1 #ifndef MM_SLAB_H 2 #define MM_SLAB_H 3 /* 4 * Internal slab definitions 5 */ 6 7 #ifdef CONFIG_SLOB 8 /* 9 * Common fields provided in kmem_cache by all slab allocators 10 * This struct is either used directly by the allocator (SLOB) 11 * or the allocator must include definitions for all fields 12 * provided in kmem_cache_common in their definition of kmem_cache. 13 * 14 * Once we can do anonymous structs (C11 standard) we could put a 15 * anonymous struct definition in these allocators so that the 16 * separate allocations in the kmem_cache structure of SLAB and 17 * SLUB is no longer needed. 18 */ 19 struct kmem_cache { 20 unsigned int object_size;/* The original size of the object */ 21 unsigned int size; /* The aligned/padded/added on size */ 22 unsigned int align; /* Alignment as calculated */ 23 unsigned long flags; /* Active flags on the slab */ 24 const char *name; /* Slab name for sysfs */ 25 int refcount; /* Use counter */ 26 void (*ctor)(void *); /* Called on object slot creation */ 27 struct list_head list; /* List of all slab caches on the system */ 28 }; 29 30 #endif /* CONFIG_SLOB */ 31 32 #ifdef CONFIG_SLAB 33 #include <linux/slab_def.h> 34 #endif 35 36 #ifdef CONFIG_SLUB 37 #include <linux/slub_def.h> 38 #endif 39 40 #include <linux/memcontrol.h> 41 #include <linux/fault-inject.h> 42 #include <linux/kmemcheck.h> 43 #include <linux/kasan.h> 44 #include <linux/kmemleak.h> 45 #include <linux/random.h> 46 47 /* 48 * State of the slab allocator. 49 * 50 * This is used to describe the states of the allocator during bootup. 51 * Allocators use this to gradually bootstrap themselves. Most allocators 52 * have the problem that the structures used for managing slab caches are 53 * allocated from slab caches themselves. 54 */ 55 enum slab_state { 56 DOWN, /* No slab functionality yet */ 57 PARTIAL, /* SLUB: kmem_cache_node available */ 58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ 59 UP, /* Slab caches usable but not all extras yet */ 60 FULL /* Everything is working */ 61 }; 62 63 extern enum slab_state slab_state; 64 65 /* The slab cache mutex protects the management structures during changes */ 66 extern struct mutex slab_mutex; 67 68 /* The list of all slab caches on the system */ 69 extern struct list_head slab_caches; 70 71 /* The slab cache that manages slab cache information */ 72 extern struct kmem_cache *kmem_cache; 73 74 unsigned long calculate_alignment(unsigned long flags, 75 unsigned long align, unsigned long size); 76 77 #ifndef CONFIG_SLOB 78 /* Kmalloc array related functions */ 79 void setup_kmalloc_cache_index_table(void); 80 void create_kmalloc_caches(unsigned long); 81 82 /* Find the kmalloc slab corresponding for a certain size */ 83 struct kmem_cache *kmalloc_slab(size_t, gfp_t); 84 #endif 85 86 87 /* Functions provided by the slab allocators */ 88 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); 89 90 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, 91 unsigned long flags); 92 extern void create_boot_cache(struct kmem_cache *, const char *name, 93 size_t size, unsigned long flags); 94 95 int slab_unmergeable(struct kmem_cache *s); 96 struct kmem_cache *find_mergeable(size_t size, size_t align, 97 unsigned long flags, const char *name, void (*ctor)(void *)); 98 #ifndef CONFIG_SLOB 99 struct kmem_cache * 100 __kmem_cache_alias(const char *name, size_t size, size_t align, 101 unsigned long flags, void (*ctor)(void *)); 102 103 unsigned long kmem_cache_flags(unsigned long object_size, 104 unsigned long flags, const char *name, 105 void (*ctor)(void *)); 106 #else 107 static inline struct kmem_cache * 108 __kmem_cache_alias(const char *name, size_t size, size_t align, 109 unsigned long flags, void (*ctor)(void *)) 110 { return NULL; } 111 112 static inline unsigned long kmem_cache_flags(unsigned long object_size, 113 unsigned long flags, const char *name, 114 void (*ctor)(void *)) 115 { 116 return flags; 117 } 118 #endif 119 120 121 /* Legal flag mask for kmem_cache_create(), for various configurations */ 122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ 123 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) 124 125 #if defined(CONFIG_DEBUG_SLAB) 126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 127 #elif defined(CONFIG_SLUB_DEBUG) 128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 129 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) 130 #else 131 #define SLAB_DEBUG_FLAGS (0) 132 #endif 133 134 #if defined(CONFIG_SLAB) 135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ 136 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ 137 SLAB_NOTRACK | SLAB_ACCOUNT) 138 #elif defined(CONFIG_SLUB) 139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ 140 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT) 141 #else 142 #define SLAB_CACHE_FLAGS (0) 143 #endif 144 145 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) 146 147 int __kmem_cache_shutdown(struct kmem_cache *); 148 void __kmem_cache_release(struct kmem_cache *); 149 int __kmem_cache_shrink(struct kmem_cache *, bool); 150 void slab_kmem_cache_release(struct kmem_cache *); 151 152 struct seq_file; 153 struct file; 154 155 struct slabinfo { 156 unsigned long active_objs; 157 unsigned long num_objs; 158 unsigned long active_slabs; 159 unsigned long num_slabs; 160 unsigned long shared_avail; 161 unsigned int limit; 162 unsigned int batchcount; 163 unsigned int shared; 164 unsigned int objects_per_slab; 165 unsigned int cache_order; 166 }; 167 168 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); 169 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); 170 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 171 size_t count, loff_t *ppos); 172 173 /* 174 * Generic implementation of bulk operations 175 * These are useful for situations in which the allocator cannot 176 * perform optimizations. In that case segments of the object listed 177 * may be allocated or freed using these operations. 178 */ 179 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 180 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 181 182 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 183 /* 184 * Iterate over all memcg caches of the given root cache. The caller must hold 185 * slab_mutex. 186 */ 187 #define for_each_memcg_cache(iter, root) \ 188 list_for_each_entry(iter, &(root)->memcg_params.list, \ 189 memcg_params.list) 190 191 static inline bool is_root_cache(struct kmem_cache *s) 192 { 193 return s->memcg_params.is_root_cache; 194 } 195 196 static inline bool slab_equal_or_root(struct kmem_cache *s, 197 struct kmem_cache *p) 198 { 199 return p == s || p == s->memcg_params.root_cache; 200 } 201 202 /* 203 * We use suffixes to the name in memcg because we can't have caches 204 * created in the system with the same name. But when we print them 205 * locally, better refer to them with the base name 206 */ 207 static inline const char *cache_name(struct kmem_cache *s) 208 { 209 if (!is_root_cache(s)) 210 s = s->memcg_params.root_cache; 211 return s->name; 212 } 213 214 /* 215 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. 216 * That said the caller must assure the memcg's cache won't go away by either 217 * taking a css reference to the owner cgroup, or holding the slab_mutex. 218 */ 219 static inline struct kmem_cache * 220 cache_from_memcg_idx(struct kmem_cache *s, int idx) 221 { 222 struct kmem_cache *cachep; 223 struct memcg_cache_array *arr; 224 225 rcu_read_lock(); 226 arr = rcu_dereference(s->memcg_params.memcg_caches); 227 228 /* 229 * Make sure we will access the up-to-date value. The code updating 230 * memcg_caches issues a write barrier to match this (see 231 * memcg_create_kmem_cache()). 232 */ 233 cachep = lockless_dereference(arr->entries[idx]); 234 rcu_read_unlock(); 235 236 return cachep; 237 } 238 239 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 240 { 241 if (is_root_cache(s)) 242 return s; 243 return s->memcg_params.root_cache; 244 } 245 246 static __always_inline int memcg_charge_slab(struct page *page, 247 gfp_t gfp, int order, 248 struct kmem_cache *s) 249 { 250 int ret; 251 252 if (!memcg_kmem_enabled()) 253 return 0; 254 if (is_root_cache(s)) 255 return 0; 256 257 ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg); 258 if (ret) 259 return ret; 260 261 memcg_kmem_update_page_stat(page, 262 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 263 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, 264 1 << order); 265 return 0; 266 } 267 268 static __always_inline void memcg_uncharge_slab(struct page *page, int order, 269 struct kmem_cache *s) 270 { 271 if (!memcg_kmem_enabled()) 272 return; 273 274 memcg_kmem_update_page_stat(page, 275 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 276 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, 277 -(1 << order)); 278 memcg_kmem_uncharge(page, order); 279 } 280 281 extern void slab_init_memcg_params(struct kmem_cache *); 282 283 #else /* CONFIG_MEMCG && !CONFIG_SLOB */ 284 285 #define for_each_memcg_cache(iter, root) \ 286 for ((void)(iter), (void)(root); 0; ) 287 288 static inline bool is_root_cache(struct kmem_cache *s) 289 { 290 return true; 291 } 292 293 static inline bool slab_equal_or_root(struct kmem_cache *s, 294 struct kmem_cache *p) 295 { 296 return true; 297 } 298 299 static inline const char *cache_name(struct kmem_cache *s) 300 { 301 return s->name; 302 } 303 304 static inline struct kmem_cache * 305 cache_from_memcg_idx(struct kmem_cache *s, int idx) 306 { 307 return NULL; 308 } 309 310 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) 311 { 312 return s; 313 } 314 315 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, 316 struct kmem_cache *s) 317 { 318 return 0; 319 } 320 321 static inline void memcg_uncharge_slab(struct page *page, int order, 322 struct kmem_cache *s) 323 { 324 } 325 326 static inline void slab_init_memcg_params(struct kmem_cache *s) 327 { 328 } 329 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 330 331 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 332 { 333 struct kmem_cache *cachep; 334 struct page *page; 335 336 /* 337 * When kmemcg is not being used, both assignments should return the 338 * same value. but we don't want to pay the assignment price in that 339 * case. If it is not compiled in, the compiler should be smart enough 340 * to not do even the assignment. In that case, slab_equal_or_root 341 * will also be a constant. 342 */ 343 if (!memcg_kmem_enabled() && 344 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) 345 return s; 346 347 page = virt_to_head_page(x); 348 cachep = page->slab_cache; 349 if (slab_equal_or_root(cachep, s)) 350 return cachep; 351 352 pr_err("%s: Wrong slab cache. %s but object is from %s\n", 353 __func__, s->name, cachep->name); 354 WARN_ON_ONCE(1); 355 return s; 356 } 357 358 static inline size_t slab_ksize(const struct kmem_cache *s) 359 { 360 #ifndef CONFIG_SLUB 361 return s->object_size; 362 363 #else /* CONFIG_SLUB */ 364 # ifdef CONFIG_SLUB_DEBUG 365 /* 366 * Debugging requires use of the padding between object 367 * and whatever may come after it. 368 */ 369 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 370 return s->object_size; 371 # endif 372 if (s->flags & SLAB_KASAN) 373 return s->object_size; 374 /* 375 * If we have the need to store the freelist pointer 376 * back there or track user information then we can 377 * only use the space before that information. 378 */ 379 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 380 return s->inuse; 381 /* 382 * Else we can use all the padding etc for the allocation 383 */ 384 return s->size; 385 #endif 386 } 387 388 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 389 gfp_t flags) 390 { 391 flags &= gfp_allowed_mask; 392 lockdep_trace_alloc(flags); 393 might_sleep_if(gfpflags_allow_blocking(flags)); 394 395 if (should_failslab(s, flags)) 396 return NULL; 397 398 if (memcg_kmem_enabled() && 399 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) 400 return memcg_kmem_get_cache(s); 401 402 return s; 403 } 404 405 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 406 size_t size, void **p) 407 { 408 size_t i; 409 410 flags &= gfp_allowed_mask; 411 for (i = 0; i < size; i++) { 412 void *object = p[i]; 413 414 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 415 kmemleak_alloc_recursive(object, s->object_size, 1, 416 s->flags, flags); 417 kasan_slab_alloc(s, object, flags); 418 } 419 420 if (memcg_kmem_enabled()) 421 memcg_kmem_put_cache(s); 422 } 423 424 #ifndef CONFIG_SLOB 425 /* 426 * The slab lists for all objects. 427 */ 428 struct kmem_cache_node { 429 spinlock_t list_lock; 430 431 #ifdef CONFIG_SLAB 432 struct list_head slabs_partial; /* partial list first, better asm code */ 433 struct list_head slabs_full; 434 struct list_head slabs_free; 435 unsigned long num_slabs; 436 unsigned long free_objects; 437 unsigned int free_limit; 438 unsigned int colour_next; /* Per-node cache coloring */ 439 struct array_cache *shared; /* shared per node */ 440 struct alien_cache **alien; /* on other nodes */ 441 unsigned long next_reap; /* updated without locking */ 442 int free_touched; /* updated without locking */ 443 #endif 444 445 #ifdef CONFIG_SLUB 446 unsigned long nr_partial; 447 struct list_head partial; 448 #ifdef CONFIG_SLUB_DEBUG 449 atomic_long_t nr_slabs; 450 atomic_long_t total_objects; 451 struct list_head full; 452 #endif 453 #endif 454 455 }; 456 457 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 458 { 459 return s->node[node]; 460 } 461 462 /* 463 * Iterator over all nodes. The body will be executed for each node that has 464 * a kmem_cache_node structure allocated (which is true for all online nodes) 465 */ 466 #define for_each_kmem_cache_node(__s, __node, __n) \ 467 for (__node = 0; __node < nr_node_ids; __node++) \ 468 if ((__n = get_node(__s, __node))) 469 470 #endif 471 472 void *slab_start(struct seq_file *m, loff_t *pos); 473 void *slab_next(struct seq_file *m, void *p, loff_t *pos); 474 void slab_stop(struct seq_file *m, void *p); 475 int memcg_slab_show(struct seq_file *m, void *p); 476 477 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); 478 479 #ifdef CONFIG_SLAB_FREELIST_RANDOM 480 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 481 gfp_t gfp); 482 void cache_random_seq_destroy(struct kmem_cache *cachep); 483 #else 484 static inline int cache_random_seq_create(struct kmem_cache *cachep, 485 unsigned int count, gfp_t gfp) 486 { 487 return 0; 488 } 489 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } 490 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 491 492 #endif /* MM_SLAB_H */ 493