xref: /linux/mm/slab.h (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6 
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20 	unsigned int object_size;/* The original size of the object */
21 	unsigned int size;	/* The aligned/padded/added on size  */
22 	unsigned int align;	/* Alignment as calculated */
23 	unsigned long flags;	/* Active flags on the slab */
24 	const char *name;	/* Slab name for sysfs */
25 	int refcount;		/* Use counter */
26 	void (*ctor)(void *);	/* Called on object slot creation */
27 	struct list_head list;	/* List of all slab caches on the system */
28 };
29 
30 #endif /* CONFIG_SLOB */
31 
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35 
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39 
40 #include <linux/memcontrol.h>
41 
42 /*
43  * State of the slab allocator.
44  *
45  * This is used to describe the states of the allocator during bootup.
46  * Allocators use this to gradually bootstrap themselves. Most allocators
47  * have the problem that the structures used for managing slab caches are
48  * allocated from slab caches themselves.
49  */
50 enum slab_state {
51 	DOWN,			/* No slab functionality yet */
52 	PARTIAL,		/* SLUB: kmem_cache_node available */
53 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
54 	UP,			/* Slab caches usable but not all extras yet */
55 	FULL			/* Everything is working */
56 };
57 
58 extern enum slab_state slab_state;
59 
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62 
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65 
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68 
69 unsigned long calculate_alignment(unsigned long flags,
70 		unsigned long align, unsigned long size);
71 
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void create_kmalloc_caches(unsigned long);
75 
76 /* Find the kmalloc slab corresponding for a certain size */
77 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
78 #endif
79 
80 
81 /* Functions provided by the slab allocators */
82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
83 
84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
85 			unsigned long flags);
86 extern void create_boot_cache(struct kmem_cache *, const char *name,
87 			size_t size, unsigned long flags);
88 
89 int slab_unmergeable(struct kmem_cache *s);
90 struct kmem_cache *find_mergeable(size_t size, size_t align,
91 		unsigned long flags, const char *name, void (*ctor)(void *));
92 #ifndef CONFIG_SLOB
93 struct kmem_cache *
94 __kmem_cache_alias(const char *name, size_t size, size_t align,
95 		   unsigned long flags, void (*ctor)(void *));
96 
97 unsigned long kmem_cache_flags(unsigned long object_size,
98 	unsigned long flags, const char *name,
99 	void (*ctor)(void *));
100 #else
101 static inline struct kmem_cache *
102 __kmem_cache_alias(const char *name, size_t size, size_t align,
103 		   unsigned long flags, void (*ctor)(void *))
104 { return NULL; }
105 
106 static inline unsigned long kmem_cache_flags(unsigned long object_size,
107 	unsigned long flags, const char *name,
108 	void (*ctor)(void *))
109 {
110 	return flags;
111 }
112 #endif
113 
114 
115 /* Legal flag mask for kmem_cache_create(), for various configurations */
116 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
117 			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
118 
119 #if defined(CONFIG_DEBUG_SLAB)
120 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
121 #elif defined(CONFIG_SLUB_DEBUG)
122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
123 			  SLAB_TRACE | SLAB_DEBUG_FREE)
124 #else
125 #define SLAB_DEBUG_FLAGS (0)
126 #endif
127 
128 #if defined(CONFIG_SLAB)
129 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
130 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
131 #elif defined(CONFIG_SLUB)
132 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
133 			  SLAB_TEMPORARY | SLAB_NOTRACK)
134 #else
135 #define SLAB_CACHE_FLAGS (0)
136 #endif
137 
138 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
139 
140 int __kmem_cache_shutdown(struct kmem_cache *);
141 int __kmem_cache_shrink(struct kmem_cache *, bool);
142 void slab_kmem_cache_release(struct kmem_cache *);
143 
144 struct seq_file;
145 struct file;
146 
147 struct slabinfo {
148 	unsigned long active_objs;
149 	unsigned long num_objs;
150 	unsigned long active_slabs;
151 	unsigned long num_slabs;
152 	unsigned long shared_avail;
153 	unsigned int limit;
154 	unsigned int batchcount;
155 	unsigned int shared;
156 	unsigned int objects_per_slab;
157 	unsigned int cache_order;
158 };
159 
160 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
161 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
162 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
163 		       size_t count, loff_t *ppos);
164 
165 #ifdef CONFIG_MEMCG_KMEM
166 /*
167  * Iterate over all memcg caches of the given root cache. The caller must hold
168  * slab_mutex.
169  */
170 #define for_each_memcg_cache(iter, root) \
171 	list_for_each_entry(iter, &(root)->memcg_params.list, \
172 			    memcg_params.list)
173 
174 #define for_each_memcg_cache_safe(iter, tmp, root) \
175 	list_for_each_entry_safe(iter, tmp, &(root)->memcg_params.list, \
176 				 memcg_params.list)
177 
178 static inline bool is_root_cache(struct kmem_cache *s)
179 {
180 	return s->memcg_params.is_root_cache;
181 }
182 
183 static inline bool slab_equal_or_root(struct kmem_cache *s,
184 				      struct kmem_cache *p)
185 {
186 	return p == s || p == s->memcg_params.root_cache;
187 }
188 
189 /*
190  * We use suffixes to the name in memcg because we can't have caches
191  * created in the system with the same name. But when we print them
192  * locally, better refer to them with the base name
193  */
194 static inline const char *cache_name(struct kmem_cache *s)
195 {
196 	if (!is_root_cache(s))
197 		s = s->memcg_params.root_cache;
198 	return s->name;
199 }
200 
201 /*
202  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
203  * That said the caller must assure the memcg's cache won't go away by either
204  * taking a css reference to the owner cgroup, or holding the slab_mutex.
205  */
206 static inline struct kmem_cache *
207 cache_from_memcg_idx(struct kmem_cache *s, int idx)
208 {
209 	struct kmem_cache *cachep;
210 	struct memcg_cache_array *arr;
211 
212 	rcu_read_lock();
213 	arr = rcu_dereference(s->memcg_params.memcg_caches);
214 
215 	/*
216 	 * Make sure we will access the up-to-date value. The code updating
217 	 * memcg_caches issues a write barrier to match this (see
218 	 * memcg_create_kmem_cache()).
219 	 */
220 	cachep = lockless_dereference(arr->entries[idx]);
221 	rcu_read_unlock();
222 
223 	return cachep;
224 }
225 
226 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
227 {
228 	if (is_root_cache(s))
229 		return s;
230 	return s->memcg_params.root_cache;
231 }
232 
233 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
234 					     gfp_t gfp, int order)
235 {
236 	if (!memcg_kmem_enabled())
237 		return 0;
238 	if (is_root_cache(s))
239 		return 0;
240 	return memcg_charge_kmem(s->memcg_params.memcg, gfp, 1 << order);
241 }
242 
243 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
244 {
245 	if (!memcg_kmem_enabled())
246 		return;
247 	if (is_root_cache(s))
248 		return;
249 	memcg_uncharge_kmem(s->memcg_params.memcg, 1 << order);
250 }
251 
252 extern void slab_init_memcg_params(struct kmem_cache *);
253 
254 #else /* !CONFIG_MEMCG_KMEM */
255 
256 #define for_each_memcg_cache(iter, root) \
257 	for ((void)(iter), (void)(root); 0; )
258 #define for_each_memcg_cache_safe(iter, tmp, root) \
259 	for ((void)(iter), (void)(tmp), (void)(root); 0; )
260 
261 static inline bool is_root_cache(struct kmem_cache *s)
262 {
263 	return true;
264 }
265 
266 static inline bool slab_equal_or_root(struct kmem_cache *s,
267 				      struct kmem_cache *p)
268 {
269 	return true;
270 }
271 
272 static inline const char *cache_name(struct kmem_cache *s)
273 {
274 	return s->name;
275 }
276 
277 static inline struct kmem_cache *
278 cache_from_memcg_idx(struct kmem_cache *s, int idx)
279 {
280 	return NULL;
281 }
282 
283 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
284 {
285 	return s;
286 }
287 
288 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
289 {
290 	return 0;
291 }
292 
293 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
294 {
295 }
296 
297 static inline void slab_init_memcg_params(struct kmem_cache *s)
298 {
299 }
300 #endif /* CONFIG_MEMCG_KMEM */
301 
302 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
303 {
304 	struct kmem_cache *cachep;
305 	struct page *page;
306 
307 	/*
308 	 * When kmemcg is not being used, both assignments should return the
309 	 * same value. but we don't want to pay the assignment price in that
310 	 * case. If it is not compiled in, the compiler should be smart enough
311 	 * to not do even the assignment. In that case, slab_equal_or_root
312 	 * will also be a constant.
313 	 */
314 	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
315 		return s;
316 
317 	page = virt_to_head_page(x);
318 	cachep = page->slab_cache;
319 	if (slab_equal_or_root(cachep, s))
320 		return cachep;
321 
322 	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
323 	       __func__, cachep->name, s->name);
324 	WARN_ON_ONCE(1);
325 	return s;
326 }
327 
328 #ifndef CONFIG_SLOB
329 /*
330  * The slab lists for all objects.
331  */
332 struct kmem_cache_node {
333 	spinlock_t list_lock;
334 
335 #ifdef CONFIG_SLAB
336 	struct list_head slabs_partial;	/* partial list first, better asm code */
337 	struct list_head slabs_full;
338 	struct list_head slabs_free;
339 	unsigned long free_objects;
340 	unsigned int free_limit;
341 	unsigned int colour_next;	/* Per-node cache coloring */
342 	struct array_cache *shared;	/* shared per node */
343 	struct alien_cache **alien;	/* on other nodes */
344 	unsigned long next_reap;	/* updated without locking */
345 	int free_touched;		/* updated without locking */
346 #endif
347 
348 #ifdef CONFIG_SLUB
349 	unsigned long nr_partial;
350 	struct list_head partial;
351 #ifdef CONFIG_SLUB_DEBUG
352 	atomic_long_t nr_slabs;
353 	atomic_long_t total_objects;
354 	struct list_head full;
355 #endif
356 #endif
357 
358 };
359 
360 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
361 {
362 	return s->node[node];
363 }
364 
365 /*
366  * Iterator over all nodes. The body will be executed for each node that has
367  * a kmem_cache_node structure allocated (which is true for all online nodes)
368  */
369 #define for_each_kmem_cache_node(__s, __node, __n) \
370 	for (__node = 0; __node < nr_node_ids; __node++) \
371 		 if ((__n = get_node(__s, __node)))
372 
373 #endif
374 
375 void *slab_start(struct seq_file *m, loff_t *pos);
376 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
377 void slab_stop(struct seq_file *m, void *p);
378 int memcg_slab_show(struct seq_file *m, void *p);
379 
380 #endif /* MM_SLAB_H */
381