xref: /linux/mm/shrinker.c (revision cbc16bceea784210d585a42ac9f8f10ce62b300e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/memcontrol.h>
3 #include <linux/rwsem.h>
4 #include <linux/shrinker.h>
5 #include <linux/rculist.h>
6 #include <trace/events/vmscan.h>
7 
8 #include "internal.h"
9 
10 LIST_HEAD(shrinker_list);
11 DEFINE_MUTEX(shrinker_mutex);
12 
13 #ifdef CONFIG_MEMCG
14 static int shrinker_nr_max;
15 
16 static inline int shrinker_unit_size(int nr_items)
17 {
18 	return (DIV_ROUND_UP(nr_items, SHRINKER_UNIT_BITS) * sizeof(struct shrinker_info_unit *));
19 }
20 
21 static inline void shrinker_unit_free(struct shrinker_info *info, int start)
22 {
23 	struct shrinker_info_unit **unit;
24 	int nr, i;
25 
26 	if (!info)
27 		return;
28 
29 	unit = info->unit;
30 	nr = DIV_ROUND_UP(info->map_nr_max, SHRINKER_UNIT_BITS);
31 
32 	for (i = start; i < nr; i++) {
33 		if (!unit[i])
34 			break;
35 
36 		kfree(unit[i]);
37 		unit[i] = NULL;
38 	}
39 }
40 
41 static inline int shrinker_unit_alloc(struct shrinker_info *new,
42 				       struct shrinker_info *old, int nid)
43 {
44 	struct shrinker_info_unit *unit;
45 	int nr = DIV_ROUND_UP(new->map_nr_max, SHRINKER_UNIT_BITS);
46 	int start = old ? DIV_ROUND_UP(old->map_nr_max, SHRINKER_UNIT_BITS) : 0;
47 	int i;
48 
49 	for (i = start; i < nr; i++) {
50 		unit = kzalloc_node(sizeof(*unit), GFP_KERNEL, nid);
51 		if (!unit) {
52 			shrinker_unit_free(new, start);
53 			return -ENOMEM;
54 		}
55 
56 		new->unit[i] = unit;
57 	}
58 
59 	return 0;
60 }
61 
62 void free_shrinker_info(struct mem_cgroup *memcg)
63 {
64 	struct mem_cgroup_per_node *pn;
65 	struct shrinker_info *info;
66 	int nid;
67 
68 	for_each_node(nid) {
69 		pn = memcg->nodeinfo[nid];
70 		info = rcu_dereference_protected(pn->shrinker_info, true);
71 		shrinker_unit_free(info, 0);
72 		kvfree(info);
73 		rcu_assign_pointer(pn->shrinker_info, NULL);
74 	}
75 }
76 
77 int alloc_shrinker_info(struct mem_cgroup *memcg)
78 {
79 	int nid, ret = 0;
80 	int array_size = 0;
81 
82 	mutex_lock(&shrinker_mutex);
83 	array_size = shrinker_unit_size(shrinker_nr_max);
84 	for_each_node(nid) {
85 		struct shrinker_info *info = kvzalloc_node(sizeof(*info) + array_size,
86 							   GFP_KERNEL, nid);
87 		if (!info)
88 			goto err;
89 		info->map_nr_max = shrinker_nr_max;
90 		if (shrinker_unit_alloc(info, NULL, nid)) {
91 			kvfree(info);
92 			goto err;
93 		}
94 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
95 	}
96 	mutex_unlock(&shrinker_mutex);
97 
98 	return ret;
99 
100 err:
101 	mutex_unlock(&shrinker_mutex);
102 	free_shrinker_info(memcg);
103 	return -ENOMEM;
104 }
105 
106 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
107 						     int nid)
108 {
109 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
110 					 lockdep_is_held(&shrinker_mutex));
111 }
112 
113 static int expand_one_shrinker_info(struct mem_cgroup *memcg, int new_size,
114 				    int old_size, int new_nr_max)
115 {
116 	struct shrinker_info *new, *old;
117 	struct mem_cgroup_per_node *pn;
118 	int nid;
119 
120 	for_each_node(nid) {
121 		pn = memcg->nodeinfo[nid];
122 		old = shrinker_info_protected(memcg, nid);
123 		/* Not yet online memcg */
124 		if (!old)
125 			return 0;
126 
127 		/* Already expanded this shrinker_info */
128 		if (new_nr_max <= old->map_nr_max)
129 			continue;
130 
131 		new = kvzalloc_node(sizeof(*new) + new_size, GFP_KERNEL, nid);
132 		if (!new)
133 			return -ENOMEM;
134 
135 		new->map_nr_max = new_nr_max;
136 
137 		memcpy(new->unit, old->unit, old_size);
138 		if (shrinker_unit_alloc(new, old, nid)) {
139 			kvfree(new);
140 			return -ENOMEM;
141 		}
142 
143 		rcu_assign_pointer(pn->shrinker_info, new);
144 		kvfree_rcu(old, rcu);
145 	}
146 
147 	return 0;
148 }
149 
150 static int expand_shrinker_info(int new_id)
151 {
152 	int ret = 0;
153 	int new_nr_max = round_up(new_id + 1, SHRINKER_UNIT_BITS);
154 	int new_size, old_size = 0;
155 	struct mem_cgroup *memcg;
156 
157 	if (!root_mem_cgroup)
158 		goto out;
159 
160 	lockdep_assert_held(&shrinker_mutex);
161 
162 	new_size = shrinker_unit_size(new_nr_max);
163 	old_size = shrinker_unit_size(shrinker_nr_max);
164 
165 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
166 	do {
167 		ret = expand_one_shrinker_info(memcg, new_size, old_size,
168 					       new_nr_max);
169 		if (ret) {
170 			mem_cgroup_iter_break(NULL, memcg);
171 			goto out;
172 		}
173 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
174 out:
175 	if (!ret)
176 		shrinker_nr_max = new_nr_max;
177 
178 	return ret;
179 }
180 
181 static inline int shrinker_id_to_index(int shrinker_id)
182 {
183 	return shrinker_id / SHRINKER_UNIT_BITS;
184 }
185 
186 static inline int shrinker_id_to_offset(int shrinker_id)
187 {
188 	return shrinker_id % SHRINKER_UNIT_BITS;
189 }
190 
191 static inline int calc_shrinker_id(int index, int offset)
192 {
193 	return index * SHRINKER_UNIT_BITS + offset;
194 }
195 
196 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
197 {
198 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
199 		struct shrinker_info *info;
200 		struct shrinker_info_unit *unit;
201 
202 		rcu_read_lock();
203 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
204 		unit = info->unit[shrinker_id_to_index(shrinker_id)];
205 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
206 			/* Pairs with smp mb in shrink_slab() */
207 			smp_mb__before_atomic();
208 			set_bit(shrinker_id_to_offset(shrinker_id), unit->map);
209 		}
210 		rcu_read_unlock();
211 	}
212 }
213 
214 static DEFINE_IDR(shrinker_idr);
215 
216 static int shrinker_memcg_alloc(struct shrinker *shrinker)
217 {
218 	int id, ret = -ENOMEM;
219 
220 	if (mem_cgroup_disabled())
221 		return -ENOSYS;
222 
223 	mutex_lock(&shrinker_mutex);
224 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
225 	if (id < 0)
226 		goto unlock;
227 
228 	if (id >= shrinker_nr_max) {
229 		if (expand_shrinker_info(id)) {
230 			idr_remove(&shrinker_idr, id);
231 			goto unlock;
232 		}
233 	}
234 	shrinker->id = id;
235 	ret = 0;
236 unlock:
237 	mutex_unlock(&shrinker_mutex);
238 	return ret;
239 }
240 
241 static void shrinker_memcg_remove(struct shrinker *shrinker)
242 {
243 	int id = shrinker->id;
244 
245 	BUG_ON(id < 0);
246 
247 	lockdep_assert_held(&shrinker_mutex);
248 
249 	idr_remove(&shrinker_idr, id);
250 }
251 
252 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
253 				   struct mem_cgroup *memcg)
254 {
255 	struct shrinker_info *info;
256 	struct shrinker_info_unit *unit;
257 	long nr_deferred;
258 
259 	rcu_read_lock();
260 	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
261 	unit = info->unit[shrinker_id_to_index(shrinker->id)];
262 	nr_deferred = atomic_long_xchg(&unit->nr_deferred[shrinker_id_to_offset(shrinker->id)], 0);
263 	rcu_read_unlock();
264 
265 	return nr_deferred;
266 }
267 
268 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
269 				  struct mem_cgroup *memcg)
270 {
271 	struct shrinker_info *info;
272 	struct shrinker_info_unit *unit;
273 	long nr_deferred;
274 
275 	rcu_read_lock();
276 	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
277 	unit = info->unit[shrinker_id_to_index(shrinker->id)];
278 	nr_deferred =
279 		atomic_long_add_return(nr, &unit->nr_deferred[shrinker_id_to_offset(shrinker->id)]);
280 	rcu_read_unlock();
281 
282 	return nr_deferred;
283 }
284 
285 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
286 {
287 	int nid, index, offset;
288 	long nr;
289 	struct mem_cgroup *parent;
290 	struct shrinker_info *child_info, *parent_info;
291 	struct shrinker_info_unit *child_unit, *parent_unit;
292 
293 	parent = parent_mem_cgroup(memcg);
294 	if (!parent)
295 		parent = root_mem_cgroup;
296 
297 	/* Prevent from concurrent shrinker_info expand */
298 	mutex_lock(&shrinker_mutex);
299 	for_each_node(nid) {
300 		child_info = shrinker_info_protected(memcg, nid);
301 		parent_info = shrinker_info_protected(parent, nid);
302 		for (index = 0; index < shrinker_id_to_index(child_info->map_nr_max); index++) {
303 			child_unit = child_info->unit[index];
304 			parent_unit = parent_info->unit[index];
305 			for (offset = 0; offset < SHRINKER_UNIT_BITS; offset++) {
306 				nr = atomic_long_read(&child_unit->nr_deferred[offset]);
307 				atomic_long_add(nr, &parent_unit->nr_deferred[offset]);
308 			}
309 		}
310 	}
311 	mutex_unlock(&shrinker_mutex);
312 }
313 #else
314 static int shrinker_memcg_alloc(struct shrinker *shrinker)
315 {
316 	return -ENOSYS;
317 }
318 
319 static void shrinker_memcg_remove(struct shrinker *shrinker)
320 {
321 }
322 
323 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
324 				   struct mem_cgroup *memcg)
325 {
326 	return 0;
327 }
328 
329 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
330 				  struct mem_cgroup *memcg)
331 {
332 	return 0;
333 }
334 #endif /* CONFIG_MEMCG */
335 
336 static long xchg_nr_deferred(struct shrinker *shrinker,
337 			     struct shrink_control *sc)
338 {
339 	int nid = sc->nid;
340 
341 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
342 		nid = 0;
343 
344 	if (sc->memcg &&
345 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
346 		return xchg_nr_deferred_memcg(nid, shrinker,
347 					      sc->memcg);
348 
349 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
350 }
351 
352 
353 static long add_nr_deferred(long nr, struct shrinker *shrinker,
354 			    struct shrink_control *sc)
355 {
356 	int nid = sc->nid;
357 
358 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
359 		nid = 0;
360 
361 	if (sc->memcg &&
362 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
363 		return add_nr_deferred_memcg(nr, nid, shrinker,
364 					     sc->memcg);
365 
366 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
367 }
368 
369 #define SHRINK_BATCH 128
370 
371 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
372 				    struct shrinker *shrinker, int priority)
373 {
374 	unsigned long freed = 0;
375 	unsigned long long delta;
376 	long total_scan;
377 	long freeable;
378 	long nr;
379 	long new_nr;
380 	long batch_size = shrinker->batch ? shrinker->batch
381 					  : SHRINK_BATCH;
382 	long scanned = 0, next_deferred;
383 
384 	freeable = shrinker->count_objects(shrinker, shrinkctl);
385 	if (freeable == 0 || freeable == SHRINK_EMPTY)
386 		return freeable;
387 
388 	/*
389 	 * copy the current shrinker scan count into a local variable
390 	 * and zero it so that other concurrent shrinker invocations
391 	 * don't also do this scanning work.
392 	 */
393 	nr = xchg_nr_deferred(shrinker, shrinkctl);
394 
395 	if (shrinker->seeks) {
396 		delta = freeable >> priority;
397 		delta *= 4;
398 		do_div(delta, shrinker->seeks);
399 	} else {
400 		/*
401 		 * These objects don't require any IO to create. Trim
402 		 * them aggressively under memory pressure to keep
403 		 * them from causing refetches in the IO caches.
404 		 */
405 		delta = freeable / 2;
406 	}
407 
408 	total_scan = nr >> priority;
409 	total_scan += delta;
410 	total_scan = min(total_scan, (2 * freeable));
411 
412 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
413 				   freeable, delta, total_scan, priority);
414 
415 	/*
416 	 * Normally, we should not scan less than batch_size objects in one
417 	 * pass to avoid too frequent shrinker calls, but if the slab has less
418 	 * than batch_size objects in total and we are really tight on memory,
419 	 * we will try to reclaim all available objects, otherwise we can end
420 	 * up failing allocations although there are plenty of reclaimable
421 	 * objects spread over several slabs with usage less than the
422 	 * batch_size.
423 	 *
424 	 * We detect the "tight on memory" situations by looking at the total
425 	 * number of objects we want to scan (total_scan). If it is greater
426 	 * than the total number of objects on slab (freeable), we must be
427 	 * scanning at high prio and therefore should try to reclaim as much as
428 	 * possible.
429 	 */
430 	while (total_scan >= batch_size ||
431 	       total_scan >= freeable) {
432 		unsigned long ret;
433 		unsigned long nr_to_scan = min(batch_size, total_scan);
434 
435 		shrinkctl->nr_to_scan = nr_to_scan;
436 		shrinkctl->nr_scanned = nr_to_scan;
437 		ret = shrinker->scan_objects(shrinker, shrinkctl);
438 		if (ret == SHRINK_STOP)
439 			break;
440 		freed += ret;
441 
442 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
443 		total_scan -= shrinkctl->nr_scanned;
444 		scanned += shrinkctl->nr_scanned;
445 
446 		cond_resched();
447 	}
448 
449 	/*
450 	 * The deferred work is increased by any new work (delta) that wasn't
451 	 * done, decreased by old deferred work that was done now.
452 	 *
453 	 * And it is capped to two times of the freeable items.
454 	 */
455 	next_deferred = max_t(long, (nr + delta - scanned), 0);
456 	next_deferred = min(next_deferred, (2 * freeable));
457 
458 	/*
459 	 * move the unused scan count back into the shrinker in a
460 	 * manner that handles concurrent updates.
461 	 */
462 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
463 
464 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
465 	return freed;
466 }
467 
468 #ifdef CONFIG_MEMCG
469 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
470 			struct mem_cgroup *memcg, int priority)
471 {
472 	struct shrinker_info *info;
473 	unsigned long ret, freed = 0;
474 	int offset, index = 0;
475 
476 	if (!mem_cgroup_online(memcg))
477 		return 0;
478 
479 	/*
480 	 * lockless algorithm of memcg shrink.
481 	 *
482 	 * The shrinker_info may be freed asynchronously via RCU in the
483 	 * expand_one_shrinker_info(), so the rcu_read_lock() needs to be used
484 	 * to ensure the existence of the shrinker_info.
485 	 *
486 	 * The shrinker_info_unit is never freed unless its corresponding memcg
487 	 * is destroyed. Here we already hold the refcount of memcg, so the
488 	 * memcg will not be destroyed, and of course shrinker_info_unit will
489 	 * not be freed.
490 	 *
491 	 * So in the memcg shrink:
492 	 *  step 1: use rcu_read_lock() to guarantee existence of the
493 	 *          shrinker_info.
494 	 *  step 2: after getting shrinker_info_unit we can safely release the
495 	 *          RCU lock.
496 	 *  step 3: traverse the bitmap and calculate shrinker_id
497 	 *  step 4: use rcu_read_lock() to guarantee existence of the shrinker.
498 	 *  step 5: use shrinker_id to find the shrinker, then use
499 	 *          shrinker_try_get() to guarantee existence of the shrinker,
500 	 *          then we can release the RCU lock to do do_shrink_slab() that
501 	 *          may sleep.
502 	 *  step 6: do shrinker_put() paired with step 5 to put the refcount,
503 	 *          if the refcount reaches 0, then wake up the waiter in
504 	 *          shrinker_free() by calling complete().
505 	 *          Note: here is different from the global shrink, we don't
506 	 *                need to acquire the RCU lock to guarantee existence of
507 	 *                the shrinker, because we don't need to use this
508 	 *                shrinker to traverse the next shrinker in the bitmap.
509 	 *  step 7: we have already exited the read-side of rcu critical section
510 	 *          before calling do_shrink_slab(), the shrinker_info may be
511 	 *          released in expand_one_shrinker_info(), so go back to step 1
512 	 *          to reacquire the shrinker_info.
513 	 */
514 again:
515 	rcu_read_lock();
516 	info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
517 	if (unlikely(!info))
518 		goto unlock;
519 
520 	if (index < shrinker_id_to_index(info->map_nr_max)) {
521 		struct shrinker_info_unit *unit;
522 
523 		unit = info->unit[index];
524 
525 		rcu_read_unlock();
526 
527 		for_each_set_bit(offset, unit->map, SHRINKER_UNIT_BITS) {
528 			struct shrink_control sc = {
529 				.gfp_mask = gfp_mask,
530 				.nid = nid,
531 				.memcg = memcg,
532 			};
533 			struct shrinker *shrinker;
534 			int shrinker_id = calc_shrinker_id(index, offset);
535 
536 			rcu_read_lock();
537 			shrinker = idr_find(&shrinker_idr, shrinker_id);
538 			if (unlikely(!shrinker || !shrinker_try_get(shrinker))) {
539 				clear_bit(offset, unit->map);
540 				rcu_read_unlock();
541 				continue;
542 			}
543 			rcu_read_unlock();
544 
545 			/* Call non-slab shrinkers even though kmem is disabled */
546 			if (!memcg_kmem_online() &&
547 			    !(shrinker->flags & SHRINKER_NONSLAB))
548 				continue;
549 
550 			ret = do_shrink_slab(&sc, shrinker, priority);
551 			if (ret == SHRINK_EMPTY) {
552 				clear_bit(offset, unit->map);
553 				/*
554 				 * After the shrinker reported that it had no objects to
555 				 * free, but before we cleared the corresponding bit in
556 				 * the memcg shrinker map, a new object might have been
557 				 * added. To make sure, we have the bit set in this
558 				 * case, we invoke the shrinker one more time and reset
559 				 * the bit if it reports that it is not empty anymore.
560 				 * The memory barrier here pairs with the barrier in
561 				 * set_shrinker_bit():
562 				 *
563 				 * list_lru_add()     shrink_slab_memcg()
564 				 *   list_add_tail()    clear_bit()
565 				 *   <MB>               <MB>
566 				 *   set_bit()          do_shrink_slab()
567 				 */
568 				smp_mb__after_atomic();
569 				ret = do_shrink_slab(&sc, shrinker, priority);
570 				if (ret == SHRINK_EMPTY)
571 					ret = 0;
572 				else
573 					set_shrinker_bit(memcg, nid, shrinker_id);
574 			}
575 			freed += ret;
576 			shrinker_put(shrinker);
577 		}
578 
579 		index++;
580 		goto again;
581 	}
582 unlock:
583 	rcu_read_unlock();
584 	return freed;
585 }
586 #else /* !CONFIG_MEMCG */
587 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
588 			struct mem_cgroup *memcg, int priority)
589 {
590 	return 0;
591 }
592 #endif /* CONFIG_MEMCG */
593 
594 /**
595  * shrink_slab - shrink slab caches
596  * @gfp_mask: allocation context
597  * @nid: node whose slab caches to target
598  * @memcg: memory cgroup whose slab caches to target
599  * @priority: the reclaim priority
600  *
601  * Call the shrink functions to age shrinkable caches.
602  *
603  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
604  * unaware shrinkers will receive a node id of 0 instead.
605  *
606  * @memcg specifies the memory cgroup to target. Unaware shrinkers
607  * are called only if it is the root cgroup.
608  *
609  * @priority is sc->priority, we take the number of objects and >> by priority
610  * in order to get the scan target.
611  *
612  * Returns the number of reclaimed slab objects.
613  */
614 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
615 			  int priority)
616 {
617 	unsigned long ret, freed = 0;
618 	struct shrinker *shrinker;
619 
620 	/*
621 	 * The root memcg might be allocated even though memcg is disabled
622 	 * via "cgroup_disable=memory" boot parameter.  This could make
623 	 * mem_cgroup_is_root() return false, then just run memcg slab
624 	 * shrink, but skip global shrink.  This may result in premature
625 	 * oom.
626 	 */
627 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
628 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
629 
630 	/*
631 	 * lockless algorithm of global shrink.
632 	 *
633 	 * In the unregistration setp, the shrinker will be freed asynchronously
634 	 * via RCU after its refcount reaches 0. So both rcu_read_lock() and
635 	 * shrinker_try_get() can be used to ensure the existence of the shrinker.
636 	 *
637 	 * So in the global shrink:
638 	 *  step 1: use rcu_read_lock() to guarantee existence of the shrinker
639 	 *          and the validity of the shrinker_list walk.
640 	 *  step 2: use shrinker_try_get() to try get the refcount, if successful,
641 	 *          then the existence of the shrinker can also be guaranteed,
642 	 *          so we can release the RCU lock to do do_shrink_slab() that
643 	 *          may sleep.
644 	 *  step 3: *MUST* to reacquire the RCU lock before calling shrinker_put(),
645 	 *          which ensures that neither this shrinker nor the next shrinker
646 	 *          will be freed in the next traversal operation.
647 	 *  step 4: do shrinker_put() paired with step 2 to put the refcount,
648 	 *          if the refcount reaches 0, then wake up the waiter in
649 	 *          shrinker_free() by calling complete().
650 	 */
651 	rcu_read_lock();
652 	list_for_each_entry_rcu(shrinker, &shrinker_list, list) {
653 		struct shrink_control sc = {
654 			.gfp_mask = gfp_mask,
655 			.nid = nid,
656 			.memcg = memcg,
657 		};
658 
659 		if (!shrinker_try_get(shrinker))
660 			continue;
661 
662 		rcu_read_unlock();
663 
664 		ret = do_shrink_slab(&sc, shrinker, priority);
665 		if (ret == SHRINK_EMPTY)
666 			ret = 0;
667 		freed += ret;
668 
669 		rcu_read_lock();
670 		shrinker_put(shrinker);
671 	}
672 
673 	rcu_read_unlock();
674 	cond_resched();
675 	return freed;
676 }
677 
678 struct shrinker *shrinker_alloc(unsigned int flags, const char *fmt, ...)
679 {
680 	struct shrinker *shrinker;
681 	unsigned int size;
682 	va_list ap;
683 	int err;
684 
685 	shrinker = kzalloc(sizeof(struct shrinker), GFP_KERNEL);
686 	if (!shrinker)
687 		return NULL;
688 
689 	va_start(ap, fmt);
690 	err = shrinker_debugfs_name_alloc(shrinker, fmt, ap);
691 	va_end(ap);
692 	if (err)
693 		goto err_name;
694 
695 	shrinker->flags = flags | SHRINKER_ALLOCATED;
696 	shrinker->seeks = DEFAULT_SEEKS;
697 
698 	if (flags & SHRINKER_MEMCG_AWARE) {
699 		err = shrinker_memcg_alloc(shrinker);
700 		if (err == -ENOSYS) {
701 			/* Memcg is not supported, fallback to non-memcg-aware shrinker. */
702 			shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
703 			goto non_memcg;
704 		}
705 
706 		if (err)
707 			goto err_flags;
708 
709 		return shrinker;
710 	}
711 
712 non_memcg:
713 	/*
714 	 * The nr_deferred is available on per memcg level for memcg aware
715 	 * shrinkers, so only allocate nr_deferred in the following cases:
716 	 *  - non-memcg-aware shrinkers
717 	 *  - !CONFIG_MEMCG
718 	 *  - memcg is disabled by kernel command line
719 	 */
720 	size = sizeof(*shrinker->nr_deferred);
721 	if (flags & SHRINKER_NUMA_AWARE)
722 		size *= nr_node_ids;
723 
724 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
725 	if (!shrinker->nr_deferred)
726 		goto err_flags;
727 
728 	return shrinker;
729 
730 err_flags:
731 	shrinker_debugfs_name_free(shrinker);
732 err_name:
733 	kfree(shrinker);
734 	return NULL;
735 }
736 EXPORT_SYMBOL_GPL(shrinker_alloc);
737 
738 void shrinker_register(struct shrinker *shrinker)
739 {
740 	if (unlikely(!(shrinker->flags & SHRINKER_ALLOCATED))) {
741 		pr_warn("Must use shrinker_alloc() to dynamically allocate the shrinker");
742 		return;
743 	}
744 
745 	mutex_lock(&shrinker_mutex);
746 	list_add_tail_rcu(&shrinker->list, &shrinker_list);
747 	shrinker->flags |= SHRINKER_REGISTERED;
748 	shrinker_debugfs_add(shrinker);
749 	mutex_unlock(&shrinker_mutex);
750 
751 	init_completion(&shrinker->done);
752 	/*
753 	 * Now the shrinker is fully set up, take the first reference to it to
754 	 * indicate that lookup operations are now allowed to use it via
755 	 * shrinker_try_get().
756 	 */
757 	refcount_set(&shrinker->refcount, 1);
758 }
759 EXPORT_SYMBOL_GPL(shrinker_register);
760 
761 static void shrinker_free_rcu_cb(struct rcu_head *head)
762 {
763 	struct shrinker *shrinker = container_of(head, struct shrinker, rcu);
764 
765 	kfree(shrinker->nr_deferred);
766 	kfree(shrinker);
767 }
768 
769 void shrinker_free(struct shrinker *shrinker)
770 {
771 	struct dentry *debugfs_entry = NULL;
772 	int debugfs_id;
773 
774 	if (!shrinker)
775 		return;
776 
777 	if (shrinker->flags & SHRINKER_REGISTERED) {
778 		/* drop the initial refcount */
779 		shrinker_put(shrinker);
780 		/*
781 		 * Wait for all lookups of the shrinker to complete, after that,
782 		 * no shrinker is running or will run again, then we can safely
783 		 * free it asynchronously via RCU and safely free the structure
784 		 * where the shrinker is located, such as super_block etc.
785 		 */
786 		wait_for_completion(&shrinker->done);
787 	}
788 
789 	mutex_lock(&shrinker_mutex);
790 	if (shrinker->flags & SHRINKER_REGISTERED) {
791 		/*
792 		 * Now we can safely remove it from the shrinker_list and then
793 		 * free it.
794 		 */
795 		list_del_rcu(&shrinker->list);
796 		debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
797 		shrinker->flags &= ~SHRINKER_REGISTERED;
798 	}
799 
800 	shrinker_debugfs_name_free(shrinker);
801 
802 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
803 		shrinker_memcg_remove(shrinker);
804 	mutex_unlock(&shrinker_mutex);
805 
806 	if (debugfs_entry)
807 		shrinker_debugfs_remove(debugfs_entry, debugfs_id);
808 
809 	call_rcu(&shrinker->rcu, shrinker_free_rcu_cb);
810 }
811 EXPORT_SYMBOL_GPL(shrinker_free);
812