xref: /linux/mm/slab_common.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28 
29 #include "slab.h"
30 
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
35 
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 		"WARN instead of reject usercopy whitelist violations");
42 #endif
43 
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 		    slab_caches_to_rcu_destroy_workfn);
48 
49 /*
50  * Set of flags that will prevent slab merging
51  */
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 		SLAB_FAILSLAB | SLAB_KASAN)
55 
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58 
59 /*
60  * Merge control. If this is set then no merging of slab caches will occur.
61  */
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 
64 static int __init setup_slab_nomerge(char *str)
65 {
66 	slab_nomerge = true;
67 	return 1;
68 }
69 
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
73 
74 __setup("slab_nomerge", setup_slab_nomerge);
75 
76 /*
77  * Determine the size of a slab object
78  */
79 unsigned int kmem_cache_size(struct kmem_cache *s)
80 {
81 	return s->object_size;
82 }
83 EXPORT_SYMBOL(kmem_cache_size);
84 
85 #ifdef CONFIG_DEBUG_VM
86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 {
88 	if (!name || in_interrupt() || size < sizeof(void *) ||
89 		size > KMALLOC_MAX_SIZE) {
90 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 		return -EINVAL;
92 	}
93 
94 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
95 	return 0;
96 }
97 #else
98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 {
100 	return 0;
101 }
102 #endif
103 
104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105 {
106 	size_t i;
107 
108 	for (i = 0; i < nr; i++) {
109 		if (s)
110 			kmem_cache_free(s, p[i]);
111 		else
112 			kfree(p[i]);
113 	}
114 }
115 
116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 								void **p)
118 {
119 	size_t i;
120 
121 	for (i = 0; i < nr; i++) {
122 		void *x = p[i] = kmem_cache_alloc(s, flags);
123 		if (!x) {
124 			__kmem_cache_free_bulk(s, i, p);
125 			return 0;
126 		}
127 	}
128 	return i;
129 }
130 
131 #ifdef CONFIG_MEMCG_KMEM
132 
133 LIST_HEAD(slab_root_caches);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135 
136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
137 
138 void slab_init_memcg_params(struct kmem_cache *s)
139 {
140 	s->memcg_params.root_cache = NULL;
141 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 	INIT_LIST_HEAD(&s->memcg_params.children);
143 	s->memcg_params.dying = false;
144 }
145 
146 static int init_memcg_params(struct kmem_cache *s,
147 			     struct kmem_cache *root_cache)
148 {
149 	struct memcg_cache_array *arr;
150 
151 	if (root_cache) {
152 		int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 					  kmemcg_cache_shutdown,
154 					  0, GFP_KERNEL);
155 		if (ret)
156 			return ret;
157 
158 		s->memcg_params.root_cache = root_cache;
159 		INIT_LIST_HEAD(&s->memcg_params.children_node);
160 		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 		return 0;
162 	}
163 
164 	slab_init_memcg_params(s);
165 
166 	if (!memcg_nr_cache_ids)
167 		return 0;
168 
169 	arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 		       memcg_nr_cache_ids * sizeof(void *),
171 		       GFP_KERNEL);
172 	if (!arr)
173 		return -ENOMEM;
174 
175 	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 	return 0;
177 }
178 
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 	if (is_root_cache(s))
182 		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 	else
184 		percpu_ref_exit(&s->memcg_params.refcnt);
185 }
186 
187 static void free_memcg_params(struct rcu_head *rcu)
188 {
189 	struct memcg_cache_array *old;
190 
191 	old = container_of(rcu, struct memcg_cache_array, rcu);
192 	kvfree(old);
193 }
194 
195 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
196 {
197 	struct memcg_cache_array *old, *new;
198 
199 	new = kvzalloc(sizeof(struct memcg_cache_array) +
200 		       new_array_size * sizeof(void *), GFP_KERNEL);
201 	if (!new)
202 		return -ENOMEM;
203 
204 	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
205 					lockdep_is_held(&slab_mutex));
206 	if (old)
207 		memcpy(new->entries, old->entries,
208 		       memcg_nr_cache_ids * sizeof(void *));
209 
210 	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
211 	if (old)
212 		call_rcu(&old->rcu, free_memcg_params);
213 	return 0;
214 }
215 
216 int memcg_update_all_caches(int num_memcgs)
217 {
218 	struct kmem_cache *s;
219 	int ret = 0;
220 
221 	mutex_lock(&slab_mutex);
222 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
223 		ret = update_memcg_params(s, num_memcgs);
224 		/*
225 		 * Instead of freeing the memory, we'll just leave the caches
226 		 * up to this point in an updated state.
227 		 */
228 		if (ret)
229 			break;
230 	}
231 	mutex_unlock(&slab_mutex);
232 	return ret;
233 }
234 
235 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
236 {
237 	if (is_root_cache(s)) {
238 		list_add(&s->root_caches_node, &slab_root_caches);
239 	} else {
240 		css_get(&memcg->css);
241 		s->memcg_params.memcg = memcg;
242 		list_add(&s->memcg_params.children_node,
243 			 &s->memcg_params.root_cache->memcg_params.children);
244 		list_add(&s->memcg_params.kmem_caches_node,
245 			 &s->memcg_params.memcg->kmem_caches);
246 	}
247 }
248 
249 static void memcg_unlink_cache(struct kmem_cache *s)
250 {
251 	if (is_root_cache(s)) {
252 		list_del(&s->root_caches_node);
253 	} else {
254 		list_del(&s->memcg_params.children_node);
255 		list_del(&s->memcg_params.kmem_caches_node);
256 		mem_cgroup_put(s->memcg_params.memcg);
257 		WRITE_ONCE(s->memcg_params.memcg, NULL);
258 	}
259 }
260 #else
261 static inline int init_memcg_params(struct kmem_cache *s,
262 				    struct kmem_cache *root_cache)
263 {
264 	return 0;
265 }
266 
267 static inline void destroy_memcg_params(struct kmem_cache *s)
268 {
269 }
270 
271 static inline void memcg_unlink_cache(struct kmem_cache *s)
272 {
273 }
274 #endif /* CONFIG_MEMCG_KMEM */
275 
276 /*
277  * Figure out what the alignment of the objects will be given a set of
278  * flags, a user specified alignment and the size of the objects.
279  */
280 static unsigned int calculate_alignment(slab_flags_t flags,
281 		unsigned int align, unsigned int size)
282 {
283 	/*
284 	 * If the user wants hardware cache aligned objects then follow that
285 	 * suggestion if the object is sufficiently large.
286 	 *
287 	 * The hardware cache alignment cannot override the specified
288 	 * alignment though. If that is greater then use it.
289 	 */
290 	if (flags & SLAB_HWCACHE_ALIGN) {
291 		unsigned int ralign;
292 
293 		ralign = cache_line_size();
294 		while (size <= ralign / 2)
295 			ralign /= 2;
296 		align = max(align, ralign);
297 	}
298 
299 	if (align < ARCH_SLAB_MINALIGN)
300 		align = ARCH_SLAB_MINALIGN;
301 
302 	return ALIGN(align, sizeof(void *));
303 }
304 
305 /*
306  * Find a mergeable slab cache
307  */
308 int slab_unmergeable(struct kmem_cache *s)
309 {
310 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
311 		return 1;
312 
313 	if (!is_root_cache(s))
314 		return 1;
315 
316 	if (s->ctor)
317 		return 1;
318 
319 	if (s->usersize)
320 		return 1;
321 
322 	/*
323 	 * We may have set a slab to be unmergeable during bootstrap.
324 	 */
325 	if (s->refcount < 0)
326 		return 1;
327 
328 	return 0;
329 }
330 
331 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
332 		slab_flags_t flags, const char *name, void (*ctor)(void *))
333 {
334 	struct kmem_cache *s;
335 
336 	if (slab_nomerge)
337 		return NULL;
338 
339 	if (ctor)
340 		return NULL;
341 
342 	size = ALIGN(size, sizeof(void *));
343 	align = calculate_alignment(flags, align, size);
344 	size = ALIGN(size, align);
345 	flags = kmem_cache_flags(size, flags, name, NULL);
346 
347 	if (flags & SLAB_NEVER_MERGE)
348 		return NULL;
349 
350 	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
351 		if (slab_unmergeable(s))
352 			continue;
353 
354 		if (size > s->size)
355 			continue;
356 
357 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
358 			continue;
359 		/*
360 		 * Check if alignment is compatible.
361 		 * Courtesy of Adrian Drzewiecki
362 		 */
363 		if ((s->size & ~(align - 1)) != s->size)
364 			continue;
365 
366 		if (s->size - size >= sizeof(void *))
367 			continue;
368 
369 		if (IS_ENABLED(CONFIG_SLAB) && align &&
370 			(align > s->align || s->align % align))
371 			continue;
372 
373 		return s;
374 	}
375 	return NULL;
376 }
377 
378 static struct kmem_cache *create_cache(const char *name,
379 		unsigned int object_size, unsigned int align,
380 		slab_flags_t flags, unsigned int useroffset,
381 		unsigned int usersize, void (*ctor)(void *),
382 		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
383 {
384 	struct kmem_cache *s;
385 	int err;
386 
387 	if (WARN_ON(useroffset + usersize > object_size))
388 		useroffset = usersize = 0;
389 
390 	err = -ENOMEM;
391 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
392 	if (!s)
393 		goto out;
394 
395 	s->name = name;
396 	s->size = s->object_size = object_size;
397 	s->align = align;
398 	s->ctor = ctor;
399 	s->useroffset = useroffset;
400 	s->usersize = usersize;
401 
402 	err = init_memcg_params(s, root_cache);
403 	if (err)
404 		goto out_free_cache;
405 
406 	err = __kmem_cache_create(s, flags);
407 	if (err)
408 		goto out_free_cache;
409 
410 	s->refcount = 1;
411 	list_add(&s->list, &slab_caches);
412 	memcg_link_cache(s, memcg);
413 out:
414 	if (err)
415 		return ERR_PTR(err);
416 	return s;
417 
418 out_free_cache:
419 	destroy_memcg_params(s);
420 	kmem_cache_free(kmem_cache, s);
421 	goto out;
422 }
423 
424 /**
425  * kmem_cache_create_usercopy - Create a cache with a region suitable
426  * for copying to userspace
427  * @name: A string which is used in /proc/slabinfo to identify this cache.
428  * @size: The size of objects to be created in this cache.
429  * @align: The required alignment for the objects.
430  * @flags: SLAB flags
431  * @useroffset: Usercopy region offset
432  * @usersize: Usercopy region size
433  * @ctor: A constructor for the objects.
434  *
435  * Cannot be called within a interrupt, but can be interrupted.
436  * The @ctor is run when new pages are allocated by the cache.
437  *
438  * The flags are
439  *
440  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
441  * to catch references to uninitialised memory.
442  *
443  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
444  * for buffer overruns.
445  *
446  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
447  * cacheline.  This can be beneficial if you're counting cycles as closely
448  * as davem.
449  *
450  * Return: a pointer to the cache on success, NULL on failure.
451  */
452 struct kmem_cache *
453 kmem_cache_create_usercopy(const char *name,
454 		  unsigned int size, unsigned int align,
455 		  slab_flags_t flags,
456 		  unsigned int useroffset, unsigned int usersize,
457 		  void (*ctor)(void *))
458 {
459 	struct kmem_cache *s = NULL;
460 	const char *cache_name;
461 	int err;
462 
463 	get_online_cpus();
464 	get_online_mems();
465 	memcg_get_cache_ids();
466 
467 	mutex_lock(&slab_mutex);
468 
469 	err = kmem_cache_sanity_check(name, size);
470 	if (err) {
471 		goto out_unlock;
472 	}
473 
474 	/* Refuse requests with allocator specific flags */
475 	if (flags & ~SLAB_FLAGS_PERMITTED) {
476 		err = -EINVAL;
477 		goto out_unlock;
478 	}
479 
480 	/*
481 	 * Some allocators will constraint the set of valid flags to a subset
482 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
483 	 * case, and we'll just provide them with a sanitized version of the
484 	 * passed flags.
485 	 */
486 	flags &= CACHE_CREATE_MASK;
487 
488 	/* Fail closed on bad usersize of useroffset values. */
489 	if (WARN_ON(!usersize && useroffset) ||
490 	    WARN_ON(size < usersize || size - usersize < useroffset))
491 		usersize = useroffset = 0;
492 
493 	if (!usersize)
494 		s = __kmem_cache_alias(name, size, align, flags, ctor);
495 	if (s)
496 		goto out_unlock;
497 
498 	cache_name = kstrdup_const(name, GFP_KERNEL);
499 	if (!cache_name) {
500 		err = -ENOMEM;
501 		goto out_unlock;
502 	}
503 
504 	s = create_cache(cache_name, size,
505 			 calculate_alignment(flags, align, size),
506 			 flags, useroffset, usersize, ctor, NULL, NULL);
507 	if (IS_ERR(s)) {
508 		err = PTR_ERR(s);
509 		kfree_const(cache_name);
510 	}
511 
512 out_unlock:
513 	mutex_unlock(&slab_mutex);
514 
515 	memcg_put_cache_ids();
516 	put_online_mems();
517 	put_online_cpus();
518 
519 	if (err) {
520 		if (flags & SLAB_PANIC)
521 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
522 				name, err);
523 		else {
524 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 				name, err);
526 			dump_stack();
527 		}
528 		return NULL;
529 	}
530 	return s;
531 }
532 EXPORT_SYMBOL(kmem_cache_create_usercopy);
533 
534 /**
535  * kmem_cache_create - Create a cache.
536  * @name: A string which is used in /proc/slabinfo to identify this cache.
537  * @size: The size of objects to be created in this cache.
538  * @align: The required alignment for the objects.
539  * @flags: SLAB flags
540  * @ctor: A constructor for the objects.
541  *
542  * Cannot be called within a interrupt, but can be interrupted.
543  * The @ctor is run when new pages are allocated by the cache.
544  *
545  * The flags are
546  *
547  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
548  * to catch references to uninitialised memory.
549  *
550  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
551  * for buffer overruns.
552  *
553  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
554  * cacheline.  This can be beneficial if you're counting cycles as closely
555  * as davem.
556  *
557  * Return: a pointer to the cache on success, NULL on failure.
558  */
559 struct kmem_cache *
560 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
561 		slab_flags_t flags, void (*ctor)(void *))
562 {
563 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
564 					  ctor);
565 }
566 EXPORT_SYMBOL(kmem_cache_create);
567 
568 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
569 {
570 	LIST_HEAD(to_destroy);
571 	struct kmem_cache *s, *s2;
572 
573 	/*
574 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
575 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
576 	 * through RCU and and the associated kmem_cache are dereferenced
577 	 * while freeing the pages, so the kmem_caches should be freed only
578 	 * after the pending RCU operations are finished.  As rcu_barrier()
579 	 * is a pretty slow operation, we batch all pending destructions
580 	 * asynchronously.
581 	 */
582 	mutex_lock(&slab_mutex);
583 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
584 	mutex_unlock(&slab_mutex);
585 
586 	if (list_empty(&to_destroy))
587 		return;
588 
589 	rcu_barrier();
590 
591 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
592 #ifdef SLAB_SUPPORTS_SYSFS
593 		sysfs_slab_release(s);
594 #else
595 		slab_kmem_cache_release(s);
596 #endif
597 	}
598 }
599 
600 static int shutdown_cache(struct kmem_cache *s)
601 {
602 	/* free asan quarantined objects */
603 	kasan_cache_shutdown(s);
604 
605 	if (__kmem_cache_shutdown(s) != 0)
606 		return -EBUSY;
607 
608 	memcg_unlink_cache(s);
609 	list_del(&s->list);
610 
611 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
612 #ifdef SLAB_SUPPORTS_SYSFS
613 		sysfs_slab_unlink(s);
614 #endif
615 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
616 		schedule_work(&slab_caches_to_rcu_destroy_work);
617 	} else {
618 #ifdef SLAB_SUPPORTS_SYSFS
619 		sysfs_slab_unlink(s);
620 		sysfs_slab_release(s);
621 #else
622 		slab_kmem_cache_release(s);
623 #endif
624 	}
625 
626 	return 0;
627 }
628 
629 #ifdef CONFIG_MEMCG_KMEM
630 /*
631  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
632  * @memcg: The memory cgroup the new cache is for.
633  * @root_cache: The parent of the new cache.
634  *
635  * This function attempts to create a kmem cache that will serve allocation
636  * requests going from @memcg to @root_cache. The new cache inherits properties
637  * from its parent.
638  */
639 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
640 			     struct kmem_cache *root_cache)
641 {
642 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
643 	struct cgroup_subsys_state *css = &memcg->css;
644 	struct memcg_cache_array *arr;
645 	struct kmem_cache *s = NULL;
646 	char *cache_name;
647 	int idx;
648 
649 	get_online_cpus();
650 	get_online_mems();
651 
652 	mutex_lock(&slab_mutex);
653 
654 	/*
655 	 * The memory cgroup could have been offlined while the cache
656 	 * creation work was pending.
657 	 */
658 	if (memcg->kmem_state != KMEM_ONLINE)
659 		goto out_unlock;
660 
661 	idx = memcg_cache_id(memcg);
662 	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
663 					lockdep_is_held(&slab_mutex));
664 
665 	/*
666 	 * Since per-memcg caches are created asynchronously on first
667 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
668 	 * create the same cache, but only one of them may succeed.
669 	 */
670 	if (arr->entries[idx])
671 		goto out_unlock;
672 
673 	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
674 	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
675 			       css->serial_nr, memcg_name_buf);
676 	if (!cache_name)
677 		goto out_unlock;
678 
679 	s = create_cache(cache_name, root_cache->object_size,
680 			 root_cache->align,
681 			 root_cache->flags & CACHE_CREATE_MASK,
682 			 root_cache->useroffset, root_cache->usersize,
683 			 root_cache->ctor, memcg, root_cache);
684 	/*
685 	 * If we could not create a memcg cache, do not complain, because
686 	 * that's not critical at all as we can always proceed with the root
687 	 * cache.
688 	 */
689 	if (IS_ERR(s)) {
690 		kfree(cache_name);
691 		goto out_unlock;
692 	}
693 
694 	/*
695 	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
696 	 * barrier here to ensure nobody will see the kmem_cache partially
697 	 * initialized.
698 	 */
699 	smp_wmb();
700 	arr->entries[idx] = s;
701 
702 out_unlock:
703 	mutex_unlock(&slab_mutex);
704 
705 	put_online_mems();
706 	put_online_cpus();
707 }
708 
709 static void kmemcg_workfn(struct work_struct *work)
710 {
711 	struct kmem_cache *s = container_of(work, struct kmem_cache,
712 					    memcg_params.work);
713 
714 	get_online_cpus();
715 	get_online_mems();
716 
717 	mutex_lock(&slab_mutex);
718 	s->memcg_params.work_fn(s);
719 	mutex_unlock(&slab_mutex);
720 
721 	put_online_mems();
722 	put_online_cpus();
723 }
724 
725 static void kmemcg_rcufn(struct rcu_head *head)
726 {
727 	struct kmem_cache *s = container_of(head, struct kmem_cache,
728 					    memcg_params.rcu_head);
729 
730 	/*
731 	 * We need to grab blocking locks.  Bounce to ->work.  The
732 	 * work item shares the space with the RCU head and can't be
733 	 * initialized eariler.
734 	 */
735 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
736 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
737 }
738 
739 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
740 {
741 	WARN_ON(shutdown_cache(s));
742 }
743 
744 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
745 {
746 	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
747 					    memcg_params.refcnt);
748 	unsigned long flags;
749 
750 	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
751 	if (s->memcg_params.root_cache->memcg_params.dying)
752 		goto unlock;
753 
754 	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
755 	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
756 	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
757 
758 unlock:
759 	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
760 }
761 
762 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
763 {
764 	__kmemcg_cache_deactivate_after_rcu(s);
765 	percpu_ref_kill(&s->memcg_params.refcnt);
766 }
767 
768 static void kmemcg_cache_deactivate(struct kmem_cache *s)
769 {
770 	if (WARN_ON_ONCE(is_root_cache(s)))
771 		return;
772 
773 	__kmemcg_cache_deactivate(s);
774 	s->flags |= SLAB_DEACTIVATED;
775 
776 	/*
777 	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
778 	 * flag and make sure that no new kmem_cache deactivation tasks
779 	 * are queued (see flush_memcg_workqueue() ).
780 	 */
781 	spin_lock_irq(&memcg_kmem_wq_lock);
782 	if (s->memcg_params.root_cache->memcg_params.dying)
783 		goto unlock;
784 
785 	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
786 	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
787 unlock:
788 	spin_unlock_irq(&memcg_kmem_wq_lock);
789 }
790 
791 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
792 				  struct mem_cgroup *parent)
793 {
794 	int idx;
795 	struct memcg_cache_array *arr;
796 	struct kmem_cache *s, *c;
797 	unsigned int nr_reparented;
798 
799 	idx = memcg_cache_id(memcg);
800 
801 	get_online_cpus();
802 	get_online_mems();
803 
804 	mutex_lock(&slab_mutex);
805 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
806 		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
807 						lockdep_is_held(&slab_mutex));
808 		c = arr->entries[idx];
809 		if (!c)
810 			continue;
811 
812 		kmemcg_cache_deactivate(c);
813 		arr->entries[idx] = NULL;
814 	}
815 	nr_reparented = 0;
816 	list_for_each_entry(s, &memcg->kmem_caches,
817 			    memcg_params.kmem_caches_node) {
818 		WRITE_ONCE(s->memcg_params.memcg, parent);
819 		css_put(&memcg->css);
820 		nr_reparented++;
821 	}
822 	if (nr_reparented) {
823 		list_splice_init(&memcg->kmem_caches,
824 				 &parent->kmem_caches);
825 		css_get_many(&parent->css, nr_reparented);
826 	}
827 	mutex_unlock(&slab_mutex);
828 
829 	put_online_mems();
830 	put_online_cpus();
831 }
832 
833 static int shutdown_memcg_caches(struct kmem_cache *s)
834 {
835 	struct memcg_cache_array *arr;
836 	struct kmem_cache *c, *c2;
837 	LIST_HEAD(busy);
838 	int i;
839 
840 	BUG_ON(!is_root_cache(s));
841 
842 	/*
843 	 * First, shutdown active caches, i.e. caches that belong to online
844 	 * memory cgroups.
845 	 */
846 	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
847 					lockdep_is_held(&slab_mutex));
848 	for_each_memcg_cache_index(i) {
849 		c = arr->entries[i];
850 		if (!c)
851 			continue;
852 		if (shutdown_cache(c))
853 			/*
854 			 * The cache still has objects. Move it to a temporary
855 			 * list so as not to try to destroy it for a second
856 			 * time while iterating over inactive caches below.
857 			 */
858 			list_move(&c->memcg_params.children_node, &busy);
859 		else
860 			/*
861 			 * The cache is empty and will be destroyed soon. Clear
862 			 * the pointer to it in the memcg_caches array so that
863 			 * it will never be accessed even if the root cache
864 			 * stays alive.
865 			 */
866 			arr->entries[i] = NULL;
867 	}
868 
869 	/*
870 	 * Second, shutdown all caches left from memory cgroups that are now
871 	 * offline.
872 	 */
873 	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
874 				 memcg_params.children_node)
875 		shutdown_cache(c);
876 
877 	list_splice(&busy, &s->memcg_params.children);
878 
879 	/*
880 	 * A cache being destroyed must be empty. In particular, this means
881 	 * that all per memcg caches attached to it must be empty too.
882 	 */
883 	if (!list_empty(&s->memcg_params.children))
884 		return -EBUSY;
885 	return 0;
886 }
887 
888 static void flush_memcg_workqueue(struct kmem_cache *s)
889 {
890 	spin_lock_irq(&memcg_kmem_wq_lock);
891 	s->memcg_params.dying = true;
892 	spin_unlock_irq(&memcg_kmem_wq_lock);
893 
894 	/*
895 	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
896 	 * sure all registered rcu callbacks have been invoked.
897 	 */
898 	rcu_barrier();
899 
900 	/*
901 	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
902 	 * deactivates the memcg kmem_caches through workqueue. Make sure all
903 	 * previous workitems on workqueue are processed.
904 	 */
905 	flush_workqueue(memcg_kmem_cache_wq);
906 }
907 #else
908 static inline int shutdown_memcg_caches(struct kmem_cache *s)
909 {
910 	return 0;
911 }
912 
913 static inline void flush_memcg_workqueue(struct kmem_cache *s)
914 {
915 }
916 #endif /* CONFIG_MEMCG_KMEM */
917 
918 void slab_kmem_cache_release(struct kmem_cache *s)
919 {
920 	__kmem_cache_release(s);
921 	destroy_memcg_params(s);
922 	kfree_const(s->name);
923 	kmem_cache_free(kmem_cache, s);
924 }
925 
926 void kmem_cache_destroy(struct kmem_cache *s)
927 {
928 	int err;
929 
930 	if (unlikely(!s))
931 		return;
932 
933 	flush_memcg_workqueue(s);
934 
935 	get_online_cpus();
936 	get_online_mems();
937 
938 	mutex_lock(&slab_mutex);
939 
940 	s->refcount--;
941 	if (s->refcount)
942 		goto out_unlock;
943 
944 	err = shutdown_memcg_caches(s);
945 	if (!err)
946 		err = shutdown_cache(s);
947 
948 	if (err) {
949 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
950 		       s->name);
951 		dump_stack();
952 	}
953 out_unlock:
954 	mutex_unlock(&slab_mutex);
955 
956 	put_online_mems();
957 	put_online_cpus();
958 }
959 EXPORT_SYMBOL(kmem_cache_destroy);
960 
961 /**
962  * kmem_cache_shrink - Shrink a cache.
963  * @cachep: The cache to shrink.
964  *
965  * Releases as many slabs as possible for a cache.
966  * To help debugging, a zero exit status indicates all slabs were released.
967  *
968  * Return: %0 if all slabs were released, non-zero otherwise
969  */
970 int kmem_cache_shrink(struct kmem_cache *cachep)
971 {
972 	int ret;
973 
974 	get_online_cpus();
975 	get_online_mems();
976 	kasan_cache_shrink(cachep);
977 	ret = __kmem_cache_shrink(cachep);
978 	put_online_mems();
979 	put_online_cpus();
980 	return ret;
981 }
982 EXPORT_SYMBOL(kmem_cache_shrink);
983 
984 bool slab_is_available(void)
985 {
986 	return slab_state >= UP;
987 }
988 
989 #ifndef CONFIG_SLOB
990 /* Create a cache during boot when no slab services are available yet */
991 void __init create_boot_cache(struct kmem_cache *s, const char *name,
992 		unsigned int size, slab_flags_t flags,
993 		unsigned int useroffset, unsigned int usersize)
994 {
995 	int err;
996 
997 	s->name = name;
998 	s->size = s->object_size = size;
999 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
1000 	s->useroffset = useroffset;
1001 	s->usersize = usersize;
1002 
1003 	slab_init_memcg_params(s);
1004 
1005 	err = __kmem_cache_create(s, flags);
1006 
1007 	if (err)
1008 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1009 					name, size, err);
1010 
1011 	s->refcount = -1;	/* Exempt from merging for now */
1012 }
1013 
1014 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1015 		unsigned int size, slab_flags_t flags,
1016 		unsigned int useroffset, unsigned int usersize)
1017 {
1018 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1019 
1020 	if (!s)
1021 		panic("Out of memory when creating slab %s\n", name);
1022 
1023 	create_boot_cache(s, name, size, flags, useroffset, usersize);
1024 	list_add(&s->list, &slab_caches);
1025 	memcg_link_cache(s, NULL);
1026 	s->refcount = 1;
1027 	return s;
1028 }
1029 
1030 struct kmem_cache *
1031 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
1032 EXPORT_SYMBOL(kmalloc_caches);
1033 
1034 /*
1035  * Conversion table for small slabs sizes / 8 to the index in the
1036  * kmalloc array. This is necessary for slabs < 192 since we have non power
1037  * of two cache sizes there. The size of larger slabs can be determined using
1038  * fls.
1039  */
1040 static u8 size_index[24] __ro_after_init = {
1041 	3,	/* 8 */
1042 	4,	/* 16 */
1043 	5,	/* 24 */
1044 	5,	/* 32 */
1045 	6,	/* 40 */
1046 	6,	/* 48 */
1047 	6,	/* 56 */
1048 	6,	/* 64 */
1049 	1,	/* 72 */
1050 	1,	/* 80 */
1051 	1,	/* 88 */
1052 	1,	/* 96 */
1053 	7,	/* 104 */
1054 	7,	/* 112 */
1055 	7,	/* 120 */
1056 	7,	/* 128 */
1057 	2,	/* 136 */
1058 	2,	/* 144 */
1059 	2,	/* 152 */
1060 	2,	/* 160 */
1061 	2,	/* 168 */
1062 	2,	/* 176 */
1063 	2,	/* 184 */
1064 	2	/* 192 */
1065 };
1066 
1067 static inline unsigned int size_index_elem(unsigned int bytes)
1068 {
1069 	return (bytes - 1) / 8;
1070 }
1071 
1072 /*
1073  * Find the kmem_cache structure that serves a given size of
1074  * allocation
1075  */
1076 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1077 {
1078 	unsigned int index;
1079 
1080 	if (size <= 192) {
1081 		if (!size)
1082 			return ZERO_SIZE_PTR;
1083 
1084 		index = size_index[size_index_elem(size)];
1085 	} else {
1086 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1087 			return NULL;
1088 		index = fls(size - 1);
1089 	}
1090 
1091 	return kmalloc_caches[kmalloc_type(flags)][index];
1092 }
1093 
1094 /*
1095  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1096  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1097  * kmalloc-67108864.
1098  */
1099 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1100 	{NULL,                      0},		{"kmalloc-96",             96},
1101 	{"kmalloc-192",           192},		{"kmalloc-8",               8},
1102 	{"kmalloc-16",             16},		{"kmalloc-32",             32},
1103 	{"kmalloc-64",             64},		{"kmalloc-128",           128},
1104 	{"kmalloc-256",           256},		{"kmalloc-512",           512},
1105 	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
1106 	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
1107 	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
1108 	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
1109 	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
1110 	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
1111 	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
1112 	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
1113 	{"kmalloc-64M",      67108864}
1114 };
1115 
1116 /*
1117  * Patch up the size_index table if we have strange large alignment
1118  * requirements for the kmalloc array. This is only the case for
1119  * MIPS it seems. The standard arches will not generate any code here.
1120  *
1121  * Largest permitted alignment is 256 bytes due to the way we
1122  * handle the index determination for the smaller caches.
1123  *
1124  * Make sure that nothing crazy happens if someone starts tinkering
1125  * around with ARCH_KMALLOC_MINALIGN
1126  */
1127 void __init setup_kmalloc_cache_index_table(void)
1128 {
1129 	unsigned int i;
1130 
1131 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1132 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1133 
1134 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1135 		unsigned int elem = size_index_elem(i);
1136 
1137 		if (elem >= ARRAY_SIZE(size_index))
1138 			break;
1139 		size_index[elem] = KMALLOC_SHIFT_LOW;
1140 	}
1141 
1142 	if (KMALLOC_MIN_SIZE >= 64) {
1143 		/*
1144 		 * The 96 byte size cache is not used if the alignment
1145 		 * is 64 byte.
1146 		 */
1147 		for (i = 64 + 8; i <= 96; i += 8)
1148 			size_index[size_index_elem(i)] = 7;
1149 
1150 	}
1151 
1152 	if (KMALLOC_MIN_SIZE >= 128) {
1153 		/*
1154 		 * The 192 byte sized cache is not used if the alignment
1155 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1156 		 * instead.
1157 		 */
1158 		for (i = 128 + 8; i <= 192; i += 8)
1159 			size_index[size_index_elem(i)] = 8;
1160 	}
1161 }
1162 
1163 static const char *
1164 kmalloc_cache_name(const char *prefix, unsigned int size)
1165 {
1166 
1167 	static const char units[3] = "\0kM";
1168 	int idx = 0;
1169 
1170 	while (size >= 1024 && (size % 1024 == 0)) {
1171 		size /= 1024;
1172 		idx++;
1173 	}
1174 
1175 	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1176 }
1177 
1178 static void __init
1179 new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1180 {
1181 	const char *name;
1182 
1183 	if (type == KMALLOC_RECLAIM) {
1184 		flags |= SLAB_RECLAIM_ACCOUNT;
1185 		name = kmalloc_cache_name("kmalloc-rcl",
1186 						kmalloc_info[idx].size);
1187 		BUG_ON(!name);
1188 	} else {
1189 		name = kmalloc_info[idx].name;
1190 	}
1191 
1192 	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1193 					kmalloc_info[idx].size, flags, 0,
1194 					kmalloc_info[idx].size);
1195 }
1196 
1197 /*
1198  * Create the kmalloc array. Some of the regular kmalloc arrays
1199  * may already have been created because they were needed to
1200  * enable allocations for slab creation.
1201  */
1202 void __init create_kmalloc_caches(slab_flags_t flags)
1203 {
1204 	int i, type;
1205 
1206 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1207 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1208 			if (!kmalloc_caches[type][i])
1209 				new_kmalloc_cache(i, type, flags);
1210 
1211 			/*
1212 			 * Caches that are not of the two-to-the-power-of size.
1213 			 * These have to be created immediately after the
1214 			 * earlier power of two caches
1215 			 */
1216 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1217 					!kmalloc_caches[type][1])
1218 				new_kmalloc_cache(1, type, flags);
1219 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1220 					!kmalloc_caches[type][2])
1221 				new_kmalloc_cache(2, type, flags);
1222 		}
1223 	}
1224 
1225 	/* Kmalloc array is now usable */
1226 	slab_state = UP;
1227 
1228 #ifdef CONFIG_ZONE_DMA
1229 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1230 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1231 
1232 		if (s) {
1233 			unsigned int size = kmalloc_size(i);
1234 			const char *n = kmalloc_cache_name("dma-kmalloc", size);
1235 
1236 			BUG_ON(!n);
1237 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1238 				n, size, SLAB_CACHE_DMA | flags, 0, 0);
1239 		}
1240 	}
1241 #endif
1242 }
1243 #endif /* !CONFIG_SLOB */
1244 
1245 /*
1246  * To avoid unnecessary overhead, we pass through large allocation requests
1247  * directly to the page allocator. We use __GFP_COMP, because we will need to
1248  * know the allocation order to free the pages properly in kfree.
1249  */
1250 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1251 {
1252 	void *ret;
1253 	struct page *page;
1254 
1255 	flags |= __GFP_COMP;
1256 	page = alloc_pages(flags, order);
1257 	ret = page ? page_address(page) : NULL;
1258 	ret = kasan_kmalloc_large(ret, size, flags);
1259 	/* As ret might get tagged, call kmemleak hook after KASAN. */
1260 	kmemleak_alloc(ret, size, 1, flags);
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL(kmalloc_order);
1264 
1265 #ifdef CONFIG_TRACING
1266 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1267 {
1268 	void *ret = kmalloc_order(size, flags, order);
1269 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL(kmalloc_order_trace);
1273 #endif
1274 
1275 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1276 /* Randomize a generic freelist */
1277 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1278 			       unsigned int count)
1279 {
1280 	unsigned int rand;
1281 	unsigned int i;
1282 
1283 	for (i = 0; i < count; i++)
1284 		list[i] = i;
1285 
1286 	/* Fisher-Yates shuffle */
1287 	for (i = count - 1; i > 0; i--) {
1288 		rand = prandom_u32_state(state);
1289 		rand %= (i + 1);
1290 		swap(list[i], list[rand]);
1291 	}
1292 }
1293 
1294 /* Create a random sequence per cache */
1295 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1296 				    gfp_t gfp)
1297 {
1298 	struct rnd_state state;
1299 
1300 	if (count < 2 || cachep->random_seq)
1301 		return 0;
1302 
1303 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1304 	if (!cachep->random_seq)
1305 		return -ENOMEM;
1306 
1307 	/* Get best entropy at this stage of boot */
1308 	prandom_seed_state(&state, get_random_long());
1309 
1310 	freelist_randomize(&state, cachep->random_seq, count);
1311 	return 0;
1312 }
1313 
1314 /* Destroy the per-cache random freelist sequence */
1315 void cache_random_seq_destroy(struct kmem_cache *cachep)
1316 {
1317 	kfree(cachep->random_seq);
1318 	cachep->random_seq = NULL;
1319 }
1320 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1321 
1322 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1323 #ifdef CONFIG_SLAB
1324 #define SLABINFO_RIGHTS (0600)
1325 #else
1326 #define SLABINFO_RIGHTS (0400)
1327 #endif
1328 
1329 static void print_slabinfo_header(struct seq_file *m)
1330 {
1331 	/*
1332 	 * Output format version, so at least we can change it
1333 	 * without _too_ many complaints.
1334 	 */
1335 #ifdef CONFIG_DEBUG_SLAB
1336 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1337 #else
1338 	seq_puts(m, "slabinfo - version: 2.1\n");
1339 #endif
1340 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1341 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1342 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1343 #ifdef CONFIG_DEBUG_SLAB
1344 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1345 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1346 #endif
1347 	seq_putc(m, '\n');
1348 }
1349 
1350 void *slab_start(struct seq_file *m, loff_t *pos)
1351 {
1352 	mutex_lock(&slab_mutex);
1353 	return seq_list_start(&slab_root_caches, *pos);
1354 }
1355 
1356 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1357 {
1358 	return seq_list_next(p, &slab_root_caches, pos);
1359 }
1360 
1361 void slab_stop(struct seq_file *m, void *p)
1362 {
1363 	mutex_unlock(&slab_mutex);
1364 }
1365 
1366 static void
1367 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1368 {
1369 	struct kmem_cache *c;
1370 	struct slabinfo sinfo;
1371 
1372 	if (!is_root_cache(s))
1373 		return;
1374 
1375 	for_each_memcg_cache(c, s) {
1376 		memset(&sinfo, 0, sizeof(sinfo));
1377 		get_slabinfo(c, &sinfo);
1378 
1379 		info->active_slabs += sinfo.active_slabs;
1380 		info->num_slabs += sinfo.num_slabs;
1381 		info->shared_avail += sinfo.shared_avail;
1382 		info->active_objs += sinfo.active_objs;
1383 		info->num_objs += sinfo.num_objs;
1384 	}
1385 }
1386 
1387 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1388 {
1389 	struct slabinfo sinfo;
1390 
1391 	memset(&sinfo, 0, sizeof(sinfo));
1392 	get_slabinfo(s, &sinfo);
1393 
1394 	memcg_accumulate_slabinfo(s, &sinfo);
1395 
1396 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1397 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1398 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1399 
1400 	seq_printf(m, " : tunables %4u %4u %4u",
1401 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1402 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1403 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1404 	slabinfo_show_stats(m, s);
1405 	seq_putc(m, '\n');
1406 }
1407 
1408 static int slab_show(struct seq_file *m, void *p)
1409 {
1410 	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1411 
1412 	if (p == slab_root_caches.next)
1413 		print_slabinfo_header(m);
1414 	cache_show(s, m);
1415 	return 0;
1416 }
1417 
1418 void dump_unreclaimable_slab(void)
1419 {
1420 	struct kmem_cache *s, *s2;
1421 	struct slabinfo sinfo;
1422 
1423 	/*
1424 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1425 	 * sleep in oom path. But, without mutex hold, it may introduce a
1426 	 * risk of crash.
1427 	 * Use mutex_trylock to protect the list traverse, dump nothing
1428 	 * without acquiring the mutex.
1429 	 */
1430 	if (!mutex_trylock(&slab_mutex)) {
1431 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1432 		return;
1433 	}
1434 
1435 	pr_info("Unreclaimable slab info:\n");
1436 	pr_info("Name                      Used          Total\n");
1437 
1438 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1439 		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1440 			continue;
1441 
1442 		get_slabinfo(s, &sinfo);
1443 
1444 		if (sinfo.num_objs > 0)
1445 			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1446 				(sinfo.active_objs * s->size) / 1024,
1447 				(sinfo.num_objs * s->size) / 1024);
1448 	}
1449 	mutex_unlock(&slab_mutex);
1450 }
1451 
1452 #if defined(CONFIG_MEMCG)
1453 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1454 {
1455 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1456 
1457 	mutex_lock(&slab_mutex);
1458 	return seq_list_start(&memcg->kmem_caches, *pos);
1459 }
1460 
1461 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1462 {
1463 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1464 
1465 	return seq_list_next(p, &memcg->kmem_caches, pos);
1466 }
1467 
1468 void memcg_slab_stop(struct seq_file *m, void *p)
1469 {
1470 	mutex_unlock(&slab_mutex);
1471 }
1472 
1473 int memcg_slab_show(struct seq_file *m, void *p)
1474 {
1475 	struct kmem_cache *s = list_entry(p, struct kmem_cache,
1476 					  memcg_params.kmem_caches_node);
1477 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1478 
1479 	if (p == memcg->kmem_caches.next)
1480 		print_slabinfo_header(m);
1481 	cache_show(s, m);
1482 	return 0;
1483 }
1484 #endif
1485 
1486 /*
1487  * slabinfo_op - iterator that generates /proc/slabinfo
1488  *
1489  * Output layout:
1490  * cache-name
1491  * num-active-objs
1492  * total-objs
1493  * object size
1494  * num-active-slabs
1495  * total-slabs
1496  * num-pages-per-slab
1497  * + further values on SMP and with statistics enabled
1498  */
1499 static const struct seq_operations slabinfo_op = {
1500 	.start = slab_start,
1501 	.next = slab_next,
1502 	.stop = slab_stop,
1503 	.show = slab_show,
1504 };
1505 
1506 static int slabinfo_open(struct inode *inode, struct file *file)
1507 {
1508 	return seq_open(file, &slabinfo_op);
1509 }
1510 
1511 static const struct file_operations proc_slabinfo_operations = {
1512 	.open		= slabinfo_open,
1513 	.read		= seq_read,
1514 	.write          = slabinfo_write,
1515 	.llseek		= seq_lseek,
1516 	.release	= seq_release,
1517 };
1518 
1519 static int __init slab_proc_init(void)
1520 {
1521 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1522 						&proc_slabinfo_operations);
1523 	return 0;
1524 }
1525 module_init(slab_proc_init);
1526 
1527 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1528 /*
1529  * Display information about kmem caches that have child memcg caches.
1530  */
1531 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1532 {
1533 	struct kmem_cache *s, *c;
1534 	struct slabinfo sinfo;
1535 
1536 	mutex_lock(&slab_mutex);
1537 	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1538 	seq_puts(m, " <active_slabs> <num_slabs>\n");
1539 	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1540 		/*
1541 		 * Skip kmem caches that don't have any memcg children.
1542 		 */
1543 		if (list_empty(&s->memcg_params.children))
1544 			continue;
1545 
1546 		memset(&sinfo, 0, sizeof(sinfo));
1547 		get_slabinfo(s, &sinfo);
1548 		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
1549 			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
1550 			   sinfo.active_slabs, sinfo.num_slabs);
1551 
1552 		for_each_memcg_cache(c, s) {
1553 			struct cgroup_subsys_state *css;
1554 			char *status = "";
1555 
1556 			css = &c->memcg_params.memcg->css;
1557 			if (!(css->flags & CSS_ONLINE))
1558 				status = ":dead";
1559 			else if (c->flags & SLAB_DEACTIVATED)
1560 				status = ":deact";
1561 
1562 			memset(&sinfo, 0, sizeof(sinfo));
1563 			get_slabinfo(c, &sinfo);
1564 			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1565 				   cache_name(c), css->id, status,
1566 				   sinfo.active_objs, sinfo.num_objs,
1567 				   sinfo.active_slabs, sinfo.num_slabs);
1568 		}
1569 	}
1570 	mutex_unlock(&slab_mutex);
1571 	return 0;
1572 }
1573 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1574 
1575 static int __init memcg_slabinfo_init(void)
1576 {
1577 	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1578 			    NULL, NULL, &memcg_slabinfo_fops);
1579 	return 0;
1580 }
1581 
1582 late_initcall(memcg_slabinfo_init);
1583 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1584 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1585 
1586 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1587 					   gfp_t flags)
1588 {
1589 	void *ret;
1590 	size_t ks = 0;
1591 
1592 	if (p)
1593 		ks = ksize(p);
1594 
1595 	if (ks >= new_size) {
1596 		p = kasan_krealloc((void *)p, new_size, flags);
1597 		return (void *)p;
1598 	}
1599 
1600 	ret = kmalloc_track_caller(new_size, flags);
1601 	if (ret && p)
1602 		memcpy(ret, p, ks);
1603 
1604 	return ret;
1605 }
1606 
1607 /**
1608  * __krealloc - like krealloc() but don't free @p.
1609  * @p: object to reallocate memory for.
1610  * @new_size: how many bytes of memory are required.
1611  * @flags: the type of memory to allocate.
1612  *
1613  * This function is like krealloc() except it never frees the originally
1614  * allocated buffer. Use this if you don't want to free the buffer immediately
1615  * like, for example, with RCU.
1616  *
1617  * Return: pointer to the allocated memory or %NULL in case of error
1618  */
1619 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1620 {
1621 	if (unlikely(!new_size))
1622 		return ZERO_SIZE_PTR;
1623 
1624 	return __do_krealloc(p, new_size, flags);
1625 
1626 }
1627 EXPORT_SYMBOL(__krealloc);
1628 
1629 /**
1630  * krealloc - reallocate memory. The contents will remain unchanged.
1631  * @p: object to reallocate memory for.
1632  * @new_size: how many bytes of memory are required.
1633  * @flags: the type of memory to allocate.
1634  *
1635  * The contents of the object pointed to are preserved up to the
1636  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1637  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1638  * %NULL pointer, the object pointed to is freed.
1639  *
1640  * Return: pointer to the allocated memory or %NULL in case of error
1641  */
1642 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1643 {
1644 	void *ret;
1645 
1646 	if (unlikely(!new_size)) {
1647 		kfree(p);
1648 		return ZERO_SIZE_PTR;
1649 	}
1650 
1651 	ret = __do_krealloc(p, new_size, flags);
1652 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1653 		kfree(p);
1654 
1655 	return ret;
1656 }
1657 EXPORT_SYMBOL(krealloc);
1658 
1659 /**
1660  * kzfree - like kfree but zero memory
1661  * @p: object to free memory of
1662  *
1663  * The memory of the object @p points to is zeroed before freed.
1664  * If @p is %NULL, kzfree() does nothing.
1665  *
1666  * Note: this function zeroes the whole allocated buffer which can be a good
1667  * deal bigger than the requested buffer size passed to kmalloc(). So be
1668  * careful when using this function in performance sensitive code.
1669  */
1670 void kzfree(const void *p)
1671 {
1672 	size_t ks;
1673 	void *mem = (void *)p;
1674 
1675 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1676 		return;
1677 	ks = ksize(mem);
1678 	memset(mem, 0, ks);
1679 	kfree(mem);
1680 }
1681 EXPORT_SYMBOL(kzfree);
1682 
1683 /**
1684  * ksize - get the actual amount of memory allocated for a given object
1685  * @objp: Pointer to the object
1686  *
1687  * kmalloc may internally round up allocations and return more memory
1688  * than requested. ksize() can be used to determine the actual amount of
1689  * memory allocated. The caller may use this additional memory, even though
1690  * a smaller amount of memory was initially specified with the kmalloc call.
1691  * The caller must guarantee that objp points to a valid object previously
1692  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1693  * must not be freed during the duration of the call.
1694  *
1695  * Return: size of the actual memory used by @objp in bytes
1696  */
1697 size_t ksize(const void *objp)
1698 {
1699 	size_t size;
1700 
1701 	if (WARN_ON_ONCE(!objp))
1702 		return 0;
1703 	/*
1704 	 * We need to check that the pointed to object is valid, and only then
1705 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1706 	 * generate a more useful report at the time ksize() is called (rather
1707 	 * than later where behaviour is undefined due to potential
1708 	 * use-after-free or double-free).
1709 	 *
1710 	 * If the pointed to memory is invalid we return 0, to avoid users of
1711 	 * ksize() writing to and potentially corrupting the memory region.
1712 	 *
1713 	 * We want to perform the check before __ksize(), to avoid potentially
1714 	 * crashing in __ksize() due to accessing invalid metadata.
1715 	 */
1716 	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1717 		return 0;
1718 
1719 	size = __ksize(objp);
1720 	/*
1721 	 * We assume that ksize callers could use whole allocated area,
1722 	 * so we need to unpoison this area.
1723 	 */
1724 	kasan_unpoison_shadow(objp, size);
1725 	return size;
1726 }
1727 EXPORT_SYMBOL(ksize);
1728 
1729 /* Tracepoints definitions. */
1730 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1731 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1732 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1733 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1734 EXPORT_TRACEPOINT_SYMBOL(kfree);
1735 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1736 
1737 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1738 {
1739 	if (__should_failslab(s, gfpflags))
1740 		return -ENOMEM;
1741 	return 0;
1742 }
1743 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1744