1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/memcontrol.h> 3 #include <linux/rwsem.h> 4 #include <linux/shrinker.h> 5 #include <linux/rculist.h> 6 #include <trace/events/vmscan.h> 7 8 #include "internal.h" 9 10 LIST_HEAD(shrinker_list); 11 DEFINE_MUTEX(shrinker_mutex); 12 13 #ifdef CONFIG_MEMCG 14 static int shrinker_nr_max; 15 16 static inline int shrinker_unit_size(int nr_items) 17 { 18 return (DIV_ROUND_UP(nr_items, SHRINKER_UNIT_BITS) * sizeof(struct shrinker_info_unit *)); 19 } 20 21 static inline void shrinker_unit_free(struct shrinker_info *info, int start) 22 { 23 struct shrinker_info_unit **unit; 24 int nr, i; 25 26 if (!info) 27 return; 28 29 unit = info->unit; 30 nr = DIV_ROUND_UP(info->map_nr_max, SHRINKER_UNIT_BITS); 31 32 for (i = start; i < nr; i++) { 33 if (!unit[i]) 34 break; 35 36 kfree(unit[i]); 37 unit[i] = NULL; 38 } 39 } 40 41 static inline int shrinker_unit_alloc(struct shrinker_info *new, 42 struct shrinker_info *old, int nid) 43 { 44 struct shrinker_info_unit *unit; 45 int nr = DIV_ROUND_UP(new->map_nr_max, SHRINKER_UNIT_BITS); 46 int start = old ? DIV_ROUND_UP(old->map_nr_max, SHRINKER_UNIT_BITS) : 0; 47 int i; 48 49 for (i = start; i < nr; i++) { 50 unit = kzalloc_node(sizeof(*unit), GFP_KERNEL, nid); 51 if (!unit) { 52 shrinker_unit_free(new, start); 53 return -ENOMEM; 54 } 55 56 new->unit[i] = unit; 57 } 58 59 return 0; 60 } 61 62 void free_shrinker_info(struct mem_cgroup *memcg) 63 { 64 struct mem_cgroup_per_node *pn; 65 struct shrinker_info *info; 66 int nid; 67 68 for_each_node(nid) { 69 pn = memcg->nodeinfo[nid]; 70 info = rcu_dereference_protected(pn->shrinker_info, true); 71 shrinker_unit_free(info, 0); 72 kvfree(info); 73 rcu_assign_pointer(pn->shrinker_info, NULL); 74 } 75 } 76 77 int alloc_shrinker_info(struct mem_cgroup *memcg) 78 { 79 int nid, ret = 0; 80 int array_size = 0; 81 82 mutex_lock(&shrinker_mutex); 83 array_size = shrinker_unit_size(shrinker_nr_max); 84 for_each_node(nid) { 85 struct shrinker_info *info = kvzalloc_node(sizeof(*info) + array_size, 86 GFP_KERNEL, nid); 87 if (!info) 88 goto err; 89 info->map_nr_max = shrinker_nr_max; 90 if (shrinker_unit_alloc(info, NULL, nid)) { 91 kvfree(info); 92 goto err; 93 } 94 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); 95 } 96 mutex_unlock(&shrinker_mutex); 97 98 return ret; 99 100 err: 101 mutex_unlock(&shrinker_mutex); 102 free_shrinker_info(memcg); 103 return -ENOMEM; 104 } 105 106 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, 107 int nid) 108 { 109 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, 110 lockdep_is_held(&shrinker_mutex)); 111 } 112 113 static int expand_one_shrinker_info(struct mem_cgroup *memcg, int new_size, 114 int old_size, int new_nr_max) 115 { 116 struct shrinker_info *new, *old; 117 struct mem_cgroup_per_node *pn; 118 int nid; 119 120 for_each_node(nid) { 121 pn = memcg->nodeinfo[nid]; 122 old = shrinker_info_protected(memcg, nid); 123 /* Not yet online memcg */ 124 if (!old) 125 return 0; 126 127 /* Already expanded this shrinker_info */ 128 if (new_nr_max <= old->map_nr_max) 129 continue; 130 131 new = kvzalloc_node(sizeof(*new) + new_size, GFP_KERNEL, nid); 132 if (!new) 133 return -ENOMEM; 134 135 new->map_nr_max = new_nr_max; 136 137 memcpy(new->unit, old->unit, old_size); 138 if (shrinker_unit_alloc(new, old, nid)) { 139 kvfree(new); 140 return -ENOMEM; 141 } 142 143 rcu_assign_pointer(pn->shrinker_info, new); 144 kvfree_rcu(old, rcu); 145 } 146 147 return 0; 148 } 149 150 static int expand_shrinker_info(int new_id) 151 { 152 int ret = 0; 153 int new_nr_max = round_up(new_id + 1, SHRINKER_UNIT_BITS); 154 int new_size, old_size = 0; 155 struct mem_cgroup *memcg; 156 157 if (!root_mem_cgroup) 158 goto out; 159 160 lockdep_assert_held(&shrinker_mutex); 161 162 new_size = shrinker_unit_size(new_nr_max); 163 old_size = shrinker_unit_size(shrinker_nr_max); 164 165 memcg = mem_cgroup_iter(NULL, NULL, NULL); 166 do { 167 ret = expand_one_shrinker_info(memcg, new_size, old_size, 168 new_nr_max); 169 if (ret) { 170 mem_cgroup_iter_break(NULL, memcg); 171 goto out; 172 } 173 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 174 out: 175 if (!ret) 176 shrinker_nr_max = new_nr_max; 177 178 return ret; 179 } 180 181 static inline int shrinker_id_to_index(int shrinker_id) 182 { 183 return shrinker_id / SHRINKER_UNIT_BITS; 184 } 185 186 static inline int shrinker_id_to_offset(int shrinker_id) 187 { 188 return shrinker_id % SHRINKER_UNIT_BITS; 189 } 190 191 static inline int calc_shrinker_id(int index, int offset) 192 { 193 return index * SHRINKER_UNIT_BITS + offset; 194 } 195 196 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 197 { 198 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 199 struct shrinker_info *info; 200 struct shrinker_info_unit *unit; 201 202 rcu_read_lock(); 203 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 204 unit = info->unit[shrinker_id_to_index(shrinker_id)]; 205 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) { 206 /* Pairs with smp mb in shrink_slab() */ 207 smp_mb__before_atomic(); 208 set_bit(shrinker_id_to_offset(shrinker_id), unit->map); 209 } 210 rcu_read_unlock(); 211 } 212 } 213 214 static DEFINE_IDR(shrinker_idr); 215 216 static int shrinker_memcg_alloc(struct shrinker *shrinker) 217 { 218 int id, ret = -ENOMEM; 219 220 if (mem_cgroup_disabled()) 221 return -ENOSYS; 222 223 mutex_lock(&shrinker_mutex); 224 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 225 if (id < 0) 226 goto unlock; 227 228 if (id >= shrinker_nr_max) { 229 if (expand_shrinker_info(id)) { 230 idr_remove(&shrinker_idr, id); 231 goto unlock; 232 } 233 } 234 shrinker->id = id; 235 ret = 0; 236 unlock: 237 mutex_unlock(&shrinker_mutex); 238 return ret; 239 } 240 241 static void shrinker_memcg_remove(struct shrinker *shrinker) 242 { 243 int id = shrinker->id; 244 245 BUG_ON(id < 0); 246 247 lockdep_assert_held(&shrinker_mutex); 248 249 idr_remove(&shrinker_idr, id); 250 } 251 252 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 253 struct mem_cgroup *memcg) 254 { 255 struct shrinker_info *info; 256 struct shrinker_info_unit *unit; 257 long nr_deferred; 258 259 rcu_read_lock(); 260 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 261 unit = info->unit[shrinker_id_to_index(shrinker->id)]; 262 nr_deferred = atomic_long_xchg(&unit->nr_deferred[shrinker_id_to_offset(shrinker->id)], 0); 263 rcu_read_unlock(); 264 265 return nr_deferred; 266 } 267 268 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 269 struct mem_cgroup *memcg) 270 { 271 struct shrinker_info *info; 272 struct shrinker_info_unit *unit; 273 long nr_deferred; 274 275 rcu_read_lock(); 276 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 277 unit = info->unit[shrinker_id_to_index(shrinker->id)]; 278 nr_deferred = 279 atomic_long_add_return(nr, &unit->nr_deferred[shrinker_id_to_offset(shrinker->id)]); 280 rcu_read_unlock(); 281 282 return nr_deferred; 283 } 284 285 void reparent_shrinker_deferred(struct mem_cgroup *memcg) 286 { 287 int nid, index, offset; 288 long nr; 289 struct mem_cgroup *parent; 290 struct shrinker_info *child_info, *parent_info; 291 struct shrinker_info_unit *child_unit, *parent_unit; 292 293 parent = parent_mem_cgroup(memcg); 294 if (!parent) 295 parent = root_mem_cgroup; 296 297 /* Prevent from concurrent shrinker_info expand */ 298 mutex_lock(&shrinker_mutex); 299 for_each_node(nid) { 300 child_info = shrinker_info_protected(memcg, nid); 301 parent_info = shrinker_info_protected(parent, nid); 302 for (index = 0; index < shrinker_id_to_index(child_info->map_nr_max); index++) { 303 child_unit = child_info->unit[index]; 304 parent_unit = parent_info->unit[index]; 305 for (offset = 0; offset < SHRINKER_UNIT_BITS; offset++) { 306 nr = atomic_long_read(&child_unit->nr_deferred[offset]); 307 atomic_long_add(nr, &parent_unit->nr_deferred[offset]); 308 } 309 } 310 } 311 mutex_unlock(&shrinker_mutex); 312 } 313 #else 314 static int shrinker_memcg_alloc(struct shrinker *shrinker) 315 { 316 return -ENOSYS; 317 } 318 319 static void shrinker_memcg_remove(struct shrinker *shrinker) 320 { 321 } 322 323 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, 324 struct mem_cgroup *memcg) 325 { 326 return 0; 327 } 328 329 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, 330 struct mem_cgroup *memcg) 331 { 332 return 0; 333 } 334 #endif /* CONFIG_MEMCG */ 335 336 static long xchg_nr_deferred(struct shrinker *shrinker, 337 struct shrink_control *sc) 338 { 339 int nid = sc->nid; 340 341 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 342 nid = 0; 343 344 if (sc->memcg && 345 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 346 return xchg_nr_deferred_memcg(nid, shrinker, 347 sc->memcg); 348 349 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 350 } 351 352 353 static long add_nr_deferred(long nr, struct shrinker *shrinker, 354 struct shrink_control *sc) 355 { 356 int nid = sc->nid; 357 358 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 359 nid = 0; 360 361 if (sc->memcg && 362 (shrinker->flags & SHRINKER_MEMCG_AWARE)) 363 return add_nr_deferred_memcg(nr, nid, shrinker, 364 sc->memcg); 365 366 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); 367 } 368 369 #define SHRINK_BATCH 128 370 371 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 372 struct shrinker *shrinker, int priority) 373 { 374 unsigned long freed = 0; 375 unsigned long long delta; 376 long total_scan; 377 long freeable; 378 long nr; 379 long new_nr; 380 long batch_size = shrinker->batch ? shrinker->batch 381 : SHRINK_BATCH; 382 long scanned = 0, next_deferred; 383 384 freeable = shrinker->count_objects(shrinker, shrinkctl); 385 if (freeable == 0 || freeable == SHRINK_EMPTY) 386 return freeable; 387 388 /* 389 * copy the current shrinker scan count into a local variable 390 * and zero it so that other concurrent shrinker invocations 391 * don't also do this scanning work. 392 */ 393 nr = xchg_nr_deferred(shrinker, shrinkctl); 394 395 if (shrinker->seeks) { 396 delta = freeable >> priority; 397 delta *= 4; 398 do_div(delta, shrinker->seeks); 399 } else { 400 /* 401 * These objects don't require any IO to create. Trim 402 * them aggressively under memory pressure to keep 403 * them from causing refetches in the IO caches. 404 */ 405 delta = freeable / 2; 406 } 407 408 total_scan = nr >> priority; 409 total_scan += delta; 410 total_scan = min(total_scan, (2 * freeable)); 411 412 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 413 freeable, delta, total_scan, priority); 414 415 /* 416 * Normally, we should not scan less than batch_size objects in one 417 * pass to avoid too frequent shrinker calls, but if the slab has less 418 * than batch_size objects in total and we are really tight on memory, 419 * we will try to reclaim all available objects, otherwise we can end 420 * up failing allocations although there are plenty of reclaimable 421 * objects spread over several slabs with usage less than the 422 * batch_size. 423 * 424 * We detect the "tight on memory" situations by looking at the total 425 * number of objects we want to scan (total_scan). If it is greater 426 * than the total number of objects on slab (freeable), we must be 427 * scanning at high prio and therefore should try to reclaim as much as 428 * possible. 429 */ 430 while (total_scan >= batch_size || 431 total_scan >= freeable) { 432 unsigned long ret; 433 unsigned long nr_to_scan = min(batch_size, total_scan); 434 435 shrinkctl->nr_to_scan = nr_to_scan; 436 shrinkctl->nr_scanned = nr_to_scan; 437 ret = shrinker->scan_objects(shrinker, shrinkctl); 438 if (ret == SHRINK_STOP) 439 break; 440 freed += ret; 441 442 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 443 total_scan -= shrinkctl->nr_scanned; 444 scanned += shrinkctl->nr_scanned; 445 446 cond_resched(); 447 } 448 449 /* 450 * The deferred work is increased by any new work (delta) that wasn't 451 * done, decreased by old deferred work that was done now. 452 * 453 * And it is capped to two times of the freeable items. 454 */ 455 next_deferred = max_t(long, (nr + delta - scanned), 0); 456 next_deferred = min(next_deferred, (2 * freeable)); 457 458 /* 459 * move the unused scan count back into the shrinker in a 460 * manner that handles concurrent updates. 461 */ 462 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); 463 464 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); 465 return freed; 466 } 467 468 #ifdef CONFIG_MEMCG 469 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 470 struct mem_cgroup *memcg, int priority) 471 { 472 struct shrinker_info *info; 473 unsigned long ret, freed = 0; 474 int offset, index = 0; 475 476 if (!mem_cgroup_online(memcg)) 477 return 0; 478 479 /* 480 * lockless algorithm of memcg shrink. 481 * 482 * The shrinker_info may be freed asynchronously via RCU in the 483 * expand_one_shrinker_info(), so the rcu_read_lock() needs to be used 484 * to ensure the existence of the shrinker_info. 485 * 486 * The shrinker_info_unit is never freed unless its corresponding memcg 487 * is destroyed. Here we already hold the refcount of memcg, so the 488 * memcg will not be destroyed, and of course shrinker_info_unit will 489 * not be freed. 490 * 491 * So in the memcg shrink: 492 * step 1: use rcu_read_lock() to guarantee existence of the 493 * shrinker_info. 494 * step 2: after getting shrinker_info_unit we can safely release the 495 * RCU lock. 496 * step 3: traverse the bitmap and calculate shrinker_id 497 * step 4: use rcu_read_lock() to guarantee existence of the shrinker. 498 * step 5: use shrinker_id to find the shrinker, then use 499 * shrinker_try_get() to guarantee existence of the shrinker, 500 * then we can release the RCU lock to do do_shrink_slab() that 501 * may sleep. 502 * step 6: do shrinker_put() paired with step 5 to put the refcount, 503 * if the refcount reaches 0, then wake up the waiter in 504 * shrinker_free() by calling complete(). 505 * Note: here is different from the global shrink, we don't 506 * need to acquire the RCU lock to guarantee existence of 507 * the shrinker, because we don't need to use this 508 * shrinker to traverse the next shrinker in the bitmap. 509 * step 7: we have already exited the read-side of rcu critical section 510 * before calling do_shrink_slab(), the shrinker_info may be 511 * released in expand_one_shrinker_info(), so go back to step 1 512 * to reacquire the shrinker_info. 513 */ 514 again: 515 rcu_read_lock(); 516 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); 517 if (unlikely(!info)) 518 goto unlock; 519 520 if (index < shrinker_id_to_index(info->map_nr_max)) { 521 struct shrinker_info_unit *unit; 522 523 unit = info->unit[index]; 524 525 rcu_read_unlock(); 526 527 for_each_set_bit(offset, unit->map, SHRINKER_UNIT_BITS) { 528 struct shrink_control sc = { 529 .gfp_mask = gfp_mask, 530 .nid = nid, 531 .memcg = memcg, 532 }; 533 struct shrinker *shrinker; 534 int shrinker_id = calc_shrinker_id(index, offset); 535 536 rcu_read_lock(); 537 shrinker = idr_find(&shrinker_idr, shrinker_id); 538 if (unlikely(!shrinker || !shrinker_try_get(shrinker))) { 539 clear_bit(offset, unit->map); 540 rcu_read_unlock(); 541 continue; 542 } 543 rcu_read_unlock(); 544 545 /* Call non-slab shrinkers even though kmem is disabled */ 546 if (!memcg_kmem_online() && 547 !(shrinker->flags & SHRINKER_NONSLAB)) 548 continue; 549 550 ret = do_shrink_slab(&sc, shrinker, priority); 551 if (ret == SHRINK_EMPTY) { 552 clear_bit(offset, unit->map); 553 /* 554 * After the shrinker reported that it had no objects to 555 * free, but before we cleared the corresponding bit in 556 * the memcg shrinker map, a new object might have been 557 * added. To make sure, we have the bit set in this 558 * case, we invoke the shrinker one more time and reset 559 * the bit if it reports that it is not empty anymore. 560 * The memory barrier here pairs with the barrier in 561 * set_shrinker_bit(): 562 * 563 * list_lru_add() shrink_slab_memcg() 564 * list_add_tail() clear_bit() 565 * <MB> <MB> 566 * set_bit() do_shrink_slab() 567 */ 568 smp_mb__after_atomic(); 569 ret = do_shrink_slab(&sc, shrinker, priority); 570 if (ret == SHRINK_EMPTY) 571 ret = 0; 572 else 573 set_shrinker_bit(memcg, nid, shrinker_id); 574 } 575 freed += ret; 576 shrinker_put(shrinker); 577 } 578 579 index++; 580 goto again; 581 } 582 unlock: 583 rcu_read_unlock(); 584 return freed; 585 } 586 #else /* !CONFIG_MEMCG */ 587 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 588 struct mem_cgroup *memcg, int priority) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_MEMCG */ 593 594 /** 595 * shrink_slab - shrink slab caches 596 * @gfp_mask: allocation context 597 * @nid: node whose slab caches to target 598 * @memcg: memory cgroup whose slab caches to target 599 * @priority: the reclaim priority 600 * 601 * Call the shrink functions to age shrinkable caches. 602 * 603 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 604 * unaware shrinkers will receive a node id of 0 instead. 605 * 606 * @memcg specifies the memory cgroup to target. Unaware shrinkers 607 * are called only if it is the root cgroup. 608 * 609 * @priority is sc->priority, we take the number of objects and >> by priority 610 * in order to get the scan target. 611 * 612 * Returns the number of reclaimed slab objects. 613 */ 614 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, 615 int priority) 616 { 617 unsigned long ret, freed = 0; 618 struct shrinker *shrinker; 619 620 /* 621 * The root memcg might be allocated even though memcg is disabled 622 * via "cgroup_disable=memory" boot parameter. This could make 623 * mem_cgroup_is_root() return false, then just run memcg slab 624 * shrink, but skip global shrink. This may result in premature 625 * oom. 626 */ 627 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 628 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 629 630 /* 631 * lockless algorithm of global shrink. 632 * 633 * In the unregistration setp, the shrinker will be freed asynchronously 634 * via RCU after its refcount reaches 0. So both rcu_read_lock() and 635 * shrinker_try_get() can be used to ensure the existence of the shrinker. 636 * 637 * So in the global shrink: 638 * step 1: use rcu_read_lock() to guarantee existence of the shrinker 639 * and the validity of the shrinker_list walk. 640 * step 2: use shrinker_try_get() to try get the refcount, if successful, 641 * then the existence of the shrinker can also be guaranteed, 642 * so we can release the RCU lock to do do_shrink_slab() that 643 * may sleep. 644 * step 3: *MUST* to reacquire the RCU lock before calling shrinker_put(), 645 * which ensures that neither this shrinker nor the next shrinker 646 * will be freed in the next traversal operation. 647 * step 4: do shrinker_put() paired with step 2 to put the refcount, 648 * if the refcount reaches 0, then wake up the waiter in 649 * shrinker_free() by calling complete(). 650 */ 651 rcu_read_lock(); 652 list_for_each_entry_rcu(shrinker, &shrinker_list, list) { 653 struct shrink_control sc = { 654 .gfp_mask = gfp_mask, 655 .nid = nid, 656 .memcg = memcg, 657 }; 658 659 if (!shrinker_try_get(shrinker)) 660 continue; 661 662 rcu_read_unlock(); 663 664 ret = do_shrink_slab(&sc, shrinker, priority); 665 if (ret == SHRINK_EMPTY) 666 ret = 0; 667 freed += ret; 668 669 rcu_read_lock(); 670 shrinker_put(shrinker); 671 } 672 673 rcu_read_unlock(); 674 cond_resched(); 675 return freed; 676 } 677 678 struct shrinker *shrinker_alloc(unsigned int flags, const char *fmt, ...) 679 { 680 struct shrinker *shrinker; 681 unsigned int size; 682 va_list ap; 683 int err; 684 685 shrinker = kzalloc(sizeof(struct shrinker), GFP_KERNEL); 686 if (!shrinker) 687 return NULL; 688 689 va_start(ap, fmt); 690 err = shrinker_debugfs_name_alloc(shrinker, fmt, ap); 691 va_end(ap); 692 if (err) 693 goto err_name; 694 695 shrinker->flags = flags | SHRINKER_ALLOCATED; 696 shrinker->seeks = DEFAULT_SEEKS; 697 698 if (flags & SHRINKER_MEMCG_AWARE) { 699 err = shrinker_memcg_alloc(shrinker); 700 if (err == -ENOSYS) { 701 /* Memcg is not supported, fallback to non-memcg-aware shrinker. */ 702 shrinker->flags &= ~SHRINKER_MEMCG_AWARE; 703 goto non_memcg; 704 } 705 706 if (err) 707 goto err_flags; 708 709 return shrinker; 710 } 711 712 non_memcg: 713 /* 714 * The nr_deferred is available on per memcg level for memcg aware 715 * shrinkers, so only allocate nr_deferred in the following cases: 716 * - non-memcg-aware shrinkers 717 * - !CONFIG_MEMCG 718 * - memcg is disabled by kernel command line 719 */ 720 size = sizeof(*shrinker->nr_deferred); 721 if (flags & SHRINKER_NUMA_AWARE) 722 size *= nr_node_ids; 723 724 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 725 if (!shrinker->nr_deferred) 726 goto err_flags; 727 728 return shrinker; 729 730 err_flags: 731 shrinker_debugfs_name_free(shrinker); 732 err_name: 733 kfree(shrinker); 734 return NULL; 735 } 736 EXPORT_SYMBOL_GPL(shrinker_alloc); 737 738 void shrinker_register(struct shrinker *shrinker) 739 { 740 if (unlikely(!(shrinker->flags & SHRINKER_ALLOCATED))) { 741 pr_warn("Must use shrinker_alloc() to dynamically allocate the shrinker"); 742 return; 743 } 744 745 mutex_lock(&shrinker_mutex); 746 list_add_tail_rcu(&shrinker->list, &shrinker_list); 747 shrinker->flags |= SHRINKER_REGISTERED; 748 shrinker_debugfs_add(shrinker); 749 mutex_unlock(&shrinker_mutex); 750 751 init_completion(&shrinker->done); 752 /* 753 * Now the shrinker is fully set up, take the first reference to it to 754 * indicate that lookup operations are now allowed to use it via 755 * shrinker_try_get(). 756 */ 757 refcount_set(&shrinker->refcount, 1); 758 } 759 EXPORT_SYMBOL_GPL(shrinker_register); 760 761 static void shrinker_free_rcu_cb(struct rcu_head *head) 762 { 763 struct shrinker *shrinker = container_of(head, struct shrinker, rcu); 764 765 kfree(shrinker->nr_deferred); 766 kfree(shrinker); 767 } 768 769 void shrinker_free(struct shrinker *shrinker) 770 { 771 struct dentry *debugfs_entry = NULL; 772 int debugfs_id; 773 774 if (!shrinker) 775 return; 776 777 if (shrinker->flags & SHRINKER_REGISTERED) { 778 /* drop the initial refcount */ 779 shrinker_put(shrinker); 780 /* 781 * Wait for all lookups of the shrinker to complete, after that, 782 * no shrinker is running or will run again, then we can safely 783 * free it asynchronously via RCU and safely free the structure 784 * where the shrinker is located, such as super_block etc. 785 */ 786 wait_for_completion(&shrinker->done); 787 } 788 789 mutex_lock(&shrinker_mutex); 790 if (shrinker->flags & SHRINKER_REGISTERED) { 791 /* 792 * Now we can safely remove it from the shrinker_list and then 793 * free it. 794 */ 795 list_del_rcu(&shrinker->list); 796 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id); 797 shrinker->flags &= ~SHRINKER_REGISTERED; 798 } 799 800 shrinker_debugfs_name_free(shrinker); 801 802 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 803 shrinker_memcg_remove(shrinker); 804 mutex_unlock(&shrinker_mutex); 805 806 if (debugfs_entry) 807 shrinker_debugfs_remove(debugfs_entry, debugfs_id); 808 809 call_rcu(&shrinker->rcu, shrinker_free_rcu_cb); 810 } 811 EXPORT_SYMBOL_GPL(shrinker_free); 812