xref: /linux/mm/slab.h (revision c1ca352d371f724f7fb40f016abdb563aa85fe55)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 /* Reuses the bits in struct page */
9 struct slab {
10 	unsigned long __page_flags;
11 
12 #if defined(CONFIG_SLAB)
13 
14 	union {
15 		struct list_head slab_list;
16 		struct rcu_head rcu_head;
17 	};
18 	struct kmem_cache *slab_cache;
19 	void *freelist;	/* array of free object indexes */
20 	void *s_mem;	/* first object */
21 	unsigned int active;
22 
23 #elif defined(CONFIG_SLUB)
24 
25 	union {
26 		struct list_head slab_list;
27 		struct rcu_head rcu_head;
28 #ifdef CONFIG_SLUB_CPU_PARTIAL
29 		struct {
30 			struct slab *next;
31 			int slabs;	/* Nr of slabs left */
32 		};
33 #endif
34 	};
35 	struct kmem_cache *slab_cache;
36 	/* Double-word boundary */
37 	void *freelist;		/* first free object */
38 	union {
39 		unsigned long counters;
40 		struct {
41 			unsigned inuse:16;
42 			unsigned objects:15;
43 			unsigned frozen:1;
44 		};
45 	};
46 	unsigned int __unused;
47 
48 #elif defined(CONFIG_SLOB)
49 
50 	struct list_head slab_list;
51 	void *__unused_1;
52 	void *freelist;		/* first free block */
53 	long units;
54 	unsigned int __unused_2;
55 
56 #else
57 #error "Unexpected slab allocator configured"
58 #endif
59 
60 	atomic_t __page_refcount;
61 #ifdef CONFIG_MEMCG
62 	unsigned long memcg_data;
63 #endif
64 };
65 
66 #define SLAB_MATCH(pg, sl)						\
67 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68 SLAB_MATCH(flags, __page_flags);
69 SLAB_MATCH(compound_head, slab_list);	/* Ensure bit 0 is clear */
70 #ifndef CONFIG_SLOB
71 SLAB_MATCH(rcu_head, rcu_head);
72 #endif
73 SLAB_MATCH(_refcount, __page_refcount);
74 #ifdef CONFIG_MEMCG
75 SLAB_MATCH(memcg_data, memcg_data);
76 #endif
77 #undef SLAB_MATCH
78 static_assert(sizeof(struct slab) <= sizeof(struct page));
79 
80 /**
81  * folio_slab - Converts from folio to slab.
82  * @folio: The folio.
83  *
84  * Currently struct slab is a different representation of a folio where
85  * folio_test_slab() is true.
86  *
87  * Return: The slab which contains this folio.
88  */
89 #define folio_slab(folio)	(_Generic((folio),			\
90 	const struct folio *:	(const struct slab *)(folio),		\
91 	struct folio *:		(struct slab *)(folio)))
92 
93 /**
94  * slab_folio - The folio allocated for a slab
95  * @slab: The slab.
96  *
97  * Slabs are allocated as folios that contain the individual objects and are
98  * using some fields in the first struct page of the folio - those fields are
99  * now accessed by struct slab. It is occasionally necessary to convert back to
100  * a folio in order to communicate with the rest of the mm.  Please use this
101  * helper function instead of casting yourself, as the implementation may change
102  * in the future.
103  */
104 #define slab_folio(s)		(_Generic((s),				\
105 	const struct slab *:	(const struct folio *)s,		\
106 	struct slab *:		(struct folio *)s))
107 
108 /**
109  * page_slab - Converts from first struct page to slab.
110  * @p: The first (either head of compound or single) page of slab.
111  *
112  * A temporary wrapper to convert struct page to struct slab in situations where
113  * we know the page is the compound head, or single order-0 page.
114  *
115  * Long-term ideally everything would work with struct slab directly or go
116  * through folio to struct slab.
117  *
118  * Return: The slab which contains this page
119  */
120 #define page_slab(p)		(_Generic((p),				\
121 	const struct page *:	(const struct slab *)(p),		\
122 	struct page *:		(struct slab *)(p)))
123 
124 /**
125  * slab_page - The first struct page allocated for a slab
126  * @slab: The slab.
127  *
128  * A convenience wrapper for converting slab to the first struct page of the
129  * underlying folio, to communicate with code not yet converted to folio or
130  * struct slab.
131  */
132 #define slab_page(s) folio_page(slab_folio(s), 0)
133 
134 /*
135  * If network-based swap is enabled, sl*b must keep track of whether pages
136  * were allocated from pfmemalloc reserves.
137  */
138 static inline bool slab_test_pfmemalloc(const struct slab *slab)
139 {
140 	return folio_test_active((struct folio *)slab_folio(slab));
141 }
142 
143 static inline void slab_set_pfmemalloc(struct slab *slab)
144 {
145 	folio_set_active(slab_folio(slab));
146 }
147 
148 static inline void slab_clear_pfmemalloc(struct slab *slab)
149 {
150 	folio_clear_active(slab_folio(slab));
151 }
152 
153 static inline void __slab_clear_pfmemalloc(struct slab *slab)
154 {
155 	__folio_clear_active(slab_folio(slab));
156 }
157 
158 static inline void *slab_address(const struct slab *slab)
159 {
160 	return folio_address(slab_folio(slab));
161 }
162 
163 static inline int slab_nid(const struct slab *slab)
164 {
165 	return folio_nid(slab_folio(slab));
166 }
167 
168 static inline pg_data_t *slab_pgdat(const struct slab *slab)
169 {
170 	return folio_pgdat(slab_folio(slab));
171 }
172 
173 static inline struct slab *virt_to_slab(const void *addr)
174 {
175 	struct folio *folio = virt_to_folio(addr);
176 
177 	if (!folio_test_slab(folio))
178 		return NULL;
179 
180 	return folio_slab(folio);
181 }
182 
183 static inline int slab_order(const struct slab *slab)
184 {
185 	return folio_order((struct folio *)slab_folio(slab));
186 }
187 
188 static inline size_t slab_size(const struct slab *slab)
189 {
190 	return PAGE_SIZE << slab_order(slab);
191 }
192 
193 #ifdef CONFIG_SLOB
194 /*
195  * Common fields provided in kmem_cache by all slab allocators
196  * This struct is either used directly by the allocator (SLOB)
197  * or the allocator must include definitions for all fields
198  * provided in kmem_cache_common in their definition of kmem_cache.
199  *
200  * Once we can do anonymous structs (C11 standard) we could put a
201  * anonymous struct definition in these allocators so that the
202  * separate allocations in the kmem_cache structure of SLAB and
203  * SLUB is no longer needed.
204  */
205 struct kmem_cache {
206 	unsigned int object_size;/* The original size of the object */
207 	unsigned int size;	/* The aligned/padded/added on size  */
208 	unsigned int align;	/* Alignment as calculated */
209 	slab_flags_t flags;	/* Active flags on the slab */
210 	unsigned int useroffset;/* Usercopy region offset */
211 	unsigned int usersize;	/* Usercopy region size */
212 	const char *name;	/* Slab name for sysfs */
213 	int refcount;		/* Use counter */
214 	void (*ctor)(void *);	/* Called on object slot creation */
215 	struct list_head list;	/* List of all slab caches on the system */
216 };
217 
218 #endif /* CONFIG_SLOB */
219 
220 #ifdef CONFIG_SLAB
221 #include <linux/slab_def.h>
222 #endif
223 
224 #ifdef CONFIG_SLUB
225 #include <linux/slub_def.h>
226 #endif
227 
228 #include <linux/memcontrol.h>
229 #include <linux/fault-inject.h>
230 #include <linux/kasan.h>
231 #include <linux/kmemleak.h>
232 #include <linux/random.h>
233 #include <linux/sched/mm.h>
234 #include <linux/list_lru.h>
235 
236 /*
237  * State of the slab allocator.
238  *
239  * This is used to describe the states of the allocator during bootup.
240  * Allocators use this to gradually bootstrap themselves. Most allocators
241  * have the problem that the structures used for managing slab caches are
242  * allocated from slab caches themselves.
243  */
244 enum slab_state {
245 	DOWN,			/* No slab functionality yet */
246 	PARTIAL,		/* SLUB: kmem_cache_node available */
247 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
248 	UP,			/* Slab caches usable but not all extras yet */
249 	FULL			/* Everything is working */
250 };
251 
252 extern enum slab_state slab_state;
253 
254 /* The slab cache mutex protects the management structures during changes */
255 extern struct mutex slab_mutex;
256 
257 /* The list of all slab caches on the system */
258 extern struct list_head slab_caches;
259 
260 /* The slab cache that manages slab cache information */
261 extern struct kmem_cache *kmem_cache;
262 
263 /* A table of kmalloc cache names and sizes */
264 extern const struct kmalloc_info_struct {
265 	const char *name[NR_KMALLOC_TYPES];
266 	unsigned int size;
267 } kmalloc_info[];
268 
269 #ifndef CONFIG_SLOB
270 /* Kmalloc array related functions */
271 void setup_kmalloc_cache_index_table(void);
272 void create_kmalloc_caches(slab_flags_t);
273 
274 /* Find the kmalloc slab corresponding for a certain size */
275 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
276 #endif
277 
278 gfp_t kmalloc_fix_flags(gfp_t flags);
279 
280 /* Functions provided by the slab allocators */
281 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
282 
283 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
284 			slab_flags_t flags, unsigned int useroffset,
285 			unsigned int usersize);
286 extern void create_boot_cache(struct kmem_cache *, const char *name,
287 			unsigned int size, slab_flags_t flags,
288 			unsigned int useroffset, unsigned int usersize);
289 
290 int slab_unmergeable(struct kmem_cache *s);
291 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
292 		slab_flags_t flags, const char *name, void (*ctor)(void *));
293 #ifndef CONFIG_SLOB
294 struct kmem_cache *
295 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
296 		   slab_flags_t flags, void (*ctor)(void *));
297 
298 slab_flags_t kmem_cache_flags(unsigned int object_size,
299 	slab_flags_t flags, const char *name);
300 #else
301 static inline struct kmem_cache *
302 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
303 		   slab_flags_t flags, void (*ctor)(void *))
304 { return NULL; }
305 
306 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
307 	slab_flags_t flags, const char *name)
308 {
309 	return flags;
310 }
311 #endif
312 
313 
314 /* Legal flag mask for kmem_cache_create(), for various configurations */
315 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
316 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
317 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
318 
319 #if defined(CONFIG_DEBUG_SLAB)
320 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
321 #elif defined(CONFIG_SLUB_DEBUG)
322 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
323 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
324 #else
325 #define SLAB_DEBUG_FLAGS (0)
326 #endif
327 
328 #if defined(CONFIG_SLAB)
329 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
330 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
331 			  SLAB_ACCOUNT)
332 #elif defined(CONFIG_SLUB)
333 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
334 			  SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
335 #else
336 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
337 #endif
338 
339 /* Common flags available with current configuration */
340 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
341 
342 /* Common flags permitted for kmem_cache_create */
343 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
344 			      SLAB_RED_ZONE | \
345 			      SLAB_POISON | \
346 			      SLAB_STORE_USER | \
347 			      SLAB_TRACE | \
348 			      SLAB_CONSISTENCY_CHECKS | \
349 			      SLAB_MEM_SPREAD | \
350 			      SLAB_NOLEAKTRACE | \
351 			      SLAB_RECLAIM_ACCOUNT | \
352 			      SLAB_TEMPORARY | \
353 			      SLAB_ACCOUNT | \
354 			      SLAB_NO_USER_FLAGS)
355 
356 bool __kmem_cache_empty(struct kmem_cache *);
357 int __kmem_cache_shutdown(struct kmem_cache *);
358 void __kmem_cache_release(struct kmem_cache *);
359 int __kmem_cache_shrink(struct kmem_cache *);
360 void slab_kmem_cache_release(struct kmem_cache *);
361 
362 struct seq_file;
363 struct file;
364 
365 struct slabinfo {
366 	unsigned long active_objs;
367 	unsigned long num_objs;
368 	unsigned long active_slabs;
369 	unsigned long num_slabs;
370 	unsigned long shared_avail;
371 	unsigned int limit;
372 	unsigned int batchcount;
373 	unsigned int shared;
374 	unsigned int objects_per_slab;
375 	unsigned int cache_order;
376 };
377 
378 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
379 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
380 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
381 		       size_t count, loff_t *ppos);
382 
383 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
384 {
385 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
386 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
387 }
388 
389 #ifdef CONFIG_SLUB_DEBUG
390 #ifdef CONFIG_SLUB_DEBUG_ON
391 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
392 #else
393 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
394 #endif
395 extern void print_tracking(struct kmem_cache *s, void *object);
396 long validate_slab_cache(struct kmem_cache *s);
397 static inline bool __slub_debug_enabled(void)
398 {
399 	return static_branch_unlikely(&slub_debug_enabled);
400 }
401 #else
402 static inline void print_tracking(struct kmem_cache *s, void *object)
403 {
404 }
405 static inline bool __slub_debug_enabled(void)
406 {
407 	return false;
408 }
409 #endif
410 
411 /*
412  * Returns true if any of the specified slub_debug flags is enabled for the
413  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
414  * the static key.
415  */
416 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
417 {
418 	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
419 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
420 	if (__slub_debug_enabled())
421 		return s->flags & flags;
422 	return false;
423 }
424 
425 #ifdef CONFIG_MEMCG_KMEM
426 /*
427  * slab_objcgs - get the object cgroups vector associated with a slab
428  * @slab: a pointer to the slab struct
429  *
430  * Returns a pointer to the object cgroups vector associated with the slab,
431  * or NULL if no such vector has been associated yet.
432  */
433 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
434 {
435 	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
436 
437 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
438 							slab_page(slab));
439 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
440 
441 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
442 }
443 
444 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
445 				 gfp_t gfp, bool new_slab);
446 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
447 		     enum node_stat_item idx, int nr);
448 
449 static inline void memcg_free_slab_cgroups(struct slab *slab)
450 {
451 	kfree(slab_objcgs(slab));
452 	slab->memcg_data = 0;
453 }
454 
455 static inline size_t obj_full_size(struct kmem_cache *s)
456 {
457 	/*
458 	 * For each accounted object there is an extra space which is used
459 	 * to store obj_cgroup membership. Charge it too.
460 	 */
461 	return s->size + sizeof(struct obj_cgroup *);
462 }
463 
464 /*
465  * Returns false if the allocation should fail.
466  */
467 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
468 					     struct list_lru *lru,
469 					     struct obj_cgroup **objcgp,
470 					     size_t objects, gfp_t flags)
471 {
472 	struct obj_cgroup *objcg;
473 
474 	if (!memcg_kmem_enabled())
475 		return true;
476 
477 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
478 		return true;
479 
480 	objcg = get_obj_cgroup_from_current();
481 	if (!objcg)
482 		return true;
483 
484 	if (lru) {
485 		int ret;
486 		struct mem_cgroup *memcg;
487 
488 		memcg = get_mem_cgroup_from_objcg(objcg);
489 		ret = memcg_list_lru_alloc(memcg, lru, flags);
490 		css_put(&memcg->css);
491 
492 		if (ret)
493 			goto out;
494 	}
495 
496 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
497 		goto out;
498 
499 	*objcgp = objcg;
500 	return true;
501 out:
502 	obj_cgroup_put(objcg);
503 	return false;
504 }
505 
506 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
507 					      struct obj_cgroup *objcg,
508 					      gfp_t flags, size_t size,
509 					      void **p)
510 {
511 	struct slab *slab;
512 	unsigned long off;
513 	size_t i;
514 
515 	if (!memcg_kmem_enabled() || !objcg)
516 		return;
517 
518 	for (i = 0; i < size; i++) {
519 		if (likely(p[i])) {
520 			slab = virt_to_slab(p[i]);
521 
522 			if (!slab_objcgs(slab) &&
523 			    memcg_alloc_slab_cgroups(slab, s, flags,
524 							 false)) {
525 				obj_cgroup_uncharge(objcg, obj_full_size(s));
526 				continue;
527 			}
528 
529 			off = obj_to_index(s, slab, p[i]);
530 			obj_cgroup_get(objcg);
531 			slab_objcgs(slab)[off] = objcg;
532 			mod_objcg_state(objcg, slab_pgdat(slab),
533 					cache_vmstat_idx(s), obj_full_size(s));
534 		} else {
535 			obj_cgroup_uncharge(objcg, obj_full_size(s));
536 		}
537 	}
538 	obj_cgroup_put(objcg);
539 }
540 
541 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
542 					void **p, int objects)
543 {
544 	struct obj_cgroup **objcgs;
545 	int i;
546 
547 	if (!memcg_kmem_enabled())
548 		return;
549 
550 	objcgs = slab_objcgs(slab);
551 	if (!objcgs)
552 		return;
553 
554 	for (i = 0; i < objects; i++) {
555 		struct obj_cgroup *objcg;
556 		unsigned int off;
557 
558 		off = obj_to_index(s, slab, p[i]);
559 		objcg = objcgs[off];
560 		if (!objcg)
561 			continue;
562 
563 		objcgs[off] = NULL;
564 		obj_cgroup_uncharge(objcg, obj_full_size(s));
565 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
566 				-obj_full_size(s));
567 		obj_cgroup_put(objcg);
568 	}
569 }
570 
571 #else /* CONFIG_MEMCG_KMEM */
572 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
573 {
574 	return NULL;
575 }
576 
577 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
578 {
579 	return NULL;
580 }
581 
582 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
583 					       struct kmem_cache *s, gfp_t gfp,
584 					       bool new_slab)
585 {
586 	return 0;
587 }
588 
589 static inline void memcg_free_slab_cgroups(struct slab *slab)
590 {
591 }
592 
593 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
594 					     struct list_lru *lru,
595 					     struct obj_cgroup **objcgp,
596 					     size_t objects, gfp_t flags)
597 {
598 	return true;
599 }
600 
601 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
602 					      struct obj_cgroup *objcg,
603 					      gfp_t flags, size_t size,
604 					      void **p)
605 {
606 }
607 
608 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
609 					void **p, int objects)
610 {
611 }
612 #endif /* CONFIG_MEMCG_KMEM */
613 
614 #ifndef CONFIG_SLOB
615 static inline struct kmem_cache *virt_to_cache(const void *obj)
616 {
617 	struct slab *slab;
618 
619 	slab = virt_to_slab(obj);
620 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
621 					__func__))
622 		return NULL;
623 	return slab->slab_cache;
624 }
625 
626 static __always_inline void account_slab(struct slab *slab, int order,
627 					 struct kmem_cache *s, gfp_t gfp)
628 {
629 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
630 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
631 
632 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
633 			    PAGE_SIZE << order);
634 }
635 
636 static __always_inline void unaccount_slab(struct slab *slab, int order,
637 					   struct kmem_cache *s)
638 {
639 	if (memcg_kmem_enabled())
640 		memcg_free_slab_cgroups(slab);
641 
642 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
643 			    -(PAGE_SIZE << order));
644 }
645 
646 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
647 {
648 	struct kmem_cache *cachep;
649 
650 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
651 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
652 		return s;
653 
654 	cachep = virt_to_cache(x);
655 	if (WARN(cachep && cachep != s,
656 		  "%s: Wrong slab cache. %s but object is from %s\n",
657 		  __func__, s->name, cachep->name))
658 		print_tracking(cachep, x);
659 	return cachep;
660 }
661 #endif /* CONFIG_SLOB */
662 
663 static inline size_t slab_ksize(const struct kmem_cache *s)
664 {
665 #ifndef CONFIG_SLUB
666 	return s->object_size;
667 
668 #else /* CONFIG_SLUB */
669 # ifdef CONFIG_SLUB_DEBUG
670 	/*
671 	 * Debugging requires use of the padding between object
672 	 * and whatever may come after it.
673 	 */
674 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
675 		return s->object_size;
676 # endif
677 	if (s->flags & SLAB_KASAN)
678 		return s->object_size;
679 	/*
680 	 * If we have the need to store the freelist pointer
681 	 * back there or track user information then we can
682 	 * only use the space before that information.
683 	 */
684 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
685 		return s->inuse;
686 	/*
687 	 * Else we can use all the padding etc for the allocation
688 	 */
689 	return s->size;
690 #endif
691 }
692 
693 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
694 						     struct list_lru *lru,
695 						     struct obj_cgroup **objcgp,
696 						     size_t size, gfp_t flags)
697 {
698 	flags &= gfp_allowed_mask;
699 
700 	might_alloc(flags);
701 
702 	if (should_failslab(s, flags))
703 		return NULL;
704 
705 	if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
706 		return NULL;
707 
708 	return s;
709 }
710 
711 static inline void slab_post_alloc_hook(struct kmem_cache *s,
712 					struct obj_cgroup *objcg, gfp_t flags,
713 					size_t size, void **p, bool init)
714 {
715 	size_t i;
716 
717 	flags &= gfp_allowed_mask;
718 
719 	/*
720 	 * As memory initialization might be integrated into KASAN,
721 	 * kasan_slab_alloc and initialization memset must be
722 	 * kept together to avoid discrepancies in behavior.
723 	 *
724 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
725 	 */
726 	for (i = 0; i < size; i++) {
727 		p[i] = kasan_slab_alloc(s, p[i], flags, init);
728 		if (p[i] && init && !kasan_has_integrated_init())
729 			memset(p[i], 0, s->object_size);
730 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
731 					 s->flags, flags);
732 	}
733 
734 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
735 }
736 
737 #ifndef CONFIG_SLOB
738 /*
739  * The slab lists for all objects.
740  */
741 struct kmem_cache_node {
742 	spinlock_t list_lock;
743 
744 #ifdef CONFIG_SLAB
745 	struct list_head slabs_partial;	/* partial list first, better asm code */
746 	struct list_head slabs_full;
747 	struct list_head slabs_free;
748 	unsigned long total_slabs;	/* length of all slab lists */
749 	unsigned long free_slabs;	/* length of free slab list only */
750 	unsigned long free_objects;
751 	unsigned int free_limit;
752 	unsigned int colour_next;	/* Per-node cache coloring */
753 	struct array_cache *shared;	/* shared per node */
754 	struct alien_cache **alien;	/* on other nodes */
755 	unsigned long next_reap;	/* updated without locking */
756 	int free_touched;		/* updated without locking */
757 #endif
758 
759 #ifdef CONFIG_SLUB
760 	unsigned long nr_partial;
761 	struct list_head partial;
762 #ifdef CONFIG_SLUB_DEBUG
763 	atomic_long_t nr_slabs;
764 	atomic_long_t total_objects;
765 	struct list_head full;
766 #endif
767 #endif
768 
769 };
770 
771 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
772 {
773 	return s->node[node];
774 }
775 
776 /*
777  * Iterator over all nodes. The body will be executed for each node that has
778  * a kmem_cache_node structure allocated (which is true for all online nodes)
779  */
780 #define for_each_kmem_cache_node(__s, __node, __n) \
781 	for (__node = 0; __node < nr_node_ids; __node++) \
782 		 if ((__n = get_node(__s, __node)))
783 
784 #endif
785 
786 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
787 void dump_unreclaimable_slab(void);
788 #else
789 static inline void dump_unreclaimable_slab(void)
790 {
791 }
792 #endif
793 
794 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
795 
796 #ifdef CONFIG_SLAB_FREELIST_RANDOM
797 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
798 			gfp_t gfp);
799 void cache_random_seq_destroy(struct kmem_cache *cachep);
800 #else
801 static inline int cache_random_seq_create(struct kmem_cache *cachep,
802 					unsigned int count, gfp_t gfp)
803 {
804 	return 0;
805 }
806 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
807 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
808 
809 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
810 {
811 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
812 				&init_on_alloc)) {
813 		if (c->ctor)
814 			return false;
815 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
816 			return flags & __GFP_ZERO;
817 		return true;
818 	}
819 	return flags & __GFP_ZERO;
820 }
821 
822 static inline bool slab_want_init_on_free(struct kmem_cache *c)
823 {
824 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
825 				&init_on_free))
826 		return !(c->ctor ||
827 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
828 	return false;
829 }
830 
831 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
832 void debugfs_slab_release(struct kmem_cache *);
833 #else
834 static inline void debugfs_slab_release(struct kmem_cache *s) { }
835 #endif
836 
837 #ifdef CONFIG_PRINTK
838 #define KS_ADDRS_COUNT 16
839 struct kmem_obj_info {
840 	void *kp_ptr;
841 	struct slab *kp_slab;
842 	void *kp_objp;
843 	unsigned long kp_data_offset;
844 	struct kmem_cache *kp_slab_cache;
845 	void *kp_ret;
846 	void *kp_stack[KS_ADDRS_COUNT];
847 	void *kp_free_stack[KS_ADDRS_COUNT];
848 };
849 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
850 #endif
851 
852 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
853 void __check_heap_object(const void *ptr, unsigned long n,
854 			 const struct slab *slab, bool to_user);
855 #else
856 static inline
857 void __check_heap_object(const void *ptr, unsigned long n,
858 			 const struct slab *slab, bool to_user)
859 {
860 }
861 #endif
862 
863 #endif /* MM_SLAB_H */
864