xref: /linux/mm/slab.h (revision 7181e5590e5ba898804aef3ee6be7f27606e6f8b)
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6 
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20 	unsigned int object_size;/* The original size of the object */
21 	unsigned int size;	/* The aligned/padded/added on size  */
22 	unsigned int align;	/* Alignment as calculated */
23 	unsigned long flags;	/* Active flags on the slab */
24 	const char *name;	/* Slab name for sysfs */
25 	int refcount;		/* Use counter */
26 	void (*ctor)(void *);	/* Called on object slot creation */
27 	struct list_head list;	/* List of all slab caches on the system */
28 };
29 
30 #endif /* CONFIG_SLOB */
31 
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35 
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39 
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46 
47 /*
48  * State of the slab allocator.
49  *
50  * This is used to describe the states of the allocator during bootup.
51  * Allocators use this to gradually bootstrap themselves. Most allocators
52  * have the problem that the structures used for managing slab caches are
53  * allocated from slab caches themselves.
54  */
55 enum slab_state {
56 	DOWN,			/* No slab functionality yet */
57 	PARTIAL,		/* SLUB: kmem_cache_node available */
58 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
59 	UP,			/* Slab caches usable but not all extras yet */
60 	FULL			/* Everything is working */
61 };
62 
63 extern enum slab_state slab_state;
64 
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
67 
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
70 
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
73 
74 unsigned long calculate_alignment(unsigned long flags,
75 		unsigned long align, unsigned long size);
76 
77 #ifndef CONFIG_SLOB
78 /* Kmalloc array related functions */
79 void setup_kmalloc_cache_index_table(void);
80 void create_kmalloc_caches(unsigned long);
81 
82 /* Find the kmalloc slab corresponding for a certain size */
83 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 #endif
85 
86 
87 /* Functions provided by the slab allocators */
88 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89 
90 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
91 			unsigned long flags);
92 extern void create_boot_cache(struct kmem_cache *, const char *name,
93 			size_t size, unsigned long flags);
94 
95 int slab_unmergeable(struct kmem_cache *s);
96 struct kmem_cache *find_mergeable(size_t size, size_t align,
97 		unsigned long flags, const char *name, void (*ctor)(void *));
98 #ifndef CONFIG_SLOB
99 struct kmem_cache *
100 __kmem_cache_alias(const char *name, size_t size, size_t align,
101 		   unsigned long flags, void (*ctor)(void *));
102 
103 unsigned long kmem_cache_flags(unsigned long object_size,
104 	unsigned long flags, const char *name,
105 	void (*ctor)(void *));
106 #else
107 static inline struct kmem_cache *
108 __kmem_cache_alias(const char *name, size_t size, size_t align,
109 		   unsigned long flags, void (*ctor)(void *))
110 { return NULL; }
111 
112 static inline unsigned long kmem_cache_flags(unsigned long object_size,
113 	unsigned long flags, const char *name,
114 	void (*ctor)(void *))
115 {
116 	return flags;
117 }
118 #endif
119 
120 
121 /* Legal flag mask for kmem_cache_create(), for various configurations */
122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123 			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124 
125 #if defined(CONFIG_DEBUG_SLAB)
126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127 #elif defined(CONFIG_SLUB_DEBUG)
128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 #else
131 #define SLAB_DEBUG_FLAGS (0)
132 #endif
133 
134 #if defined(CONFIG_SLAB)
135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
136 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137 			  SLAB_NOTRACK | SLAB_ACCOUNT)
138 #elif defined(CONFIG_SLUB)
139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
140 			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 #else
142 #define SLAB_CACHE_FLAGS (0)
143 #endif
144 
145 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
146 
147 int __kmem_cache_shutdown(struct kmem_cache *);
148 void __kmem_cache_release(struct kmem_cache *);
149 int __kmem_cache_shrink(struct kmem_cache *, bool);
150 void slab_kmem_cache_release(struct kmem_cache *);
151 
152 struct seq_file;
153 struct file;
154 
155 struct slabinfo {
156 	unsigned long active_objs;
157 	unsigned long num_objs;
158 	unsigned long active_slabs;
159 	unsigned long num_slabs;
160 	unsigned long shared_avail;
161 	unsigned int limit;
162 	unsigned int batchcount;
163 	unsigned int shared;
164 	unsigned int objects_per_slab;
165 	unsigned int cache_order;
166 };
167 
168 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
169 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
170 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
171 		       size_t count, loff_t *ppos);
172 
173 /*
174  * Generic implementation of bulk operations
175  * These are useful for situations in which the allocator cannot
176  * perform optimizations. In that case segments of the object listed
177  * may be allocated or freed using these operations.
178  */
179 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
180 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
181 
182 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
183 /*
184  * Iterate over all memcg caches of the given root cache. The caller must hold
185  * slab_mutex.
186  */
187 #define for_each_memcg_cache(iter, root) \
188 	list_for_each_entry(iter, &(root)->memcg_params.list, \
189 			    memcg_params.list)
190 
191 static inline bool is_root_cache(struct kmem_cache *s)
192 {
193 	return s->memcg_params.is_root_cache;
194 }
195 
196 static inline bool slab_equal_or_root(struct kmem_cache *s,
197 				      struct kmem_cache *p)
198 {
199 	return p == s || p == s->memcg_params.root_cache;
200 }
201 
202 /*
203  * We use suffixes to the name in memcg because we can't have caches
204  * created in the system with the same name. But when we print them
205  * locally, better refer to them with the base name
206  */
207 static inline const char *cache_name(struct kmem_cache *s)
208 {
209 	if (!is_root_cache(s))
210 		s = s->memcg_params.root_cache;
211 	return s->name;
212 }
213 
214 /*
215  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
216  * That said the caller must assure the memcg's cache won't go away by either
217  * taking a css reference to the owner cgroup, or holding the slab_mutex.
218  */
219 static inline struct kmem_cache *
220 cache_from_memcg_idx(struct kmem_cache *s, int idx)
221 {
222 	struct kmem_cache *cachep;
223 	struct memcg_cache_array *arr;
224 
225 	rcu_read_lock();
226 	arr = rcu_dereference(s->memcg_params.memcg_caches);
227 
228 	/*
229 	 * Make sure we will access the up-to-date value. The code updating
230 	 * memcg_caches issues a write barrier to match this (see
231 	 * memcg_create_kmem_cache()).
232 	 */
233 	cachep = lockless_dereference(arr->entries[idx]);
234 	rcu_read_unlock();
235 
236 	return cachep;
237 }
238 
239 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
240 {
241 	if (is_root_cache(s))
242 		return s;
243 	return s->memcg_params.root_cache;
244 }
245 
246 static __always_inline int memcg_charge_slab(struct page *page,
247 					     gfp_t gfp, int order,
248 					     struct kmem_cache *s)
249 {
250 	int ret;
251 
252 	if (!memcg_kmem_enabled())
253 		return 0;
254 	if (is_root_cache(s))
255 		return 0;
256 
257 	ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
258 	if (ret)
259 		return ret;
260 
261 	memcg_kmem_update_page_stat(page,
262 			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
263 			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
264 			1 << order);
265 	return 0;
266 }
267 
268 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
269 						struct kmem_cache *s)
270 {
271 	if (!memcg_kmem_enabled())
272 		return;
273 
274 	memcg_kmem_update_page_stat(page,
275 			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
276 			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
277 			-(1 << order));
278 	memcg_kmem_uncharge(page, order);
279 }
280 
281 extern void slab_init_memcg_params(struct kmem_cache *);
282 
283 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
284 
285 #define for_each_memcg_cache(iter, root) \
286 	for ((void)(iter), (void)(root); 0; )
287 
288 static inline bool is_root_cache(struct kmem_cache *s)
289 {
290 	return true;
291 }
292 
293 static inline bool slab_equal_or_root(struct kmem_cache *s,
294 				      struct kmem_cache *p)
295 {
296 	return true;
297 }
298 
299 static inline const char *cache_name(struct kmem_cache *s)
300 {
301 	return s->name;
302 }
303 
304 static inline struct kmem_cache *
305 cache_from_memcg_idx(struct kmem_cache *s, int idx)
306 {
307 	return NULL;
308 }
309 
310 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
311 {
312 	return s;
313 }
314 
315 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
316 				    struct kmem_cache *s)
317 {
318 	return 0;
319 }
320 
321 static inline void memcg_uncharge_slab(struct page *page, int order,
322 				       struct kmem_cache *s)
323 {
324 }
325 
326 static inline void slab_init_memcg_params(struct kmem_cache *s)
327 {
328 }
329 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
330 
331 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
332 {
333 	struct kmem_cache *cachep;
334 	struct page *page;
335 
336 	/*
337 	 * When kmemcg is not being used, both assignments should return the
338 	 * same value. but we don't want to pay the assignment price in that
339 	 * case. If it is not compiled in, the compiler should be smart enough
340 	 * to not do even the assignment. In that case, slab_equal_or_root
341 	 * will also be a constant.
342 	 */
343 	if (!memcg_kmem_enabled() &&
344 	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
345 		return s;
346 
347 	page = virt_to_head_page(x);
348 	cachep = page->slab_cache;
349 	if (slab_equal_or_root(cachep, s))
350 		return cachep;
351 
352 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
353 	       __func__, s->name, cachep->name);
354 	WARN_ON_ONCE(1);
355 	return s;
356 }
357 
358 static inline size_t slab_ksize(const struct kmem_cache *s)
359 {
360 #ifndef CONFIG_SLUB
361 	return s->object_size;
362 
363 #else /* CONFIG_SLUB */
364 # ifdef CONFIG_SLUB_DEBUG
365 	/*
366 	 * Debugging requires use of the padding between object
367 	 * and whatever may come after it.
368 	 */
369 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
370 		return s->object_size;
371 # endif
372 	if (s->flags & SLAB_KASAN)
373 		return s->object_size;
374 	/*
375 	 * If we have the need to store the freelist pointer
376 	 * back there or track user information then we can
377 	 * only use the space before that information.
378 	 */
379 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
380 		return s->inuse;
381 	/*
382 	 * Else we can use all the padding etc for the allocation
383 	 */
384 	return s->size;
385 #endif
386 }
387 
388 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
389 						     gfp_t flags)
390 {
391 	flags &= gfp_allowed_mask;
392 	lockdep_trace_alloc(flags);
393 	might_sleep_if(gfpflags_allow_blocking(flags));
394 
395 	if (should_failslab(s, flags))
396 		return NULL;
397 
398 	if (memcg_kmem_enabled() &&
399 	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
400 		return memcg_kmem_get_cache(s);
401 
402 	return s;
403 }
404 
405 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
406 					size_t size, void **p)
407 {
408 	size_t i;
409 
410 	flags &= gfp_allowed_mask;
411 	for (i = 0; i < size; i++) {
412 		void *object = p[i];
413 
414 		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
415 		kmemleak_alloc_recursive(object, s->object_size, 1,
416 					 s->flags, flags);
417 		kasan_slab_alloc(s, object, flags);
418 	}
419 
420 	if (memcg_kmem_enabled())
421 		memcg_kmem_put_cache(s);
422 }
423 
424 #ifndef CONFIG_SLOB
425 /*
426  * The slab lists for all objects.
427  */
428 struct kmem_cache_node {
429 	spinlock_t list_lock;
430 
431 #ifdef CONFIG_SLAB
432 	struct list_head slabs_partial;	/* partial list first, better asm code */
433 	struct list_head slabs_full;
434 	struct list_head slabs_free;
435 	unsigned long num_slabs;
436 	unsigned long free_objects;
437 	unsigned int free_limit;
438 	unsigned int colour_next;	/* Per-node cache coloring */
439 	struct array_cache *shared;	/* shared per node */
440 	struct alien_cache **alien;	/* on other nodes */
441 	unsigned long next_reap;	/* updated without locking */
442 	int free_touched;		/* updated without locking */
443 #endif
444 
445 #ifdef CONFIG_SLUB
446 	unsigned long nr_partial;
447 	struct list_head partial;
448 #ifdef CONFIG_SLUB_DEBUG
449 	atomic_long_t nr_slabs;
450 	atomic_long_t total_objects;
451 	struct list_head full;
452 #endif
453 #endif
454 
455 };
456 
457 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
458 {
459 	return s->node[node];
460 }
461 
462 /*
463  * Iterator over all nodes. The body will be executed for each node that has
464  * a kmem_cache_node structure allocated (which is true for all online nodes)
465  */
466 #define for_each_kmem_cache_node(__s, __node, __n) \
467 	for (__node = 0; __node < nr_node_ids; __node++) \
468 		 if ((__n = get_node(__s, __node)))
469 
470 #endif
471 
472 void *slab_start(struct seq_file *m, loff_t *pos);
473 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
474 void slab_stop(struct seq_file *m, void *p);
475 int memcg_slab_show(struct seq_file *m, void *p);
476 
477 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
478 
479 #ifdef CONFIG_SLAB_FREELIST_RANDOM
480 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
481 			gfp_t gfp);
482 void cache_random_seq_destroy(struct kmem_cache *cachep);
483 #else
484 static inline int cache_random_seq_create(struct kmem_cache *cachep,
485 					unsigned int count, gfp_t gfp)
486 {
487 	return 0;
488 }
489 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
491 
492 #endif /* MM_SLAB_H */
493