xref: /linux/mm/slab_common.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * Slab allocator functions that are independent of the allocator strategy
3  *
4  * (C) 2012 Christoph Lameter <cl@linux.com>
5  */
6 #include <linux/slab.h>
7 
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
21 #include <linux/memcontrol.h>
22 #include <trace/events/kmem.h>
23 
24 #include "slab.h"
25 
26 enum slab_state slab_state;
27 LIST_HEAD(slab_caches);
28 DEFINE_MUTEX(slab_mutex);
29 struct kmem_cache *kmem_cache;
30 
31 #ifdef CONFIG_DEBUG_VM
32 static int kmem_cache_sanity_check(const char *name, size_t size)
33 {
34 	struct kmem_cache *s = NULL;
35 
36 	if (!name || in_interrupt() || size < sizeof(void *) ||
37 		size > KMALLOC_MAX_SIZE) {
38 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39 		return -EINVAL;
40 	}
41 
42 	list_for_each_entry(s, &slab_caches, list) {
43 		char tmp;
44 		int res;
45 
46 		/*
47 		 * This happens when the module gets unloaded and doesn't
48 		 * destroy its slab cache and no-one else reuses the vmalloc
49 		 * area of the module.  Print a warning.
50 		 */
51 		res = probe_kernel_address(s->name, tmp);
52 		if (res) {
53 			pr_err("Slab cache with size %d has lost its name\n",
54 			       s->object_size);
55 			continue;
56 		}
57 
58 #if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59 		if (!strcmp(s->name, name)) {
60 			pr_err("%s (%s): Cache name already exists.\n",
61 			       __func__, name);
62 			dump_stack();
63 			s = NULL;
64 			return -EINVAL;
65 		}
66 #endif
67 	}
68 
69 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
70 	return 0;
71 }
72 #else
73 static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 {
75 	return 0;
76 }
77 #endif
78 
79 #ifdef CONFIG_MEMCG_KMEM
80 int memcg_update_all_caches(int num_memcgs)
81 {
82 	struct kmem_cache *s;
83 	int ret = 0;
84 	mutex_lock(&slab_mutex);
85 
86 	list_for_each_entry(s, &slab_caches, list) {
87 		if (!is_root_cache(s))
88 			continue;
89 
90 		ret = memcg_update_cache_size(s, num_memcgs);
91 		/*
92 		 * See comment in memcontrol.c, memcg_update_cache_size:
93 		 * Instead of freeing the memory, we'll just leave the caches
94 		 * up to this point in an updated state.
95 		 */
96 		if (ret)
97 			goto out;
98 	}
99 
100 	memcg_update_array_size(num_memcgs);
101 out:
102 	mutex_unlock(&slab_mutex);
103 	return ret;
104 }
105 #endif
106 
107 /*
108  * Figure out what the alignment of the objects will be given a set of
109  * flags, a user specified alignment and the size of the objects.
110  */
111 unsigned long calculate_alignment(unsigned long flags,
112 		unsigned long align, unsigned long size)
113 {
114 	/*
115 	 * If the user wants hardware cache aligned objects then follow that
116 	 * suggestion if the object is sufficiently large.
117 	 *
118 	 * The hardware cache alignment cannot override the specified
119 	 * alignment though. If that is greater then use it.
120 	 */
121 	if (flags & SLAB_HWCACHE_ALIGN) {
122 		unsigned long ralign = cache_line_size();
123 		while (size <= ralign / 2)
124 			ralign /= 2;
125 		align = max(align, ralign);
126 	}
127 
128 	if (align < ARCH_SLAB_MINALIGN)
129 		align = ARCH_SLAB_MINALIGN;
130 
131 	return ALIGN(align, sizeof(void *));
132 }
133 
134 static struct kmem_cache *
135 do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136 		     unsigned long flags, void (*ctor)(void *),
137 		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138 {
139 	struct kmem_cache *s;
140 	int err;
141 
142 	err = -ENOMEM;
143 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144 	if (!s)
145 		goto out;
146 
147 	s->name = name;
148 	s->object_size = object_size;
149 	s->size = size;
150 	s->align = align;
151 	s->ctor = ctor;
152 
153 	err = memcg_alloc_cache_params(memcg, s, root_cache);
154 	if (err)
155 		goto out_free_cache;
156 
157 	err = __kmem_cache_create(s, flags);
158 	if (err)
159 		goto out_free_cache;
160 
161 	s->refcount = 1;
162 	list_add(&s->list, &slab_caches);
163 	memcg_register_cache(s);
164 out:
165 	if (err)
166 		return ERR_PTR(err);
167 	return s;
168 
169 out_free_cache:
170 	memcg_free_cache_params(s);
171 	kfree(s);
172 	goto out;
173 }
174 
175 /*
176  * kmem_cache_create - Create a cache.
177  * @name: A string which is used in /proc/slabinfo to identify this cache.
178  * @size: The size of objects to be created in this cache.
179  * @align: The required alignment for the objects.
180  * @flags: SLAB flags
181  * @ctor: A constructor for the objects.
182  *
183  * Returns a ptr to the cache on success, NULL on failure.
184  * Cannot be called within a interrupt, but can be interrupted.
185  * The @ctor is run when new pages are allocated by the cache.
186  *
187  * The flags are
188  *
189  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
190  * to catch references to uninitialised memory.
191  *
192  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
193  * for buffer overruns.
194  *
195  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
196  * cacheline.  This can be beneficial if you're counting cycles as closely
197  * as davem.
198  */
199 struct kmem_cache *
200 kmem_cache_create(const char *name, size_t size, size_t align,
201 		  unsigned long flags, void (*ctor)(void *))
202 {
203 	struct kmem_cache *s;
204 	char *cache_name;
205 	int err;
206 
207 	get_online_cpus();
208 	mutex_lock(&slab_mutex);
209 
210 	err = kmem_cache_sanity_check(name, size);
211 	if (err)
212 		goto out_unlock;
213 
214 	/*
215 	 * Some allocators will constraint the set of valid flags to a subset
216 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
217 	 * case, and we'll just provide them with a sanitized version of the
218 	 * passed flags.
219 	 */
220 	flags &= CACHE_CREATE_MASK;
221 
222 	s = __kmem_cache_alias(name, size, align, flags, ctor);
223 	if (s)
224 		goto out_unlock;
225 
226 	cache_name = kstrdup(name, GFP_KERNEL);
227 	if (!cache_name) {
228 		err = -ENOMEM;
229 		goto out_unlock;
230 	}
231 
232 	s = do_kmem_cache_create(cache_name, size, size,
233 				 calculate_alignment(flags, align, size),
234 				 flags, ctor, NULL, NULL);
235 	if (IS_ERR(s)) {
236 		err = PTR_ERR(s);
237 		kfree(cache_name);
238 	}
239 
240 out_unlock:
241 	mutex_unlock(&slab_mutex);
242 	put_online_cpus();
243 
244 	if (err) {
245 		if (flags & SLAB_PANIC)
246 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
247 				name, err);
248 		else {
249 			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
250 				name, err);
251 			dump_stack();
252 		}
253 		return NULL;
254 	}
255 	return s;
256 }
257 EXPORT_SYMBOL(kmem_cache_create);
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * kmem_cache_create_memcg - Create a cache for a memory cgroup.
262  * @memcg: The memory cgroup the new cache is for.
263  * @root_cache: The parent of the new cache.
264  *
265  * This function attempts to create a kmem cache that will serve allocation
266  * requests going from @memcg to @root_cache. The new cache inherits properties
267  * from its parent.
268  */
269 void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270 {
271 	struct kmem_cache *s;
272 	char *cache_name;
273 
274 	get_online_cpus();
275 	mutex_lock(&slab_mutex);
276 
277 	/*
278 	 * Since per-memcg caches are created asynchronously on first
279 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
280 	 * create the same cache, but only one of them may succeed.
281 	 */
282 	if (cache_from_memcg_idx(root_cache, memcg_cache_id(memcg)))
283 		goto out_unlock;
284 
285 	cache_name = memcg_create_cache_name(memcg, root_cache);
286 	if (!cache_name)
287 		goto out_unlock;
288 
289 	s = do_kmem_cache_create(cache_name, root_cache->object_size,
290 				 root_cache->size, root_cache->align,
291 				 root_cache->flags, root_cache->ctor,
292 				 memcg, root_cache);
293 	if (IS_ERR(s)) {
294 		kfree(cache_name);
295 		goto out_unlock;
296 	}
297 
298 	s->allocflags |= __GFP_KMEMCG;
299 
300 out_unlock:
301 	mutex_unlock(&slab_mutex);
302 	put_online_cpus();
303 }
304 
305 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
306 {
307 	int rc;
308 
309 	if (!s->memcg_params ||
310 	    !s->memcg_params->is_root_cache)
311 		return 0;
312 
313 	mutex_unlock(&slab_mutex);
314 	rc = __kmem_cache_destroy_memcg_children(s);
315 	mutex_lock(&slab_mutex);
316 
317 	return rc;
318 }
319 #else
320 static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
321 {
322 	return 0;
323 }
324 #endif /* CONFIG_MEMCG_KMEM */
325 
326 void slab_kmem_cache_release(struct kmem_cache *s)
327 {
328 	kfree(s->name);
329 	kmem_cache_free(kmem_cache, s);
330 }
331 
332 void kmem_cache_destroy(struct kmem_cache *s)
333 {
334 	get_online_cpus();
335 	mutex_lock(&slab_mutex);
336 
337 	s->refcount--;
338 	if (s->refcount)
339 		goto out_unlock;
340 
341 	if (kmem_cache_destroy_memcg_children(s) != 0)
342 		goto out_unlock;
343 
344 	list_del(&s->list);
345 	memcg_unregister_cache(s);
346 
347 	if (__kmem_cache_shutdown(s) != 0) {
348 		list_add(&s->list, &slab_caches);
349 		memcg_register_cache(s);
350 		printk(KERN_ERR "kmem_cache_destroy %s: "
351 		       "Slab cache still has objects\n", s->name);
352 		dump_stack();
353 		goto out_unlock;
354 	}
355 
356 	mutex_unlock(&slab_mutex);
357 	if (s->flags & SLAB_DESTROY_BY_RCU)
358 		rcu_barrier();
359 
360 	memcg_free_cache_params(s);
361 #ifdef SLAB_SUPPORTS_SYSFS
362 	sysfs_slab_remove(s);
363 #else
364 	slab_kmem_cache_release(s);
365 #endif
366 	goto out_put_cpus;
367 
368 out_unlock:
369 	mutex_unlock(&slab_mutex);
370 out_put_cpus:
371 	put_online_cpus();
372 }
373 EXPORT_SYMBOL(kmem_cache_destroy);
374 
375 int slab_is_available(void)
376 {
377 	return slab_state >= UP;
378 }
379 
380 #ifndef CONFIG_SLOB
381 /* Create a cache during boot when no slab services are available yet */
382 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
383 		unsigned long flags)
384 {
385 	int err;
386 
387 	s->name = name;
388 	s->size = s->object_size = size;
389 	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
390 	err = __kmem_cache_create(s, flags);
391 
392 	if (err)
393 		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
394 					name, size, err);
395 
396 	s->refcount = -1;	/* Exempt from merging for now */
397 }
398 
399 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
400 				unsigned long flags)
401 {
402 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
403 
404 	if (!s)
405 		panic("Out of memory when creating slab %s\n", name);
406 
407 	create_boot_cache(s, name, size, flags);
408 	list_add(&s->list, &slab_caches);
409 	s->refcount = 1;
410 	return s;
411 }
412 
413 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
414 EXPORT_SYMBOL(kmalloc_caches);
415 
416 #ifdef CONFIG_ZONE_DMA
417 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
418 EXPORT_SYMBOL(kmalloc_dma_caches);
419 #endif
420 
421 /*
422  * Conversion table for small slabs sizes / 8 to the index in the
423  * kmalloc array. This is necessary for slabs < 192 since we have non power
424  * of two cache sizes there. The size of larger slabs can be determined using
425  * fls.
426  */
427 static s8 size_index[24] = {
428 	3,	/* 8 */
429 	4,	/* 16 */
430 	5,	/* 24 */
431 	5,	/* 32 */
432 	6,	/* 40 */
433 	6,	/* 48 */
434 	6,	/* 56 */
435 	6,	/* 64 */
436 	1,	/* 72 */
437 	1,	/* 80 */
438 	1,	/* 88 */
439 	1,	/* 96 */
440 	7,	/* 104 */
441 	7,	/* 112 */
442 	7,	/* 120 */
443 	7,	/* 128 */
444 	2,	/* 136 */
445 	2,	/* 144 */
446 	2,	/* 152 */
447 	2,	/* 160 */
448 	2,	/* 168 */
449 	2,	/* 176 */
450 	2,	/* 184 */
451 	2	/* 192 */
452 };
453 
454 static inline int size_index_elem(size_t bytes)
455 {
456 	return (bytes - 1) / 8;
457 }
458 
459 /*
460  * Find the kmem_cache structure that serves a given size of
461  * allocation
462  */
463 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
464 {
465 	int index;
466 
467 	if (unlikely(size > KMALLOC_MAX_SIZE)) {
468 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
469 		return NULL;
470 	}
471 
472 	if (size <= 192) {
473 		if (!size)
474 			return ZERO_SIZE_PTR;
475 
476 		index = size_index[size_index_elem(size)];
477 	} else
478 		index = fls(size - 1);
479 
480 #ifdef CONFIG_ZONE_DMA
481 	if (unlikely((flags & GFP_DMA)))
482 		return kmalloc_dma_caches[index];
483 
484 #endif
485 	return kmalloc_caches[index];
486 }
487 
488 /*
489  * Create the kmalloc array. Some of the regular kmalloc arrays
490  * may already have been created because they were needed to
491  * enable allocations for slab creation.
492  */
493 void __init create_kmalloc_caches(unsigned long flags)
494 {
495 	int i;
496 
497 	/*
498 	 * Patch up the size_index table if we have strange large alignment
499 	 * requirements for the kmalloc array. This is only the case for
500 	 * MIPS it seems. The standard arches will not generate any code here.
501 	 *
502 	 * Largest permitted alignment is 256 bytes due to the way we
503 	 * handle the index determination for the smaller caches.
504 	 *
505 	 * Make sure that nothing crazy happens if someone starts tinkering
506 	 * around with ARCH_KMALLOC_MINALIGN
507 	 */
508 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
509 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
510 
511 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
512 		int elem = size_index_elem(i);
513 
514 		if (elem >= ARRAY_SIZE(size_index))
515 			break;
516 		size_index[elem] = KMALLOC_SHIFT_LOW;
517 	}
518 
519 	if (KMALLOC_MIN_SIZE >= 64) {
520 		/*
521 		 * The 96 byte size cache is not used if the alignment
522 		 * is 64 byte.
523 		 */
524 		for (i = 64 + 8; i <= 96; i += 8)
525 			size_index[size_index_elem(i)] = 7;
526 
527 	}
528 
529 	if (KMALLOC_MIN_SIZE >= 128) {
530 		/*
531 		 * The 192 byte sized cache is not used if the alignment
532 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
533 		 * instead.
534 		 */
535 		for (i = 128 + 8; i <= 192; i += 8)
536 			size_index[size_index_elem(i)] = 8;
537 	}
538 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
539 		if (!kmalloc_caches[i]) {
540 			kmalloc_caches[i] = create_kmalloc_cache(NULL,
541 							1 << i, flags);
542 		}
543 
544 		/*
545 		 * Caches that are not of the two-to-the-power-of size.
546 		 * These have to be created immediately after the
547 		 * earlier power of two caches
548 		 */
549 		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
550 			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
551 
552 		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
553 			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
554 	}
555 
556 	/* Kmalloc array is now usable */
557 	slab_state = UP;
558 
559 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
560 		struct kmem_cache *s = kmalloc_caches[i];
561 		char *n;
562 
563 		if (s) {
564 			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
565 
566 			BUG_ON(!n);
567 			s->name = n;
568 		}
569 	}
570 
571 #ifdef CONFIG_ZONE_DMA
572 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
573 		struct kmem_cache *s = kmalloc_caches[i];
574 
575 		if (s) {
576 			int size = kmalloc_size(i);
577 			char *n = kasprintf(GFP_NOWAIT,
578 				 "dma-kmalloc-%d", size);
579 
580 			BUG_ON(!n);
581 			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
582 				size, SLAB_CACHE_DMA | flags);
583 		}
584 	}
585 #endif
586 }
587 #endif /* !CONFIG_SLOB */
588 
589 #ifdef CONFIG_TRACING
590 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
591 {
592 	void *ret = kmalloc_order(size, flags, order);
593 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
594 	return ret;
595 }
596 EXPORT_SYMBOL(kmalloc_order_trace);
597 #endif
598 
599 #ifdef CONFIG_SLABINFO
600 
601 #ifdef CONFIG_SLAB
602 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
603 #else
604 #define SLABINFO_RIGHTS S_IRUSR
605 #endif
606 
607 void print_slabinfo_header(struct seq_file *m)
608 {
609 	/*
610 	 * Output format version, so at least we can change it
611 	 * without _too_ many complaints.
612 	 */
613 #ifdef CONFIG_DEBUG_SLAB
614 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
615 #else
616 	seq_puts(m, "slabinfo - version: 2.1\n");
617 #endif
618 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
619 		 "<objperslab> <pagesperslab>");
620 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
621 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
622 #ifdef CONFIG_DEBUG_SLAB
623 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
624 		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
625 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
626 #endif
627 	seq_putc(m, '\n');
628 }
629 
630 static void *s_start(struct seq_file *m, loff_t *pos)
631 {
632 	loff_t n = *pos;
633 
634 	mutex_lock(&slab_mutex);
635 	if (!n)
636 		print_slabinfo_header(m);
637 
638 	return seq_list_start(&slab_caches, *pos);
639 }
640 
641 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
642 {
643 	return seq_list_next(p, &slab_caches, pos);
644 }
645 
646 void slab_stop(struct seq_file *m, void *p)
647 {
648 	mutex_unlock(&slab_mutex);
649 }
650 
651 static void
652 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
653 {
654 	struct kmem_cache *c;
655 	struct slabinfo sinfo;
656 	int i;
657 
658 	if (!is_root_cache(s))
659 		return;
660 
661 	for_each_memcg_cache_index(i) {
662 		c = cache_from_memcg_idx(s, i);
663 		if (!c)
664 			continue;
665 
666 		memset(&sinfo, 0, sizeof(sinfo));
667 		get_slabinfo(c, &sinfo);
668 
669 		info->active_slabs += sinfo.active_slabs;
670 		info->num_slabs += sinfo.num_slabs;
671 		info->shared_avail += sinfo.shared_avail;
672 		info->active_objs += sinfo.active_objs;
673 		info->num_objs += sinfo.num_objs;
674 	}
675 }
676 
677 int cache_show(struct kmem_cache *s, struct seq_file *m)
678 {
679 	struct slabinfo sinfo;
680 
681 	memset(&sinfo, 0, sizeof(sinfo));
682 	get_slabinfo(s, &sinfo);
683 
684 	memcg_accumulate_slabinfo(s, &sinfo);
685 
686 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
687 		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
688 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
689 
690 	seq_printf(m, " : tunables %4u %4u %4u",
691 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
692 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
693 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
694 	slabinfo_show_stats(m, s);
695 	seq_putc(m, '\n');
696 	return 0;
697 }
698 
699 static int s_show(struct seq_file *m, void *p)
700 {
701 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
702 
703 	if (!is_root_cache(s))
704 		return 0;
705 	return cache_show(s, m);
706 }
707 
708 /*
709  * slabinfo_op - iterator that generates /proc/slabinfo
710  *
711  * Output layout:
712  * cache-name
713  * num-active-objs
714  * total-objs
715  * object size
716  * num-active-slabs
717  * total-slabs
718  * num-pages-per-slab
719  * + further values on SMP and with statistics enabled
720  */
721 static const struct seq_operations slabinfo_op = {
722 	.start = s_start,
723 	.next = slab_next,
724 	.stop = slab_stop,
725 	.show = s_show,
726 };
727 
728 static int slabinfo_open(struct inode *inode, struct file *file)
729 {
730 	return seq_open(file, &slabinfo_op);
731 }
732 
733 static const struct file_operations proc_slabinfo_operations = {
734 	.open		= slabinfo_open,
735 	.read		= seq_read,
736 	.write          = slabinfo_write,
737 	.llseek		= seq_lseek,
738 	.release	= seq_release,
739 };
740 
741 static int __init slab_proc_init(void)
742 {
743 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
744 						&proc_slabinfo_operations);
745 	return 0;
746 }
747 module_init(slab_proc_init);
748 #endif /* CONFIG_SLABINFO */
749