1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/kfence.h> 16 #include <linux/module.h> 17 #include <linux/cpu.h> 18 #include <linux/uaccess.h> 19 #include <linux/seq_file.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/swiotlb.h> 22 #include <linux/proc_fs.h> 23 #include <linux/debugfs.h> 24 #include <linux/kmemleak.h> 25 #include <linux/kasan.h> 26 #include <asm/cacheflush.h> 27 #include <asm/tlbflush.h> 28 #include <asm/page.h> 29 #include <linux/memcontrol.h> 30 #include <linux/stackdepot.h> 31 #include <trace/events/rcu.h> 32 33 #include "../kernel/rcu/rcu.h" 34 #include "internal.h" 35 #include "slab.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/kmem.h> 39 40 enum slab_state slab_state; 41 LIST_HEAD(slab_caches); 42 DEFINE_MUTEX(slab_mutex); 43 struct kmem_cache *kmem_cache; 44 45 /* 46 * Set of flags that will prevent slab merging 47 */ 48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 50 SLAB_FAILSLAB | SLAB_NO_MERGE) 51 52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 54 55 /* 56 * Merge control. If this is set then no merging of slab caches will occur. 57 */ 58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 59 60 static int __init setup_slab_nomerge(char *str) 61 { 62 slab_nomerge = true; 63 return 1; 64 } 65 66 static int __init setup_slab_merge(char *str) 67 { 68 slab_nomerge = false; 69 return 1; 70 } 71 72 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 73 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); 74 75 __setup("slab_nomerge", setup_slab_nomerge); 76 __setup("slab_merge", setup_slab_merge); 77 78 /* 79 * Determine the size of a slab object 80 */ 81 unsigned int kmem_cache_size(struct kmem_cache *s) 82 { 83 return s->object_size; 84 } 85 EXPORT_SYMBOL(kmem_cache_size); 86 87 #ifdef CONFIG_DEBUG_VM 88 89 static bool kmem_cache_is_duplicate_name(const char *name) 90 { 91 struct kmem_cache *s; 92 93 list_for_each_entry(s, &slab_caches, list) { 94 if (!strcmp(s->name, name)) 95 return true; 96 } 97 98 return false; 99 } 100 101 static int kmem_cache_sanity_check(const char *name, unsigned int size) 102 { 103 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { 104 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 105 return -EINVAL; 106 } 107 108 /* Duplicate names will confuse slabtop, et al */ 109 WARN(kmem_cache_is_duplicate_name(name), 110 "kmem_cache of name '%s' already exists\n", name); 111 112 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 113 return 0; 114 } 115 #else 116 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 117 { 118 return 0; 119 } 120 #endif 121 122 /* 123 * Figure out what the alignment of the objects will be given a set of 124 * flags, a user specified alignment and the size of the objects. 125 */ 126 static unsigned int calculate_alignment(slab_flags_t flags, 127 unsigned int align, unsigned int size) 128 { 129 /* 130 * If the user wants hardware cache aligned objects then follow that 131 * suggestion if the object is sufficiently large. 132 * 133 * The hardware cache alignment cannot override the specified 134 * alignment though. If that is greater then use it. 135 */ 136 if (flags & SLAB_HWCACHE_ALIGN) { 137 unsigned int ralign; 138 139 ralign = cache_line_size(); 140 while (size <= ralign / 2) 141 ralign /= 2; 142 align = max(align, ralign); 143 } 144 145 align = max(align, arch_slab_minalign()); 146 147 return ALIGN(align, sizeof(void *)); 148 } 149 150 /* 151 * Find a mergeable slab cache 152 */ 153 int slab_unmergeable(struct kmem_cache *s) 154 { 155 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 156 return 1; 157 158 if (s->ctor) 159 return 1; 160 161 #ifdef CONFIG_HARDENED_USERCOPY 162 if (s->usersize) 163 return 1; 164 #endif 165 166 /* 167 * We may have set a slab to be unmergeable during bootstrap. 168 */ 169 if (s->refcount < 0) 170 return 1; 171 172 return 0; 173 } 174 175 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 176 slab_flags_t flags, const char *name, void (*ctor)(void *)) 177 { 178 struct kmem_cache *s; 179 180 if (slab_nomerge) 181 return NULL; 182 183 if (ctor) 184 return NULL; 185 186 flags = kmem_cache_flags(flags, name); 187 188 if (flags & SLAB_NEVER_MERGE) 189 return NULL; 190 191 size = ALIGN(size, sizeof(void *)); 192 align = calculate_alignment(flags, align, size); 193 size = ALIGN(size, align); 194 195 list_for_each_entry_reverse(s, &slab_caches, list) { 196 if (slab_unmergeable(s)) 197 continue; 198 199 if (size > s->size) 200 continue; 201 202 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 203 continue; 204 /* 205 * Check if alignment is compatible. 206 * Courtesy of Adrian Drzewiecki 207 */ 208 if ((s->size & ~(align - 1)) != s->size) 209 continue; 210 211 if (s->size - size >= sizeof(void *)) 212 continue; 213 214 return s; 215 } 216 return NULL; 217 } 218 219 static struct kmem_cache *create_cache(const char *name, 220 unsigned int object_size, 221 struct kmem_cache_args *args, 222 slab_flags_t flags) 223 { 224 struct kmem_cache *s; 225 int err; 226 227 /* If a custom freelist pointer is requested make sure it's sane. */ 228 err = -EINVAL; 229 if (args->use_freeptr_offset && 230 (args->freeptr_offset >= object_size || 231 !(flags & SLAB_TYPESAFE_BY_RCU) || 232 !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) 233 goto out; 234 235 err = -ENOMEM; 236 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 237 if (!s) 238 goto out; 239 err = do_kmem_cache_create(s, name, object_size, args, flags); 240 if (err) 241 goto out_free_cache; 242 243 s->refcount = 1; 244 list_add(&s->list, &slab_caches); 245 return s; 246 247 out_free_cache: 248 kmem_cache_free(kmem_cache, s); 249 out: 250 return ERR_PTR(err); 251 } 252 253 /** 254 * __kmem_cache_create_args - Create a kmem cache. 255 * @name: A string which is used in /proc/slabinfo to identify this cache. 256 * @object_size: The size of objects to be created in this cache. 257 * @args: Additional arguments for the cache creation (see 258 * &struct kmem_cache_args). 259 * @flags: See the desriptions of individual flags. The common ones are listed 260 * in the description below. 261 * 262 * Not to be called directly, use the kmem_cache_create() wrapper with the same 263 * parameters. 264 * 265 * Commonly used @flags: 266 * 267 * &SLAB_ACCOUNT - Account allocations to memcg. 268 * 269 * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. 270 * 271 * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. 272 * 273 * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed 274 * by a grace period - see the full description before using. 275 * 276 * Context: Cannot be called within a interrupt, but can be interrupted. 277 * 278 * Return: a pointer to the cache on success, NULL on failure. 279 */ 280 struct kmem_cache *__kmem_cache_create_args(const char *name, 281 unsigned int object_size, 282 struct kmem_cache_args *args, 283 slab_flags_t flags) 284 { 285 struct kmem_cache *s = NULL; 286 const char *cache_name; 287 int err; 288 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * If no slab_debug was enabled globally, the static key is not yet 292 * enabled by setup_slub_debug(). Enable it if the cache is being 293 * created with any of the debugging flags passed explicitly. 294 * It's also possible that this is the first cache created with 295 * SLAB_STORE_USER and we should init stack_depot for it. 296 */ 297 if (flags & SLAB_DEBUG_FLAGS) 298 static_branch_enable(&slub_debug_enabled); 299 if (flags & SLAB_STORE_USER) 300 stack_depot_init(); 301 #else 302 flags &= ~SLAB_DEBUG_FLAGS; 303 #endif 304 305 mutex_lock(&slab_mutex); 306 307 err = kmem_cache_sanity_check(name, object_size); 308 if (err) { 309 goto out_unlock; 310 } 311 312 if (flags & ~SLAB_FLAGS_PERMITTED) { 313 err = -EINVAL; 314 goto out_unlock; 315 } 316 317 /* Fail closed on bad usersize of useroffset values. */ 318 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || 319 WARN_ON(!args->usersize && args->useroffset) || 320 WARN_ON(object_size < args->usersize || 321 object_size - args->usersize < args->useroffset)) 322 args->usersize = args->useroffset = 0; 323 324 if (!args->usersize) 325 s = __kmem_cache_alias(name, object_size, args->align, flags, 326 args->ctor); 327 if (s) 328 goto out_unlock; 329 330 cache_name = kstrdup_const(name, GFP_KERNEL); 331 if (!cache_name) { 332 err = -ENOMEM; 333 goto out_unlock; 334 } 335 336 args->align = calculate_alignment(flags, args->align, object_size); 337 s = create_cache(cache_name, object_size, args, flags); 338 if (IS_ERR(s)) { 339 err = PTR_ERR(s); 340 kfree_const(cache_name); 341 } 342 343 out_unlock: 344 mutex_unlock(&slab_mutex); 345 346 if (err) { 347 if (flags & SLAB_PANIC) 348 panic("%s: Failed to create slab '%s'. Error %d\n", 349 __func__, name, err); 350 else { 351 pr_warn("%s(%s) failed with error %d\n", 352 __func__, name, err); 353 dump_stack(); 354 } 355 return NULL; 356 } 357 return s; 358 } 359 EXPORT_SYMBOL(__kmem_cache_create_args); 360 361 static struct kmem_cache *kmem_buckets_cache __ro_after_init; 362 363 /** 364 * kmem_buckets_create - Create a set of caches that handle dynamic sized 365 * allocations via kmem_buckets_alloc() 366 * @name: A prefix string which is used in /proc/slabinfo to identify this 367 * cache. The individual caches with have their sizes as the suffix. 368 * @flags: SLAB flags (see kmem_cache_create() for details). 369 * @useroffset: Starting offset within an allocation that may be copied 370 * to/from userspace. 371 * @usersize: How many bytes, starting at @useroffset, may be copied 372 * to/from userspace. 373 * @ctor: A constructor for the objects, run when new allocations are made. 374 * 375 * Cannot be called within an interrupt, but can be interrupted. 376 * 377 * Return: a pointer to the cache on success, NULL on failure. When 378 * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and 379 * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). 380 * (i.e. callers only need to check for NULL on failure.) 381 */ 382 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, 383 unsigned int useroffset, 384 unsigned int usersize, 385 void (*ctor)(void *)) 386 { 387 unsigned long mask = 0; 388 unsigned int idx; 389 kmem_buckets *b; 390 391 BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); 392 393 /* 394 * When the separate buckets API is not built in, just return 395 * a non-NULL value for the kmem_buckets pointer, which will be 396 * unused when performing allocations. 397 */ 398 if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) 399 return ZERO_SIZE_PTR; 400 401 if (WARN_ON(!kmem_buckets_cache)) 402 return NULL; 403 404 b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); 405 if (WARN_ON(!b)) 406 return NULL; 407 408 flags |= SLAB_NO_MERGE; 409 410 for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { 411 char *short_size, *cache_name; 412 unsigned int cache_useroffset, cache_usersize; 413 unsigned int size, aligned_idx; 414 415 if (!kmalloc_caches[KMALLOC_NORMAL][idx]) 416 continue; 417 418 size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; 419 if (!size) 420 continue; 421 422 short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); 423 if (WARN_ON(!short_size)) 424 goto fail; 425 426 if (useroffset >= size) { 427 cache_useroffset = 0; 428 cache_usersize = 0; 429 } else { 430 cache_useroffset = useroffset; 431 cache_usersize = min(size - cache_useroffset, usersize); 432 } 433 434 aligned_idx = __kmalloc_index(size, false); 435 if (!(*b)[aligned_idx]) { 436 cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); 437 if (WARN_ON(!cache_name)) 438 goto fail; 439 (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, 440 0, flags, cache_useroffset, 441 cache_usersize, ctor); 442 kfree(cache_name); 443 if (WARN_ON(!(*b)[aligned_idx])) 444 goto fail; 445 set_bit(aligned_idx, &mask); 446 } 447 if (idx != aligned_idx) 448 (*b)[idx] = (*b)[aligned_idx]; 449 } 450 451 return b; 452 453 fail: 454 for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) 455 kmem_cache_destroy((*b)[idx]); 456 kmem_cache_free(kmem_buckets_cache, b); 457 458 return NULL; 459 } 460 EXPORT_SYMBOL(kmem_buckets_create); 461 462 /* 463 * For a given kmem_cache, kmem_cache_destroy() should only be called 464 * once or there will be a use-after-free problem. The actual deletion 465 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock 466 * protection. So they are now done without holding those locks. 467 */ 468 static void kmem_cache_release(struct kmem_cache *s) 469 { 470 kfence_shutdown_cache(s); 471 if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) 472 sysfs_slab_release(s); 473 else 474 slab_kmem_cache_release(s); 475 } 476 477 void slab_kmem_cache_release(struct kmem_cache *s) 478 { 479 __kmem_cache_release(s); 480 kfree_const(s->name); 481 kmem_cache_free(kmem_cache, s); 482 } 483 484 void kmem_cache_destroy(struct kmem_cache *s) 485 { 486 int err; 487 488 if (unlikely(!s) || !kasan_check_byte(s)) 489 return; 490 491 /* in-flight kfree_rcu()'s may include objects from our cache */ 492 kvfree_rcu_barrier(); 493 494 if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && 495 (s->flags & SLAB_TYPESAFE_BY_RCU)) { 496 /* 497 * Under CONFIG_SLUB_RCU_DEBUG, when objects in a 498 * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally 499 * defer their freeing with call_rcu(). 500 * Wait for such call_rcu() invocations here before actually 501 * destroying the cache. 502 * 503 * It doesn't matter that we haven't looked at the slab refcount 504 * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so 505 * the refcount should be 1 here. 506 */ 507 rcu_barrier(); 508 } 509 510 cpus_read_lock(); 511 mutex_lock(&slab_mutex); 512 513 s->refcount--; 514 if (s->refcount) { 515 mutex_unlock(&slab_mutex); 516 cpus_read_unlock(); 517 return; 518 } 519 520 /* free asan quarantined objects */ 521 kasan_cache_shutdown(s); 522 523 err = __kmem_cache_shutdown(s); 524 if (!slab_in_kunit_test()) 525 WARN(err, "%s %s: Slab cache still has objects when called from %pS", 526 __func__, s->name, (void *)_RET_IP_); 527 528 list_del(&s->list); 529 530 mutex_unlock(&slab_mutex); 531 cpus_read_unlock(); 532 533 if (slab_state >= FULL) 534 sysfs_slab_unlink(s); 535 debugfs_slab_release(s); 536 537 if (err) 538 return; 539 540 if (s->flags & SLAB_TYPESAFE_BY_RCU) 541 rcu_barrier(); 542 543 kmem_cache_release(s); 544 } 545 EXPORT_SYMBOL(kmem_cache_destroy); 546 547 /** 548 * kmem_cache_shrink - Shrink a cache. 549 * @cachep: The cache to shrink. 550 * 551 * Releases as many slabs as possible for a cache. 552 * To help debugging, a zero exit status indicates all slabs were released. 553 * 554 * Return: %0 if all slabs were released, non-zero otherwise 555 */ 556 int kmem_cache_shrink(struct kmem_cache *cachep) 557 { 558 kasan_cache_shrink(cachep); 559 560 return __kmem_cache_shrink(cachep); 561 } 562 EXPORT_SYMBOL(kmem_cache_shrink); 563 564 bool slab_is_available(void) 565 { 566 return slab_state >= UP; 567 } 568 569 #ifdef CONFIG_PRINTK 570 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 571 { 572 if (__kfence_obj_info(kpp, object, slab)) 573 return; 574 __kmem_obj_info(kpp, object, slab); 575 } 576 577 /** 578 * kmem_dump_obj - Print available slab provenance information 579 * @object: slab object for which to find provenance information. 580 * 581 * This function uses pr_cont(), so that the caller is expected to have 582 * printed out whatever preamble is appropriate. The provenance information 583 * depends on the type of object and on how much debugging is enabled. 584 * For a slab-cache object, the fact that it is a slab object is printed, 585 * and, if available, the slab name, return address, and stack trace from 586 * the allocation and last free path of that object. 587 * 588 * Return: %true if the pointer is to a not-yet-freed object from 589 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer 590 * is to an already-freed object, and %false otherwise. 591 */ 592 bool kmem_dump_obj(void *object) 593 { 594 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; 595 int i; 596 struct slab *slab; 597 unsigned long ptroffset; 598 struct kmem_obj_info kp = { }; 599 600 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ 601 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) 602 return false; 603 slab = virt_to_slab(object); 604 if (!slab) 605 return false; 606 607 kmem_obj_info(&kp, object, slab); 608 if (kp.kp_slab_cache) 609 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); 610 else 611 pr_cont(" slab%s", cp); 612 if (is_kfence_address(object)) 613 pr_cont(" (kfence)"); 614 if (kp.kp_objp) 615 pr_cont(" start %px", kp.kp_objp); 616 if (kp.kp_data_offset) 617 pr_cont(" data offset %lu", kp.kp_data_offset); 618 if (kp.kp_objp) { 619 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; 620 pr_cont(" pointer offset %lu", ptroffset); 621 } 622 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) 623 pr_cont(" size %u", kp.kp_slab_cache->object_size); 624 if (kp.kp_ret) 625 pr_cont(" allocated at %pS\n", kp.kp_ret); 626 else 627 pr_cont("\n"); 628 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { 629 if (!kp.kp_stack[i]) 630 break; 631 pr_info(" %pS\n", kp.kp_stack[i]); 632 } 633 634 if (kp.kp_free_stack[0]) 635 pr_cont(" Free path:\n"); 636 637 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { 638 if (!kp.kp_free_stack[i]) 639 break; 640 pr_info(" %pS\n", kp.kp_free_stack[i]); 641 } 642 643 return true; 644 } 645 EXPORT_SYMBOL_GPL(kmem_dump_obj); 646 #endif 647 648 /* Create a cache during boot when no slab services are available yet */ 649 void __init create_boot_cache(struct kmem_cache *s, const char *name, 650 unsigned int size, slab_flags_t flags, 651 unsigned int useroffset, unsigned int usersize) 652 { 653 int err; 654 unsigned int align = ARCH_KMALLOC_MINALIGN; 655 struct kmem_cache_args kmem_args = {}; 656 657 /* 658 * kmalloc caches guarantee alignment of at least the largest 659 * power-of-two divisor of the size. For power-of-two sizes, 660 * it is the size itself. 661 */ 662 if (flags & SLAB_KMALLOC) 663 align = max(align, 1U << (ffs(size) - 1)); 664 kmem_args.align = calculate_alignment(flags, align, size); 665 666 #ifdef CONFIG_HARDENED_USERCOPY 667 kmem_args.useroffset = useroffset; 668 kmem_args.usersize = usersize; 669 #endif 670 671 err = do_kmem_cache_create(s, name, size, &kmem_args, flags); 672 673 if (err) 674 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 675 name, size, err); 676 677 s->refcount = -1; /* Exempt from merging for now */ 678 } 679 680 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 681 unsigned int size, 682 slab_flags_t flags) 683 { 684 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 685 686 if (!s) 687 panic("Out of memory when creating slab %s\n", name); 688 689 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); 690 list_add(&s->list, &slab_caches); 691 s->refcount = 1; 692 return s; 693 } 694 695 kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = 696 { /* initialization for https://llvm.org/pr42570 */ }; 697 EXPORT_SYMBOL(kmalloc_caches); 698 699 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 700 unsigned long random_kmalloc_seed __ro_after_init; 701 EXPORT_SYMBOL(random_kmalloc_seed); 702 #endif 703 704 /* 705 * Conversion table for small slabs sizes / 8 to the index in the 706 * kmalloc array. This is necessary for slabs < 192 since we have non power 707 * of two cache sizes there. The size of larger slabs can be determined using 708 * fls. 709 */ 710 u8 kmalloc_size_index[24] __ro_after_init = { 711 3, /* 8 */ 712 4, /* 16 */ 713 5, /* 24 */ 714 5, /* 32 */ 715 6, /* 40 */ 716 6, /* 48 */ 717 6, /* 56 */ 718 6, /* 64 */ 719 1, /* 72 */ 720 1, /* 80 */ 721 1, /* 88 */ 722 1, /* 96 */ 723 7, /* 104 */ 724 7, /* 112 */ 725 7, /* 120 */ 726 7, /* 128 */ 727 2, /* 136 */ 728 2, /* 144 */ 729 2, /* 152 */ 730 2, /* 160 */ 731 2, /* 168 */ 732 2, /* 176 */ 733 2, /* 184 */ 734 2 /* 192 */ 735 }; 736 737 size_t kmalloc_size_roundup(size_t size) 738 { 739 if (size && size <= KMALLOC_MAX_CACHE_SIZE) { 740 /* 741 * The flags don't matter since size_index is common to all. 742 * Neither does the caller for just getting ->object_size. 743 */ 744 return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; 745 } 746 747 /* Above the smaller buckets, size is a multiple of page size. */ 748 if (size && size <= KMALLOC_MAX_SIZE) 749 return PAGE_SIZE << get_order(size); 750 751 /* 752 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR 753 * and very large size - kmalloc() may fail. 754 */ 755 return size; 756 757 } 758 EXPORT_SYMBOL(kmalloc_size_roundup); 759 760 #ifdef CONFIG_ZONE_DMA 761 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, 762 #else 763 #define KMALLOC_DMA_NAME(sz) 764 #endif 765 766 #ifdef CONFIG_MEMCG 767 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, 768 #else 769 #define KMALLOC_CGROUP_NAME(sz) 770 #endif 771 772 #ifndef CONFIG_SLUB_TINY 773 #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, 774 #else 775 #define KMALLOC_RCL_NAME(sz) 776 #endif 777 778 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 779 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b 780 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) 781 #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, 782 #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, 783 #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, 784 #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, 785 #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, 786 #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, 787 #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, 788 #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, 789 #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, 790 #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, 791 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, 792 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, 793 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, 794 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, 795 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, 796 #else // CONFIG_RANDOM_KMALLOC_CACHES 797 #define KMALLOC_RANDOM_NAME(N, sz) 798 #endif 799 800 #define INIT_KMALLOC_INFO(__size, __short_size) \ 801 { \ 802 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 803 KMALLOC_RCL_NAME(__short_size) \ 804 KMALLOC_CGROUP_NAME(__short_size) \ 805 KMALLOC_DMA_NAME(__short_size) \ 806 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ 807 .size = __size, \ 808 } 809 810 /* 811 * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. 812 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is 813 * kmalloc-2M. 814 */ 815 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 816 INIT_KMALLOC_INFO(0, 0), 817 INIT_KMALLOC_INFO(96, 96), 818 INIT_KMALLOC_INFO(192, 192), 819 INIT_KMALLOC_INFO(8, 8), 820 INIT_KMALLOC_INFO(16, 16), 821 INIT_KMALLOC_INFO(32, 32), 822 INIT_KMALLOC_INFO(64, 64), 823 INIT_KMALLOC_INFO(128, 128), 824 INIT_KMALLOC_INFO(256, 256), 825 INIT_KMALLOC_INFO(512, 512), 826 INIT_KMALLOC_INFO(1024, 1k), 827 INIT_KMALLOC_INFO(2048, 2k), 828 INIT_KMALLOC_INFO(4096, 4k), 829 INIT_KMALLOC_INFO(8192, 8k), 830 INIT_KMALLOC_INFO(16384, 16k), 831 INIT_KMALLOC_INFO(32768, 32k), 832 INIT_KMALLOC_INFO(65536, 64k), 833 INIT_KMALLOC_INFO(131072, 128k), 834 INIT_KMALLOC_INFO(262144, 256k), 835 INIT_KMALLOC_INFO(524288, 512k), 836 INIT_KMALLOC_INFO(1048576, 1M), 837 INIT_KMALLOC_INFO(2097152, 2M) 838 }; 839 840 /* 841 * Patch up the size_index table if we have strange large alignment 842 * requirements for the kmalloc array. This is only the case for 843 * MIPS it seems. The standard arches will not generate any code here. 844 * 845 * Largest permitted alignment is 256 bytes due to the way we 846 * handle the index determination for the smaller caches. 847 * 848 * Make sure that nothing crazy happens if someone starts tinkering 849 * around with ARCH_KMALLOC_MINALIGN 850 */ 851 void __init setup_kmalloc_cache_index_table(void) 852 { 853 unsigned int i; 854 855 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 856 !is_power_of_2(KMALLOC_MIN_SIZE)); 857 858 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 859 unsigned int elem = size_index_elem(i); 860 861 if (elem >= ARRAY_SIZE(kmalloc_size_index)) 862 break; 863 kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; 864 } 865 866 if (KMALLOC_MIN_SIZE >= 64) { 867 /* 868 * The 96 byte sized cache is not used if the alignment 869 * is 64 byte. 870 */ 871 for (i = 64 + 8; i <= 96; i += 8) 872 kmalloc_size_index[size_index_elem(i)] = 7; 873 874 } 875 876 if (KMALLOC_MIN_SIZE >= 128) { 877 /* 878 * The 192 byte sized cache is not used if the alignment 879 * is 128 byte. Redirect kmalloc to use the 256 byte cache 880 * instead. 881 */ 882 for (i = 128 + 8; i <= 192; i += 8) 883 kmalloc_size_index[size_index_elem(i)] = 8; 884 } 885 } 886 887 static unsigned int __kmalloc_minalign(void) 888 { 889 unsigned int minalign = dma_get_cache_alignment(); 890 891 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && 892 is_swiotlb_allocated()) 893 minalign = ARCH_KMALLOC_MINALIGN; 894 895 return max(minalign, arch_slab_minalign()); 896 } 897 898 static void __init 899 new_kmalloc_cache(int idx, enum kmalloc_cache_type type) 900 { 901 slab_flags_t flags = 0; 902 unsigned int minalign = __kmalloc_minalign(); 903 unsigned int aligned_size = kmalloc_info[idx].size; 904 int aligned_idx = idx; 905 906 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { 907 flags |= SLAB_RECLAIM_ACCOUNT; 908 } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { 909 if (mem_cgroup_kmem_disabled()) { 910 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; 911 return; 912 } 913 flags |= SLAB_ACCOUNT; 914 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { 915 flags |= SLAB_CACHE_DMA; 916 } 917 918 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 919 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) 920 flags |= SLAB_NO_MERGE; 921 #endif 922 923 /* 924 * If CONFIG_MEMCG is enabled, disable cache merging for 925 * KMALLOC_NORMAL caches. 926 */ 927 if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) 928 flags |= SLAB_NO_MERGE; 929 930 if (minalign > ARCH_KMALLOC_MINALIGN) { 931 aligned_size = ALIGN(aligned_size, minalign); 932 aligned_idx = __kmalloc_index(aligned_size, false); 933 } 934 935 if (!kmalloc_caches[type][aligned_idx]) 936 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( 937 kmalloc_info[aligned_idx].name[type], 938 aligned_size, flags); 939 if (idx != aligned_idx) 940 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; 941 } 942 943 /* 944 * Create the kmalloc array. Some of the regular kmalloc arrays 945 * may already have been created because they were needed to 946 * enable allocations for slab creation. 947 */ 948 void __init create_kmalloc_caches(void) 949 { 950 int i; 951 enum kmalloc_cache_type type; 952 953 /* 954 * Including KMALLOC_CGROUP if CONFIG_MEMCG defined 955 */ 956 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { 957 /* Caches that are NOT of the two-to-the-power-of size. */ 958 if (KMALLOC_MIN_SIZE <= 32) 959 new_kmalloc_cache(1, type); 960 if (KMALLOC_MIN_SIZE <= 64) 961 new_kmalloc_cache(2, type); 962 963 /* Caches that are of the two-to-the-power-of size. */ 964 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 965 new_kmalloc_cache(i, type); 966 } 967 #ifdef CONFIG_RANDOM_KMALLOC_CACHES 968 random_kmalloc_seed = get_random_u64(); 969 #endif 970 971 /* Kmalloc array is now usable */ 972 slab_state = UP; 973 974 if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) 975 kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", 976 sizeof(kmem_buckets), 977 0, SLAB_NO_MERGE, NULL); 978 } 979 980 /** 981 * __ksize -- Report full size of underlying allocation 982 * @object: pointer to the object 983 * 984 * This should only be used internally to query the true size of allocations. 985 * It is not meant to be a way to discover the usable size of an allocation 986 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond 987 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, 988 * and/or FORTIFY_SOURCE. 989 * 990 * Return: size of the actual memory used by @object in bytes 991 */ 992 size_t __ksize(const void *object) 993 { 994 struct folio *folio; 995 996 if (unlikely(object == ZERO_SIZE_PTR)) 997 return 0; 998 999 folio = virt_to_folio(object); 1000 1001 if (unlikely(!folio_test_slab(folio))) { 1002 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) 1003 return 0; 1004 if (WARN_ON(object != folio_address(folio))) 1005 return 0; 1006 return folio_size(folio); 1007 } 1008 1009 #ifdef CONFIG_SLUB_DEBUG 1010 skip_orig_size_check(folio_slab(folio)->slab_cache, object); 1011 #endif 1012 1013 return slab_ksize(folio_slab(folio)->slab_cache); 1014 } 1015 1016 gfp_t kmalloc_fix_flags(gfp_t flags) 1017 { 1018 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1019 1020 flags &= ~GFP_SLAB_BUG_MASK; 1021 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1022 invalid_mask, &invalid_mask, flags, &flags); 1023 dump_stack(); 1024 1025 return flags; 1026 } 1027 1028 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1029 /* Randomize a generic freelist */ 1030 static void freelist_randomize(unsigned int *list, 1031 unsigned int count) 1032 { 1033 unsigned int rand; 1034 unsigned int i; 1035 1036 for (i = 0; i < count; i++) 1037 list[i] = i; 1038 1039 /* Fisher-Yates shuffle */ 1040 for (i = count - 1; i > 0; i--) { 1041 rand = get_random_u32_below(i + 1); 1042 swap(list[i], list[rand]); 1043 } 1044 } 1045 1046 /* Create a random sequence per cache */ 1047 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1048 gfp_t gfp) 1049 { 1050 1051 if (count < 2 || cachep->random_seq) 1052 return 0; 1053 1054 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1055 if (!cachep->random_seq) 1056 return -ENOMEM; 1057 1058 freelist_randomize(cachep->random_seq, count); 1059 return 0; 1060 } 1061 1062 /* Destroy the per-cache random freelist sequence */ 1063 void cache_random_seq_destroy(struct kmem_cache *cachep) 1064 { 1065 kfree(cachep->random_seq); 1066 cachep->random_seq = NULL; 1067 } 1068 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1069 1070 #ifdef CONFIG_SLUB_DEBUG 1071 #define SLABINFO_RIGHTS (0400) 1072 1073 static void print_slabinfo_header(struct seq_file *m) 1074 { 1075 /* 1076 * Output format version, so at least we can change it 1077 * without _too_ many complaints. 1078 */ 1079 seq_puts(m, "slabinfo - version: 2.1\n"); 1080 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1081 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1082 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1083 seq_putc(m, '\n'); 1084 } 1085 1086 static void *slab_start(struct seq_file *m, loff_t *pos) 1087 { 1088 mutex_lock(&slab_mutex); 1089 return seq_list_start(&slab_caches, *pos); 1090 } 1091 1092 static void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1093 { 1094 return seq_list_next(p, &slab_caches, pos); 1095 } 1096 1097 static void slab_stop(struct seq_file *m, void *p) 1098 { 1099 mutex_unlock(&slab_mutex); 1100 } 1101 1102 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1103 { 1104 struct slabinfo sinfo; 1105 1106 memset(&sinfo, 0, sizeof(sinfo)); 1107 get_slabinfo(s, &sinfo); 1108 1109 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1110 s->name, sinfo.active_objs, sinfo.num_objs, s->size, 1111 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1112 1113 seq_printf(m, " : tunables %4u %4u %4u", 1114 sinfo.limit, sinfo.batchcount, sinfo.shared); 1115 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1116 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1117 seq_putc(m, '\n'); 1118 } 1119 1120 static int slab_show(struct seq_file *m, void *p) 1121 { 1122 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 1123 1124 if (p == slab_caches.next) 1125 print_slabinfo_header(m); 1126 cache_show(s, m); 1127 return 0; 1128 } 1129 1130 void dump_unreclaimable_slab(void) 1131 { 1132 struct kmem_cache *s; 1133 struct slabinfo sinfo; 1134 1135 /* 1136 * Here acquiring slab_mutex is risky since we don't prefer to get 1137 * sleep in oom path. But, without mutex hold, it may introduce a 1138 * risk of crash. 1139 * Use mutex_trylock to protect the list traverse, dump nothing 1140 * without acquiring the mutex. 1141 */ 1142 if (!mutex_trylock(&slab_mutex)) { 1143 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1144 return; 1145 } 1146 1147 pr_info("Unreclaimable slab info:\n"); 1148 pr_info("Name Used Total\n"); 1149 1150 list_for_each_entry(s, &slab_caches, list) { 1151 if (s->flags & SLAB_RECLAIM_ACCOUNT) 1152 continue; 1153 1154 get_slabinfo(s, &sinfo); 1155 1156 if (sinfo.num_objs > 0) 1157 pr_info("%-17s %10luKB %10luKB\n", s->name, 1158 (sinfo.active_objs * s->size) / 1024, 1159 (sinfo.num_objs * s->size) / 1024); 1160 } 1161 mutex_unlock(&slab_mutex); 1162 } 1163 1164 /* 1165 * slabinfo_op - iterator that generates /proc/slabinfo 1166 * 1167 * Output layout: 1168 * cache-name 1169 * num-active-objs 1170 * total-objs 1171 * object size 1172 * num-active-slabs 1173 * total-slabs 1174 * num-pages-per-slab 1175 * + further values on SMP and with statistics enabled 1176 */ 1177 static const struct seq_operations slabinfo_op = { 1178 .start = slab_start, 1179 .next = slab_next, 1180 .stop = slab_stop, 1181 .show = slab_show, 1182 }; 1183 1184 static int slabinfo_open(struct inode *inode, struct file *file) 1185 { 1186 return seq_open(file, &slabinfo_op); 1187 } 1188 1189 static const struct proc_ops slabinfo_proc_ops = { 1190 .proc_flags = PROC_ENTRY_PERMANENT, 1191 .proc_open = slabinfo_open, 1192 .proc_read = seq_read, 1193 .proc_lseek = seq_lseek, 1194 .proc_release = seq_release, 1195 }; 1196 1197 static int __init slab_proc_init(void) 1198 { 1199 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 1200 return 0; 1201 } 1202 module_init(slab_proc_init); 1203 1204 #endif /* CONFIG_SLUB_DEBUG */ 1205 1206 /** 1207 * kfree_sensitive - Clear sensitive information in memory before freeing 1208 * @p: object to free memory of 1209 * 1210 * The memory of the object @p points to is zeroed before freed. 1211 * If @p is %NULL, kfree_sensitive() does nothing. 1212 * 1213 * Note: this function zeroes the whole allocated buffer which can be a good 1214 * deal bigger than the requested buffer size passed to kmalloc(). So be 1215 * careful when using this function in performance sensitive code. 1216 */ 1217 void kfree_sensitive(const void *p) 1218 { 1219 size_t ks; 1220 void *mem = (void *)p; 1221 1222 ks = ksize(mem); 1223 if (ks) { 1224 kasan_unpoison_range(mem, ks); 1225 memzero_explicit(mem, ks); 1226 } 1227 kfree(mem); 1228 } 1229 EXPORT_SYMBOL(kfree_sensitive); 1230 1231 size_t ksize(const void *objp) 1232 { 1233 /* 1234 * We need to first check that the pointer to the object is valid. 1235 * The KASAN report printed from ksize() is more useful, then when 1236 * it's printed later when the behaviour could be undefined due to 1237 * a potential use-after-free or double-free. 1238 * 1239 * We use kasan_check_byte(), which is supported for the hardware 1240 * tag-based KASAN mode, unlike kasan_check_read/write(). 1241 * 1242 * If the pointed to memory is invalid, we return 0 to avoid users of 1243 * ksize() writing to and potentially corrupting the memory region. 1244 * 1245 * We want to perform the check before __ksize(), to avoid potentially 1246 * crashing in __ksize() due to accessing invalid metadata. 1247 */ 1248 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) 1249 return 0; 1250 1251 return kfence_ksize(objp) ?: __ksize(objp); 1252 } 1253 EXPORT_SYMBOL(ksize); 1254 1255 #ifdef CONFIG_BPF_SYSCALL 1256 #include <linux/btf.h> 1257 1258 __bpf_kfunc_start_defs(); 1259 1260 __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) 1261 { 1262 struct slab *slab; 1263 1264 if (!virt_addr_valid((void *)(long)addr)) 1265 return NULL; 1266 1267 slab = virt_to_slab((void *)(long)addr); 1268 return slab ? slab->slab_cache : NULL; 1269 } 1270 1271 __bpf_kfunc_end_defs(); 1272 #endif /* CONFIG_BPF_SYSCALL */ 1273 1274 /* Tracepoints definitions. */ 1275 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1276 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1277 EXPORT_TRACEPOINT_SYMBOL(kfree); 1278 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1279 1280 #ifndef CONFIG_KVFREE_RCU_BATCHED 1281 1282 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 1283 { 1284 if (head) { 1285 kasan_record_aux_stack(ptr); 1286 call_rcu(head, kvfree_rcu_cb); 1287 return; 1288 } 1289 1290 // kvfree_rcu(one_arg) call. 1291 might_sleep(); 1292 synchronize_rcu(); 1293 kvfree(ptr); 1294 } 1295 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 1296 1297 void __init kvfree_rcu_init(void) 1298 { 1299 } 1300 1301 #else /* CONFIG_KVFREE_RCU_BATCHED */ 1302 1303 /* 1304 * This rcu parameter is runtime-read-only. It reflects 1305 * a minimum allowed number of objects which can be cached 1306 * per-CPU. Object size is equal to one page. This value 1307 * can be changed at boot time. 1308 */ 1309 static int rcu_min_cached_objs = 5; 1310 module_param(rcu_min_cached_objs, int, 0444); 1311 1312 // A page shrinker can ask for pages to be freed to make them 1313 // available for other parts of the system. This usually happens 1314 // under low memory conditions, and in that case we should also 1315 // defer page-cache filling for a short time period. 1316 // 1317 // The default value is 5 seconds, which is long enough to reduce 1318 // interference with the shrinker while it asks other systems to 1319 // drain their caches. 1320 static int rcu_delay_page_cache_fill_msec = 5000; 1321 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 1322 1323 static struct workqueue_struct *rcu_reclaim_wq; 1324 1325 /* Maximum number of jiffies to wait before draining a batch. */ 1326 #define KFREE_DRAIN_JIFFIES (5 * HZ) 1327 #define KFREE_N_BATCHES 2 1328 #define FREE_N_CHANNELS 2 1329 1330 /** 1331 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 1332 * @list: List node. All blocks are linked between each other 1333 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 1334 * @nr_records: Number of active pointers in the array 1335 * @records: Array of the kvfree_rcu() pointers 1336 */ 1337 struct kvfree_rcu_bulk_data { 1338 struct list_head list; 1339 struct rcu_gp_oldstate gp_snap; 1340 unsigned long nr_records; 1341 void *records[] __counted_by(nr_records); 1342 }; 1343 1344 /* 1345 * This macro defines how many entries the "records" array 1346 * will contain. It is based on the fact that the size of 1347 * kvfree_rcu_bulk_data structure becomes exactly one page. 1348 */ 1349 #define KVFREE_BULK_MAX_ENTR \ 1350 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 1351 1352 /** 1353 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 1354 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 1355 * @head_free: List of kfree_rcu() objects waiting for a grace period 1356 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 1357 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 1358 * @krcp: Pointer to @kfree_rcu_cpu structure 1359 */ 1360 1361 struct kfree_rcu_cpu_work { 1362 struct rcu_work rcu_work; 1363 struct rcu_head *head_free; 1364 struct rcu_gp_oldstate head_free_gp_snap; 1365 struct list_head bulk_head_free[FREE_N_CHANNELS]; 1366 struct kfree_rcu_cpu *krcp; 1367 }; 1368 1369 /** 1370 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 1371 * @head: List of kfree_rcu() objects not yet waiting for a grace period 1372 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 1373 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 1374 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 1375 * @lock: Synchronize access to this structure 1376 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 1377 * @initialized: The @rcu_work fields have been initialized 1378 * @head_count: Number of objects in rcu_head singular list 1379 * @bulk_count: Number of objects in bulk-list 1380 * @bkvcache: 1381 * A simple cache list that contains objects for reuse purpose. 1382 * In order to save some per-cpu space the list is singular. 1383 * Even though it is lockless an access has to be protected by the 1384 * per-cpu lock. 1385 * @page_cache_work: A work to refill the cache when it is empty 1386 * @backoff_page_cache_fill: Delay cache refills 1387 * @work_in_progress: Indicates that page_cache_work is running 1388 * @hrtimer: A hrtimer for scheduling a page_cache_work 1389 * @nr_bkv_objs: number of allocated objects at @bkvcache. 1390 * 1391 * This is a per-CPU structure. The reason that it is not included in 1392 * the rcu_data structure is to permit this code to be extracted from 1393 * the RCU files. Such extraction could allow further optimization of 1394 * the interactions with the slab allocators. 1395 */ 1396 struct kfree_rcu_cpu { 1397 // Objects queued on a linked list 1398 // through their rcu_head structures. 1399 struct rcu_head *head; 1400 unsigned long head_gp_snap; 1401 atomic_t head_count; 1402 1403 // Objects queued on a bulk-list. 1404 struct list_head bulk_head[FREE_N_CHANNELS]; 1405 atomic_t bulk_count[FREE_N_CHANNELS]; 1406 1407 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 1408 raw_spinlock_t lock; 1409 struct delayed_work monitor_work; 1410 bool initialized; 1411 1412 struct delayed_work page_cache_work; 1413 atomic_t backoff_page_cache_fill; 1414 atomic_t work_in_progress; 1415 struct hrtimer hrtimer; 1416 1417 struct llist_head bkvcache; 1418 int nr_bkv_objs; 1419 }; 1420 1421 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 1422 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 1423 }; 1424 1425 static __always_inline void 1426 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 1427 { 1428 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 1429 int i; 1430 1431 for (i = 0; i < bhead->nr_records; i++) 1432 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 1433 #endif 1434 } 1435 1436 static inline struct kfree_rcu_cpu * 1437 krc_this_cpu_lock(unsigned long *flags) 1438 { 1439 struct kfree_rcu_cpu *krcp; 1440 1441 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 1442 krcp = this_cpu_ptr(&krc); 1443 raw_spin_lock(&krcp->lock); 1444 1445 return krcp; 1446 } 1447 1448 static inline void 1449 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 1450 { 1451 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1452 } 1453 1454 static inline struct kvfree_rcu_bulk_data * 1455 get_cached_bnode(struct kfree_rcu_cpu *krcp) 1456 { 1457 if (!krcp->nr_bkv_objs) 1458 return NULL; 1459 1460 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 1461 return (struct kvfree_rcu_bulk_data *) 1462 llist_del_first(&krcp->bkvcache); 1463 } 1464 1465 static inline bool 1466 put_cached_bnode(struct kfree_rcu_cpu *krcp, 1467 struct kvfree_rcu_bulk_data *bnode) 1468 { 1469 // Check the limit. 1470 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 1471 return false; 1472 1473 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 1474 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 1475 return true; 1476 } 1477 1478 static int 1479 drain_page_cache(struct kfree_rcu_cpu *krcp) 1480 { 1481 unsigned long flags; 1482 struct llist_node *page_list, *pos, *n; 1483 int freed = 0; 1484 1485 if (!rcu_min_cached_objs) 1486 return 0; 1487 1488 raw_spin_lock_irqsave(&krcp->lock, flags); 1489 page_list = llist_del_all(&krcp->bkvcache); 1490 WRITE_ONCE(krcp->nr_bkv_objs, 0); 1491 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1492 1493 llist_for_each_safe(pos, n, page_list) { 1494 free_page((unsigned long)pos); 1495 freed++; 1496 } 1497 1498 return freed; 1499 } 1500 1501 static void 1502 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 1503 struct kvfree_rcu_bulk_data *bnode, int idx) 1504 { 1505 unsigned long flags; 1506 int i; 1507 1508 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 1509 debug_rcu_bhead_unqueue(bnode); 1510 rcu_lock_acquire(&rcu_callback_map); 1511 if (idx == 0) { // kmalloc() / kfree(). 1512 trace_rcu_invoke_kfree_bulk_callback( 1513 "slab", bnode->nr_records, 1514 bnode->records); 1515 1516 kfree_bulk(bnode->nr_records, bnode->records); 1517 } else { // vmalloc() / vfree(). 1518 for (i = 0; i < bnode->nr_records; i++) { 1519 trace_rcu_invoke_kvfree_callback( 1520 "slab", bnode->records[i], 0); 1521 1522 vfree(bnode->records[i]); 1523 } 1524 } 1525 rcu_lock_release(&rcu_callback_map); 1526 } 1527 1528 raw_spin_lock_irqsave(&krcp->lock, flags); 1529 if (put_cached_bnode(krcp, bnode)) 1530 bnode = NULL; 1531 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1532 1533 if (bnode) 1534 free_page((unsigned long) bnode); 1535 1536 cond_resched_tasks_rcu_qs(); 1537 } 1538 1539 static void 1540 kvfree_rcu_list(struct rcu_head *head) 1541 { 1542 struct rcu_head *next; 1543 1544 for (; head; head = next) { 1545 void *ptr = (void *) head->func; 1546 unsigned long offset = (void *) head - ptr; 1547 1548 next = head->next; 1549 debug_rcu_head_unqueue((struct rcu_head *)ptr); 1550 rcu_lock_acquire(&rcu_callback_map); 1551 trace_rcu_invoke_kvfree_callback("slab", head, offset); 1552 1553 kvfree(ptr); 1554 1555 rcu_lock_release(&rcu_callback_map); 1556 cond_resched_tasks_rcu_qs(); 1557 } 1558 } 1559 1560 /* 1561 * This function is invoked in workqueue context after a grace period. 1562 * It frees all the objects queued on ->bulk_head_free or ->head_free. 1563 */ 1564 static void kfree_rcu_work(struct work_struct *work) 1565 { 1566 unsigned long flags; 1567 struct kvfree_rcu_bulk_data *bnode, *n; 1568 struct list_head bulk_head[FREE_N_CHANNELS]; 1569 struct rcu_head *head; 1570 struct kfree_rcu_cpu *krcp; 1571 struct kfree_rcu_cpu_work *krwp; 1572 struct rcu_gp_oldstate head_gp_snap; 1573 int i; 1574 1575 krwp = container_of(to_rcu_work(work), 1576 struct kfree_rcu_cpu_work, rcu_work); 1577 krcp = krwp->krcp; 1578 1579 raw_spin_lock_irqsave(&krcp->lock, flags); 1580 // Channels 1 and 2. 1581 for (i = 0; i < FREE_N_CHANNELS; i++) 1582 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 1583 1584 // Channel 3. 1585 head = krwp->head_free; 1586 krwp->head_free = NULL; 1587 head_gp_snap = krwp->head_free_gp_snap; 1588 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1589 1590 // Handle the first two channels. 1591 for (i = 0; i < FREE_N_CHANNELS; i++) { 1592 // Start from the tail page, so a GP is likely passed for it. 1593 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 1594 kvfree_rcu_bulk(krcp, bnode, i); 1595 } 1596 1597 /* 1598 * This is used when the "bulk" path can not be used for the 1599 * double-argument of kvfree_rcu(). This happens when the 1600 * page-cache is empty, which means that objects are instead 1601 * queued on a linked list through their rcu_head structures. 1602 * This list is named "Channel 3". 1603 */ 1604 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 1605 kvfree_rcu_list(head); 1606 } 1607 1608 static bool 1609 need_offload_krc(struct kfree_rcu_cpu *krcp) 1610 { 1611 int i; 1612 1613 for (i = 0; i < FREE_N_CHANNELS; i++) 1614 if (!list_empty(&krcp->bulk_head[i])) 1615 return true; 1616 1617 return !!READ_ONCE(krcp->head); 1618 } 1619 1620 static bool 1621 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 1622 { 1623 int i; 1624 1625 for (i = 0; i < FREE_N_CHANNELS; i++) 1626 if (!list_empty(&krwp->bulk_head_free[i])) 1627 return true; 1628 1629 return !!krwp->head_free; 1630 } 1631 1632 static int krc_count(struct kfree_rcu_cpu *krcp) 1633 { 1634 int sum = atomic_read(&krcp->head_count); 1635 int i; 1636 1637 for (i = 0; i < FREE_N_CHANNELS; i++) 1638 sum += atomic_read(&krcp->bulk_count[i]); 1639 1640 return sum; 1641 } 1642 1643 static void 1644 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 1645 { 1646 long delay, delay_left; 1647 1648 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 1649 if (delayed_work_pending(&krcp->monitor_work)) { 1650 delay_left = krcp->monitor_work.timer.expires - jiffies; 1651 if (delay < delay_left) 1652 mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); 1653 return; 1654 } 1655 queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); 1656 } 1657 1658 static void 1659 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 1660 { 1661 unsigned long flags; 1662 1663 raw_spin_lock_irqsave(&krcp->lock, flags); 1664 __schedule_delayed_monitor_work(krcp); 1665 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1666 } 1667 1668 static void 1669 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 1670 { 1671 struct list_head bulk_ready[FREE_N_CHANNELS]; 1672 struct kvfree_rcu_bulk_data *bnode, *n; 1673 struct rcu_head *head_ready = NULL; 1674 unsigned long flags; 1675 int i; 1676 1677 raw_spin_lock_irqsave(&krcp->lock, flags); 1678 for (i = 0; i < FREE_N_CHANNELS; i++) { 1679 INIT_LIST_HEAD(&bulk_ready[i]); 1680 1681 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 1682 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 1683 break; 1684 1685 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 1686 list_move(&bnode->list, &bulk_ready[i]); 1687 } 1688 } 1689 1690 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 1691 head_ready = krcp->head; 1692 atomic_set(&krcp->head_count, 0); 1693 WRITE_ONCE(krcp->head, NULL); 1694 } 1695 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1696 1697 for (i = 0; i < FREE_N_CHANNELS; i++) { 1698 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 1699 kvfree_rcu_bulk(krcp, bnode, i); 1700 } 1701 1702 if (head_ready) 1703 kvfree_rcu_list(head_ready); 1704 } 1705 1706 /* 1707 * Return: %true if a work is queued, %false otherwise. 1708 */ 1709 static bool 1710 kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) 1711 { 1712 unsigned long flags; 1713 bool queued = false; 1714 int i, j; 1715 1716 raw_spin_lock_irqsave(&krcp->lock, flags); 1717 1718 // Attempt to start a new batch. 1719 for (i = 0; i < KFREE_N_BATCHES; i++) { 1720 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 1721 1722 // Try to detach bulk_head or head and attach it, only when 1723 // all channels are free. Any channel is not free means at krwp 1724 // there is on-going rcu work to handle krwp's free business. 1725 if (need_wait_for_krwp_work(krwp)) 1726 continue; 1727 1728 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 1729 if (need_offload_krc(krcp)) { 1730 // Channel 1 corresponds to the SLAB-pointer bulk path. 1731 // Channel 2 corresponds to vmalloc-pointer bulk path. 1732 for (j = 0; j < FREE_N_CHANNELS; j++) { 1733 if (list_empty(&krwp->bulk_head_free[j])) { 1734 atomic_set(&krcp->bulk_count[j], 0); 1735 list_replace_init(&krcp->bulk_head[j], 1736 &krwp->bulk_head_free[j]); 1737 } 1738 } 1739 1740 // Channel 3 corresponds to both SLAB and vmalloc 1741 // objects queued on the linked list. 1742 if (!krwp->head_free) { 1743 krwp->head_free = krcp->head; 1744 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 1745 atomic_set(&krcp->head_count, 0); 1746 WRITE_ONCE(krcp->head, NULL); 1747 } 1748 1749 // One work is per one batch, so there are three 1750 // "free channels", the batch can handle. Break 1751 // the loop since it is done with this CPU thus 1752 // queuing an RCU work is _always_ success here. 1753 queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work); 1754 WARN_ON_ONCE(!queued); 1755 break; 1756 } 1757 } 1758 1759 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1760 return queued; 1761 } 1762 1763 /* 1764 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 1765 */ 1766 static void kfree_rcu_monitor(struct work_struct *work) 1767 { 1768 struct kfree_rcu_cpu *krcp = container_of(work, 1769 struct kfree_rcu_cpu, monitor_work.work); 1770 1771 // Drain ready for reclaim. 1772 kvfree_rcu_drain_ready(krcp); 1773 1774 // Queue a batch for a rest. 1775 kvfree_rcu_queue_batch(krcp); 1776 1777 // If there is nothing to detach, it means that our job is 1778 // successfully done here. In case of having at least one 1779 // of the channels that is still busy we should rearm the 1780 // work to repeat an attempt. Because previous batches are 1781 // still in progress. 1782 if (need_offload_krc(krcp)) 1783 schedule_delayed_monitor_work(krcp); 1784 } 1785 1786 static void fill_page_cache_func(struct work_struct *work) 1787 { 1788 struct kvfree_rcu_bulk_data *bnode; 1789 struct kfree_rcu_cpu *krcp = 1790 container_of(work, struct kfree_rcu_cpu, 1791 page_cache_work.work); 1792 unsigned long flags; 1793 int nr_pages; 1794 bool pushed; 1795 int i; 1796 1797 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 1798 1 : rcu_min_cached_objs; 1799 1800 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 1801 bnode = (struct kvfree_rcu_bulk_data *) 1802 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1803 1804 if (!bnode) 1805 break; 1806 1807 raw_spin_lock_irqsave(&krcp->lock, flags); 1808 pushed = put_cached_bnode(krcp, bnode); 1809 raw_spin_unlock_irqrestore(&krcp->lock, flags); 1810 1811 if (!pushed) { 1812 free_page((unsigned long) bnode); 1813 break; 1814 } 1815 } 1816 1817 atomic_set(&krcp->work_in_progress, 0); 1818 atomic_set(&krcp->backoff_page_cache_fill, 0); 1819 } 1820 1821 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 1822 // state specified by flags. If can_alloc is true, the caller must 1823 // be schedulable and not be holding any locks or mutexes that might be 1824 // acquired by the memory allocator or anything that it might invoke. 1825 // Returns true if ptr was successfully recorded, else the caller must 1826 // use a fallback. 1827 static inline bool 1828 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 1829 unsigned long *flags, void *ptr, bool can_alloc) 1830 { 1831 struct kvfree_rcu_bulk_data *bnode; 1832 int idx; 1833 1834 *krcp = krc_this_cpu_lock(flags); 1835 if (unlikely(!(*krcp)->initialized)) 1836 return false; 1837 1838 idx = !!is_vmalloc_addr(ptr); 1839 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 1840 struct kvfree_rcu_bulk_data, list); 1841 1842 /* Check if a new block is required. */ 1843 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 1844 bnode = get_cached_bnode(*krcp); 1845 if (!bnode && can_alloc) { 1846 krc_this_cpu_unlock(*krcp, *flags); 1847 1848 // __GFP_NORETRY - allows a light-weight direct reclaim 1849 // what is OK from minimizing of fallback hitting point of 1850 // view. Apart of that it forbids any OOM invoking what is 1851 // also beneficial since we are about to release memory soon. 1852 // 1853 // __GFP_NOMEMALLOC - prevents from consuming of all the 1854 // memory reserves. Please note we have a fallback path. 1855 // 1856 // __GFP_NOWARN - it is supposed that an allocation can 1857 // be failed under low memory or high memory pressure 1858 // scenarios. 1859 bnode = (struct kvfree_rcu_bulk_data *) 1860 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1861 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 1862 } 1863 1864 if (!bnode) 1865 return false; 1866 1867 // Initialize the new block and attach it. 1868 bnode->nr_records = 0; 1869 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 1870 } 1871 1872 // Finally insert and update the GP for this page. 1873 bnode->nr_records++; 1874 bnode->records[bnode->nr_records - 1] = ptr; 1875 get_state_synchronize_rcu_full(&bnode->gp_snap); 1876 atomic_inc(&(*krcp)->bulk_count[idx]); 1877 1878 return true; 1879 } 1880 1881 static enum hrtimer_restart 1882 schedule_page_work_fn(struct hrtimer *t) 1883 { 1884 struct kfree_rcu_cpu *krcp = 1885 container_of(t, struct kfree_rcu_cpu, hrtimer); 1886 1887 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 1888 return HRTIMER_NORESTART; 1889 } 1890 1891 static void 1892 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 1893 { 1894 // If cache disabled, bail out. 1895 if (!rcu_min_cached_objs) 1896 return; 1897 1898 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 1899 !atomic_xchg(&krcp->work_in_progress, 1)) { 1900 if (atomic_read(&krcp->backoff_page_cache_fill)) { 1901 queue_delayed_work(rcu_reclaim_wq, 1902 &krcp->page_cache_work, 1903 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 1904 } else { 1905 hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC, 1906 HRTIMER_MODE_REL); 1907 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 1908 } 1909 } 1910 } 1911 1912 void __init kfree_rcu_scheduler_running(void) 1913 { 1914 int cpu; 1915 1916 for_each_possible_cpu(cpu) { 1917 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 1918 1919 if (need_offload_krc(krcp)) 1920 schedule_delayed_monitor_work(krcp); 1921 } 1922 } 1923 1924 /* 1925 * Queue a request for lazy invocation of the appropriate free routine 1926 * after a grace period. Please note that three paths are maintained, 1927 * two for the common case using arrays of pointers and a third one that 1928 * is used only when the main paths cannot be used, for example, due to 1929 * memory pressure. 1930 * 1931 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 1932 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 1933 * be free'd in workqueue context. This allows us to: batch requests together to 1934 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 1935 */ 1936 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 1937 { 1938 unsigned long flags; 1939 struct kfree_rcu_cpu *krcp; 1940 bool success; 1941 1942 /* 1943 * Please note there is a limitation for the head-less 1944 * variant, that is why there is a clear rule for such 1945 * objects: it can be used from might_sleep() context 1946 * only. For other places please embed an rcu_head to 1947 * your data. 1948 */ 1949 if (!head) 1950 might_sleep(); 1951 1952 // Queue the object but don't yet schedule the batch. 1953 if (debug_rcu_head_queue(ptr)) { 1954 // Probable double kfree_rcu(), just leak. 1955 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 1956 __func__, head); 1957 1958 // Mark as success and leave. 1959 return; 1960 } 1961 1962 kasan_record_aux_stack(ptr); 1963 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 1964 if (!success) { 1965 run_page_cache_worker(krcp); 1966 1967 if (head == NULL) 1968 // Inline if kvfree_rcu(one_arg) call. 1969 goto unlock_return; 1970 1971 head->func = ptr; 1972 head->next = krcp->head; 1973 WRITE_ONCE(krcp->head, head); 1974 atomic_inc(&krcp->head_count); 1975 1976 // Take a snapshot for this krcp. 1977 krcp->head_gp_snap = get_state_synchronize_rcu(); 1978 success = true; 1979 } 1980 1981 /* 1982 * The kvfree_rcu() caller considers the pointer freed at this point 1983 * and likely removes any references to it. Since the actual slab 1984 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 1985 * this object (no scanning or false positives reporting). 1986 */ 1987 kmemleak_ignore(ptr); 1988 1989 // Set timer to drain after KFREE_DRAIN_JIFFIES. 1990 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 1991 __schedule_delayed_monitor_work(krcp); 1992 1993 unlock_return: 1994 krc_this_cpu_unlock(krcp, flags); 1995 1996 /* 1997 * Inline kvfree() after synchronize_rcu(). We can do 1998 * it from might_sleep() context only, so the current 1999 * CPU can pass the QS state. 2000 */ 2001 if (!success) { 2002 debug_rcu_head_unqueue((struct rcu_head *) ptr); 2003 synchronize_rcu(); 2004 kvfree(ptr); 2005 } 2006 } 2007 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 2008 2009 /** 2010 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. 2011 * 2012 * Note that a single argument of kvfree_rcu() call has a slow path that 2013 * triggers synchronize_rcu() following by freeing a pointer. It is done 2014 * before the return from the function. Therefore for any single-argument 2015 * call that will result in a kfree() to a cache that is to be destroyed 2016 * during module exit, it is developer's responsibility to ensure that all 2017 * such calls have returned before the call to kmem_cache_destroy(). 2018 */ 2019 void kvfree_rcu_barrier(void) 2020 { 2021 struct kfree_rcu_cpu_work *krwp; 2022 struct kfree_rcu_cpu *krcp; 2023 bool queued; 2024 int i, cpu; 2025 2026 /* 2027 * Firstly we detach objects and queue them over an RCU-batch 2028 * for all CPUs. Finally queued works are flushed for each CPU. 2029 * 2030 * Please note. If there are outstanding batches for a particular 2031 * CPU, those have to be finished first following by queuing a new. 2032 */ 2033 for_each_possible_cpu(cpu) { 2034 krcp = per_cpu_ptr(&krc, cpu); 2035 2036 /* 2037 * Check if this CPU has any objects which have been queued for a 2038 * new GP completion. If not(means nothing to detach), we are done 2039 * with it. If any batch is pending/running for this "krcp", below 2040 * per-cpu flush_rcu_work() waits its completion(see last step). 2041 */ 2042 if (!need_offload_krc(krcp)) 2043 continue; 2044 2045 while (1) { 2046 /* 2047 * If we are not able to queue a new RCU work it means: 2048 * - batches for this CPU are still in flight which should 2049 * be flushed first and then repeat; 2050 * - no objects to detach, because of concurrency. 2051 */ 2052 queued = kvfree_rcu_queue_batch(krcp); 2053 2054 /* 2055 * Bail out, if there is no need to offload this "krcp" 2056 * anymore. As noted earlier it can run concurrently. 2057 */ 2058 if (queued || !need_offload_krc(krcp)) 2059 break; 2060 2061 /* There are ongoing batches. */ 2062 for (i = 0; i < KFREE_N_BATCHES; i++) { 2063 krwp = &(krcp->krw_arr[i]); 2064 flush_rcu_work(&krwp->rcu_work); 2065 } 2066 } 2067 } 2068 2069 /* 2070 * Now we guarantee that all objects are flushed. 2071 */ 2072 for_each_possible_cpu(cpu) { 2073 krcp = per_cpu_ptr(&krc, cpu); 2074 2075 /* 2076 * A monitor work can drain ready to reclaim objects 2077 * directly. Wait its completion if running or pending. 2078 */ 2079 cancel_delayed_work_sync(&krcp->monitor_work); 2080 2081 for (i = 0; i < KFREE_N_BATCHES; i++) { 2082 krwp = &(krcp->krw_arr[i]); 2083 flush_rcu_work(&krwp->rcu_work); 2084 } 2085 } 2086 } 2087 EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); 2088 2089 static unsigned long 2090 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2091 { 2092 int cpu; 2093 unsigned long count = 0; 2094 2095 /* Snapshot count of all CPUs */ 2096 for_each_possible_cpu(cpu) { 2097 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 2098 2099 count += krc_count(krcp); 2100 count += READ_ONCE(krcp->nr_bkv_objs); 2101 atomic_set(&krcp->backoff_page_cache_fill, 1); 2102 } 2103 2104 return count == 0 ? SHRINK_EMPTY : count; 2105 } 2106 2107 static unsigned long 2108 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2109 { 2110 int cpu, freed = 0; 2111 2112 for_each_possible_cpu(cpu) { 2113 int count; 2114 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 2115 2116 count = krc_count(krcp); 2117 count += drain_page_cache(krcp); 2118 kfree_rcu_monitor(&krcp->monitor_work.work); 2119 2120 sc->nr_to_scan -= count; 2121 freed += count; 2122 2123 if (sc->nr_to_scan <= 0) 2124 break; 2125 } 2126 2127 return freed == 0 ? SHRINK_STOP : freed; 2128 } 2129 2130 void __init kvfree_rcu_init(void) 2131 { 2132 int cpu; 2133 int i, j; 2134 struct shrinker *kfree_rcu_shrinker; 2135 2136 rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim", 2137 WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2138 WARN_ON(!rcu_reclaim_wq); 2139 2140 /* Clamp it to [0:100] seconds interval. */ 2141 if (rcu_delay_page_cache_fill_msec < 0 || 2142 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 2143 2144 rcu_delay_page_cache_fill_msec = 2145 clamp(rcu_delay_page_cache_fill_msec, 0, 2146 (int) (100 * MSEC_PER_SEC)); 2147 2148 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 2149 rcu_delay_page_cache_fill_msec); 2150 } 2151 2152 for_each_possible_cpu(cpu) { 2153 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 2154 2155 for (i = 0; i < KFREE_N_BATCHES; i++) { 2156 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 2157 krcp->krw_arr[i].krcp = krcp; 2158 2159 for (j = 0; j < FREE_N_CHANNELS; j++) 2160 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 2161 } 2162 2163 for (i = 0; i < FREE_N_CHANNELS; i++) 2164 INIT_LIST_HEAD(&krcp->bulk_head[i]); 2165 2166 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 2167 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 2168 krcp->initialized = true; 2169 } 2170 2171 kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); 2172 if (!kfree_rcu_shrinker) { 2173 pr_err("Failed to allocate kfree_rcu() shrinker!\n"); 2174 return; 2175 } 2176 2177 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; 2178 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; 2179 2180 shrinker_register(kfree_rcu_shrinker); 2181 } 2182 2183 #endif /* CONFIG_KVFREE_RCU_BATCHED */ 2184 2185