1 /* 2 * Slab allocator functions that are independent of the allocator strategy 3 * 4 * (C) 2012 Christoph Lameter <cl@linux.com> 5 */ 6 #include <linux/slab.h> 7 8 #include <linux/mm.h> 9 #include <linux/poison.h> 10 #include <linux/interrupt.h> 11 #include <linux/memory.h> 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/cpu.h> 15 #include <linux/uaccess.h> 16 #include <linux/seq_file.h> 17 #include <linux/proc_fs.h> 18 #include <asm/cacheflush.h> 19 #include <asm/tlbflush.h> 20 #include <asm/page.h> 21 #include <linux/memcontrol.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/kmem.h> 25 26 #include "slab.h" 27 28 enum slab_state slab_state; 29 LIST_HEAD(slab_caches); 30 DEFINE_MUTEX(slab_mutex); 31 struct kmem_cache *kmem_cache; 32 33 /* 34 * Set of flags that will prevent slab merging 35 */ 36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 38 SLAB_FAILSLAB) 39 40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK) 41 42 /* 43 * Merge control. If this is set then no merging of slab caches will occur. 44 * (Could be removed. This was introduced to pacify the merge skeptics.) 45 */ 46 static int slab_nomerge; 47 48 static int __init setup_slab_nomerge(char *str) 49 { 50 slab_nomerge = 1; 51 return 1; 52 } 53 54 #ifdef CONFIG_SLUB 55 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 56 #endif 57 58 __setup("slab_nomerge", setup_slab_nomerge); 59 60 /* 61 * Determine the size of a slab object 62 */ 63 unsigned int kmem_cache_size(struct kmem_cache *s) 64 { 65 return s->object_size; 66 } 67 EXPORT_SYMBOL(kmem_cache_size); 68 69 #ifdef CONFIG_DEBUG_VM 70 static int kmem_cache_sanity_check(const char *name, size_t size) 71 { 72 struct kmem_cache *s = NULL; 73 74 if (!name || in_interrupt() || size < sizeof(void *) || 75 size > KMALLOC_MAX_SIZE) { 76 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 77 return -EINVAL; 78 } 79 80 list_for_each_entry(s, &slab_caches, list) { 81 char tmp; 82 int res; 83 84 /* 85 * This happens when the module gets unloaded and doesn't 86 * destroy its slab cache and no-one else reuses the vmalloc 87 * area of the module. Print a warning. 88 */ 89 res = probe_kernel_address(s->name, tmp); 90 if (res) { 91 pr_err("Slab cache with size %d has lost its name\n", 92 s->object_size); 93 continue; 94 } 95 } 96 97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 98 return 0; 99 } 100 #else 101 static inline int kmem_cache_sanity_check(const char *name, size_t size) 102 { 103 return 0; 104 } 105 #endif 106 107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 108 { 109 size_t i; 110 111 for (i = 0; i < nr; i++) 112 kmem_cache_free(s, p[i]); 113 } 114 115 bool __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 116 void **p) 117 { 118 size_t i; 119 120 for (i = 0; i < nr; i++) { 121 void *x = p[i] = kmem_cache_alloc(s, flags); 122 if (!x) { 123 __kmem_cache_free_bulk(s, i, p); 124 return false; 125 } 126 } 127 return true; 128 } 129 130 #ifdef CONFIG_MEMCG_KMEM 131 void slab_init_memcg_params(struct kmem_cache *s) 132 { 133 s->memcg_params.is_root_cache = true; 134 INIT_LIST_HEAD(&s->memcg_params.list); 135 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 136 } 137 138 static int init_memcg_params(struct kmem_cache *s, 139 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 140 { 141 struct memcg_cache_array *arr; 142 143 if (memcg) { 144 s->memcg_params.is_root_cache = false; 145 s->memcg_params.memcg = memcg; 146 s->memcg_params.root_cache = root_cache; 147 return 0; 148 } 149 150 slab_init_memcg_params(s); 151 152 if (!memcg_nr_cache_ids) 153 return 0; 154 155 arr = kzalloc(sizeof(struct memcg_cache_array) + 156 memcg_nr_cache_ids * sizeof(void *), 157 GFP_KERNEL); 158 if (!arr) 159 return -ENOMEM; 160 161 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 162 return 0; 163 } 164 165 static void destroy_memcg_params(struct kmem_cache *s) 166 { 167 if (is_root_cache(s)) 168 kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 169 } 170 171 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 172 { 173 struct memcg_cache_array *old, *new; 174 175 if (!is_root_cache(s)) 176 return 0; 177 178 new = kzalloc(sizeof(struct memcg_cache_array) + 179 new_array_size * sizeof(void *), GFP_KERNEL); 180 if (!new) 181 return -ENOMEM; 182 183 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 184 lockdep_is_held(&slab_mutex)); 185 if (old) 186 memcpy(new->entries, old->entries, 187 memcg_nr_cache_ids * sizeof(void *)); 188 189 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 190 if (old) 191 kfree_rcu(old, rcu); 192 return 0; 193 } 194 195 int memcg_update_all_caches(int num_memcgs) 196 { 197 struct kmem_cache *s; 198 int ret = 0; 199 200 mutex_lock(&slab_mutex); 201 list_for_each_entry(s, &slab_caches, list) { 202 ret = update_memcg_params(s, num_memcgs); 203 /* 204 * Instead of freeing the memory, we'll just leave the caches 205 * up to this point in an updated state. 206 */ 207 if (ret) 208 break; 209 } 210 mutex_unlock(&slab_mutex); 211 return ret; 212 } 213 #else 214 static inline int init_memcg_params(struct kmem_cache *s, 215 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 216 { 217 return 0; 218 } 219 220 static inline void destroy_memcg_params(struct kmem_cache *s) 221 { 222 } 223 #endif /* CONFIG_MEMCG_KMEM */ 224 225 /* 226 * Find a mergeable slab cache 227 */ 228 int slab_unmergeable(struct kmem_cache *s) 229 { 230 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 231 return 1; 232 233 if (!is_root_cache(s)) 234 return 1; 235 236 if (s->ctor) 237 return 1; 238 239 /* 240 * We may have set a slab to be unmergeable during bootstrap. 241 */ 242 if (s->refcount < 0) 243 return 1; 244 245 return 0; 246 } 247 248 struct kmem_cache *find_mergeable(size_t size, size_t align, 249 unsigned long flags, const char *name, void (*ctor)(void *)) 250 { 251 struct kmem_cache *s; 252 253 if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) 254 return NULL; 255 256 if (ctor) 257 return NULL; 258 259 size = ALIGN(size, sizeof(void *)); 260 align = calculate_alignment(flags, align, size); 261 size = ALIGN(size, align); 262 flags = kmem_cache_flags(size, flags, name, NULL); 263 264 list_for_each_entry_reverse(s, &slab_caches, list) { 265 if (slab_unmergeable(s)) 266 continue; 267 268 if (size > s->size) 269 continue; 270 271 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 272 continue; 273 /* 274 * Check if alignment is compatible. 275 * Courtesy of Adrian Drzewiecki 276 */ 277 if ((s->size & ~(align - 1)) != s->size) 278 continue; 279 280 if (s->size - size >= sizeof(void *)) 281 continue; 282 283 if (IS_ENABLED(CONFIG_SLAB) && align && 284 (align > s->align || s->align % align)) 285 continue; 286 287 return s; 288 } 289 return NULL; 290 } 291 292 /* 293 * Figure out what the alignment of the objects will be given a set of 294 * flags, a user specified alignment and the size of the objects. 295 */ 296 unsigned long calculate_alignment(unsigned long flags, 297 unsigned long align, unsigned long size) 298 { 299 /* 300 * If the user wants hardware cache aligned objects then follow that 301 * suggestion if the object is sufficiently large. 302 * 303 * The hardware cache alignment cannot override the specified 304 * alignment though. If that is greater then use it. 305 */ 306 if (flags & SLAB_HWCACHE_ALIGN) { 307 unsigned long ralign = cache_line_size(); 308 while (size <= ralign / 2) 309 ralign /= 2; 310 align = max(align, ralign); 311 } 312 313 if (align < ARCH_SLAB_MINALIGN) 314 align = ARCH_SLAB_MINALIGN; 315 316 return ALIGN(align, sizeof(void *)); 317 } 318 319 static struct kmem_cache *create_cache(const char *name, 320 size_t object_size, size_t size, size_t align, 321 unsigned long flags, void (*ctor)(void *), 322 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 323 { 324 struct kmem_cache *s; 325 int err; 326 327 err = -ENOMEM; 328 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 329 if (!s) 330 goto out; 331 332 s->name = name; 333 s->object_size = object_size; 334 s->size = size; 335 s->align = align; 336 s->ctor = ctor; 337 338 err = init_memcg_params(s, memcg, root_cache); 339 if (err) 340 goto out_free_cache; 341 342 err = __kmem_cache_create(s, flags); 343 if (err) 344 goto out_free_cache; 345 346 s->refcount = 1; 347 list_add(&s->list, &slab_caches); 348 out: 349 if (err) 350 return ERR_PTR(err); 351 return s; 352 353 out_free_cache: 354 destroy_memcg_params(s); 355 kmem_cache_free(kmem_cache, s); 356 goto out; 357 } 358 359 /* 360 * kmem_cache_create - Create a cache. 361 * @name: A string which is used in /proc/slabinfo to identify this cache. 362 * @size: The size of objects to be created in this cache. 363 * @align: The required alignment for the objects. 364 * @flags: SLAB flags 365 * @ctor: A constructor for the objects. 366 * 367 * Returns a ptr to the cache on success, NULL on failure. 368 * Cannot be called within a interrupt, but can be interrupted. 369 * The @ctor is run when new pages are allocated by the cache. 370 * 371 * The flags are 372 * 373 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 374 * to catch references to uninitialised memory. 375 * 376 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 377 * for buffer overruns. 378 * 379 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 380 * cacheline. This can be beneficial if you're counting cycles as closely 381 * as davem. 382 */ 383 struct kmem_cache * 384 kmem_cache_create(const char *name, size_t size, size_t align, 385 unsigned long flags, void (*ctor)(void *)) 386 { 387 struct kmem_cache *s = NULL; 388 const char *cache_name; 389 int err; 390 391 get_online_cpus(); 392 get_online_mems(); 393 memcg_get_cache_ids(); 394 395 mutex_lock(&slab_mutex); 396 397 err = kmem_cache_sanity_check(name, size); 398 if (err) { 399 goto out_unlock; 400 } 401 402 /* 403 * Some allocators will constraint the set of valid flags to a subset 404 * of all flags. We expect them to define CACHE_CREATE_MASK in this 405 * case, and we'll just provide them with a sanitized version of the 406 * passed flags. 407 */ 408 flags &= CACHE_CREATE_MASK; 409 410 s = __kmem_cache_alias(name, size, align, flags, ctor); 411 if (s) 412 goto out_unlock; 413 414 cache_name = kstrdup_const(name, GFP_KERNEL); 415 if (!cache_name) { 416 err = -ENOMEM; 417 goto out_unlock; 418 } 419 420 s = create_cache(cache_name, size, size, 421 calculate_alignment(flags, align, size), 422 flags, ctor, NULL, NULL); 423 if (IS_ERR(s)) { 424 err = PTR_ERR(s); 425 kfree_const(cache_name); 426 } 427 428 out_unlock: 429 mutex_unlock(&slab_mutex); 430 431 memcg_put_cache_ids(); 432 put_online_mems(); 433 put_online_cpus(); 434 435 if (err) { 436 if (flags & SLAB_PANIC) 437 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 438 name, err); 439 else { 440 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", 441 name, err); 442 dump_stack(); 443 } 444 return NULL; 445 } 446 return s; 447 } 448 EXPORT_SYMBOL(kmem_cache_create); 449 450 static int shutdown_cache(struct kmem_cache *s, 451 struct list_head *release, bool *need_rcu_barrier) 452 { 453 if (__kmem_cache_shutdown(s) != 0) 454 return -EBUSY; 455 456 if (s->flags & SLAB_DESTROY_BY_RCU) 457 *need_rcu_barrier = true; 458 459 list_move(&s->list, release); 460 return 0; 461 } 462 463 static void release_caches(struct list_head *release, bool need_rcu_barrier) 464 { 465 struct kmem_cache *s, *s2; 466 467 if (need_rcu_barrier) 468 rcu_barrier(); 469 470 list_for_each_entry_safe(s, s2, release, list) { 471 #ifdef SLAB_SUPPORTS_SYSFS 472 sysfs_slab_remove(s); 473 #else 474 slab_kmem_cache_release(s); 475 #endif 476 } 477 } 478 479 #ifdef CONFIG_MEMCG_KMEM 480 /* 481 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 482 * @memcg: The memory cgroup the new cache is for. 483 * @root_cache: The parent of the new cache. 484 * 485 * This function attempts to create a kmem cache that will serve allocation 486 * requests going from @memcg to @root_cache. The new cache inherits properties 487 * from its parent. 488 */ 489 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 490 struct kmem_cache *root_cache) 491 { 492 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 493 struct cgroup_subsys_state *css = &memcg->css; 494 struct memcg_cache_array *arr; 495 struct kmem_cache *s = NULL; 496 char *cache_name; 497 int idx; 498 499 get_online_cpus(); 500 get_online_mems(); 501 502 mutex_lock(&slab_mutex); 503 504 /* 505 * The memory cgroup could have been deactivated while the cache 506 * creation work was pending. 507 */ 508 if (!memcg_kmem_is_active(memcg)) 509 goto out_unlock; 510 511 idx = memcg_cache_id(memcg); 512 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 513 lockdep_is_held(&slab_mutex)); 514 515 /* 516 * Since per-memcg caches are created asynchronously on first 517 * allocation (see memcg_kmem_get_cache()), several threads can try to 518 * create the same cache, but only one of them may succeed. 519 */ 520 if (arr->entries[idx]) 521 goto out_unlock; 522 523 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 524 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 525 css->id, memcg_name_buf); 526 if (!cache_name) 527 goto out_unlock; 528 529 s = create_cache(cache_name, root_cache->object_size, 530 root_cache->size, root_cache->align, 531 root_cache->flags, root_cache->ctor, 532 memcg, root_cache); 533 /* 534 * If we could not create a memcg cache, do not complain, because 535 * that's not critical at all as we can always proceed with the root 536 * cache. 537 */ 538 if (IS_ERR(s)) { 539 kfree(cache_name); 540 goto out_unlock; 541 } 542 543 list_add(&s->memcg_params.list, &root_cache->memcg_params.list); 544 545 /* 546 * Since readers won't lock (see cache_from_memcg_idx()), we need a 547 * barrier here to ensure nobody will see the kmem_cache partially 548 * initialized. 549 */ 550 smp_wmb(); 551 arr->entries[idx] = s; 552 553 out_unlock: 554 mutex_unlock(&slab_mutex); 555 556 put_online_mems(); 557 put_online_cpus(); 558 } 559 560 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) 561 { 562 int idx; 563 struct memcg_cache_array *arr; 564 struct kmem_cache *s, *c; 565 566 idx = memcg_cache_id(memcg); 567 568 get_online_cpus(); 569 get_online_mems(); 570 571 mutex_lock(&slab_mutex); 572 list_for_each_entry(s, &slab_caches, list) { 573 if (!is_root_cache(s)) 574 continue; 575 576 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 577 lockdep_is_held(&slab_mutex)); 578 c = arr->entries[idx]; 579 if (!c) 580 continue; 581 582 __kmem_cache_shrink(c, true); 583 arr->entries[idx] = NULL; 584 } 585 mutex_unlock(&slab_mutex); 586 587 put_online_mems(); 588 put_online_cpus(); 589 } 590 591 static int __shutdown_memcg_cache(struct kmem_cache *s, 592 struct list_head *release, bool *need_rcu_barrier) 593 { 594 BUG_ON(is_root_cache(s)); 595 596 if (shutdown_cache(s, release, need_rcu_barrier)) 597 return -EBUSY; 598 599 list_del(&s->memcg_params.list); 600 return 0; 601 } 602 603 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) 604 { 605 LIST_HEAD(release); 606 bool need_rcu_barrier = false; 607 struct kmem_cache *s, *s2; 608 609 get_online_cpus(); 610 get_online_mems(); 611 612 mutex_lock(&slab_mutex); 613 list_for_each_entry_safe(s, s2, &slab_caches, list) { 614 if (is_root_cache(s) || s->memcg_params.memcg != memcg) 615 continue; 616 /* 617 * The cgroup is about to be freed and therefore has no charges 618 * left. Hence, all its caches must be empty by now. 619 */ 620 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier)); 621 } 622 mutex_unlock(&slab_mutex); 623 624 put_online_mems(); 625 put_online_cpus(); 626 627 release_caches(&release, need_rcu_barrier); 628 } 629 630 static int shutdown_memcg_caches(struct kmem_cache *s, 631 struct list_head *release, bool *need_rcu_barrier) 632 { 633 struct memcg_cache_array *arr; 634 struct kmem_cache *c, *c2; 635 LIST_HEAD(busy); 636 int i; 637 638 BUG_ON(!is_root_cache(s)); 639 640 /* 641 * First, shutdown active caches, i.e. caches that belong to online 642 * memory cgroups. 643 */ 644 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 645 lockdep_is_held(&slab_mutex)); 646 for_each_memcg_cache_index(i) { 647 c = arr->entries[i]; 648 if (!c) 649 continue; 650 if (__shutdown_memcg_cache(c, release, need_rcu_barrier)) 651 /* 652 * The cache still has objects. Move it to a temporary 653 * list so as not to try to destroy it for a second 654 * time while iterating over inactive caches below. 655 */ 656 list_move(&c->memcg_params.list, &busy); 657 else 658 /* 659 * The cache is empty and will be destroyed soon. Clear 660 * the pointer to it in the memcg_caches array so that 661 * it will never be accessed even if the root cache 662 * stays alive. 663 */ 664 arr->entries[i] = NULL; 665 } 666 667 /* 668 * Second, shutdown all caches left from memory cgroups that are now 669 * offline. 670 */ 671 list_for_each_entry_safe(c, c2, &s->memcg_params.list, 672 memcg_params.list) 673 __shutdown_memcg_cache(c, release, need_rcu_barrier); 674 675 list_splice(&busy, &s->memcg_params.list); 676 677 /* 678 * A cache being destroyed must be empty. In particular, this means 679 * that all per memcg caches attached to it must be empty too. 680 */ 681 if (!list_empty(&s->memcg_params.list)) 682 return -EBUSY; 683 return 0; 684 } 685 #else 686 static inline int shutdown_memcg_caches(struct kmem_cache *s, 687 struct list_head *release, bool *need_rcu_barrier) 688 { 689 return 0; 690 } 691 #endif /* CONFIG_MEMCG_KMEM */ 692 693 void slab_kmem_cache_release(struct kmem_cache *s) 694 { 695 destroy_memcg_params(s); 696 kfree_const(s->name); 697 kmem_cache_free(kmem_cache, s); 698 } 699 700 void kmem_cache_destroy(struct kmem_cache *s) 701 { 702 LIST_HEAD(release); 703 bool need_rcu_barrier = false; 704 int err; 705 706 if (unlikely(!s)) 707 return; 708 709 get_online_cpus(); 710 get_online_mems(); 711 712 mutex_lock(&slab_mutex); 713 714 s->refcount--; 715 if (s->refcount) 716 goto out_unlock; 717 718 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier); 719 if (!err) 720 err = shutdown_cache(s, &release, &need_rcu_barrier); 721 722 if (err) { 723 pr_err("kmem_cache_destroy %s: " 724 "Slab cache still has objects\n", s->name); 725 dump_stack(); 726 } 727 out_unlock: 728 mutex_unlock(&slab_mutex); 729 730 put_online_mems(); 731 put_online_cpus(); 732 733 release_caches(&release, need_rcu_barrier); 734 } 735 EXPORT_SYMBOL(kmem_cache_destroy); 736 737 /** 738 * kmem_cache_shrink - Shrink a cache. 739 * @cachep: The cache to shrink. 740 * 741 * Releases as many slabs as possible for a cache. 742 * To help debugging, a zero exit status indicates all slabs were released. 743 */ 744 int kmem_cache_shrink(struct kmem_cache *cachep) 745 { 746 int ret; 747 748 get_online_cpus(); 749 get_online_mems(); 750 ret = __kmem_cache_shrink(cachep, false); 751 put_online_mems(); 752 put_online_cpus(); 753 return ret; 754 } 755 EXPORT_SYMBOL(kmem_cache_shrink); 756 757 bool slab_is_available(void) 758 { 759 return slab_state >= UP; 760 } 761 762 #ifndef CONFIG_SLOB 763 /* Create a cache during boot when no slab services are available yet */ 764 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, 765 unsigned long flags) 766 { 767 int err; 768 769 s->name = name; 770 s->size = s->object_size = size; 771 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 772 773 slab_init_memcg_params(s); 774 775 err = __kmem_cache_create(s, flags); 776 777 if (err) 778 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", 779 name, size, err); 780 781 s->refcount = -1; /* Exempt from merging for now */ 782 } 783 784 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, 785 unsigned long flags) 786 { 787 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 788 789 if (!s) 790 panic("Out of memory when creating slab %s\n", name); 791 792 create_boot_cache(s, name, size, flags); 793 list_add(&s->list, &slab_caches); 794 s->refcount = 1; 795 return s; 796 } 797 798 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 799 EXPORT_SYMBOL(kmalloc_caches); 800 801 #ifdef CONFIG_ZONE_DMA 802 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 803 EXPORT_SYMBOL(kmalloc_dma_caches); 804 #endif 805 806 /* 807 * Conversion table for small slabs sizes / 8 to the index in the 808 * kmalloc array. This is necessary for slabs < 192 since we have non power 809 * of two cache sizes there. The size of larger slabs can be determined using 810 * fls. 811 */ 812 static s8 size_index[24] = { 813 3, /* 8 */ 814 4, /* 16 */ 815 5, /* 24 */ 816 5, /* 32 */ 817 6, /* 40 */ 818 6, /* 48 */ 819 6, /* 56 */ 820 6, /* 64 */ 821 1, /* 72 */ 822 1, /* 80 */ 823 1, /* 88 */ 824 1, /* 96 */ 825 7, /* 104 */ 826 7, /* 112 */ 827 7, /* 120 */ 828 7, /* 128 */ 829 2, /* 136 */ 830 2, /* 144 */ 831 2, /* 152 */ 832 2, /* 160 */ 833 2, /* 168 */ 834 2, /* 176 */ 835 2, /* 184 */ 836 2 /* 192 */ 837 }; 838 839 static inline int size_index_elem(size_t bytes) 840 { 841 return (bytes - 1) / 8; 842 } 843 844 /* 845 * Find the kmem_cache structure that serves a given size of 846 * allocation 847 */ 848 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 849 { 850 int index; 851 852 if (unlikely(size > KMALLOC_MAX_SIZE)) { 853 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 854 return NULL; 855 } 856 857 if (size <= 192) { 858 if (!size) 859 return ZERO_SIZE_PTR; 860 861 index = size_index[size_index_elem(size)]; 862 } else 863 index = fls(size - 1); 864 865 #ifdef CONFIG_ZONE_DMA 866 if (unlikely((flags & GFP_DMA))) 867 return kmalloc_dma_caches[index]; 868 869 #endif 870 return kmalloc_caches[index]; 871 } 872 873 /* 874 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 875 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 876 * kmalloc-67108864. 877 */ 878 static struct { 879 const char *name; 880 unsigned long size; 881 } const kmalloc_info[] __initconst = { 882 {NULL, 0}, {"kmalloc-96", 96}, 883 {"kmalloc-192", 192}, {"kmalloc-8", 8}, 884 {"kmalloc-16", 16}, {"kmalloc-32", 32}, 885 {"kmalloc-64", 64}, {"kmalloc-128", 128}, 886 {"kmalloc-256", 256}, {"kmalloc-512", 512}, 887 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, 888 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, 889 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, 890 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, 891 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, 892 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, 893 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, 894 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, 895 {"kmalloc-67108864", 67108864} 896 }; 897 898 /* 899 * Patch up the size_index table if we have strange large alignment 900 * requirements for the kmalloc array. This is only the case for 901 * MIPS it seems. The standard arches will not generate any code here. 902 * 903 * Largest permitted alignment is 256 bytes due to the way we 904 * handle the index determination for the smaller caches. 905 * 906 * Make sure that nothing crazy happens if someone starts tinkering 907 * around with ARCH_KMALLOC_MINALIGN 908 */ 909 void __init setup_kmalloc_cache_index_table(void) 910 { 911 int i; 912 913 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 914 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 915 916 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 917 int elem = size_index_elem(i); 918 919 if (elem >= ARRAY_SIZE(size_index)) 920 break; 921 size_index[elem] = KMALLOC_SHIFT_LOW; 922 } 923 924 if (KMALLOC_MIN_SIZE >= 64) { 925 /* 926 * The 96 byte size cache is not used if the alignment 927 * is 64 byte. 928 */ 929 for (i = 64 + 8; i <= 96; i += 8) 930 size_index[size_index_elem(i)] = 7; 931 932 } 933 934 if (KMALLOC_MIN_SIZE >= 128) { 935 /* 936 * The 192 byte sized cache is not used if the alignment 937 * is 128 byte. Redirect kmalloc to use the 256 byte cache 938 * instead. 939 */ 940 for (i = 128 + 8; i <= 192; i += 8) 941 size_index[size_index_elem(i)] = 8; 942 } 943 } 944 945 static void __init new_kmalloc_cache(int idx, unsigned long flags) 946 { 947 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, 948 kmalloc_info[idx].size, flags); 949 } 950 951 /* 952 * Create the kmalloc array. Some of the regular kmalloc arrays 953 * may already have been created because they were needed to 954 * enable allocations for slab creation. 955 */ 956 void __init create_kmalloc_caches(unsigned long flags) 957 { 958 int i; 959 960 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 961 if (!kmalloc_caches[i]) 962 new_kmalloc_cache(i, flags); 963 964 /* 965 * Caches that are not of the two-to-the-power-of size. 966 * These have to be created immediately after the 967 * earlier power of two caches 968 */ 969 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) 970 new_kmalloc_cache(1, flags); 971 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) 972 new_kmalloc_cache(2, flags); 973 } 974 975 /* Kmalloc array is now usable */ 976 slab_state = UP; 977 978 #ifdef CONFIG_ZONE_DMA 979 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 980 struct kmem_cache *s = kmalloc_caches[i]; 981 982 if (s) { 983 int size = kmalloc_size(i); 984 char *n = kasprintf(GFP_NOWAIT, 985 "dma-kmalloc-%d", size); 986 987 BUG_ON(!n); 988 kmalloc_dma_caches[i] = create_kmalloc_cache(n, 989 size, SLAB_CACHE_DMA | flags); 990 } 991 } 992 #endif 993 } 994 #endif /* !CONFIG_SLOB */ 995 996 /* 997 * To avoid unnecessary overhead, we pass through large allocation requests 998 * directly to the page allocator. We use __GFP_COMP, because we will need to 999 * know the allocation order to free the pages properly in kfree. 1000 */ 1001 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1002 { 1003 void *ret; 1004 struct page *page; 1005 1006 flags |= __GFP_COMP; 1007 page = alloc_kmem_pages(flags, order); 1008 ret = page ? page_address(page) : NULL; 1009 kmemleak_alloc(ret, size, 1, flags); 1010 kasan_kmalloc_large(ret, size); 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(kmalloc_order); 1014 1015 #ifdef CONFIG_TRACING 1016 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1017 { 1018 void *ret = kmalloc_order(size, flags, order); 1019 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1020 return ret; 1021 } 1022 EXPORT_SYMBOL(kmalloc_order_trace); 1023 #endif 1024 1025 #ifdef CONFIG_SLABINFO 1026 1027 #ifdef CONFIG_SLAB 1028 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) 1029 #else 1030 #define SLABINFO_RIGHTS S_IRUSR 1031 #endif 1032 1033 static void print_slabinfo_header(struct seq_file *m) 1034 { 1035 /* 1036 * Output format version, so at least we can change it 1037 * without _too_ many complaints. 1038 */ 1039 #ifdef CONFIG_DEBUG_SLAB 1040 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1041 #else 1042 seq_puts(m, "slabinfo - version: 2.1\n"); 1043 #endif 1044 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 1045 "<objperslab> <pagesperslab>"); 1046 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1047 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1048 #ifdef CONFIG_DEBUG_SLAB 1049 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 1050 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1051 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1052 #endif 1053 seq_putc(m, '\n'); 1054 } 1055 1056 void *slab_start(struct seq_file *m, loff_t *pos) 1057 { 1058 mutex_lock(&slab_mutex); 1059 return seq_list_start(&slab_caches, *pos); 1060 } 1061 1062 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1063 { 1064 return seq_list_next(p, &slab_caches, pos); 1065 } 1066 1067 void slab_stop(struct seq_file *m, void *p) 1068 { 1069 mutex_unlock(&slab_mutex); 1070 } 1071 1072 static void 1073 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1074 { 1075 struct kmem_cache *c; 1076 struct slabinfo sinfo; 1077 1078 if (!is_root_cache(s)) 1079 return; 1080 1081 for_each_memcg_cache(c, s) { 1082 memset(&sinfo, 0, sizeof(sinfo)); 1083 get_slabinfo(c, &sinfo); 1084 1085 info->active_slabs += sinfo.active_slabs; 1086 info->num_slabs += sinfo.num_slabs; 1087 info->shared_avail += sinfo.shared_avail; 1088 info->active_objs += sinfo.active_objs; 1089 info->num_objs += sinfo.num_objs; 1090 } 1091 } 1092 1093 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1094 { 1095 struct slabinfo sinfo; 1096 1097 memset(&sinfo, 0, sizeof(sinfo)); 1098 get_slabinfo(s, &sinfo); 1099 1100 memcg_accumulate_slabinfo(s, &sinfo); 1101 1102 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1103 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1104 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1105 1106 seq_printf(m, " : tunables %4u %4u %4u", 1107 sinfo.limit, sinfo.batchcount, sinfo.shared); 1108 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1109 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1110 slabinfo_show_stats(m, s); 1111 seq_putc(m, '\n'); 1112 } 1113 1114 static int slab_show(struct seq_file *m, void *p) 1115 { 1116 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1117 1118 if (p == slab_caches.next) 1119 print_slabinfo_header(m); 1120 if (is_root_cache(s)) 1121 cache_show(s, m); 1122 return 0; 1123 } 1124 1125 #ifdef CONFIG_MEMCG_KMEM 1126 int memcg_slab_show(struct seq_file *m, void *p) 1127 { 1128 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 1130 1131 if (p == slab_caches.next) 1132 print_slabinfo_header(m); 1133 if (!is_root_cache(s) && s->memcg_params.memcg == memcg) 1134 cache_show(s, m); 1135 return 0; 1136 } 1137 #endif 1138 1139 /* 1140 * slabinfo_op - iterator that generates /proc/slabinfo 1141 * 1142 * Output layout: 1143 * cache-name 1144 * num-active-objs 1145 * total-objs 1146 * object size 1147 * num-active-slabs 1148 * total-slabs 1149 * num-pages-per-slab 1150 * + further values on SMP and with statistics enabled 1151 */ 1152 static const struct seq_operations slabinfo_op = { 1153 .start = slab_start, 1154 .next = slab_next, 1155 .stop = slab_stop, 1156 .show = slab_show, 1157 }; 1158 1159 static int slabinfo_open(struct inode *inode, struct file *file) 1160 { 1161 return seq_open(file, &slabinfo_op); 1162 } 1163 1164 static const struct file_operations proc_slabinfo_operations = { 1165 .open = slabinfo_open, 1166 .read = seq_read, 1167 .write = slabinfo_write, 1168 .llseek = seq_lseek, 1169 .release = seq_release, 1170 }; 1171 1172 static int __init slab_proc_init(void) 1173 { 1174 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 1175 &proc_slabinfo_operations); 1176 return 0; 1177 } 1178 module_init(slab_proc_init); 1179 #endif /* CONFIG_SLABINFO */ 1180 1181 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1182 gfp_t flags) 1183 { 1184 void *ret; 1185 size_t ks = 0; 1186 1187 if (p) 1188 ks = ksize(p); 1189 1190 if (ks >= new_size) { 1191 kasan_krealloc((void *)p, new_size); 1192 return (void *)p; 1193 } 1194 1195 ret = kmalloc_track_caller(new_size, flags); 1196 if (ret && p) 1197 memcpy(ret, p, ks); 1198 1199 return ret; 1200 } 1201 1202 /** 1203 * __krealloc - like krealloc() but don't free @p. 1204 * @p: object to reallocate memory for. 1205 * @new_size: how many bytes of memory are required. 1206 * @flags: the type of memory to allocate. 1207 * 1208 * This function is like krealloc() except it never frees the originally 1209 * allocated buffer. Use this if you don't want to free the buffer immediately 1210 * like, for example, with RCU. 1211 */ 1212 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 1213 { 1214 if (unlikely(!new_size)) 1215 return ZERO_SIZE_PTR; 1216 1217 return __do_krealloc(p, new_size, flags); 1218 1219 } 1220 EXPORT_SYMBOL(__krealloc); 1221 1222 /** 1223 * krealloc - reallocate memory. The contents will remain unchanged. 1224 * @p: object to reallocate memory for. 1225 * @new_size: how many bytes of memory are required. 1226 * @flags: the type of memory to allocate. 1227 * 1228 * The contents of the object pointed to are preserved up to the 1229 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1230 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1231 * %NULL pointer, the object pointed to is freed. 1232 */ 1233 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1234 { 1235 void *ret; 1236 1237 if (unlikely(!new_size)) { 1238 kfree(p); 1239 return ZERO_SIZE_PTR; 1240 } 1241 1242 ret = __do_krealloc(p, new_size, flags); 1243 if (ret && p != ret) 1244 kfree(p); 1245 1246 return ret; 1247 } 1248 EXPORT_SYMBOL(krealloc); 1249 1250 /** 1251 * kzfree - like kfree but zero memory 1252 * @p: object to free memory of 1253 * 1254 * The memory of the object @p points to is zeroed before freed. 1255 * If @p is %NULL, kzfree() does nothing. 1256 * 1257 * Note: this function zeroes the whole allocated buffer which can be a good 1258 * deal bigger than the requested buffer size passed to kmalloc(). So be 1259 * careful when using this function in performance sensitive code. 1260 */ 1261 void kzfree(const void *p) 1262 { 1263 size_t ks; 1264 void *mem = (void *)p; 1265 1266 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1267 return; 1268 ks = ksize(mem); 1269 memset(mem, 0, ks); 1270 kfree(mem); 1271 } 1272 EXPORT_SYMBOL(kzfree); 1273 1274 /* Tracepoints definitions. */ 1275 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1276 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1277 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1278 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1279 EXPORT_TRACEPOINT_SYMBOL(kfree); 1280 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1281