xref: /linux/mm/slab_common.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
25 
26 #include "slab.h"
27 
28 enum slab_state slab_state;
29 LIST_HEAD(slab_caches);
30 DEFINE_MUTEX(slab_mutex);
31 struct kmem_cache *kmem_cache;
32 
33 /*
34  * Set of flags that will prevent slab merging
35  */
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 		SLAB_FAILSLAB)
39 
40 #define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 		SLAB_CACHE_DMA | SLAB_NOTRACK)
42 
43 /*
44  * Merge control. If this is set then no merging of slab caches will occur.
45  * (Could be removed. This was introduced to pacify the merge skeptics.)
46  */
47 static int slab_nomerge;
48 
49 static int __init setup_slab_nomerge(char *str)
50 {
51 	slab_nomerge = 1;
52 	return 1;
53 }
54 
55 #ifdef CONFIG_SLUB
56 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57 #endif
58 
59 __setup("slab_nomerge", setup_slab_nomerge);
60 
61 /*
62  * Determine the size of a slab object
63  */
64 unsigned int kmem_cache_size(struct kmem_cache *s)
65 {
66 	return s->object_size;
67 }
68 EXPORT_SYMBOL(kmem_cache_size);
69 
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name, size_t size)
72 {
73 	struct kmem_cache *s = NULL;
74 
75 	if (!name || in_interrupt() || size < sizeof(void *) ||
76 		size > KMALLOC_MAX_SIZE) {
77 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 		return -EINVAL;
79 	}
80 
81 	list_for_each_entry(s, &slab_caches, list) {
82 		char tmp;
83 		int res;
84 
85 		/*
86 		 * This happens when the module gets unloaded and doesn't
87 		 * destroy its slab cache and no-one else reuses the vmalloc
88 		 * area of the module.  Print a warning.
89 		 */
90 		res = probe_kernel_address(s->name, tmp);
91 		if (res) {
92 			pr_err("Slab cache with size %d has lost its name\n",
93 			       s->object_size);
94 			continue;
95 		}
96 	}
97 
98 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 	return 0;
100 }
101 #else
102 static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 {
104 	return 0;
105 }
106 #endif
107 
108 #ifdef CONFIG_MEMCG_KMEM
109 static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
110 		struct kmem_cache *s, struct kmem_cache *root_cache)
111 {
112 	size_t size;
113 
114 	if (!memcg_kmem_enabled())
115 		return 0;
116 
117 	if (!memcg) {
118 		size = offsetof(struct memcg_cache_params, memcg_caches);
119 		size += memcg_limited_groups_array_size * sizeof(void *);
120 	} else
121 		size = sizeof(struct memcg_cache_params);
122 
123 	s->memcg_params = kzalloc(size, GFP_KERNEL);
124 	if (!s->memcg_params)
125 		return -ENOMEM;
126 
127 	if (memcg) {
128 		s->memcg_params->memcg = memcg;
129 		s->memcg_params->root_cache = root_cache;
130 	} else
131 		s->memcg_params->is_root_cache = true;
132 
133 	return 0;
134 }
135 
136 static void memcg_free_cache_params(struct kmem_cache *s)
137 {
138 	kfree(s->memcg_params);
139 }
140 
141 static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
142 {
143 	int size;
144 	struct memcg_cache_params *new_params, *cur_params;
145 
146 	BUG_ON(!is_root_cache(s));
147 
148 	size = offsetof(struct memcg_cache_params, memcg_caches);
149 	size += num_memcgs * sizeof(void *);
150 
151 	new_params = kzalloc(size, GFP_KERNEL);
152 	if (!new_params)
153 		return -ENOMEM;
154 
155 	cur_params = s->memcg_params;
156 	memcpy(new_params->memcg_caches, cur_params->memcg_caches,
157 	       memcg_limited_groups_array_size * sizeof(void *));
158 
159 	new_params->is_root_cache = true;
160 
161 	rcu_assign_pointer(s->memcg_params, new_params);
162 	if (cur_params)
163 		kfree_rcu(cur_params, rcu_head);
164 
165 	return 0;
166 }
167 
168 int memcg_update_all_caches(int num_memcgs)
169 {
170 	struct kmem_cache *s;
171 	int ret = 0;
172 	mutex_lock(&slab_mutex);
173 
174 	list_for_each_entry(s, &slab_caches, list) {
175 		if (!is_root_cache(s))
176 			continue;
177 
178 		ret = memcg_update_cache_params(s, num_memcgs);
179 		/*
180 		 * Instead of freeing the memory, we'll just leave the caches
181 		 * up to this point in an updated state.
182 		 */
183 		if (ret)
184 			goto out;
185 	}
186 
187 	memcg_update_array_size(num_memcgs);
188 out:
189 	mutex_unlock(&slab_mutex);
190 	return ret;
191 }
192 #else
193 static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
194 		struct kmem_cache *s, struct kmem_cache *root_cache)
195 {
196 	return 0;
197 }
198 
199 static inline void memcg_free_cache_params(struct kmem_cache *s)
200 {
201 }
202 #endif /* CONFIG_MEMCG_KMEM */
203 
204 /*
205  * Find a mergeable slab cache
206  */
207 int slab_unmergeable(struct kmem_cache *s)
208 {
209 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
210 		return 1;
211 
212 	if (!is_root_cache(s))
213 		return 1;
214 
215 	if (s->ctor)
216 		return 1;
217 
218 	/*
219 	 * We may have set a slab to be unmergeable during bootstrap.
220 	 */
221 	if (s->refcount < 0)
222 		return 1;
223 
224 	return 0;
225 }
226 
227 struct kmem_cache *find_mergeable(size_t size, size_t align,
228 		unsigned long flags, const char *name, void (*ctor)(void *))
229 {
230 	struct kmem_cache *s;
231 
232 	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
233 		return NULL;
234 
235 	if (ctor)
236 		return NULL;
237 
238 	size = ALIGN(size, sizeof(void *));
239 	align = calculate_alignment(flags, align, size);
240 	size = ALIGN(size, align);
241 	flags = kmem_cache_flags(size, flags, name, NULL);
242 
243 	list_for_each_entry_reverse(s, &slab_caches, list) {
244 		if (slab_unmergeable(s))
245 			continue;
246 
247 		if (size > s->size)
248 			continue;
249 
250 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
251 			continue;
252 		/*
253 		 * Check if alignment is compatible.
254 		 * Courtesy of Adrian Drzewiecki
255 		 */
256 		if ((s->size & ~(align - 1)) != s->size)
257 			continue;
258 
259 		if (s->size - size >= sizeof(void *))
260 			continue;
261 
262 		if (IS_ENABLED(CONFIG_SLAB) && align &&
263 			(align > s->align || s->align % align))
264 			continue;
265 
266 		return s;
267 	}
268 	return NULL;
269 }
270 
271 /*
272  * Figure out what the alignment of the objects will be given a set of
273  * flags, a user specified alignment and the size of the objects.
274  */
275 unsigned long calculate_alignment(unsigned long flags,
276 		unsigned long align, unsigned long size)
277 {
278 	/*
279 	 * If the user wants hardware cache aligned objects then follow that
280 	 * suggestion if the object is sufficiently large.
281 	 *
282 	 * The hardware cache alignment cannot override the specified
283 	 * alignment though. If that is greater then use it.
284 	 */
285 	if (flags & SLAB_HWCACHE_ALIGN) {
286 		unsigned long ralign = cache_line_size();
287 		while (size <= ralign / 2)
288 			ralign /= 2;
289 		align = max(align, ralign);
290 	}
291 
292 	if (align < ARCH_SLAB_MINALIGN)
293 		align = ARCH_SLAB_MINALIGN;
294 
295 	return ALIGN(align, sizeof(void *));
296 }
297 
298 static struct kmem_cache *
299 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
300 		     unsigned long flags, void (*ctor)(void *),
301 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
302 {
303 	struct kmem_cache *s;
304 	int err;
305 
306 	err = -ENOMEM;
307 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
308 	if (!s)
309 		goto out;
310 
311 	s->name = name;
312 	s->object_size = object_size;
313 	s->size = size;
314 	s->align = align;
315 	s->ctor = ctor;
316 
317 	err = memcg_alloc_cache_params(memcg, s, root_cache);
318 	if (err)
319 		goto out_free_cache;
320 
321 	err = __kmem_cache_create(s, flags);
322 	if (err)
323 		goto out_free_cache;
324 
325 	s->refcount = 1;
326 	list_add(&s->list, &slab_caches);
327 out:
328 	if (err)
329 		return ERR_PTR(err);
330 	return s;
331 
332 out_free_cache:
333 	memcg_free_cache_params(s);
334 	kmem_cache_free(kmem_cache, s);
335 	goto out;
336 }
337 
338 /*
339  * kmem_cache_create - Create a cache.
340  * @name: A string which is used in /proc/slabinfo to identify this cache.
341  * @size: The size of objects to be created in this cache.
342  * @align: The required alignment for the objects.
343  * @flags: SLAB flags
344  * @ctor: A constructor for the objects.
345  *
346  * Returns a ptr to the cache on success, NULL on failure.
347  * Cannot be called within a interrupt, but can be interrupted.
348  * The @ctor is run when new pages are allocated by the cache.
349  *
350  * The flags are
351  *
352  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
353  * to catch references to uninitialised memory.
354  *
355  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
356  * for buffer overruns.
357  *
358  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
359  * cacheline.  This can be beneficial if you're counting cycles as closely
360  * as davem.
361  */
362 struct kmem_cache *
363 kmem_cache_create(const char *name, size_t size, size_t align,
364 		  unsigned long flags, void (*ctor)(void *))
365 {
366 	struct kmem_cache *s;
367 	char *cache_name;
368 	int err;
369 
370 	get_online_cpus();
371 	get_online_mems();
372 
373 	mutex_lock(&slab_mutex);
374 
375 	err = kmem_cache_sanity_check(name, size);
376 	if (err) {
377 		s = NULL;	/* suppress uninit var warning */
378 		goto out_unlock;
379 	}
380 
381 	/*
382 	 * Some allocators will constraint the set of valid flags to a subset
383 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
384 	 * case, and we'll just provide them with a sanitized version of the
385 	 * passed flags.
386 	 */
387 	flags &= CACHE_CREATE_MASK;
388 
389 	s = __kmem_cache_alias(name, size, align, flags, ctor);
390 	if (s)
391 		goto out_unlock;
392 
393 	cache_name = kstrdup(name, GFP_KERNEL);
394 	if (!cache_name) {
395 		err = -ENOMEM;
396 		goto out_unlock;
397 	}
398 
399 	s = do_kmem_cache_create(cache_name, size, size,
400 				 calculate_alignment(flags, align, size),
401 				 flags, ctor, NULL, NULL);
402 	if (IS_ERR(s)) {
403 		err = PTR_ERR(s);
404 		kfree(cache_name);
405 	}
406 
407 out_unlock:
408 	mutex_unlock(&slab_mutex);
409 
410 	put_online_mems();
411 	put_online_cpus();
412 
413 	if (err) {
414 		if (flags & SLAB_PANIC)
415 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
416 				name, err);
417 		else {
418 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
419 				name, err);
420 			dump_stack();
421 		}
422 		return NULL;
423 	}
424 	return s;
425 }
426 EXPORT_SYMBOL(kmem_cache_create);
427 
428 static int do_kmem_cache_shutdown(struct kmem_cache *s,
429 		struct list_head *release, bool *need_rcu_barrier)
430 {
431 	if (__kmem_cache_shutdown(s) != 0) {
432 		printk(KERN_ERR "kmem_cache_destroy %s: "
433 		       "Slab cache still has objects\n", s->name);
434 		dump_stack();
435 		return -EBUSY;
436 	}
437 
438 	if (s->flags & SLAB_DESTROY_BY_RCU)
439 		*need_rcu_barrier = true;
440 
441 #ifdef CONFIG_MEMCG_KMEM
442 	if (!is_root_cache(s)) {
443 		struct kmem_cache *root_cache = s->memcg_params->root_cache;
444 		int memcg_id = memcg_cache_id(s->memcg_params->memcg);
445 
446 		BUG_ON(root_cache->memcg_params->memcg_caches[memcg_id] != s);
447 		root_cache->memcg_params->memcg_caches[memcg_id] = NULL;
448 	}
449 #endif
450 	list_move(&s->list, release);
451 	return 0;
452 }
453 
454 static void do_kmem_cache_release(struct list_head *release,
455 				  bool need_rcu_barrier)
456 {
457 	struct kmem_cache *s, *s2;
458 
459 	if (need_rcu_barrier)
460 		rcu_barrier();
461 
462 	list_for_each_entry_safe(s, s2, release, list) {
463 #ifdef SLAB_SUPPORTS_SYSFS
464 		sysfs_slab_remove(s);
465 #else
466 		slab_kmem_cache_release(s);
467 #endif
468 	}
469 }
470 
471 #ifdef CONFIG_MEMCG_KMEM
472 /*
473  * memcg_create_kmem_cache - Create a cache for a memory cgroup.
474  * @memcg: The memory cgroup the new cache is for.
475  * @root_cache: The parent of the new cache.
476  *
477  * This function attempts to create a kmem cache that will serve allocation
478  * requests going from @memcg to @root_cache. The new cache inherits properties
479  * from its parent.
480  */
481 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
482 			     struct kmem_cache *root_cache)
483 {
484 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
485 	int memcg_id = memcg_cache_id(memcg);
486 	struct kmem_cache *s = NULL;
487 	char *cache_name;
488 
489 	get_online_cpus();
490 	get_online_mems();
491 
492 	mutex_lock(&slab_mutex);
493 
494 	/*
495 	 * Since per-memcg caches are created asynchronously on first
496 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
497 	 * create the same cache, but only one of them may succeed.
498 	 */
499 	if (cache_from_memcg_idx(root_cache, memcg_id))
500 		goto out_unlock;
501 
502 	cgroup_name(mem_cgroup_css(memcg)->cgroup,
503 		    memcg_name_buf, sizeof(memcg_name_buf));
504 	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
505 			       memcg_cache_id(memcg), memcg_name_buf);
506 	if (!cache_name)
507 		goto out_unlock;
508 
509 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
510 				 root_cache->size, root_cache->align,
511 				 root_cache->flags, root_cache->ctor,
512 				 memcg, root_cache);
513 	/*
514 	 * If we could not create a memcg cache, do not complain, because
515 	 * that's not critical at all as we can always proceed with the root
516 	 * cache.
517 	 */
518 	if (IS_ERR(s)) {
519 		kfree(cache_name);
520 		goto out_unlock;
521 	}
522 
523 	/*
524 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
525 	 * barrier here to ensure nobody will see the kmem_cache partially
526 	 * initialized.
527 	 */
528 	smp_wmb();
529 	root_cache->memcg_params->memcg_caches[memcg_id] = s;
530 
531 out_unlock:
532 	mutex_unlock(&slab_mutex);
533 
534 	put_online_mems();
535 	put_online_cpus();
536 }
537 
538 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
539 {
540 	LIST_HEAD(release);
541 	bool need_rcu_barrier = false;
542 	struct kmem_cache *s, *s2;
543 
544 	get_online_cpus();
545 	get_online_mems();
546 
547 	mutex_lock(&slab_mutex);
548 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
549 		if (is_root_cache(s) || s->memcg_params->memcg != memcg)
550 			continue;
551 		/*
552 		 * The cgroup is about to be freed and therefore has no charges
553 		 * left. Hence, all its caches must be empty by now.
554 		 */
555 		BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
556 	}
557 	mutex_unlock(&slab_mutex);
558 
559 	put_online_mems();
560 	put_online_cpus();
561 
562 	do_kmem_cache_release(&release, need_rcu_barrier);
563 }
564 #endif /* CONFIG_MEMCG_KMEM */
565 
566 void slab_kmem_cache_release(struct kmem_cache *s)
567 {
568 	memcg_free_cache_params(s);
569 	kfree(s->name);
570 	kmem_cache_free(kmem_cache, s);
571 }
572 
573 void kmem_cache_destroy(struct kmem_cache *s)
574 {
575 	int i;
576 	LIST_HEAD(release);
577 	bool need_rcu_barrier = false;
578 	bool busy = false;
579 
580 	get_online_cpus();
581 	get_online_mems();
582 
583 	mutex_lock(&slab_mutex);
584 
585 	s->refcount--;
586 	if (s->refcount)
587 		goto out_unlock;
588 
589 	for_each_memcg_cache_index(i) {
590 		struct kmem_cache *c = cache_from_memcg_idx(s, i);
591 
592 		if (c && do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
593 			busy = true;
594 	}
595 
596 	if (!busy)
597 		do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
598 
599 out_unlock:
600 	mutex_unlock(&slab_mutex);
601 
602 	put_online_mems();
603 	put_online_cpus();
604 
605 	do_kmem_cache_release(&release, need_rcu_barrier);
606 }
607 EXPORT_SYMBOL(kmem_cache_destroy);
608 
609 /**
610  * kmem_cache_shrink - Shrink a cache.
611  * @cachep: The cache to shrink.
612  *
613  * Releases as many slabs as possible for a cache.
614  * To help debugging, a zero exit status indicates all slabs were released.
615  */
616 int kmem_cache_shrink(struct kmem_cache *cachep)
617 {
618 	int ret;
619 
620 	get_online_cpus();
621 	get_online_mems();
622 	ret = __kmem_cache_shrink(cachep);
623 	put_online_mems();
624 	put_online_cpus();
625 	return ret;
626 }
627 EXPORT_SYMBOL(kmem_cache_shrink);
628 
629 int slab_is_available(void)
630 {
631 	return slab_state >= UP;
632 }
633 
634 #ifndef CONFIG_SLOB
635 /* Create a cache during boot when no slab services are available yet */
636 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
637 		unsigned long flags)
638 {
639 	int err;
640 
641 	s->name = name;
642 	s->size = s->object_size = size;
643 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
644 	err = __kmem_cache_create(s, flags);
645 
646 	if (err)
647 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
648 					name, size, err);
649 
650 	s->refcount = -1;	/* Exempt from merging for now */
651 }
652 
653 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
654 				unsigned long flags)
655 {
656 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
657 
658 	if (!s)
659 		panic("Out of memory when creating slab %s\n", name);
660 
661 	create_boot_cache(s, name, size, flags);
662 	list_add(&s->list, &slab_caches);
663 	s->refcount = 1;
664 	return s;
665 }
666 
667 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
668 EXPORT_SYMBOL(kmalloc_caches);
669 
670 #ifdef CONFIG_ZONE_DMA
671 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
672 EXPORT_SYMBOL(kmalloc_dma_caches);
673 #endif
674 
675 /*
676  * Conversion table for small slabs sizes / 8 to the index in the
677  * kmalloc array. This is necessary for slabs < 192 since we have non power
678  * of two cache sizes there. The size of larger slabs can be determined using
679  * fls.
680  */
681 static s8 size_index[24] = {
682 	3,	/* 8 */
683 	4,	/* 16 */
684 	5,	/* 24 */
685 	5,	/* 32 */
686 	6,	/* 40 */
687 	6,	/* 48 */
688 	6,	/* 56 */
689 	6,	/* 64 */
690 	1,	/* 72 */
691 	1,	/* 80 */
692 	1,	/* 88 */
693 	1,	/* 96 */
694 	7,	/* 104 */
695 	7,	/* 112 */
696 	7,	/* 120 */
697 	7,	/* 128 */
698 	2,	/* 136 */
699 	2,	/* 144 */
700 	2,	/* 152 */
701 	2,	/* 160 */
702 	2,	/* 168 */
703 	2,	/* 176 */
704 	2,	/* 184 */
705 	2	/* 192 */
706 };
707 
708 static inline int size_index_elem(size_t bytes)
709 {
710 	return (bytes - 1) / 8;
711 }
712 
713 /*
714  * Find the kmem_cache structure that serves a given size of
715  * allocation
716  */
717 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
718 {
719 	int index;
720 
721 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
722 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
723 		return NULL;
724 	}
725 
726 	if (size <= 192) {
727 		if (!size)
728 			return ZERO_SIZE_PTR;
729 
730 		index = size_index[size_index_elem(size)];
731 	} else
732 		index = fls(size - 1);
733 
734 #ifdef CONFIG_ZONE_DMA
735 	if (unlikely((flags & GFP_DMA)))
736 		return kmalloc_dma_caches[index];
737 
738 #endif
739 	return kmalloc_caches[index];
740 }
741 
742 /*
743  * Create the kmalloc array. Some of the regular kmalloc arrays
744  * may already have been created because they were needed to
745  * enable allocations for slab creation.
746  */
747 void __init create_kmalloc_caches(unsigned long flags)
748 {
749 	int i;
750 
751 	/*
752 	 * Patch up the size_index table if we have strange large alignment
753 	 * requirements for the kmalloc array. This is only the case for
754 	 * MIPS it seems. The standard arches will not generate any code here.
755 	 *
756 	 * Largest permitted alignment is 256 bytes due to the way we
757 	 * handle the index determination for the smaller caches.
758 	 *
759 	 * Make sure that nothing crazy happens if someone starts tinkering
760 	 * around with ARCH_KMALLOC_MINALIGN
761 	 */
762 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
763 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
764 
765 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
766 		int elem = size_index_elem(i);
767 
768 		if (elem >= ARRAY_SIZE(size_index))
769 			break;
770 		size_index[elem] = KMALLOC_SHIFT_LOW;
771 	}
772 
773 	if (KMALLOC_MIN_SIZE >= 64) {
774 		/*
775 		 * The 96 byte size cache is not used if the alignment
776 		 * is 64 byte.
777 		 */
778 		for (i = 64 + 8; i <= 96; i += 8)
779 			size_index[size_index_elem(i)] = 7;
780 
781 	}
782 
783 	if (KMALLOC_MIN_SIZE >= 128) {
784 		/*
785 		 * The 192 byte sized cache is not used if the alignment
786 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
787 		 * instead.
788 		 */
789 		for (i = 128 + 8; i <= 192; i += 8)
790 			size_index[size_index_elem(i)] = 8;
791 	}
792 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
793 		if (!kmalloc_caches[i]) {
794 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
795 							1 << i, flags);
796 		}
797 
798 		/*
799 		 * Caches that are not of the two-to-the-power-of size.
800 		 * These have to be created immediately after the
801 		 * earlier power of two caches
802 		 */
803 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
804 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
805 
806 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
807 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
808 	}
809 
810 	/* Kmalloc array is now usable */
811 	slab_state = UP;
812 
813 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
814 		struct kmem_cache *s = kmalloc_caches[i];
815 		char *n;
816 
817 		if (s) {
818 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
819 
820 			BUG_ON(!n);
821 			s->name = n;
822 		}
823 	}
824 
825 #ifdef CONFIG_ZONE_DMA
826 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
827 		struct kmem_cache *s = kmalloc_caches[i];
828 
829 		if (s) {
830 			int size = kmalloc_size(i);
831 			char *n = kasprintf(GFP_NOWAIT,
832 				 "dma-kmalloc-%d", size);
833 
834 			BUG_ON(!n);
835 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
836 				size, SLAB_CACHE_DMA | flags);
837 		}
838 	}
839 #endif
840 }
841 #endif /* !CONFIG_SLOB */
842 
843 /*
844  * To avoid unnecessary overhead, we pass through large allocation requests
845  * directly to the page allocator. We use __GFP_COMP, because we will need to
846  * know the allocation order to free the pages properly in kfree.
847  */
848 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
849 {
850 	void *ret;
851 	struct page *page;
852 
853 	flags |= __GFP_COMP;
854 	page = alloc_kmem_pages(flags, order);
855 	ret = page ? page_address(page) : NULL;
856 	kmemleak_alloc(ret, size, 1, flags);
857 	return ret;
858 }
859 EXPORT_SYMBOL(kmalloc_order);
860 
861 #ifdef CONFIG_TRACING
862 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
863 {
864 	void *ret = kmalloc_order(size, flags, order);
865 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
866 	return ret;
867 }
868 EXPORT_SYMBOL(kmalloc_order_trace);
869 #endif
870 
871 #ifdef CONFIG_SLABINFO
872 
873 #ifdef CONFIG_SLAB
874 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
875 #else
876 #define SLABINFO_RIGHTS S_IRUSR
877 #endif
878 
879 static void print_slabinfo_header(struct seq_file *m)
880 {
881 	/*
882 	 * Output format version, so at least we can change it
883 	 * without _too_ many complaints.
884 	 */
885 #ifdef CONFIG_DEBUG_SLAB
886 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
887 #else
888 	seq_puts(m, "slabinfo - version: 2.1\n");
889 #endif
890 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
891 		 "<objperslab> <pagesperslab>");
892 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
893 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
894 #ifdef CONFIG_DEBUG_SLAB
895 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
896 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
897 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
898 #endif
899 	seq_putc(m, '\n');
900 }
901 
902 void *slab_start(struct seq_file *m, loff_t *pos)
903 {
904 	mutex_lock(&slab_mutex);
905 	return seq_list_start(&slab_caches, *pos);
906 }
907 
908 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
909 {
910 	return seq_list_next(p, &slab_caches, pos);
911 }
912 
913 void slab_stop(struct seq_file *m, void *p)
914 {
915 	mutex_unlock(&slab_mutex);
916 }
917 
918 static void
919 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
920 {
921 	struct kmem_cache *c;
922 	struct slabinfo sinfo;
923 	int i;
924 
925 	if (!is_root_cache(s))
926 		return;
927 
928 	for_each_memcg_cache_index(i) {
929 		c = cache_from_memcg_idx(s, i);
930 		if (!c)
931 			continue;
932 
933 		memset(&sinfo, 0, sizeof(sinfo));
934 		get_slabinfo(c, &sinfo);
935 
936 		info->active_slabs += sinfo.active_slabs;
937 		info->num_slabs += sinfo.num_slabs;
938 		info->shared_avail += sinfo.shared_avail;
939 		info->active_objs += sinfo.active_objs;
940 		info->num_objs += sinfo.num_objs;
941 	}
942 }
943 
944 static void cache_show(struct kmem_cache *s, struct seq_file *m)
945 {
946 	struct slabinfo sinfo;
947 
948 	memset(&sinfo, 0, sizeof(sinfo));
949 	get_slabinfo(s, &sinfo);
950 
951 	memcg_accumulate_slabinfo(s, &sinfo);
952 
953 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
954 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
955 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
956 
957 	seq_printf(m, " : tunables %4u %4u %4u",
958 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
959 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
960 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
961 	slabinfo_show_stats(m, s);
962 	seq_putc(m, '\n');
963 }
964 
965 static int slab_show(struct seq_file *m, void *p)
966 {
967 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
968 
969 	if (p == slab_caches.next)
970 		print_slabinfo_header(m);
971 	if (is_root_cache(s))
972 		cache_show(s, m);
973 	return 0;
974 }
975 
976 #ifdef CONFIG_MEMCG_KMEM
977 int memcg_slab_show(struct seq_file *m, void *p)
978 {
979 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
980 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
981 
982 	if (p == slab_caches.next)
983 		print_slabinfo_header(m);
984 	if (!is_root_cache(s) && s->memcg_params->memcg == memcg)
985 		cache_show(s, m);
986 	return 0;
987 }
988 #endif
989 
990 /*
991  * slabinfo_op - iterator that generates /proc/slabinfo
992  *
993  * Output layout:
994  * cache-name
995  * num-active-objs
996  * total-objs
997  * object size
998  * num-active-slabs
999  * total-slabs
1000  * num-pages-per-slab
1001  * + further values on SMP and with statistics enabled
1002  */
1003 static const struct seq_operations slabinfo_op = {
1004 	.start = slab_start,
1005 	.next = slab_next,
1006 	.stop = slab_stop,
1007 	.show = slab_show,
1008 };
1009 
1010 static int slabinfo_open(struct inode *inode, struct file *file)
1011 {
1012 	return seq_open(file, &slabinfo_op);
1013 }
1014 
1015 static const struct file_operations proc_slabinfo_operations = {
1016 	.open		= slabinfo_open,
1017 	.read		= seq_read,
1018 	.write          = slabinfo_write,
1019 	.llseek		= seq_lseek,
1020 	.release	= seq_release,
1021 };
1022 
1023 static int __init slab_proc_init(void)
1024 {
1025 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1026 						&proc_slabinfo_operations);
1027 	return 0;
1028 }
1029 module_init(slab_proc_init);
1030 #endif /* CONFIG_SLABINFO */
1031 
1032 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1033 					   gfp_t flags)
1034 {
1035 	void *ret;
1036 	size_t ks = 0;
1037 
1038 	if (p)
1039 		ks = ksize(p);
1040 
1041 	if (ks >= new_size)
1042 		return (void *)p;
1043 
1044 	ret = kmalloc_track_caller(new_size, flags);
1045 	if (ret && p)
1046 		memcpy(ret, p, ks);
1047 
1048 	return ret;
1049 }
1050 
1051 /**
1052  * __krealloc - like krealloc() but don't free @p.
1053  * @p: object to reallocate memory for.
1054  * @new_size: how many bytes of memory are required.
1055  * @flags: the type of memory to allocate.
1056  *
1057  * This function is like krealloc() except it never frees the originally
1058  * allocated buffer. Use this if you don't want to free the buffer immediately
1059  * like, for example, with RCU.
1060  */
1061 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1062 {
1063 	if (unlikely(!new_size))
1064 		return ZERO_SIZE_PTR;
1065 
1066 	return __do_krealloc(p, new_size, flags);
1067 
1068 }
1069 EXPORT_SYMBOL(__krealloc);
1070 
1071 /**
1072  * krealloc - reallocate memory. The contents will remain unchanged.
1073  * @p: object to reallocate memory for.
1074  * @new_size: how many bytes of memory are required.
1075  * @flags: the type of memory to allocate.
1076  *
1077  * The contents of the object pointed to are preserved up to the
1078  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1079  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1080  * %NULL pointer, the object pointed to is freed.
1081  */
1082 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1083 {
1084 	void *ret;
1085 
1086 	if (unlikely(!new_size)) {
1087 		kfree(p);
1088 		return ZERO_SIZE_PTR;
1089 	}
1090 
1091 	ret = __do_krealloc(p, new_size, flags);
1092 	if (ret && p != ret)
1093 		kfree(p);
1094 
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL(krealloc);
1098 
1099 /**
1100  * kzfree - like kfree but zero memory
1101  * @p: object to free memory of
1102  *
1103  * The memory of the object @p points to is zeroed before freed.
1104  * If @p is %NULL, kzfree() does nothing.
1105  *
1106  * Note: this function zeroes the whole allocated buffer which can be a good
1107  * deal bigger than the requested buffer size passed to kmalloc(). So be
1108  * careful when using this function in performance sensitive code.
1109  */
1110 void kzfree(const void *p)
1111 {
1112 	size_t ks;
1113 	void *mem = (void *)p;
1114 
1115 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1116 		return;
1117 	ks = ksize(mem);
1118 	memset(mem, 0, ks);
1119 	kfree(mem);
1120 }
1121 EXPORT_SYMBOL(kzfree);
1122 
1123 /* Tracepoints definitions. */
1124 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1125 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1126 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1127 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1128 EXPORT_TRACEPOINT_SYMBOL(kfree);
1129 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1130