xref: /linux/mm/slab_common.c (revision ad59baa3169591e0b4cf1a217c9139f2145f4c7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kmemleak.h>
25 #include <linux/kasan.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/page.h>
29 #include <linux/memcontrol.h>
30 #include <linux/stackdepot.h>
31 
32 #include "internal.h"
33 #include "slab.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/kmem.h>
37 
38 enum slab_state slab_state;
39 LIST_HEAD(slab_caches);
40 DEFINE_MUTEX(slab_mutex);
41 struct kmem_cache *kmem_cache;
42 
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 		    slab_caches_to_rcu_destroy_workfn);
47 
48 /*
49  * Set of flags that will prevent slab merging
50  */
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 		SLAB_FAILSLAB | SLAB_NO_MERGE)
54 
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57 
58 /*
59  * Merge control. If this is set then no merging of slab caches will occur.
60  */
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 
63 static int __init setup_slab_nomerge(char *str)
64 {
65 	slab_nomerge = true;
66 	return 1;
67 }
68 
69 static int __init setup_slab_merge(char *str)
70 {
71 	slab_nomerge = false;
72 	return 1;
73 }
74 
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 /*
109  * Figure out what the alignment of the objects will be given a set of
110  * flags, a user specified alignment and the size of the objects.
111  */
112 static unsigned int calculate_alignment(slab_flags_t flags,
113 		unsigned int align, unsigned int size)
114 {
115 	/*
116 	 * If the user wants hardware cache aligned objects then follow that
117 	 * suggestion if the object is sufficiently large.
118 	 *
119 	 * The hardware cache alignment cannot override the specified
120 	 * alignment though. If that is greater then use it.
121 	 */
122 	if (flags & SLAB_HWCACHE_ALIGN) {
123 		unsigned int ralign;
124 
125 		ralign = cache_line_size();
126 		while (size <= ralign / 2)
127 			ralign /= 2;
128 		align = max(align, ralign);
129 	}
130 
131 	align = max(align, arch_slab_minalign());
132 
133 	return ALIGN(align, sizeof(void *));
134 }
135 
136 /*
137  * Find a mergeable slab cache
138  */
139 int slab_unmergeable(struct kmem_cache *s)
140 {
141 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 		return 1;
143 
144 	if (s->ctor)
145 		return 1;
146 
147 #ifdef CONFIG_HARDENED_USERCOPY
148 	if (s->usersize)
149 		return 1;
150 #endif
151 
152 	/*
153 	 * We may have set a slab to be unmergeable during bootstrap.
154 	 */
155 	if (s->refcount < 0)
156 		return 1;
157 
158 	return 0;
159 }
160 
161 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
162 		slab_flags_t flags, const char *name, void (*ctor)(void *))
163 {
164 	struct kmem_cache *s;
165 
166 	if (slab_nomerge)
167 		return NULL;
168 
169 	if (ctor)
170 		return NULL;
171 
172 	size = ALIGN(size, sizeof(void *));
173 	align = calculate_alignment(flags, align, size);
174 	size = ALIGN(size, align);
175 	flags = kmem_cache_flags(flags, name);
176 
177 	if (flags & SLAB_NEVER_MERGE)
178 		return NULL;
179 
180 	list_for_each_entry_reverse(s, &slab_caches, list) {
181 		if (slab_unmergeable(s))
182 			continue;
183 
184 		if (size > s->size)
185 			continue;
186 
187 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 			continue;
189 		/*
190 		 * Check if alignment is compatible.
191 		 * Courtesy of Adrian Drzewiecki
192 		 */
193 		if ((s->size & ~(align - 1)) != s->size)
194 			continue;
195 
196 		if (s->size - size >= sizeof(void *))
197 			continue;
198 
199 		return s;
200 	}
201 	return NULL;
202 }
203 
204 static struct kmem_cache *create_cache(const char *name,
205 		unsigned int object_size, unsigned int align,
206 		slab_flags_t flags, unsigned int useroffset,
207 		unsigned int usersize, void (*ctor)(void *),
208 		struct kmem_cache *root_cache)
209 {
210 	struct kmem_cache *s;
211 	int err;
212 
213 	if (WARN_ON(useroffset + usersize > object_size))
214 		useroffset = usersize = 0;
215 
216 	err = -ENOMEM;
217 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218 	if (!s)
219 		goto out;
220 
221 	s->name = name;
222 	s->size = s->object_size = object_size;
223 	s->align = align;
224 	s->ctor = ctor;
225 #ifdef CONFIG_HARDENED_USERCOPY
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 #endif
229 
230 	err = __kmem_cache_create(s, flags);
231 	if (err)
232 		goto out_free_cache;
233 
234 	s->refcount = 1;
235 	list_add(&s->list, &slab_caches);
236 	return s;
237 
238 out_free_cache:
239 	kmem_cache_free(kmem_cache, s);
240 out:
241 	return ERR_PTR(err);
242 }
243 
244 /**
245  * kmem_cache_create_usercopy - Create a cache with a region suitable
246  * for copying to userspace
247  * @name: A string which is used in /proc/slabinfo to identify this cache.
248  * @size: The size of objects to be created in this cache.
249  * @align: The required alignment for the objects.
250  * @flags: SLAB flags
251  * @useroffset: Usercopy region offset
252  * @usersize: Usercopy region size
253  * @ctor: A constructor for the objects.
254  *
255  * Cannot be called within a interrupt, but can be interrupted.
256  * The @ctor is run when new pages are allocated by the cache.
257  *
258  * The flags are
259  *
260  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261  * to catch references to uninitialised memory.
262  *
263  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
264  * for buffer overruns.
265  *
266  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267  * cacheline.  This can be beneficial if you're counting cycles as closely
268  * as davem.
269  *
270  * Return: a pointer to the cache on success, NULL on failure.
271  */
272 struct kmem_cache *
273 kmem_cache_create_usercopy(const char *name,
274 		  unsigned int size, unsigned int align,
275 		  slab_flags_t flags,
276 		  unsigned int useroffset, unsigned int usersize,
277 		  void (*ctor)(void *))
278 {
279 	struct kmem_cache *s = NULL;
280 	const char *cache_name;
281 	int err;
282 
283 #ifdef CONFIG_SLUB_DEBUG
284 	/*
285 	 * If no slab_debug was enabled globally, the static key is not yet
286 	 * enabled by setup_slub_debug(). Enable it if the cache is being
287 	 * created with any of the debugging flags passed explicitly.
288 	 * It's also possible that this is the first cache created with
289 	 * SLAB_STORE_USER and we should init stack_depot for it.
290 	 */
291 	if (flags & SLAB_DEBUG_FLAGS)
292 		static_branch_enable(&slub_debug_enabled);
293 	if (flags & SLAB_STORE_USER)
294 		stack_depot_init();
295 #endif
296 
297 	mutex_lock(&slab_mutex);
298 
299 	err = kmem_cache_sanity_check(name, size);
300 	if (err) {
301 		goto out_unlock;
302 	}
303 
304 	/* Refuse requests with allocator specific flags */
305 	if (flags & ~SLAB_FLAGS_PERMITTED) {
306 		err = -EINVAL;
307 		goto out_unlock;
308 	}
309 
310 	/*
311 	 * Some allocators will constraint the set of valid flags to a subset
312 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313 	 * case, and we'll just provide them with a sanitized version of the
314 	 * passed flags.
315 	 */
316 	flags &= CACHE_CREATE_MASK;
317 
318 	/* Fail closed on bad usersize of useroffset values. */
319 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320 	    WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 #ifdef SLAB_SUPPORTS_SYSFS
396 /*
397  * For a given kmem_cache, kmem_cache_destroy() should only be called
398  * once or there will be a use-after-free problem. The actual deletion
399  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400  * protection. So they are now done without holding those locks.
401  *
402  * Note that there will be a slight delay in the deletion of sysfs files
403  * if kmem_cache_release() is called indrectly from a work function.
404  */
405 static void kmem_cache_release(struct kmem_cache *s)
406 {
407 	if (slab_state >= FULL) {
408 		sysfs_slab_unlink(s);
409 		sysfs_slab_release(s);
410 	} else {
411 		slab_kmem_cache_release(s);
412 	}
413 }
414 #else
415 static void kmem_cache_release(struct kmem_cache *s)
416 {
417 	slab_kmem_cache_release(s);
418 }
419 #endif
420 
421 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
422 {
423 	LIST_HEAD(to_destroy);
424 	struct kmem_cache *s, *s2;
425 
426 	/*
427 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
428 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
429 	 * through RCU and the associated kmem_cache are dereferenced
430 	 * while freeing the pages, so the kmem_caches should be freed only
431 	 * after the pending RCU operations are finished.  As rcu_barrier()
432 	 * is a pretty slow operation, we batch all pending destructions
433 	 * asynchronously.
434 	 */
435 	mutex_lock(&slab_mutex);
436 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
437 	mutex_unlock(&slab_mutex);
438 
439 	if (list_empty(&to_destroy))
440 		return;
441 
442 	rcu_barrier();
443 
444 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
445 		debugfs_slab_release(s);
446 		kfence_shutdown_cache(s);
447 		kmem_cache_release(s);
448 	}
449 }
450 
451 static int shutdown_cache(struct kmem_cache *s)
452 {
453 	/* free asan quarantined objects */
454 	kasan_cache_shutdown(s);
455 
456 	if (__kmem_cache_shutdown(s) != 0)
457 		return -EBUSY;
458 
459 	list_del(&s->list);
460 
461 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
462 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
463 		schedule_work(&slab_caches_to_rcu_destroy_work);
464 	} else {
465 		kfence_shutdown_cache(s);
466 		debugfs_slab_release(s);
467 	}
468 
469 	return 0;
470 }
471 
472 void slab_kmem_cache_release(struct kmem_cache *s)
473 {
474 	__kmem_cache_release(s);
475 	kfree_const(s->name);
476 	kmem_cache_free(kmem_cache, s);
477 }
478 
479 void kmem_cache_destroy(struct kmem_cache *s)
480 {
481 	int err = -EBUSY;
482 	bool rcu_set;
483 
484 	if (unlikely(!s) || !kasan_check_byte(s))
485 		return;
486 
487 	cpus_read_lock();
488 	mutex_lock(&slab_mutex);
489 
490 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
491 
492 	s->refcount--;
493 	if (s->refcount)
494 		goto out_unlock;
495 
496 	err = shutdown_cache(s);
497 	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
498 	     __func__, s->name, (void *)_RET_IP_);
499 out_unlock:
500 	mutex_unlock(&slab_mutex);
501 	cpus_read_unlock();
502 	if (!err && !rcu_set)
503 		kmem_cache_release(s);
504 }
505 EXPORT_SYMBOL(kmem_cache_destroy);
506 
507 /**
508  * kmem_cache_shrink - Shrink a cache.
509  * @cachep: The cache to shrink.
510  *
511  * Releases as many slabs as possible for a cache.
512  * To help debugging, a zero exit status indicates all slabs were released.
513  *
514  * Return: %0 if all slabs were released, non-zero otherwise
515  */
516 int kmem_cache_shrink(struct kmem_cache *cachep)
517 {
518 	kasan_cache_shrink(cachep);
519 
520 	return __kmem_cache_shrink(cachep);
521 }
522 EXPORT_SYMBOL(kmem_cache_shrink);
523 
524 bool slab_is_available(void)
525 {
526 	return slab_state >= UP;
527 }
528 
529 #ifdef CONFIG_PRINTK
530 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
531 {
532 	if (__kfence_obj_info(kpp, object, slab))
533 		return;
534 	__kmem_obj_info(kpp, object, slab);
535 }
536 
537 /**
538  * kmem_dump_obj - Print available slab provenance information
539  * @object: slab object for which to find provenance information.
540  *
541  * This function uses pr_cont(), so that the caller is expected to have
542  * printed out whatever preamble is appropriate.  The provenance information
543  * depends on the type of object and on how much debugging is enabled.
544  * For a slab-cache object, the fact that it is a slab object is printed,
545  * and, if available, the slab name, return address, and stack trace from
546  * the allocation and last free path of that object.
547  *
548  * Return: %true if the pointer is to a not-yet-freed object from
549  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
550  * is to an already-freed object, and %false otherwise.
551  */
552 bool kmem_dump_obj(void *object)
553 {
554 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
555 	int i;
556 	struct slab *slab;
557 	unsigned long ptroffset;
558 	struct kmem_obj_info kp = { };
559 
560 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
561 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
562 		return false;
563 	slab = virt_to_slab(object);
564 	if (!slab)
565 		return false;
566 
567 	kmem_obj_info(&kp, object, slab);
568 	if (kp.kp_slab_cache)
569 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
570 	else
571 		pr_cont(" slab%s", cp);
572 	if (is_kfence_address(object))
573 		pr_cont(" (kfence)");
574 	if (kp.kp_objp)
575 		pr_cont(" start %px", kp.kp_objp);
576 	if (kp.kp_data_offset)
577 		pr_cont(" data offset %lu", kp.kp_data_offset);
578 	if (kp.kp_objp) {
579 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
580 		pr_cont(" pointer offset %lu", ptroffset);
581 	}
582 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
583 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
584 	if (kp.kp_ret)
585 		pr_cont(" allocated at %pS\n", kp.kp_ret);
586 	else
587 		pr_cont("\n");
588 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
589 		if (!kp.kp_stack[i])
590 			break;
591 		pr_info("    %pS\n", kp.kp_stack[i]);
592 	}
593 
594 	if (kp.kp_free_stack[0])
595 		pr_cont(" Free path:\n");
596 
597 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
598 		if (!kp.kp_free_stack[i])
599 			break;
600 		pr_info("    %pS\n", kp.kp_free_stack[i]);
601 	}
602 
603 	return true;
604 }
605 EXPORT_SYMBOL_GPL(kmem_dump_obj);
606 #endif
607 
608 /* Create a cache during boot when no slab services are available yet */
609 void __init create_boot_cache(struct kmem_cache *s, const char *name,
610 		unsigned int size, slab_flags_t flags,
611 		unsigned int useroffset, unsigned int usersize)
612 {
613 	int err;
614 	unsigned int align = ARCH_KMALLOC_MINALIGN;
615 
616 	s->name = name;
617 	s->size = s->object_size = size;
618 
619 	/*
620 	 * kmalloc caches guarantee alignment of at least the largest
621 	 * power-of-two divisor of the size. For power-of-two sizes,
622 	 * it is the size itself.
623 	 */
624 	if (flags & SLAB_KMALLOC)
625 		align = max(align, 1U << (ffs(size) - 1));
626 	s->align = calculate_alignment(flags, align, size);
627 
628 #ifdef CONFIG_HARDENED_USERCOPY
629 	s->useroffset = useroffset;
630 	s->usersize = usersize;
631 #endif
632 
633 	err = __kmem_cache_create(s, flags);
634 
635 	if (err)
636 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
637 					name, size, err);
638 
639 	s->refcount = -1;	/* Exempt from merging for now */
640 }
641 
642 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
643 						      unsigned int size,
644 						      slab_flags_t flags)
645 {
646 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
647 
648 	if (!s)
649 		panic("Out of memory when creating slab %s\n", name);
650 
651 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
652 	list_add(&s->list, &slab_caches);
653 	s->refcount = 1;
654 	return s;
655 }
656 
657 struct kmem_cache *
658 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
659 { /* initialization for https://llvm.org/pr42570 */ };
660 EXPORT_SYMBOL(kmalloc_caches);
661 
662 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
663 unsigned long random_kmalloc_seed __ro_after_init;
664 EXPORT_SYMBOL(random_kmalloc_seed);
665 #endif
666 
667 /*
668  * Conversion table for small slabs sizes / 8 to the index in the
669  * kmalloc array. This is necessary for slabs < 192 since we have non power
670  * of two cache sizes there. The size of larger slabs can be determined using
671  * fls.
672  */
673 u8 kmalloc_size_index[24] __ro_after_init = {
674 	3,	/* 8 */
675 	4,	/* 16 */
676 	5,	/* 24 */
677 	5,	/* 32 */
678 	6,	/* 40 */
679 	6,	/* 48 */
680 	6,	/* 56 */
681 	6,	/* 64 */
682 	1,	/* 72 */
683 	1,	/* 80 */
684 	1,	/* 88 */
685 	1,	/* 96 */
686 	7,	/* 104 */
687 	7,	/* 112 */
688 	7,	/* 120 */
689 	7,	/* 128 */
690 	2,	/* 136 */
691 	2,	/* 144 */
692 	2,	/* 152 */
693 	2,	/* 160 */
694 	2,	/* 168 */
695 	2,	/* 176 */
696 	2,	/* 184 */
697 	2	/* 192 */
698 };
699 
700 size_t kmalloc_size_roundup(size_t size)
701 {
702 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
703 		/*
704 		 * The flags don't matter since size_index is common to all.
705 		 * Neither does the caller for just getting ->object_size.
706 		 */
707 		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
708 	}
709 
710 	/* Above the smaller buckets, size is a multiple of page size. */
711 	if (size && size <= KMALLOC_MAX_SIZE)
712 		return PAGE_SIZE << get_order(size);
713 
714 	/*
715 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
716 	 * and very large size - kmalloc() may fail.
717 	 */
718 	return size;
719 
720 }
721 EXPORT_SYMBOL(kmalloc_size_roundup);
722 
723 #ifdef CONFIG_ZONE_DMA
724 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
725 #else
726 #define KMALLOC_DMA_NAME(sz)
727 #endif
728 
729 #ifdef CONFIG_MEMCG_KMEM
730 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
731 #else
732 #define KMALLOC_CGROUP_NAME(sz)
733 #endif
734 
735 #ifndef CONFIG_SLUB_TINY
736 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
737 #else
738 #define KMALLOC_RCL_NAME(sz)
739 #endif
740 
741 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
742 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
743 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
744 #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
745 #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
746 #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
747 #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
748 #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
749 #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
750 #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
751 #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
752 #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
753 #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
754 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
755 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
756 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
757 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
758 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
759 #else // CONFIG_RANDOM_KMALLOC_CACHES
760 #define KMALLOC_RANDOM_NAME(N, sz)
761 #endif
762 
763 #define INIT_KMALLOC_INFO(__size, __short_size)			\
764 {								\
765 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
766 	KMALLOC_RCL_NAME(__short_size)				\
767 	KMALLOC_CGROUP_NAME(__short_size)			\
768 	KMALLOC_DMA_NAME(__short_size)				\
769 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
770 	.size = __size,						\
771 }
772 
773 /*
774  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
775  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
776  * kmalloc-2M.
777  */
778 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
779 	INIT_KMALLOC_INFO(0, 0),
780 	INIT_KMALLOC_INFO(96, 96),
781 	INIT_KMALLOC_INFO(192, 192),
782 	INIT_KMALLOC_INFO(8, 8),
783 	INIT_KMALLOC_INFO(16, 16),
784 	INIT_KMALLOC_INFO(32, 32),
785 	INIT_KMALLOC_INFO(64, 64),
786 	INIT_KMALLOC_INFO(128, 128),
787 	INIT_KMALLOC_INFO(256, 256),
788 	INIT_KMALLOC_INFO(512, 512),
789 	INIT_KMALLOC_INFO(1024, 1k),
790 	INIT_KMALLOC_INFO(2048, 2k),
791 	INIT_KMALLOC_INFO(4096, 4k),
792 	INIT_KMALLOC_INFO(8192, 8k),
793 	INIT_KMALLOC_INFO(16384, 16k),
794 	INIT_KMALLOC_INFO(32768, 32k),
795 	INIT_KMALLOC_INFO(65536, 64k),
796 	INIT_KMALLOC_INFO(131072, 128k),
797 	INIT_KMALLOC_INFO(262144, 256k),
798 	INIT_KMALLOC_INFO(524288, 512k),
799 	INIT_KMALLOC_INFO(1048576, 1M),
800 	INIT_KMALLOC_INFO(2097152, 2M)
801 };
802 
803 /*
804  * Patch up the size_index table if we have strange large alignment
805  * requirements for the kmalloc array. This is only the case for
806  * MIPS it seems. The standard arches will not generate any code here.
807  *
808  * Largest permitted alignment is 256 bytes due to the way we
809  * handle the index determination for the smaller caches.
810  *
811  * Make sure that nothing crazy happens if someone starts tinkering
812  * around with ARCH_KMALLOC_MINALIGN
813  */
814 void __init setup_kmalloc_cache_index_table(void)
815 {
816 	unsigned int i;
817 
818 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
819 		!is_power_of_2(KMALLOC_MIN_SIZE));
820 
821 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
822 		unsigned int elem = size_index_elem(i);
823 
824 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
825 			break;
826 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
827 	}
828 
829 	if (KMALLOC_MIN_SIZE >= 64) {
830 		/*
831 		 * The 96 byte sized cache is not used if the alignment
832 		 * is 64 byte.
833 		 */
834 		for (i = 64 + 8; i <= 96; i += 8)
835 			kmalloc_size_index[size_index_elem(i)] = 7;
836 
837 	}
838 
839 	if (KMALLOC_MIN_SIZE >= 128) {
840 		/*
841 		 * The 192 byte sized cache is not used if the alignment
842 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
843 		 * instead.
844 		 */
845 		for (i = 128 + 8; i <= 192; i += 8)
846 			kmalloc_size_index[size_index_elem(i)] = 8;
847 	}
848 }
849 
850 static unsigned int __kmalloc_minalign(void)
851 {
852 	unsigned int minalign = dma_get_cache_alignment();
853 
854 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
855 	    is_swiotlb_allocated())
856 		minalign = ARCH_KMALLOC_MINALIGN;
857 
858 	return max(minalign, arch_slab_minalign());
859 }
860 
861 static void __init
862 new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
863 {
864 	slab_flags_t flags = 0;
865 	unsigned int minalign = __kmalloc_minalign();
866 	unsigned int aligned_size = kmalloc_info[idx].size;
867 	int aligned_idx = idx;
868 
869 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
870 		flags |= SLAB_RECLAIM_ACCOUNT;
871 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
872 		if (mem_cgroup_kmem_disabled()) {
873 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
874 			return;
875 		}
876 		flags |= SLAB_ACCOUNT;
877 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
878 		flags |= SLAB_CACHE_DMA;
879 	}
880 
881 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
882 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
883 		flags |= SLAB_NO_MERGE;
884 #endif
885 
886 	/*
887 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
888 	 * KMALLOC_NORMAL caches.
889 	 */
890 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
891 		flags |= SLAB_NO_MERGE;
892 
893 	if (minalign > ARCH_KMALLOC_MINALIGN) {
894 		aligned_size = ALIGN(aligned_size, minalign);
895 		aligned_idx = __kmalloc_index(aligned_size, false);
896 	}
897 
898 	if (!kmalloc_caches[type][aligned_idx])
899 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
900 					kmalloc_info[aligned_idx].name[type],
901 					aligned_size, flags);
902 	if (idx != aligned_idx)
903 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
904 }
905 
906 /*
907  * Create the kmalloc array. Some of the regular kmalloc arrays
908  * may already have been created because they were needed to
909  * enable allocations for slab creation.
910  */
911 void __init create_kmalloc_caches(void)
912 {
913 	int i;
914 	enum kmalloc_cache_type type;
915 
916 	/*
917 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
918 	 */
919 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
920 		/* Caches that are NOT of the two-to-the-power-of size. */
921 		if (KMALLOC_MIN_SIZE <= 32)
922 			new_kmalloc_cache(1, type);
923 		if (KMALLOC_MIN_SIZE <= 64)
924 			new_kmalloc_cache(2, type);
925 
926 		/* Caches that are of the two-to-the-power-of size. */
927 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
928 			new_kmalloc_cache(i, type);
929 	}
930 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
931 	random_kmalloc_seed = get_random_u64();
932 #endif
933 
934 	/* Kmalloc array is now usable */
935 	slab_state = UP;
936 }
937 
938 /**
939  * __ksize -- Report full size of underlying allocation
940  * @object: pointer to the object
941  *
942  * This should only be used internally to query the true size of allocations.
943  * It is not meant to be a way to discover the usable size of an allocation
944  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
945  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
946  * and/or FORTIFY_SOURCE.
947  *
948  * Return: size of the actual memory used by @object in bytes
949  */
950 size_t __ksize(const void *object)
951 {
952 	struct folio *folio;
953 
954 	if (unlikely(object == ZERO_SIZE_PTR))
955 		return 0;
956 
957 	folio = virt_to_folio(object);
958 
959 	if (unlikely(!folio_test_slab(folio))) {
960 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
961 			return 0;
962 		if (WARN_ON(object != folio_address(folio)))
963 			return 0;
964 		return folio_size(folio);
965 	}
966 
967 #ifdef CONFIG_SLUB_DEBUG
968 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
969 #endif
970 
971 	return slab_ksize(folio_slab(folio)->slab_cache);
972 }
973 
974 gfp_t kmalloc_fix_flags(gfp_t flags)
975 {
976 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
977 
978 	flags &= ~GFP_SLAB_BUG_MASK;
979 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
980 			invalid_mask, &invalid_mask, flags, &flags);
981 	dump_stack();
982 
983 	return flags;
984 }
985 
986 #ifdef CONFIG_SLAB_FREELIST_RANDOM
987 /* Randomize a generic freelist */
988 static void freelist_randomize(unsigned int *list,
989 			       unsigned int count)
990 {
991 	unsigned int rand;
992 	unsigned int i;
993 
994 	for (i = 0; i < count; i++)
995 		list[i] = i;
996 
997 	/* Fisher-Yates shuffle */
998 	for (i = count - 1; i > 0; i--) {
999 		rand = get_random_u32_below(i + 1);
1000 		swap(list[i], list[rand]);
1001 	}
1002 }
1003 
1004 /* Create a random sequence per cache */
1005 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1006 				    gfp_t gfp)
1007 {
1008 
1009 	if (count < 2 || cachep->random_seq)
1010 		return 0;
1011 
1012 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1013 	if (!cachep->random_seq)
1014 		return -ENOMEM;
1015 
1016 	freelist_randomize(cachep->random_seq, count);
1017 	return 0;
1018 }
1019 
1020 /* Destroy the per-cache random freelist sequence */
1021 void cache_random_seq_destroy(struct kmem_cache *cachep)
1022 {
1023 	kfree(cachep->random_seq);
1024 	cachep->random_seq = NULL;
1025 }
1026 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1027 
1028 #ifdef CONFIG_SLUB_DEBUG
1029 #define SLABINFO_RIGHTS (0400)
1030 
1031 static void print_slabinfo_header(struct seq_file *m)
1032 {
1033 	/*
1034 	 * Output format version, so at least we can change it
1035 	 * without _too_ many complaints.
1036 	 */
1037 	seq_puts(m, "slabinfo - version: 2.1\n");
1038 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1039 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1040 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1041 	seq_putc(m, '\n');
1042 }
1043 
1044 static void *slab_start(struct seq_file *m, loff_t *pos)
1045 {
1046 	mutex_lock(&slab_mutex);
1047 	return seq_list_start(&slab_caches, *pos);
1048 }
1049 
1050 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1051 {
1052 	return seq_list_next(p, &slab_caches, pos);
1053 }
1054 
1055 static void slab_stop(struct seq_file *m, void *p)
1056 {
1057 	mutex_unlock(&slab_mutex);
1058 }
1059 
1060 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1061 {
1062 	struct slabinfo sinfo;
1063 
1064 	memset(&sinfo, 0, sizeof(sinfo));
1065 	get_slabinfo(s, &sinfo);
1066 
1067 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1068 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1069 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1070 
1071 	seq_printf(m, " : tunables %4u %4u %4u",
1072 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1073 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1074 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1075 	seq_putc(m, '\n');
1076 }
1077 
1078 static int slab_show(struct seq_file *m, void *p)
1079 {
1080 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1081 
1082 	if (p == slab_caches.next)
1083 		print_slabinfo_header(m);
1084 	cache_show(s, m);
1085 	return 0;
1086 }
1087 
1088 void dump_unreclaimable_slab(void)
1089 {
1090 	struct kmem_cache *s;
1091 	struct slabinfo sinfo;
1092 
1093 	/*
1094 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1095 	 * sleep in oom path. But, without mutex hold, it may introduce a
1096 	 * risk of crash.
1097 	 * Use mutex_trylock to protect the list traverse, dump nothing
1098 	 * without acquiring the mutex.
1099 	 */
1100 	if (!mutex_trylock(&slab_mutex)) {
1101 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1102 		return;
1103 	}
1104 
1105 	pr_info("Unreclaimable slab info:\n");
1106 	pr_info("Name                      Used          Total\n");
1107 
1108 	list_for_each_entry(s, &slab_caches, list) {
1109 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1110 			continue;
1111 
1112 		get_slabinfo(s, &sinfo);
1113 
1114 		if (sinfo.num_objs > 0)
1115 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1116 				(sinfo.active_objs * s->size) / 1024,
1117 				(sinfo.num_objs * s->size) / 1024);
1118 	}
1119 	mutex_unlock(&slab_mutex);
1120 }
1121 
1122 /*
1123  * slabinfo_op - iterator that generates /proc/slabinfo
1124  *
1125  * Output layout:
1126  * cache-name
1127  * num-active-objs
1128  * total-objs
1129  * object size
1130  * num-active-slabs
1131  * total-slabs
1132  * num-pages-per-slab
1133  * + further values on SMP and with statistics enabled
1134  */
1135 static const struct seq_operations slabinfo_op = {
1136 	.start = slab_start,
1137 	.next = slab_next,
1138 	.stop = slab_stop,
1139 	.show = slab_show,
1140 };
1141 
1142 static int slabinfo_open(struct inode *inode, struct file *file)
1143 {
1144 	return seq_open(file, &slabinfo_op);
1145 }
1146 
1147 static const struct proc_ops slabinfo_proc_ops = {
1148 	.proc_flags	= PROC_ENTRY_PERMANENT,
1149 	.proc_open	= slabinfo_open,
1150 	.proc_read	= seq_read,
1151 	.proc_lseek	= seq_lseek,
1152 	.proc_release	= seq_release,
1153 };
1154 
1155 static int __init slab_proc_init(void)
1156 {
1157 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1158 	return 0;
1159 }
1160 module_init(slab_proc_init);
1161 
1162 #endif /* CONFIG_SLUB_DEBUG */
1163 
1164 static __always_inline __realloc_size(2) void *
1165 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1166 {
1167 	void *ret;
1168 	size_t ks;
1169 
1170 	/* Check for double-free before calling ksize. */
1171 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1172 		if (!kasan_check_byte(p))
1173 			return NULL;
1174 		ks = ksize(p);
1175 	} else
1176 		ks = 0;
1177 
1178 	/* If the object still fits, repoison it precisely. */
1179 	if (ks >= new_size) {
1180 		p = kasan_krealloc((void *)p, new_size, flags);
1181 		return (void *)p;
1182 	}
1183 
1184 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
1185 	if (ret && p) {
1186 		/* Disable KASAN checks as the object's redzone is accessed. */
1187 		kasan_disable_current();
1188 		memcpy(ret, kasan_reset_tag(p), ks);
1189 		kasan_enable_current();
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 /**
1196  * krealloc - reallocate memory. The contents will remain unchanged.
1197  * @p: object to reallocate memory for.
1198  * @new_size: how many bytes of memory are required.
1199  * @flags: the type of memory to allocate.
1200  *
1201  * The contents of the object pointed to are preserved up to the
1202  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1203  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1204  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1205  *
1206  * Return: pointer to the allocated memory or %NULL in case of error
1207  */
1208 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
1209 {
1210 	void *ret;
1211 
1212 	if (unlikely(!new_size)) {
1213 		kfree(p);
1214 		return ZERO_SIZE_PTR;
1215 	}
1216 
1217 	ret = __do_krealloc(p, new_size, flags);
1218 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1219 		kfree(p);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(krealloc_noprof);
1224 
1225 /**
1226  * kfree_sensitive - Clear sensitive information in memory before freeing
1227  * @p: object to free memory of
1228  *
1229  * The memory of the object @p points to is zeroed before freed.
1230  * If @p is %NULL, kfree_sensitive() does nothing.
1231  *
1232  * Note: this function zeroes the whole allocated buffer which can be a good
1233  * deal bigger than the requested buffer size passed to kmalloc(). So be
1234  * careful when using this function in performance sensitive code.
1235  */
1236 void kfree_sensitive(const void *p)
1237 {
1238 	size_t ks;
1239 	void *mem = (void *)p;
1240 
1241 	ks = ksize(mem);
1242 	if (ks) {
1243 		kasan_unpoison_range(mem, ks);
1244 		memzero_explicit(mem, ks);
1245 	}
1246 	kfree(mem);
1247 }
1248 EXPORT_SYMBOL(kfree_sensitive);
1249 
1250 size_t ksize(const void *objp)
1251 {
1252 	/*
1253 	 * We need to first check that the pointer to the object is valid.
1254 	 * The KASAN report printed from ksize() is more useful, then when
1255 	 * it's printed later when the behaviour could be undefined due to
1256 	 * a potential use-after-free or double-free.
1257 	 *
1258 	 * We use kasan_check_byte(), which is supported for the hardware
1259 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1260 	 *
1261 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1262 	 * ksize() writing to and potentially corrupting the memory region.
1263 	 *
1264 	 * We want to perform the check before __ksize(), to avoid potentially
1265 	 * crashing in __ksize() due to accessing invalid metadata.
1266 	 */
1267 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1268 		return 0;
1269 
1270 	return kfence_ksize(objp) ?: __ksize(objp);
1271 }
1272 EXPORT_SYMBOL(ksize);
1273 
1274 /* Tracepoints definitions. */
1275 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1276 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1277 EXPORT_TRACEPOINT_SYMBOL(kfree);
1278 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1279 
1280