xref: /linux/mm/slab.h (revision 7681a4f58fb9c338d6dfe1181607f84c793d77de)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 /* Reuses the bits in struct page */
9 struct slab {
10 	unsigned long __page_flags;
11 
12 #if defined(CONFIG_SLAB)
13 
14 	struct kmem_cache *slab_cache;
15 	union {
16 		struct {
17 			struct list_head slab_list;
18 			void *freelist;	/* array of free object indexes */
19 			void *s_mem;	/* first object */
20 		};
21 		struct rcu_head rcu_head;
22 	};
23 	unsigned int active;
24 
25 #elif defined(CONFIG_SLUB)
26 
27 	struct kmem_cache *slab_cache;
28 	union {
29 		struct {
30 			union {
31 				struct list_head slab_list;
32 #ifdef CONFIG_SLUB_CPU_PARTIAL
33 				struct {
34 					struct slab *next;
35 					int slabs;	/* Nr of slabs left */
36 				};
37 #endif
38 			};
39 			/* Double-word boundary */
40 			void *freelist;		/* first free object */
41 			union {
42 				unsigned long counters;
43 				struct {
44 					unsigned inuse:16;
45 					unsigned objects:15;
46 					unsigned frozen:1;
47 				};
48 			};
49 		};
50 		struct rcu_head rcu_head;
51 	};
52 	unsigned int __unused;
53 
54 #elif defined(CONFIG_SLOB)
55 
56 	struct list_head slab_list;
57 	void *__unused_1;
58 	void *freelist;		/* first free block */
59 	long units;
60 	unsigned int __unused_2;
61 
62 #else
63 #error "Unexpected slab allocator configured"
64 #endif
65 
66 	atomic_t __page_refcount;
67 #ifdef CONFIG_MEMCG
68 	unsigned long memcg_data;
69 #endif
70 };
71 
72 #define SLAB_MATCH(pg, sl)						\
73 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
74 SLAB_MATCH(flags, __page_flags);
75 #ifndef CONFIG_SLOB
76 SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
77 #else
78 SLAB_MATCH(compound_head, slab_list);	/* Ensure bit 0 is clear */
79 #endif
80 SLAB_MATCH(_refcount, __page_refcount);
81 #ifdef CONFIG_MEMCG
82 SLAB_MATCH(memcg_data, memcg_data);
83 #endif
84 #undef SLAB_MATCH
85 static_assert(sizeof(struct slab) <= sizeof(struct page));
86 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
87 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
88 #endif
89 
90 /**
91  * folio_slab - Converts from folio to slab.
92  * @folio: The folio.
93  *
94  * Currently struct slab is a different representation of a folio where
95  * folio_test_slab() is true.
96  *
97  * Return: The slab which contains this folio.
98  */
99 #define folio_slab(folio)	(_Generic((folio),			\
100 	const struct folio *:	(const struct slab *)(folio),		\
101 	struct folio *:		(struct slab *)(folio)))
102 
103 /**
104  * slab_folio - The folio allocated for a slab
105  * @slab: The slab.
106  *
107  * Slabs are allocated as folios that contain the individual objects and are
108  * using some fields in the first struct page of the folio - those fields are
109  * now accessed by struct slab. It is occasionally necessary to convert back to
110  * a folio in order to communicate with the rest of the mm.  Please use this
111  * helper function instead of casting yourself, as the implementation may change
112  * in the future.
113  */
114 #define slab_folio(s)		(_Generic((s),				\
115 	const struct slab *:	(const struct folio *)s,		\
116 	struct slab *:		(struct folio *)s))
117 
118 /**
119  * page_slab - Converts from first struct page to slab.
120  * @p: The first (either head of compound or single) page of slab.
121  *
122  * A temporary wrapper to convert struct page to struct slab in situations where
123  * we know the page is the compound head, or single order-0 page.
124  *
125  * Long-term ideally everything would work with struct slab directly or go
126  * through folio to struct slab.
127  *
128  * Return: The slab which contains this page
129  */
130 #define page_slab(p)		(_Generic((p),				\
131 	const struct page *:	(const struct slab *)(p),		\
132 	struct page *:		(struct slab *)(p)))
133 
134 /**
135  * slab_page - The first struct page allocated for a slab
136  * @slab: The slab.
137  *
138  * A convenience wrapper for converting slab to the first struct page of the
139  * underlying folio, to communicate with code not yet converted to folio or
140  * struct slab.
141  */
142 #define slab_page(s) folio_page(slab_folio(s), 0)
143 
144 /*
145  * If network-based swap is enabled, sl*b must keep track of whether pages
146  * were allocated from pfmemalloc reserves.
147  */
148 static inline bool slab_test_pfmemalloc(const struct slab *slab)
149 {
150 	return folio_test_active((struct folio *)slab_folio(slab));
151 }
152 
153 static inline void slab_set_pfmemalloc(struct slab *slab)
154 {
155 	folio_set_active(slab_folio(slab));
156 }
157 
158 static inline void slab_clear_pfmemalloc(struct slab *slab)
159 {
160 	folio_clear_active(slab_folio(slab));
161 }
162 
163 static inline void __slab_clear_pfmemalloc(struct slab *slab)
164 {
165 	__folio_clear_active(slab_folio(slab));
166 }
167 
168 static inline void *slab_address(const struct slab *slab)
169 {
170 	return folio_address(slab_folio(slab));
171 }
172 
173 static inline int slab_nid(const struct slab *slab)
174 {
175 	return folio_nid(slab_folio(slab));
176 }
177 
178 static inline pg_data_t *slab_pgdat(const struct slab *slab)
179 {
180 	return folio_pgdat(slab_folio(slab));
181 }
182 
183 static inline struct slab *virt_to_slab(const void *addr)
184 {
185 	struct folio *folio = virt_to_folio(addr);
186 
187 	if (!folio_test_slab(folio))
188 		return NULL;
189 
190 	return folio_slab(folio);
191 }
192 
193 static inline int slab_order(const struct slab *slab)
194 {
195 	return folio_order((struct folio *)slab_folio(slab));
196 }
197 
198 static inline size_t slab_size(const struct slab *slab)
199 {
200 	return PAGE_SIZE << slab_order(slab);
201 }
202 
203 #ifdef CONFIG_SLOB
204 /*
205  * Common fields provided in kmem_cache by all slab allocators
206  * This struct is either used directly by the allocator (SLOB)
207  * or the allocator must include definitions for all fields
208  * provided in kmem_cache_common in their definition of kmem_cache.
209  *
210  * Once we can do anonymous structs (C11 standard) we could put a
211  * anonymous struct definition in these allocators so that the
212  * separate allocations in the kmem_cache structure of SLAB and
213  * SLUB is no longer needed.
214  */
215 struct kmem_cache {
216 	unsigned int object_size;/* The original size of the object */
217 	unsigned int size;	/* The aligned/padded/added on size  */
218 	unsigned int align;	/* Alignment as calculated */
219 	slab_flags_t flags;	/* Active flags on the slab */
220 	const char *name;	/* Slab name for sysfs */
221 	int refcount;		/* Use counter */
222 	void (*ctor)(void *);	/* Called on object slot creation */
223 	struct list_head list;	/* List of all slab caches on the system */
224 };
225 
226 #endif /* CONFIG_SLOB */
227 
228 #ifdef CONFIG_SLAB
229 #include <linux/slab_def.h>
230 #endif
231 
232 #ifdef CONFIG_SLUB
233 #include <linux/slub_def.h>
234 #endif
235 
236 #include <linux/memcontrol.h>
237 #include <linux/fault-inject.h>
238 #include <linux/kasan.h>
239 #include <linux/kmemleak.h>
240 #include <linux/random.h>
241 #include <linux/sched/mm.h>
242 #include <linux/list_lru.h>
243 
244 /*
245  * State of the slab allocator.
246  *
247  * This is used to describe the states of the allocator during bootup.
248  * Allocators use this to gradually bootstrap themselves. Most allocators
249  * have the problem that the structures used for managing slab caches are
250  * allocated from slab caches themselves.
251  */
252 enum slab_state {
253 	DOWN,			/* No slab functionality yet */
254 	PARTIAL,		/* SLUB: kmem_cache_node available */
255 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
256 	UP,			/* Slab caches usable but not all extras yet */
257 	FULL			/* Everything is working */
258 };
259 
260 extern enum slab_state slab_state;
261 
262 /* The slab cache mutex protects the management structures during changes */
263 extern struct mutex slab_mutex;
264 
265 /* The list of all slab caches on the system */
266 extern struct list_head slab_caches;
267 
268 /* The slab cache that manages slab cache information */
269 extern struct kmem_cache *kmem_cache;
270 
271 /* A table of kmalloc cache names and sizes */
272 extern const struct kmalloc_info_struct {
273 	const char *name[NR_KMALLOC_TYPES];
274 	unsigned int size;
275 } kmalloc_info[];
276 
277 #ifndef CONFIG_SLOB
278 /* Kmalloc array related functions */
279 void setup_kmalloc_cache_index_table(void);
280 void create_kmalloc_caches(slab_flags_t);
281 
282 /* Find the kmalloc slab corresponding for a certain size */
283 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
284 
285 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
286 			      int node, size_t orig_size,
287 			      unsigned long caller);
288 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
289 #endif
290 
291 gfp_t kmalloc_fix_flags(gfp_t flags);
292 
293 /* Functions provided by the slab allocators */
294 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
295 
296 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
297 			slab_flags_t flags, unsigned int useroffset,
298 			unsigned int usersize);
299 extern void create_boot_cache(struct kmem_cache *, const char *name,
300 			unsigned int size, slab_flags_t flags,
301 			unsigned int useroffset, unsigned int usersize);
302 
303 int slab_unmergeable(struct kmem_cache *s);
304 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
305 		slab_flags_t flags, const char *name, void (*ctor)(void *));
306 #ifndef CONFIG_SLOB
307 struct kmem_cache *
308 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
309 		   slab_flags_t flags, void (*ctor)(void *));
310 
311 slab_flags_t kmem_cache_flags(unsigned int object_size,
312 	slab_flags_t flags, const char *name);
313 #else
314 static inline struct kmem_cache *
315 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
316 		   slab_flags_t flags, void (*ctor)(void *))
317 { return NULL; }
318 
319 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
320 	slab_flags_t flags, const char *name)
321 {
322 	return flags;
323 }
324 #endif
325 
326 
327 /* Legal flag mask for kmem_cache_create(), for various configurations */
328 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
329 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
330 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
331 
332 #if defined(CONFIG_DEBUG_SLAB)
333 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
334 #elif defined(CONFIG_SLUB_DEBUG)
335 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
336 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
337 #else
338 #define SLAB_DEBUG_FLAGS (0)
339 #endif
340 
341 #if defined(CONFIG_SLAB)
342 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
343 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
344 			  SLAB_ACCOUNT)
345 #elif defined(CONFIG_SLUB)
346 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
347 			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
348 			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
349 #else
350 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
351 #endif
352 
353 /* Common flags available with current configuration */
354 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
355 
356 /* Common flags permitted for kmem_cache_create */
357 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
358 			      SLAB_RED_ZONE | \
359 			      SLAB_POISON | \
360 			      SLAB_STORE_USER | \
361 			      SLAB_TRACE | \
362 			      SLAB_CONSISTENCY_CHECKS | \
363 			      SLAB_MEM_SPREAD | \
364 			      SLAB_NOLEAKTRACE | \
365 			      SLAB_RECLAIM_ACCOUNT | \
366 			      SLAB_TEMPORARY | \
367 			      SLAB_ACCOUNT | \
368 			      SLAB_KMALLOC | \
369 			      SLAB_NO_USER_FLAGS)
370 
371 bool __kmem_cache_empty(struct kmem_cache *);
372 int __kmem_cache_shutdown(struct kmem_cache *);
373 void __kmem_cache_release(struct kmem_cache *);
374 int __kmem_cache_shrink(struct kmem_cache *);
375 void slab_kmem_cache_release(struct kmem_cache *);
376 
377 struct seq_file;
378 struct file;
379 
380 struct slabinfo {
381 	unsigned long active_objs;
382 	unsigned long num_objs;
383 	unsigned long active_slabs;
384 	unsigned long num_slabs;
385 	unsigned long shared_avail;
386 	unsigned int limit;
387 	unsigned int batchcount;
388 	unsigned int shared;
389 	unsigned int objects_per_slab;
390 	unsigned int cache_order;
391 };
392 
393 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
394 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
395 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
396 		       size_t count, loff_t *ppos);
397 
398 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
399 {
400 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
401 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
402 }
403 
404 #ifdef CONFIG_SLUB_DEBUG
405 #ifdef CONFIG_SLUB_DEBUG_ON
406 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
407 #else
408 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
409 #endif
410 extern void print_tracking(struct kmem_cache *s, void *object);
411 long validate_slab_cache(struct kmem_cache *s);
412 static inline bool __slub_debug_enabled(void)
413 {
414 	return static_branch_unlikely(&slub_debug_enabled);
415 }
416 #else
417 static inline void print_tracking(struct kmem_cache *s, void *object)
418 {
419 }
420 static inline bool __slub_debug_enabled(void)
421 {
422 	return false;
423 }
424 #endif
425 
426 /*
427  * Returns true if any of the specified slub_debug flags is enabled for the
428  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
429  * the static key.
430  */
431 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
432 {
433 	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
434 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
435 	if (__slub_debug_enabled())
436 		return s->flags & flags;
437 	return false;
438 }
439 
440 #ifdef CONFIG_MEMCG_KMEM
441 /*
442  * slab_objcgs - get the object cgroups vector associated with a slab
443  * @slab: a pointer to the slab struct
444  *
445  * Returns a pointer to the object cgroups vector associated with the slab,
446  * or NULL if no such vector has been associated yet.
447  */
448 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
449 {
450 	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
451 
452 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
453 							slab_page(slab));
454 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
455 
456 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
457 }
458 
459 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
460 				 gfp_t gfp, bool new_slab);
461 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
462 		     enum node_stat_item idx, int nr);
463 
464 static inline void memcg_free_slab_cgroups(struct slab *slab)
465 {
466 	kfree(slab_objcgs(slab));
467 	slab->memcg_data = 0;
468 }
469 
470 static inline size_t obj_full_size(struct kmem_cache *s)
471 {
472 	/*
473 	 * For each accounted object there is an extra space which is used
474 	 * to store obj_cgroup membership. Charge it too.
475 	 */
476 	return s->size + sizeof(struct obj_cgroup *);
477 }
478 
479 /*
480  * Returns false if the allocation should fail.
481  */
482 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
483 					     struct list_lru *lru,
484 					     struct obj_cgroup **objcgp,
485 					     size_t objects, gfp_t flags)
486 {
487 	struct obj_cgroup *objcg;
488 
489 	if (!memcg_kmem_enabled())
490 		return true;
491 
492 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
493 		return true;
494 
495 	objcg = get_obj_cgroup_from_current();
496 	if (!objcg)
497 		return true;
498 
499 	if (lru) {
500 		int ret;
501 		struct mem_cgroup *memcg;
502 
503 		memcg = get_mem_cgroup_from_objcg(objcg);
504 		ret = memcg_list_lru_alloc(memcg, lru, flags);
505 		css_put(&memcg->css);
506 
507 		if (ret)
508 			goto out;
509 	}
510 
511 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
512 		goto out;
513 
514 	*objcgp = objcg;
515 	return true;
516 out:
517 	obj_cgroup_put(objcg);
518 	return false;
519 }
520 
521 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
522 					      struct obj_cgroup *objcg,
523 					      gfp_t flags, size_t size,
524 					      void **p)
525 {
526 	struct slab *slab;
527 	unsigned long off;
528 	size_t i;
529 
530 	if (!memcg_kmem_enabled() || !objcg)
531 		return;
532 
533 	for (i = 0; i < size; i++) {
534 		if (likely(p[i])) {
535 			slab = virt_to_slab(p[i]);
536 
537 			if (!slab_objcgs(slab) &&
538 			    memcg_alloc_slab_cgroups(slab, s, flags,
539 							 false)) {
540 				obj_cgroup_uncharge(objcg, obj_full_size(s));
541 				continue;
542 			}
543 
544 			off = obj_to_index(s, slab, p[i]);
545 			obj_cgroup_get(objcg);
546 			slab_objcgs(slab)[off] = objcg;
547 			mod_objcg_state(objcg, slab_pgdat(slab),
548 					cache_vmstat_idx(s), obj_full_size(s));
549 		} else {
550 			obj_cgroup_uncharge(objcg, obj_full_size(s));
551 		}
552 	}
553 	obj_cgroup_put(objcg);
554 }
555 
556 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
557 					void **p, int objects)
558 {
559 	struct obj_cgroup **objcgs;
560 	int i;
561 
562 	if (!memcg_kmem_enabled())
563 		return;
564 
565 	objcgs = slab_objcgs(slab);
566 	if (!objcgs)
567 		return;
568 
569 	for (i = 0; i < objects; i++) {
570 		struct obj_cgroup *objcg;
571 		unsigned int off;
572 
573 		off = obj_to_index(s, slab, p[i]);
574 		objcg = objcgs[off];
575 		if (!objcg)
576 			continue;
577 
578 		objcgs[off] = NULL;
579 		obj_cgroup_uncharge(objcg, obj_full_size(s));
580 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
581 				-obj_full_size(s));
582 		obj_cgroup_put(objcg);
583 	}
584 }
585 
586 #else /* CONFIG_MEMCG_KMEM */
587 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
588 {
589 	return NULL;
590 }
591 
592 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
593 {
594 	return NULL;
595 }
596 
597 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
598 					       struct kmem_cache *s, gfp_t gfp,
599 					       bool new_slab)
600 {
601 	return 0;
602 }
603 
604 static inline void memcg_free_slab_cgroups(struct slab *slab)
605 {
606 }
607 
608 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
609 					     struct list_lru *lru,
610 					     struct obj_cgroup **objcgp,
611 					     size_t objects, gfp_t flags)
612 {
613 	return true;
614 }
615 
616 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
617 					      struct obj_cgroup *objcg,
618 					      gfp_t flags, size_t size,
619 					      void **p)
620 {
621 }
622 
623 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
624 					void **p, int objects)
625 {
626 }
627 #endif /* CONFIG_MEMCG_KMEM */
628 
629 #ifndef CONFIG_SLOB
630 static inline struct kmem_cache *virt_to_cache(const void *obj)
631 {
632 	struct slab *slab;
633 
634 	slab = virt_to_slab(obj);
635 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
636 					__func__))
637 		return NULL;
638 	return slab->slab_cache;
639 }
640 
641 static __always_inline void account_slab(struct slab *slab, int order,
642 					 struct kmem_cache *s, gfp_t gfp)
643 {
644 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
645 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
646 
647 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
648 			    PAGE_SIZE << order);
649 }
650 
651 static __always_inline void unaccount_slab(struct slab *slab, int order,
652 					   struct kmem_cache *s)
653 {
654 	if (memcg_kmem_enabled())
655 		memcg_free_slab_cgroups(slab);
656 
657 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
658 			    -(PAGE_SIZE << order));
659 }
660 
661 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
662 {
663 	struct kmem_cache *cachep;
664 
665 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
666 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
667 		return s;
668 
669 	cachep = virt_to_cache(x);
670 	if (WARN(cachep && cachep != s,
671 		  "%s: Wrong slab cache. %s but object is from %s\n",
672 		  __func__, s->name, cachep->name))
673 		print_tracking(cachep, x);
674 	return cachep;
675 }
676 
677 void free_large_kmalloc(struct folio *folio, void *object);
678 
679 #endif /* CONFIG_SLOB */
680 
681 size_t __ksize(const void *objp);
682 
683 static inline size_t slab_ksize(const struct kmem_cache *s)
684 {
685 #ifndef CONFIG_SLUB
686 	return s->object_size;
687 
688 #else /* CONFIG_SLUB */
689 # ifdef CONFIG_SLUB_DEBUG
690 	/*
691 	 * Debugging requires use of the padding between object
692 	 * and whatever may come after it.
693 	 */
694 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
695 		return s->object_size;
696 # endif
697 	if (s->flags & SLAB_KASAN)
698 		return s->object_size;
699 	/*
700 	 * If we have the need to store the freelist pointer
701 	 * back there or track user information then we can
702 	 * only use the space before that information.
703 	 */
704 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
705 		return s->inuse;
706 	/*
707 	 * Else we can use all the padding etc for the allocation
708 	 */
709 	return s->size;
710 #endif
711 }
712 
713 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
714 						     struct list_lru *lru,
715 						     struct obj_cgroup **objcgp,
716 						     size_t size, gfp_t flags)
717 {
718 	flags &= gfp_allowed_mask;
719 
720 	might_alloc(flags);
721 
722 	if (should_failslab(s, flags))
723 		return NULL;
724 
725 	if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
726 		return NULL;
727 
728 	return s;
729 }
730 
731 static inline void slab_post_alloc_hook(struct kmem_cache *s,
732 					struct obj_cgroup *objcg, gfp_t flags,
733 					size_t size, void **p, bool init,
734 					unsigned int orig_size)
735 {
736 	unsigned int zero_size = s->object_size;
737 	size_t i;
738 
739 	flags &= gfp_allowed_mask;
740 
741 	/*
742 	 * For kmalloc object, the allocated memory size(object_size) is likely
743 	 * larger than the requested size(orig_size). If redzone check is
744 	 * enabled for the extra space, don't zero it, as it will be redzoned
745 	 * soon. The redzone operation for this extra space could be seen as a
746 	 * replacement of current poisoning under certain debug option, and
747 	 * won't break other sanity checks.
748 	 */
749 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
750 	    (s->flags & SLAB_KMALLOC))
751 		zero_size = orig_size;
752 
753 	/*
754 	 * As memory initialization might be integrated into KASAN,
755 	 * kasan_slab_alloc and initialization memset must be
756 	 * kept together to avoid discrepancies in behavior.
757 	 *
758 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
759 	 */
760 	for (i = 0; i < size; i++) {
761 		p[i] = kasan_slab_alloc(s, p[i], flags, init);
762 		if (p[i] && init && !kasan_has_integrated_init())
763 			memset(p[i], 0, zero_size);
764 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
765 					 s->flags, flags);
766 		kmsan_slab_alloc(s, p[i], flags);
767 	}
768 
769 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
770 }
771 
772 #ifndef CONFIG_SLOB
773 /*
774  * The slab lists for all objects.
775  */
776 struct kmem_cache_node {
777 #ifdef CONFIG_SLAB
778 	raw_spinlock_t list_lock;
779 	struct list_head slabs_partial;	/* partial list first, better asm code */
780 	struct list_head slabs_full;
781 	struct list_head slabs_free;
782 	unsigned long total_slabs;	/* length of all slab lists */
783 	unsigned long free_slabs;	/* length of free slab list only */
784 	unsigned long free_objects;
785 	unsigned int free_limit;
786 	unsigned int colour_next;	/* Per-node cache coloring */
787 	struct array_cache *shared;	/* shared per node */
788 	struct alien_cache **alien;	/* on other nodes */
789 	unsigned long next_reap;	/* updated without locking */
790 	int free_touched;		/* updated without locking */
791 #endif
792 
793 #ifdef CONFIG_SLUB
794 	spinlock_t list_lock;
795 	unsigned long nr_partial;
796 	struct list_head partial;
797 #ifdef CONFIG_SLUB_DEBUG
798 	atomic_long_t nr_slabs;
799 	atomic_long_t total_objects;
800 	struct list_head full;
801 #endif
802 #endif
803 
804 };
805 
806 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
807 {
808 	return s->node[node];
809 }
810 
811 /*
812  * Iterator over all nodes. The body will be executed for each node that has
813  * a kmem_cache_node structure allocated (which is true for all online nodes)
814  */
815 #define for_each_kmem_cache_node(__s, __node, __n) \
816 	for (__node = 0; __node < nr_node_ids; __node++) \
817 		 if ((__n = get_node(__s, __node)))
818 
819 #endif
820 
821 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
822 void dump_unreclaimable_slab(void);
823 #else
824 static inline void dump_unreclaimable_slab(void)
825 {
826 }
827 #endif
828 
829 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
830 
831 #ifdef CONFIG_SLAB_FREELIST_RANDOM
832 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
833 			gfp_t gfp);
834 void cache_random_seq_destroy(struct kmem_cache *cachep);
835 #else
836 static inline int cache_random_seq_create(struct kmem_cache *cachep,
837 					unsigned int count, gfp_t gfp)
838 {
839 	return 0;
840 }
841 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
842 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
843 
844 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
845 {
846 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
847 				&init_on_alloc)) {
848 		if (c->ctor)
849 			return false;
850 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
851 			return flags & __GFP_ZERO;
852 		return true;
853 	}
854 	return flags & __GFP_ZERO;
855 }
856 
857 static inline bool slab_want_init_on_free(struct kmem_cache *c)
858 {
859 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
860 				&init_on_free))
861 		return !(c->ctor ||
862 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
863 	return false;
864 }
865 
866 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
867 void debugfs_slab_release(struct kmem_cache *);
868 #else
869 static inline void debugfs_slab_release(struct kmem_cache *s) { }
870 #endif
871 
872 #ifdef CONFIG_PRINTK
873 #define KS_ADDRS_COUNT 16
874 struct kmem_obj_info {
875 	void *kp_ptr;
876 	struct slab *kp_slab;
877 	void *kp_objp;
878 	unsigned long kp_data_offset;
879 	struct kmem_cache *kp_slab_cache;
880 	void *kp_ret;
881 	void *kp_stack[KS_ADDRS_COUNT];
882 	void *kp_free_stack[KS_ADDRS_COUNT];
883 };
884 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
885 #endif
886 
887 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
888 void __check_heap_object(const void *ptr, unsigned long n,
889 			 const struct slab *slab, bool to_user);
890 #else
891 static inline
892 void __check_heap_object(const void *ptr, unsigned long n,
893 			 const struct slab *slab, bool to_user)
894 {
895 }
896 #endif
897 
898 #ifdef CONFIG_SLUB_DEBUG
899 void skip_orig_size_check(struct kmem_cache *s, const void *object);
900 #endif
901 
902 #endif /* MM_SLAB_H */
903