916 /*
917  * To avoid unnecessary overhead, we pass through large allocation requests
918  * directly to the page allocator. We use __GFP_COMP, because we will need to
919  * know the allocation order to free the pages properly in kfree.
920  */
921 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
922 {
923 	void *ret = NULL;
924 	struct page *page;
925 
926 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
927 		flags = kmalloc_fix_flags(flags);
928 
929 	flags |= __GFP_COMP;
930 	page = alloc_pages(flags, order);
931 	if (likely(page)) {
932 		ret = page_address(page);
933 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
934 				      PAGE_SIZE << order);
935 	}
936 	ret = kasan_kmalloc_large(ret, size, flags);
937 	/* As ret might get tagged, call kmemleak hook after KASAN. */
938 	kmemleak_alloc(ret, size, 1, flags);
939 	return ret;
940 }
941 EXPORT_SYMBOL(kmalloc_order);
942 
943 #ifdef CONFIG_TRACING
944 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
945 {
946 	void *ret = kmalloc_order(size, flags, order);
947 	trace_kmalloc(_RET_IP_, ret, NULL, size, PAGE_SIZE << order, flags);
948 	return ret;
949 }
950 EXPORT_SYMBOL(kmalloc_order_trace);
951 #endif
952 
953 #ifdef CONFIG_SLAB_FREELIST_RANDOM
954 /* Randomize a generic freelist */
955 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
956 			       unsigned int count)
957 {
958 	unsigned int rand;
959 	unsigned int i;
960 
961 	for (i = 0; i < count; i++)
962 		list[i] = i;
963 
964 	/* Fisher-Yates shuffle */
965 	for (i = count - 1; i > 0; i--) {
966 		rand = prandom_u32_state(state);
967 		rand %= (i + 1);
968 		swap(list[i], list[rand]);
969 	}
970 }
971 
972 /* Create a random sequence per cache */
973 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
974 				    gfp_t gfp)
975 {
976 	struct rnd_state state;
977 
978 	if (count < 2 || cachep->random_seq)
979 		return 0;
980 
981 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
982 	if (!cachep->random_seq)
983 		return -ENOMEM;
984 
985 	/* Get best entropy at this stage of boot */
986 	prandom_seed_state(&state, get_random_long());
987 
988 	freelist_randomize(&state, cachep->random_seq, count);
989 	return 0;
990 }
991 
992 /* Destroy the per-cache random freelist sequence */
993 void cache_random_seq_destroy(struct kmem_cache *cachep)
994 {
995 	kfree(cachep->random_seq);
996 	cachep->random_seq = NULL;
997 }
998 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
999 
1000 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1001 #ifdef CONFIG_SLAB
1002 #define SLABINFO_RIGHTS (0600)
1003 #else
1004 #define SLABINFO_RIGHTS (0400)
1005 #endif
1006 
1007 static void print_slabinfo_header(struct seq_file *m)
1008 {
1009 	/*
1010 	 * Output format version, so at least we can change it
1011 	 * without _too_ many complaints.
1012 	 */
1013 #ifdef CONFIG_DEBUG_SLAB
1014 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1015 #else
1016 	seq_puts(m, "slabinfo - version: 2.1\n");
1017 #endif
1018 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1019 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1020 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1021 #ifdef CONFIG_DEBUG_SLAB
1022 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1023 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1024 #endif
1025 	seq_putc(m, '\n');
1026 }
1027 
1028 static void *slab_start(struct seq_file *m, loff_t *pos)
1029 {
1030 	mutex_lock(&slab_mutex);
1031 	return seq_list_start(&slab_caches, *pos);
1032 }
1033 
1034 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1035 {
1036 	return seq_list_next(p, &slab_caches, pos);
1037 }
1038 
1039 static void slab_stop(struct seq_file *m, void *p)
1040 {
1041 	mutex_unlock(&slab_mutex);
1042 }
1043 
1044 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1045 {
1046 	struct slabinfo sinfo;
1047 
1048 	memset(&sinfo, 0, sizeof(sinfo));
1049 	get_slabinfo(s, &sinfo);
1050 
1051 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1052 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1053 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1054 
1055 	seq_printf(m, " : tunables %4u %4u %4u",
1056 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1057 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1058 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1059 	slabinfo_show_stats(m, s);
1060 	seq_putc(m, '\n');
1061 }
1062 
1063 static int slab_show(struct seq_file *m, void *p)
1064 {
1065 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1066 
1067 	if (p == slab_caches.next)
1068 		print_slabinfo_header(m);
1069 	cache_show(s, m);
1070 	return 0;
1071 }
1072 
1073 void dump_unreclaimable_slab(void)
1074 {
1075 	struct kmem_cache *s;
1076 	struct slabinfo sinfo;
1077 
1078 	/*
1079 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1080 	 * sleep in oom path. But, without mutex hold, it may introduce a
1081 	 * risk of crash.
1082 	 * Use mutex_trylock to protect the list traverse, dump nothing
1083 	 * without acquiring the mutex.
1084 	 */
1085 	if (!mutex_trylock(&slab_mutex)) {
1086 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1087 		return;
1088 	}
1089 
1090 	pr_info("Unreclaimable slab info:\n");
1091 	pr_info("Name                      Used          Total\n");
1092 
1093 	list_for_each_entry(s, &slab_caches, list) {
1094 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1095 			continue;
1096 
1097 		get_slabinfo(s, &sinfo);
1098 
1099 		if (sinfo.num_objs > 0)
1100 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1101 				(sinfo.active_objs * s->size) / 1024,
1102 				(sinfo.num_objs * s->size) / 1024);
1103 	}
1104 	mutex_unlock(&slab_mutex);
1105 }
1106 
1107 /*
1108  * slabinfo_op - iterator that generates /proc/slabinfo
1109  *
1110  * Output layout:
1111  * cache-name
1112  * num-active-objs
1113  * total-objs
1114  * object size
1115  * num-active-slabs
1116  * total-slabs
1117  * num-pages-per-slab
1118  * + further values on SMP and with statistics enabled
1119  */
1120 static const struct seq_operations slabinfo_op = {
1121 	.start = slab_start,
1122 	.next = slab_next,
1123 	.stop = slab_stop,
1124 	.show = slab_show,
1125 };
1126 
1127 static int slabinfo_open(struct inode *inode, struct file *file)
1128 {
1129 	return seq_open(file, &slabinfo_op);
1130 }
1131 
1132 static const struct proc_ops slabinfo_proc_ops = {
1133 	.proc_flags	= PROC_ENTRY_PERMANENT,
1134 	.proc_open	= slabinfo_open,
1135 	.proc_read	= seq_read,
1136 	.proc_write	= slabinfo_write,
1137 	.proc_lseek	= seq_lseek,
1138 	.proc_release	= seq_release,
1139 };
1140 
1141 static int __init slab_proc_init(void)
1142 {
1143 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1144 	return 0;
1145 }
1146 module_init(slab_proc_init);
1147 
1148 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1149 
1150 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1151 					   gfp_t flags)
1152 {
1153 	void *ret;
1154 	size_t ks;
1155 
1156 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1157 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1158 		if (!kasan_check_byte(p))
1159 			return NULL;
1160 		ks = kfence_ksize(p) ?: __ksize(p);
1161 	} else
1162 		ks = 0;
1163 
1164 	/* If the object still fits, repoison it precisely. */
1165 	if (ks >= new_size) {
1166 		p = kasan_krealloc((void *)p, new_size, flags);
1167 		return (void *)p;
1168 	}
1169 
1170 	ret = kmalloc_track_caller(new_size, flags);
1171 	if (ret && p) {
1172 		/* Disable KASAN checks as the object's redzone is accessed. */
1173 		kasan_disable_current();
1174 		memcpy(ret, kasan_reset_tag(p), ks);
1175 		kasan_enable_current();
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  * krealloc - reallocate memory. The contents will remain unchanged.
1183  * @p: object to reallocate memory for.
1184  * @new_size: how many bytes of memory are required.
1185  * @flags: the type of memory to allocate.
1186  *
1187  * The contents of the object pointed to are preserved up to the
1188  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1189  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1190  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1191  *
1192  * Return: pointer to the allocated memory or %NULL in case of error
1193  */
1194 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1195 {
1196 	void *ret;
1197 
1198 	if (unlikely(!new_size)) {
1199 		kfree(p);
1200 		return ZERO_SIZE_PTR;
1201 	}
1202 
1203 	ret = __do_krealloc(p, new_size, flags);
1204 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1205 		kfree(p);
1206 
1207 	return ret;
1208 }
1209 EXPORT_SYMBOL(krealloc);
1210 
1211 /**
1212  * kfree_sensitive - Clear sensitive information in memory before freeing
1213  * @p: object to free memory of
1214  *
1215  * The memory of the object @p points to is zeroed before freed.
1216  * If @p is %NULL, kfree_sensitive() does nothing.
1217  *
1218  * Note: this function zeroes the whole allocated buffer which can be a good
1219  * deal bigger than the requested buffer size passed to kmalloc(). So be
1220  * careful when using this function in performance sensitive code.
1221  */
1222 void kfree_sensitive(const void *p)
1223 {
1224 	size_t ks;
1225 	void *mem = (void *)p;
1226 
1227 	ks = ksize(mem);
1228 	if (ks)
1229 		memzero_explicit(mem, ks);
1230 	kfree(mem);
1231 }
1232 EXPORT_SYMBOL(kfree_sensitive);
1233 
1234 /**
1235  * ksize - get the actual amount of memory allocated for a given object
1236  * @objp: Pointer to the object
1237  *
1238  * kmalloc may internally round up allocations and return more memory
1239  * than requested. ksize() can be used to determine the actual amount of
1240  * memory allocated. The caller may use this additional memory, even though
1241  * a smaller amount of memory was initially specified with the kmalloc call.
1242  * The caller must guarantee that objp points to a valid object previously
1243  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1244  * must not be freed during the duration of the call.
1245  *
1246  * Return: size of the actual memory used by @objp in bytes
1247  */
1248 size_t ksize(const void *objp)
1249 {
1250 	size_t size;
1251 
1252 	/*
1253 	 * We need to first check that the pointer to the object is valid, and
1254 	 * only then unpoison the memory. The report printed from ksize() is
1255 	 * more useful, then when it's printed later when the behaviour could
1256 	 * be undefined due to a potential use-after-free or double-free.
1257 	 *
1258 	 * We use kasan_check_byte(), which is supported for the hardware
1259 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1260 	 *
1261 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1262 	 * ksize() writing to and potentially corrupting the memory region.
1263 	 *
1264 	 * We want to perform the check before __ksize(), to avoid potentially
1265 	 * crashing in __ksize() due to accessing invalid metadata.
1266 	 */
1267 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1268 		return 0;
1269 
1270 	size = kfence_ksize(objp) ?: __ksize(objp);
1271 	/*
1272 	 * We assume that ksize callers could use whole allocated area,
1273 	 * so we need to unpoison this area.
1274 	 */
1275 	kasan_unpoison_range(objp, size);
1276 	return size;
1277 }
1278 EXPORT_SYMBOL(ksize);
1279 
1280 /* Tracepoints definitions. */
1281 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1282 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1283 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1284 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1285 EXPORT_TRACEPOINT_SYMBOL(kfree);
1286 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1287 
1288 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1289 {
1290 	if (__should_failslab(s, gfpflags))
1291 		return -ENOMEM;
1292 	return 0;
1293 }
1294 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1295