xref: /linux/mm/slab_common.c (revision 36f353a1ebf88280f58d1ebfe2731251d9159456)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kmemleak.h>
25 #include <linux/kasan.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/page.h>
29 #include <linux/memcontrol.h>
30 #include <linux/stackdepot.h>
31 
32 #include "internal.h"
33 #include "slab.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/kmem.h>
37 
38 enum slab_state slab_state;
39 LIST_HEAD(slab_caches);
40 DEFINE_MUTEX(slab_mutex);
41 struct kmem_cache *kmem_cache;
42 
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 		    slab_caches_to_rcu_destroy_workfn);
47 
48 /*
49  * Set of flags that will prevent slab merging
50  */
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 		SLAB_FAILSLAB | SLAB_NO_MERGE)
54 
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57 
58 /*
59  * Merge control. If this is set then no merging of slab caches will occur.
60  */
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 
63 static int __init setup_slab_nomerge(char *str)
64 {
65 	slab_nomerge = true;
66 	return 1;
67 }
68 
69 static int __init setup_slab_merge(char *str)
70 {
71 	slab_nomerge = false;
72 	return 1;
73 }
74 
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 /*
109  * Figure out what the alignment of the objects will be given a set of
110  * flags, a user specified alignment and the size of the objects.
111  */
112 static unsigned int calculate_alignment(slab_flags_t flags,
113 		unsigned int align, unsigned int size)
114 {
115 	/*
116 	 * If the user wants hardware cache aligned objects then follow that
117 	 * suggestion if the object is sufficiently large.
118 	 *
119 	 * The hardware cache alignment cannot override the specified
120 	 * alignment though. If that is greater then use it.
121 	 */
122 	if (flags & SLAB_HWCACHE_ALIGN) {
123 		unsigned int ralign;
124 
125 		ralign = cache_line_size();
126 		while (size <= ralign / 2)
127 			ralign /= 2;
128 		align = max(align, ralign);
129 	}
130 
131 	align = max(align, arch_slab_minalign());
132 
133 	return ALIGN(align, sizeof(void *));
134 }
135 
136 /*
137  * Find a mergeable slab cache
138  */
139 int slab_unmergeable(struct kmem_cache *s)
140 {
141 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 		return 1;
143 
144 	if (s->ctor)
145 		return 1;
146 
147 #ifdef CONFIG_HARDENED_USERCOPY
148 	if (s->usersize)
149 		return 1;
150 #endif
151 
152 	/*
153 	 * We may have set a slab to be unmergeable during bootstrap.
154 	 */
155 	if (s->refcount < 0)
156 		return 1;
157 
158 	return 0;
159 }
160 
161 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
162 		slab_flags_t flags, const char *name, void (*ctor)(void *))
163 {
164 	struct kmem_cache *s;
165 
166 	if (slab_nomerge)
167 		return NULL;
168 
169 	if (ctor)
170 		return NULL;
171 
172 	size = ALIGN(size, sizeof(void *));
173 	align = calculate_alignment(flags, align, size);
174 	size = ALIGN(size, align);
175 	flags = kmem_cache_flags(flags, name);
176 
177 	if (flags & SLAB_NEVER_MERGE)
178 		return NULL;
179 
180 	list_for_each_entry_reverse(s, &slab_caches, list) {
181 		if (slab_unmergeable(s))
182 			continue;
183 
184 		if (size > s->size)
185 			continue;
186 
187 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 			continue;
189 		/*
190 		 * Check if alignment is compatible.
191 		 * Courtesy of Adrian Drzewiecki
192 		 */
193 		if ((s->size & ~(align - 1)) != s->size)
194 			continue;
195 
196 		if (s->size - size >= sizeof(void *))
197 			continue;
198 
199 		return s;
200 	}
201 	return NULL;
202 }
203 
204 static struct kmem_cache *create_cache(const char *name,
205 		unsigned int object_size, unsigned int align,
206 		slab_flags_t flags, unsigned int useroffset,
207 		unsigned int usersize, void (*ctor)(void *),
208 		struct kmem_cache *root_cache)
209 {
210 	struct kmem_cache *s;
211 	int err;
212 
213 	if (WARN_ON(useroffset + usersize > object_size))
214 		useroffset = usersize = 0;
215 
216 	err = -ENOMEM;
217 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218 	if (!s)
219 		goto out;
220 
221 	s->name = name;
222 	s->size = s->object_size = object_size;
223 	s->align = align;
224 	s->ctor = ctor;
225 #ifdef CONFIG_HARDENED_USERCOPY
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 #endif
229 
230 	err = __kmem_cache_create(s, flags);
231 	if (err)
232 		goto out_free_cache;
233 
234 	s->refcount = 1;
235 	list_add(&s->list, &slab_caches);
236 	return s;
237 
238 out_free_cache:
239 	kmem_cache_free(kmem_cache, s);
240 out:
241 	return ERR_PTR(err);
242 }
243 
244 /**
245  * kmem_cache_create_usercopy - Create a cache with a region suitable
246  * for copying to userspace
247  * @name: A string which is used in /proc/slabinfo to identify this cache.
248  * @size: The size of objects to be created in this cache.
249  * @align: The required alignment for the objects.
250  * @flags: SLAB flags
251  * @useroffset: Usercopy region offset
252  * @usersize: Usercopy region size
253  * @ctor: A constructor for the objects.
254  *
255  * Cannot be called within a interrupt, but can be interrupted.
256  * The @ctor is run when new pages are allocated by the cache.
257  *
258  * The flags are
259  *
260  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261  * to catch references to uninitialised memory.
262  *
263  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
264  * for buffer overruns.
265  *
266  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267  * cacheline.  This can be beneficial if you're counting cycles as closely
268  * as davem.
269  *
270  * Return: a pointer to the cache on success, NULL on failure.
271  */
272 struct kmem_cache *
273 kmem_cache_create_usercopy(const char *name,
274 		  unsigned int size, unsigned int align,
275 		  slab_flags_t flags,
276 		  unsigned int useroffset, unsigned int usersize,
277 		  void (*ctor)(void *))
278 {
279 	struct kmem_cache *s = NULL;
280 	const char *cache_name;
281 	int err;
282 
283 #ifdef CONFIG_SLUB_DEBUG
284 	/*
285 	 * If no slab_debug was enabled globally, the static key is not yet
286 	 * enabled by setup_slub_debug(). Enable it if the cache is being
287 	 * created with any of the debugging flags passed explicitly.
288 	 * It's also possible that this is the first cache created with
289 	 * SLAB_STORE_USER and we should init stack_depot for it.
290 	 */
291 	if (flags & SLAB_DEBUG_FLAGS)
292 		static_branch_enable(&slub_debug_enabled);
293 	if (flags & SLAB_STORE_USER)
294 		stack_depot_init();
295 #endif
296 
297 	mutex_lock(&slab_mutex);
298 
299 	err = kmem_cache_sanity_check(name, size);
300 	if (err) {
301 		goto out_unlock;
302 	}
303 
304 	/* Refuse requests with allocator specific flags */
305 	if (flags & ~SLAB_FLAGS_PERMITTED) {
306 		err = -EINVAL;
307 		goto out_unlock;
308 	}
309 
310 	/*
311 	 * Some allocators will constraint the set of valid flags to a subset
312 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313 	 * case, and we'll just provide them with a sanitized version of the
314 	 * passed flags.
315 	 */
316 	flags &= CACHE_CREATE_MASK;
317 
318 	/* Fail closed on bad usersize of useroffset values. */
319 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320 	    WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 #ifdef SLAB_SUPPORTS_SYSFS
396 /*
397  * For a given kmem_cache, kmem_cache_destroy() should only be called
398  * once or there will be a use-after-free problem. The actual deletion
399  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400  * protection. So they are now done without holding those locks.
401  *
402  * Note that there will be a slight delay in the deletion of sysfs files
403  * if kmem_cache_release() is called indrectly from a work function.
404  */
405 static void kmem_cache_release(struct kmem_cache *s)
406 {
407 	if (slab_state >= FULL) {
408 		sysfs_slab_unlink(s);
409 		sysfs_slab_release(s);
410 	} else {
411 		slab_kmem_cache_release(s);
412 	}
413 }
414 #else
415 static void kmem_cache_release(struct kmem_cache *s)
416 {
417 	slab_kmem_cache_release(s);
418 }
419 #endif
420 
421 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
422 {
423 	LIST_HEAD(to_destroy);
424 	struct kmem_cache *s, *s2;
425 
426 	/*
427 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
428 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
429 	 * through RCU and the associated kmem_cache are dereferenced
430 	 * while freeing the pages, so the kmem_caches should be freed only
431 	 * after the pending RCU operations are finished.  As rcu_barrier()
432 	 * is a pretty slow operation, we batch all pending destructions
433 	 * asynchronously.
434 	 */
435 	mutex_lock(&slab_mutex);
436 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
437 	mutex_unlock(&slab_mutex);
438 
439 	if (list_empty(&to_destroy))
440 		return;
441 
442 	rcu_barrier();
443 
444 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
445 		debugfs_slab_release(s);
446 		kfence_shutdown_cache(s);
447 		kmem_cache_release(s);
448 	}
449 }
450 
451 static int shutdown_cache(struct kmem_cache *s)
452 {
453 	/* free asan quarantined objects */
454 	kasan_cache_shutdown(s);
455 
456 	if (__kmem_cache_shutdown(s) != 0)
457 		return -EBUSY;
458 
459 	list_del(&s->list);
460 
461 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
462 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
463 		schedule_work(&slab_caches_to_rcu_destroy_work);
464 	} else {
465 		kfence_shutdown_cache(s);
466 		debugfs_slab_release(s);
467 	}
468 
469 	return 0;
470 }
471 
472 void slab_kmem_cache_release(struct kmem_cache *s)
473 {
474 	__kmem_cache_release(s);
475 	kfree_const(s->name);
476 	kmem_cache_free(kmem_cache, s);
477 }
478 
479 void kmem_cache_destroy(struct kmem_cache *s)
480 {
481 	int err = -EBUSY;
482 	bool rcu_set;
483 
484 	if (unlikely(!s) || !kasan_check_byte(s))
485 		return;
486 
487 	cpus_read_lock();
488 	mutex_lock(&slab_mutex);
489 
490 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
491 
492 	s->refcount--;
493 	if (s->refcount)
494 		goto out_unlock;
495 
496 	err = shutdown_cache(s);
497 	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
498 	     __func__, s->name, (void *)_RET_IP_);
499 out_unlock:
500 	mutex_unlock(&slab_mutex);
501 	cpus_read_unlock();
502 	if (!err && !rcu_set)
503 		kmem_cache_release(s);
504 }
505 EXPORT_SYMBOL(kmem_cache_destroy);
506 
507 /**
508  * kmem_cache_shrink - Shrink a cache.
509  * @cachep: The cache to shrink.
510  *
511  * Releases as many slabs as possible for a cache.
512  * To help debugging, a zero exit status indicates all slabs were released.
513  *
514  * Return: %0 if all slabs were released, non-zero otherwise
515  */
516 int kmem_cache_shrink(struct kmem_cache *cachep)
517 {
518 	kasan_cache_shrink(cachep);
519 
520 	return __kmem_cache_shrink(cachep);
521 }
522 EXPORT_SYMBOL(kmem_cache_shrink);
523 
524 bool slab_is_available(void)
525 {
526 	return slab_state >= UP;
527 }
528 
529 #ifdef CONFIG_PRINTK
530 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
531 {
532 	if (__kfence_obj_info(kpp, object, slab))
533 		return;
534 	__kmem_obj_info(kpp, object, slab);
535 }
536 
537 /**
538  * kmem_dump_obj - Print available slab provenance information
539  * @object: slab object for which to find provenance information.
540  *
541  * This function uses pr_cont(), so that the caller is expected to have
542  * printed out whatever preamble is appropriate.  The provenance information
543  * depends on the type of object and on how much debugging is enabled.
544  * For a slab-cache object, the fact that it is a slab object is printed,
545  * and, if available, the slab name, return address, and stack trace from
546  * the allocation and last free path of that object.
547  *
548  * Return: %true if the pointer is to a not-yet-freed object from
549  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
550  * is to an already-freed object, and %false otherwise.
551  */
552 bool kmem_dump_obj(void *object)
553 {
554 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
555 	int i;
556 	struct slab *slab;
557 	unsigned long ptroffset;
558 	struct kmem_obj_info kp = { };
559 
560 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
561 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
562 		return false;
563 	slab = virt_to_slab(object);
564 	if (!slab)
565 		return false;
566 
567 	kmem_obj_info(&kp, object, slab);
568 	if (kp.kp_slab_cache)
569 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
570 	else
571 		pr_cont(" slab%s", cp);
572 	if (is_kfence_address(object))
573 		pr_cont(" (kfence)");
574 	if (kp.kp_objp)
575 		pr_cont(" start %px", kp.kp_objp);
576 	if (kp.kp_data_offset)
577 		pr_cont(" data offset %lu", kp.kp_data_offset);
578 	if (kp.kp_objp) {
579 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
580 		pr_cont(" pointer offset %lu", ptroffset);
581 	}
582 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
583 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
584 	if (kp.kp_ret)
585 		pr_cont(" allocated at %pS\n", kp.kp_ret);
586 	else
587 		pr_cont("\n");
588 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
589 		if (!kp.kp_stack[i])
590 			break;
591 		pr_info("    %pS\n", kp.kp_stack[i]);
592 	}
593 
594 	if (kp.kp_free_stack[0])
595 		pr_cont(" Free path:\n");
596 
597 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
598 		if (!kp.kp_free_stack[i])
599 			break;
600 		pr_info("    %pS\n", kp.kp_free_stack[i]);
601 	}
602 
603 	return true;
604 }
605 EXPORT_SYMBOL_GPL(kmem_dump_obj);
606 #endif
607 
608 /* Create a cache during boot when no slab services are available yet */
609 void __init create_boot_cache(struct kmem_cache *s, const char *name,
610 		unsigned int size, slab_flags_t flags,
611 		unsigned int useroffset, unsigned int usersize)
612 {
613 	int err;
614 	unsigned int align = ARCH_KMALLOC_MINALIGN;
615 
616 	s->name = name;
617 	s->size = s->object_size = size;
618 
619 	/*
620 	 * For power of two sizes, guarantee natural alignment for kmalloc
621 	 * caches, regardless of SL*B debugging options.
622 	 */
623 	if (is_power_of_2(size))
624 		align = max(align, size);
625 	s->align = calculate_alignment(flags, align, size);
626 
627 #ifdef CONFIG_HARDENED_USERCOPY
628 	s->useroffset = useroffset;
629 	s->usersize = usersize;
630 #endif
631 
632 	err = __kmem_cache_create(s, flags);
633 
634 	if (err)
635 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
636 					name, size, err);
637 
638 	s->refcount = -1;	/* Exempt from merging for now */
639 }
640 
641 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
642 						      unsigned int size,
643 						      slab_flags_t flags)
644 {
645 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
646 
647 	if (!s)
648 		panic("Out of memory when creating slab %s\n", name);
649 
650 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
651 	list_add(&s->list, &slab_caches);
652 	s->refcount = 1;
653 	return s;
654 }
655 
656 struct kmem_cache *
657 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
658 { /* initialization for https://llvm.org/pr42570 */ };
659 EXPORT_SYMBOL(kmalloc_caches);
660 
661 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
662 unsigned long random_kmalloc_seed __ro_after_init;
663 EXPORT_SYMBOL(random_kmalloc_seed);
664 #endif
665 
666 /*
667  * Conversion table for small slabs sizes / 8 to the index in the
668  * kmalloc array. This is necessary for slabs < 192 since we have non power
669  * of two cache sizes there. The size of larger slabs can be determined using
670  * fls.
671  */
672 u8 kmalloc_size_index[24] __ro_after_init = {
673 	3,	/* 8 */
674 	4,	/* 16 */
675 	5,	/* 24 */
676 	5,	/* 32 */
677 	6,	/* 40 */
678 	6,	/* 48 */
679 	6,	/* 56 */
680 	6,	/* 64 */
681 	1,	/* 72 */
682 	1,	/* 80 */
683 	1,	/* 88 */
684 	1,	/* 96 */
685 	7,	/* 104 */
686 	7,	/* 112 */
687 	7,	/* 120 */
688 	7,	/* 128 */
689 	2,	/* 136 */
690 	2,	/* 144 */
691 	2,	/* 152 */
692 	2,	/* 160 */
693 	2,	/* 168 */
694 	2,	/* 176 */
695 	2,	/* 184 */
696 	2	/* 192 */
697 };
698 
699 size_t kmalloc_size_roundup(size_t size)
700 {
701 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
702 		/*
703 		 * The flags don't matter since size_index is common to all.
704 		 * Neither does the caller for just getting ->object_size.
705 		 */
706 		return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
707 	}
708 
709 	/* Above the smaller buckets, size is a multiple of page size. */
710 	if (size && size <= KMALLOC_MAX_SIZE)
711 		return PAGE_SIZE << get_order(size);
712 
713 	/*
714 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
715 	 * and very large size - kmalloc() may fail.
716 	 */
717 	return size;
718 
719 }
720 EXPORT_SYMBOL(kmalloc_size_roundup);
721 
722 #ifdef CONFIG_ZONE_DMA
723 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
724 #else
725 #define KMALLOC_DMA_NAME(sz)
726 #endif
727 
728 #ifdef CONFIG_MEMCG_KMEM
729 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
730 #else
731 #define KMALLOC_CGROUP_NAME(sz)
732 #endif
733 
734 #ifndef CONFIG_SLUB_TINY
735 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
736 #else
737 #define KMALLOC_RCL_NAME(sz)
738 #endif
739 
740 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
741 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
742 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
743 #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
744 #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
745 #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
746 #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
747 #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
748 #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
749 #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
750 #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
751 #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
752 #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
753 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
754 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
755 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
756 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
757 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
758 #else // CONFIG_RANDOM_KMALLOC_CACHES
759 #define KMALLOC_RANDOM_NAME(N, sz)
760 #endif
761 
762 #define INIT_KMALLOC_INFO(__size, __short_size)			\
763 {								\
764 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
765 	KMALLOC_RCL_NAME(__short_size)				\
766 	KMALLOC_CGROUP_NAME(__short_size)			\
767 	KMALLOC_DMA_NAME(__short_size)				\
768 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
769 	.size = __size,						\
770 }
771 
772 /*
773  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
774  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
775  * kmalloc-2M.
776  */
777 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
778 	INIT_KMALLOC_INFO(0, 0),
779 	INIT_KMALLOC_INFO(96, 96),
780 	INIT_KMALLOC_INFO(192, 192),
781 	INIT_KMALLOC_INFO(8, 8),
782 	INIT_KMALLOC_INFO(16, 16),
783 	INIT_KMALLOC_INFO(32, 32),
784 	INIT_KMALLOC_INFO(64, 64),
785 	INIT_KMALLOC_INFO(128, 128),
786 	INIT_KMALLOC_INFO(256, 256),
787 	INIT_KMALLOC_INFO(512, 512),
788 	INIT_KMALLOC_INFO(1024, 1k),
789 	INIT_KMALLOC_INFO(2048, 2k),
790 	INIT_KMALLOC_INFO(4096, 4k),
791 	INIT_KMALLOC_INFO(8192, 8k),
792 	INIT_KMALLOC_INFO(16384, 16k),
793 	INIT_KMALLOC_INFO(32768, 32k),
794 	INIT_KMALLOC_INFO(65536, 64k),
795 	INIT_KMALLOC_INFO(131072, 128k),
796 	INIT_KMALLOC_INFO(262144, 256k),
797 	INIT_KMALLOC_INFO(524288, 512k),
798 	INIT_KMALLOC_INFO(1048576, 1M),
799 	INIT_KMALLOC_INFO(2097152, 2M)
800 };
801 
802 /*
803  * Patch up the size_index table if we have strange large alignment
804  * requirements for the kmalloc array. This is only the case for
805  * MIPS it seems. The standard arches will not generate any code here.
806  *
807  * Largest permitted alignment is 256 bytes due to the way we
808  * handle the index determination for the smaller caches.
809  *
810  * Make sure that nothing crazy happens if someone starts tinkering
811  * around with ARCH_KMALLOC_MINALIGN
812  */
813 void __init setup_kmalloc_cache_index_table(void)
814 {
815 	unsigned int i;
816 
817 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
818 		!is_power_of_2(KMALLOC_MIN_SIZE));
819 
820 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
821 		unsigned int elem = size_index_elem(i);
822 
823 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
824 			break;
825 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
826 	}
827 
828 	if (KMALLOC_MIN_SIZE >= 64) {
829 		/*
830 		 * The 96 byte sized cache is not used if the alignment
831 		 * is 64 byte.
832 		 */
833 		for (i = 64 + 8; i <= 96; i += 8)
834 			kmalloc_size_index[size_index_elem(i)] = 7;
835 
836 	}
837 
838 	if (KMALLOC_MIN_SIZE >= 128) {
839 		/*
840 		 * The 192 byte sized cache is not used if the alignment
841 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
842 		 * instead.
843 		 */
844 		for (i = 128 + 8; i <= 192; i += 8)
845 			kmalloc_size_index[size_index_elem(i)] = 8;
846 	}
847 }
848 
849 static unsigned int __kmalloc_minalign(void)
850 {
851 	unsigned int minalign = dma_get_cache_alignment();
852 
853 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
854 	    is_swiotlb_allocated())
855 		minalign = ARCH_KMALLOC_MINALIGN;
856 
857 	return max(minalign, arch_slab_minalign());
858 }
859 
860 static void __init
861 new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
862 {
863 	slab_flags_t flags = 0;
864 	unsigned int minalign = __kmalloc_minalign();
865 	unsigned int aligned_size = kmalloc_info[idx].size;
866 	int aligned_idx = idx;
867 
868 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
869 		flags |= SLAB_RECLAIM_ACCOUNT;
870 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
871 		if (mem_cgroup_kmem_disabled()) {
872 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
873 			return;
874 		}
875 		flags |= SLAB_ACCOUNT;
876 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
877 		flags |= SLAB_CACHE_DMA;
878 	}
879 
880 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
881 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
882 		flags |= SLAB_NO_MERGE;
883 #endif
884 
885 	/*
886 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
887 	 * KMALLOC_NORMAL caches.
888 	 */
889 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
890 		flags |= SLAB_NO_MERGE;
891 
892 	if (minalign > ARCH_KMALLOC_MINALIGN) {
893 		aligned_size = ALIGN(aligned_size, minalign);
894 		aligned_idx = __kmalloc_index(aligned_size, false);
895 	}
896 
897 	if (!kmalloc_caches[type][aligned_idx])
898 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
899 					kmalloc_info[aligned_idx].name[type],
900 					aligned_size, flags);
901 	if (idx != aligned_idx)
902 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
903 }
904 
905 /*
906  * Create the kmalloc array. Some of the regular kmalloc arrays
907  * may already have been created because they were needed to
908  * enable allocations for slab creation.
909  */
910 void __init create_kmalloc_caches(void)
911 {
912 	int i;
913 	enum kmalloc_cache_type type;
914 
915 	/*
916 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
917 	 */
918 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
919 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
920 			if (!kmalloc_caches[type][i])
921 				new_kmalloc_cache(i, type);
922 
923 			/*
924 			 * Caches that are not of the two-to-the-power-of size.
925 			 * These have to be created immediately after the
926 			 * earlier power of two caches
927 			 */
928 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
929 					!kmalloc_caches[type][1])
930 				new_kmalloc_cache(1, type);
931 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
932 					!kmalloc_caches[type][2])
933 				new_kmalloc_cache(2, type);
934 		}
935 	}
936 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
937 	random_kmalloc_seed = get_random_u64();
938 #endif
939 
940 	/* Kmalloc array is now usable */
941 	slab_state = UP;
942 }
943 
944 /**
945  * __ksize -- Report full size of underlying allocation
946  * @object: pointer to the object
947  *
948  * This should only be used internally to query the true size of allocations.
949  * It is not meant to be a way to discover the usable size of an allocation
950  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
951  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
952  * and/or FORTIFY_SOURCE.
953  *
954  * Return: size of the actual memory used by @object in bytes
955  */
956 size_t __ksize(const void *object)
957 {
958 	struct folio *folio;
959 
960 	if (unlikely(object == ZERO_SIZE_PTR))
961 		return 0;
962 
963 	folio = virt_to_folio(object);
964 
965 	if (unlikely(!folio_test_slab(folio))) {
966 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
967 			return 0;
968 		if (WARN_ON(object != folio_address(folio)))
969 			return 0;
970 		return folio_size(folio);
971 	}
972 
973 #ifdef CONFIG_SLUB_DEBUG
974 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
975 #endif
976 
977 	return slab_ksize(folio_slab(folio)->slab_cache);
978 }
979 
980 gfp_t kmalloc_fix_flags(gfp_t flags)
981 {
982 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
983 
984 	flags &= ~GFP_SLAB_BUG_MASK;
985 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
986 			invalid_mask, &invalid_mask, flags, &flags);
987 	dump_stack();
988 
989 	return flags;
990 }
991 
992 #ifdef CONFIG_SLAB_FREELIST_RANDOM
993 /* Randomize a generic freelist */
994 static void freelist_randomize(unsigned int *list,
995 			       unsigned int count)
996 {
997 	unsigned int rand;
998 	unsigned int i;
999 
1000 	for (i = 0; i < count; i++)
1001 		list[i] = i;
1002 
1003 	/* Fisher-Yates shuffle */
1004 	for (i = count - 1; i > 0; i--) {
1005 		rand = get_random_u32_below(i + 1);
1006 		swap(list[i], list[rand]);
1007 	}
1008 }
1009 
1010 /* Create a random sequence per cache */
1011 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1012 				    gfp_t gfp)
1013 {
1014 
1015 	if (count < 2 || cachep->random_seq)
1016 		return 0;
1017 
1018 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1019 	if (!cachep->random_seq)
1020 		return -ENOMEM;
1021 
1022 	freelist_randomize(cachep->random_seq, count);
1023 	return 0;
1024 }
1025 
1026 /* Destroy the per-cache random freelist sequence */
1027 void cache_random_seq_destroy(struct kmem_cache *cachep)
1028 {
1029 	kfree(cachep->random_seq);
1030 	cachep->random_seq = NULL;
1031 }
1032 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1033 
1034 #ifdef CONFIG_SLUB_DEBUG
1035 #define SLABINFO_RIGHTS (0400)
1036 
1037 static void print_slabinfo_header(struct seq_file *m)
1038 {
1039 	/*
1040 	 * Output format version, so at least we can change it
1041 	 * without _too_ many complaints.
1042 	 */
1043 	seq_puts(m, "slabinfo - version: 2.1\n");
1044 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1045 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1046 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1047 	seq_putc(m, '\n');
1048 }
1049 
1050 static void *slab_start(struct seq_file *m, loff_t *pos)
1051 {
1052 	mutex_lock(&slab_mutex);
1053 	return seq_list_start(&slab_caches, *pos);
1054 }
1055 
1056 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1057 {
1058 	return seq_list_next(p, &slab_caches, pos);
1059 }
1060 
1061 static void slab_stop(struct seq_file *m, void *p)
1062 {
1063 	mutex_unlock(&slab_mutex);
1064 }
1065 
1066 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1067 {
1068 	struct slabinfo sinfo;
1069 
1070 	memset(&sinfo, 0, sizeof(sinfo));
1071 	get_slabinfo(s, &sinfo);
1072 
1073 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1074 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1075 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1076 
1077 	seq_printf(m, " : tunables %4u %4u %4u",
1078 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1079 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1080 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1081 	slabinfo_show_stats(m, s);
1082 	seq_putc(m, '\n');
1083 }
1084 
1085 static int slab_show(struct seq_file *m, void *p)
1086 {
1087 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1088 
1089 	if (p == slab_caches.next)
1090 		print_slabinfo_header(m);
1091 	cache_show(s, m);
1092 	return 0;
1093 }
1094 
1095 void dump_unreclaimable_slab(void)
1096 {
1097 	struct kmem_cache *s;
1098 	struct slabinfo sinfo;
1099 
1100 	/*
1101 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1102 	 * sleep in oom path. But, without mutex hold, it may introduce a
1103 	 * risk of crash.
1104 	 * Use mutex_trylock to protect the list traverse, dump nothing
1105 	 * without acquiring the mutex.
1106 	 */
1107 	if (!mutex_trylock(&slab_mutex)) {
1108 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1109 		return;
1110 	}
1111 
1112 	pr_info("Unreclaimable slab info:\n");
1113 	pr_info("Name                      Used          Total\n");
1114 
1115 	list_for_each_entry(s, &slab_caches, list) {
1116 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1117 			continue;
1118 
1119 		get_slabinfo(s, &sinfo);
1120 
1121 		if (sinfo.num_objs > 0)
1122 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1123 				(sinfo.active_objs * s->size) / 1024,
1124 				(sinfo.num_objs * s->size) / 1024);
1125 	}
1126 	mutex_unlock(&slab_mutex);
1127 }
1128 
1129 /*
1130  * slabinfo_op - iterator that generates /proc/slabinfo
1131  *
1132  * Output layout:
1133  * cache-name
1134  * num-active-objs
1135  * total-objs
1136  * object size
1137  * num-active-slabs
1138  * total-slabs
1139  * num-pages-per-slab
1140  * + further values on SMP and with statistics enabled
1141  */
1142 static const struct seq_operations slabinfo_op = {
1143 	.start = slab_start,
1144 	.next = slab_next,
1145 	.stop = slab_stop,
1146 	.show = slab_show,
1147 };
1148 
1149 static int slabinfo_open(struct inode *inode, struct file *file)
1150 {
1151 	return seq_open(file, &slabinfo_op);
1152 }
1153 
1154 static const struct proc_ops slabinfo_proc_ops = {
1155 	.proc_flags	= PROC_ENTRY_PERMANENT,
1156 	.proc_open	= slabinfo_open,
1157 	.proc_read	= seq_read,
1158 	.proc_write	= slabinfo_write,
1159 	.proc_lseek	= seq_lseek,
1160 	.proc_release	= seq_release,
1161 };
1162 
1163 static int __init slab_proc_init(void)
1164 {
1165 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1166 	return 0;
1167 }
1168 module_init(slab_proc_init);
1169 
1170 #endif /* CONFIG_SLUB_DEBUG */
1171 
1172 static __always_inline __realloc_size(2) void *
1173 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1174 {
1175 	void *ret;
1176 	size_t ks;
1177 
1178 	/* Check for double-free before calling ksize. */
1179 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1180 		if (!kasan_check_byte(p))
1181 			return NULL;
1182 		ks = ksize(p);
1183 	} else
1184 		ks = 0;
1185 
1186 	/* If the object still fits, repoison it precisely. */
1187 	if (ks >= new_size) {
1188 		p = kasan_krealloc((void *)p, new_size, flags);
1189 		return (void *)p;
1190 	}
1191 
1192 	ret = kmalloc_track_caller(new_size, flags);
1193 	if (ret && p) {
1194 		/* Disable KASAN checks as the object's redzone is accessed. */
1195 		kasan_disable_current();
1196 		memcpy(ret, kasan_reset_tag(p), ks);
1197 		kasan_enable_current();
1198 	}
1199 
1200 	return ret;
1201 }
1202 
1203 /**
1204  * krealloc - reallocate memory. The contents will remain unchanged.
1205  * @p: object to reallocate memory for.
1206  * @new_size: how many bytes of memory are required.
1207  * @flags: the type of memory to allocate.
1208  *
1209  * The contents of the object pointed to are preserved up to the
1210  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1211  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1212  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1213  *
1214  * Return: pointer to the allocated memory or %NULL in case of error
1215  */
1216 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1217 {
1218 	void *ret;
1219 
1220 	if (unlikely(!new_size)) {
1221 		kfree(p);
1222 		return ZERO_SIZE_PTR;
1223 	}
1224 
1225 	ret = __do_krealloc(p, new_size, flags);
1226 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1227 		kfree(p);
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(krealloc);
1232 
1233 /**
1234  * kfree_sensitive - Clear sensitive information in memory before freeing
1235  * @p: object to free memory of
1236  *
1237  * The memory of the object @p points to is zeroed before freed.
1238  * If @p is %NULL, kfree_sensitive() does nothing.
1239  *
1240  * Note: this function zeroes the whole allocated buffer which can be a good
1241  * deal bigger than the requested buffer size passed to kmalloc(). So be
1242  * careful when using this function in performance sensitive code.
1243  */
1244 void kfree_sensitive(const void *p)
1245 {
1246 	size_t ks;
1247 	void *mem = (void *)p;
1248 
1249 	ks = ksize(mem);
1250 	if (ks) {
1251 		kasan_unpoison_range(mem, ks);
1252 		memzero_explicit(mem, ks);
1253 	}
1254 	kfree(mem);
1255 }
1256 EXPORT_SYMBOL(kfree_sensitive);
1257 
1258 size_t ksize(const void *objp)
1259 {
1260 	/*
1261 	 * We need to first check that the pointer to the object is valid.
1262 	 * The KASAN report printed from ksize() is more useful, then when
1263 	 * it's printed later when the behaviour could be undefined due to
1264 	 * a potential use-after-free or double-free.
1265 	 *
1266 	 * We use kasan_check_byte(), which is supported for the hardware
1267 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1268 	 *
1269 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1270 	 * ksize() writing to and potentially corrupting the memory region.
1271 	 *
1272 	 * We want to perform the check before __ksize(), to avoid potentially
1273 	 * crashing in __ksize() due to accessing invalid metadata.
1274 	 */
1275 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1276 		return 0;
1277 
1278 	return kfence_ksize(objp) ?: __ksize(objp);
1279 }
1280 EXPORT_SYMBOL(ksize);
1281 
1282 /* Tracepoints definitions. */
1283 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1284 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1285 EXPORT_TRACEPOINT_SYMBOL(kfree);
1286 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1287 
1288