1 /* 2 * Slab allocator functions that are independent of the allocator strategy 3 * 4 * (C) 2012 Christoph Lameter <cl@linux.com> 5 */ 6 #include <linux/slab.h> 7 8 #include <linux/mm.h> 9 #include <linux/poison.h> 10 #include <linux/interrupt.h> 11 #include <linux/memory.h> 12 #include <linux/compiler.h> 13 #include <linux/module.h> 14 #include <linux/cpu.h> 15 #include <linux/uaccess.h> 16 #include <linux/seq_file.h> 17 #include <linux/proc_fs.h> 18 #include <asm/cacheflush.h> 19 #include <asm/tlbflush.h> 20 #include <asm/page.h> 21 #include <linux/memcontrol.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/kmem.h> 25 26 #include "slab.h" 27 28 enum slab_state slab_state; 29 LIST_HEAD(slab_caches); 30 DEFINE_MUTEX(slab_mutex); 31 struct kmem_cache *kmem_cache; 32 33 /* 34 * Set of flags that will prevent slab merging 35 */ 36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 38 SLAB_FAILSLAB) 39 40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 41 SLAB_CACHE_DMA | SLAB_NOTRACK) 42 43 /* 44 * Merge control. If this is set then no merging of slab caches will occur. 45 * (Could be removed. This was introduced to pacify the merge skeptics.) 46 */ 47 static int slab_nomerge; 48 49 static int __init setup_slab_nomerge(char *str) 50 { 51 slab_nomerge = 1; 52 return 1; 53 } 54 55 #ifdef CONFIG_SLUB 56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 57 #endif 58 59 __setup("slab_nomerge", setup_slab_nomerge); 60 61 /* 62 * Determine the size of a slab object 63 */ 64 unsigned int kmem_cache_size(struct kmem_cache *s) 65 { 66 return s->object_size; 67 } 68 EXPORT_SYMBOL(kmem_cache_size); 69 70 #ifdef CONFIG_DEBUG_VM 71 static int kmem_cache_sanity_check(const char *name, size_t size) 72 { 73 struct kmem_cache *s = NULL; 74 75 if (!name || in_interrupt() || size < sizeof(void *) || 76 size > KMALLOC_MAX_SIZE) { 77 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 78 return -EINVAL; 79 } 80 81 list_for_each_entry(s, &slab_caches, list) { 82 char tmp; 83 int res; 84 85 /* 86 * This happens when the module gets unloaded and doesn't 87 * destroy its slab cache and no-one else reuses the vmalloc 88 * area of the module. Print a warning. 89 */ 90 res = probe_kernel_address(s->name, tmp); 91 if (res) { 92 pr_err("Slab cache with size %d has lost its name\n", 93 s->object_size); 94 continue; 95 } 96 } 97 98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 99 return 0; 100 } 101 #else 102 static inline int kmem_cache_sanity_check(const char *name, size_t size) 103 { 104 return 0; 105 } 106 #endif 107 108 #ifdef CONFIG_MEMCG_KMEM 109 static int memcg_alloc_cache_params(struct mem_cgroup *memcg, 110 struct kmem_cache *s, struct kmem_cache *root_cache) 111 { 112 size_t size; 113 114 if (!memcg_kmem_enabled()) 115 return 0; 116 117 if (!memcg) { 118 size = offsetof(struct memcg_cache_params, memcg_caches); 119 size += memcg_limited_groups_array_size * sizeof(void *); 120 } else 121 size = sizeof(struct memcg_cache_params); 122 123 s->memcg_params = kzalloc(size, GFP_KERNEL); 124 if (!s->memcg_params) 125 return -ENOMEM; 126 127 if (memcg) { 128 s->memcg_params->memcg = memcg; 129 s->memcg_params->root_cache = root_cache; 130 } else 131 s->memcg_params->is_root_cache = true; 132 133 return 0; 134 } 135 136 static void memcg_free_cache_params(struct kmem_cache *s) 137 { 138 kfree(s->memcg_params); 139 } 140 141 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs) 142 { 143 int size; 144 struct memcg_cache_params *new_params, *cur_params; 145 146 BUG_ON(!is_root_cache(s)); 147 148 size = offsetof(struct memcg_cache_params, memcg_caches); 149 size += num_memcgs * sizeof(void *); 150 151 new_params = kzalloc(size, GFP_KERNEL); 152 if (!new_params) 153 return -ENOMEM; 154 155 cur_params = s->memcg_params; 156 memcpy(new_params->memcg_caches, cur_params->memcg_caches, 157 memcg_limited_groups_array_size * sizeof(void *)); 158 159 new_params->is_root_cache = true; 160 161 rcu_assign_pointer(s->memcg_params, new_params); 162 if (cur_params) 163 kfree_rcu(cur_params, rcu_head); 164 165 return 0; 166 } 167 168 int memcg_update_all_caches(int num_memcgs) 169 { 170 struct kmem_cache *s; 171 int ret = 0; 172 mutex_lock(&slab_mutex); 173 174 list_for_each_entry(s, &slab_caches, list) { 175 if (!is_root_cache(s)) 176 continue; 177 178 ret = memcg_update_cache_params(s, num_memcgs); 179 /* 180 * Instead of freeing the memory, we'll just leave the caches 181 * up to this point in an updated state. 182 */ 183 if (ret) 184 goto out; 185 } 186 187 memcg_update_array_size(num_memcgs); 188 out: 189 mutex_unlock(&slab_mutex); 190 return ret; 191 } 192 #else 193 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg, 194 struct kmem_cache *s, struct kmem_cache *root_cache) 195 { 196 return 0; 197 } 198 199 static inline void memcg_free_cache_params(struct kmem_cache *s) 200 { 201 } 202 #endif /* CONFIG_MEMCG_KMEM */ 203 204 /* 205 * Find a mergeable slab cache 206 */ 207 int slab_unmergeable(struct kmem_cache *s) 208 { 209 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 210 return 1; 211 212 if (!is_root_cache(s)) 213 return 1; 214 215 if (s->ctor) 216 return 1; 217 218 /* 219 * We may have set a slab to be unmergeable during bootstrap. 220 */ 221 if (s->refcount < 0) 222 return 1; 223 224 return 0; 225 } 226 227 struct kmem_cache *find_mergeable(size_t size, size_t align, 228 unsigned long flags, const char *name, void (*ctor)(void *)) 229 { 230 struct kmem_cache *s; 231 232 if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) 233 return NULL; 234 235 if (ctor) 236 return NULL; 237 238 size = ALIGN(size, sizeof(void *)); 239 align = calculate_alignment(flags, align, size); 240 size = ALIGN(size, align); 241 flags = kmem_cache_flags(size, flags, name, NULL); 242 243 list_for_each_entry_reverse(s, &slab_caches, list) { 244 if (slab_unmergeable(s)) 245 continue; 246 247 if (size > s->size) 248 continue; 249 250 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 251 continue; 252 /* 253 * Check if alignment is compatible. 254 * Courtesy of Adrian Drzewiecki 255 */ 256 if ((s->size & ~(align - 1)) != s->size) 257 continue; 258 259 if (s->size - size >= sizeof(void *)) 260 continue; 261 262 if (IS_ENABLED(CONFIG_SLAB) && align && 263 (align > s->align || s->align % align)) 264 continue; 265 266 return s; 267 } 268 return NULL; 269 } 270 271 /* 272 * Figure out what the alignment of the objects will be given a set of 273 * flags, a user specified alignment and the size of the objects. 274 */ 275 unsigned long calculate_alignment(unsigned long flags, 276 unsigned long align, unsigned long size) 277 { 278 /* 279 * If the user wants hardware cache aligned objects then follow that 280 * suggestion if the object is sufficiently large. 281 * 282 * The hardware cache alignment cannot override the specified 283 * alignment though. If that is greater then use it. 284 */ 285 if (flags & SLAB_HWCACHE_ALIGN) { 286 unsigned long ralign = cache_line_size(); 287 while (size <= ralign / 2) 288 ralign /= 2; 289 align = max(align, ralign); 290 } 291 292 if (align < ARCH_SLAB_MINALIGN) 293 align = ARCH_SLAB_MINALIGN; 294 295 return ALIGN(align, sizeof(void *)); 296 } 297 298 static struct kmem_cache * 299 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align, 300 unsigned long flags, void (*ctor)(void *), 301 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 302 { 303 struct kmem_cache *s; 304 int err; 305 306 err = -ENOMEM; 307 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 308 if (!s) 309 goto out; 310 311 s->name = name; 312 s->object_size = object_size; 313 s->size = size; 314 s->align = align; 315 s->ctor = ctor; 316 317 err = memcg_alloc_cache_params(memcg, s, root_cache); 318 if (err) 319 goto out_free_cache; 320 321 err = __kmem_cache_create(s, flags); 322 if (err) 323 goto out_free_cache; 324 325 s->refcount = 1; 326 list_add(&s->list, &slab_caches); 327 out: 328 if (err) 329 return ERR_PTR(err); 330 return s; 331 332 out_free_cache: 333 memcg_free_cache_params(s); 334 kfree(s); 335 goto out; 336 } 337 338 /* 339 * kmem_cache_create - Create a cache. 340 * @name: A string which is used in /proc/slabinfo to identify this cache. 341 * @size: The size of objects to be created in this cache. 342 * @align: The required alignment for the objects. 343 * @flags: SLAB flags 344 * @ctor: A constructor for the objects. 345 * 346 * Returns a ptr to the cache on success, NULL on failure. 347 * Cannot be called within a interrupt, but can be interrupted. 348 * The @ctor is run when new pages are allocated by the cache. 349 * 350 * The flags are 351 * 352 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 353 * to catch references to uninitialised memory. 354 * 355 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check 356 * for buffer overruns. 357 * 358 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 359 * cacheline. This can be beneficial if you're counting cycles as closely 360 * as davem. 361 */ 362 struct kmem_cache * 363 kmem_cache_create(const char *name, size_t size, size_t align, 364 unsigned long flags, void (*ctor)(void *)) 365 { 366 struct kmem_cache *s; 367 char *cache_name; 368 int err; 369 370 get_online_cpus(); 371 get_online_mems(); 372 373 mutex_lock(&slab_mutex); 374 375 err = kmem_cache_sanity_check(name, size); 376 if (err) { 377 s = NULL; /* suppress uninit var warning */ 378 goto out_unlock; 379 } 380 381 /* 382 * Some allocators will constraint the set of valid flags to a subset 383 * of all flags. We expect them to define CACHE_CREATE_MASK in this 384 * case, and we'll just provide them with a sanitized version of the 385 * passed flags. 386 */ 387 flags &= CACHE_CREATE_MASK; 388 389 s = __kmem_cache_alias(name, size, align, flags, ctor); 390 if (s) 391 goto out_unlock; 392 393 cache_name = kstrdup(name, GFP_KERNEL); 394 if (!cache_name) { 395 err = -ENOMEM; 396 goto out_unlock; 397 } 398 399 s = do_kmem_cache_create(cache_name, size, size, 400 calculate_alignment(flags, align, size), 401 flags, ctor, NULL, NULL); 402 if (IS_ERR(s)) { 403 err = PTR_ERR(s); 404 kfree(cache_name); 405 } 406 407 out_unlock: 408 mutex_unlock(&slab_mutex); 409 410 put_online_mems(); 411 put_online_cpus(); 412 413 if (err) { 414 if (flags & SLAB_PANIC) 415 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 416 name, err); 417 else { 418 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", 419 name, err); 420 dump_stack(); 421 } 422 return NULL; 423 } 424 return s; 425 } 426 EXPORT_SYMBOL(kmem_cache_create); 427 428 #ifdef CONFIG_MEMCG_KMEM 429 /* 430 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 431 * @memcg: The memory cgroup the new cache is for. 432 * @root_cache: The parent of the new cache. 433 * @memcg_name: The name of the memory cgroup (used for naming the new cache). 434 * 435 * This function attempts to create a kmem cache that will serve allocation 436 * requests going from @memcg to @root_cache. The new cache inherits properties 437 * from its parent. 438 */ 439 struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 440 struct kmem_cache *root_cache, 441 const char *memcg_name) 442 { 443 struct kmem_cache *s = NULL; 444 char *cache_name; 445 446 get_online_cpus(); 447 get_online_mems(); 448 449 mutex_lock(&slab_mutex); 450 451 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, 452 memcg_cache_id(memcg), memcg_name); 453 if (!cache_name) 454 goto out_unlock; 455 456 s = do_kmem_cache_create(cache_name, root_cache->object_size, 457 root_cache->size, root_cache->align, 458 root_cache->flags, root_cache->ctor, 459 memcg, root_cache); 460 if (IS_ERR(s)) { 461 kfree(cache_name); 462 s = NULL; 463 } 464 465 out_unlock: 466 mutex_unlock(&slab_mutex); 467 468 put_online_mems(); 469 put_online_cpus(); 470 471 return s; 472 } 473 474 static int memcg_cleanup_cache_params(struct kmem_cache *s) 475 { 476 int rc; 477 478 if (!s->memcg_params || 479 !s->memcg_params->is_root_cache) 480 return 0; 481 482 mutex_unlock(&slab_mutex); 483 rc = __memcg_cleanup_cache_params(s); 484 mutex_lock(&slab_mutex); 485 486 return rc; 487 } 488 #else 489 static int memcg_cleanup_cache_params(struct kmem_cache *s) 490 { 491 return 0; 492 } 493 #endif /* CONFIG_MEMCG_KMEM */ 494 495 void slab_kmem_cache_release(struct kmem_cache *s) 496 { 497 kfree(s->name); 498 kmem_cache_free(kmem_cache, s); 499 } 500 501 void kmem_cache_destroy(struct kmem_cache *s) 502 { 503 get_online_cpus(); 504 get_online_mems(); 505 506 mutex_lock(&slab_mutex); 507 508 s->refcount--; 509 if (s->refcount) 510 goto out_unlock; 511 512 if (memcg_cleanup_cache_params(s) != 0) 513 goto out_unlock; 514 515 if (__kmem_cache_shutdown(s) != 0) { 516 printk(KERN_ERR "kmem_cache_destroy %s: " 517 "Slab cache still has objects\n", s->name); 518 dump_stack(); 519 goto out_unlock; 520 } 521 522 list_del(&s->list); 523 524 mutex_unlock(&slab_mutex); 525 if (s->flags & SLAB_DESTROY_BY_RCU) 526 rcu_barrier(); 527 528 memcg_free_cache_params(s); 529 #ifdef SLAB_SUPPORTS_SYSFS 530 sysfs_slab_remove(s); 531 #else 532 slab_kmem_cache_release(s); 533 #endif 534 goto out; 535 536 out_unlock: 537 mutex_unlock(&slab_mutex); 538 out: 539 put_online_mems(); 540 put_online_cpus(); 541 } 542 EXPORT_SYMBOL(kmem_cache_destroy); 543 544 /** 545 * kmem_cache_shrink - Shrink a cache. 546 * @cachep: The cache to shrink. 547 * 548 * Releases as many slabs as possible for a cache. 549 * To help debugging, a zero exit status indicates all slabs were released. 550 */ 551 int kmem_cache_shrink(struct kmem_cache *cachep) 552 { 553 int ret; 554 555 get_online_cpus(); 556 get_online_mems(); 557 ret = __kmem_cache_shrink(cachep); 558 put_online_mems(); 559 put_online_cpus(); 560 return ret; 561 } 562 EXPORT_SYMBOL(kmem_cache_shrink); 563 564 int slab_is_available(void) 565 { 566 return slab_state >= UP; 567 } 568 569 #ifndef CONFIG_SLOB 570 /* Create a cache during boot when no slab services are available yet */ 571 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, 572 unsigned long flags) 573 { 574 int err; 575 576 s->name = name; 577 s->size = s->object_size = size; 578 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 579 err = __kmem_cache_create(s, flags); 580 581 if (err) 582 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", 583 name, size, err); 584 585 s->refcount = -1; /* Exempt from merging for now */ 586 } 587 588 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, 589 unsigned long flags) 590 { 591 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 592 593 if (!s) 594 panic("Out of memory when creating slab %s\n", name); 595 596 create_boot_cache(s, name, size, flags); 597 list_add(&s->list, &slab_caches); 598 s->refcount = 1; 599 return s; 600 } 601 602 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 603 EXPORT_SYMBOL(kmalloc_caches); 604 605 #ifdef CONFIG_ZONE_DMA 606 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 607 EXPORT_SYMBOL(kmalloc_dma_caches); 608 #endif 609 610 /* 611 * Conversion table for small slabs sizes / 8 to the index in the 612 * kmalloc array. This is necessary for slabs < 192 since we have non power 613 * of two cache sizes there. The size of larger slabs can be determined using 614 * fls. 615 */ 616 static s8 size_index[24] = { 617 3, /* 8 */ 618 4, /* 16 */ 619 5, /* 24 */ 620 5, /* 32 */ 621 6, /* 40 */ 622 6, /* 48 */ 623 6, /* 56 */ 624 6, /* 64 */ 625 1, /* 72 */ 626 1, /* 80 */ 627 1, /* 88 */ 628 1, /* 96 */ 629 7, /* 104 */ 630 7, /* 112 */ 631 7, /* 120 */ 632 7, /* 128 */ 633 2, /* 136 */ 634 2, /* 144 */ 635 2, /* 152 */ 636 2, /* 160 */ 637 2, /* 168 */ 638 2, /* 176 */ 639 2, /* 184 */ 640 2 /* 192 */ 641 }; 642 643 static inline int size_index_elem(size_t bytes) 644 { 645 return (bytes - 1) / 8; 646 } 647 648 /* 649 * Find the kmem_cache structure that serves a given size of 650 * allocation 651 */ 652 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 653 { 654 int index; 655 656 if (unlikely(size > KMALLOC_MAX_SIZE)) { 657 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 658 return NULL; 659 } 660 661 if (size <= 192) { 662 if (!size) 663 return ZERO_SIZE_PTR; 664 665 index = size_index[size_index_elem(size)]; 666 } else 667 index = fls(size - 1); 668 669 #ifdef CONFIG_ZONE_DMA 670 if (unlikely((flags & GFP_DMA))) 671 return kmalloc_dma_caches[index]; 672 673 #endif 674 return kmalloc_caches[index]; 675 } 676 677 /* 678 * Create the kmalloc array. Some of the regular kmalloc arrays 679 * may already have been created because they were needed to 680 * enable allocations for slab creation. 681 */ 682 void __init create_kmalloc_caches(unsigned long flags) 683 { 684 int i; 685 686 /* 687 * Patch up the size_index table if we have strange large alignment 688 * requirements for the kmalloc array. This is only the case for 689 * MIPS it seems. The standard arches will not generate any code here. 690 * 691 * Largest permitted alignment is 256 bytes due to the way we 692 * handle the index determination for the smaller caches. 693 * 694 * Make sure that nothing crazy happens if someone starts tinkering 695 * around with ARCH_KMALLOC_MINALIGN 696 */ 697 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 698 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 699 700 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 701 int elem = size_index_elem(i); 702 703 if (elem >= ARRAY_SIZE(size_index)) 704 break; 705 size_index[elem] = KMALLOC_SHIFT_LOW; 706 } 707 708 if (KMALLOC_MIN_SIZE >= 64) { 709 /* 710 * The 96 byte size cache is not used if the alignment 711 * is 64 byte. 712 */ 713 for (i = 64 + 8; i <= 96; i += 8) 714 size_index[size_index_elem(i)] = 7; 715 716 } 717 718 if (KMALLOC_MIN_SIZE >= 128) { 719 /* 720 * The 192 byte sized cache is not used if the alignment 721 * is 128 byte. Redirect kmalloc to use the 256 byte cache 722 * instead. 723 */ 724 for (i = 128 + 8; i <= 192; i += 8) 725 size_index[size_index_elem(i)] = 8; 726 } 727 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 728 if (!kmalloc_caches[i]) { 729 kmalloc_caches[i] = create_kmalloc_cache(NULL, 730 1 << i, flags); 731 } 732 733 /* 734 * Caches that are not of the two-to-the-power-of size. 735 * These have to be created immediately after the 736 * earlier power of two caches 737 */ 738 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) 739 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); 740 741 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) 742 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); 743 } 744 745 /* Kmalloc array is now usable */ 746 slab_state = UP; 747 748 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 749 struct kmem_cache *s = kmalloc_caches[i]; 750 char *n; 751 752 if (s) { 753 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); 754 755 BUG_ON(!n); 756 s->name = n; 757 } 758 } 759 760 #ifdef CONFIG_ZONE_DMA 761 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 762 struct kmem_cache *s = kmalloc_caches[i]; 763 764 if (s) { 765 int size = kmalloc_size(i); 766 char *n = kasprintf(GFP_NOWAIT, 767 "dma-kmalloc-%d", size); 768 769 BUG_ON(!n); 770 kmalloc_dma_caches[i] = create_kmalloc_cache(n, 771 size, SLAB_CACHE_DMA | flags); 772 } 773 } 774 #endif 775 } 776 #endif /* !CONFIG_SLOB */ 777 778 /* 779 * To avoid unnecessary overhead, we pass through large allocation requests 780 * directly to the page allocator. We use __GFP_COMP, because we will need to 781 * know the allocation order to free the pages properly in kfree. 782 */ 783 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 784 { 785 void *ret; 786 struct page *page; 787 788 flags |= __GFP_COMP; 789 page = alloc_kmem_pages(flags, order); 790 ret = page ? page_address(page) : NULL; 791 kmemleak_alloc(ret, size, 1, flags); 792 return ret; 793 } 794 EXPORT_SYMBOL(kmalloc_order); 795 796 #ifdef CONFIG_TRACING 797 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 798 { 799 void *ret = kmalloc_order(size, flags, order); 800 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 801 return ret; 802 } 803 EXPORT_SYMBOL(kmalloc_order_trace); 804 #endif 805 806 #ifdef CONFIG_SLABINFO 807 808 #ifdef CONFIG_SLAB 809 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) 810 #else 811 #define SLABINFO_RIGHTS S_IRUSR 812 #endif 813 814 static void print_slabinfo_header(struct seq_file *m) 815 { 816 /* 817 * Output format version, so at least we can change it 818 * without _too_ many complaints. 819 */ 820 #ifdef CONFIG_DEBUG_SLAB 821 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 822 #else 823 seq_puts(m, "slabinfo - version: 2.1\n"); 824 #endif 825 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 826 "<objperslab> <pagesperslab>"); 827 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 828 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 829 #ifdef CONFIG_DEBUG_SLAB 830 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " 831 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 832 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 833 #endif 834 seq_putc(m, '\n'); 835 } 836 837 void *slab_start(struct seq_file *m, loff_t *pos) 838 { 839 mutex_lock(&slab_mutex); 840 return seq_list_start(&slab_caches, *pos); 841 } 842 843 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 844 { 845 return seq_list_next(p, &slab_caches, pos); 846 } 847 848 void slab_stop(struct seq_file *m, void *p) 849 { 850 mutex_unlock(&slab_mutex); 851 } 852 853 static void 854 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 855 { 856 struct kmem_cache *c; 857 struct slabinfo sinfo; 858 int i; 859 860 if (!is_root_cache(s)) 861 return; 862 863 for_each_memcg_cache_index(i) { 864 c = cache_from_memcg_idx(s, i); 865 if (!c) 866 continue; 867 868 memset(&sinfo, 0, sizeof(sinfo)); 869 get_slabinfo(c, &sinfo); 870 871 info->active_slabs += sinfo.active_slabs; 872 info->num_slabs += sinfo.num_slabs; 873 info->shared_avail += sinfo.shared_avail; 874 info->active_objs += sinfo.active_objs; 875 info->num_objs += sinfo.num_objs; 876 } 877 } 878 879 static void cache_show(struct kmem_cache *s, struct seq_file *m) 880 { 881 struct slabinfo sinfo; 882 883 memset(&sinfo, 0, sizeof(sinfo)); 884 get_slabinfo(s, &sinfo); 885 886 memcg_accumulate_slabinfo(s, &sinfo); 887 888 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 889 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 890 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 891 892 seq_printf(m, " : tunables %4u %4u %4u", 893 sinfo.limit, sinfo.batchcount, sinfo.shared); 894 seq_printf(m, " : slabdata %6lu %6lu %6lu", 895 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 896 slabinfo_show_stats(m, s); 897 seq_putc(m, '\n'); 898 } 899 900 static int slab_show(struct seq_file *m, void *p) 901 { 902 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 903 904 if (p == slab_caches.next) 905 print_slabinfo_header(m); 906 if (is_root_cache(s)) 907 cache_show(s, m); 908 return 0; 909 } 910 911 #ifdef CONFIG_MEMCG_KMEM 912 int memcg_slab_show(struct seq_file *m, void *p) 913 { 914 struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 915 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 916 917 if (p == slab_caches.next) 918 print_slabinfo_header(m); 919 if (!is_root_cache(s) && s->memcg_params->memcg == memcg) 920 cache_show(s, m); 921 return 0; 922 } 923 #endif 924 925 /* 926 * slabinfo_op - iterator that generates /proc/slabinfo 927 * 928 * Output layout: 929 * cache-name 930 * num-active-objs 931 * total-objs 932 * object size 933 * num-active-slabs 934 * total-slabs 935 * num-pages-per-slab 936 * + further values on SMP and with statistics enabled 937 */ 938 static const struct seq_operations slabinfo_op = { 939 .start = slab_start, 940 .next = slab_next, 941 .stop = slab_stop, 942 .show = slab_show, 943 }; 944 945 static int slabinfo_open(struct inode *inode, struct file *file) 946 { 947 return seq_open(file, &slabinfo_op); 948 } 949 950 static const struct file_operations proc_slabinfo_operations = { 951 .open = slabinfo_open, 952 .read = seq_read, 953 .write = slabinfo_write, 954 .llseek = seq_lseek, 955 .release = seq_release, 956 }; 957 958 static int __init slab_proc_init(void) 959 { 960 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 961 &proc_slabinfo_operations); 962 return 0; 963 } 964 module_init(slab_proc_init); 965 #endif /* CONFIG_SLABINFO */ 966 967 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 968 gfp_t flags) 969 { 970 void *ret; 971 size_t ks = 0; 972 973 if (p) 974 ks = ksize(p); 975 976 if (ks >= new_size) 977 return (void *)p; 978 979 ret = kmalloc_track_caller(new_size, flags); 980 if (ret && p) 981 memcpy(ret, p, ks); 982 983 return ret; 984 } 985 986 /** 987 * __krealloc - like krealloc() but don't free @p. 988 * @p: object to reallocate memory for. 989 * @new_size: how many bytes of memory are required. 990 * @flags: the type of memory to allocate. 991 * 992 * This function is like krealloc() except it never frees the originally 993 * allocated buffer. Use this if you don't want to free the buffer immediately 994 * like, for example, with RCU. 995 */ 996 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 997 { 998 if (unlikely(!new_size)) 999 return ZERO_SIZE_PTR; 1000 1001 return __do_krealloc(p, new_size, flags); 1002 1003 } 1004 EXPORT_SYMBOL(__krealloc); 1005 1006 /** 1007 * krealloc - reallocate memory. The contents will remain unchanged. 1008 * @p: object to reallocate memory for. 1009 * @new_size: how many bytes of memory are required. 1010 * @flags: the type of memory to allocate. 1011 * 1012 * The contents of the object pointed to are preserved up to the 1013 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1014 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1015 * %NULL pointer, the object pointed to is freed. 1016 */ 1017 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1018 { 1019 void *ret; 1020 1021 if (unlikely(!new_size)) { 1022 kfree(p); 1023 return ZERO_SIZE_PTR; 1024 } 1025 1026 ret = __do_krealloc(p, new_size, flags); 1027 if (ret && p != ret) 1028 kfree(p); 1029 1030 return ret; 1031 } 1032 EXPORT_SYMBOL(krealloc); 1033 1034 /** 1035 * kzfree - like kfree but zero memory 1036 * @p: object to free memory of 1037 * 1038 * The memory of the object @p points to is zeroed before freed. 1039 * If @p is %NULL, kzfree() does nothing. 1040 * 1041 * Note: this function zeroes the whole allocated buffer which can be a good 1042 * deal bigger than the requested buffer size passed to kmalloc(). So be 1043 * careful when using this function in performance sensitive code. 1044 */ 1045 void kzfree(const void *p) 1046 { 1047 size_t ks; 1048 void *mem = (void *)p; 1049 1050 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1051 return; 1052 ks = ksize(mem); 1053 memset(mem, 0, ks); 1054 kfree(mem); 1055 } 1056 EXPORT_SYMBOL(kzfree); 1057 1058 /* Tracepoints definitions. */ 1059 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1060 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1061 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1062 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1063 EXPORT_TRACEPOINT_SYMBOL(kfree); 1064 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1065