1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef MM_SLAB_H 3 #define MM_SLAB_H 4 5 #include <linux/reciprocal_div.h> 6 #include <linux/list_lru.h> 7 #include <linux/local_lock.h> 8 #include <linux/random.h> 9 #include <linux/kobject.h> 10 #include <linux/sched/mm.h> 11 #include <linux/memcontrol.h> 12 #include <linux/kfence.h> 13 #include <linux/kasan.h> 14 15 /* 16 * Internal slab definitions 17 */ 18 19 #ifdef CONFIG_64BIT 20 # ifdef system_has_cmpxchg128 21 # define system_has_freelist_aba() system_has_cmpxchg128() 22 # define try_cmpxchg_freelist try_cmpxchg128 23 # endif 24 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 25 typedef u128 freelist_full_t; 26 #else /* CONFIG_64BIT */ 27 # ifdef system_has_cmpxchg64 28 # define system_has_freelist_aba() system_has_cmpxchg64() 29 # define try_cmpxchg_freelist try_cmpxchg64 30 # endif 31 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 32 typedef u64 freelist_full_t; 33 #endif /* CONFIG_64BIT */ 34 35 #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 36 #undef system_has_freelist_aba 37 #endif 38 39 /* 40 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA 41 * problems with cmpxchg of just a pointer. 42 */ 43 typedef union { 44 struct { 45 void *freelist; 46 unsigned long counter; 47 }; 48 freelist_full_t full; 49 } freelist_aba_t; 50 51 /* Reuses the bits in struct page */ 52 struct slab { 53 unsigned long __page_flags; 54 55 struct kmem_cache *slab_cache; 56 union { 57 struct { 58 union { 59 struct list_head slab_list; 60 #ifdef CONFIG_SLUB_CPU_PARTIAL 61 struct { 62 struct slab *next; 63 int slabs; /* Nr of slabs left */ 64 }; 65 #endif 66 }; 67 /* Double-word boundary */ 68 union { 69 struct { 70 void *freelist; /* first free object */ 71 union { 72 unsigned long counters; 73 struct { 74 unsigned inuse:16; 75 unsigned objects:15; 76 /* 77 * If slab debugging is enabled then the 78 * frozen bit can be reused to indicate 79 * that the slab was corrupted 80 */ 81 unsigned frozen:1; 82 }; 83 }; 84 }; 85 #ifdef system_has_freelist_aba 86 freelist_aba_t freelist_counter; 87 #endif 88 }; 89 }; 90 struct rcu_head rcu_head; 91 }; 92 93 unsigned int __page_type; 94 atomic_t __page_refcount; 95 #ifdef CONFIG_SLAB_OBJ_EXT 96 unsigned long obj_exts; 97 #endif 98 }; 99 100 #define SLAB_MATCH(pg, sl) \ 101 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) 102 SLAB_MATCH(flags, __page_flags); 103 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ 104 SLAB_MATCH(_refcount, __page_refcount); 105 #ifdef CONFIG_MEMCG 106 SLAB_MATCH(memcg_data, obj_exts); 107 #elif defined(CONFIG_SLAB_OBJ_EXT) 108 SLAB_MATCH(_unused_slab_obj_exts, obj_exts); 109 #endif 110 #undef SLAB_MATCH 111 static_assert(sizeof(struct slab) <= sizeof(struct page)); 112 #if defined(system_has_freelist_aba) 113 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t))); 114 #endif 115 116 /** 117 * folio_slab - Converts from folio to slab. 118 * @folio: The folio. 119 * 120 * Currently struct slab is a different representation of a folio where 121 * folio_test_slab() is true. 122 * 123 * Return: The slab which contains this folio. 124 */ 125 #define folio_slab(folio) (_Generic((folio), \ 126 const struct folio *: (const struct slab *)(folio), \ 127 struct folio *: (struct slab *)(folio))) 128 129 /** 130 * slab_folio - The folio allocated for a slab 131 * @slab: The slab. 132 * 133 * Slabs are allocated as folios that contain the individual objects and are 134 * using some fields in the first struct page of the folio - those fields are 135 * now accessed by struct slab. It is occasionally necessary to convert back to 136 * a folio in order to communicate with the rest of the mm. Please use this 137 * helper function instead of casting yourself, as the implementation may change 138 * in the future. 139 */ 140 #define slab_folio(s) (_Generic((s), \ 141 const struct slab *: (const struct folio *)s, \ 142 struct slab *: (struct folio *)s)) 143 144 /** 145 * page_slab - Converts from first struct page to slab. 146 * @p: The first (either head of compound or single) page of slab. 147 * 148 * A temporary wrapper to convert struct page to struct slab in situations where 149 * we know the page is the compound head, or single order-0 page. 150 * 151 * Long-term ideally everything would work with struct slab directly or go 152 * through folio to struct slab. 153 * 154 * Return: The slab which contains this page 155 */ 156 #define page_slab(p) (_Generic((p), \ 157 const struct page *: (const struct slab *)(p), \ 158 struct page *: (struct slab *)(p))) 159 160 /** 161 * slab_page - The first struct page allocated for a slab 162 * @slab: The slab. 163 * 164 * A convenience wrapper for converting slab to the first struct page of the 165 * underlying folio, to communicate with code not yet converted to folio or 166 * struct slab. 167 */ 168 #define slab_page(s) folio_page(slab_folio(s), 0) 169 170 /* 171 * If network-based swap is enabled, sl*b must keep track of whether pages 172 * were allocated from pfmemalloc reserves. 173 */ 174 static inline bool slab_test_pfmemalloc(const struct slab *slab) 175 { 176 return folio_test_active(slab_folio(slab)); 177 } 178 179 static inline void slab_set_pfmemalloc(struct slab *slab) 180 { 181 folio_set_active(slab_folio(slab)); 182 } 183 184 static inline void slab_clear_pfmemalloc(struct slab *slab) 185 { 186 folio_clear_active(slab_folio(slab)); 187 } 188 189 static inline void __slab_clear_pfmemalloc(struct slab *slab) 190 { 191 __folio_clear_active(slab_folio(slab)); 192 } 193 194 static inline void *slab_address(const struct slab *slab) 195 { 196 return folio_address(slab_folio(slab)); 197 } 198 199 static inline int slab_nid(const struct slab *slab) 200 { 201 return folio_nid(slab_folio(slab)); 202 } 203 204 static inline pg_data_t *slab_pgdat(const struct slab *slab) 205 { 206 return folio_pgdat(slab_folio(slab)); 207 } 208 209 static inline struct slab *virt_to_slab(const void *addr) 210 { 211 struct folio *folio = virt_to_folio(addr); 212 213 if (!folio_test_slab(folio)) 214 return NULL; 215 216 return folio_slab(folio); 217 } 218 219 static inline int slab_order(const struct slab *slab) 220 { 221 return folio_order(slab_folio(slab)); 222 } 223 224 static inline size_t slab_size(const struct slab *slab) 225 { 226 return PAGE_SIZE << slab_order(slab); 227 } 228 229 #ifdef CONFIG_SLUB_CPU_PARTIAL 230 #define slub_percpu_partial(c) ((c)->partial) 231 232 #define slub_set_percpu_partial(c, p) \ 233 ({ \ 234 slub_percpu_partial(c) = (p)->next; \ 235 }) 236 237 #define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) 238 #else 239 #define slub_percpu_partial(c) NULL 240 241 #define slub_set_percpu_partial(c, p) 242 243 #define slub_percpu_partial_read_once(c) NULL 244 #endif // CONFIG_SLUB_CPU_PARTIAL 245 246 /* 247 * Word size structure that can be atomically updated or read and that 248 * contains both the order and the number of objects that a slab of the 249 * given order would contain. 250 */ 251 struct kmem_cache_order_objects { 252 unsigned int x; 253 }; 254 255 /* 256 * Slab cache management. 257 */ 258 struct kmem_cache { 259 #ifndef CONFIG_SLUB_TINY 260 struct kmem_cache_cpu __percpu *cpu_slab; 261 #endif 262 /* Used for retrieving partial slabs, etc. */ 263 slab_flags_t flags; 264 unsigned long min_partial; 265 unsigned int size; /* Object size including metadata */ 266 unsigned int object_size; /* Object size without metadata */ 267 struct reciprocal_value reciprocal_size; 268 unsigned int offset; /* Free pointer offset */ 269 #ifdef CONFIG_SLUB_CPU_PARTIAL 270 /* Number of per cpu partial objects to keep around */ 271 unsigned int cpu_partial; 272 /* Number of per cpu partial slabs to keep around */ 273 unsigned int cpu_partial_slabs; 274 #endif 275 struct kmem_cache_order_objects oo; 276 277 /* Allocation and freeing of slabs */ 278 struct kmem_cache_order_objects min; 279 gfp_t allocflags; /* gfp flags to use on each alloc */ 280 int refcount; /* Refcount for slab cache destroy */ 281 void (*ctor)(void *object); /* Object constructor */ 282 unsigned int inuse; /* Offset to metadata */ 283 unsigned int align; /* Alignment */ 284 unsigned int red_left_pad; /* Left redzone padding size */ 285 const char *name; /* Name (only for display!) */ 286 struct list_head list; /* List of slab caches */ 287 #ifdef CONFIG_SYSFS 288 struct kobject kobj; /* For sysfs */ 289 #endif 290 #ifdef CONFIG_SLAB_FREELIST_HARDENED 291 unsigned long random; 292 #endif 293 294 #ifdef CONFIG_NUMA 295 /* 296 * Defragmentation by allocating from a remote node. 297 */ 298 unsigned int remote_node_defrag_ratio; 299 #endif 300 301 #ifdef CONFIG_SLAB_FREELIST_RANDOM 302 unsigned int *random_seq; 303 #endif 304 305 #ifdef CONFIG_KASAN_GENERIC 306 struct kasan_cache kasan_info; 307 #endif 308 309 #ifdef CONFIG_HARDENED_USERCOPY 310 unsigned int useroffset; /* Usercopy region offset */ 311 unsigned int usersize; /* Usercopy region size */ 312 #endif 313 314 struct kmem_cache_node *node[MAX_NUMNODES]; 315 }; 316 317 #if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) 318 #define SLAB_SUPPORTS_SYSFS 1 319 void sysfs_slab_unlink(struct kmem_cache *s); 320 void sysfs_slab_release(struct kmem_cache *s); 321 #else 322 static inline void sysfs_slab_unlink(struct kmem_cache *s) { } 323 static inline void sysfs_slab_release(struct kmem_cache *s) { } 324 #endif 325 326 void *fixup_red_left(struct kmem_cache *s, void *p); 327 328 static inline void *nearest_obj(struct kmem_cache *cache, 329 const struct slab *slab, void *x) 330 { 331 void *object = x - (x - slab_address(slab)) % cache->size; 332 void *last_object = slab_address(slab) + 333 (slab->objects - 1) * cache->size; 334 void *result = (unlikely(object > last_object)) ? last_object : object; 335 336 result = fixup_red_left(cache, result); 337 return result; 338 } 339 340 /* Determine object index from a given position */ 341 static inline unsigned int __obj_to_index(const struct kmem_cache *cache, 342 void *addr, void *obj) 343 { 344 return reciprocal_divide(kasan_reset_tag(obj) - addr, 345 cache->reciprocal_size); 346 } 347 348 static inline unsigned int obj_to_index(const struct kmem_cache *cache, 349 const struct slab *slab, void *obj) 350 { 351 if (is_kfence_address(obj)) 352 return 0; 353 return __obj_to_index(cache, slab_address(slab), obj); 354 } 355 356 static inline int objs_per_slab(const struct kmem_cache *cache, 357 const struct slab *slab) 358 { 359 return slab->objects; 360 } 361 362 /* 363 * State of the slab allocator. 364 * 365 * This is used to describe the states of the allocator during bootup. 366 * Allocators use this to gradually bootstrap themselves. Most allocators 367 * have the problem that the structures used for managing slab caches are 368 * allocated from slab caches themselves. 369 */ 370 enum slab_state { 371 DOWN, /* No slab functionality yet */ 372 PARTIAL, /* SLUB: kmem_cache_node available */ 373 UP, /* Slab caches usable but not all extras yet */ 374 FULL /* Everything is working */ 375 }; 376 377 extern enum slab_state slab_state; 378 379 /* The slab cache mutex protects the management structures during changes */ 380 extern struct mutex slab_mutex; 381 382 /* The list of all slab caches on the system */ 383 extern struct list_head slab_caches; 384 385 /* The slab cache that manages slab cache information */ 386 extern struct kmem_cache *kmem_cache; 387 388 /* A table of kmalloc cache names and sizes */ 389 extern const struct kmalloc_info_struct { 390 const char *name[NR_KMALLOC_TYPES]; 391 unsigned int size; 392 } kmalloc_info[]; 393 394 /* Kmalloc array related functions */ 395 void setup_kmalloc_cache_index_table(void); 396 void create_kmalloc_caches(void); 397 398 extern u8 kmalloc_size_index[24]; 399 400 static inline unsigned int size_index_elem(unsigned int bytes) 401 { 402 return (bytes - 1) / 8; 403 } 404 405 /* 406 * Find the kmem_cache structure that serves a given size of 407 * allocation 408 * 409 * This assumes size is larger than zero and not larger than 410 * KMALLOC_MAX_CACHE_SIZE and the caller must check that. 411 */ 412 static inline struct kmem_cache * 413 kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) 414 { 415 unsigned int index; 416 417 if (!b) 418 b = &kmalloc_caches[kmalloc_type(flags, caller)]; 419 if (size <= 192) 420 index = kmalloc_size_index[size_index_elem(size)]; 421 else 422 index = fls(size - 1); 423 424 return (*b)[index]; 425 } 426 427 gfp_t kmalloc_fix_flags(gfp_t flags); 428 429 /* Functions provided by the slab allocators */ 430 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 431 unsigned int size, struct kmem_cache_args *args, 432 slab_flags_t flags); 433 434 void __init kmem_cache_init(void); 435 extern void create_boot_cache(struct kmem_cache *, const char *name, 436 unsigned int size, slab_flags_t flags, 437 unsigned int useroffset, unsigned int usersize); 438 439 int slab_unmergeable(struct kmem_cache *s); 440 struct kmem_cache *find_mergeable(unsigned size, unsigned align, 441 slab_flags_t flags, const char *name, void (*ctor)(void *)); 442 struct kmem_cache * 443 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 444 slab_flags_t flags, void (*ctor)(void *)); 445 446 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); 447 448 static inline bool is_kmalloc_cache(struct kmem_cache *s) 449 { 450 return (s->flags & SLAB_KMALLOC); 451 } 452 453 static inline bool is_kmalloc_normal(struct kmem_cache *s) 454 { 455 if (!is_kmalloc_cache(s)) 456 return false; 457 return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); 458 } 459 460 /* Legal flag mask for kmem_cache_create(), for various configurations */ 461 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ 462 SLAB_CACHE_DMA32 | SLAB_PANIC | \ 463 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) 464 465 #ifdef CONFIG_SLUB_DEBUG 466 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 467 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 468 #else 469 #define SLAB_DEBUG_FLAGS (0) 470 #endif 471 472 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 473 SLAB_TEMPORARY | SLAB_ACCOUNT | \ 474 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) 475 476 /* Common flags available with current configuration */ 477 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 478 479 /* Common flags permitted for kmem_cache_create */ 480 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ 481 SLAB_RED_ZONE | \ 482 SLAB_POISON | \ 483 SLAB_STORE_USER | \ 484 SLAB_TRACE | \ 485 SLAB_CONSISTENCY_CHECKS | \ 486 SLAB_NOLEAKTRACE | \ 487 SLAB_RECLAIM_ACCOUNT | \ 488 SLAB_TEMPORARY | \ 489 SLAB_ACCOUNT | \ 490 SLAB_KMALLOC | \ 491 SLAB_NO_MERGE | \ 492 SLAB_NO_USER_FLAGS) 493 494 bool __kmem_cache_empty(struct kmem_cache *); 495 int __kmem_cache_shutdown(struct kmem_cache *); 496 void __kmem_cache_release(struct kmem_cache *); 497 int __kmem_cache_shrink(struct kmem_cache *); 498 void slab_kmem_cache_release(struct kmem_cache *); 499 500 struct seq_file; 501 struct file; 502 503 struct slabinfo { 504 unsigned long active_objs; 505 unsigned long num_objs; 506 unsigned long active_slabs; 507 unsigned long num_slabs; 508 unsigned long shared_avail; 509 unsigned int limit; 510 unsigned int batchcount; 511 unsigned int shared; 512 unsigned int objects_per_slab; 513 unsigned int cache_order; 514 }; 515 516 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 517 518 #ifdef CONFIG_SLUB_DEBUG 519 #ifdef CONFIG_SLUB_DEBUG_ON 520 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); 521 #else 522 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); 523 #endif 524 extern void print_tracking(struct kmem_cache *s, void *object); 525 long validate_slab_cache(struct kmem_cache *s); 526 static inline bool __slub_debug_enabled(void) 527 { 528 return static_branch_unlikely(&slub_debug_enabled); 529 } 530 #else 531 static inline void print_tracking(struct kmem_cache *s, void *object) 532 { 533 } 534 static inline bool __slub_debug_enabled(void) 535 { 536 return false; 537 } 538 #endif 539 540 /* 541 * Returns true if any of the specified slab_debug flags is enabled for the 542 * cache. Use only for flags parsed by setup_slub_debug() as it also enables 543 * the static key. 544 */ 545 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) 546 { 547 if (IS_ENABLED(CONFIG_SLUB_DEBUG)) 548 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); 549 if (__slub_debug_enabled()) 550 return s->flags & flags; 551 return false; 552 } 553 554 #if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT) 555 bool slab_in_kunit_test(void); 556 #else 557 static inline bool slab_in_kunit_test(void) { return false; } 558 #endif 559 560 #ifdef CONFIG_SLAB_OBJ_EXT 561 562 /* 563 * slab_obj_exts - get the pointer to the slab object extension vector 564 * associated with a slab. 565 * @slab: a pointer to the slab struct 566 * 567 * Returns a pointer to the object extension vector associated with the slab, 568 * or NULL if no such vector has been associated yet. 569 */ 570 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) 571 { 572 unsigned long obj_exts = READ_ONCE(slab->obj_exts); 573 574 #ifdef CONFIG_MEMCG 575 VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS), 576 slab_page(slab)); 577 VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); 578 #endif 579 return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); 580 } 581 582 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 583 gfp_t gfp, bool new_slab); 584 585 #else /* CONFIG_SLAB_OBJ_EXT */ 586 587 static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) 588 { 589 return NULL; 590 } 591 592 #endif /* CONFIG_SLAB_OBJ_EXT */ 593 594 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) 595 { 596 return (s->flags & SLAB_RECLAIM_ACCOUNT) ? 597 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; 598 } 599 600 #ifdef CONFIG_MEMCG 601 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 602 gfp_t flags, size_t size, void **p); 603 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 604 void **p, int objects, struct slabobj_ext *obj_exts); 605 #endif 606 607 size_t __ksize(const void *objp); 608 609 static inline size_t slab_ksize(const struct kmem_cache *s) 610 { 611 #ifdef CONFIG_SLUB_DEBUG 612 /* 613 * Debugging requires use of the padding between object 614 * and whatever may come after it. 615 */ 616 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 617 return s->object_size; 618 #endif 619 if (s->flags & SLAB_KASAN) 620 return s->object_size; 621 /* 622 * If we have the need to store the freelist pointer 623 * back there or track user information then we can 624 * only use the space before that information. 625 */ 626 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) 627 return s->inuse; 628 /* 629 * Else we can use all the padding etc for the allocation 630 */ 631 return s->size; 632 } 633 634 #ifdef CONFIG_SLUB_DEBUG 635 void dump_unreclaimable_slab(void); 636 #else 637 static inline void dump_unreclaimable_slab(void) 638 { 639 } 640 #endif 641 642 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 643 644 #ifdef CONFIG_SLAB_FREELIST_RANDOM 645 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 646 gfp_t gfp); 647 void cache_random_seq_destroy(struct kmem_cache *cachep); 648 #else 649 static inline int cache_random_seq_create(struct kmem_cache *cachep, 650 unsigned int count, gfp_t gfp) 651 { 652 return 0; 653 } 654 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 655 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 656 657 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) 658 { 659 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 660 &init_on_alloc)) { 661 if (c->ctor) 662 return false; 663 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) 664 return flags & __GFP_ZERO; 665 return true; 666 } 667 return flags & __GFP_ZERO; 668 } 669 670 static inline bool slab_want_init_on_free(struct kmem_cache *c) 671 { 672 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 673 &init_on_free)) 674 return !(c->ctor || 675 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); 676 return false; 677 } 678 679 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 680 void debugfs_slab_release(struct kmem_cache *); 681 #else 682 static inline void debugfs_slab_release(struct kmem_cache *s) { } 683 #endif 684 685 #ifdef CONFIG_PRINTK 686 #define KS_ADDRS_COUNT 16 687 struct kmem_obj_info { 688 void *kp_ptr; 689 struct slab *kp_slab; 690 void *kp_objp; 691 unsigned long kp_data_offset; 692 struct kmem_cache *kp_slab_cache; 693 void *kp_ret; 694 void *kp_stack[KS_ADDRS_COUNT]; 695 void *kp_free_stack[KS_ADDRS_COUNT]; 696 }; 697 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); 698 #endif 699 700 void __check_heap_object(const void *ptr, unsigned long n, 701 const struct slab *slab, bool to_user); 702 703 static inline bool slub_debug_orig_size(struct kmem_cache *s) 704 { 705 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 706 (s->flags & SLAB_KMALLOC)); 707 } 708 709 #ifdef CONFIG_SLUB_DEBUG 710 void skip_orig_size_check(struct kmem_cache *s, const void *object); 711 #endif 712 713 #endif /* MM_SLAB_H */ 714