xref: /linux/mm/slab_common.c (revision 0d6ccfe6b319d56da63b7d7cfbcecd92780a680d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/swiotlb.h>
22 #include <linux/proc_fs.h>
23 #include <linux/debugfs.h>
24 #include <linux/kmemleak.h>
25 #include <linux/kasan.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/page.h>
29 #include <linux/memcontrol.h>
30 #include <linux/stackdepot.h>
31 
32 #include "internal.h"
33 #include "slab.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/kmem.h>
37 
38 enum slab_state slab_state;
39 LIST_HEAD(slab_caches);
40 DEFINE_MUTEX(slab_mutex);
41 struct kmem_cache *kmem_cache;
42 
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 		    slab_caches_to_rcu_destroy_workfn);
47 
48 /*
49  * Set of flags that will prevent slab merging
50  */
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 		SLAB_FAILSLAB | SLAB_NO_MERGE)
54 
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57 
58 /*
59  * Merge control. If this is set then no merging of slab caches will occur.
60  */
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62 
63 static int __init setup_slab_nomerge(char *str)
64 {
65 	slab_nomerge = true;
66 	return 1;
67 }
68 
69 static int __init setup_slab_merge(char *str)
70 {
71 	slab_nomerge = false;
72 	return 1;
73 }
74 
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
76 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 
78 __setup("slab_nomerge", setup_slab_nomerge);
79 __setup("slab_merge", setup_slab_merge);
80 
81 /*
82  * Determine the size of a slab object
83  */
84 unsigned int kmem_cache_size(struct kmem_cache *s)
85 {
86 	return s->object_size;
87 }
88 EXPORT_SYMBOL(kmem_cache_size);
89 
90 #ifdef CONFIG_DEBUG_VM
91 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 {
93 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
94 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 		return -EINVAL;
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 /*
109  * Figure out what the alignment of the objects will be given a set of
110  * flags, a user specified alignment and the size of the objects.
111  */
112 static unsigned int calculate_alignment(slab_flags_t flags,
113 		unsigned int align, unsigned int size)
114 {
115 	/*
116 	 * If the user wants hardware cache aligned objects then follow that
117 	 * suggestion if the object is sufficiently large.
118 	 *
119 	 * The hardware cache alignment cannot override the specified
120 	 * alignment though. If that is greater then use it.
121 	 */
122 	if (flags & SLAB_HWCACHE_ALIGN) {
123 		unsigned int ralign;
124 
125 		ralign = cache_line_size();
126 		while (size <= ralign / 2)
127 			ralign /= 2;
128 		align = max(align, ralign);
129 	}
130 
131 	align = max(align, arch_slab_minalign());
132 
133 	return ALIGN(align, sizeof(void *));
134 }
135 
136 /*
137  * Find a mergeable slab cache
138  */
139 int slab_unmergeable(struct kmem_cache *s)
140 {
141 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 		return 1;
143 
144 	if (s->ctor)
145 		return 1;
146 
147 #ifdef CONFIG_HARDENED_USERCOPY
148 	if (s->usersize)
149 		return 1;
150 #endif
151 
152 	/*
153 	 * We may have set a slab to be unmergeable during bootstrap.
154 	 */
155 	if (s->refcount < 0)
156 		return 1;
157 
158 	return 0;
159 }
160 
161 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
162 		slab_flags_t flags, const char *name, void (*ctor)(void *))
163 {
164 	struct kmem_cache *s;
165 
166 	if (slab_nomerge)
167 		return NULL;
168 
169 	if (ctor)
170 		return NULL;
171 
172 	size = ALIGN(size, sizeof(void *));
173 	align = calculate_alignment(flags, align, size);
174 	size = ALIGN(size, align);
175 	flags = kmem_cache_flags(flags, name);
176 
177 	if (flags & SLAB_NEVER_MERGE)
178 		return NULL;
179 
180 	list_for_each_entry_reverse(s, &slab_caches, list) {
181 		if (slab_unmergeable(s))
182 			continue;
183 
184 		if (size > s->size)
185 			continue;
186 
187 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 			continue;
189 		/*
190 		 * Check if alignment is compatible.
191 		 * Courtesy of Adrian Drzewiecki
192 		 */
193 		if ((s->size & ~(align - 1)) != s->size)
194 			continue;
195 
196 		if (s->size - size >= sizeof(void *))
197 			continue;
198 
199 		return s;
200 	}
201 	return NULL;
202 }
203 
204 static struct kmem_cache *create_cache(const char *name,
205 		unsigned int object_size, unsigned int align,
206 		slab_flags_t flags, unsigned int useroffset,
207 		unsigned int usersize, void (*ctor)(void *),
208 		struct kmem_cache *root_cache)
209 {
210 	struct kmem_cache *s;
211 	int err;
212 
213 	if (WARN_ON(useroffset + usersize > object_size))
214 		useroffset = usersize = 0;
215 
216 	err = -ENOMEM;
217 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218 	if (!s)
219 		goto out;
220 
221 	s->name = name;
222 	s->size = s->object_size = object_size;
223 	s->align = align;
224 	s->ctor = ctor;
225 #ifdef CONFIG_HARDENED_USERCOPY
226 	s->useroffset = useroffset;
227 	s->usersize = usersize;
228 #endif
229 
230 	err = __kmem_cache_create(s, flags);
231 	if (err)
232 		goto out_free_cache;
233 
234 	s->refcount = 1;
235 	list_add(&s->list, &slab_caches);
236 	return s;
237 
238 out_free_cache:
239 	kmem_cache_free(kmem_cache, s);
240 out:
241 	return ERR_PTR(err);
242 }
243 
244 /**
245  * kmem_cache_create_usercopy - Create a cache with a region suitable
246  * for copying to userspace
247  * @name: A string which is used in /proc/slabinfo to identify this cache.
248  * @size: The size of objects to be created in this cache.
249  * @align: The required alignment for the objects.
250  * @flags: SLAB flags
251  * @useroffset: Usercopy region offset
252  * @usersize: Usercopy region size
253  * @ctor: A constructor for the objects.
254  *
255  * Cannot be called within a interrupt, but can be interrupted.
256  * The @ctor is run when new pages are allocated by the cache.
257  *
258  * The flags are
259  *
260  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261  * to catch references to uninitialised memory.
262  *
263  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
264  * for buffer overruns.
265  *
266  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267  * cacheline.  This can be beneficial if you're counting cycles as closely
268  * as davem.
269  *
270  * Return: a pointer to the cache on success, NULL on failure.
271  */
272 struct kmem_cache *
273 kmem_cache_create_usercopy(const char *name,
274 		  unsigned int size, unsigned int align,
275 		  slab_flags_t flags,
276 		  unsigned int useroffset, unsigned int usersize,
277 		  void (*ctor)(void *))
278 {
279 	struct kmem_cache *s = NULL;
280 	const char *cache_name;
281 	int err;
282 
283 #ifdef CONFIG_SLUB_DEBUG
284 	/*
285 	 * If no slab_debug was enabled globally, the static key is not yet
286 	 * enabled by setup_slub_debug(). Enable it if the cache is being
287 	 * created with any of the debugging flags passed explicitly.
288 	 * It's also possible that this is the first cache created with
289 	 * SLAB_STORE_USER and we should init stack_depot for it.
290 	 */
291 	if (flags & SLAB_DEBUG_FLAGS)
292 		static_branch_enable(&slub_debug_enabled);
293 	if (flags & SLAB_STORE_USER)
294 		stack_depot_init();
295 #endif
296 
297 	mutex_lock(&slab_mutex);
298 
299 	err = kmem_cache_sanity_check(name, size);
300 	if (err) {
301 		goto out_unlock;
302 	}
303 
304 	/* Refuse requests with allocator specific flags */
305 	if (flags & ~SLAB_FLAGS_PERMITTED) {
306 		err = -EINVAL;
307 		goto out_unlock;
308 	}
309 
310 	/*
311 	 * Some allocators will constraint the set of valid flags to a subset
312 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313 	 * case, and we'll just provide them with a sanitized version of the
314 	 * passed flags.
315 	 */
316 	flags &= CACHE_CREATE_MASK;
317 
318 	/* Fail closed on bad usersize of useroffset values. */
319 	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320 	    WARN_ON(!usersize && useroffset) ||
321 	    WARN_ON(size < usersize || size - usersize < useroffset))
322 		usersize = useroffset = 0;
323 
324 	if (!usersize)
325 		s = __kmem_cache_alias(name, size, align, flags, ctor);
326 	if (s)
327 		goto out_unlock;
328 
329 	cache_name = kstrdup_const(name, GFP_KERNEL);
330 	if (!cache_name) {
331 		err = -ENOMEM;
332 		goto out_unlock;
333 	}
334 
335 	s = create_cache(cache_name, size,
336 			 calculate_alignment(flags, align, size),
337 			 flags, useroffset, usersize, ctor, NULL);
338 	if (IS_ERR(s)) {
339 		err = PTR_ERR(s);
340 		kfree_const(cache_name);
341 	}
342 
343 out_unlock:
344 	mutex_unlock(&slab_mutex);
345 
346 	if (err) {
347 		if (flags & SLAB_PANIC)
348 			panic("%s: Failed to create slab '%s'. Error %d\n",
349 				__func__, name, err);
350 		else {
351 			pr_warn("%s(%s) failed with error %d\n",
352 				__func__, name, err);
353 			dump_stack();
354 		}
355 		return NULL;
356 	}
357 	return s;
358 }
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
360 
361 /**
362  * kmem_cache_create - Create a cache.
363  * @name: A string which is used in /proc/slabinfo to identify this cache.
364  * @size: The size of objects to be created in this cache.
365  * @align: The required alignment for the objects.
366  * @flags: SLAB flags
367  * @ctor: A constructor for the objects.
368  *
369  * Cannot be called within a interrupt, but can be interrupted.
370  * The @ctor is run when new pages are allocated by the cache.
371  *
372  * The flags are
373  *
374  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375  * to catch references to uninitialised memory.
376  *
377  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378  * for buffer overruns.
379  *
380  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381  * cacheline.  This can be beneficial if you're counting cycles as closely
382  * as davem.
383  *
384  * Return: a pointer to the cache on success, NULL on failure.
385  */
386 struct kmem_cache *
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 		slab_flags_t flags, void (*ctor)(void *))
389 {
390 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
391 					  ctor);
392 }
393 EXPORT_SYMBOL(kmem_cache_create);
394 
395 static struct kmem_cache *kmem_buckets_cache __ro_after_init;
396 
397 /**
398  * kmem_buckets_create - Create a set of caches that handle dynamic sized
399  *			 allocations via kmem_buckets_alloc()
400  * @name: A prefix string which is used in /proc/slabinfo to identify this
401  *	  cache. The individual caches with have their sizes as the suffix.
402  * @flags: SLAB flags (see kmem_cache_create() for details).
403  * @useroffset: Starting offset within an allocation that may be copied
404  *		to/from userspace.
405  * @usersize: How many bytes, starting at @useroffset, may be copied
406  *		to/from userspace.
407  * @ctor: A constructor for the objects, run when new allocations are made.
408  *
409  * Cannot be called within an interrupt, but can be interrupted.
410  *
411  * Return: a pointer to the cache on success, NULL on failure. When
412  * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and
413  * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc().
414  * (i.e. callers only need to check for NULL on failure.)
415  */
416 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
417 				  unsigned int useroffset,
418 				  unsigned int usersize,
419 				  void (*ctor)(void *))
420 {
421 	kmem_buckets *b;
422 	int idx;
423 
424 	/*
425 	 * When the separate buckets API is not built in, just return
426 	 * a non-NULL value for the kmem_buckets pointer, which will be
427 	 * unused when performing allocations.
428 	 */
429 	if (!IS_ENABLED(CONFIG_SLAB_BUCKETS))
430 		return ZERO_SIZE_PTR;
431 
432 	if (WARN_ON(!kmem_buckets_cache))
433 		return NULL;
434 
435 	b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO);
436 	if (WARN_ON(!b))
437 		return NULL;
438 
439 	flags |= SLAB_NO_MERGE;
440 
441 	for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) {
442 		char *short_size, *cache_name;
443 		unsigned int cache_useroffset, cache_usersize;
444 		unsigned int size;
445 
446 		if (!kmalloc_caches[KMALLOC_NORMAL][idx])
447 			continue;
448 
449 		size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size;
450 		if (!size)
451 			continue;
452 
453 		short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-');
454 		if (WARN_ON(!short_size))
455 			goto fail;
456 
457 		cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1);
458 		if (WARN_ON(!cache_name))
459 			goto fail;
460 
461 		if (useroffset >= size) {
462 			cache_useroffset = 0;
463 			cache_usersize = 0;
464 		} else {
465 			cache_useroffset = useroffset;
466 			cache_usersize = min(size - cache_useroffset, usersize);
467 		}
468 		(*b)[idx] = kmem_cache_create_usercopy(cache_name, size,
469 					0, flags, cache_useroffset,
470 					cache_usersize, ctor);
471 		kfree(cache_name);
472 		if (WARN_ON(!(*b)[idx]))
473 			goto fail;
474 	}
475 
476 	return b;
477 
478 fail:
479 	for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++)
480 		kmem_cache_destroy((*b)[idx]);
481 	kfree(b);
482 
483 	return NULL;
484 }
485 EXPORT_SYMBOL(kmem_buckets_create);
486 
487 #ifdef SLAB_SUPPORTS_SYSFS
488 /*
489  * For a given kmem_cache, kmem_cache_destroy() should only be called
490  * once or there will be a use-after-free problem. The actual deletion
491  * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
492  * protection. So they are now done without holding those locks.
493  *
494  * Note that there will be a slight delay in the deletion of sysfs files
495  * if kmem_cache_release() is called indrectly from a work function.
496  */
497 static void kmem_cache_release(struct kmem_cache *s)
498 {
499 	if (slab_state >= FULL) {
500 		sysfs_slab_unlink(s);
501 		sysfs_slab_release(s);
502 	} else {
503 		slab_kmem_cache_release(s);
504 	}
505 }
506 #else
507 static void kmem_cache_release(struct kmem_cache *s)
508 {
509 	slab_kmem_cache_release(s);
510 }
511 #endif
512 
513 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
514 {
515 	LIST_HEAD(to_destroy);
516 	struct kmem_cache *s, *s2;
517 
518 	/*
519 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
520 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
521 	 * through RCU and the associated kmem_cache are dereferenced
522 	 * while freeing the pages, so the kmem_caches should be freed only
523 	 * after the pending RCU operations are finished.  As rcu_barrier()
524 	 * is a pretty slow operation, we batch all pending destructions
525 	 * asynchronously.
526 	 */
527 	mutex_lock(&slab_mutex);
528 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
529 	mutex_unlock(&slab_mutex);
530 
531 	if (list_empty(&to_destroy))
532 		return;
533 
534 	rcu_barrier();
535 
536 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
537 		debugfs_slab_release(s);
538 		kfence_shutdown_cache(s);
539 		kmem_cache_release(s);
540 	}
541 }
542 
543 static int shutdown_cache(struct kmem_cache *s)
544 {
545 	/* free asan quarantined objects */
546 	kasan_cache_shutdown(s);
547 
548 	if (__kmem_cache_shutdown(s) != 0)
549 		return -EBUSY;
550 
551 	list_del(&s->list);
552 
553 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
554 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
555 		schedule_work(&slab_caches_to_rcu_destroy_work);
556 	} else {
557 		kfence_shutdown_cache(s);
558 		debugfs_slab_release(s);
559 	}
560 
561 	return 0;
562 }
563 
564 void slab_kmem_cache_release(struct kmem_cache *s)
565 {
566 	__kmem_cache_release(s);
567 	kfree_const(s->name);
568 	kmem_cache_free(kmem_cache, s);
569 }
570 
571 void kmem_cache_destroy(struct kmem_cache *s)
572 {
573 	int err = -EBUSY;
574 	bool rcu_set;
575 
576 	if (unlikely(!s) || !kasan_check_byte(s))
577 		return;
578 
579 	cpus_read_lock();
580 	mutex_lock(&slab_mutex);
581 
582 	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
583 
584 	s->refcount--;
585 	if (s->refcount)
586 		goto out_unlock;
587 
588 	err = shutdown_cache(s);
589 	WARN(err, "%s %s: Slab cache still has objects when called from %pS",
590 	     __func__, s->name, (void *)_RET_IP_);
591 out_unlock:
592 	mutex_unlock(&slab_mutex);
593 	cpus_read_unlock();
594 	if (!err && !rcu_set)
595 		kmem_cache_release(s);
596 }
597 EXPORT_SYMBOL(kmem_cache_destroy);
598 
599 /**
600  * kmem_cache_shrink - Shrink a cache.
601  * @cachep: The cache to shrink.
602  *
603  * Releases as many slabs as possible for a cache.
604  * To help debugging, a zero exit status indicates all slabs were released.
605  *
606  * Return: %0 if all slabs were released, non-zero otherwise
607  */
608 int kmem_cache_shrink(struct kmem_cache *cachep)
609 {
610 	kasan_cache_shrink(cachep);
611 
612 	return __kmem_cache_shrink(cachep);
613 }
614 EXPORT_SYMBOL(kmem_cache_shrink);
615 
616 bool slab_is_available(void)
617 {
618 	return slab_state >= UP;
619 }
620 
621 #ifdef CONFIG_PRINTK
622 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
623 {
624 	if (__kfence_obj_info(kpp, object, slab))
625 		return;
626 	__kmem_obj_info(kpp, object, slab);
627 }
628 
629 /**
630  * kmem_dump_obj - Print available slab provenance information
631  * @object: slab object for which to find provenance information.
632  *
633  * This function uses pr_cont(), so that the caller is expected to have
634  * printed out whatever preamble is appropriate.  The provenance information
635  * depends on the type of object and on how much debugging is enabled.
636  * For a slab-cache object, the fact that it is a slab object is printed,
637  * and, if available, the slab name, return address, and stack trace from
638  * the allocation and last free path of that object.
639  *
640  * Return: %true if the pointer is to a not-yet-freed object from
641  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
642  * is to an already-freed object, and %false otherwise.
643  */
644 bool kmem_dump_obj(void *object)
645 {
646 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
647 	int i;
648 	struct slab *slab;
649 	unsigned long ptroffset;
650 	struct kmem_obj_info kp = { };
651 
652 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
653 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
654 		return false;
655 	slab = virt_to_slab(object);
656 	if (!slab)
657 		return false;
658 
659 	kmem_obj_info(&kp, object, slab);
660 	if (kp.kp_slab_cache)
661 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
662 	else
663 		pr_cont(" slab%s", cp);
664 	if (is_kfence_address(object))
665 		pr_cont(" (kfence)");
666 	if (kp.kp_objp)
667 		pr_cont(" start %px", kp.kp_objp);
668 	if (kp.kp_data_offset)
669 		pr_cont(" data offset %lu", kp.kp_data_offset);
670 	if (kp.kp_objp) {
671 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
672 		pr_cont(" pointer offset %lu", ptroffset);
673 	}
674 	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
675 		pr_cont(" size %u", kp.kp_slab_cache->object_size);
676 	if (kp.kp_ret)
677 		pr_cont(" allocated at %pS\n", kp.kp_ret);
678 	else
679 		pr_cont("\n");
680 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
681 		if (!kp.kp_stack[i])
682 			break;
683 		pr_info("    %pS\n", kp.kp_stack[i]);
684 	}
685 
686 	if (kp.kp_free_stack[0])
687 		pr_cont(" Free path:\n");
688 
689 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
690 		if (!kp.kp_free_stack[i])
691 			break;
692 		pr_info("    %pS\n", kp.kp_free_stack[i]);
693 	}
694 
695 	return true;
696 }
697 EXPORT_SYMBOL_GPL(kmem_dump_obj);
698 #endif
699 
700 /* Create a cache during boot when no slab services are available yet */
701 void __init create_boot_cache(struct kmem_cache *s, const char *name,
702 		unsigned int size, slab_flags_t flags,
703 		unsigned int useroffset, unsigned int usersize)
704 {
705 	int err;
706 	unsigned int align = ARCH_KMALLOC_MINALIGN;
707 
708 	s->name = name;
709 	s->size = s->object_size = size;
710 
711 	/*
712 	 * kmalloc caches guarantee alignment of at least the largest
713 	 * power-of-two divisor of the size. For power-of-two sizes,
714 	 * it is the size itself.
715 	 */
716 	if (flags & SLAB_KMALLOC)
717 		align = max(align, 1U << (ffs(size) - 1));
718 	s->align = calculate_alignment(flags, align, size);
719 
720 #ifdef CONFIG_HARDENED_USERCOPY
721 	s->useroffset = useroffset;
722 	s->usersize = usersize;
723 #endif
724 
725 	err = __kmem_cache_create(s, flags);
726 
727 	if (err)
728 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
729 					name, size, err);
730 
731 	s->refcount = -1;	/* Exempt from merging for now */
732 }
733 
734 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
735 						      unsigned int size,
736 						      slab_flags_t flags)
737 {
738 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
739 
740 	if (!s)
741 		panic("Out of memory when creating slab %s\n", name);
742 
743 	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
744 	list_add(&s->list, &slab_caches);
745 	s->refcount = 1;
746 	return s;
747 }
748 
749 kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init =
750 { /* initialization for https://llvm.org/pr42570 */ };
751 EXPORT_SYMBOL(kmalloc_caches);
752 
753 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
754 unsigned long random_kmalloc_seed __ro_after_init;
755 EXPORT_SYMBOL(random_kmalloc_seed);
756 #endif
757 
758 /*
759  * Conversion table for small slabs sizes / 8 to the index in the
760  * kmalloc array. This is necessary for slabs < 192 since we have non power
761  * of two cache sizes there. The size of larger slabs can be determined using
762  * fls.
763  */
764 u8 kmalloc_size_index[24] __ro_after_init = {
765 	3,	/* 8 */
766 	4,	/* 16 */
767 	5,	/* 24 */
768 	5,	/* 32 */
769 	6,	/* 40 */
770 	6,	/* 48 */
771 	6,	/* 56 */
772 	6,	/* 64 */
773 	1,	/* 72 */
774 	1,	/* 80 */
775 	1,	/* 88 */
776 	1,	/* 96 */
777 	7,	/* 104 */
778 	7,	/* 112 */
779 	7,	/* 120 */
780 	7,	/* 128 */
781 	2,	/* 136 */
782 	2,	/* 144 */
783 	2,	/* 152 */
784 	2,	/* 160 */
785 	2,	/* 168 */
786 	2,	/* 176 */
787 	2,	/* 184 */
788 	2	/* 192 */
789 };
790 
791 size_t kmalloc_size_roundup(size_t size)
792 {
793 	if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
794 		/*
795 		 * The flags don't matter since size_index is common to all.
796 		 * Neither does the caller for just getting ->object_size.
797 		 */
798 		return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size;
799 	}
800 
801 	/* Above the smaller buckets, size is a multiple of page size. */
802 	if (size && size <= KMALLOC_MAX_SIZE)
803 		return PAGE_SIZE << get_order(size);
804 
805 	/*
806 	 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
807 	 * and very large size - kmalloc() may fail.
808 	 */
809 	return size;
810 
811 }
812 EXPORT_SYMBOL(kmalloc_size_roundup);
813 
814 #ifdef CONFIG_ZONE_DMA
815 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
816 #else
817 #define KMALLOC_DMA_NAME(sz)
818 #endif
819 
820 #ifdef CONFIG_MEMCG
821 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
822 #else
823 #define KMALLOC_CGROUP_NAME(sz)
824 #endif
825 
826 #ifndef CONFIG_SLUB_TINY
827 #define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
828 #else
829 #define KMALLOC_RCL_NAME(sz)
830 #endif
831 
832 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
833 #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
834 #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
835 #define KMA_RAND_1(sz)                  .name[KMALLOC_RANDOM_START +  1] = "kmalloc-rnd-01-" #sz,
836 #define KMA_RAND_2(sz)  KMA_RAND_1(sz)  .name[KMALLOC_RANDOM_START +  2] = "kmalloc-rnd-02-" #sz,
837 #define KMA_RAND_3(sz)  KMA_RAND_2(sz)  .name[KMALLOC_RANDOM_START +  3] = "kmalloc-rnd-03-" #sz,
838 #define KMA_RAND_4(sz)  KMA_RAND_3(sz)  .name[KMALLOC_RANDOM_START +  4] = "kmalloc-rnd-04-" #sz,
839 #define KMA_RAND_5(sz)  KMA_RAND_4(sz)  .name[KMALLOC_RANDOM_START +  5] = "kmalloc-rnd-05-" #sz,
840 #define KMA_RAND_6(sz)  KMA_RAND_5(sz)  .name[KMALLOC_RANDOM_START +  6] = "kmalloc-rnd-06-" #sz,
841 #define KMA_RAND_7(sz)  KMA_RAND_6(sz)  .name[KMALLOC_RANDOM_START +  7] = "kmalloc-rnd-07-" #sz,
842 #define KMA_RAND_8(sz)  KMA_RAND_7(sz)  .name[KMALLOC_RANDOM_START +  8] = "kmalloc-rnd-08-" #sz,
843 #define KMA_RAND_9(sz)  KMA_RAND_8(sz)  .name[KMALLOC_RANDOM_START +  9] = "kmalloc-rnd-09-" #sz,
844 #define KMA_RAND_10(sz) KMA_RAND_9(sz)  .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
845 #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
846 #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
847 #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
848 #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
849 #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
850 #else // CONFIG_RANDOM_KMALLOC_CACHES
851 #define KMALLOC_RANDOM_NAME(N, sz)
852 #endif
853 
854 #define INIT_KMALLOC_INFO(__size, __short_size)			\
855 {								\
856 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
857 	KMALLOC_RCL_NAME(__short_size)				\
858 	KMALLOC_CGROUP_NAME(__short_size)			\
859 	KMALLOC_DMA_NAME(__short_size)				\
860 	KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size)	\
861 	.size = __size,						\
862 }
863 
864 /*
865  * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
866  * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
867  * kmalloc-2M.
868  */
869 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
870 	INIT_KMALLOC_INFO(0, 0),
871 	INIT_KMALLOC_INFO(96, 96),
872 	INIT_KMALLOC_INFO(192, 192),
873 	INIT_KMALLOC_INFO(8, 8),
874 	INIT_KMALLOC_INFO(16, 16),
875 	INIT_KMALLOC_INFO(32, 32),
876 	INIT_KMALLOC_INFO(64, 64),
877 	INIT_KMALLOC_INFO(128, 128),
878 	INIT_KMALLOC_INFO(256, 256),
879 	INIT_KMALLOC_INFO(512, 512),
880 	INIT_KMALLOC_INFO(1024, 1k),
881 	INIT_KMALLOC_INFO(2048, 2k),
882 	INIT_KMALLOC_INFO(4096, 4k),
883 	INIT_KMALLOC_INFO(8192, 8k),
884 	INIT_KMALLOC_INFO(16384, 16k),
885 	INIT_KMALLOC_INFO(32768, 32k),
886 	INIT_KMALLOC_INFO(65536, 64k),
887 	INIT_KMALLOC_INFO(131072, 128k),
888 	INIT_KMALLOC_INFO(262144, 256k),
889 	INIT_KMALLOC_INFO(524288, 512k),
890 	INIT_KMALLOC_INFO(1048576, 1M),
891 	INIT_KMALLOC_INFO(2097152, 2M)
892 };
893 
894 /*
895  * Patch up the size_index table if we have strange large alignment
896  * requirements for the kmalloc array. This is only the case for
897  * MIPS it seems. The standard arches will not generate any code here.
898  *
899  * Largest permitted alignment is 256 bytes due to the way we
900  * handle the index determination for the smaller caches.
901  *
902  * Make sure that nothing crazy happens if someone starts tinkering
903  * around with ARCH_KMALLOC_MINALIGN
904  */
905 void __init setup_kmalloc_cache_index_table(void)
906 {
907 	unsigned int i;
908 
909 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
910 		!is_power_of_2(KMALLOC_MIN_SIZE));
911 
912 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
913 		unsigned int elem = size_index_elem(i);
914 
915 		if (elem >= ARRAY_SIZE(kmalloc_size_index))
916 			break;
917 		kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
918 	}
919 
920 	if (KMALLOC_MIN_SIZE >= 64) {
921 		/*
922 		 * The 96 byte sized cache is not used if the alignment
923 		 * is 64 byte.
924 		 */
925 		for (i = 64 + 8; i <= 96; i += 8)
926 			kmalloc_size_index[size_index_elem(i)] = 7;
927 
928 	}
929 
930 	if (KMALLOC_MIN_SIZE >= 128) {
931 		/*
932 		 * The 192 byte sized cache is not used if the alignment
933 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
934 		 * instead.
935 		 */
936 		for (i = 128 + 8; i <= 192; i += 8)
937 			kmalloc_size_index[size_index_elem(i)] = 8;
938 	}
939 }
940 
941 static unsigned int __kmalloc_minalign(void)
942 {
943 	unsigned int minalign = dma_get_cache_alignment();
944 
945 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
946 	    is_swiotlb_allocated())
947 		minalign = ARCH_KMALLOC_MINALIGN;
948 
949 	return max(minalign, arch_slab_minalign());
950 }
951 
952 static void __init
953 new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
954 {
955 	slab_flags_t flags = 0;
956 	unsigned int minalign = __kmalloc_minalign();
957 	unsigned int aligned_size = kmalloc_info[idx].size;
958 	int aligned_idx = idx;
959 
960 	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
961 		flags |= SLAB_RECLAIM_ACCOUNT;
962 	} else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) {
963 		if (mem_cgroup_kmem_disabled()) {
964 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
965 			return;
966 		}
967 		flags |= SLAB_ACCOUNT;
968 	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
969 		flags |= SLAB_CACHE_DMA;
970 	}
971 
972 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
973 	if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
974 		flags |= SLAB_NO_MERGE;
975 #endif
976 
977 	/*
978 	 * If CONFIG_MEMCG is enabled, disable cache merging for
979 	 * KMALLOC_NORMAL caches.
980 	 */
981 	if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL))
982 		flags |= SLAB_NO_MERGE;
983 
984 	if (minalign > ARCH_KMALLOC_MINALIGN) {
985 		aligned_size = ALIGN(aligned_size, minalign);
986 		aligned_idx = __kmalloc_index(aligned_size, false);
987 	}
988 
989 	if (!kmalloc_caches[type][aligned_idx])
990 		kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
991 					kmalloc_info[aligned_idx].name[type],
992 					aligned_size, flags);
993 	if (idx != aligned_idx)
994 		kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
995 }
996 
997 /*
998  * Create the kmalloc array. Some of the regular kmalloc arrays
999  * may already have been created because they were needed to
1000  * enable allocations for slab creation.
1001  */
1002 void __init create_kmalloc_caches(void)
1003 {
1004 	int i;
1005 	enum kmalloc_cache_type type;
1006 
1007 	/*
1008 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG defined
1009 	 */
1010 	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
1011 		/* Caches that are NOT of the two-to-the-power-of size. */
1012 		if (KMALLOC_MIN_SIZE <= 32)
1013 			new_kmalloc_cache(1, type);
1014 		if (KMALLOC_MIN_SIZE <= 64)
1015 			new_kmalloc_cache(2, type);
1016 
1017 		/* Caches that are of the two-to-the-power-of size. */
1018 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
1019 			new_kmalloc_cache(i, type);
1020 	}
1021 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
1022 	random_kmalloc_seed = get_random_u64();
1023 #endif
1024 
1025 	/* Kmalloc array is now usable */
1026 	slab_state = UP;
1027 
1028 	if (IS_ENABLED(CONFIG_SLAB_BUCKETS))
1029 		kmem_buckets_cache = kmem_cache_create("kmalloc_buckets",
1030 						       sizeof(kmem_buckets),
1031 						       0, SLAB_NO_MERGE, NULL);
1032 }
1033 
1034 /**
1035  * __ksize -- Report full size of underlying allocation
1036  * @object: pointer to the object
1037  *
1038  * This should only be used internally to query the true size of allocations.
1039  * It is not meant to be a way to discover the usable size of an allocation
1040  * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1041  * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1042  * and/or FORTIFY_SOURCE.
1043  *
1044  * Return: size of the actual memory used by @object in bytes
1045  */
1046 size_t __ksize(const void *object)
1047 {
1048 	struct folio *folio;
1049 
1050 	if (unlikely(object == ZERO_SIZE_PTR))
1051 		return 0;
1052 
1053 	folio = virt_to_folio(object);
1054 
1055 	if (unlikely(!folio_test_slab(folio))) {
1056 		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1057 			return 0;
1058 		if (WARN_ON(object != folio_address(folio)))
1059 			return 0;
1060 		return folio_size(folio);
1061 	}
1062 
1063 #ifdef CONFIG_SLUB_DEBUG
1064 	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1065 #endif
1066 
1067 	return slab_ksize(folio_slab(folio)->slab_cache);
1068 }
1069 
1070 gfp_t kmalloc_fix_flags(gfp_t flags)
1071 {
1072 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1073 
1074 	flags &= ~GFP_SLAB_BUG_MASK;
1075 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1076 			invalid_mask, &invalid_mask, flags, &flags);
1077 	dump_stack();
1078 
1079 	return flags;
1080 }
1081 
1082 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1083 /* Randomize a generic freelist */
1084 static void freelist_randomize(unsigned int *list,
1085 			       unsigned int count)
1086 {
1087 	unsigned int rand;
1088 	unsigned int i;
1089 
1090 	for (i = 0; i < count; i++)
1091 		list[i] = i;
1092 
1093 	/* Fisher-Yates shuffle */
1094 	for (i = count - 1; i > 0; i--) {
1095 		rand = get_random_u32_below(i + 1);
1096 		swap(list[i], list[rand]);
1097 	}
1098 }
1099 
1100 /* Create a random sequence per cache */
1101 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1102 				    gfp_t gfp)
1103 {
1104 
1105 	if (count < 2 || cachep->random_seq)
1106 		return 0;
1107 
1108 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1109 	if (!cachep->random_seq)
1110 		return -ENOMEM;
1111 
1112 	freelist_randomize(cachep->random_seq, count);
1113 	return 0;
1114 }
1115 
1116 /* Destroy the per-cache random freelist sequence */
1117 void cache_random_seq_destroy(struct kmem_cache *cachep)
1118 {
1119 	kfree(cachep->random_seq);
1120 	cachep->random_seq = NULL;
1121 }
1122 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1123 
1124 #ifdef CONFIG_SLUB_DEBUG
1125 #define SLABINFO_RIGHTS (0400)
1126 
1127 static void print_slabinfo_header(struct seq_file *m)
1128 {
1129 	/*
1130 	 * Output format version, so at least we can change it
1131 	 * without _too_ many complaints.
1132 	 */
1133 	seq_puts(m, "slabinfo - version: 2.1\n");
1134 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1135 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1136 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1137 	seq_putc(m, '\n');
1138 }
1139 
1140 static void *slab_start(struct seq_file *m, loff_t *pos)
1141 {
1142 	mutex_lock(&slab_mutex);
1143 	return seq_list_start(&slab_caches, *pos);
1144 }
1145 
1146 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1147 {
1148 	return seq_list_next(p, &slab_caches, pos);
1149 }
1150 
1151 static void slab_stop(struct seq_file *m, void *p)
1152 {
1153 	mutex_unlock(&slab_mutex);
1154 }
1155 
1156 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1157 {
1158 	struct slabinfo sinfo;
1159 
1160 	memset(&sinfo, 0, sizeof(sinfo));
1161 	get_slabinfo(s, &sinfo);
1162 
1163 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1164 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1165 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1166 
1167 	seq_printf(m, " : tunables %4u %4u %4u",
1168 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1169 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1170 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1171 	seq_putc(m, '\n');
1172 }
1173 
1174 static int slab_show(struct seq_file *m, void *p)
1175 {
1176 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1177 
1178 	if (p == slab_caches.next)
1179 		print_slabinfo_header(m);
1180 	cache_show(s, m);
1181 	return 0;
1182 }
1183 
1184 void dump_unreclaimable_slab(void)
1185 {
1186 	struct kmem_cache *s;
1187 	struct slabinfo sinfo;
1188 
1189 	/*
1190 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1191 	 * sleep in oom path. But, without mutex hold, it may introduce a
1192 	 * risk of crash.
1193 	 * Use mutex_trylock to protect the list traverse, dump nothing
1194 	 * without acquiring the mutex.
1195 	 */
1196 	if (!mutex_trylock(&slab_mutex)) {
1197 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1198 		return;
1199 	}
1200 
1201 	pr_info("Unreclaimable slab info:\n");
1202 	pr_info("Name                      Used          Total\n");
1203 
1204 	list_for_each_entry(s, &slab_caches, list) {
1205 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1206 			continue;
1207 
1208 		get_slabinfo(s, &sinfo);
1209 
1210 		if (sinfo.num_objs > 0)
1211 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1212 				(sinfo.active_objs * s->size) / 1024,
1213 				(sinfo.num_objs * s->size) / 1024);
1214 	}
1215 	mutex_unlock(&slab_mutex);
1216 }
1217 
1218 /*
1219  * slabinfo_op - iterator that generates /proc/slabinfo
1220  *
1221  * Output layout:
1222  * cache-name
1223  * num-active-objs
1224  * total-objs
1225  * object size
1226  * num-active-slabs
1227  * total-slabs
1228  * num-pages-per-slab
1229  * + further values on SMP and with statistics enabled
1230  */
1231 static const struct seq_operations slabinfo_op = {
1232 	.start = slab_start,
1233 	.next = slab_next,
1234 	.stop = slab_stop,
1235 	.show = slab_show,
1236 };
1237 
1238 static int slabinfo_open(struct inode *inode, struct file *file)
1239 {
1240 	return seq_open(file, &slabinfo_op);
1241 }
1242 
1243 static const struct proc_ops slabinfo_proc_ops = {
1244 	.proc_flags	= PROC_ENTRY_PERMANENT,
1245 	.proc_open	= slabinfo_open,
1246 	.proc_read	= seq_read,
1247 	.proc_lseek	= seq_lseek,
1248 	.proc_release	= seq_release,
1249 };
1250 
1251 static int __init slab_proc_init(void)
1252 {
1253 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1254 	return 0;
1255 }
1256 module_init(slab_proc_init);
1257 
1258 #endif /* CONFIG_SLUB_DEBUG */
1259 
1260 static __always_inline __realloc_size(2) void *
1261 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1262 {
1263 	void *ret;
1264 	size_t ks;
1265 
1266 	/* Check for double-free before calling ksize. */
1267 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1268 		if (!kasan_check_byte(p))
1269 			return NULL;
1270 		ks = ksize(p);
1271 	} else
1272 		ks = 0;
1273 
1274 	/* If the object still fits, repoison it precisely. */
1275 	if (ks >= new_size) {
1276 		p = kasan_krealloc((void *)p, new_size, flags);
1277 		return (void *)p;
1278 	}
1279 
1280 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
1281 	if (ret && p) {
1282 		/* Disable KASAN checks as the object's redzone is accessed. */
1283 		kasan_disable_current();
1284 		memcpy(ret, kasan_reset_tag(p), ks);
1285 		kasan_enable_current();
1286 	}
1287 
1288 	return ret;
1289 }
1290 
1291 /**
1292  * krealloc - reallocate memory. The contents will remain unchanged.
1293  * @p: object to reallocate memory for.
1294  * @new_size: how many bytes of memory are required.
1295  * @flags: the type of memory to allocate.
1296  *
1297  * The contents of the object pointed to are preserved up to the
1298  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1299  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1300  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1301  *
1302  * Return: pointer to the allocated memory or %NULL in case of error
1303  */
1304 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
1305 {
1306 	void *ret;
1307 
1308 	if (unlikely(!new_size)) {
1309 		kfree(p);
1310 		return ZERO_SIZE_PTR;
1311 	}
1312 
1313 	ret = __do_krealloc(p, new_size, flags);
1314 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1315 		kfree(p);
1316 
1317 	return ret;
1318 }
1319 EXPORT_SYMBOL(krealloc_noprof);
1320 
1321 /**
1322  * kfree_sensitive - Clear sensitive information in memory before freeing
1323  * @p: object to free memory of
1324  *
1325  * The memory of the object @p points to is zeroed before freed.
1326  * If @p is %NULL, kfree_sensitive() does nothing.
1327  *
1328  * Note: this function zeroes the whole allocated buffer which can be a good
1329  * deal bigger than the requested buffer size passed to kmalloc(). So be
1330  * careful when using this function in performance sensitive code.
1331  */
1332 void kfree_sensitive(const void *p)
1333 {
1334 	size_t ks;
1335 	void *mem = (void *)p;
1336 
1337 	ks = ksize(mem);
1338 	if (ks) {
1339 		kasan_unpoison_range(mem, ks);
1340 		memzero_explicit(mem, ks);
1341 	}
1342 	kfree(mem);
1343 }
1344 EXPORT_SYMBOL(kfree_sensitive);
1345 
1346 size_t ksize(const void *objp)
1347 {
1348 	/*
1349 	 * We need to first check that the pointer to the object is valid.
1350 	 * The KASAN report printed from ksize() is more useful, then when
1351 	 * it's printed later when the behaviour could be undefined due to
1352 	 * a potential use-after-free or double-free.
1353 	 *
1354 	 * We use kasan_check_byte(), which is supported for the hardware
1355 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1356 	 *
1357 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1358 	 * ksize() writing to and potentially corrupting the memory region.
1359 	 *
1360 	 * We want to perform the check before __ksize(), to avoid potentially
1361 	 * crashing in __ksize() due to accessing invalid metadata.
1362 	 */
1363 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1364 		return 0;
1365 
1366 	return kfence_ksize(objp) ?: __ksize(objp);
1367 }
1368 EXPORT_SYMBOL(ksize);
1369 
1370 /* Tracepoints definitions. */
1371 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1372 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1373 EXPORT_TRACEPOINT_SYMBOL(kfree);
1374 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1375 
1376