xref: /linux/mm/slab.h (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef MM_SLAB_H
3 #define MM_SLAB_H
4 /*
5  * Internal slab definitions
6  */
7 
8 /* Reuses the bits in struct page */
9 struct slab {
10 	unsigned long __page_flags;
11 
12 #if defined(CONFIG_SLAB)
13 
14 	union {
15 		struct list_head slab_list;
16 		struct rcu_head rcu_head;
17 	};
18 	struct kmem_cache *slab_cache;
19 	void *freelist;	/* array of free object indexes */
20 	void *s_mem;	/* first object */
21 	unsigned int active;
22 
23 #elif defined(CONFIG_SLUB)
24 
25 	union {
26 		struct list_head slab_list;
27 		struct rcu_head rcu_head;
28 #ifdef CONFIG_SLUB_CPU_PARTIAL
29 		struct {
30 			struct slab *next;
31 			int slabs;	/* Nr of slabs left */
32 		};
33 #endif
34 	};
35 	struct kmem_cache *slab_cache;
36 	/* Double-word boundary */
37 	void *freelist;		/* first free object */
38 	union {
39 		unsigned long counters;
40 		struct {
41 			unsigned inuse:16;
42 			unsigned objects:15;
43 			unsigned frozen:1;
44 		};
45 	};
46 	unsigned int __unused;
47 
48 #elif defined(CONFIG_SLOB)
49 
50 	struct list_head slab_list;
51 	void *__unused_1;
52 	void *freelist;		/* first free block */
53 	long units;
54 	unsigned int __unused_2;
55 
56 #else
57 #error "Unexpected slab allocator configured"
58 #endif
59 
60 	atomic_t __page_refcount;
61 #ifdef CONFIG_MEMCG
62 	unsigned long memcg_data;
63 #endif
64 };
65 
66 #define SLAB_MATCH(pg, sl)						\
67 	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68 SLAB_MATCH(flags, __page_flags);
69 SLAB_MATCH(compound_head, slab_list);	/* Ensure bit 0 is clear */
70 #ifndef CONFIG_SLOB
71 SLAB_MATCH(rcu_head, rcu_head);
72 #endif
73 SLAB_MATCH(_refcount, __page_refcount);
74 #ifdef CONFIG_MEMCG
75 SLAB_MATCH(memcg_data, memcg_data);
76 #endif
77 #undef SLAB_MATCH
78 static_assert(sizeof(struct slab) <= sizeof(struct page));
79 
80 /**
81  * folio_slab - Converts from folio to slab.
82  * @folio: The folio.
83  *
84  * Currently struct slab is a different representation of a folio where
85  * folio_test_slab() is true.
86  *
87  * Return: The slab which contains this folio.
88  */
89 #define folio_slab(folio)	(_Generic((folio),			\
90 	const struct folio *:	(const struct slab *)(folio),		\
91 	struct folio *:		(struct slab *)(folio)))
92 
93 /**
94  * slab_folio - The folio allocated for a slab
95  * @slab: The slab.
96  *
97  * Slabs are allocated as folios that contain the individual objects and are
98  * using some fields in the first struct page of the folio - those fields are
99  * now accessed by struct slab. It is occasionally necessary to convert back to
100  * a folio in order to communicate with the rest of the mm.  Please use this
101  * helper function instead of casting yourself, as the implementation may change
102  * in the future.
103  */
104 #define slab_folio(s)		(_Generic((s),				\
105 	const struct slab *:	(const struct folio *)s,		\
106 	struct slab *:		(struct folio *)s))
107 
108 /**
109  * page_slab - Converts from first struct page to slab.
110  * @p: The first (either head of compound or single) page of slab.
111  *
112  * A temporary wrapper to convert struct page to struct slab in situations where
113  * we know the page is the compound head, or single order-0 page.
114  *
115  * Long-term ideally everything would work with struct slab directly or go
116  * through folio to struct slab.
117  *
118  * Return: The slab which contains this page
119  */
120 #define page_slab(p)		(_Generic((p),				\
121 	const struct page *:	(const struct slab *)(p),		\
122 	struct page *:		(struct slab *)(p)))
123 
124 /**
125  * slab_page - The first struct page allocated for a slab
126  * @slab: The slab.
127  *
128  * A convenience wrapper for converting slab to the first struct page of the
129  * underlying folio, to communicate with code not yet converted to folio or
130  * struct slab.
131  */
132 #define slab_page(s) folio_page(slab_folio(s), 0)
133 
134 /*
135  * If network-based swap is enabled, sl*b must keep track of whether pages
136  * were allocated from pfmemalloc reserves.
137  */
138 static inline bool slab_test_pfmemalloc(const struct slab *slab)
139 {
140 	return folio_test_active((struct folio *)slab_folio(slab));
141 }
142 
143 static inline void slab_set_pfmemalloc(struct slab *slab)
144 {
145 	folio_set_active(slab_folio(slab));
146 }
147 
148 static inline void slab_clear_pfmemalloc(struct slab *slab)
149 {
150 	folio_clear_active(slab_folio(slab));
151 }
152 
153 static inline void __slab_clear_pfmemalloc(struct slab *slab)
154 {
155 	__folio_clear_active(slab_folio(slab));
156 }
157 
158 static inline void *slab_address(const struct slab *slab)
159 {
160 	return folio_address(slab_folio(slab));
161 }
162 
163 static inline int slab_nid(const struct slab *slab)
164 {
165 	return folio_nid(slab_folio(slab));
166 }
167 
168 static inline pg_data_t *slab_pgdat(const struct slab *slab)
169 {
170 	return folio_pgdat(slab_folio(slab));
171 }
172 
173 static inline struct slab *virt_to_slab(const void *addr)
174 {
175 	struct folio *folio = virt_to_folio(addr);
176 
177 	if (!folio_test_slab(folio))
178 		return NULL;
179 
180 	return folio_slab(folio);
181 }
182 
183 static inline int slab_order(const struct slab *slab)
184 {
185 	return folio_order((struct folio *)slab_folio(slab));
186 }
187 
188 static inline size_t slab_size(const struct slab *slab)
189 {
190 	return PAGE_SIZE << slab_order(slab);
191 }
192 
193 #ifdef CONFIG_SLOB
194 /*
195  * Common fields provided in kmem_cache by all slab allocators
196  * This struct is either used directly by the allocator (SLOB)
197  * or the allocator must include definitions for all fields
198  * provided in kmem_cache_common in their definition of kmem_cache.
199  *
200  * Once we can do anonymous structs (C11 standard) we could put a
201  * anonymous struct definition in these allocators so that the
202  * separate allocations in the kmem_cache structure of SLAB and
203  * SLUB is no longer needed.
204  */
205 struct kmem_cache {
206 	unsigned int object_size;/* The original size of the object */
207 	unsigned int size;	/* The aligned/padded/added on size  */
208 	unsigned int align;	/* Alignment as calculated */
209 	slab_flags_t flags;	/* Active flags on the slab */
210 	unsigned int useroffset;/* Usercopy region offset */
211 	unsigned int usersize;	/* Usercopy region size */
212 	const char *name;	/* Slab name for sysfs */
213 	int refcount;		/* Use counter */
214 	void (*ctor)(void *);	/* Called on object slot creation */
215 	struct list_head list;	/* List of all slab caches on the system */
216 };
217 
218 #endif /* CONFIG_SLOB */
219 
220 #ifdef CONFIG_SLAB
221 #include <linux/slab_def.h>
222 #endif
223 
224 #ifdef CONFIG_SLUB
225 #include <linux/slub_def.h>
226 #endif
227 
228 #include <linux/memcontrol.h>
229 #include <linux/fault-inject.h>
230 #include <linux/kasan.h>
231 #include <linux/kmemleak.h>
232 #include <linux/random.h>
233 #include <linux/sched/mm.h>
234 #include <linux/list_lru.h>
235 
236 /*
237  * State of the slab allocator.
238  *
239  * This is used to describe the states of the allocator during bootup.
240  * Allocators use this to gradually bootstrap themselves. Most allocators
241  * have the problem that the structures used for managing slab caches are
242  * allocated from slab caches themselves.
243  */
244 enum slab_state {
245 	DOWN,			/* No slab functionality yet */
246 	PARTIAL,		/* SLUB: kmem_cache_node available */
247 	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
248 	UP,			/* Slab caches usable but not all extras yet */
249 	FULL			/* Everything is working */
250 };
251 
252 extern enum slab_state slab_state;
253 
254 /* The slab cache mutex protects the management structures during changes */
255 extern struct mutex slab_mutex;
256 
257 /* The list of all slab caches on the system */
258 extern struct list_head slab_caches;
259 
260 /* The slab cache that manages slab cache information */
261 extern struct kmem_cache *kmem_cache;
262 
263 /* A table of kmalloc cache names and sizes */
264 extern const struct kmalloc_info_struct {
265 	const char *name[NR_KMALLOC_TYPES];
266 	unsigned int size;
267 } kmalloc_info[];
268 
269 #ifndef CONFIG_SLOB
270 /* Kmalloc array related functions */
271 void setup_kmalloc_cache_index_table(void);
272 void create_kmalloc_caches(slab_flags_t);
273 
274 /* Find the kmalloc slab corresponding for a certain size */
275 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
276 #endif
277 
278 gfp_t kmalloc_fix_flags(gfp_t flags);
279 
280 /* Functions provided by the slab allocators */
281 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
282 
283 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
284 			slab_flags_t flags, unsigned int useroffset,
285 			unsigned int usersize);
286 extern void create_boot_cache(struct kmem_cache *, const char *name,
287 			unsigned int size, slab_flags_t flags,
288 			unsigned int useroffset, unsigned int usersize);
289 
290 int slab_unmergeable(struct kmem_cache *s);
291 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
292 		slab_flags_t flags, const char *name, void (*ctor)(void *));
293 #ifndef CONFIG_SLOB
294 struct kmem_cache *
295 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
296 		   slab_flags_t flags, void (*ctor)(void *));
297 
298 slab_flags_t kmem_cache_flags(unsigned int object_size,
299 	slab_flags_t flags, const char *name);
300 #else
301 static inline struct kmem_cache *
302 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
303 		   slab_flags_t flags, void (*ctor)(void *))
304 { return NULL; }
305 
306 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
307 	slab_flags_t flags, const char *name)
308 {
309 	return flags;
310 }
311 #endif
312 
313 
314 /* Legal flag mask for kmem_cache_create(), for various configurations */
315 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
316 			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
317 			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
318 
319 #if defined(CONFIG_DEBUG_SLAB)
320 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
321 #elif defined(CONFIG_SLUB_DEBUG)
322 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
323 			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
324 #else
325 #define SLAB_DEBUG_FLAGS (0)
326 #endif
327 
328 #if defined(CONFIG_SLAB)
329 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
330 			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
331 			  SLAB_ACCOUNT)
332 #elif defined(CONFIG_SLUB)
333 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
334 			  SLAB_TEMPORARY | SLAB_ACCOUNT)
335 #else
336 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
337 #endif
338 
339 /* Common flags available with current configuration */
340 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
341 
342 /* Common flags permitted for kmem_cache_create */
343 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
344 			      SLAB_RED_ZONE | \
345 			      SLAB_POISON | \
346 			      SLAB_STORE_USER | \
347 			      SLAB_TRACE | \
348 			      SLAB_CONSISTENCY_CHECKS | \
349 			      SLAB_MEM_SPREAD | \
350 			      SLAB_NOLEAKTRACE | \
351 			      SLAB_RECLAIM_ACCOUNT | \
352 			      SLAB_TEMPORARY | \
353 			      SLAB_ACCOUNT)
354 
355 bool __kmem_cache_empty(struct kmem_cache *);
356 int __kmem_cache_shutdown(struct kmem_cache *);
357 void __kmem_cache_release(struct kmem_cache *);
358 int __kmem_cache_shrink(struct kmem_cache *);
359 void slab_kmem_cache_release(struct kmem_cache *);
360 
361 struct seq_file;
362 struct file;
363 
364 struct slabinfo {
365 	unsigned long active_objs;
366 	unsigned long num_objs;
367 	unsigned long active_slabs;
368 	unsigned long num_slabs;
369 	unsigned long shared_avail;
370 	unsigned int limit;
371 	unsigned int batchcount;
372 	unsigned int shared;
373 	unsigned int objects_per_slab;
374 	unsigned int cache_order;
375 };
376 
377 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
378 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
379 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
380 		       size_t count, loff_t *ppos);
381 
382 /*
383  * Generic implementation of bulk operations
384  * These are useful for situations in which the allocator cannot
385  * perform optimizations. In that case segments of the object listed
386  * may be allocated or freed using these operations.
387  */
388 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
389 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
390 
391 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
392 {
393 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
394 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
395 }
396 
397 #ifdef CONFIG_SLUB_DEBUG
398 #ifdef CONFIG_SLUB_DEBUG_ON
399 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
400 #else
401 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
402 #endif
403 extern void print_tracking(struct kmem_cache *s, void *object);
404 long validate_slab_cache(struct kmem_cache *s);
405 static inline bool __slub_debug_enabled(void)
406 {
407 	return static_branch_unlikely(&slub_debug_enabled);
408 }
409 #else
410 static inline void print_tracking(struct kmem_cache *s, void *object)
411 {
412 }
413 static inline bool __slub_debug_enabled(void)
414 {
415 	return false;
416 }
417 #endif
418 
419 /*
420  * Returns true if any of the specified slub_debug flags is enabled for the
421  * cache. Use only for flags parsed by setup_slub_debug() as it also enables
422  * the static key.
423  */
424 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
425 {
426 	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
427 		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
428 	if (__slub_debug_enabled())
429 		return s->flags & flags;
430 	return false;
431 }
432 
433 #ifdef CONFIG_MEMCG_KMEM
434 /*
435  * slab_objcgs - get the object cgroups vector associated with a slab
436  * @slab: a pointer to the slab struct
437  *
438  * Returns a pointer to the object cgroups vector associated with the slab,
439  * or NULL if no such vector has been associated yet.
440  */
441 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
442 {
443 	unsigned long memcg_data = READ_ONCE(slab->memcg_data);
444 
445 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
446 							slab_page(slab));
447 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
448 
449 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
450 }
451 
452 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
453 				 gfp_t gfp, bool new_slab);
454 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
455 		     enum node_stat_item idx, int nr);
456 
457 static inline void memcg_free_slab_cgroups(struct slab *slab)
458 {
459 	kfree(slab_objcgs(slab));
460 	slab->memcg_data = 0;
461 }
462 
463 static inline size_t obj_full_size(struct kmem_cache *s)
464 {
465 	/*
466 	 * For each accounted object there is an extra space which is used
467 	 * to store obj_cgroup membership. Charge it too.
468 	 */
469 	return s->size + sizeof(struct obj_cgroup *);
470 }
471 
472 /*
473  * Returns false if the allocation should fail.
474  */
475 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
476 					     struct list_lru *lru,
477 					     struct obj_cgroup **objcgp,
478 					     size_t objects, gfp_t flags)
479 {
480 	struct obj_cgroup *objcg;
481 
482 	if (!memcg_kmem_enabled())
483 		return true;
484 
485 	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
486 		return true;
487 
488 	objcg = get_obj_cgroup_from_current();
489 	if (!objcg)
490 		return true;
491 
492 	if (lru) {
493 		int ret;
494 		struct mem_cgroup *memcg;
495 
496 		memcg = get_mem_cgroup_from_objcg(objcg);
497 		ret = memcg_list_lru_alloc(memcg, lru, flags);
498 		css_put(&memcg->css);
499 
500 		if (ret)
501 			goto out;
502 	}
503 
504 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
505 		goto out;
506 
507 	*objcgp = objcg;
508 	return true;
509 out:
510 	obj_cgroup_put(objcg);
511 	return false;
512 }
513 
514 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
515 					      struct obj_cgroup *objcg,
516 					      gfp_t flags, size_t size,
517 					      void **p)
518 {
519 	struct slab *slab;
520 	unsigned long off;
521 	size_t i;
522 
523 	if (!memcg_kmem_enabled() || !objcg)
524 		return;
525 
526 	for (i = 0; i < size; i++) {
527 		if (likely(p[i])) {
528 			slab = virt_to_slab(p[i]);
529 
530 			if (!slab_objcgs(slab) &&
531 			    memcg_alloc_slab_cgroups(slab, s, flags,
532 							 false)) {
533 				obj_cgroup_uncharge(objcg, obj_full_size(s));
534 				continue;
535 			}
536 
537 			off = obj_to_index(s, slab, p[i]);
538 			obj_cgroup_get(objcg);
539 			slab_objcgs(slab)[off] = objcg;
540 			mod_objcg_state(objcg, slab_pgdat(slab),
541 					cache_vmstat_idx(s), obj_full_size(s));
542 		} else {
543 			obj_cgroup_uncharge(objcg, obj_full_size(s));
544 		}
545 	}
546 	obj_cgroup_put(objcg);
547 }
548 
549 static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
550 					void **p, int objects)
551 {
552 	struct kmem_cache *s;
553 	struct obj_cgroup **objcgs;
554 	struct obj_cgroup *objcg;
555 	struct slab *slab;
556 	unsigned int off;
557 	int i;
558 
559 	if (!memcg_kmem_enabled())
560 		return;
561 
562 	for (i = 0; i < objects; i++) {
563 		if (unlikely(!p[i]))
564 			continue;
565 
566 		slab = virt_to_slab(p[i]);
567 		/* we could be given a kmalloc_large() object, skip those */
568 		if (!slab)
569 			continue;
570 
571 		objcgs = slab_objcgs(slab);
572 		if (!objcgs)
573 			continue;
574 
575 		if (!s_orig)
576 			s = slab->slab_cache;
577 		else
578 			s = s_orig;
579 
580 		off = obj_to_index(s, slab, p[i]);
581 		objcg = objcgs[off];
582 		if (!objcg)
583 			continue;
584 
585 		objcgs[off] = NULL;
586 		obj_cgroup_uncharge(objcg, obj_full_size(s));
587 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
588 				-obj_full_size(s));
589 		obj_cgroup_put(objcg);
590 	}
591 }
592 
593 #else /* CONFIG_MEMCG_KMEM */
594 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
595 {
596 	return NULL;
597 }
598 
599 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
600 {
601 	return NULL;
602 }
603 
604 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
605 					       struct kmem_cache *s, gfp_t gfp,
606 					       bool new_slab)
607 {
608 	return 0;
609 }
610 
611 static inline void memcg_free_slab_cgroups(struct slab *slab)
612 {
613 }
614 
615 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
616 					     struct list_lru *lru,
617 					     struct obj_cgroup **objcgp,
618 					     size_t objects, gfp_t flags)
619 {
620 	return true;
621 }
622 
623 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
624 					      struct obj_cgroup *objcg,
625 					      gfp_t flags, size_t size,
626 					      void **p)
627 {
628 }
629 
630 static inline void memcg_slab_free_hook(struct kmem_cache *s,
631 					void **p, int objects)
632 {
633 }
634 #endif /* CONFIG_MEMCG_KMEM */
635 
636 #ifndef CONFIG_SLOB
637 static inline struct kmem_cache *virt_to_cache(const void *obj)
638 {
639 	struct slab *slab;
640 
641 	slab = virt_to_slab(obj);
642 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
643 					__func__))
644 		return NULL;
645 	return slab->slab_cache;
646 }
647 
648 static __always_inline void account_slab(struct slab *slab, int order,
649 					 struct kmem_cache *s, gfp_t gfp)
650 {
651 	if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
652 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
653 
654 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
655 			    PAGE_SIZE << order);
656 }
657 
658 static __always_inline void unaccount_slab(struct slab *slab, int order,
659 					   struct kmem_cache *s)
660 {
661 	if (memcg_kmem_enabled())
662 		memcg_free_slab_cgroups(slab);
663 
664 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
665 			    -(PAGE_SIZE << order));
666 }
667 
668 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
669 {
670 	struct kmem_cache *cachep;
671 
672 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
673 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
674 		return s;
675 
676 	cachep = virt_to_cache(x);
677 	if (WARN(cachep && cachep != s,
678 		  "%s: Wrong slab cache. %s but object is from %s\n",
679 		  __func__, s->name, cachep->name))
680 		print_tracking(cachep, x);
681 	return cachep;
682 }
683 #endif /* CONFIG_SLOB */
684 
685 static inline size_t slab_ksize(const struct kmem_cache *s)
686 {
687 #ifndef CONFIG_SLUB
688 	return s->object_size;
689 
690 #else /* CONFIG_SLUB */
691 # ifdef CONFIG_SLUB_DEBUG
692 	/*
693 	 * Debugging requires use of the padding between object
694 	 * and whatever may come after it.
695 	 */
696 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
697 		return s->object_size;
698 # endif
699 	if (s->flags & SLAB_KASAN)
700 		return s->object_size;
701 	/*
702 	 * If we have the need to store the freelist pointer
703 	 * back there or track user information then we can
704 	 * only use the space before that information.
705 	 */
706 	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
707 		return s->inuse;
708 	/*
709 	 * Else we can use all the padding etc for the allocation
710 	 */
711 	return s->size;
712 #endif
713 }
714 
715 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
716 						     struct list_lru *lru,
717 						     struct obj_cgroup **objcgp,
718 						     size_t size, gfp_t flags)
719 {
720 	flags &= gfp_allowed_mask;
721 
722 	might_alloc(flags);
723 
724 	if (should_failslab(s, flags))
725 		return NULL;
726 
727 	if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
728 		return NULL;
729 
730 	return s;
731 }
732 
733 static inline void slab_post_alloc_hook(struct kmem_cache *s,
734 					struct obj_cgroup *objcg, gfp_t flags,
735 					size_t size, void **p, bool init)
736 {
737 	size_t i;
738 
739 	flags &= gfp_allowed_mask;
740 
741 	/*
742 	 * As memory initialization might be integrated into KASAN,
743 	 * kasan_slab_alloc and initialization memset must be
744 	 * kept together to avoid discrepancies in behavior.
745 	 *
746 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
747 	 */
748 	for (i = 0; i < size; i++) {
749 		p[i] = kasan_slab_alloc(s, p[i], flags, init);
750 		if (p[i] && init && !kasan_has_integrated_init())
751 			memset(p[i], 0, s->object_size);
752 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
753 					 s->flags, flags);
754 	}
755 
756 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
757 }
758 
759 #ifndef CONFIG_SLOB
760 /*
761  * The slab lists for all objects.
762  */
763 struct kmem_cache_node {
764 	spinlock_t list_lock;
765 
766 #ifdef CONFIG_SLAB
767 	struct list_head slabs_partial;	/* partial list first, better asm code */
768 	struct list_head slabs_full;
769 	struct list_head slabs_free;
770 	unsigned long total_slabs;	/* length of all slab lists */
771 	unsigned long free_slabs;	/* length of free slab list only */
772 	unsigned long free_objects;
773 	unsigned int free_limit;
774 	unsigned int colour_next;	/* Per-node cache coloring */
775 	struct array_cache *shared;	/* shared per node */
776 	struct alien_cache **alien;	/* on other nodes */
777 	unsigned long next_reap;	/* updated without locking */
778 	int free_touched;		/* updated without locking */
779 #endif
780 
781 #ifdef CONFIG_SLUB
782 	unsigned long nr_partial;
783 	struct list_head partial;
784 #ifdef CONFIG_SLUB_DEBUG
785 	atomic_long_t nr_slabs;
786 	atomic_long_t total_objects;
787 	struct list_head full;
788 #endif
789 #endif
790 
791 };
792 
793 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
794 {
795 	return s->node[node];
796 }
797 
798 /*
799  * Iterator over all nodes. The body will be executed for each node that has
800  * a kmem_cache_node structure allocated (which is true for all online nodes)
801  */
802 #define for_each_kmem_cache_node(__s, __node, __n) \
803 	for (__node = 0; __node < nr_node_ids; __node++) \
804 		 if ((__n = get_node(__s, __node)))
805 
806 #endif
807 
808 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
809 void dump_unreclaimable_slab(void);
810 #else
811 static inline void dump_unreclaimable_slab(void)
812 {
813 }
814 #endif
815 
816 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
817 
818 #ifdef CONFIG_SLAB_FREELIST_RANDOM
819 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
820 			gfp_t gfp);
821 void cache_random_seq_destroy(struct kmem_cache *cachep);
822 #else
823 static inline int cache_random_seq_create(struct kmem_cache *cachep,
824 					unsigned int count, gfp_t gfp)
825 {
826 	return 0;
827 }
828 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
829 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
830 
831 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
832 {
833 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
834 				&init_on_alloc)) {
835 		if (c->ctor)
836 			return false;
837 		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
838 			return flags & __GFP_ZERO;
839 		return true;
840 	}
841 	return flags & __GFP_ZERO;
842 }
843 
844 static inline bool slab_want_init_on_free(struct kmem_cache *c)
845 {
846 	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
847 				&init_on_free))
848 		return !(c->ctor ||
849 			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
850 	return false;
851 }
852 
853 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
854 void debugfs_slab_release(struct kmem_cache *);
855 #else
856 static inline void debugfs_slab_release(struct kmem_cache *s) { }
857 #endif
858 
859 #ifdef CONFIG_PRINTK
860 #define KS_ADDRS_COUNT 16
861 struct kmem_obj_info {
862 	void *kp_ptr;
863 	struct slab *kp_slab;
864 	void *kp_objp;
865 	unsigned long kp_data_offset;
866 	struct kmem_cache *kp_slab_cache;
867 	void *kp_ret;
868 	void *kp_stack[KS_ADDRS_COUNT];
869 	void *kp_free_stack[KS_ADDRS_COUNT];
870 };
871 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
872 #endif
873 
874 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
875 void __check_heap_object(const void *ptr, unsigned long n,
876 			 const struct slab *slab, bool to_user);
877 #else
878 static inline
879 void __check_heap_object(const void *ptr, unsigned long n,
880 			 const struct slab *slab, bool to_user)
881 {
882 }
883 #endif
884 
885 #endif /* MM_SLAB_H */
886