xref: /linux/mm/slab_common.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #include "slab.h"
24 
25 enum slab_state slab_state;
26 LIST_HEAD(slab_caches);
27 DEFINE_MUTEX(slab_mutex);
28 struct kmem_cache *kmem_cache;
29 
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 				   size_t size)
33 {
34 	struct kmem_cache *s = NULL;
35 
36 	if (!name || in_interrupt() || size < sizeof(void *) ||
37 		size > KMALLOC_MAX_SIZE) {
38 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 		return -EINVAL;
40 	}
41 
42 	list_for_each_entry(s, &slab_caches, list) {
43 		char tmp;
44 		int res;
45 
46 		/*
47 		 * This happens when the module gets unloaded and doesn't
48 		 * destroy its slab cache and no-one else reuses the vmalloc
49 		 * area of the module.  Print a warning.
50 		 */
51 		res = probe_kernel_address(s->name, tmp);
52 		if (res) {
53 			pr_err("Slab cache with size %d has lost its name\n",
54 			       s->object_size);
55 			continue;
56 		}
57 
58 		/*
59 		 * For simplicity, we won't check this in the list of memcg
60 		 * caches. We have control over memcg naming, and if there
61 		 * aren't duplicates in the global list, there won't be any
62 		 * duplicates in the memcg lists as well.
63 		 */
64 		if (!memcg && !strcmp(s->name, name)) {
65 			pr_err("%s (%s): Cache name already exists.\n",
66 			       __func__, name);
67 			dump_stack();
68 			s = NULL;
69 			return -EINVAL;
70 		}
71 	}
72 
73 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
74 	return 0;
75 }
76 #else
77 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 					  const char *name, size_t size)
79 {
80 	return 0;
81 }
82 #endif
83 
84 #ifdef CONFIG_MEMCG_KMEM
85 int memcg_update_all_caches(int num_memcgs)
86 {
87 	struct kmem_cache *s;
88 	int ret = 0;
89 	mutex_lock(&slab_mutex);
90 
91 	list_for_each_entry(s, &slab_caches, list) {
92 		if (!is_root_cache(s))
93 			continue;
94 
95 		ret = memcg_update_cache_size(s, num_memcgs);
96 		/*
97 		 * See comment in memcontrol.c, memcg_update_cache_size:
98 		 * Instead of freeing the memory, we'll just leave the caches
99 		 * up to this point in an updated state.
100 		 */
101 		if (ret)
102 			goto out;
103 	}
104 
105 	memcg_update_array_size(num_memcgs);
106 out:
107 	mutex_unlock(&slab_mutex);
108 	return ret;
109 }
110 #endif
111 
112 /*
113  * Figure out what the alignment of the objects will be given a set of
114  * flags, a user specified alignment and the size of the objects.
115  */
116 unsigned long calculate_alignment(unsigned long flags,
117 		unsigned long align, unsigned long size)
118 {
119 	/*
120 	 * If the user wants hardware cache aligned objects then follow that
121 	 * suggestion if the object is sufficiently large.
122 	 *
123 	 * The hardware cache alignment cannot override the specified
124 	 * alignment though. If that is greater then use it.
125 	 */
126 	if (flags & SLAB_HWCACHE_ALIGN) {
127 		unsigned long ralign = cache_line_size();
128 		while (size <= ralign / 2)
129 			ralign /= 2;
130 		align = max(align, ralign);
131 	}
132 
133 	if (align < ARCH_SLAB_MINALIGN)
134 		align = ARCH_SLAB_MINALIGN;
135 
136 	return ALIGN(align, sizeof(void *));
137 }
138 
139 
140 /*
141  * kmem_cache_create - Create a cache.
142  * @name: A string which is used in /proc/slabinfo to identify this cache.
143  * @size: The size of objects to be created in this cache.
144  * @align: The required alignment for the objects.
145  * @flags: SLAB flags
146  * @ctor: A constructor for the objects.
147  *
148  * Returns a ptr to the cache on success, NULL on failure.
149  * Cannot be called within a interrupt, but can be interrupted.
150  * The @ctor is run when new pages are allocated by the cache.
151  *
152  * The flags are
153  *
154  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155  * to catch references to uninitialised memory.
156  *
157  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158  * for buffer overruns.
159  *
160  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161  * cacheline.  This can be beneficial if you're counting cycles as closely
162  * as davem.
163  */
164 
165 struct kmem_cache *
166 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
167 			size_t align, unsigned long flags, void (*ctor)(void *),
168 			struct kmem_cache *parent_cache)
169 {
170 	struct kmem_cache *s = NULL;
171 	int err = 0;
172 
173 	get_online_cpus();
174 	mutex_lock(&slab_mutex);
175 
176 	if (!kmem_cache_sanity_check(memcg, name, size) == 0)
177 		goto out_locked;
178 
179 	/*
180 	 * Some allocators will constraint the set of valid flags to a subset
181 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 	 * case, and we'll just provide them with a sanitized version of the
183 	 * passed flags.
184 	 */
185 	flags &= CACHE_CREATE_MASK;
186 
187 	s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
188 	if (s)
189 		goto out_locked;
190 
191 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
192 	if (s) {
193 		s->object_size = s->size = size;
194 		s->align = calculate_alignment(flags, align, size);
195 		s->ctor = ctor;
196 
197 		if (memcg_register_cache(memcg, s, parent_cache)) {
198 			kmem_cache_free(kmem_cache, s);
199 			err = -ENOMEM;
200 			goto out_locked;
201 		}
202 
203 		s->name = kstrdup(name, GFP_KERNEL);
204 		if (!s->name) {
205 			kmem_cache_free(kmem_cache, s);
206 			err = -ENOMEM;
207 			goto out_locked;
208 		}
209 
210 		err = __kmem_cache_create(s, flags);
211 		if (!err) {
212 			s->refcount = 1;
213 			list_add(&s->list, &slab_caches);
214 			memcg_cache_list_add(memcg, s);
215 		} else {
216 			kfree(s->name);
217 			kmem_cache_free(kmem_cache, s);
218 		}
219 	} else
220 		err = -ENOMEM;
221 
222 out_locked:
223 	mutex_unlock(&slab_mutex);
224 	put_online_cpus();
225 
226 	if (err) {
227 
228 		if (flags & SLAB_PANIC)
229 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
230 				name, err);
231 		else {
232 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
233 				name, err);
234 			dump_stack();
235 		}
236 
237 		return NULL;
238 	}
239 
240 	return s;
241 }
242 
243 struct kmem_cache *
244 kmem_cache_create(const char *name, size_t size, size_t align,
245 		  unsigned long flags, void (*ctor)(void *))
246 {
247 	return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
248 }
249 EXPORT_SYMBOL(kmem_cache_create);
250 
251 void kmem_cache_destroy(struct kmem_cache *s)
252 {
253 	/* Destroy all the children caches if we aren't a memcg cache */
254 	kmem_cache_destroy_memcg_children(s);
255 
256 	get_online_cpus();
257 	mutex_lock(&slab_mutex);
258 	s->refcount--;
259 	if (!s->refcount) {
260 		list_del(&s->list);
261 
262 		if (!__kmem_cache_shutdown(s)) {
263 			mutex_unlock(&slab_mutex);
264 			if (s->flags & SLAB_DESTROY_BY_RCU)
265 				rcu_barrier();
266 
267 			memcg_release_cache(s);
268 			kfree(s->name);
269 			kmem_cache_free(kmem_cache, s);
270 		} else {
271 			list_add(&s->list, &slab_caches);
272 			mutex_unlock(&slab_mutex);
273 			printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
274 				s->name);
275 			dump_stack();
276 		}
277 	} else {
278 		mutex_unlock(&slab_mutex);
279 	}
280 	put_online_cpus();
281 }
282 EXPORT_SYMBOL(kmem_cache_destroy);
283 
284 int slab_is_available(void)
285 {
286 	return slab_state >= UP;
287 }
288 
289 #ifndef CONFIG_SLOB
290 /* Create a cache during boot when no slab services are available yet */
291 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
292 		unsigned long flags)
293 {
294 	int err;
295 
296 	s->name = name;
297 	s->size = s->object_size = size;
298 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
299 	err = __kmem_cache_create(s, flags);
300 
301 	if (err)
302 		panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
303 					name, size, err);
304 
305 	s->refcount = -1;	/* Exempt from merging for now */
306 }
307 
308 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
309 				unsigned long flags)
310 {
311 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
312 
313 	if (!s)
314 		panic("Out of memory when creating slab %s\n", name);
315 
316 	create_boot_cache(s, name, size, flags);
317 	list_add(&s->list, &slab_caches);
318 	s->refcount = 1;
319 	return s;
320 }
321 
322 #endif /* !CONFIG_SLOB */
323 
324 
325 #ifdef CONFIG_SLABINFO
326 void print_slabinfo_header(struct seq_file *m)
327 {
328 	/*
329 	 * Output format version, so at least we can change it
330 	 * without _too_ many complaints.
331 	 */
332 #ifdef CONFIG_DEBUG_SLAB
333 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
334 #else
335 	seq_puts(m, "slabinfo - version: 2.1\n");
336 #endif
337 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
338 		 "<objperslab> <pagesperslab>");
339 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
340 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
341 #ifdef CONFIG_DEBUG_SLAB
342 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
343 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
344 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
345 #endif
346 	seq_putc(m, '\n');
347 }
348 
349 static void *s_start(struct seq_file *m, loff_t *pos)
350 {
351 	loff_t n = *pos;
352 
353 	mutex_lock(&slab_mutex);
354 	if (!n)
355 		print_slabinfo_header(m);
356 
357 	return seq_list_start(&slab_caches, *pos);
358 }
359 
360 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
361 {
362 	return seq_list_next(p, &slab_caches, pos);
363 }
364 
365 static void s_stop(struct seq_file *m, void *p)
366 {
367 	mutex_unlock(&slab_mutex);
368 }
369 
370 static void
371 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
372 {
373 	struct kmem_cache *c;
374 	struct slabinfo sinfo;
375 	int i;
376 
377 	if (!is_root_cache(s))
378 		return;
379 
380 	for_each_memcg_cache_index(i) {
381 		c = cache_from_memcg(s, i);
382 		if (!c)
383 			continue;
384 
385 		memset(&sinfo, 0, sizeof(sinfo));
386 		get_slabinfo(c, &sinfo);
387 
388 		info->active_slabs += sinfo.active_slabs;
389 		info->num_slabs += sinfo.num_slabs;
390 		info->shared_avail += sinfo.shared_avail;
391 		info->active_objs += sinfo.active_objs;
392 		info->num_objs += sinfo.num_objs;
393 	}
394 }
395 
396 int cache_show(struct kmem_cache *s, struct seq_file *m)
397 {
398 	struct slabinfo sinfo;
399 
400 	memset(&sinfo, 0, sizeof(sinfo));
401 	get_slabinfo(s, &sinfo);
402 
403 	memcg_accumulate_slabinfo(s, &sinfo);
404 
405 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
406 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
407 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
408 
409 	seq_printf(m, " : tunables %4u %4u %4u",
410 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
411 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
412 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
413 	slabinfo_show_stats(m, s);
414 	seq_putc(m, '\n');
415 	return 0;
416 }
417 
418 static int s_show(struct seq_file *m, void *p)
419 {
420 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
421 
422 	if (!is_root_cache(s))
423 		return 0;
424 	return cache_show(s, m);
425 }
426 
427 /*
428  * slabinfo_op - iterator that generates /proc/slabinfo
429  *
430  * Output layout:
431  * cache-name
432  * num-active-objs
433  * total-objs
434  * object size
435  * num-active-slabs
436  * total-slabs
437  * num-pages-per-slab
438  * + further values on SMP and with statistics enabled
439  */
440 static const struct seq_operations slabinfo_op = {
441 	.start = s_start,
442 	.next = s_next,
443 	.stop = s_stop,
444 	.show = s_show,
445 };
446 
447 static int slabinfo_open(struct inode *inode, struct file *file)
448 {
449 	return seq_open(file, &slabinfo_op);
450 }
451 
452 static const struct file_operations proc_slabinfo_operations = {
453 	.open		= slabinfo_open,
454 	.read		= seq_read,
455 	.write          = slabinfo_write,
456 	.llseek		= seq_lseek,
457 	.release	= seq_release,
458 };
459 
460 static int __init slab_proc_init(void)
461 {
462 	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
463 	return 0;
464 }
465 module_init(slab_proc_init);
466 #endif /* CONFIG_SLABINFO */
467