1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Slab allocator functions that are independent of the allocator strategy 4 * 5 * (C) 2012 Christoph Lameter <cl@linux.com> 6 */ 7 #include <linux/slab.h> 8 9 #include <linux/mm.h> 10 #include <linux/poison.h> 11 #include <linux/interrupt.h> 12 #include <linux/memory.h> 13 #include <linux/cache.h> 14 #include <linux/compiler.h> 15 #include <linux/module.h> 16 #include <linux/cpu.h> 17 #include <linux/uaccess.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/debugfs.h> 21 #include <asm/cacheflush.h> 22 #include <asm/tlbflush.h> 23 #include <asm/page.h> 24 #include <linux/memcontrol.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/kmem.h> 28 29 #include "slab.h" 30 31 enum slab_state slab_state; 32 LIST_HEAD(slab_caches); 33 DEFINE_MUTEX(slab_mutex); 34 struct kmem_cache *kmem_cache; 35 36 #ifdef CONFIG_HARDENED_USERCOPY 37 bool usercopy_fallback __ro_after_init = 38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); 39 module_param(usercopy_fallback, bool, 0400); 40 MODULE_PARM_DESC(usercopy_fallback, 41 "WARN instead of reject usercopy whitelist violations"); 42 #endif 43 44 static LIST_HEAD(slab_caches_to_rcu_destroy); 45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work, 47 slab_caches_to_rcu_destroy_workfn); 48 49 /* 50 * Set of flags that will prevent slab merging 51 */ 52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 54 SLAB_FAILSLAB | SLAB_KASAN) 55 56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 58 59 /* 60 * Merge control. If this is set then no merging of slab caches will occur. 61 */ 62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 63 64 static int __init setup_slab_nomerge(char *str) 65 { 66 slab_nomerge = true; 67 return 1; 68 } 69 70 #ifdef CONFIG_SLUB 71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 72 #endif 73 74 __setup("slab_nomerge", setup_slab_nomerge); 75 76 /* 77 * Determine the size of a slab object 78 */ 79 unsigned int kmem_cache_size(struct kmem_cache *s) 80 { 81 return s->object_size; 82 } 83 EXPORT_SYMBOL(kmem_cache_size); 84 85 #ifdef CONFIG_DEBUG_VM 86 static int kmem_cache_sanity_check(const char *name, unsigned int size) 87 { 88 if (!name || in_interrupt() || size < sizeof(void *) || 89 size > KMALLOC_MAX_SIZE) { 90 pr_err("kmem_cache_create(%s) integrity check failed\n", name); 91 return -EINVAL; 92 } 93 94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 95 return 0; 96 } 97 #else 98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size) 99 { 100 return 0; 101 } 102 #endif 103 104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) 105 { 106 size_t i; 107 108 for (i = 0; i < nr; i++) { 109 if (s) 110 kmem_cache_free(s, p[i]); 111 else 112 kfree(p[i]); 113 } 114 } 115 116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, 117 void **p) 118 { 119 size_t i; 120 121 for (i = 0; i < nr; i++) { 122 void *x = p[i] = kmem_cache_alloc(s, flags); 123 if (!x) { 124 __kmem_cache_free_bulk(s, i, p); 125 return 0; 126 } 127 } 128 return i; 129 } 130 131 #ifdef CONFIG_MEMCG_KMEM 132 133 LIST_HEAD(slab_root_caches); 134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock); 135 136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); 137 138 void slab_init_memcg_params(struct kmem_cache *s) 139 { 140 s->memcg_params.root_cache = NULL; 141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); 142 INIT_LIST_HEAD(&s->memcg_params.children); 143 s->memcg_params.dying = false; 144 } 145 146 static int init_memcg_params(struct kmem_cache *s, 147 struct kmem_cache *root_cache) 148 { 149 struct memcg_cache_array *arr; 150 151 if (root_cache) { 152 int ret = percpu_ref_init(&s->memcg_params.refcnt, 153 kmemcg_cache_shutdown, 154 0, GFP_KERNEL); 155 if (ret) 156 return ret; 157 158 s->memcg_params.root_cache = root_cache; 159 INIT_LIST_HEAD(&s->memcg_params.children_node); 160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); 161 return 0; 162 } 163 164 slab_init_memcg_params(s); 165 166 if (!memcg_nr_cache_ids) 167 return 0; 168 169 arr = kvzalloc(sizeof(struct memcg_cache_array) + 170 memcg_nr_cache_ids * sizeof(void *), 171 GFP_KERNEL); 172 if (!arr) 173 return -ENOMEM; 174 175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); 176 return 0; 177 } 178 179 static void destroy_memcg_params(struct kmem_cache *s) 180 { 181 if (is_root_cache(s)) 182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); 183 else 184 percpu_ref_exit(&s->memcg_params.refcnt); 185 } 186 187 static void free_memcg_params(struct rcu_head *rcu) 188 { 189 struct memcg_cache_array *old; 190 191 old = container_of(rcu, struct memcg_cache_array, rcu); 192 kvfree(old); 193 } 194 195 static int update_memcg_params(struct kmem_cache *s, int new_array_size) 196 { 197 struct memcg_cache_array *old, *new; 198 199 new = kvzalloc(sizeof(struct memcg_cache_array) + 200 new_array_size * sizeof(void *), GFP_KERNEL); 201 if (!new) 202 return -ENOMEM; 203 204 old = rcu_dereference_protected(s->memcg_params.memcg_caches, 205 lockdep_is_held(&slab_mutex)); 206 if (old) 207 memcpy(new->entries, old->entries, 208 memcg_nr_cache_ids * sizeof(void *)); 209 210 rcu_assign_pointer(s->memcg_params.memcg_caches, new); 211 if (old) 212 call_rcu(&old->rcu, free_memcg_params); 213 return 0; 214 } 215 216 int memcg_update_all_caches(int num_memcgs) 217 { 218 struct kmem_cache *s; 219 int ret = 0; 220 221 mutex_lock(&slab_mutex); 222 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 223 ret = update_memcg_params(s, num_memcgs); 224 /* 225 * Instead of freeing the memory, we'll just leave the caches 226 * up to this point in an updated state. 227 */ 228 if (ret) 229 break; 230 } 231 mutex_unlock(&slab_mutex); 232 return ret; 233 } 234 235 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) 236 { 237 if (is_root_cache(s)) { 238 list_add(&s->root_caches_node, &slab_root_caches); 239 } else { 240 css_get(&memcg->css); 241 s->memcg_params.memcg = memcg; 242 list_add(&s->memcg_params.children_node, 243 &s->memcg_params.root_cache->memcg_params.children); 244 list_add(&s->memcg_params.kmem_caches_node, 245 &s->memcg_params.memcg->kmem_caches); 246 } 247 } 248 249 static void memcg_unlink_cache(struct kmem_cache *s) 250 { 251 if (is_root_cache(s)) { 252 list_del(&s->root_caches_node); 253 } else { 254 list_del(&s->memcg_params.children_node); 255 list_del(&s->memcg_params.kmem_caches_node); 256 mem_cgroup_put(s->memcg_params.memcg); 257 WRITE_ONCE(s->memcg_params.memcg, NULL); 258 } 259 } 260 #else 261 static inline int init_memcg_params(struct kmem_cache *s, 262 struct kmem_cache *root_cache) 263 { 264 return 0; 265 } 266 267 static inline void destroy_memcg_params(struct kmem_cache *s) 268 { 269 } 270 271 static inline void memcg_unlink_cache(struct kmem_cache *s) 272 { 273 } 274 #endif /* CONFIG_MEMCG_KMEM */ 275 276 /* 277 * Figure out what the alignment of the objects will be given a set of 278 * flags, a user specified alignment and the size of the objects. 279 */ 280 static unsigned int calculate_alignment(slab_flags_t flags, 281 unsigned int align, unsigned int size) 282 { 283 /* 284 * If the user wants hardware cache aligned objects then follow that 285 * suggestion if the object is sufficiently large. 286 * 287 * The hardware cache alignment cannot override the specified 288 * alignment though. If that is greater then use it. 289 */ 290 if (flags & SLAB_HWCACHE_ALIGN) { 291 unsigned int ralign; 292 293 ralign = cache_line_size(); 294 while (size <= ralign / 2) 295 ralign /= 2; 296 align = max(align, ralign); 297 } 298 299 if (align < ARCH_SLAB_MINALIGN) 300 align = ARCH_SLAB_MINALIGN; 301 302 return ALIGN(align, sizeof(void *)); 303 } 304 305 /* 306 * Find a mergeable slab cache 307 */ 308 int slab_unmergeable(struct kmem_cache *s) 309 { 310 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 311 return 1; 312 313 if (!is_root_cache(s)) 314 return 1; 315 316 if (s->ctor) 317 return 1; 318 319 if (s->usersize) 320 return 1; 321 322 /* 323 * We may have set a slab to be unmergeable during bootstrap. 324 */ 325 if (s->refcount < 0) 326 return 1; 327 328 return 0; 329 } 330 331 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 332 slab_flags_t flags, const char *name, void (*ctor)(void *)) 333 { 334 struct kmem_cache *s; 335 336 if (slab_nomerge) 337 return NULL; 338 339 if (ctor) 340 return NULL; 341 342 size = ALIGN(size, sizeof(void *)); 343 align = calculate_alignment(flags, align, size); 344 size = ALIGN(size, align); 345 flags = kmem_cache_flags(size, flags, name, NULL); 346 347 if (flags & SLAB_NEVER_MERGE) 348 return NULL; 349 350 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { 351 if (slab_unmergeable(s)) 352 continue; 353 354 if (size > s->size) 355 continue; 356 357 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 358 continue; 359 /* 360 * Check if alignment is compatible. 361 * Courtesy of Adrian Drzewiecki 362 */ 363 if ((s->size & ~(align - 1)) != s->size) 364 continue; 365 366 if (s->size - size >= sizeof(void *)) 367 continue; 368 369 if (IS_ENABLED(CONFIG_SLAB) && align && 370 (align > s->align || s->align % align)) 371 continue; 372 373 return s; 374 } 375 return NULL; 376 } 377 378 static struct kmem_cache *create_cache(const char *name, 379 unsigned int object_size, unsigned int align, 380 slab_flags_t flags, unsigned int useroffset, 381 unsigned int usersize, void (*ctor)(void *), 382 struct mem_cgroup *memcg, struct kmem_cache *root_cache) 383 { 384 struct kmem_cache *s; 385 int err; 386 387 if (WARN_ON(useroffset + usersize > object_size)) 388 useroffset = usersize = 0; 389 390 err = -ENOMEM; 391 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 392 if (!s) 393 goto out; 394 395 s->name = name; 396 s->size = s->object_size = object_size; 397 s->align = align; 398 s->ctor = ctor; 399 s->useroffset = useroffset; 400 s->usersize = usersize; 401 402 err = init_memcg_params(s, root_cache); 403 if (err) 404 goto out_free_cache; 405 406 err = __kmem_cache_create(s, flags); 407 if (err) 408 goto out_free_cache; 409 410 s->refcount = 1; 411 list_add(&s->list, &slab_caches); 412 memcg_link_cache(s, memcg); 413 out: 414 if (err) 415 return ERR_PTR(err); 416 return s; 417 418 out_free_cache: 419 destroy_memcg_params(s); 420 kmem_cache_free(kmem_cache, s); 421 goto out; 422 } 423 424 /** 425 * kmem_cache_create_usercopy - Create a cache with a region suitable 426 * for copying to userspace 427 * @name: A string which is used in /proc/slabinfo to identify this cache. 428 * @size: The size of objects to be created in this cache. 429 * @align: The required alignment for the objects. 430 * @flags: SLAB flags 431 * @useroffset: Usercopy region offset 432 * @usersize: Usercopy region size 433 * @ctor: A constructor for the objects. 434 * 435 * Cannot be called within a interrupt, but can be interrupted. 436 * The @ctor is run when new pages are allocated by the cache. 437 * 438 * The flags are 439 * 440 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 441 * to catch references to uninitialised memory. 442 * 443 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 444 * for buffer overruns. 445 * 446 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 447 * cacheline. This can be beneficial if you're counting cycles as closely 448 * as davem. 449 * 450 * Return: a pointer to the cache on success, NULL on failure. 451 */ 452 struct kmem_cache * 453 kmem_cache_create_usercopy(const char *name, 454 unsigned int size, unsigned int align, 455 slab_flags_t flags, 456 unsigned int useroffset, unsigned int usersize, 457 void (*ctor)(void *)) 458 { 459 struct kmem_cache *s = NULL; 460 const char *cache_name; 461 int err; 462 463 get_online_cpus(); 464 get_online_mems(); 465 memcg_get_cache_ids(); 466 467 mutex_lock(&slab_mutex); 468 469 err = kmem_cache_sanity_check(name, size); 470 if (err) { 471 goto out_unlock; 472 } 473 474 /* Refuse requests with allocator specific flags */ 475 if (flags & ~SLAB_FLAGS_PERMITTED) { 476 err = -EINVAL; 477 goto out_unlock; 478 } 479 480 /* 481 * Some allocators will constraint the set of valid flags to a subset 482 * of all flags. We expect them to define CACHE_CREATE_MASK in this 483 * case, and we'll just provide them with a sanitized version of the 484 * passed flags. 485 */ 486 flags &= CACHE_CREATE_MASK; 487 488 /* Fail closed on bad usersize of useroffset values. */ 489 if (WARN_ON(!usersize && useroffset) || 490 WARN_ON(size < usersize || size - usersize < useroffset)) 491 usersize = useroffset = 0; 492 493 if (!usersize) 494 s = __kmem_cache_alias(name, size, align, flags, ctor); 495 if (s) 496 goto out_unlock; 497 498 cache_name = kstrdup_const(name, GFP_KERNEL); 499 if (!cache_name) { 500 err = -ENOMEM; 501 goto out_unlock; 502 } 503 504 s = create_cache(cache_name, size, 505 calculate_alignment(flags, align, size), 506 flags, useroffset, usersize, ctor, NULL, NULL); 507 if (IS_ERR(s)) { 508 err = PTR_ERR(s); 509 kfree_const(cache_name); 510 } 511 512 out_unlock: 513 mutex_unlock(&slab_mutex); 514 515 memcg_put_cache_ids(); 516 put_online_mems(); 517 put_online_cpus(); 518 519 if (err) { 520 if (flags & SLAB_PANIC) 521 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", 522 name, err); 523 else { 524 pr_warn("kmem_cache_create(%s) failed with error %d\n", 525 name, err); 526 dump_stack(); 527 } 528 return NULL; 529 } 530 return s; 531 } 532 EXPORT_SYMBOL(kmem_cache_create_usercopy); 533 534 /** 535 * kmem_cache_create - Create a cache. 536 * @name: A string which is used in /proc/slabinfo to identify this cache. 537 * @size: The size of objects to be created in this cache. 538 * @align: The required alignment for the objects. 539 * @flags: SLAB flags 540 * @ctor: A constructor for the objects. 541 * 542 * Cannot be called within a interrupt, but can be interrupted. 543 * The @ctor is run when new pages are allocated by the cache. 544 * 545 * The flags are 546 * 547 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 548 * to catch references to uninitialised memory. 549 * 550 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 551 * for buffer overruns. 552 * 553 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 554 * cacheline. This can be beneficial if you're counting cycles as closely 555 * as davem. 556 * 557 * Return: a pointer to the cache on success, NULL on failure. 558 */ 559 struct kmem_cache * 560 kmem_cache_create(const char *name, unsigned int size, unsigned int align, 561 slab_flags_t flags, void (*ctor)(void *)) 562 { 563 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 564 ctor); 565 } 566 EXPORT_SYMBOL(kmem_cache_create); 567 568 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 569 { 570 LIST_HEAD(to_destroy); 571 struct kmem_cache *s, *s2; 572 573 /* 574 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 575 * @slab_caches_to_rcu_destroy list. The slab pages are freed 576 * through RCU and and the associated kmem_cache are dereferenced 577 * while freeing the pages, so the kmem_caches should be freed only 578 * after the pending RCU operations are finished. As rcu_barrier() 579 * is a pretty slow operation, we batch all pending destructions 580 * asynchronously. 581 */ 582 mutex_lock(&slab_mutex); 583 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 584 mutex_unlock(&slab_mutex); 585 586 if (list_empty(&to_destroy)) 587 return; 588 589 rcu_barrier(); 590 591 list_for_each_entry_safe(s, s2, &to_destroy, list) { 592 #ifdef SLAB_SUPPORTS_SYSFS 593 sysfs_slab_release(s); 594 #else 595 slab_kmem_cache_release(s); 596 #endif 597 } 598 } 599 600 static int shutdown_cache(struct kmem_cache *s) 601 { 602 /* free asan quarantined objects */ 603 kasan_cache_shutdown(s); 604 605 if (__kmem_cache_shutdown(s) != 0) 606 return -EBUSY; 607 608 memcg_unlink_cache(s); 609 list_del(&s->list); 610 611 if (s->flags & SLAB_TYPESAFE_BY_RCU) { 612 #ifdef SLAB_SUPPORTS_SYSFS 613 sysfs_slab_unlink(s); 614 #endif 615 list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 616 schedule_work(&slab_caches_to_rcu_destroy_work); 617 } else { 618 #ifdef SLAB_SUPPORTS_SYSFS 619 sysfs_slab_unlink(s); 620 sysfs_slab_release(s); 621 #else 622 slab_kmem_cache_release(s); 623 #endif 624 } 625 626 return 0; 627 } 628 629 #ifdef CONFIG_MEMCG_KMEM 630 /* 631 * memcg_create_kmem_cache - Create a cache for a memory cgroup. 632 * @memcg: The memory cgroup the new cache is for. 633 * @root_cache: The parent of the new cache. 634 * 635 * This function attempts to create a kmem cache that will serve allocation 636 * requests going from @memcg to @root_cache. The new cache inherits properties 637 * from its parent. 638 */ 639 void memcg_create_kmem_cache(struct mem_cgroup *memcg, 640 struct kmem_cache *root_cache) 641 { 642 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ 643 struct cgroup_subsys_state *css = &memcg->css; 644 struct memcg_cache_array *arr; 645 struct kmem_cache *s = NULL; 646 char *cache_name; 647 int idx; 648 649 get_online_cpus(); 650 get_online_mems(); 651 652 mutex_lock(&slab_mutex); 653 654 /* 655 * The memory cgroup could have been offlined while the cache 656 * creation work was pending. 657 */ 658 if (memcg->kmem_state != KMEM_ONLINE) 659 goto out_unlock; 660 661 idx = memcg_cache_id(memcg); 662 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, 663 lockdep_is_held(&slab_mutex)); 664 665 /* 666 * Since per-memcg caches are created asynchronously on first 667 * allocation (see memcg_kmem_get_cache()), several threads can try to 668 * create the same cache, but only one of them may succeed. 669 */ 670 if (arr->entries[idx]) 671 goto out_unlock; 672 673 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); 674 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, 675 css->serial_nr, memcg_name_buf); 676 if (!cache_name) 677 goto out_unlock; 678 679 s = create_cache(cache_name, root_cache->object_size, 680 root_cache->align, 681 root_cache->flags & CACHE_CREATE_MASK, 682 root_cache->useroffset, root_cache->usersize, 683 root_cache->ctor, memcg, root_cache); 684 /* 685 * If we could not create a memcg cache, do not complain, because 686 * that's not critical at all as we can always proceed with the root 687 * cache. 688 */ 689 if (IS_ERR(s)) { 690 kfree(cache_name); 691 goto out_unlock; 692 } 693 694 /* 695 * Since readers won't lock (see memcg_kmem_get_cache()), we need a 696 * barrier here to ensure nobody will see the kmem_cache partially 697 * initialized. 698 */ 699 smp_wmb(); 700 arr->entries[idx] = s; 701 702 out_unlock: 703 mutex_unlock(&slab_mutex); 704 705 put_online_mems(); 706 put_online_cpus(); 707 } 708 709 static void kmemcg_workfn(struct work_struct *work) 710 { 711 struct kmem_cache *s = container_of(work, struct kmem_cache, 712 memcg_params.work); 713 714 get_online_cpus(); 715 get_online_mems(); 716 717 mutex_lock(&slab_mutex); 718 s->memcg_params.work_fn(s); 719 mutex_unlock(&slab_mutex); 720 721 put_online_mems(); 722 put_online_cpus(); 723 } 724 725 static void kmemcg_rcufn(struct rcu_head *head) 726 { 727 struct kmem_cache *s = container_of(head, struct kmem_cache, 728 memcg_params.rcu_head); 729 730 /* 731 * We need to grab blocking locks. Bounce to ->work. The 732 * work item shares the space with the RCU head and can't be 733 * initialized eariler. 734 */ 735 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 736 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 737 } 738 739 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) 740 { 741 WARN_ON(shutdown_cache(s)); 742 } 743 744 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) 745 { 746 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, 747 memcg_params.refcnt); 748 unsigned long flags; 749 750 spin_lock_irqsave(&memcg_kmem_wq_lock, flags); 751 if (s->memcg_params.root_cache->memcg_params.dying) 752 goto unlock; 753 754 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; 755 INIT_WORK(&s->memcg_params.work, kmemcg_workfn); 756 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); 757 758 unlock: 759 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); 760 } 761 762 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 763 { 764 __kmemcg_cache_deactivate_after_rcu(s); 765 percpu_ref_kill(&s->memcg_params.refcnt); 766 } 767 768 static void kmemcg_cache_deactivate(struct kmem_cache *s) 769 { 770 if (WARN_ON_ONCE(is_root_cache(s))) 771 return; 772 773 __kmemcg_cache_deactivate(s); 774 s->flags |= SLAB_DEACTIVATED; 775 776 /* 777 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying 778 * flag and make sure that no new kmem_cache deactivation tasks 779 * are queued (see flush_memcg_workqueue() ). 780 */ 781 spin_lock_irq(&memcg_kmem_wq_lock); 782 if (s->memcg_params.root_cache->memcg_params.dying) 783 goto unlock; 784 785 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; 786 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); 787 unlock: 788 spin_unlock_irq(&memcg_kmem_wq_lock); 789 } 790 791 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, 792 struct mem_cgroup *parent) 793 { 794 int idx; 795 struct memcg_cache_array *arr; 796 struct kmem_cache *s, *c; 797 unsigned int nr_reparented; 798 799 idx = memcg_cache_id(memcg); 800 801 get_online_cpus(); 802 get_online_mems(); 803 804 mutex_lock(&slab_mutex); 805 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 806 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 807 lockdep_is_held(&slab_mutex)); 808 c = arr->entries[idx]; 809 if (!c) 810 continue; 811 812 kmemcg_cache_deactivate(c); 813 arr->entries[idx] = NULL; 814 } 815 nr_reparented = 0; 816 list_for_each_entry(s, &memcg->kmem_caches, 817 memcg_params.kmem_caches_node) { 818 WRITE_ONCE(s->memcg_params.memcg, parent); 819 css_put(&memcg->css); 820 nr_reparented++; 821 } 822 if (nr_reparented) { 823 list_splice_init(&memcg->kmem_caches, 824 &parent->kmem_caches); 825 css_get_many(&parent->css, nr_reparented); 826 } 827 mutex_unlock(&slab_mutex); 828 829 put_online_mems(); 830 put_online_cpus(); 831 } 832 833 static int shutdown_memcg_caches(struct kmem_cache *s) 834 { 835 struct memcg_cache_array *arr; 836 struct kmem_cache *c, *c2; 837 LIST_HEAD(busy); 838 int i; 839 840 BUG_ON(!is_root_cache(s)); 841 842 /* 843 * First, shutdown active caches, i.e. caches that belong to online 844 * memory cgroups. 845 */ 846 arr = rcu_dereference_protected(s->memcg_params.memcg_caches, 847 lockdep_is_held(&slab_mutex)); 848 for_each_memcg_cache_index(i) { 849 c = arr->entries[i]; 850 if (!c) 851 continue; 852 if (shutdown_cache(c)) 853 /* 854 * The cache still has objects. Move it to a temporary 855 * list so as not to try to destroy it for a second 856 * time while iterating over inactive caches below. 857 */ 858 list_move(&c->memcg_params.children_node, &busy); 859 else 860 /* 861 * The cache is empty and will be destroyed soon. Clear 862 * the pointer to it in the memcg_caches array so that 863 * it will never be accessed even if the root cache 864 * stays alive. 865 */ 866 arr->entries[i] = NULL; 867 } 868 869 /* 870 * Second, shutdown all caches left from memory cgroups that are now 871 * offline. 872 */ 873 list_for_each_entry_safe(c, c2, &s->memcg_params.children, 874 memcg_params.children_node) 875 shutdown_cache(c); 876 877 list_splice(&busy, &s->memcg_params.children); 878 879 /* 880 * A cache being destroyed must be empty. In particular, this means 881 * that all per memcg caches attached to it must be empty too. 882 */ 883 if (!list_empty(&s->memcg_params.children)) 884 return -EBUSY; 885 return 0; 886 } 887 888 static void flush_memcg_workqueue(struct kmem_cache *s) 889 { 890 spin_lock_irq(&memcg_kmem_wq_lock); 891 s->memcg_params.dying = true; 892 spin_unlock_irq(&memcg_kmem_wq_lock); 893 894 /* 895 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make 896 * sure all registered rcu callbacks have been invoked. 897 */ 898 rcu_barrier(); 899 900 /* 901 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB 902 * deactivates the memcg kmem_caches through workqueue. Make sure all 903 * previous workitems on workqueue are processed. 904 */ 905 flush_workqueue(memcg_kmem_cache_wq); 906 } 907 #else 908 static inline int shutdown_memcg_caches(struct kmem_cache *s) 909 { 910 return 0; 911 } 912 913 static inline void flush_memcg_workqueue(struct kmem_cache *s) 914 { 915 } 916 #endif /* CONFIG_MEMCG_KMEM */ 917 918 void slab_kmem_cache_release(struct kmem_cache *s) 919 { 920 __kmem_cache_release(s); 921 destroy_memcg_params(s); 922 kfree_const(s->name); 923 kmem_cache_free(kmem_cache, s); 924 } 925 926 void kmem_cache_destroy(struct kmem_cache *s) 927 { 928 int err; 929 930 if (unlikely(!s)) 931 return; 932 933 flush_memcg_workqueue(s); 934 935 get_online_cpus(); 936 get_online_mems(); 937 938 mutex_lock(&slab_mutex); 939 940 s->refcount--; 941 if (s->refcount) 942 goto out_unlock; 943 944 err = shutdown_memcg_caches(s); 945 if (!err) 946 err = shutdown_cache(s); 947 948 if (err) { 949 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", 950 s->name); 951 dump_stack(); 952 } 953 out_unlock: 954 mutex_unlock(&slab_mutex); 955 956 put_online_mems(); 957 put_online_cpus(); 958 } 959 EXPORT_SYMBOL(kmem_cache_destroy); 960 961 /** 962 * kmem_cache_shrink - Shrink a cache. 963 * @cachep: The cache to shrink. 964 * 965 * Releases as many slabs as possible for a cache. 966 * To help debugging, a zero exit status indicates all slabs were released. 967 * 968 * Return: %0 if all slabs were released, non-zero otherwise 969 */ 970 int kmem_cache_shrink(struct kmem_cache *cachep) 971 { 972 int ret; 973 974 get_online_cpus(); 975 get_online_mems(); 976 kasan_cache_shrink(cachep); 977 ret = __kmem_cache_shrink(cachep); 978 put_online_mems(); 979 put_online_cpus(); 980 return ret; 981 } 982 EXPORT_SYMBOL(kmem_cache_shrink); 983 984 /** 985 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache 986 * @s: The cache pointer 987 */ 988 void kmem_cache_shrink_all(struct kmem_cache *s) 989 { 990 struct kmem_cache *c; 991 992 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) { 993 kmem_cache_shrink(s); 994 return; 995 } 996 997 get_online_cpus(); 998 get_online_mems(); 999 kasan_cache_shrink(s); 1000 __kmem_cache_shrink(s); 1001 1002 /* 1003 * We have to take the slab_mutex to protect from the memcg list 1004 * modification. 1005 */ 1006 mutex_lock(&slab_mutex); 1007 for_each_memcg_cache(c, s) { 1008 /* 1009 * Don't need to shrink deactivated memcg caches. 1010 */ 1011 if (s->flags & SLAB_DEACTIVATED) 1012 continue; 1013 kasan_cache_shrink(c); 1014 __kmem_cache_shrink(c); 1015 } 1016 mutex_unlock(&slab_mutex); 1017 put_online_mems(); 1018 put_online_cpus(); 1019 } 1020 1021 bool slab_is_available(void) 1022 { 1023 return slab_state >= UP; 1024 } 1025 1026 #ifndef CONFIG_SLOB 1027 /* Create a cache during boot when no slab services are available yet */ 1028 void __init create_boot_cache(struct kmem_cache *s, const char *name, 1029 unsigned int size, slab_flags_t flags, 1030 unsigned int useroffset, unsigned int usersize) 1031 { 1032 int err; 1033 unsigned int align = ARCH_KMALLOC_MINALIGN; 1034 1035 s->name = name; 1036 s->size = s->object_size = size; 1037 1038 /* 1039 * For power of two sizes, guarantee natural alignment for kmalloc 1040 * caches, regardless of SL*B debugging options. 1041 */ 1042 if (is_power_of_2(size)) 1043 align = max(align, size); 1044 s->align = calculate_alignment(flags, align, size); 1045 1046 s->useroffset = useroffset; 1047 s->usersize = usersize; 1048 1049 slab_init_memcg_params(s); 1050 1051 err = __kmem_cache_create(s, flags); 1052 1053 if (err) 1054 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 1055 name, size, err); 1056 1057 s->refcount = -1; /* Exempt from merging for now */ 1058 } 1059 1060 struct kmem_cache *__init create_kmalloc_cache(const char *name, 1061 unsigned int size, slab_flags_t flags, 1062 unsigned int useroffset, unsigned int usersize) 1063 { 1064 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 1065 1066 if (!s) 1067 panic("Out of memory when creating slab %s\n", name); 1068 1069 create_boot_cache(s, name, size, flags, useroffset, usersize); 1070 list_add(&s->list, &slab_caches); 1071 memcg_link_cache(s, NULL); 1072 s->refcount = 1; 1073 return s; 1074 } 1075 1076 struct kmem_cache * 1077 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 1078 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 1079 EXPORT_SYMBOL(kmalloc_caches); 1080 1081 /* 1082 * Conversion table for small slabs sizes / 8 to the index in the 1083 * kmalloc array. This is necessary for slabs < 192 since we have non power 1084 * of two cache sizes there. The size of larger slabs can be determined using 1085 * fls. 1086 */ 1087 static u8 size_index[24] __ro_after_init = { 1088 3, /* 8 */ 1089 4, /* 16 */ 1090 5, /* 24 */ 1091 5, /* 32 */ 1092 6, /* 40 */ 1093 6, /* 48 */ 1094 6, /* 56 */ 1095 6, /* 64 */ 1096 1, /* 72 */ 1097 1, /* 80 */ 1098 1, /* 88 */ 1099 1, /* 96 */ 1100 7, /* 104 */ 1101 7, /* 112 */ 1102 7, /* 120 */ 1103 7, /* 128 */ 1104 2, /* 136 */ 1105 2, /* 144 */ 1106 2, /* 152 */ 1107 2, /* 160 */ 1108 2, /* 168 */ 1109 2, /* 176 */ 1110 2, /* 184 */ 1111 2 /* 192 */ 1112 }; 1113 1114 static inline unsigned int size_index_elem(unsigned int bytes) 1115 { 1116 return (bytes - 1) / 8; 1117 } 1118 1119 /* 1120 * Find the kmem_cache structure that serves a given size of 1121 * allocation 1122 */ 1123 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) 1124 { 1125 unsigned int index; 1126 1127 if (size <= 192) { 1128 if (!size) 1129 return ZERO_SIZE_PTR; 1130 1131 index = size_index[size_index_elem(size)]; 1132 } else { 1133 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 1134 return NULL; 1135 index = fls(size - 1); 1136 } 1137 1138 return kmalloc_caches[kmalloc_type(flags)][index]; 1139 } 1140 1141 /* 1142 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 1143 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is 1144 * kmalloc-67108864. 1145 */ 1146 const struct kmalloc_info_struct kmalloc_info[] __initconst = { 1147 {NULL, 0}, {"kmalloc-96", 96}, 1148 {"kmalloc-192", 192}, {"kmalloc-8", 8}, 1149 {"kmalloc-16", 16}, {"kmalloc-32", 32}, 1150 {"kmalloc-64", 64}, {"kmalloc-128", 128}, 1151 {"kmalloc-256", 256}, {"kmalloc-512", 512}, 1152 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048}, 1153 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192}, 1154 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768}, 1155 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072}, 1156 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288}, 1157 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152}, 1158 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608}, 1159 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432}, 1160 {"kmalloc-64M", 67108864} 1161 }; 1162 1163 /* 1164 * Patch up the size_index table if we have strange large alignment 1165 * requirements for the kmalloc array. This is only the case for 1166 * MIPS it seems. The standard arches will not generate any code here. 1167 * 1168 * Largest permitted alignment is 256 bytes due to the way we 1169 * handle the index determination for the smaller caches. 1170 * 1171 * Make sure that nothing crazy happens if someone starts tinkering 1172 * around with ARCH_KMALLOC_MINALIGN 1173 */ 1174 void __init setup_kmalloc_cache_index_table(void) 1175 { 1176 unsigned int i; 1177 1178 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 1179 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 1180 1181 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 1182 unsigned int elem = size_index_elem(i); 1183 1184 if (elem >= ARRAY_SIZE(size_index)) 1185 break; 1186 size_index[elem] = KMALLOC_SHIFT_LOW; 1187 } 1188 1189 if (KMALLOC_MIN_SIZE >= 64) { 1190 /* 1191 * The 96 byte size cache is not used if the alignment 1192 * is 64 byte. 1193 */ 1194 for (i = 64 + 8; i <= 96; i += 8) 1195 size_index[size_index_elem(i)] = 7; 1196 1197 } 1198 1199 if (KMALLOC_MIN_SIZE >= 128) { 1200 /* 1201 * The 192 byte sized cache is not used if the alignment 1202 * is 128 byte. Redirect kmalloc to use the 256 byte cache 1203 * instead. 1204 */ 1205 for (i = 128 + 8; i <= 192; i += 8) 1206 size_index[size_index_elem(i)] = 8; 1207 } 1208 } 1209 1210 static const char * 1211 kmalloc_cache_name(const char *prefix, unsigned int size) 1212 { 1213 1214 static const char units[3] = "\0kM"; 1215 int idx = 0; 1216 1217 while (size >= 1024 && (size % 1024 == 0)) { 1218 size /= 1024; 1219 idx++; 1220 } 1221 1222 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); 1223 } 1224 1225 static void __init 1226 new_kmalloc_cache(int idx, int type, slab_flags_t flags) 1227 { 1228 const char *name; 1229 1230 if (type == KMALLOC_RECLAIM) { 1231 flags |= SLAB_RECLAIM_ACCOUNT; 1232 name = kmalloc_cache_name("kmalloc-rcl", 1233 kmalloc_info[idx].size); 1234 BUG_ON(!name); 1235 } else { 1236 name = kmalloc_info[idx].name; 1237 } 1238 1239 kmalloc_caches[type][idx] = create_kmalloc_cache(name, 1240 kmalloc_info[idx].size, flags, 0, 1241 kmalloc_info[idx].size); 1242 } 1243 1244 /* 1245 * Create the kmalloc array. Some of the regular kmalloc arrays 1246 * may already have been created because they were needed to 1247 * enable allocations for slab creation. 1248 */ 1249 void __init create_kmalloc_caches(slab_flags_t flags) 1250 { 1251 int i, type; 1252 1253 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { 1254 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 1255 if (!kmalloc_caches[type][i]) 1256 new_kmalloc_cache(i, type, flags); 1257 1258 /* 1259 * Caches that are not of the two-to-the-power-of size. 1260 * These have to be created immediately after the 1261 * earlier power of two caches 1262 */ 1263 if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 1264 !kmalloc_caches[type][1]) 1265 new_kmalloc_cache(1, type, flags); 1266 if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 1267 !kmalloc_caches[type][2]) 1268 new_kmalloc_cache(2, type, flags); 1269 } 1270 } 1271 1272 /* Kmalloc array is now usable */ 1273 slab_state = UP; 1274 1275 #ifdef CONFIG_ZONE_DMA 1276 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { 1277 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; 1278 1279 if (s) { 1280 unsigned int size = kmalloc_size(i); 1281 const char *n = kmalloc_cache_name("dma-kmalloc", size); 1282 1283 BUG_ON(!n); 1284 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( 1285 n, size, SLAB_CACHE_DMA | flags, 0, 0); 1286 } 1287 } 1288 #endif 1289 } 1290 #endif /* !CONFIG_SLOB */ 1291 1292 /* 1293 * To avoid unnecessary overhead, we pass through large allocation requests 1294 * directly to the page allocator. We use __GFP_COMP, because we will need to 1295 * know the allocation order to free the pages properly in kfree. 1296 */ 1297 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) 1298 { 1299 void *ret = NULL; 1300 struct page *page; 1301 1302 flags |= __GFP_COMP; 1303 page = alloc_pages(flags, order); 1304 if (likely(page)) { 1305 ret = page_address(page); 1306 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 1307 1 << order); 1308 } 1309 ret = kasan_kmalloc_large(ret, size, flags); 1310 /* As ret might get tagged, call kmemleak hook after KASAN. */ 1311 kmemleak_alloc(ret, size, 1, flags); 1312 return ret; 1313 } 1314 EXPORT_SYMBOL(kmalloc_order); 1315 1316 #ifdef CONFIG_TRACING 1317 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 1318 { 1319 void *ret = kmalloc_order(size, flags, order); 1320 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(kmalloc_order_trace); 1324 #endif 1325 1326 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1327 /* Randomize a generic freelist */ 1328 static void freelist_randomize(struct rnd_state *state, unsigned int *list, 1329 unsigned int count) 1330 { 1331 unsigned int rand; 1332 unsigned int i; 1333 1334 for (i = 0; i < count; i++) 1335 list[i] = i; 1336 1337 /* Fisher-Yates shuffle */ 1338 for (i = count - 1; i > 0; i--) { 1339 rand = prandom_u32_state(state); 1340 rand %= (i + 1); 1341 swap(list[i], list[rand]); 1342 } 1343 } 1344 1345 /* Create a random sequence per cache */ 1346 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 1347 gfp_t gfp) 1348 { 1349 struct rnd_state state; 1350 1351 if (count < 2 || cachep->random_seq) 1352 return 0; 1353 1354 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 1355 if (!cachep->random_seq) 1356 return -ENOMEM; 1357 1358 /* Get best entropy at this stage of boot */ 1359 prandom_seed_state(&state, get_random_long()); 1360 1361 freelist_randomize(&state, cachep->random_seq, count); 1362 return 0; 1363 } 1364 1365 /* Destroy the per-cache random freelist sequence */ 1366 void cache_random_seq_destroy(struct kmem_cache *cachep) 1367 { 1368 kfree(cachep->random_seq); 1369 cachep->random_seq = NULL; 1370 } 1371 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1372 1373 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 1374 #ifdef CONFIG_SLAB 1375 #define SLABINFO_RIGHTS (0600) 1376 #else 1377 #define SLABINFO_RIGHTS (0400) 1378 #endif 1379 1380 static void print_slabinfo_header(struct seq_file *m) 1381 { 1382 /* 1383 * Output format version, so at least we can change it 1384 * without _too_ many complaints. 1385 */ 1386 #ifdef CONFIG_DEBUG_SLAB 1387 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 1388 #else 1389 seq_puts(m, "slabinfo - version: 2.1\n"); 1390 #endif 1391 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 1392 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 1393 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 1394 #ifdef CONFIG_DEBUG_SLAB 1395 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 1396 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 1397 #endif 1398 seq_putc(m, '\n'); 1399 } 1400 1401 void *slab_start(struct seq_file *m, loff_t *pos) 1402 { 1403 mutex_lock(&slab_mutex); 1404 return seq_list_start(&slab_root_caches, *pos); 1405 } 1406 1407 void *slab_next(struct seq_file *m, void *p, loff_t *pos) 1408 { 1409 return seq_list_next(p, &slab_root_caches, pos); 1410 } 1411 1412 void slab_stop(struct seq_file *m, void *p) 1413 { 1414 mutex_unlock(&slab_mutex); 1415 } 1416 1417 static void 1418 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) 1419 { 1420 struct kmem_cache *c; 1421 struct slabinfo sinfo; 1422 1423 if (!is_root_cache(s)) 1424 return; 1425 1426 for_each_memcg_cache(c, s) { 1427 memset(&sinfo, 0, sizeof(sinfo)); 1428 get_slabinfo(c, &sinfo); 1429 1430 info->active_slabs += sinfo.active_slabs; 1431 info->num_slabs += sinfo.num_slabs; 1432 info->shared_avail += sinfo.shared_avail; 1433 info->active_objs += sinfo.active_objs; 1434 info->num_objs += sinfo.num_objs; 1435 } 1436 } 1437 1438 static void cache_show(struct kmem_cache *s, struct seq_file *m) 1439 { 1440 struct slabinfo sinfo; 1441 1442 memset(&sinfo, 0, sizeof(sinfo)); 1443 get_slabinfo(s, &sinfo); 1444 1445 memcg_accumulate_slabinfo(s, &sinfo); 1446 1447 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 1448 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, 1449 sinfo.objects_per_slab, (1 << sinfo.cache_order)); 1450 1451 seq_printf(m, " : tunables %4u %4u %4u", 1452 sinfo.limit, sinfo.batchcount, sinfo.shared); 1453 seq_printf(m, " : slabdata %6lu %6lu %6lu", 1454 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 1455 slabinfo_show_stats(m, s); 1456 seq_putc(m, '\n'); 1457 } 1458 1459 static int slab_show(struct seq_file *m, void *p) 1460 { 1461 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); 1462 1463 if (p == slab_root_caches.next) 1464 print_slabinfo_header(m); 1465 cache_show(s, m); 1466 return 0; 1467 } 1468 1469 void dump_unreclaimable_slab(void) 1470 { 1471 struct kmem_cache *s, *s2; 1472 struct slabinfo sinfo; 1473 1474 /* 1475 * Here acquiring slab_mutex is risky since we don't prefer to get 1476 * sleep in oom path. But, without mutex hold, it may introduce a 1477 * risk of crash. 1478 * Use mutex_trylock to protect the list traverse, dump nothing 1479 * without acquiring the mutex. 1480 */ 1481 if (!mutex_trylock(&slab_mutex)) { 1482 pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 1483 return; 1484 } 1485 1486 pr_info("Unreclaimable slab info:\n"); 1487 pr_info("Name Used Total\n"); 1488 1489 list_for_each_entry_safe(s, s2, &slab_caches, list) { 1490 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) 1491 continue; 1492 1493 get_slabinfo(s, &sinfo); 1494 1495 if (sinfo.num_objs > 0) 1496 pr_info("%-17s %10luKB %10luKB\n", cache_name(s), 1497 (sinfo.active_objs * s->size) / 1024, 1498 (sinfo.num_objs * s->size) / 1024); 1499 } 1500 mutex_unlock(&slab_mutex); 1501 } 1502 1503 #if defined(CONFIG_MEMCG) 1504 void *memcg_slab_start(struct seq_file *m, loff_t *pos) 1505 { 1506 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1507 1508 mutex_lock(&slab_mutex); 1509 return seq_list_start(&memcg->kmem_caches, *pos); 1510 } 1511 1512 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) 1513 { 1514 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1515 1516 return seq_list_next(p, &memcg->kmem_caches, pos); 1517 } 1518 1519 void memcg_slab_stop(struct seq_file *m, void *p) 1520 { 1521 mutex_unlock(&slab_mutex); 1522 } 1523 1524 int memcg_slab_show(struct seq_file *m, void *p) 1525 { 1526 struct kmem_cache *s = list_entry(p, struct kmem_cache, 1527 memcg_params.kmem_caches_node); 1528 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 1529 1530 if (p == memcg->kmem_caches.next) 1531 print_slabinfo_header(m); 1532 cache_show(s, m); 1533 return 0; 1534 } 1535 #endif 1536 1537 /* 1538 * slabinfo_op - iterator that generates /proc/slabinfo 1539 * 1540 * Output layout: 1541 * cache-name 1542 * num-active-objs 1543 * total-objs 1544 * object size 1545 * num-active-slabs 1546 * total-slabs 1547 * num-pages-per-slab 1548 * + further values on SMP and with statistics enabled 1549 */ 1550 static const struct seq_operations slabinfo_op = { 1551 .start = slab_start, 1552 .next = slab_next, 1553 .stop = slab_stop, 1554 .show = slab_show, 1555 }; 1556 1557 static int slabinfo_open(struct inode *inode, struct file *file) 1558 { 1559 return seq_open(file, &slabinfo_op); 1560 } 1561 1562 static const struct file_operations proc_slabinfo_operations = { 1563 .open = slabinfo_open, 1564 .read = seq_read, 1565 .write = slabinfo_write, 1566 .llseek = seq_lseek, 1567 .release = seq_release, 1568 }; 1569 1570 static int __init slab_proc_init(void) 1571 { 1572 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, 1573 &proc_slabinfo_operations); 1574 return 0; 1575 } 1576 module_init(slab_proc_init); 1577 1578 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) 1579 /* 1580 * Display information about kmem caches that have child memcg caches. 1581 */ 1582 static int memcg_slabinfo_show(struct seq_file *m, void *unused) 1583 { 1584 struct kmem_cache *s, *c; 1585 struct slabinfo sinfo; 1586 1587 mutex_lock(&slab_mutex); 1588 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); 1589 seq_puts(m, " <active_slabs> <num_slabs>\n"); 1590 list_for_each_entry(s, &slab_root_caches, root_caches_node) { 1591 /* 1592 * Skip kmem caches that don't have any memcg children. 1593 */ 1594 if (list_empty(&s->memcg_params.children)) 1595 continue; 1596 1597 memset(&sinfo, 0, sizeof(sinfo)); 1598 get_slabinfo(s, &sinfo); 1599 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n", 1600 cache_name(s), sinfo.active_objs, sinfo.num_objs, 1601 sinfo.active_slabs, sinfo.num_slabs); 1602 1603 for_each_memcg_cache(c, s) { 1604 struct cgroup_subsys_state *css; 1605 char *status = ""; 1606 1607 css = &c->memcg_params.memcg->css; 1608 if (!(css->flags & CSS_ONLINE)) 1609 status = ":dead"; 1610 else if (c->flags & SLAB_DEACTIVATED) 1611 status = ":deact"; 1612 1613 memset(&sinfo, 0, sizeof(sinfo)); 1614 get_slabinfo(c, &sinfo); 1615 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", 1616 cache_name(c), css->id, status, 1617 sinfo.active_objs, sinfo.num_objs, 1618 sinfo.active_slabs, sinfo.num_slabs); 1619 } 1620 } 1621 mutex_unlock(&slab_mutex); 1622 return 0; 1623 } 1624 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); 1625 1626 static int __init memcg_slabinfo_init(void) 1627 { 1628 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, 1629 NULL, NULL, &memcg_slabinfo_fops); 1630 return 0; 1631 } 1632 1633 late_initcall(memcg_slabinfo_init); 1634 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ 1635 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 1636 1637 static __always_inline void *__do_krealloc(const void *p, size_t new_size, 1638 gfp_t flags) 1639 { 1640 void *ret; 1641 size_t ks = 0; 1642 1643 if (p) 1644 ks = ksize(p); 1645 1646 if (ks >= new_size) { 1647 p = kasan_krealloc((void *)p, new_size, flags); 1648 return (void *)p; 1649 } 1650 1651 ret = kmalloc_track_caller(new_size, flags); 1652 if (ret && p) 1653 memcpy(ret, p, ks); 1654 1655 return ret; 1656 } 1657 1658 /** 1659 * __krealloc - like krealloc() but don't free @p. 1660 * @p: object to reallocate memory for. 1661 * @new_size: how many bytes of memory are required. 1662 * @flags: the type of memory to allocate. 1663 * 1664 * This function is like krealloc() except it never frees the originally 1665 * allocated buffer. Use this if you don't want to free the buffer immediately 1666 * like, for example, with RCU. 1667 * 1668 * Return: pointer to the allocated memory or %NULL in case of error 1669 */ 1670 void *__krealloc(const void *p, size_t new_size, gfp_t flags) 1671 { 1672 if (unlikely(!new_size)) 1673 return ZERO_SIZE_PTR; 1674 1675 return __do_krealloc(p, new_size, flags); 1676 1677 } 1678 EXPORT_SYMBOL(__krealloc); 1679 1680 /** 1681 * krealloc - reallocate memory. The contents will remain unchanged. 1682 * @p: object to reallocate memory for. 1683 * @new_size: how many bytes of memory are required. 1684 * @flags: the type of memory to allocate. 1685 * 1686 * The contents of the object pointed to are preserved up to the 1687 * lesser of the new and old sizes. If @p is %NULL, krealloc() 1688 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 1689 * %NULL pointer, the object pointed to is freed. 1690 * 1691 * Return: pointer to the allocated memory or %NULL in case of error 1692 */ 1693 void *krealloc(const void *p, size_t new_size, gfp_t flags) 1694 { 1695 void *ret; 1696 1697 if (unlikely(!new_size)) { 1698 kfree(p); 1699 return ZERO_SIZE_PTR; 1700 } 1701 1702 ret = __do_krealloc(p, new_size, flags); 1703 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 1704 kfree(p); 1705 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(krealloc); 1709 1710 /** 1711 * kzfree - like kfree but zero memory 1712 * @p: object to free memory of 1713 * 1714 * The memory of the object @p points to is zeroed before freed. 1715 * If @p is %NULL, kzfree() does nothing. 1716 * 1717 * Note: this function zeroes the whole allocated buffer which can be a good 1718 * deal bigger than the requested buffer size passed to kmalloc(). So be 1719 * careful when using this function in performance sensitive code. 1720 */ 1721 void kzfree(const void *p) 1722 { 1723 size_t ks; 1724 void *mem = (void *)p; 1725 1726 if (unlikely(ZERO_OR_NULL_PTR(mem))) 1727 return; 1728 ks = ksize(mem); 1729 memset(mem, 0, ks); 1730 kfree(mem); 1731 } 1732 EXPORT_SYMBOL(kzfree); 1733 1734 /** 1735 * ksize - get the actual amount of memory allocated for a given object 1736 * @objp: Pointer to the object 1737 * 1738 * kmalloc may internally round up allocations and return more memory 1739 * than requested. ksize() can be used to determine the actual amount of 1740 * memory allocated. The caller may use this additional memory, even though 1741 * a smaller amount of memory was initially specified with the kmalloc call. 1742 * The caller must guarantee that objp points to a valid object previously 1743 * allocated with either kmalloc() or kmem_cache_alloc(). The object 1744 * must not be freed during the duration of the call. 1745 * 1746 * Return: size of the actual memory used by @objp in bytes 1747 */ 1748 size_t ksize(const void *objp) 1749 { 1750 size_t size; 1751 1752 if (WARN_ON_ONCE(!objp)) 1753 return 0; 1754 /* 1755 * We need to check that the pointed to object is valid, and only then 1756 * unpoison the shadow memory below. We use __kasan_check_read(), to 1757 * generate a more useful report at the time ksize() is called (rather 1758 * than later where behaviour is undefined due to potential 1759 * use-after-free or double-free). 1760 * 1761 * If the pointed to memory is invalid we return 0, to avoid users of 1762 * ksize() writing to and potentially corrupting the memory region. 1763 * 1764 * We want to perform the check before __ksize(), to avoid potentially 1765 * crashing in __ksize() due to accessing invalid metadata. 1766 */ 1767 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) 1768 return 0; 1769 1770 size = __ksize(objp); 1771 /* 1772 * We assume that ksize callers could use whole allocated area, 1773 * so we need to unpoison this area. 1774 */ 1775 kasan_unpoison_shadow(objp, size); 1776 return size; 1777 } 1778 EXPORT_SYMBOL(ksize); 1779 1780 /* Tracepoints definitions. */ 1781 EXPORT_TRACEPOINT_SYMBOL(kmalloc); 1782 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 1783 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 1784 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 1785 EXPORT_TRACEPOINT_SYMBOL(kfree); 1786 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 1787 1788 int should_failslab(struct kmem_cache *s, gfp_t gfpflags) 1789 { 1790 if (__should_failslab(s, gfpflags)) 1791 return -ENOMEM; 1792 return 0; 1793 } 1794 ALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1795