xref: /linux/mm/slab.h (revision c288ea679840de4dee2ce6da5d0f139e3774ad86)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 /* Reuses the bits in struct page */
9 struct slab {
10 	unsigned long __page_flags;
11 
12 #if defined(CONFIG_SLAB)
13 
14 	union {
15 		struct list_head slab_list;
16 		struct rcu_head rcu_head;
17 	};
18 	struct kmem_cache *slab_cache;
19 	void *freelist;	/* array of free object indexes */
20 	void *s_mem;	/* first object */
21 	unsigned int active;
22 
23 #elif defined(CONFIG_SLUB)
24 
25 	union {
26 		struct list_head slab_list;
27 		struct rcu_head rcu_head;
28 #ifdef CONFIG_SLUB_CPU_PARTIAL
29 		struct {
30 			struct slab *next;
31 			int slabs;	/* Nr of slabs left */
32 		};
33 #endif
34 	};
35 	struct kmem_cache *slab_cache;
36 	/* Double-word boundary */
37 	void *freelist;		/* first free object */
38 	union {
39 		unsigned long counters;
40 		struct {
41 			unsigned inuse:16;
42 			unsigned objects:15;
43 			unsigned frozen:1;
44 		};
45 	};
46 	unsigned int __unused;
47 
48 #elif defined(CONFIG_SLOB)
49 
50 	struct list_head slab_list;
51 	void *__unused_1;
52 	void *freelist;		/* first free block */
53 	long units;
54 	unsigned int __unused_2;
55 
56 #else
57 #error "Unexpected slab allocator configured"
58 #endif
59 
60 	atomic_t __page_refcount;
61 #ifdef CONFIG_MEMCG
62 	unsigned long memcg_data;
63 #endif
64 };
65 
66 #define SLAB_MATCH(pg, sl)						\
67 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68 SLAB_MATCH(flags, __page_flags);
69 SLAB_MATCH(compound_head, slab_list);	/* Ensure bit 0 is clear */
70 SLAB_MATCH(slab_list, slab_list);
71 #ifndef CONFIG_SLOB
72 SLAB_MATCH(rcu_head, rcu_head);
73 SLAB_MATCH(slab_cache, slab_cache);
74 #endif
75 #ifdef CONFIG_SLAB
76 SLAB_MATCH(s_mem, s_mem);
77 SLAB_MATCH(active, active);
78 #endif
79 SLAB_MATCH(_refcount, __page_refcount);
80 #ifdef CONFIG_MEMCG
81 SLAB_MATCH(memcg_data, memcg_data);
82 #endif
83 #undef SLAB_MATCH
84 static_assert(sizeof(struct slab) <= sizeof(struct page));
85 
86 /**
87  * folio_slab - Converts from folio to slab.
88  * @folio: The folio.
89  *
90  * Currently struct slab is a different representation of a folio where
91  * folio_test_slab() is true.
92  *
93  * Return: The slab which contains this folio.
94  */
95 #define folio_slab(folio)	(_Generic((folio),			\
96 	const struct folio *:	(const struct slab *)(folio),		\
97 	struct folio *:		(struct slab *)(folio)))
98 
99 /**
100  * slab_folio - The folio allocated for a slab
101  * @slab: The slab.
102  *
103  * Slabs are allocated as folios that contain the individual objects and are
104  * using some fields in the first struct page of the folio - those fields are
105  * now accessed by struct slab. It is occasionally necessary to convert back to
106  * a folio in order to communicate with the rest of the mm.  Please use this
107  * helper function instead of casting yourself, as the implementation may change
108  * in the future.
109  */
110 #define slab_folio(s)		(_Generic((s),				\
111 	const struct slab *:	(const struct folio *)s,		\
112 	struct slab *:		(struct folio *)s))
113 
114 /**
115  * page_slab - Converts from first struct page to slab.
116  * @p: The first (either head of compound or single) page of slab.
117  *
118  * A temporary wrapper to convert struct page to struct slab in situations where
119  * we know the page is the compound head, or single order-0 page.
120  *
121  * Long-term ideally everything would work with struct slab directly or go
122  * through folio to struct slab.
123  *
124  * Return: The slab which contains this page
125  */
126 #define page_slab(p)		(_Generic((p),				\
127 	const struct page *:	(const struct slab *)(p),		\
128 	struct page *:		(struct slab *)(p)))
129 
130 /**
131  * slab_page - The first struct page allocated for a slab
132  * @slab: The slab.
133  *
134  * A convenience wrapper for converting slab to the first struct page of the
135  * underlying folio, to communicate with code not yet converted to folio or
136  * struct slab.
137  */
138 #define slab_page(s) folio_page(slab_folio(s), 0)
139 
140 /*
141  * If network-based swap is enabled, sl*b must keep track of whether pages
142  * were allocated from pfmemalloc reserves.
143  */
144 static inline bool slab_test_pfmemalloc(const struct slab *slab)
145 {
146 	return folio_test_active((struct folio *)slab_folio(slab));
147 }
148 
149 static inline void slab_set_pfmemalloc(struct slab *slab)
150 {
151 	folio_set_active(slab_folio(slab));
152 }
153 
154 static inline void slab_clear_pfmemalloc(struct slab *slab)
155 {
156 	folio_clear_active(slab_folio(slab));
157 }
158 
159 static inline void __slab_clear_pfmemalloc(struct slab *slab)
160 {
161 	__folio_clear_active(slab_folio(slab));
162 }
163 
164 static inline void *slab_address(const struct slab *slab)
165 {
166 	return folio_address(slab_folio(slab));
167 }
168 
169 static inline int slab_nid(const struct slab *slab)
170 {
171 	return folio_nid(slab_folio(slab));
172 }
173 
174 static inline pg_data_t *slab_pgdat(const struct slab *slab)
175 {
176 	return folio_pgdat(slab_folio(slab));
177 }
178 
179 static inline struct slab *virt_to_slab(const void *addr)
180 {
181 	struct folio *folio = virt_to_folio(addr);
182 
183 	if (!folio_test_slab(folio))
184 		return NULL;
185 
186 	return folio_slab(folio);
187 }
188 
189 static inline int slab_order(const struct slab *slab)
190 {
191 	return folio_order((struct folio *)slab_folio(slab));
192 }
193 
194 static inline size_t slab_size(const struct slab *slab)
195 {
196 	return PAGE_SIZE << slab_order(slab);
197 }
198 
199 #ifdef CONFIG_SLOB
200 /*
201  * Common fields provided in kmem_cache by all slab allocators
202  * This struct is either used directly by the allocator (SLOB)
203  * or the allocator must include definitions for all fields
204  * provided in kmem_cache_common in their definition of kmem_cache.
205  *
206  * Once we can do anonymous structs (C11 standard) we could put a
207  * anonymous struct definition in these allocators so that the
208  * separate allocations in the kmem_cache structure of SLAB and
209  * SLUB is no longer needed.
210  */
211 struct kmem_cache {
212 	unsigned int object_size;/* The original size of the object */
213 	unsigned int size;	/* The aligned/padded/added on size  */
214 	unsigned int align;	/* Alignment as calculated */
215 	slab_flags_t flags;	/* Active flags on the slab */
216 	unsigned int useroffset;/* Usercopy region offset */
217 	unsigned int usersize;	/* Usercopy region size */
218 	const char *name;	/* Slab name for sysfs */
219 	int refcount;		/* Use counter */
220 	void (*ctor)(void *);	/* Called on object slot creation */
221 	struct list_head list;	/* List of all slab caches on the system */
222 };
223 
224 #endif /* CONFIG_SLOB */
225 
226 #ifdef CONFIG_SLAB
227 #include <linux/slab_def.h>
228 #endif
229 
230 #ifdef CONFIG_SLUB
231 #include <linux/slub_def.h>
232 #endif
233 
234 #include <linux/memcontrol.h>
235 #include <linux/fault-inject.h>
236 #include <linux/kasan.h>
237 #include <linux/kmemleak.h>
238 #include <linux/random.h>
239 #include <linux/sched/mm.h>
240 
241 /*
242  * State of the slab allocator.
243  *
244  * This is used to describe the states of the allocator during bootup.
245  * Allocators use this to gradually bootstrap themselves. Most allocators
246  * have the problem that the structures used for managing slab caches are
247  * allocated from slab caches themselves.
248  */
249 enum slab_state {
250 	DOWN,			/* No slab functionality yet */
251 	PARTIAL,		/* SLUB: kmem_cache_node available */
252 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
253 	UP,			/* Slab caches usable but not all extras yet */
254 	FULL			/* Everything is working */
255 };
256 
257 extern enum slab_state slab_state;
258 
259 /* The slab cache mutex protects the management structures during changes */
260 extern struct mutex slab_mutex;
261 
262 /* The list of all slab caches on the system */
263 extern struct list_head slab_caches;
264 
265 /* The slab cache that manages slab cache information */
266 extern struct kmem_cache *kmem_cache;
267 
268 /* A table of kmalloc cache names and sizes */
269 extern const struct kmalloc_info_struct {
270 	const char *name[NR_KMALLOC_TYPES];
271 	unsigned int size;
272 } kmalloc_info[];
273 
274 #ifndef CONFIG_SLOB
275 /* Kmalloc array related functions */
276 void setup_kmalloc_cache_index_table(void);
277 void create_kmalloc_caches(slab_flags_t);
278 
279 /* Find the kmalloc slab corresponding for a certain size */
280 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
281 #endif
282 
283 gfp_t kmalloc_fix_flags(gfp_t flags);
284 
285 /* Functions provided by the slab allocators */
286 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
287 
288 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
289 			slab_flags_t flags, unsigned int useroffset,
290 			unsigned int usersize);
291 extern void create_boot_cache(struct kmem_cache *, const char *name,
292 			unsigned int size, slab_flags_t flags,
293 			unsigned int useroffset, unsigned int usersize);
294 
295 int slab_unmergeable(struct kmem_cache *s);
296 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
297 		slab_flags_t flags, const char *name, void (*ctor)(void *));
298 #ifndef CONFIG_SLOB
299 struct kmem_cache *
300 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
301 		   slab_flags_t flags, void (*ctor)(void *));
302 
303 slab_flags_t kmem_cache_flags(unsigned int object_size,
304 	slab_flags_t flags, const char *name);
305 #else
306 static inline struct kmem_cache *
307 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
308 		   slab_flags_t flags, void (*ctor)(void *))
309 { return NULL; }
310 
311 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
312 	slab_flags_t flags, const char *name)
313 {
314 	return flags;
315 }
316 #endif
317 
318 
319 /* Legal flag mask for kmem_cache_create(), for various configurations */
320 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
321 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
322 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
323 
324 #if defined(CONFIG_DEBUG_SLAB)
325 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
326 #elif defined(CONFIG_SLUB_DEBUG)
327 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
328 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
329 #else
330 #define SLAB_DEBUG_FLAGS (0)
331 #endif
332 
333 #if defined(CONFIG_SLAB)
334 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
335 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
336 			  SLAB_ACCOUNT)
337 #elif defined(CONFIG_SLUB)
338 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
339 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
340 #else
341 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
342 #endif
343 
344 /* Common flags available with current configuration */
345 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
346 
347 /* Common flags permitted for kmem_cache_create */
348 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
349 			      SLAB_RED_ZONE | \
350 			      SLAB_POISON | \
351 			      SLAB_STORE_USER | \
352 			      SLAB_TRACE | \
353 			      SLAB_CONSISTENCY_CHECKS | \
354 			      SLAB_MEM_SPREAD | \
355 			      SLAB_NOLEAKTRACE | \
356 			      SLAB_RECLAIM_ACCOUNT | \
357 			      SLAB_TEMPORARY | \
358 			      SLAB_ACCOUNT)
359 
360 bool __kmem_cache_empty(struct kmem_cache *);
361 int __kmem_cache_shutdown(struct kmem_cache *);
362 void __kmem_cache_release(struct kmem_cache *);
363 int __kmem_cache_shrink(struct kmem_cache *);
364 void slab_kmem_cache_release(struct kmem_cache *);
365 
366 struct seq_file;
367 struct file;
368 
369 struct slabinfo {
370 	unsigned long active_objs;
371 	unsigned long num_objs;
372 	unsigned long active_slabs;
373 	unsigned long num_slabs;
374 	unsigned long shared_avail;
375 	unsigned int limit;
376 	unsigned int batchcount;
377 	unsigned int shared;
378 	unsigned int objects_per_slab;
379 	unsigned int cache_order;
380 };
381 
382 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
383 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
384 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
385 		       size_t count, loff_t *ppos);
386 
387 /*
388  * Generic implementation of bulk operations
389  * These are useful for situations in which the allocator cannot
390  * perform optimizations. In that case segments of the object listed
391  * may be allocated or freed using these operations.
392  */
393 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
394 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
395 
396 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
397 {
398 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
399 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
400 }
401 
402 #ifdef CONFIG_SLUB_DEBUG
403 #ifdef CONFIG_SLUB_DEBUG_ON
404 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
405 #else
406 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
407 #endif
408 extern void print_tracking(struct kmem_cache *s, void *object);
409 long validate_slab_cache(struct kmem_cache *s);
410 static inline bool __slub_debug_enabled(void)
411 {
412 	return static_branch_unlikely(&slub_debug_enabled);
413 }
414 #else
415 static inline void print_tracking(struct kmem_cache *s, void *object)
416 {
417 }
418 static inline bool __slub_debug_enabled(void)
419 {
420 	return false;
421 }
422 #endif
423 
424 /*
425  * Returns true if any of the specified slub_debug flags is enabled for the
426  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
427  * the static key.
428  */
429 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
430 {
431 	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
432 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
433 	if (__slub_debug_enabled())
434 		return s->flags & flags;
435 	return false;
436 }
437 
438 #ifdef CONFIG_MEMCG_KMEM
439 /*
440  * slab_objcgs - get the object cgroups vector associated with a slab
441  * @slab: a pointer to the slab struct
442  *
443  * Returns a pointer to the object cgroups vector associated with the slab,
444  * or NULL if no such vector has been associated yet.
445  */
446 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
447 {
448 	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
449 
450 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
451 							slab_page(slab));
452 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
453 
454 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
455 }
456 
457 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
458 				 gfp_t gfp, bool new_slab);
459 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
460 		     enum node_stat_item idx, int nr);
461 
462 static inline void memcg_free_slab_cgroups(struct slab *slab)
463 {
464 	kfree(slab_objcgs(slab));
465 	slab->memcg_data = 0;
466 }
467 
468 static inline size_t obj_full_size(struct kmem_cache *s)
469 {
470 	/*
471 	 * For each accounted object there is an extra space which is used
472 	 * to store obj_cgroup membership. Charge it too.
473 	 */
474 	return s->size + sizeof(struct obj_cgroup *);
475 }
476 
477 /*
478  * Returns false if the allocation should fail.
479  */
480 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
481 					     struct obj_cgroup **objcgp,
482 					     size_t objects, gfp_t flags)
483 {
484 	struct obj_cgroup *objcg;
485 
486 	if (!memcg_kmem_enabled())
487 		return true;
488 
489 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
490 		return true;
491 
492 	objcg = get_obj_cgroup_from_current();
493 	if (!objcg)
494 		return true;
495 
496 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
497 		obj_cgroup_put(objcg);
498 		return false;
499 	}
500 
501 	*objcgp = objcg;
502 	return true;
503 }
504 
505 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
506 					      struct obj_cgroup *objcg,
507 					      gfp_t flags, size_t size,
508 					      void **p)
509 {
510 	struct slab *slab;
511 	unsigned long off;
512 	size_t i;
513 
514 	if (!memcg_kmem_enabled() || !objcg)
515 		return;
516 
517 	for (i = 0; i < size; i++) {
518 		if (likely(p[i])) {
519 			slab = virt_to_slab(p[i]);
520 
521 			if (!slab_objcgs(slab) &&
522 			    memcg_alloc_slab_cgroups(slab, s, flags,
523 							 false)) {
524 				obj_cgroup_uncharge(objcg, obj_full_size(s));
525 				continue;
526 			}
527 
528 			off = obj_to_index(s, slab, p[i]);
529 			obj_cgroup_get(objcg);
530 			slab_objcgs(slab)[off] = objcg;
531 			mod_objcg_state(objcg, slab_pgdat(slab),
532 					cache_vmstat_idx(s), obj_full_size(s));
533 		} else {
534 			obj_cgroup_uncharge(objcg, obj_full_size(s));
535 		}
536 	}
537 	obj_cgroup_put(objcg);
538 }
539 
540 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
541 					void **p, int objects)
542 {
543 	struct kmem_cache *s;
544 	struct obj_cgroup **objcgs;
545 	struct obj_cgroup *objcg;
546 	struct slab *slab;
547 	unsigned int off;
548 	int i;
549 
550 	if (!memcg_kmem_enabled())
551 		return;
552 
553 	for (i = 0; i < objects; i++) {
554 		if (unlikely(!p[i]))
555 			continue;
556 
557 		slab = virt_to_slab(p[i]);
558 		/* we could be given a kmalloc_large() object, skip those */
559 		if (!slab)
560 			continue;
561 
562 		objcgs = slab_objcgs(slab);
563 		if (!objcgs)
564 			continue;
565 
566 		if (!s_orig)
567 			s = slab->slab_cache;
568 		else
569 			s = s_orig;
570 
571 		off = obj_to_index(s, slab, p[i]);
572 		objcg = objcgs[off];
573 		if (!objcg)
574 			continue;
575 
576 		objcgs[off] = NULL;
577 		obj_cgroup_uncharge(objcg, obj_full_size(s));
578 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
579 				-obj_full_size(s));
580 		obj_cgroup_put(objcg);
581 	}
582 }
583 
584 #else /* CONFIG_MEMCG_KMEM */
585 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
586 {
587 	return NULL;
588 }
589 
590 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
591 {
592 	return NULL;
593 }
594 
595 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
596 					       struct kmem_cache *s, gfp_t gfp,
597 					       bool new_slab)
598 {
599 	return 0;
600 }
601 
602 static inline void memcg_free_slab_cgroups(struct slab *slab)
603 {
604 }
605 
606 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
607 					     struct obj_cgroup **objcgp,
608 					     size_t objects, gfp_t flags)
609 {
610 	return true;
611 }
612 
613 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
614 					      struct obj_cgroup *objcg,
615 					      gfp_t flags, size_t size,
616 					      void **p)
617 {
618 }
619 
620 static inline void memcg_slab_free_hook(struct kmem_cache *s,
621 					void **p, int objects)
622 {
623 }
624 #endif /* CONFIG_MEMCG_KMEM */
625 
626 #ifndef CONFIG_SLOB
627 static inline struct kmem_cache *virt_to_cache(const void *obj)
628 {
629 	struct slab *slab;
630 
631 	slab = virt_to_slab(obj);
632 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
633 					__func__))
634 		return NULL;
635 	return slab->slab_cache;
636 }
637 
638 static __always_inline void account_slab(struct slab *slab, int order,
639 					 struct kmem_cache *s, gfp_t gfp)
640 {
641 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
642 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
643 
644 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
645 			    PAGE_SIZE << order);
646 }
647 
648 static __always_inline void unaccount_slab(struct slab *slab, int order,
649 					   struct kmem_cache *s)
650 {
651 	if (memcg_kmem_enabled())
652 		memcg_free_slab_cgroups(slab);
653 
654 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
655 			    -(PAGE_SIZE << order));
656 }
657 
658 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
659 {
660 	struct kmem_cache *cachep;
661 
662 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
663 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
664 		return s;
665 
666 	cachep = virt_to_cache(x);
667 	if (WARN(cachep && cachep != s,
668 		  "%s: Wrong slab cache. %s but object is from %s\n",
669 		  __func__, s->name, cachep->name))
670 		print_tracking(cachep, x);
671 	return cachep;
672 }
673 #endif /* CONFIG_SLOB */
674 
675 static inline size_t slab_ksize(const struct kmem_cache *s)
676 {
677 #ifndef CONFIG_SLUB
678 	return s->object_size;
679 
680 #else /* CONFIG_SLUB */
681 # ifdef CONFIG_SLUB_DEBUG
682 	/*
683 	 * Debugging requires use of the padding between object
684 	 * and whatever may come after it.
685 	 */
686 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
687 		return s->object_size;
688 # endif
689 	if (s->flags & SLAB_KASAN)
690 		return s->object_size;
691 	/*
692 	 * If we have the need to store the freelist pointer
693 	 * back there or track user information then we can
694 	 * only use the space before that information.
695 	 */
696 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
697 		return s->inuse;
698 	/*
699 	 * Else we can use all the padding etc for the allocation
700 	 */
701 	return s->size;
702 #endif
703 }
704 
705 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
706 						     struct obj_cgroup **objcgp,
707 						     size_t size, gfp_t flags)
708 {
709 	flags &= gfp_allowed_mask;
710 
711 	might_alloc(flags);
712 
713 	if (should_failslab(s, flags))
714 		return NULL;
715 
716 	if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
717 		return NULL;
718 
719 	return s;
720 }
721 
722 static inline void slab_post_alloc_hook(struct kmem_cache *s,
723 					struct obj_cgroup *objcg, gfp_t flags,
724 					size_t size, void **p, bool init)
725 {
726 	size_t i;
727 
728 	flags &= gfp_allowed_mask;
729 
730 	/*
731 	 * As memory initialization might be integrated into KASAN,
732 	 * kasan_slab_alloc and initialization memset must be
733 	 * kept together to avoid discrepancies in behavior.
734 	 *
735 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
736 	 */
737 	for (i = 0; i < size; i++) {
738 		p[i] = kasan_slab_alloc(s, p[i], flags, init);
739 		if (p[i] && init && !kasan_has_integrated_init())
740 			memset(p[i], 0, s->object_size);
741 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
742 					 s->flags, flags);
743 	}
744 
745 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
746 }
747 
748 #ifndef CONFIG_SLOB
749 /*
750  * The slab lists for all objects.
751  */
752 struct kmem_cache_node {
753 	spinlock_t list_lock;
754 
755 #ifdef CONFIG_SLAB
756 	struct list_head slabs_partial;	/* partial list first, better asm code */
757 	struct list_head slabs_full;
758 	struct list_head slabs_free;
759 	unsigned long total_slabs;	/* length of all slab lists */
760 	unsigned long free_slabs;	/* length of free slab list only */
761 	unsigned long free_objects;
762 	unsigned int free_limit;
763 	unsigned int colour_next;	/* Per-node cache coloring */
764 	struct array_cache *shared;	/* shared per node */
765 	struct alien_cache **alien;	/* on other nodes */
766 	unsigned long next_reap;	/* updated without locking */
767 	int free_touched;		/* updated without locking */
768 #endif
769 
770 #ifdef CONFIG_SLUB
771 	unsigned long nr_partial;
772 	struct list_head partial;
773 #ifdef CONFIG_SLUB_DEBUG
774 	atomic_long_t nr_slabs;
775 	atomic_long_t total_objects;
776 	struct list_head full;
777 #endif
778 #endif
779 
780 };
781 
782 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
783 {
784 	return s->node[node];
785 }
786 
787 /*
788  * Iterator over all nodes. The body will be executed for each node that has
789  * a kmem_cache_node structure allocated (which is true for all online nodes)
790  */
791 #define for_each_kmem_cache_node(__s, __node, __n) \
792 	for (__node = 0; __node < nr_node_ids; __node++) \
793 		 if ((__n = get_node(__s, __node)))
794 
795 #endif
796 
797 void *slab_start(struct seq_file *m, loff_t *pos);
798 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
799 void slab_stop(struct seq_file *m, void *p);
800 int memcg_slab_show(struct seq_file *m, void *p);
801 
802 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
803 void dump_unreclaimable_slab(void);
804 #else
805 static inline void dump_unreclaimable_slab(void)
806 {
807 }
808 #endif
809 
810 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
811 
812 #ifdef CONFIG_SLAB_FREELIST_RANDOM
813 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
814 			gfp_t gfp);
815 void cache_random_seq_destroy(struct kmem_cache *cachep);
816 #else
817 static inline int cache_random_seq_create(struct kmem_cache *cachep,
818 					unsigned int count, gfp_t gfp)
819 {
820 	return 0;
821 }
822 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
823 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
824 
825 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
826 {
827 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
828 				&init_on_alloc)) {
829 		if (c->ctor)
830 			return false;
831 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
832 			return flags & __GFP_ZERO;
833 		return true;
834 	}
835 	return flags & __GFP_ZERO;
836 }
837 
838 static inline bool slab_want_init_on_free(struct kmem_cache *c)
839 {
840 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
841 				&init_on_free))
842 		return !(c->ctor ||
843 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
844 	return false;
845 }
846 
847 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
848 void debugfs_slab_release(struct kmem_cache *);
849 #else
850 static inline void debugfs_slab_release(struct kmem_cache *s) { }
851 #endif
852 
853 #ifdef CONFIG_PRINTK
854 #define KS_ADDRS_COUNT 16
855 struct kmem_obj_info {
856 	void *kp_ptr;
857 	struct slab *kp_slab;
858 	void *kp_objp;
859 	unsigned long kp_data_offset;
860 	struct kmem_cache *kp_slab_cache;
861 	void *kp_ret;
862 	void *kp_stack[KS_ADDRS_COUNT];
863 	void *kp_free_stack[KS_ADDRS_COUNT];
864 };
865 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
866 #endif
867 
868 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
869 void __check_heap_object(const void *ptr, unsigned long n,
870 			 const struct slab *slab, bool to_user);
871 #else
872 static inline
873 void __check_heap_object(const void *ptr, unsigned long n,
874 			 const struct slab *slab, bool to_user)
875 {
876 }
877 #endif
878 
879 #endif /* MM_SLAB_H */
880