1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/module.h> 16 #include <linux/cpu.h> 17 #include <linux/uaccess.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/debugfs.h> 21 #include <asm/cacheflush.h> 22 #include <asm/tlbflush.h> 23 #include <asm/page.h> 24 #include <linux/memcontrol.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/kmem.h> 28 29 #include "slab.h" 30 31 enum slab_state slab_state; 32 LIST_HEAD(slab_caches); 33 DEFINE_MUTEX(slab_mutex); 34 struct kmem_cache *kmem_cache; 35 36 #ifdef CONFIG_HARDENED_USERCOPY 37 bool usercopy_fallback __ro_after_init = 38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 39 module_param(usercopy_fallback, bool, 0400); 40 MODULE_PARM_DESC(usercopy_fallback, 41 "WARN instead of reject usercopy whitelist violations"); 42 #endif 43 44 static LIST_HEAD(slab_caches_to_rcu_destroy); 45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 47 slab_caches_to_rcu_destroy_workfn); 48 49 /* 50 * Set of flags that will prevent slab merging 51 */ 52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 54 SLAB_FAILSLAB | SLAB_KASAN) 55 56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 58 59 /* 60 * Merge control. If this is set then no merging of slab caches will occur. 61 */ 62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 63 64 static int __init setup_slab_nomerge(char *str) 65 { 66 slab_nomerge = true; 67 return 1; 68 } 69 70 #ifdef CONFIG_SLUB 71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 72 #endif 73 74 __setup("slab_nomerge", setup_slab_nomerge); 75 76 /* 77 * Determine the size of a slab object 78 */ 79 unsigned int kmem_cache_size(struct kmem_cache *s) 80 { 81 return s->object_size; 82 } 83 EXPORT_SYMBOL(kmem_cache_size); 84 85 #ifdef CONFIG_DEBUG_VM 86 static int kmem_cache_sanity_check(const char *name, unsigned int size) 87 { 88 if (!name || in_interrupt() || size < sizeof(void *) || 89 size > KMALLOC_MAX_SIZE) { 90 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 91 return -EINVAL; 92 } 93 94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 95 return 0; 96 } 97 #else 98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 99 { 100 return 0; 101 } 102 #endif 103 104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 105 { 106 size_t i; 107 108 for (i = 0; i < nr; i++) { 109 if (s) 110 kmem_cache_free(s, p[i]); 111 else 112 kfree(p[i]); 113 } 114 } 115 116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 117 void **p) 118 { 119 size_t i; 120 121 for (i = 0; i < nr; i++) { 122 void *x = p[i] = kmem_cache_alloc(s, flags); 123 if (!x) { 124 __kmem_cache_free_bulk(s, i, p); 125 return 0; 126 } 127 } 128 return i; 129 } 130 131 #ifdef CONFIG_MEMCG_KMEM 132 133 LIST_HEAD(slab_root_caches); 134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock); 135 136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); 137 138 void slab_init_memcg_params(struct kmem_cache *s) 139 { 140 s->memcg_params.root_cache = NULL; 141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 142 INIT_LIST_HEAD(&s->memcg_params.children); 143 s->memcg_params.dying = false; 144 } 145 146 static int init_memcg_params(struct kmem_cache *s, 147 struct kmem_cache *root_cache) 148 { 149 struct memcg_cache_array *arr; 150 151 if (root_cache) { 152 int ret = percpu_ref_init(&s->memcg_params.refcnt, 153 kmemcg_cache_shutdown, 154 0, GFP_KERNEL); 155 if (ret) 156 return ret; 157 158 s->memcg_params.root_cache = root_cache; 159 INIT_LIST_HEAD(&s->memcg_params.children_node); 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); 161 return 0; 162 } 163 164 slab_init_memcg_params(s); 165 166 if (!memcg_nr_cache_ids) 167 return 0; 168 169 arr = kvzalloc(sizeof(struct memcg_cache_array) + 170 memcg_nr_cache_ids * sizeof(void *), 171 GFP_KERNEL); 172 if (!arr) 173 return -ENOMEM; 174 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 176 return 0; 177 } 178 179 static void destroy_memcg_params(struct kmem_cache *s) 180 { 181 if (is_root_cache(s)) 182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 183 else 184 percpu_ref_exit(&s->memcg_params.refcnt); 185 } 186 187 static void free_memcg_params(struct rcu_head *rcu) 188 { 189 struct memcg_cache_array *old; 190 191 old = container_of(rcu, struct memcg_cache_array, rcu); 192 kvfree(old); 193 } 194 195 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 196 { 197 struct memcg_cache_array *old, *new; 198 199 new = kvzalloc(sizeof(struct memcg_cache_array) + 200 new_array_size * sizeof(void *), GFP_KERNEL); 201 if (!new) 202 return -ENOMEM; 203 204 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 205 lockdep_is_held(&slab_mutex)); 206 if (old) 207 memcpy(new->entries, old->entries, 208 memcg_nr_cache_ids * sizeof(void *)); 209 210 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 211 if (old) 212 call_rcu(&old->rcu, free_memcg_params); 213 return 0; 214 } 215 216 int memcg_update_all_caches(int num_memcgs) 217 { 218 struct kmem_cache *s; 219 int ret = 0; 220 221 mutex_lock(&slab_mutex); 222 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 223 ret = update_memcg_params(s, num_memcgs); 224 /* 225 * Instead of freeing the memory, we'll just leave the caches 226 * up to this point in an updated state. 227 */ 228 if (ret) 229 break; 230 } 231 mutex_unlock(&slab_mutex); 232 return ret; 233 } 234 235 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) 236 { 237 if (is_root_cache(s)) { 238 list_add(&s->root_caches_node, &slab_root_caches); 239 } else { 240 css_get(&memcg->css); 241 s->memcg_params.memcg = memcg; 242 list_add(&s->memcg_params.children_node, 243 &s->memcg_params.root_cache->memcg_params.children); 244 list_add(&s->memcg_params.kmem_caches_node, 245 &s->memcg_params.memcg->kmem_caches); 246 } 247 } 248 249 static void memcg_unlink_cache(struct kmem_cache *s) 250 { 251 if (is_root_cache(s)) { 252 list_del(&s->root_caches_node); 253 } else { 254 list_del(&s->memcg_params.children_node); 255 list_del(&s->memcg_params.kmem_caches_node); 256 mem_cgroup_put(s->memcg_params.memcg); 257 WRITE_ONCE(s->memcg_params.memcg, NULL); 258 } 259 } 260 #else 261 static inline int init_memcg_params(struct kmem_cache *s, 262 struct kmem_cache *root_cache) 263 { 264 return 0; 265 } 266 267 static inline void destroy_memcg_params(struct kmem_cache *s) 268 { 269 } 270 271 static inline void memcg_unlink_cache(struct kmem_cache *s) 272 { 273 } 274 #endif /* CONFIG_MEMCG_KMEM */ 275 276 /* 277 * Figure out what the alignment of the objects will be given a set of 278 * flags, a user specified alignment and the size of the objects. 279 */ 280 static unsigned int calculate_alignment(slab_flags_t flags, 281 unsigned int align, unsigned int size) 282 { 283 /* 284 * If the user wants hardware cache aligned objects then follow that 285 * suggestion if the object is sufficiently large. 286 * 287 * The hardware cache alignment cannot override the specified 288 * alignment though. If that is greater then use it. 289 */ 290 if (flags & SLAB_HWCACHE_ALIGN) { 291 unsigned int ralign; 292 293 ralign = cache_line_size(); 294 while (size <= ralign / 2) 295 ralign /= 2; 296 align = max(align, ralign); 297 } 298 299 if (align < ARCH_SLAB_MINALIGN) 300 align = ARCH_SLAB_MINALIGN; 301 302 return ALIGN(align, sizeof(void *)); 303 } 304 305 /* 306 * Find a mergeable slab cache 307 */ 308 int slab_unmergeable(struct kmem_cache *s) 309 { 310 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 311 return 1; 312 313 if (!is_root_cache(s)) 314 return 1; 315 316 if (s->ctor) 317 return 1; 318 319 if (s->usersize) 320 return 1; 321 322 /* 323 * We may have set a slab to be unmergeable during bootstrap. 324 */ 325 if (s->refcount < 0) 326 return 1; 327 328 return 0; 329 } 330 331 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 332 slab_flags_t flags, const char *name, void (*ctor)(void *)) 333 { 334 struct kmem_cache *s; 335 336 if (slab_nomerge) 337 return NULL; 338 339 if (ctor) 340 return NULL; 341 342 size = ALIGN(size, sizeof(void *)); 343 align = calculate_alignment(flags, align, size); 344 size = ALIGN(size, align); 345 flags = kmem_cache_flags(size, flags, name, NULL); 346 347 if (flags & SLAB_NEVER_MERGE) 348 return NULL; 349 350 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { 351 if (slab_unmergeable(s)) 352 continue; 353 354 if (size > s->size) 355 continue; 356 357 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 358 continue; 359 /* 360 * Check if alignment is compatible. 361 * Courtesy of Adrian Drzewiecki 362 */ 363 if ((s->size & ~(align - 1)) != s->size) 364 continue; 365 366 if (s->size - size >= sizeof(void *)) 367 continue; 368 369 if (IS_ENABLED(CONFIG_SLAB) && align && 370 (align > s->align || s->align % align)) 371 continue; 372 373 return s; 374 } 375 return NULL; 376 } 377 378 static struct kmem_cache *create_cache(const char *name, 379 unsigned int object_size, unsigned int align, 380 slab_flags_t flags, unsigned int useroffset, 381 unsigned int usersize, void (*ctor)(void *), 382 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 383 { 384 struct kmem_cache *s; 385 int err; 386 387 if (WARN_ON(useroffset + usersize > object_size)) 388 useroffset = usersize = 0; 389 390 err = -ENOMEM; 391 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 392 if (!s) 393 goto out; 394 395 s->name = name; 396 s->size = s->object_size = object_size; 397 s->align = align; 398 s->ctor = ctor; 399 s->useroffset = useroffset; 400 s->usersize = usersize; 401 402 err = init_memcg_params(s, root_cache); 403 if (err) 404 goto out_free_cache; 405 406 err = __kmem_cache_create(s, flags); 407 if (err) 408 goto out_free_cache; 409 410 s->refcount = 1; 411 list_add(&s->list, &slab_caches); 412 memcg_link_cache(s, memcg); 413 out: 414 if (err) 415 return ERR_PTR(err); 416 return s; 417 418 out_free_cache: 419 destroy_memcg_params(s); 420 kmem_cache_free(kmem_cache, s); 421 goto out; 422 } 423 424 /** 425 * kmem_cache_create_usercopy - Create a cache with a region suitable 426 * for copying to userspace 427 * @name: A string which is used in /proc/slabinfo to identify this cache. 428 * @size: The size of objects to be created in this cache. 429 * @align: The required alignment for the objects. 430 * @flags: SLAB flags 431 * @useroffset: Usercopy region offset 432 * @usersize: Usercopy region size 433 * @ctor: A constructor for the objects. 434 * 435 * Cannot be called within a interrupt, but can be interrupted. 436 * The @ctor is run when new pages are allocated by the cache. 437 * 438 * The flags are 439 * 440 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 441 * to catch references to uninitialised memory. 442 * 443 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 444 * for buffer overruns. 445 * 446 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 447 * cacheline. This can be beneficial if you're counting cycles as closely 448 * as davem. 449 * 450 * Return: a pointer to the cache on success, NULL on failure. 451 */ 452 struct kmem_cache * 453 kmem_cache_create_usercopy(const char *name, 454 unsigned int size, unsigned int align, 455 slab_flags_t flags, 456 unsigned int useroffset, unsigned int usersize, 457 void (*ctor)(void *)) 458 { 459 struct kmem_cache *s = NULL; 460 const char *cache_name; 461 int err; 462 463 get_online_cpus(); 464 get_online_mems(); 465 memcg_get_cache_ids(); 466 467 mutex_lock(&slab_mutex); 468 469 err = kmem_cache_sanity_check(name, size); 470 if (err) { 471 goto out_unlock; 472 } 473 474 /* Refuse requests with allocator specific flags */ 475 if (flags & ~SLAB_FLAGS_PERMITTED) { 476 err = -EINVAL; 477 goto out_unlock; 478 } 479 480 /* 481 * Some allocators will constraint the set of valid flags to a subset 482 * of all flags. We expect them to define CACHE_CREATE_MASK in this 483 * case, and we'll just provide them with a sanitized version of the 484 * passed flags. 485 */ 486 flags &= CACHE_CREATE_MASK; 487 488 /* Fail closed on bad usersize of useroffset values. */ 489 if (WARN_ON(!usersize && useroffset) || 490 WARN_ON(size < usersize || size - usersize < useroffset)) 491 usersize = useroffset = 0; 492 493 if (!usersize) 494 s = __kmem_cache_alias(name, size, align, flags, ctor); 495 if (s) 496 goto out_unlock; 497 498 cache_name = kstrdup_const(name, GFP_KERNEL); 499 if (!cache_name) { 500 err = -ENOMEM; 501 goto out_unlock; 502 } 503 504 s = create_cache(cache_name, size, 505 calculate_alignment(flags, align, size), 506 flags, useroffset, usersize, ctor, NULL, NULL); 507 if (IS_ERR(s)) { 508 err = PTR_ERR(s); 509 kfree_const(cache_name); 510 } 511 512 out_unlock: 513 mutex_unlock(&slab_mutex); 514 515 memcg_put_cache_ids(); 516 put_online_mems(); 517 put_online_cpus(); 518 519 if (err) { 520 if (flags & SLAB_PANIC) 521 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 522 name, err); 523 else { 524 pr_warn("kmem_cache_create(%s) failed with error %d\n", 525 name, err); 526 dump_stack(); 527 } 528 return NULL; 529 } 530 return s; 531 } 532 EXPORT_SYMBOL(kmem_cache_create_usercopy); 533 534 /** 535 * kmem_cache_create - Create a cache. 536 * @name: A string which is used in /proc/slabinfo to identify this cache. 537 * @size: The size of objects to be created in this cache. 538 * @align: The required alignment for the objects. 539 * @flags: SLAB flags 540 * @ctor: A constructor for the objects. 541 * 542 * Cannot be called within a interrupt, but can be interrupted. 543 * The @ctor is run when new pages are allocated by the cache. 544 * 545 * The flags are 546 * 547 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 548 * to catch references to uninitialised memory. 549 * 550 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 551 * for buffer overruns. 552 * 553 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 554 * cacheline. This can be beneficial if you're counting cycles as closely 555 * as davem. 556 * 557 * Return: a pointer to the cache on success, NULL on failure. 558 */ 559 struct kmem_cache * 560 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 561 slab_flags_t flags, void (*ctor)(void *)) 562 { 563 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 564 ctor); 565 } 566 EXPORT_SYMBOL(kmem_cache_create); 567 568 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 569 { 570 LIST_HEAD(to_destroy); 571 struct kmem_cache *s, *s2; 572 573 /* 574 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 575 * @slab_caches_to_rcu_destroy list. The slab pages are freed 576 * through RCU and and the associated kmem_cache are dereferenced 577 * while freeing the pages, so the kmem_caches should be freed only 578 * after the pending RCU operations are finished. As rcu_barrier() 579 * is a pretty slow operation, we batch all pending destructions 580 * asynchronously. 581 */ 582 mutex_lock(&slab_mutex); 583 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 584 mutex_unlock(&slab_mutex); 585 586 if (list_empty(&to_destroy)) 587 return; 588 589 rcu_barrier(); 590 591 list_for_each_entry_safe(s, s2, &to_destroy, list) { 592 #ifdef SLAB_SUPPORTS_SYSFS 593 sysfs_slab_release(s); 594 #else 595 slab_kmem_cache_release(s); 596 #endif 597 } 598 } 599 600 static int shutdown_cache(struct kmem_cache *s) 601 { 602 /* free asan quarantined objects */ 603 kasan_cache_shutdown(s); 604 605 if (__kmem_cache_shutdown(s) != 0) 606 return -EBUSY; 607 608 memcg_unlink_cache(s); 609 list_del(&s->list); 610 611 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 612 #ifdef SLAB_SUPPORTS_SYSFS 613 sysfs_slab_unlink(s); 614 #endif 615 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 616 schedule_work(&slab_caches_to_rcu_destroy_work); 617 } else { 618 #ifdef SLAB_SUPPORTS_SYSFS 619 sysfs_slab_unlink(s); 620 sysfs_slab_release(s); 621 #else 622 slab_kmem_cache_release(s); 623 #endif 624 } 625 626 return 0; 627 } 628 629 #ifdef CONFIG_MEMCG_KMEM 630 /* 631 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 632 * @memcg: The memory cgroup the new cache is for. 633 * @root_cache: The parent of the new cache. 634 * 635 * This function attempts to create a kmem cache that will serve allocation 636 * requests going from @memcg to @root_cache. The new cache inherits properties 637 * from its parent. 638 */ 639 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 640 struct kmem_cache *root_cache) 641 { 642 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 643 struct cgroup_subsys_state *css = &memcg->css; 644 struct memcg_cache_array *arr; 645 struct kmem_cache *s = NULL; 646 char *cache_name; 647 int idx; 648 649 get_online_cpus(); 650 get_online_mems(); 651 652 mutex_lock(&slab_mutex); 653 654 /* 655 * The memory cgroup could have been offlined while the cache 656 * creation work was pending. 657 */ 658 if (memcg->kmem_state != KMEM_ONLINE) 659 goto out_unlock; 660 661 idx = memcg_cache_id(memcg); 662 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 663 lockdep_is_held(&slab_mutex)); 664 665 /* 666 * Since per-memcg caches are created asynchronously on first 667 * allocation (see memcg_kmem_get_cache()), several threads can try to 668 * create the same cache, but only one of them may succeed. 669 */ 670 if (arr->entries[idx]) 671 goto out_unlock; 672 673 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 674 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, 675 css->serial_nr, memcg_name_buf); 676 if (!cache_name) 677 goto out_unlock; 678 679 s = create_cache(cache_name, root_cache->object_size, 680 root_cache->align, 681 root_cache->flags & CACHE_CREATE_MASK, 682 root_cache->useroffset, root_cache->usersize, 683 root_cache->ctor, memcg, root_cache); 684 /* 685 * If we could not create a memcg cache, do not complain, because 686 * that's not critical at all as we can always proceed with the root 687 * cache. 688 */ 689 if (IS_ERR(s)) { 690 kfree(cache_name); 691 goto out_unlock; 692 } 693 694 /* 695 * Since readers won't lock (see memcg_kmem_get_cache()), we need a 696 * barrier here to ensure nobody will see the kmem_cache partially 697 * initialized. 698 */ 699 smp_wmb(); 700 arr->entries[idx] = s; 701 702 out_unlock: 703 mutex_unlock(&slab_mutex); 704 705 put_online_mems(); 706 put_online_cpus(); 707 } 708 709 static void kmemcg_workfn(struct work_struct *work) 710 { 711 struct kmem_cache *s = container_of(work, struct kmem_cache, 712 memcg_params.work); 713 714 get_online_cpus(); 715 get_online_mems(); 716 717 mutex_lock(&slab_mutex); 718 s->memcg_params.work_fn(s); 719 mutex_unlock(&slab_mutex); 720 721 put_online_mems(); 722 put_online_cpus(); 723 } 724 725 static void kmemcg_rcufn(struct rcu_head *head) 726 { 727 struct kmem_cache *s = container_of(head, struct kmem_cache, 728 memcg_params.rcu_head); 729 730 /* 731 * We need to grab blocking locks. Bounce to ->work. The 732 * work item shares the space with the RCU head and can't be 733 * initialized eariler. 734 */ 735 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 736 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 737 } 738 739 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) 740 { 741 WARN_ON(shutdown_cache(s)); 742 } 743 744 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) 745 { 746 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, 747 memcg_params.refcnt); 748 unsigned long flags; 749 750 spin_lock_irqsave(&memcg_kmem_wq_lock, flags); 751 if (s->memcg_params.root_cache->memcg_params.dying) 752 goto unlock; 753 754 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; 755 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 756 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 757 758 unlock: 759 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); 760 } 761 762 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 763 { 764 __kmemcg_cache_deactivate_after_rcu(s); 765 percpu_ref_kill(&s->memcg_params.refcnt); 766 } 767 768 static void kmemcg_cache_deactivate(struct kmem_cache *s) 769 { 770 if (WARN_ON_ONCE(is_root_cache(s))) 771 return; 772 773 __kmemcg_cache_deactivate(s); 774 s->flags |= SLAB_DEACTIVATED; 775 776 /* 777 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying 778 * flag and make sure that no new kmem_cache deactivation tasks 779 * are queued (see flush_memcg_workqueue() ). 780 */ 781 spin_lock_irq(&memcg_kmem_wq_lock); 782 if (s->memcg_params.root_cache->memcg_params.dying) 783 goto unlock; 784 785 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; 786 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); 787 unlock: 788 spin_unlock_irq(&memcg_kmem_wq_lock); 789 } 790 791 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, 792 struct mem_cgroup *parent) 793 { 794 int idx; 795 struct memcg_cache_array *arr; 796 struct kmem_cache *s, *c; 797 unsigned int nr_reparented; 798 799 idx = memcg_cache_id(memcg); 800 801 get_online_cpus(); 802 get_online_mems(); 803 804 mutex_lock(&slab_mutex); 805 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 806 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 807 lockdep_is_held(&slab_mutex)); 808 c = arr->entries[idx]; 809 if (!c) 810 continue; 811 812 kmemcg_cache_deactivate(c); 813 arr->entries[idx] = NULL; 814 } 815 nr_reparented = 0; 816 list_for_each_entry(s, &memcg->kmem_caches, 817 memcg_params.kmem_caches_node) { 818 WRITE_ONCE(s->memcg_params.memcg, parent); 819 css_put(&memcg->css); 820 nr_reparented++; 821 } 822 if (nr_reparented) { 823 list_splice_init(&memcg->kmem_caches, 824 &parent->kmem_caches); 825 css_get_many(&parent->css, nr_reparented); 826 } 827 mutex_unlock(&slab_mutex); 828 829 put_online_mems(); 830 put_online_cpus(); 831 } 832 833 static int shutdown_memcg_caches(struct kmem_cache *s) 834 { 835 struct memcg_cache_array *arr; 836 struct kmem_cache *c, *c2; 837 LIST_HEAD(busy); 838 int i; 839 840 BUG_ON(!is_root_cache(s)); 841 842 /* 843 * First, shutdown active caches, i.e. caches that belong to online 844 * memory cgroups. 845 */ 846 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 847 lockdep_is_held(&slab_mutex)); 848 for_each_memcg_cache_index(i) { 849 c = arr->entries[i]; 850 if (!c) 851 continue; 852 if (shutdown_cache(c)) 853 /* 854 * The cache still has objects. Move it to a temporary 855 * list so as not to try to destroy it for a second 856 * time while iterating over inactive caches below. 857 */ 858 list_move(&c->memcg_params.children_node, &busy); 859 else 860 /* 861 * The cache is empty and will be destroyed soon. Clear 862 * the pointer to it in the memcg_caches array so that 863 * it will never be accessed even if the root cache 864 * stays alive. 865 */ 866 arr->entries[i] = NULL; 867 } 868 869 /* 870 * Second, shutdown all caches left from memory cgroups that are now 871 * offline. 872 */ 873 list_for_each_entry_safe(c, c2, &s->memcg_params.children, 874 memcg_params.children_node) 875 shutdown_cache(c); 876 877 list_splice(&busy, &s->memcg_params.children); 878 879 /* 880 * A cache being destroyed must be empty. In particular, this means 881 * that all per memcg caches attached to it must be empty too. 882 */ 883 if (!list_empty(&s->memcg_params.children)) 884 return -EBUSY; 885 return 0; 886 } 887 888 static void flush_memcg_workqueue(struct kmem_cache *s) 889 { 890 spin_lock_irq(&memcg_kmem_wq_lock); 891 s->memcg_params.dying = true; 892 spin_unlock_irq(&memcg_kmem_wq_lock); 893 894 /* 895 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make 896 * sure all registered rcu callbacks have been invoked. 897 */ 898 rcu_barrier(); 899 900 /* 901 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB 902 * deactivates the memcg kmem_caches through workqueue. Make sure all 903 * previous workitems on workqueue are processed. 904 */ 905 flush_workqueue(memcg_kmem_cache_wq); 906 } 907 #else 908 static inline int shutdown_memcg_caches(struct kmem_cache *s) 909 { 910 return 0; 911 } 912 913 static inline void flush_memcg_workqueue(struct kmem_cache *s) 914 { 915 } 916 #endif /* CONFIG_MEMCG_KMEM */ 917 918 void slab_kmem_cache_release(struct kmem_cache *s) 919 { 920 __kmem_cache_release(s); 921 destroy_memcg_params(s); 922 kfree_const(s->name); 923 kmem_cache_free(kmem_cache, s); 924 } 925 926 void kmem_cache_destroy(struct kmem_cache *s) 927 { 928 int err; 929 930 if (unlikely(!s)) 931 return; 932 933 flush_memcg_workqueue(s); 934 935 get_online_cpus(); 936 get_online_mems(); 937 938 mutex_lock(&slab_mutex); 939 940 s->refcount--; 941 if (s->refcount) 942 goto out_unlock; 943 944 err = shutdown_memcg_caches(s); 945 if (!err) 946 err = shutdown_cache(s); 947 948 if (err) { 949 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 950 s->name); 951 dump_stack(); 952 } 953 out_unlock: 954 mutex_unlock(&slab_mutex); 955 956 put_online_mems(); 957 put_online_cpus(); 958 } 959 EXPORT_SYMBOL(kmem_cache_destroy); 960 961 /** 962 * kmem_cache_shrink - Shrink a cache. 963 * @cachep: The cache to shrink. 964 * 965 * Releases as many slabs as possible for a cache. 966 * To help debugging, a zero exit status indicates all slabs were released. 967 * 968 * Return: %0 if all slabs were released, non-zero otherwise 969 */ 970 int kmem_cache_shrink(struct kmem_cache *cachep) 971 { 972 int ret; 973 974 get_online_cpus(); 975 get_online_mems(); 976 kasan_cache_shrink(cachep); 977 ret = __kmem_cache_shrink(cachep); 978 put_online_mems(); 979 put_online_cpus(); 980 return ret; 981 } 982 EXPORT_SYMBOL(kmem_cache_shrink); 983 984 bool slab_is_available(void) 985 { 986 return slab_state >= UP; 987 } 988 989 #ifndef CONFIG_SLOB 990 /* Create a cache during boot when no slab services are available yet */ 991 void __init create_boot_cache(struct kmem_cache *s, const char *name, 992 unsigned int size, slab_flags_t flags, 993 unsigned int useroffset, unsigned int usersize) 994 { 995 int err; 996 997 s->name = name; 998 s->size = s->object_size = size; 999 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); 1000 s->useroffset = useroffset; 1001 s->usersize = usersize; 1002 1003 slab_init_memcg_params(s); 1004 1005 err = __kmem_cache_create(s, flags); 1006 1007 if (err) 1008 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 1009 name, size, err); 1010 1011 s->refcount = -1; /* Exempt from merging for now */ 1012 } 1013 1014 struct kmem_cache *__init create_kmalloc_cache(const char *name, 1015 unsigned int size, slab_flags_t flags, 1016 unsigned int useroffset, unsigned int usersize) 1017 { 1018 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 1019 1020 if (!s) 1021 panic("Out of memory when creating slab %s\n", name); 1022 1023 create_boot_cache(s, name, size, flags, useroffset, usersize); 1024 list_add(&s->list, &slab_caches); 1025 memcg_link_cache(s, NULL); 1026 s->refcount = 1; 1027 return s; 1028 } 1029 1030 struct kmem_cache * 1031 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init; 1032 EXPORT_SYMBOL(kmalloc_caches); 1033 1034 /* 1035 * Conversion table for small slabs sizes / 8 to the index in the 1036 * kmalloc array. This is necessary for slabs < 192 since we have non power 1037 * of two cache sizes there. The size of larger slabs can be determined using 1038 * fls. 1039 */ 1040 static u8 size_index[24] __ro_after_init = { 1041 3, /* 8 */ 1042 4, /* 16 */ 1043 5, /* 24 */ 1044 5, /* 32 */ 1045 6, /* 40 */ 1046 6, /* 48 */ 1047 6, /* 56 */ 1048 6, /* 64 */ 1049 1, /* 72 */ 1050 1, /* 80 */ 1051 1, /* 88 */ 1052 1, /* 96 */ 1053 7, /* 104 */ 1054 7, /* 112 */ 1055 7, /* 120 */ 1056 7, /* 128 */ 1057 2, /* 136 */ 1058 2, /* 144 */ 1059 2, /* 152 */ 1060 2, /* 160 */ 1061 2, /* 168 */ 1062 2, /* 176 */ 1063 2, /* 184 */ 1064 2 /* 192 */ 1065 }; 1066 1067 static inline unsigned int size_index_elem(unsigned int bytes) 1068 { 1069 return (bytes - 1) / 8; 1070 } 1071 1072 /* 1073 * Find the kmem_cache structure that serves a given size of 1074 * allocation 1075 */ 1076 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 1077 { 1078 unsigned int index; 1079 1080 if (size <= 192) { 1081 if (!size) 1082 return ZERO_SIZE_PTR; 1083 1084 index = size_index[size_index_elem(size)]; 1085 } else { 1086 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 1087 return NULL; 1088 index = fls(size - 1); 1089 } 1090 1091 return kmalloc_caches[kmalloc_type(flags)][index]; 1092 } 1093 1094 /* 1095 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 1096 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 1097 * kmalloc-67108864. 1098 */ 1099 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 1100 {NULL, 0}, {"kmalloc-96", 96}, 1101 {"kmalloc-192", 192}, {"kmalloc-8", 8}, 1102 {"kmalloc-16", 16}, {"kmalloc-32", 32}, 1103 {"kmalloc-64", 64}, {"kmalloc-128", 128}, 1104 {"kmalloc-256", 256}, {"kmalloc-512", 512}, 1105 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048}, 1106 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192}, 1107 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768}, 1108 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072}, 1109 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288}, 1110 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152}, 1111 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608}, 1112 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432}, 1113 {"kmalloc-64M", 67108864} 1114 }; 1115 1116 /* 1117 * Patch up the size_index table if we have strange large alignment 1118 * requirements for the kmalloc array. This is only the case for 1119 * MIPS it seems. The standard arches will not generate any code here. 1120 * 1121 * Largest permitted alignment is 256 bytes due to the way we 1122 * handle the index determination for the smaller caches. 1123 * 1124 * Make sure that nothing crazy happens if someone starts tinkering 1125 * around with ARCH_KMALLOC_MINALIGN 1126 */ 1127 void __init setup_kmalloc_cache_index_table(void) 1128 { 1129 unsigned int i; 1130 1131 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 1132 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 1133 1134 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 1135 unsigned int elem = size_index_elem(i); 1136 1137 if (elem >= ARRAY_SIZE(size_index)) 1138 break; 1139 size_index[elem] = KMALLOC_SHIFT_LOW; 1140 } 1141 1142 if (KMALLOC_MIN_SIZE >= 64) { 1143 /* 1144 * The 96 byte size cache is not used if the alignment 1145 * is 64 byte. 1146 */ 1147 for (i = 64 + 8; i <= 96; i += 8) 1148 size_index[size_index_elem(i)] = 7; 1149 1150 } 1151 1152 if (KMALLOC_MIN_SIZE >= 128) { 1153 /* 1154 * The 192 byte sized cache is not used if the alignment 1155 * is 128 byte. Redirect kmalloc to use the 256 byte cache 1156 * instead. 1157 */ 1158 for (i = 128 + 8; i <= 192; i += 8) 1159 size_index[size_index_elem(i)] = 8; 1160 } 1161 } 1162 1163 static const char * 1164 kmalloc_cache_name(const char *prefix, unsigned int size) 1165 { 1166 1167 static const char units[3] = "\0kM"; 1168 int idx = 0; 1169 1170 while (size >= 1024 && (size % 1024 == 0)) { 1171 size /= 1024; 1172 idx++; 1173 } 1174 1175 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); 1176 } 1177 1178 static void __init 1179 new_kmalloc_cache(int idx, int type, slab_flags_t flags) 1180 { 1181 const char *name; 1182 1183 if (type == KMALLOC_RECLAIM) { 1184 flags |= SLAB_RECLAIM_ACCOUNT; 1185 name = kmalloc_cache_name("kmalloc-rcl", 1186 kmalloc_info[idx].size); 1187 BUG_ON(!name); 1188 } else { 1189 name = kmalloc_info[idx].name; 1190 } 1191 1192 kmalloc_caches[type][idx] = create_kmalloc_cache(name, 1193 kmalloc_info[idx].size, flags, 0, 1194 kmalloc_info[idx].size); 1195 } 1196 1197 /* 1198 * Create the kmalloc array. Some of the regular kmalloc arrays 1199 * may already have been created because they were needed to 1200 * enable allocations for slab creation. 1201 */ 1202 void __init create_kmalloc_caches(slab_flags_t flags) 1203 { 1204 int i, type; 1205 1206 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 1207 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 1208 if (!kmalloc_caches[type][i]) 1209 new_kmalloc_cache(i, type, flags); 1210 1211 /* 1212 * Caches that are not of the two-to-the-power-of size. 1213 * These have to be created immediately after the 1214 * earlier power of two caches 1215 */ 1216 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 1217 !kmalloc_caches[type][1]) 1218 new_kmalloc_cache(1, type, flags); 1219 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 1220 !kmalloc_caches[type][2]) 1221 new_kmalloc_cache(2, type, flags); 1222 } 1223 } 1224 1225 /* Kmalloc array is now usable */ 1226 slab_state = UP; 1227 1228 #ifdef CONFIG_ZONE_DMA 1229 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 1230 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 1231 1232 if (s) { 1233 unsigned int size = kmalloc_size(i); 1234 const char *n = kmalloc_cache_name("dma-kmalloc", size); 1235 1236 BUG_ON(!n); 1237 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 1238 n, size, SLAB_CACHE_DMA | flags, 0, 0); 1239 } 1240 } 1241 #endif 1242 } 1243 #endif /* !CONFIG_SLOB */ 1244 1245 /* 1246 * To avoid unnecessary overhead, we pass through large allocation requests 1247 * directly to the page allocator. We use __GFP_COMP, because we will need to 1248 * know the allocation order to free the pages properly in kfree. 1249 */ 1250 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1251 { 1252 void *ret; 1253 struct page *page; 1254 1255 flags |= __GFP_COMP; 1256 page = alloc_pages(flags, order); 1257 ret = page ? page_address(page) : NULL; 1258 ret = kasan_kmalloc_large(ret, size, flags); 1259 /* As ret might get tagged, call kmemleak hook after KASAN. */ 1260 kmemleak_alloc(ret, size, 1, flags); 1261 return ret; 1262 } 1263 EXPORT_SYMBOL(kmalloc_order); 1264 1265 #ifdef CONFIG_TRACING 1266 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1267 { 1268 void *ret = kmalloc_order(size, flags, order); 1269 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1270 return ret; 1271 } 1272 EXPORT_SYMBOL(kmalloc_order_trace); 1273 #endif 1274 1275 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1276 /* Randomize a generic freelist */ 1277 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 1278 unsigned int count) 1279 { 1280 unsigned int rand; 1281 unsigned int i; 1282 1283 for (i = 0; i < count; i++) 1284 list[i] = i; 1285 1286 /* Fisher-Yates shuffle */ 1287 for (i = count - 1; i > 0; i--) { 1288 rand = prandom_u32_state(state); 1289 rand %= (i + 1); 1290 swap(list[i], list[rand]); 1291 } 1292 } 1293 1294 /* Create a random sequence per cache */ 1295 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1296 gfp_t gfp) 1297 { 1298 struct rnd_state state; 1299 1300 if (count < 2 || cachep->random_seq) 1301 return 0; 1302 1303 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1304 if (!cachep->random_seq) 1305 return -ENOMEM; 1306 1307 /* Get best entropy at this stage of boot */ 1308 prandom_seed_state(&state, get_random_long()); 1309 1310 freelist_randomize(&state, cachep->random_seq, count); 1311 return 0; 1312 } 1313 1314 /* Destroy the per-cache random freelist sequence */ 1315 void cache_random_seq_destroy(struct kmem_cache *cachep) 1316 { 1317 kfree(cachep->random_seq); 1318 cachep->random_seq = NULL; 1319 } 1320 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1321 1322 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1323 #ifdef CONFIG_SLAB 1324 #define SLABINFO_RIGHTS (0600) 1325 #else 1326 #define SLABINFO_RIGHTS (0400) 1327 #endif 1328 1329 static void print_slabinfo_header(struct seq_file *m) 1330 { 1331 /* 1332 * Output format version, so at least we can change it 1333 * without _too_ many complaints. 1334 */ 1335 #ifdef CONFIG_DEBUG_SLAB 1336 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1337 #else 1338 seq_puts(m, "slabinfo - version: 2.1\n"); 1339 #endif 1340 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1341 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1342 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1343 #ifdef CONFIG_DEBUG_SLAB 1344 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1345 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1346 #endif 1347 seq_putc(m, '\n'); 1348 } 1349 1350 void *slab_start(struct seq_file *m, loff_t *pos) 1351 { 1352 mutex_lock(&slab_mutex); 1353 return seq_list_start(&slab_root_caches, *pos); 1354 } 1355 1356 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1357 { 1358 return seq_list_next(p, &slab_root_caches, pos); 1359 } 1360 1361 void slab_stop(struct seq_file *m, void *p) 1362 { 1363 mutex_unlock(&slab_mutex); 1364 } 1365 1366 static void 1367 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1368 { 1369 struct kmem_cache *c; 1370 struct slabinfo sinfo; 1371 1372 if (!is_root_cache(s)) 1373 return; 1374 1375 for_each_memcg_cache(c, s) { 1376 memset(&sinfo, 0, sizeof(sinfo)); 1377 get_slabinfo(c, &sinfo); 1378 1379 info->active_slabs += sinfo.active_slabs; 1380 info->num_slabs += sinfo.num_slabs; 1381 info->shared_avail += sinfo.shared_avail; 1382 info->active_objs += sinfo.active_objs; 1383 info->num_objs += sinfo.num_objs; 1384 } 1385 } 1386 1387 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1388 { 1389 struct slabinfo sinfo; 1390 1391 memset(&sinfo, 0, sizeof(sinfo)); 1392 get_slabinfo(s, &sinfo); 1393 1394 memcg_accumulate_slabinfo(s, &sinfo); 1395 1396 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1397 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1398 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1399 1400 seq_printf(m, " : tunables %4u %4u %4u", 1401 sinfo.limit, sinfo.batchcount, sinfo.shared); 1402 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1403 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1404 slabinfo_show_stats(m, s); 1405 seq_putc(m, '\n'); 1406 } 1407 1408 static int slab_show(struct seq_file *m, void *p) 1409 { 1410 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); 1411 1412 if (p == slab_root_caches.next) 1413 print_slabinfo_header(m); 1414 cache_show(s, m); 1415 return 0; 1416 } 1417 1418 void dump_unreclaimable_slab(void) 1419 { 1420 struct kmem_cache *s, *s2; 1421 struct slabinfo sinfo; 1422 1423 /* 1424 * Here acquiring slab_mutex is risky since we don't prefer to get 1425 * sleep in oom path. But, without mutex hold, it may introduce a 1426 * risk of crash. 1427 * Use mutex_trylock to protect the list traverse, dump nothing 1428 * without acquiring the mutex. 1429 */ 1430 if (!mutex_trylock(&slab_mutex)) { 1431 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1432 return; 1433 } 1434 1435 pr_info("Unreclaimable slab info:\n"); 1436 pr_info("Name Used Total\n"); 1437 1438 list_for_each_entry_safe(s, s2, &slab_caches, list) { 1439 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) 1440 continue; 1441 1442 get_slabinfo(s, &sinfo); 1443 1444 if (sinfo.num_objs > 0) 1445 pr_info("%-17s %10luKB %10luKB\n", cache_name(s), 1446 (sinfo.active_objs * s->size) / 1024, 1447 (sinfo.num_objs * s->size) / 1024); 1448 } 1449 mutex_unlock(&slab_mutex); 1450 } 1451 1452 #if defined(CONFIG_MEMCG) 1453 void *memcg_slab_start(struct seq_file *m, loff_t *pos) 1454 { 1455 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1456 1457 mutex_lock(&slab_mutex); 1458 return seq_list_start(&memcg->kmem_caches, *pos); 1459 } 1460 1461 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) 1462 { 1463 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1464 1465 return seq_list_next(p, &memcg->kmem_caches, pos); 1466 } 1467 1468 void memcg_slab_stop(struct seq_file *m, void *p) 1469 { 1470 mutex_unlock(&slab_mutex); 1471 } 1472 1473 int memcg_slab_show(struct seq_file *m, void *p) 1474 { 1475 struct kmem_cache *s = list_entry(p, struct kmem_cache, 1476 memcg_params.kmem_caches_node); 1477 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1478 1479 if (p == memcg->kmem_caches.next) 1480 print_slabinfo_header(m); 1481 cache_show(s, m); 1482 return 0; 1483 } 1484 #endif 1485 1486 /* 1487 * slabinfo_op - iterator that generates /proc/slabinfo 1488 * 1489 * Output layout: 1490 * cache-name 1491 * num-active-objs 1492 * total-objs 1493 * object size 1494 * num-active-slabs 1495 * total-slabs 1496 * num-pages-per-slab 1497 * + further values on SMP and with statistics enabled 1498 */ 1499 static const struct seq_operations slabinfo_op = { 1500 .start = slab_start, 1501 .next = slab_next, 1502 .stop = slab_stop, 1503 .show = slab_show, 1504 }; 1505 1506 static int slabinfo_open(struct inode *inode, struct file *file) 1507 { 1508 return seq_open(file, &slabinfo_op); 1509 } 1510 1511 static const struct file_operations proc_slabinfo_operations = { 1512 .open = slabinfo_open, 1513 .read = seq_read, 1514 .write = slabinfo_write, 1515 .llseek = seq_lseek, 1516 .release = seq_release, 1517 }; 1518 1519 static int __init slab_proc_init(void) 1520 { 1521 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 1522 &proc_slabinfo_operations); 1523 return 0; 1524 } 1525 module_init(slab_proc_init); 1526 1527 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) 1528 /* 1529 * Display information about kmem caches that have child memcg caches. 1530 */ 1531 static int memcg_slabinfo_show(struct seq_file *m, void *unused) 1532 { 1533 struct kmem_cache *s, *c; 1534 struct slabinfo sinfo; 1535 1536 mutex_lock(&slab_mutex); 1537 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); 1538 seq_puts(m, " <active_slabs> <num_slabs>\n"); 1539 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 1540 /* 1541 * Skip kmem caches that don't have any memcg children. 1542 */ 1543 if (list_empty(&s->memcg_params.children)) 1544 continue; 1545 1546 memset(&sinfo, 0, sizeof(sinfo)); 1547 get_slabinfo(s, &sinfo); 1548 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n", 1549 cache_name(s), sinfo.active_objs, sinfo.num_objs, 1550 sinfo.active_slabs, sinfo.num_slabs); 1551 1552 for_each_memcg_cache(c, s) { 1553 struct cgroup_subsys_state *css; 1554 char *status = ""; 1555 1556 css = &c->memcg_params.memcg->css; 1557 if (!(css->flags & CSS_ONLINE)) 1558 status = ":dead"; 1559 else if (c->flags & SLAB_DEACTIVATED) 1560 status = ":deact"; 1561 1562 memset(&sinfo, 0, sizeof(sinfo)); 1563 get_slabinfo(c, &sinfo); 1564 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", 1565 cache_name(c), css->id, status, 1566 sinfo.active_objs, sinfo.num_objs, 1567 sinfo.active_slabs, sinfo.num_slabs); 1568 } 1569 } 1570 mutex_unlock(&slab_mutex); 1571 return 0; 1572 } 1573 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); 1574 1575 static int __init memcg_slabinfo_init(void) 1576 { 1577 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, 1578 NULL, NULL, &memcg_slabinfo_fops); 1579 return 0; 1580 } 1581 1582 late_initcall(memcg_slabinfo_init); 1583 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ 1584 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1585 1586 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1587 gfp_t flags) 1588 { 1589 void *ret; 1590 size_t ks = 0; 1591 1592 if (p) 1593 ks = ksize(p); 1594 1595 if (ks >= new_size) { 1596 p = kasan_krealloc((void *)p, new_size, flags); 1597 return (void *)p; 1598 } 1599 1600 ret = kmalloc_track_caller(new_size, flags); 1601 if (ret && p) 1602 memcpy(ret, p, ks); 1603 1604 return ret; 1605 } 1606 1607 /** 1608 * __krealloc - like krealloc() but don't free @p. 1609 * @p: object to reallocate memory for. 1610 * @new_size: how many bytes of memory are required. 1611 * @flags: the type of memory to allocate. 1612 * 1613 * This function is like krealloc() except it never frees the originally 1614 * allocated buffer. Use this if you don't want to free the buffer immediately 1615 * like, for example, with RCU. 1616 * 1617 * Return: pointer to the allocated memory or %NULL in case of error 1618 */ 1619 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 1620 { 1621 if (unlikely(!new_size)) 1622 return ZERO_SIZE_PTR; 1623 1624 return __do_krealloc(p, new_size, flags); 1625 1626 } 1627 EXPORT_SYMBOL(__krealloc); 1628 1629 /** 1630 * krealloc - reallocate memory. The contents will remain unchanged. 1631 * @p: object to reallocate memory for. 1632 * @new_size: how many bytes of memory are required. 1633 * @flags: the type of memory to allocate. 1634 * 1635 * The contents of the object pointed to are preserved up to the 1636 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1637 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1638 * %NULL pointer, the object pointed to is freed. 1639 * 1640 * Return: pointer to the allocated memory or %NULL in case of error 1641 */ 1642 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1643 { 1644 void *ret; 1645 1646 if (unlikely(!new_size)) { 1647 kfree(p); 1648 return ZERO_SIZE_PTR; 1649 } 1650 1651 ret = __do_krealloc(p, new_size, flags); 1652 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1653 kfree(p); 1654 1655 return ret; 1656 } 1657 EXPORT_SYMBOL(krealloc); 1658 1659 /** 1660 * kzfree - like kfree but zero memory 1661 * @p: object to free memory of 1662 * 1663 * The memory of the object @p points to is zeroed before freed. 1664 * If @p is %NULL, kzfree() does nothing. 1665 * 1666 * Note: this function zeroes the whole allocated buffer which can be a good 1667 * deal bigger than the requested buffer size passed to kmalloc(). So be 1668 * careful when using this function in performance sensitive code. 1669 */ 1670 void kzfree(const void *p) 1671 { 1672 size_t ks; 1673 void *mem = (void *)p; 1674 1675 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1676 return; 1677 ks = ksize(mem); 1678 memset(mem, 0, ks); 1679 kfree(mem); 1680 } 1681 EXPORT_SYMBOL(kzfree); 1682 1683 /** 1684 * ksize - get the actual amount of memory allocated for a given object 1685 * @objp: Pointer to the object 1686 * 1687 * kmalloc may internally round up allocations and return more memory 1688 * than requested. ksize() can be used to determine the actual amount of 1689 * memory allocated. The caller may use this additional memory, even though 1690 * a smaller amount of memory was initially specified with the kmalloc call. 1691 * The caller must guarantee that objp points to a valid object previously 1692 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1693 * must not be freed during the duration of the call. 1694 * 1695 * Return: size of the actual memory used by @objp in bytes 1696 */ 1697 size_t ksize(const void *objp) 1698 { 1699 size_t size; 1700 1701 if (WARN_ON_ONCE(!objp)) 1702 return 0; 1703 /* 1704 * We need to check that the pointed to object is valid, and only then 1705 * unpoison the shadow memory below. We use __kasan_check_read(), to 1706 * generate a more useful report at the time ksize() is called (rather 1707 * than later where behaviour is undefined due to potential 1708 * use-after-free or double-free). 1709 * 1710 * If the pointed to memory is invalid we return 0, to avoid users of 1711 * ksize() writing to and potentially corrupting the memory region. 1712 * 1713 * We want to perform the check before __ksize(), to avoid potentially 1714 * crashing in __ksize() due to accessing invalid metadata. 1715 */ 1716 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) 1717 return 0; 1718 1719 size = __ksize(objp); 1720 /* 1721 * We assume that ksize callers could use whole allocated area, 1722 * so we need to unpoison this area. 1723 */ 1724 kasan_unpoison_shadow(objp, size); 1725 return size; 1726 } 1727 EXPORT_SYMBOL(ksize); 1728 1729 /* Tracepoints definitions. */ 1730 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1731 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1732 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1733 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1734 EXPORT_TRACEPOINT_SYMBOL(kfree); 1735 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1736 1737 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1738 { 1739 if (__should_failslab(s, gfpflags)) 1740 return -ENOMEM; 1741 return 0; 1742 } 1743 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1744