xref: /linux/mm/shmem.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_NOSWAP 16
135 #define SHMEM_SEEN_QUOTA 32
136 };
137 
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static unsigned long huge_shmem_orders_always __read_mostly;
140 static unsigned long huge_shmem_orders_madvise __read_mostly;
141 static unsigned long huge_shmem_orders_inherit __read_mostly;
142 static unsigned long huge_shmem_orders_within_size __read_mostly;
143 static bool shmem_orders_configured __initdata;
144 #endif
145 
146 #ifdef CONFIG_TMPFS
147 static unsigned long shmem_default_max_blocks(void)
148 {
149 	return totalram_pages() / 2;
150 }
151 
152 static unsigned long shmem_default_max_inodes(void)
153 {
154 	unsigned long nr_pages = totalram_pages();
155 
156 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 			ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160 
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 			struct vm_area_struct *vma, vm_fault_t *fault_type);
164 
165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 	return sb->s_fs_info;
168 }
169 
170 /*
171  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172  * for shared memory and for shared anonymous (/dev/zero) mappings
173  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174  * consistent with the pre-accounting of private mappings ...
175  */
176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181 
182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 	if (!(flags & VM_NORESERVE))
185 		vm_unacct_memory(VM_ACCT(size));
186 }
187 
188 static inline int shmem_reacct_size(unsigned long flags,
189 		loff_t oldsize, loff_t newsize)
190 {
191 	if (!(flags & VM_NORESERVE)) {
192 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 			return security_vm_enough_memory_mm(current->mm,
194 					VM_ACCT(newsize) - VM_ACCT(oldsize));
195 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 	}
198 	return 0;
199 }
200 
201 /*
202  * ... whereas tmpfs objects are accounted incrementally as
203  * pages are allocated, in order to allow large sparse files.
204  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206  */
207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 	if (!(flags & VM_NORESERVE))
210 		return 0;
211 
212 	return security_vm_enough_memory_mm(current->mm,
213 			pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 	if (flags & VM_NORESERVE)
219 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221 
222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 	int err = -ENOSPC;
227 
228 	if (shmem_acct_blocks(info->flags, pages))
229 		return err;
230 
231 	might_sleep();	/* when quotas */
232 	if (sbinfo->max_blocks) {
233 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 						sbinfo->max_blocks, pages))
235 			goto unacct;
236 
237 		err = dquot_alloc_block_nodirty(inode, pages);
238 		if (err) {
239 			percpu_counter_sub(&sbinfo->used_blocks, pages);
240 			goto unacct;
241 		}
242 	} else {
243 		err = dquot_alloc_block_nodirty(inode, pages);
244 		if (err)
245 			goto unacct;
246 	}
247 
248 	return 0;
249 
250 unacct:
251 	shmem_unacct_blocks(info->flags, pages);
252 	return err;
253 }
254 
255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 	struct shmem_inode_info *info = SHMEM_I(inode);
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259 
260 	might_sleep();	/* when quotas */
261 	dquot_free_block_nodirty(inode, pages);
262 
263 	if (sbinfo->max_blocks)
264 		percpu_counter_sub(&sbinfo->used_blocks, pages);
265 	shmem_unacct_blocks(info->flags, pages);
266 }
267 
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277 
278 bool shmem_mapping(struct address_space *mapping)
279 {
280 	return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283 
284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 	return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288 
289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293 
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296 
297 #ifdef CONFIG_TMPFS_QUOTA
298 
299 static int shmem_enable_quotas(struct super_block *sb,
300 			       unsigned short quota_types)
301 {
302 	int type, err = 0;
303 
304 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 		if (!(quota_types & (1 << type)))
307 			continue;
308 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 					  DQUOT_USAGE_ENABLED |
310 					  DQUOT_LIMITS_ENABLED);
311 		if (err)
312 			goto out_err;
313 	}
314 	return 0;
315 
316 out_err:
317 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 		type, err);
319 	for (type--; type >= 0; type--)
320 		dquot_quota_off(sb, type);
321 	return err;
322 }
323 
324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 	int type;
327 
328 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 		dquot_quota_off(sb, type);
330 }
331 
332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 	return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337 
338 /*
339  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340  * produces a novel ino for the newly allocated inode.
341  *
342  * It may also be called when making a hard link to permit the space needed by
343  * each dentry. However, in that case, no new inode number is needed since that
344  * internally draws from another pool of inode numbers (currently global
345  * get_next_ino()). This case is indicated by passing NULL as inop.
346  */
347 #define SHMEM_INO_BATCH 1024
348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 	ino_t ino;
352 
353 	if (!(sb->s_flags & SB_KERNMOUNT)) {
354 		raw_spin_lock(&sbinfo->stat_lock);
355 		if (sbinfo->max_inodes) {
356 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 				raw_spin_unlock(&sbinfo->stat_lock);
358 				return -ENOSPC;
359 			}
360 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 		}
362 		if (inop) {
363 			ino = sbinfo->next_ino++;
364 			if (unlikely(is_zero_ino(ino)))
365 				ino = sbinfo->next_ino++;
366 			if (unlikely(!sbinfo->full_inums &&
367 				     ino > UINT_MAX)) {
368 				/*
369 				 * Emulate get_next_ino uint wraparound for
370 				 * compatibility
371 				 */
372 				if (IS_ENABLED(CONFIG_64BIT))
373 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 						__func__, MINOR(sb->s_dev));
375 				sbinfo->next_ino = 1;
376 				ino = sbinfo->next_ino++;
377 			}
378 			*inop = ino;
379 		}
380 		raw_spin_unlock(&sbinfo->stat_lock);
381 	} else if (inop) {
382 		/*
383 		 * __shmem_file_setup, one of our callers, is lock-free: it
384 		 * doesn't hold stat_lock in shmem_reserve_inode since
385 		 * max_inodes is always 0, and is called from potentially
386 		 * unknown contexts. As such, use a per-cpu batched allocator
387 		 * which doesn't require the per-sb stat_lock unless we are at
388 		 * the batch boundary.
389 		 *
390 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 		 * shmem mounts are not exposed to userspace, so we don't need
392 		 * to worry about things like glibc compatibility.
393 		 */
394 		ino_t *next_ino;
395 
396 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 		ino = *next_ino;
398 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 			raw_spin_lock(&sbinfo->stat_lock);
400 			ino = sbinfo->next_ino;
401 			sbinfo->next_ino += SHMEM_INO_BATCH;
402 			raw_spin_unlock(&sbinfo->stat_lock);
403 			if (unlikely(is_zero_ino(ino)))
404 				ino++;
405 		}
406 		*inop = ino;
407 		*next_ino = ++ino;
408 		put_cpu();
409 	}
410 
411 	return 0;
412 }
413 
414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 	if (sbinfo->max_inodes) {
418 		raw_spin_lock(&sbinfo->stat_lock);
419 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 		raw_spin_unlock(&sbinfo->stat_lock);
421 	}
422 }
423 
424 /**
425  * shmem_recalc_inode - recalculate the block usage of an inode
426  * @inode: inode to recalc
427  * @alloced: the change in number of pages allocated to inode
428  * @swapped: the change in number of pages swapped from inode
429  *
430  * We have to calculate the free blocks since the mm can drop
431  * undirtied hole pages behind our back.
432  *
433  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
434  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435  */
436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 	struct shmem_inode_info *info = SHMEM_I(inode);
439 	long freed;
440 
441 	spin_lock(&info->lock);
442 	info->alloced += alloced;
443 	info->swapped += swapped;
444 	freed = info->alloced - info->swapped -
445 		READ_ONCE(inode->i_mapping->nrpages);
446 	/*
447 	 * Special case: whereas normally shmem_recalc_inode() is called
448 	 * after i_mapping->nrpages has already been adjusted (up or down),
449 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
450 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 	 * been freed.  Compensate here, to avoid the need for a followup call.
452 	 */
453 	if (swapped > 0)
454 		freed += swapped;
455 	if (freed > 0)
456 		info->alloced -= freed;
457 	spin_unlock(&info->lock);
458 
459 	/* The quota case may block */
460 	if (freed > 0)
461 		shmem_inode_unacct_blocks(inode, freed);
462 }
463 
464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 	struct address_space *mapping = inode->i_mapping;
467 
468 	if (shmem_inode_acct_blocks(inode, pages))
469 		return false;
470 
471 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 	xa_lock_irq(&mapping->i_pages);
473 	mapping->nrpages += pages;
474 	xa_unlock_irq(&mapping->i_pages);
475 
476 	shmem_recalc_inode(inode, pages, 0);
477 	return true;
478 }
479 
480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 	/* pages argument is currently unused: keep it to help debugging */
483 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
484 
485 	shmem_recalc_inode(inode, 0, 0);
486 }
487 
488 /*
489  * Replace item expected in xarray by a new item, while holding xa_lock.
490  */
491 static int shmem_replace_entry(struct address_space *mapping,
492 			pgoff_t index, void *expected, void *replacement)
493 {
494 	XA_STATE(xas, &mapping->i_pages, index);
495 	void *item;
496 
497 	VM_BUG_ON(!expected);
498 	VM_BUG_ON(!replacement);
499 	item = xas_load(&xas);
500 	if (item != expected)
501 		return -ENOENT;
502 	xas_store(&xas, replacement);
503 	return 0;
504 }
505 
506 /*
507  * Sometimes, before we decide whether to proceed or to fail, we must check
508  * that an entry was not already brought back from swap by a racing thread.
509  *
510  * Checking folio is not enough: by the time a swapcache folio is locked, it
511  * might be reused, and again be swapcache, using the same swap as before.
512  */
513 static bool shmem_confirm_swap(struct address_space *mapping,
514 			       pgoff_t index, swp_entry_t swap)
515 {
516 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518 
519 /*
520  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521  *
522  * SHMEM_HUGE_NEVER:
523  *	disables huge pages for the mount;
524  * SHMEM_HUGE_ALWAYS:
525  *	enables huge pages for the mount;
526  * SHMEM_HUGE_WITHIN_SIZE:
527  *	only allocate huge pages if the page will be fully within i_size,
528  *	also respect madvise() hints;
529  * SHMEM_HUGE_ADVISE:
530  *	only allocate huge pages if requested with madvise();
531  */
532 
533 #define SHMEM_HUGE_NEVER	0
534 #define SHMEM_HUGE_ALWAYS	1
535 #define SHMEM_HUGE_WITHIN_SIZE	2
536 #define SHMEM_HUGE_ADVISE	3
537 
538 /*
539  * Special values.
540  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541  *
542  * SHMEM_HUGE_DENY:
543  *	disables huge on shm_mnt and all mounts, for emergency use;
544  * SHMEM_HUGE_FORCE:
545  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546  *
547  */
548 #define SHMEM_HUGE_DENY		(-1)
549 #define SHMEM_HUGE_FORCE	(-2)
550 
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553 
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
556 
557 /**
558  * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
559  * @mapping: Target address_space.
560  * @index: The page index.
561  * @write_end: end of a write, could extend inode size.
562  *
563  * This returns huge orders for folios (when supported) based on the file size
564  * which the mapping currently allows at the given index. The index is relevant
565  * due to alignment considerations the mapping might have. The returned order
566  * may be less than the size passed.
567  *
568  * Return: The orders.
569  */
570 static inline unsigned int
571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
572 {
573 	unsigned int order;
574 	size_t size;
575 
576 	if (!mapping_large_folio_support(mapping) || !write_end)
577 		return 0;
578 
579 	/* Calculate the write size based on the write_end */
580 	size = write_end - (index << PAGE_SHIFT);
581 	order = filemap_get_order(size);
582 	if (!order)
583 		return 0;
584 
585 	/* If we're not aligned, allocate a smaller folio */
586 	if (index & ((1UL << order) - 1))
587 		order = __ffs(index);
588 
589 	order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
590 	return order > 0 ? BIT(order + 1) - 1 : 0;
591 }
592 
593 static unsigned int shmem_get_orders_within_size(struct inode *inode,
594 		unsigned long within_size_orders, pgoff_t index,
595 		loff_t write_end)
596 {
597 	pgoff_t aligned_index;
598 	unsigned long order;
599 	loff_t i_size;
600 
601 	order = highest_order(within_size_orders);
602 	while (within_size_orders) {
603 		aligned_index = round_up(index + 1, 1 << order);
604 		i_size = max(write_end, i_size_read(inode));
605 		i_size = round_up(i_size, PAGE_SIZE);
606 		if (i_size >> PAGE_SHIFT >= aligned_index)
607 			return within_size_orders;
608 
609 		order = next_order(&within_size_orders, order);
610 	}
611 
612 	return 0;
613 }
614 
615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
616 					      loff_t write_end, bool shmem_huge_force,
617 					      struct vm_area_struct *vma,
618 					      unsigned long vm_flags)
619 {
620 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
621 		0 : BIT(HPAGE_PMD_ORDER);
622 	unsigned long within_size_orders;
623 
624 	if (!S_ISREG(inode->i_mode))
625 		return 0;
626 	if (shmem_huge == SHMEM_HUGE_DENY)
627 		return 0;
628 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
629 		return maybe_pmd_order;
630 
631 	/*
632 	 * The huge order allocation for anon shmem is controlled through
633 	 * the mTHP interface, so we still use PMD-sized huge order to
634 	 * check whether global control is enabled.
635 	 *
636 	 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
637 	 * allocate huge pages due to lack of a write size hint.
638 	 *
639 	 * Otherwise, tmpfs will allow getting a highest order hint based on
640 	 * the size of write and fallocate paths, then will try each allowable
641 	 * huge orders.
642 	 */
643 	switch (SHMEM_SB(inode->i_sb)->huge) {
644 	case SHMEM_HUGE_ALWAYS:
645 		if (vma)
646 			return maybe_pmd_order;
647 
648 		return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
649 	case SHMEM_HUGE_WITHIN_SIZE:
650 		if (vma)
651 			within_size_orders = maybe_pmd_order;
652 		else
653 			within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
654 								       index, write_end);
655 
656 		within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
657 								  index, write_end);
658 		if (within_size_orders > 0)
659 			return within_size_orders;
660 
661 		fallthrough;
662 	case SHMEM_HUGE_ADVISE:
663 		if (vm_flags & VM_HUGEPAGE)
664 			return maybe_pmd_order;
665 		fallthrough;
666 	default:
667 		return 0;
668 	}
669 }
670 
671 static int shmem_parse_huge(const char *str)
672 {
673 	int huge;
674 
675 	if (!str)
676 		return -EINVAL;
677 
678 	if (!strcmp(str, "never"))
679 		huge = SHMEM_HUGE_NEVER;
680 	else if (!strcmp(str, "always"))
681 		huge = SHMEM_HUGE_ALWAYS;
682 	else if (!strcmp(str, "within_size"))
683 		huge = SHMEM_HUGE_WITHIN_SIZE;
684 	else if (!strcmp(str, "advise"))
685 		huge = SHMEM_HUGE_ADVISE;
686 	else if (!strcmp(str, "deny"))
687 		huge = SHMEM_HUGE_DENY;
688 	else if (!strcmp(str, "force"))
689 		huge = SHMEM_HUGE_FORCE;
690 	else
691 		return -EINVAL;
692 
693 	if (!has_transparent_hugepage() &&
694 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
695 		return -EINVAL;
696 
697 	/* Do not override huge allocation policy with non-PMD sized mTHP */
698 	if (huge == SHMEM_HUGE_FORCE &&
699 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
700 		return -EINVAL;
701 
702 	return huge;
703 }
704 
705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
706 static const char *shmem_format_huge(int huge)
707 {
708 	switch (huge) {
709 	case SHMEM_HUGE_NEVER:
710 		return "never";
711 	case SHMEM_HUGE_ALWAYS:
712 		return "always";
713 	case SHMEM_HUGE_WITHIN_SIZE:
714 		return "within_size";
715 	case SHMEM_HUGE_ADVISE:
716 		return "advise";
717 	case SHMEM_HUGE_DENY:
718 		return "deny";
719 	case SHMEM_HUGE_FORCE:
720 		return "force";
721 	default:
722 		VM_BUG_ON(1);
723 		return "bad_val";
724 	}
725 }
726 #endif
727 
728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
729 		struct shrink_control *sc, unsigned long nr_to_free)
730 {
731 	LIST_HEAD(list), *pos, *next;
732 	struct inode *inode;
733 	struct shmem_inode_info *info;
734 	struct folio *folio;
735 	unsigned long batch = sc ? sc->nr_to_scan : 128;
736 	unsigned long split = 0, freed = 0;
737 
738 	if (list_empty(&sbinfo->shrinklist))
739 		return SHRINK_STOP;
740 
741 	spin_lock(&sbinfo->shrinklist_lock);
742 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
743 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
744 
745 		/* pin the inode */
746 		inode = igrab(&info->vfs_inode);
747 
748 		/* inode is about to be evicted */
749 		if (!inode) {
750 			list_del_init(&info->shrinklist);
751 			goto next;
752 		}
753 
754 		list_move(&info->shrinklist, &list);
755 next:
756 		sbinfo->shrinklist_len--;
757 		if (!--batch)
758 			break;
759 	}
760 	spin_unlock(&sbinfo->shrinklist_lock);
761 
762 	list_for_each_safe(pos, next, &list) {
763 		pgoff_t next, end;
764 		loff_t i_size;
765 		int ret;
766 
767 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
768 		inode = &info->vfs_inode;
769 
770 		if (nr_to_free && freed >= nr_to_free)
771 			goto move_back;
772 
773 		i_size = i_size_read(inode);
774 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
775 		if (!folio || xa_is_value(folio))
776 			goto drop;
777 
778 		/* No large folio at the end of the file: nothing to split */
779 		if (!folio_test_large(folio)) {
780 			folio_put(folio);
781 			goto drop;
782 		}
783 
784 		/* Check if there is anything to gain from splitting */
785 		next = folio_next_index(folio);
786 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
787 		if (end <= folio->index || end >= next) {
788 			folio_put(folio);
789 			goto drop;
790 		}
791 
792 		/*
793 		 * Move the inode on the list back to shrinklist if we failed
794 		 * to lock the page at this time.
795 		 *
796 		 * Waiting for the lock may lead to deadlock in the
797 		 * reclaim path.
798 		 */
799 		if (!folio_trylock(folio)) {
800 			folio_put(folio);
801 			goto move_back;
802 		}
803 
804 		ret = split_folio(folio);
805 		folio_unlock(folio);
806 		folio_put(folio);
807 
808 		/* If split failed move the inode on the list back to shrinklist */
809 		if (ret)
810 			goto move_back;
811 
812 		freed += next - end;
813 		split++;
814 drop:
815 		list_del_init(&info->shrinklist);
816 		goto put;
817 move_back:
818 		/*
819 		 * Make sure the inode is either on the global list or deleted
820 		 * from any local list before iput() since it could be deleted
821 		 * in another thread once we put the inode (then the local list
822 		 * is corrupted).
823 		 */
824 		spin_lock(&sbinfo->shrinklist_lock);
825 		list_move(&info->shrinklist, &sbinfo->shrinklist);
826 		sbinfo->shrinklist_len++;
827 		spin_unlock(&sbinfo->shrinklist_lock);
828 put:
829 		iput(inode);
830 	}
831 
832 	return split;
833 }
834 
835 static long shmem_unused_huge_scan(struct super_block *sb,
836 		struct shrink_control *sc)
837 {
838 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
839 
840 	if (!READ_ONCE(sbinfo->shrinklist_len))
841 		return SHRINK_STOP;
842 
843 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
844 }
845 
846 static long shmem_unused_huge_count(struct super_block *sb,
847 		struct shrink_control *sc)
848 {
849 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
850 	return READ_ONCE(sbinfo->shrinklist_len);
851 }
852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
853 
854 #define shmem_huge SHMEM_HUGE_DENY
855 
856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
857 		struct shrink_control *sc, unsigned long nr_to_free)
858 {
859 	return 0;
860 }
861 
862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
863 					      loff_t write_end, bool shmem_huge_force,
864 					      struct vm_area_struct *vma,
865 					      unsigned long vm_flags)
866 {
867 	return 0;
868 }
869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870 
871 static void shmem_update_stats(struct folio *folio, int nr_pages)
872 {
873 	if (folio_test_pmd_mappable(folio))
874 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
875 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
876 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
877 }
878 
879 /*
880  * Somewhat like filemap_add_folio, but error if expected item has gone.
881  */
882 static int shmem_add_to_page_cache(struct folio *folio,
883 				   struct address_space *mapping,
884 				   pgoff_t index, void *expected, gfp_t gfp)
885 {
886 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
887 	long nr = folio_nr_pages(folio);
888 
889 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
890 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
891 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
892 
893 	folio_ref_add(folio, nr);
894 	folio->mapping = mapping;
895 	folio->index = index;
896 
897 	gfp &= GFP_RECLAIM_MASK;
898 	folio_throttle_swaprate(folio, gfp);
899 
900 	do {
901 		xas_lock_irq(&xas);
902 		if (expected != xas_find_conflict(&xas)) {
903 			xas_set_err(&xas, -EEXIST);
904 			goto unlock;
905 		}
906 		if (expected && xas_find_conflict(&xas)) {
907 			xas_set_err(&xas, -EEXIST);
908 			goto unlock;
909 		}
910 		xas_store(&xas, folio);
911 		if (xas_error(&xas))
912 			goto unlock;
913 		shmem_update_stats(folio, nr);
914 		mapping->nrpages += nr;
915 unlock:
916 		xas_unlock_irq(&xas);
917 	} while (xas_nomem(&xas, gfp));
918 
919 	if (xas_error(&xas)) {
920 		folio->mapping = NULL;
921 		folio_ref_sub(folio, nr);
922 		return xas_error(&xas);
923 	}
924 
925 	return 0;
926 }
927 
928 /*
929  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
930  */
931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
932 {
933 	struct address_space *mapping = folio->mapping;
934 	long nr = folio_nr_pages(folio);
935 	int error;
936 
937 	xa_lock_irq(&mapping->i_pages);
938 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
939 	folio->mapping = NULL;
940 	mapping->nrpages -= nr;
941 	shmem_update_stats(folio, -nr);
942 	xa_unlock_irq(&mapping->i_pages);
943 	folio_put_refs(folio, nr);
944 	BUG_ON(error);
945 }
946 
947 /*
948  * Remove swap entry from page cache, free the swap and its page cache. Returns
949  * the number of pages being freed. 0 means entry not found in XArray (0 pages
950  * being freed).
951  */
952 static long shmem_free_swap(struct address_space *mapping,
953 			    pgoff_t index, void *radswap)
954 {
955 	int order = xa_get_order(&mapping->i_pages, index);
956 	void *old;
957 
958 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
959 	if (old != radswap)
960 		return 0;
961 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
962 
963 	return 1 << order;
964 }
965 
966 /*
967  * Determine (in bytes) how many of the shmem object's pages mapped by the
968  * given offsets are swapped out.
969  *
970  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
971  * as long as the inode doesn't go away and racy results are not a problem.
972  */
973 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
974 						pgoff_t start, pgoff_t end)
975 {
976 	XA_STATE(xas, &mapping->i_pages, start);
977 	struct page *page;
978 	unsigned long swapped = 0;
979 	unsigned long max = end - 1;
980 
981 	rcu_read_lock();
982 	xas_for_each(&xas, page, max) {
983 		if (xas_retry(&xas, page))
984 			continue;
985 		if (xa_is_value(page))
986 			swapped += 1 << xas_get_order(&xas);
987 		if (xas.xa_index == max)
988 			break;
989 		if (need_resched()) {
990 			xas_pause(&xas);
991 			cond_resched_rcu();
992 		}
993 	}
994 	rcu_read_unlock();
995 
996 	return swapped << PAGE_SHIFT;
997 }
998 
999 /*
1000  * Determine (in bytes) how many of the shmem object's pages mapped by the
1001  * given vma is swapped out.
1002  *
1003  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1004  * as long as the inode doesn't go away and racy results are not a problem.
1005  */
1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1007 {
1008 	struct inode *inode = file_inode(vma->vm_file);
1009 	struct shmem_inode_info *info = SHMEM_I(inode);
1010 	struct address_space *mapping = inode->i_mapping;
1011 	unsigned long swapped;
1012 
1013 	/* Be careful as we don't hold info->lock */
1014 	swapped = READ_ONCE(info->swapped);
1015 
1016 	/*
1017 	 * The easier cases are when the shmem object has nothing in swap, or
1018 	 * the vma maps it whole. Then we can simply use the stats that we
1019 	 * already track.
1020 	 */
1021 	if (!swapped)
1022 		return 0;
1023 
1024 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1025 		return swapped << PAGE_SHIFT;
1026 
1027 	/* Here comes the more involved part */
1028 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1029 					vma->vm_pgoff + vma_pages(vma));
1030 }
1031 
1032 /*
1033  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1034  */
1035 void shmem_unlock_mapping(struct address_space *mapping)
1036 {
1037 	struct folio_batch fbatch;
1038 	pgoff_t index = 0;
1039 
1040 	folio_batch_init(&fbatch);
1041 	/*
1042 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1043 	 */
1044 	while (!mapping_unevictable(mapping) &&
1045 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1046 		check_move_unevictable_folios(&fbatch);
1047 		folio_batch_release(&fbatch);
1048 		cond_resched();
1049 	}
1050 }
1051 
1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1053 {
1054 	struct folio *folio;
1055 
1056 	/*
1057 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1058 	 * beyond i_size, and reports fallocated folios as holes.
1059 	 */
1060 	folio = filemap_get_entry(inode->i_mapping, index);
1061 	if (!folio)
1062 		return folio;
1063 	if (!xa_is_value(folio)) {
1064 		folio_lock(folio);
1065 		if (folio->mapping == inode->i_mapping)
1066 			return folio;
1067 		/* The folio has been swapped out */
1068 		folio_unlock(folio);
1069 		folio_put(folio);
1070 	}
1071 	/*
1072 	 * But read a folio back from swap if any of it is within i_size
1073 	 * (although in some cases this is just a waste of time).
1074 	 */
1075 	folio = NULL;
1076 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1077 	return folio;
1078 }
1079 
1080 /*
1081  * Remove range of pages and swap entries from page cache, and free them.
1082  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1083  */
1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1085 								 bool unfalloc)
1086 {
1087 	struct address_space *mapping = inode->i_mapping;
1088 	struct shmem_inode_info *info = SHMEM_I(inode);
1089 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1091 	struct folio_batch fbatch;
1092 	pgoff_t indices[PAGEVEC_SIZE];
1093 	struct folio *folio;
1094 	bool same_folio;
1095 	long nr_swaps_freed = 0;
1096 	pgoff_t index;
1097 	int i;
1098 
1099 	if (lend == -1)
1100 		end = -1;	/* unsigned, so actually very big */
1101 
1102 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1103 		info->fallocend = start;
1104 
1105 	folio_batch_init(&fbatch);
1106 	index = start;
1107 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1108 			&fbatch, indices)) {
1109 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1110 			folio = fbatch.folios[i];
1111 
1112 			if (xa_is_value(folio)) {
1113 				if (unfalloc)
1114 					continue;
1115 				nr_swaps_freed += shmem_free_swap(mapping,
1116 							indices[i], folio);
1117 				continue;
1118 			}
1119 
1120 			if (!unfalloc || !folio_test_uptodate(folio))
1121 				truncate_inode_folio(mapping, folio);
1122 			folio_unlock(folio);
1123 		}
1124 		folio_batch_remove_exceptionals(&fbatch);
1125 		folio_batch_release(&fbatch);
1126 		cond_resched();
1127 	}
1128 
1129 	/*
1130 	 * When undoing a failed fallocate, we want none of the partial folio
1131 	 * zeroing and splitting below, but shall want to truncate the whole
1132 	 * folio when !uptodate indicates that it was added by this fallocate,
1133 	 * even when [lstart, lend] covers only a part of the folio.
1134 	 */
1135 	if (unfalloc)
1136 		goto whole_folios;
1137 
1138 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1139 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1140 	if (folio) {
1141 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1142 		folio_mark_dirty(folio);
1143 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1144 			start = folio_next_index(folio);
1145 			if (same_folio)
1146 				end = folio->index;
1147 		}
1148 		folio_unlock(folio);
1149 		folio_put(folio);
1150 		folio = NULL;
1151 	}
1152 
1153 	if (!same_folio)
1154 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1155 	if (folio) {
1156 		folio_mark_dirty(folio);
1157 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1158 			end = folio->index;
1159 		folio_unlock(folio);
1160 		folio_put(folio);
1161 	}
1162 
1163 whole_folios:
1164 
1165 	index = start;
1166 	while (index < end) {
1167 		cond_resched();
1168 
1169 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1170 				indices)) {
1171 			/* If all gone or hole-punch or unfalloc, we're done */
1172 			if (index == start || end != -1)
1173 				break;
1174 			/* But if truncating, restart to make sure all gone */
1175 			index = start;
1176 			continue;
1177 		}
1178 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1179 			folio = fbatch.folios[i];
1180 
1181 			if (xa_is_value(folio)) {
1182 				long swaps_freed;
1183 
1184 				if (unfalloc)
1185 					continue;
1186 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1187 				if (!swaps_freed) {
1188 					/* Swap was replaced by page: retry */
1189 					index = indices[i];
1190 					break;
1191 				}
1192 				nr_swaps_freed += swaps_freed;
1193 				continue;
1194 			}
1195 
1196 			folio_lock(folio);
1197 
1198 			if (!unfalloc || !folio_test_uptodate(folio)) {
1199 				if (folio_mapping(folio) != mapping) {
1200 					/* Page was replaced by swap: retry */
1201 					folio_unlock(folio);
1202 					index = indices[i];
1203 					break;
1204 				}
1205 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1206 						folio);
1207 
1208 				if (!folio_test_large(folio)) {
1209 					truncate_inode_folio(mapping, folio);
1210 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1211 					/*
1212 					 * If we split a page, reset the loop so
1213 					 * that we pick up the new sub pages.
1214 					 * Otherwise the THP was entirely
1215 					 * dropped or the target range was
1216 					 * zeroed, so just continue the loop as
1217 					 * is.
1218 					 */
1219 					if (!folio_test_large(folio)) {
1220 						folio_unlock(folio);
1221 						index = start;
1222 						break;
1223 					}
1224 				}
1225 			}
1226 			folio_unlock(folio);
1227 		}
1228 		folio_batch_remove_exceptionals(&fbatch);
1229 		folio_batch_release(&fbatch);
1230 	}
1231 
1232 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1233 }
1234 
1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1236 {
1237 	shmem_undo_range(inode, lstart, lend, false);
1238 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1239 	inode_inc_iversion(inode);
1240 }
1241 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1242 
1243 static int shmem_getattr(struct mnt_idmap *idmap,
1244 			 const struct path *path, struct kstat *stat,
1245 			 u32 request_mask, unsigned int query_flags)
1246 {
1247 	struct inode *inode = path->dentry->d_inode;
1248 	struct shmem_inode_info *info = SHMEM_I(inode);
1249 
1250 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1251 		shmem_recalc_inode(inode, 0, 0);
1252 
1253 	if (info->fsflags & FS_APPEND_FL)
1254 		stat->attributes |= STATX_ATTR_APPEND;
1255 	if (info->fsflags & FS_IMMUTABLE_FL)
1256 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1257 	if (info->fsflags & FS_NODUMP_FL)
1258 		stat->attributes |= STATX_ATTR_NODUMP;
1259 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1260 			STATX_ATTR_IMMUTABLE |
1261 			STATX_ATTR_NODUMP);
1262 	generic_fillattr(idmap, request_mask, inode, stat);
1263 
1264 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1265 		stat->blksize = HPAGE_PMD_SIZE;
1266 
1267 	if (request_mask & STATX_BTIME) {
1268 		stat->result_mask |= STATX_BTIME;
1269 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1270 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int shmem_setattr(struct mnt_idmap *idmap,
1277 			 struct dentry *dentry, struct iattr *attr)
1278 {
1279 	struct inode *inode = d_inode(dentry);
1280 	struct shmem_inode_info *info = SHMEM_I(inode);
1281 	int error;
1282 	bool update_mtime = false;
1283 	bool update_ctime = true;
1284 
1285 	error = setattr_prepare(idmap, dentry, attr);
1286 	if (error)
1287 		return error;
1288 
1289 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1290 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1291 			return -EPERM;
1292 		}
1293 	}
1294 
1295 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1296 		loff_t oldsize = inode->i_size;
1297 		loff_t newsize = attr->ia_size;
1298 
1299 		/* protected by i_rwsem */
1300 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1301 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1302 			return -EPERM;
1303 
1304 		if (newsize != oldsize) {
1305 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1306 					oldsize, newsize);
1307 			if (error)
1308 				return error;
1309 			i_size_write(inode, newsize);
1310 			update_mtime = true;
1311 		} else {
1312 			update_ctime = false;
1313 		}
1314 		if (newsize <= oldsize) {
1315 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1316 			if (oldsize > holebegin)
1317 				unmap_mapping_range(inode->i_mapping,
1318 							holebegin, 0, 1);
1319 			if (info->alloced)
1320 				shmem_truncate_range(inode,
1321 							newsize, (loff_t)-1);
1322 			/* unmap again to remove racily COWed private pages */
1323 			if (oldsize > holebegin)
1324 				unmap_mapping_range(inode->i_mapping,
1325 							holebegin, 0, 1);
1326 		}
1327 	}
1328 
1329 	if (is_quota_modification(idmap, inode, attr)) {
1330 		error = dquot_initialize(inode);
1331 		if (error)
1332 			return error;
1333 	}
1334 
1335 	/* Transfer quota accounting */
1336 	if (i_uid_needs_update(idmap, attr, inode) ||
1337 	    i_gid_needs_update(idmap, attr, inode)) {
1338 		error = dquot_transfer(idmap, inode, attr);
1339 		if (error)
1340 			return error;
1341 	}
1342 
1343 	setattr_copy(idmap, inode, attr);
1344 	if (attr->ia_valid & ATTR_MODE)
1345 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1346 	if (!error && update_ctime) {
1347 		inode_set_ctime_current(inode);
1348 		if (update_mtime)
1349 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1350 		inode_inc_iversion(inode);
1351 	}
1352 	return error;
1353 }
1354 
1355 static void shmem_evict_inode(struct inode *inode)
1356 {
1357 	struct shmem_inode_info *info = SHMEM_I(inode);
1358 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1359 	size_t freed = 0;
1360 
1361 	if (shmem_mapping(inode->i_mapping)) {
1362 		shmem_unacct_size(info->flags, inode->i_size);
1363 		inode->i_size = 0;
1364 		mapping_set_exiting(inode->i_mapping);
1365 		shmem_truncate_range(inode, 0, (loff_t)-1);
1366 		if (!list_empty(&info->shrinklist)) {
1367 			spin_lock(&sbinfo->shrinklist_lock);
1368 			if (!list_empty(&info->shrinklist)) {
1369 				list_del_init(&info->shrinklist);
1370 				sbinfo->shrinklist_len--;
1371 			}
1372 			spin_unlock(&sbinfo->shrinklist_lock);
1373 		}
1374 		while (!list_empty(&info->swaplist)) {
1375 			/* Wait while shmem_unuse() is scanning this inode... */
1376 			wait_var_event(&info->stop_eviction,
1377 				       !atomic_read(&info->stop_eviction));
1378 			mutex_lock(&shmem_swaplist_mutex);
1379 			/* ...but beware of the race if we peeked too early */
1380 			if (!atomic_read(&info->stop_eviction))
1381 				list_del_init(&info->swaplist);
1382 			mutex_unlock(&shmem_swaplist_mutex);
1383 		}
1384 	}
1385 
1386 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1387 	shmem_free_inode(inode->i_sb, freed);
1388 	WARN_ON(inode->i_blocks);
1389 	clear_inode(inode);
1390 #ifdef CONFIG_TMPFS_QUOTA
1391 	dquot_free_inode(inode);
1392 	dquot_drop(inode);
1393 #endif
1394 }
1395 
1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1397 				pgoff_t start, struct folio_batch *fbatch,
1398 				pgoff_t *indices, unsigned int type)
1399 {
1400 	XA_STATE(xas, &mapping->i_pages, start);
1401 	struct folio *folio;
1402 	swp_entry_t entry;
1403 
1404 	rcu_read_lock();
1405 	xas_for_each(&xas, folio, ULONG_MAX) {
1406 		if (xas_retry(&xas, folio))
1407 			continue;
1408 
1409 		if (!xa_is_value(folio))
1410 			continue;
1411 
1412 		entry = radix_to_swp_entry(folio);
1413 		/*
1414 		 * swapin error entries can be found in the mapping. But they're
1415 		 * deliberately ignored here as we've done everything we can do.
1416 		 */
1417 		if (swp_type(entry) != type)
1418 			continue;
1419 
1420 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1421 		if (!folio_batch_add(fbatch, folio))
1422 			break;
1423 
1424 		if (need_resched()) {
1425 			xas_pause(&xas);
1426 			cond_resched_rcu();
1427 		}
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	return folio_batch_count(fbatch);
1432 }
1433 
1434 /*
1435  * Move the swapped pages for an inode to page cache. Returns the count
1436  * of pages swapped in, or the error in case of failure.
1437  */
1438 static int shmem_unuse_swap_entries(struct inode *inode,
1439 		struct folio_batch *fbatch, pgoff_t *indices)
1440 {
1441 	int i = 0;
1442 	int ret = 0;
1443 	int error = 0;
1444 	struct address_space *mapping = inode->i_mapping;
1445 
1446 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1447 		struct folio *folio = fbatch->folios[i];
1448 
1449 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1450 					mapping_gfp_mask(mapping), NULL, NULL);
1451 		if (error == 0) {
1452 			folio_unlock(folio);
1453 			folio_put(folio);
1454 			ret++;
1455 		}
1456 		if (error == -ENOMEM)
1457 			break;
1458 		error = 0;
1459 	}
1460 	return error ? error : ret;
1461 }
1462 
1463 /*
1464  * If swap found in inode, free it and move page from swapcache to filecache.
1465  */
1466 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1467 {
1468 	struct address_space *mapping = inode->i_mapping;
1469 	pgoff_t start = 0;
1470 	struct folio_batch fbatch;
1471 	pgoff_t indices[PAGEVEC_SIZE];
1472 	int ret = 0;
1473 
1474 	do {
1475 		folio_batch_init(&fbatch);
1476 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1477 					     indices, type)) {
1478 			ret = 0;
1479 			break;
1480 		}
1481 
1482 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1483 		if (ret < 0)
1484 			break;
1485 
1486 		start = indices[folio_batch_count(&fbatch) - 1];
1487 	} while (true);
1488 
1489 	return ret;
1490 }
1491 
1492 /*
1493  * Read all the shared memory data that resides in the swap
1494  * device 'type' back into memory, so the swap device can be
1495  * unused.
1496  */
1497 int shmem_unuse(unsigned int type)
1498 {
1499 	struct shmem_inode_info *info, *next;
1500 	int error = 0;
1501 
1502 	if (list_empty(&shmem_swaplist))
1503 		return 0;
1504 
1505 	mutex_lock(&shmem_swaplist_mutex);
1506 start_over:
1507 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1508 		if (!info->swapped) {
1509 			list_del_init(&info->swaplist);
1510 			continue;
1511 		}
1512 		/*
1513 		 * Drop the swaplist mutex while searching the inode for swap;
1514 		 * but before doing so, make sure shmem_evict_inode() will not
1515 		 * remove placeholder inode from swaplist, nor let it be freed
1516 		 * (igrab() would protect from unlink, but not from unmount).
1517 		 */
1518 		atomic_inc(&info->stop_eviction);
1519 		mutex_unlock(&shmem_swaplist_mutex);
1520 
1521 		error = shmem_unuse_inode(&info->vfs_inode, type);
1522 		cond_resched();
1523 
1524 		mutex_lock(&shmem_swaplist_mutex);
1525 		if (atomic_dec_and_test(&info->stop_eviction))
1526 			wake_up_var(&info->stop_eviction);
1527 		if (error)
1528 			break;
1529 		if (list_empty(&info->swaplist))
1530 			goto start_over;
1531 		next = list_next_entry(info, swaplist);
1532 		if (!info->swapped)
1533 			list_del_init(&info->swaplist);
1534 	}
1535 	mutex_unlock(&shmem_swaplist_mutex);
1536 
1537 	return error;
1538 }
1539 
1540 /**
1541  * shmem_writeout - Write the folio to swap
1542  * @folio: The folio to write
1543  * @wbc: How writeback is to be done
1544  *
1545  * Move the folio from the page cache to the swap cache.
1546  */
1547 int shmem_writeout(struct folio *folio, struct writeback_control *wbc)
1548 {
1549 	struct address_space *mapping = folio->mapping;
1550 	struct inode *inode = mapping->host;
1551 	struct shmem_inode_info *info = SHMEM_I(inode);
1552 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1553 	pgoff_t index;
1554 	int nr_pages;
1555 	bool split = false;
1556 
1557 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1558 		goto redirty;
1559 
1560 	if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1561 		goto redirty;
1562 
1563 	if (!total_swap_pages)
1564 		goto redirty;
1565 
1566 	/*
1567 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1568 	 * split when swapping.
1569 	 *
1570 	 * And shrinkage of pages beyond i_size does not split swap, so
1571 	 * swapout of a large folio crossing i_size needs to split too
1572 	 * (unless fallocate has been used to preallocate beyond EOF).
1573 	 */
1574 	if (folio_test_large(folio)) {
1575 		index = shmem_fallocend(inode,
1576 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1577 		if ((index > folio->index && index < folio_next_index(folio)) ||
1578 		    !IS_ENABLED(CONFIG_THP_SWAP))
1579 			split = true;
1580 	}
1581 
1582 	if (split) {
1583 try_split:
1584 		/* Ensure the subpages are still dirty */
1585 		folio_test_set_dirty(folio);
1586 		if (split_folio_to_list(folio, wbc->list))
1587 			goto redirty;
1588 		folio_clear_dirty(folio);
1589 	}
1590 
1591 	index = folio->index;
1592 	nr_pages = folio_nr_pages(folio);
1593 
1594 	/*
1595 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1596 	 * value into swapfile.c, the only way we can correctly account for a
1597 	 * fallocated folio arriving here is now to initialize it and write it.
1598 	 *
1599 	 * That's okay for a folio already fallocated earlier, but if we have
1600 	 * not yet completed the fallocation, then (a) we want to keep track
1601 	 * of this folio in case we have to undo it, and (b) it may not be a
1602 	 * good idea to continue anyway, once we're pushing into swap.  So
1603 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1604 	 */
1605 	if (!folio_test_uptodate(folio)) {
1606 		if (inode->i_private) {
1607 			struct shmem_falloc *shmem_falloc;
1608 			spin_lock(&inode->i_lock);
1609 			shmem_falloc = inode->i_private;
1610 			if (shmem_falloc &&
1611 			    !shmem_falloc->waitq &&
1612 			    index >= shmem_falloc->start &&
1613 			    index < shmem_falloc->next)
1614 				shmem_falloc->nr_unswapped += nr_pages;
1615 			else
1616 				shmem_falloc = NULL;
1617 			spin_unlock(&inode->i_lock);
1618 			if (shmem_falloc)
1619 				goto redirty;
1620 		}
1621 		folio_zero_range(folio, 0, folio_size(folio));
1622 		flush_dcache_folio(folio);
1623 		folio_mark_uptodate(folio);
1624 	}
1625 
1626 	/*
1627 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1628 	 * if it's not already there.  Do it now before the folio is
1629 	 * moved to swap cache, when its pagelock no longer protects
1630 	 * the inode from eviction.  But don't unlock the mutex until
1631 	 * we've incremented swapped, because shmem_unuse_inode() will
1632 	 * prune a !swapped inode from the swaplist under this mutex.
1633 	 */
1634 	mutex_lock(&shmem_swaplist_mutex);
1635 	if (list_empty(&info->swaplist))
1636 		list_add(&info->swaplist, &shmem_swaplist);
1637 
1638 	if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1639 		shmem_recalc_inode(inode, 0, nr_pages);
1640 		swap_shmem_alloc(folio->swap, nr_pages);
1641 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1642 
1643 		mutex_unlock(&shmem_swaplist_mutex);
1644 		BUG_ON(folio_mapped(folio));
1645 		return swap_writeout(folio, wbc);
1646 	}
1647 	if (!info->swapped)
1648 		list_del_init(&info->swaplist);
1649 	mutex_unlock(&shmem_swaplist_mutex);
1650 	if (nr_pages > 1)
1651 		goto try_split;
1652 redirty:
1653 	folio_mark_dirty(folio);
1654 	if (wbc->for_reclaim)
1655 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1656 	folio_unlock(folio);
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(shmem_writeout);
1660 
1661 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1662 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1663 {
1664 	char buffer[64];
1665 
1666 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1667 		return;		/* show nothing */
1668 
1669 	mpol_to_str(buffer, sizeof(buffer), mpol);
1670 
1671 	seq_printf(seq, ",mpol=%s", buffer);
1672 }
1673 
1674 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1675 {
1676 	struct mempolicy *mpol = NULL;
1677 	if (sbinfo->mpol) {
1678 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1679 		mpol = sbinfo->mpol;
1680 		mpol_get(mpol);
1681 		raw_spin_unlock(&sbinfo->stat_lock);
1682 	}
1683 	return mpol;
1684 }
1685 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1686 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1687 {
1688 }
1689 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1690 {
1691 	return NULL;
1692 }
1693 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1694 
1695 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1696 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1697 
1698 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1699 			struct shmem_inode_info *info, pgoff_t index)
1700 {
1701 	struct mempolicy *mpol;
1702 	pgoff_t ilx;
1703 	struct folio *folio;
1704 
1705 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1706 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1707 	mpol_cond_put(mpol);
1708 
1709 	return folio;
1710 }
1711 
1712 /*
1713  * Make sure huge_gfp is always more limited than limit_gfp.
1714  * Some of the flags set permissions, while others set limitations.
1715  */
1716 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1717 {
1718 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1719 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1720 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1721 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1722 
1723 	/* Allow allocations only from the originally specified zones. */
1724 	result |= zoneflags;
1725 
1726 	/*
1727 	 * Minimize the result gfp by taking the union with the deny flags,
1728 	 * and the intersection of the allow flags.
1729 	 */
1730 	result |= (limit_gfp & denyflags);
1731 	result |= (huge_gfp & limit_gfp) & allowflags;
1732 
1733 	return result;
1734 }
1735 
1736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1737 bool shmem_hpage_pmd_enabled(void)
1738 {
1739 	if (shmem_huge == SHMEM_HUGE_DENY)
1740 		return false;
1741 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1742 		return true;
1743 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1744 		return true;
1745 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1746 		return true;
1747 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1748 	    shmem_huge != SHMEM_HUGE_NEVER)
1749 		return true;
1750 
1751 	return false;
1752 }
1753 
1754 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1755 				struct vm_area_struct *vma, pgoff_t index,
1756 				loff_t write_end, bool shmem_huge_force)
1757 {
1758 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1759 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1760 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1761 	unsigned int global_orders;
1762 
1763 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1764 		return 0;
1765 
1766 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1767 						  shmem_huge_force, vma, vm_flags);
1768 	/* Tmpfs huge pages allocation */
1769 	if (!vma || !vma_is_anon_shmem(vma))
1770 		return global_orders;
1771 
1772 	/*
1773 	 * Following the 'deny' semantics of the top level, force the huge
1774 	 * option off from all mounts.
1775 	 */
1776 	if (shmem_huge == SHMEM_HUGE_DENY)
1777 		return 0;
1778 
1779 	/*
1780 	 * Only allow inherit orders if the top-level value is 'force', which
1781 	 * means non-PMD sized THP can not override 'huge' mount option now.
1782 	 */
1783 	if (shmem_huge == SHMEM_HUGE_FORCE)
1784 		return READ_ONCE(huge_shmem_orders_inherit);
1785 
1786 	/* Allow mTHP that will be fully within i_size. */
1787 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1788 
1789 	if (vm_flags & VM_HUGEPAGE)
1790 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1791 
1792 	if (global_orders > 0)
1793 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1794 
1795 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1796 }
1797 
1798 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1799 					   struct address_space *mapping, pgoff_t index,
1800 					   unsigned long orders)
1801 {
1802 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1803 	pgoff_t aligned_index;
1804 	unsigned long pages;
1805 	int order;
1806 
1807 	if (vma) {
1808 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1809 		if (!orders)
1810 			return 0;
1811 	}
1812 
1813 	/* Find the highest order that can add into the page cache */
1814 	order = highest_order(orders);
1815 	while (orders) {
1816 		pages = 1UL << order;
1817 		aligned_index = round_down(index, pages);
1818 		/*
1819 		 * Check for conflict before waiting on a huge allocation.
1820 		 * Conflict might be that a huge page has just been allocated
1821 		 * and added to page cache by a racing thread, or that there
1822 		 * is already at least one small page in the huge extent.
1823 		 * Be careful to retry when appropriate, but not forever!
1824 		 * Elsewhere -EEXIST would be the right code, but not here.
1825 		 */
1826 		if (!xa_find(&mapping->i_pages, &aligned_index,
1827 			     aligned_index + pages - 1, XA_PRESENT))
1828 			break;
1829 		order = next_order(&orders, order);
1830 	}
1831 
1832 	return orders;
1833 }
1834 #else
1835 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1836 					   struct address_space *mapping, pgoff_t index,
1837 					   unsigned long orders)
1838 {
1839 	return 0;
1840 }
1841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1842 
1843 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1844 		struct shmem_inode_info *info, pgoff_t index)
1845 {
1846 	struct mempolicy *mpol;
1847 	pgoff_t ilx;
1848 	struct folio *folio;
1849 
1850 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1851 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1852 	mpol_cond_put(mpol);
1853 
1854 	return folio;
1855 }
1856 
1857 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1858 		gfp_t gfp, struct inode *inode, pgoff_t index,
1859 		struct mm_struct *fault_mm, unsigned long orders)
1860 {
1861 	struct address_space *mapping = inode->i_mapping;
1862 	struct shmem_inode_info *info = SHMEM_I(inode);
1863 	unsigned long suitable_orders = 0;
1864 	struct folio *folio = NULL;
1865 	long pages;
1866 	int error, order;
1867 
1868 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1869 		orders = 0;
1870 
1871 	if (orders > 0) {
1872 		suitable_orders = shmem_suitable_orders(inode, vmf,
1873 							mapping, index, orders);
1874 
1875 		order = highest_order(suitable_orders);
1876 		while (suitable_orders) {
1877 			pages = 1UL << order;
1878 			index = round_down(index, pages);
1879 			folio = shmem_alloc_folio(gfp, order, info, index);
1880 			if (folio)
1881 				goto allocated;
1882 
1883 			if (pages == HPAGE_PMD_NR)
1884 				count_vm_event(THP_FILE_FALLBACK);
1885 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1886 			order = next_order(&suitable_orders, order);
1887 		}
1888 	} else {
1889 		pages = 1;
1890 		folio = shmem_alloc_folio(gfp, 0, info, index);
1891 	}
1892 	if (!folio)
1893 		return ERR_PTR(-ENOMEM);
1894 
1895 allocated:
1896 	__folio_set_locked(folio);
1897 	__folio_set_swapbacked(folio);
1898 
1899 	gfp &= GFP_RECLAIM_MASK;
1900 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1901 	if (error) {
1902 		if (xa_find(&mapping->i_pages, &index,
1903 				index + pages - 1, XA_PRESENT)) {
1904 			error = -EEXIST;
1905 		} else if (pages > 1) {
1906 			if (pages == HPAGE_PMD_NR) {
1907 				count_vm_event(THP_FILE_FALLBACK);
1908 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1909 			}
1910 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1911 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1912 		}
1913 		goto unlock;
1914 	}
1915 
1916 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1917 	if (error)
1918 		goto unlock;
1919 
1920 	error = shmem_inode_acct_blocks(inode, pages);
1921 	if (error) {
1922 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1923 		long freed;
1924 		/*
1925 		 * Try to reclaim some space by splitting a few
1926 		 * large folios beyond i_size on the filesystem.
1927 		 */
1928 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1929 		/*
1930 		 * And do a shmem_recalc_inode() to account for freed pages:
1931 		 * except our folio is there in cache, so not quite balanced.
1932 		 */
1933 		spin_lock(&info->lock);
1934 		freed = pages + info->alloced - info->swapped -
1935 			READ_ONCE(mapping->nrpages);
1936 		if (freed > 0)
1937 			info->alloced -= freed;
1938 		spin_unlock(&info->lock);
1939 		if (freed > 0)
1940 			shmem_inode_unacct_blocks(inode, freed);
1941 		error = shmem_inode_acct_blocks(inode, pages);
1942 		if (error) {
1943 			filemap_remove_folio(folio);
1944 			goto unlock;
1945 		}
1946 	}
1947 
1948 	shmem_recalc_inode(inode, pages, 0);
1949 	folio_add_lru(folio);
1950 	return folio;
1951 
1952 unlock:
1953 	folio_unlock(folio);
1954 	folio_put(folio);
1955 	return ERR_PTR(error);
1956 }
1957 
1958 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1959 		struct vm_area_struct *vma, pgoff_t index,
1960 		swp_entry_t entry, int order, gfp_t gfp)
1961 {
1962 	struct shmem_inode_info *info = SHMEM_I(inode);
1963 	struct folio *new;
1964 	void *shadow;
1965 	int nr_pages;
1966 
1967 	/*
1968 	 * We have arrived here because our zones are constrained, so don't
1969 	 * limit chance of success with further cpuset and node constraints.
1970 	 */
1971 	gfp &= ~GFP_CONSTRAINT_MASK;
1972 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1973 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1974 
1975 		gfp = limit_gfp_mask(huge_gfp, gfp);
1976 	}
1977 
1978 	new = shmem_alloc_folio(gfp, order, info, index);
1979 	if (!new)
1980 		return ERR_PTR(-ENOMEM);
1981 
1982 	nr_pages = folio_nr_pages(new);
1983 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1984 					   gfp, entry)) {
1985 		folio_put(new);
1986 		return ERR_PTR(-ENOMEM);
1987 	}
1988 
1989 	/*
1990 	 * Prevent parallel swapin from proceeding with the swap cache flag.
1991 	 *
1992 	 * Of course there is another possible concurrent scenario as well,
1993 	 * that is to say, the swap cache flag of a large folio has already
1994 	 * been set by swapcache_prepare(), while another thread may have
1995 	 * already split the large swap entry stored in the shmem mapping.
1996 	 * In this case, shmem_add_to_page_cache() will help identify the
1997 	 * concurrent swapin and return -EEXIST.
1998 	 */
1999 	if (swapcache_prepare(entry, nr_pages)) {
2000 		folio_put(new);
2001 		return ERR_PTR(-EEXIST);
2002 	}
2003 
2004 	__folio_set_locked(new);
2005 	__folio_set_swapbacked(new);
2006 	new->swap = entry;
2007 
2008 	memcg1_swapin(entry, nr_pages);
2009 	shadow = get_shadow_from_swap_cache(entry);
2010 	if (shadow)
2011 		workingset_refault(new, shadow);
2012 	folio_add_lru(new);
2013 	swap_read_folio(new, NULL);
2014 	return new;
2015 }
2016 
2017 /*
2018  * When a page is moved from swapcache to shmem filecache (either by the
2019  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2020  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2021  * ignorance of the mapping it belongs to.  If that mapping has special
2022  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2023  * we may need to copy to a suitable page before moving to filecache.
2024  *
2025  * In a future release, this may well be extended to respect cpuset and
2026  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2027  * but for now it is a simple matter of zone.
2028  */
2029 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2030 {
2031 	return folio_zonenum(folio) > gfp_zone(gfp);
2032 }
2033 
2034 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2035 				struct shmem_inode_info *info, pgoff_t index,
2036 				struct vm_area_struct *vma)
2037 {
2038 	struct folio *new, *old = *foliop;
2039 	swp_entry_t entry = old->swap;
2040 	struct address_space *swap_mapping = swap_address_space(entry);
2041 	pgoff_t swap_index = swap_cache_index(entry);
2042 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2043 	int nr_pages = folio_nr_pages(old);
2044 	int error = 0, i;
2045 
2046 	/*
2047 	 * We have arrived here because our zones are constrained, so don't
2048 	 * limit chance of success by further cpuset and node constraints.
2049 	 */
2050 	gfp &= ~GFP_CONSTRAINT_MASK;
2051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2052 	if (nr_pages > 1) {
2053 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2054 
2055 		gfp = limit_gfp_mask(huge_gfp, gfp);
2056 	}
2057 #endif
2058 
2059 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2060 	if (!new)
2061 		return -ENOMEM;
2062 
2063 	folio_ref_add(new, nr_pages);
2064 	folio_copy(new, old);
2065 	flush_dcache_folio(new);
2066 
2067 	__folio_set_locked(new);
2068 	__folio_set_swapbacked(new);
2069 	folio_mark_uptodate(new);
2070 	new->swap = entry;
2071 	folio_set_swapcache(new);
2072 
2073 	/* Swap cache still stores N entries instead of a high-order entry */
2074 	xa_lock_irq(&swap_mapping->i_pages);
2075 	for (i = 0; i < nr_pages; i++) {
2076 		void *item = xas_load(&xas);
2077 
2078 		if (item != old) {
2079 			error = -ENOENT;
2080 			break;
2081 		}
2082 
2083 		xas_store(&xas, new);
2084 		xas_next(&xas);
2085 	}
2086 	if (!error) {
2087 		mem_cgroup_replace_folio(old, new);
2088 		shmem_update_stats(new, nr_pages);
2089 		shmem_update_stats(old, -nr_pages);
2090 	}
2091 	xa_unlock_irq(&swap_mapping->i_pages);
2092 
2093 	if (unlikely(error)) {
2094 		/*
2095 		 * Is this possible?  I think not, now that our callers
2096 		 * check both the swapcache flag and folio->private
2097 		 * after getting the folio lock; but be defensive.
2098 		 * Reverse old to newpage for clear and free.
2099 		 */
2100 		old = new;
2101 	} else {
2102 		folio_add_lru(new);
2103 		*foliop = new;
2104 	}
2105 
2106 	folio_clear_swapcache(old);
2107 	old->private = NULL;
2108 
2109 	folio_unlock(old);
2110 	/*
2111 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2112 	 * reference, as well as one temporary reference getting from swap
2113 	 * cache.
2114 	 */
2115 	folio_put_refs(old, nr_pages + 1);
2116 	return error;
2117 }
2118 
2119 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2120 					 struct folio *folio, swp_entry_t swap,
2121 					 bool skip_swapcache)
2122 {
2123 	struct address_space *mapping = inode->i_mapping;
2124 	swp_entry_t swapin_error;
2125 	void *old;
2126 	int nr_pages;
2127 
2128 	swapin_error = make_poisoned_swp_entry();
2129 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2130 			     swp_to_radix_entry(swap),
2131 			     swp_to_radix_entry(swapin_error), 0);
2132 	if (old != swp_to_radix_entry(swap))
2133 		return;
2134 
2135 	nr_pages = folio_nr_pages(folio);
2136 	folio_wait_writeback(folio);
2137 	if (!skip_swapcache)
2138 		delete_from_swap_cache(folio);
2139 	/*
2140 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2141 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2142 	 * in shmem_evict_inode().
2143 	 */
2144 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2145 	swap_free_nr(swap, nr_pages);
2146 }
2147 
2148 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2149 				   swp_entry_t swap, gfp_t gfp)
2150 {
2151 	struct address_space *mapping = inode->i_mapping;
2152 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2153 	int split_order = 0, entry_order;
2154 	int i;
2155 
2156 	/* Convert user data gfp flags to xarray node gfp flags */
2157 	gfp &= GFP_RECLAIM_MASK;
2158 
2159 	for (;;) {
2160 		void *old = NULL;
2161 		int cur_order;
2162 		pgoff_t swap_index;
2163 
2164 		xas_lock_irq(&xas);
2165 		old = xas_load(&xas);
2166 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2167 			xas_set_err(&xas, -EEXIST);
2168 			goto unlock;
2169 		}
2170 
2171 		entry_order = xas_get_order(&xas);
2172 
2173 		if (!entry_order)
2174 			goto unlock;
2175 
2176 		/* Try to split large swap entry in pagecache */
2177 		cur_order = entry_order;
2178 		swap_index = round_down(index, 1 << entry_order);
2179 
2180 		split_order = xas_try_split_min_order(cur_order);
2181 
2182 		while (cur_order > 0) {
2183 			pgoff_t aligned_index =
2184 				round_down(index, 1 << cur_order);
2185 			pgoff_t swap_offset = aligned_index - swap_index;
2186 
2187 			xas_set_order(&xas, index, split_order);
2188 			xas_try_split(&xas, old, cur_order);
2189 			if (xas_error(&xas))
2190 				goto unlock;
2191 
2192 			/*
2193 			 * Re-set the swap entry after splitting, and the swap
2194 			 * offset of the original large entry must be continuous.
2195 			 */
2196 			for (i = 0; i < 1 << cur_order;
2197 			     i += (1 << split_order)) {
2198 				swp_entry_t tmp;
2199 
2200 				tmp = swp_entry(swp_type(swap),
2201 						swp_offset(swap) + swap_offset +
2202 							i);
2203 				__xa_store(&mapping->i_pages, aligned_index + i,
2204 					   swp_to_radix_entry(tmp), 0);
2205 			}
2206 			cur_order = split_order;
2207 			split_order = xas_try_split_min_order(split_order);
2208 		}
2209 
2210 unlock:
2211 		xas_unlock_irq(&xas);
2212 
2213 		if (!xas_nomem(&xas, gfp))
2214 			break;
2215 	}
2216 
2217 	if (xas_error(&xas))
2218 		return xas_error(&xas);
2219 
2220 	return entry_order;
2221 }
2222 
2223 /*
2224  * Swap in the folio pointed to by *foliop.
2225  * Caller has to make sure that *foliop contains a valid swapped folio.
2226  * Returns 0 and the folio in foliop if success. On failure, returns the
2227  * error code and NULL in *foliop.
2228  */
2229 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2230 			     struct folio **foliop, enum sgp_type sgp,
2231 			     gfp_t gfp, struct vm_area_struct *vma,
2232 			     vm_fault_t *fault_type)
2233 {
2234 	struct address_space *mapping = inode->i_mapping;
2235 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2236 	struct shmem_inode_info *info = SHMEM_I(inode);
2237 	struct swap_info_struct *si;
2238 	struct folio *folio = NULL;
2239 	bool skip_swapcache = false;
2240 	swp_entry_t swap;
2241 	int error, nr_pages, order, split_order;
2242 
2243 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2244 	swap = radix_to_swp_entry(*foliop);
2245 	*foliop = NULL;
2246 
2247 	if (is_poisoned_swp_entry(swap))
2248 		return -EIO;
2249 
2250 	si = get_swap_device(swap);
2251 	if (!si) {
2252 		if (!shmem_confirm_swap(mapping, index, swap))
2253 			return -EEXIST;
2254 		else
2255 			return -EINVAL;
2256 	}
2257 
2258 	/* Look it up and read it in.. */
2259 	folio = swap_cache_get_folio(swap, NULL, 0);
2260 	order = xa_get_order(&mapping->i_pages, index);
2261 	if (!folio) {
2262 		bool fallback_order0 = false;
2263 
2264 		/* Or update major stats only when swapin succeeds?? */
2265 		if (fault_type) {
2266 			*fault_type |= VM_FAULT_MAJOR;
2267 			count_vm_event(PGMAJFAULT);
2268 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2269 		}
2270 
2271 		/*
2272 		 * If uffd is active for the vma, we need per-page fault
2273 		 * fidelity to maintain the uffd semantics, then fallback
2274 		 * to swapin order-0 folio, as well as for zswap case.
2275 		 */
2276 		if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2277 				  !zswap_never_enabled()))
2278 			fallback_order0 = true;
2279 
2280 		/* Skip swapcache for synchronous device. */
2281 		if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2282 			folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2283 			if (!IS_ERR(folio)) {
2284 				skip_swapcache = true;
2285 				goto alloced;
2286 			}
2287 
2288 			/*
2289 			 * Fallback to swapin order-0 folio unless the swap entry
2290 			 * already exists.
2291 			 */
2292 			error = PTR_ERR(folio);
2293 			folio = NULL;
2294 			if (error == -EEXIST)
2295 				goto failed;
2296 		}
2297 
2298 		/*
2299 		 * Now swap device can only swap in order 0 folio, then we
2300 		 * should split the large swap entry stored in the pagecache
2301 		 * if necessary.
2302 		 */
2303 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2304 		if (split_order < 0) {
2305 			error = split_order;
2306 			goto failed;
2307 		}
2308 
2309 		/*
2310 		 * If the large swap entry has already been split, it is
2311 		 * necessary to recalculate the new swap entry based on
2312 		 * the old order alignment.
2313 		 */
2314 		if (split_order > 0) {
2315 			pgoff_t offset = index - round_down(index, 1 << split_order);
2316 
2317 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2318 		}
2319 
2320 		/* Here we actually start the io */
2321 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2322 		if (!folio) {
2323 			error = -ENOMEM;
2324 			goto failed;
2325 		}
2326 	} else if (order != folio_order(folio)) {
2327 		/*
2328 		 * Swap readahead may swap in order 0 folios into swapcache
2329 		 * asynchronously, while the shmem mapping can still stores
2330 		 * large swap entries. In such cases, we should split the
2331 		 * large swap entry to prevent possible data corruption.
2332 		 */
2333 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2334 		if (split_order < 0) {
2335 			folio_put(folio);
2336 			folio = NULL;
2337 			error = split_order;
2338 			goto failed;
2339 		}
2340 
2341 		/*
2342 		 * If the large swap entry has already been split, it is
2343 		 * necessary to recalculate the new swap entry based on
2344 		 * the old order alignment.
2345 		 */
2346 		if (split_order > 0) {
2347 			pgoff_t offset = index - round_down(index, 1 << split_order);
2348 
2349 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2350 		}
2351 	}
2352 
2353 alloced:
2354 	/* We have to do this with folio locked to prevent races */
2355 	folio_lock(folio);
2356 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2357 	    folio->swap.val != swap.val ||
2358 	    !shmem_confirm_swap(mapping, index, swap) ||
2359 	    xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2360 		error = -EEXIST;
2361 		goto unlock;
2362 	}
2363 	if (!folio_test_uptodate(folio)) {
2364 		error = -EIO;
2365 		goto failed;
2366 	}
2367 	folio_wait_writeback(folio);
2368 	nr_pages = folio_nr_pages(folio);
2369 
2370 	/*
2371 	 * Some architectures may have to restore extra metadata to the
2372 	 * folio after reading from swap.
2373 	 */
2374 	arch_swap_restore(folio_swap(swap, folio), folio);
2375 
2376 	if (shmem_should_replace_folio(folio, gfp)) {
2377 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2378 		if (error)
2379 			goto failed;
2380 	}
2381 
2382 	error = shmem_add_to_page_cache(folio, mapping,
2383 					round_down(index, nr_pages),
2384 					swp_to_radix_entry(swap), gfp);
2385 	if (error)
2386 		goto failed;
2387 
2388 	shmem_recalc_inode(inode, 0, -nr_pages);
2389 
2390 	if (sgp == SGP_WRITE)
2391 		folio_mark_accessed(folio);
2392 
2393 	if (skip_swapcache) {
2394 		folio->swap.val = 0;
2395 		swapcache_clear(si, swap, nr_pages);
2396 	} else {
2397 		delete_from_swap_cache(folio);
2398 	}
2399 	folio_mark_dirty(folio);
2400 	swap_free_nr(swap, nr_pages);
2401 	put_swap_device(si);
2402 
2403 	*foliop = folio;
2404 	return 0;
2405 failed:
2406 	if (!shmem_confirm_swap(mapping, index, swap))
2407 		error = -EEXIST;
2408 	if (error == -EIO)
2409 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2410 					     skip_swapcache);
2411 unlock:
2412 	if (skip_swapcache)
2413 		swapcache_clear(si, swap, folio_nr_pages(folio));
2414 	if (folio) {
2415 		folio_unlock(folio);
2416 		folio_put(folio);
2417 	}
2418 	put_swap_device(si);
2419 
2420 	return error;
2421 }
2422 
2423 /*
2424  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2425  *
2426  * If we allocate a new one we do not mark it dirty. That's up to the
2427  * vm. If we swap it in we mark it dirty since we also free the swap
2428  * entry since a page cannot live in both the swap and page cache.
2429  *
2430  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2431  */
2432 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2433 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2434 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2435 {
2436 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2437 	struct mm_struct *fault_mm;
2438 	struct folio *folio;
2439 	int error;
2440 	bool alloced;
2441 	unsigned long orders = 0;
2442 
2443 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2444 		return -EINVAL;
2445 
2446 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2447 		return -EFBIG;
2448 repeat:
2449 	if (sgp <= SGP_CACHE &&
2450 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2451 		return -EINVAL;
2452 
2453 	alloced = false;
2454 	fault_mm = vma ? vma->vm_mm : NULL;
2455 
2456 	folio = filemap_get_entry(inode->i_mapping, index);
2457 	if (folio && vma && userfaultfd_minor(vma)) {
2458 		if (!xa_is_value(folio))
2459 			folio_put(folio);
2460 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2461 		return 0;
2462 	}
2463 
2464 	if (xa_is_value(folio)) {
2465 		error = shmem_swapin_folio(inode, index, &folio,
2466 					   sgp, gfp, vma, fault_type);
2467 		if (error == -EEXIST)
2468 			goto repeat;
2469 
2470 		*foliop = folio;
2471 		return error;
2472 	}
2473 
2474 	if (folio) {
2475 		folio_lock(folio);
2476 
2477 		/* Has the folio been truncated or swapped out? */
2478 		if (unlikely(folio->mapping != inode->i_mapping)) {
2479 			folio_unlock(folio);
2480 			folio_put(folio);
2481 			goto repeat;
2482 		}
2483 		if (sgp == SGP_WRITE)
2484 			folio_mark_accessed(folio);
2485 		if (folio_test_uptodate(folio))
2486 			goto out;
2487 		/* fallocated folio */
2488 		if (sgp != SGP_READ)
2489 			goto clear;
2490 		folio_unlock(folio);
2491 		folio_put(folio);
2492 	}
2493 
2494 	/*
2495 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2496 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2497 	 */
2498 	*foliop = NULL;
2499 	if (sgp == SGP_READ)
2500 		return 0;
2501 	if (sgp == SGP_NOALLOC)
2502 		return -ENOENT;
2503 
2504 	/*
2505 	 * Fast cache lookup and swap lookup did not find it: allocate.
2506 	 */
2507 
2508 	if (vma && userfaultfd_missing(vma)) {
2509 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2510 		return 0;
2511 	}
2512 
2513 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2514 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2515 	if (orders > 0) {
2516 		gfp_t huge_gfp;
2517 
2518 		huge_gfp = vma_thp_gfp_mask(vma);
2519 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2520 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2521 				inode, index, fault_mm, orders);
2522 		if (!IS_ERR(folio)) {
2523 			if (folio_test_pmd_mappable(folio))
2524 				count_vm_event(THP_FILE_ALLOC);
2525 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2526 			goto alloced;
2527 		}
2528 		if (PTR_ERR(folio) == -EEXIST)
2529 			goto repeat;
2530 	}
2531 
2532 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2533 	if (IS_ERR(folio)) {
2534 		error = PTR_ERR(folio);
2535 		if (error == -EEXIST)
2536 			goto repeat;
2537 		folio = NULL;
2538 		goto unlock;
2539 	}
2540 
2541 alloced:
2542 	alloced = true;
2543 	if (folio_test_large(folio) &&
2544 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2545 					folio_next_index(folio)) {
2546 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2547 		struct shmem_inode_info *info = SHMEM_I(inode);
2548 		/*
2549 		 * Part of the large folio is beyond i_size: subject
2550 		 * to shrink under memory pressure.
2551 		 */
2552 		spin_lock(&sbinfo->shrinklist_lock);
2553 		/*
2554 		 * _careful to defend against unlocked access to
2555 		 * ->shrink_list in shmem_unused_huge_shrink()
2556 		 */
2557 		if (list_empty_careful(&info->shrinklist)) {
2558 			list_add_tail(&info->shrinklist,
2559 				      &sbinfo->shrinklist);
2560 			sbinfo->shrinklist_len++;
2561 		}
2562 		spin_unlock(&sbinfo->shrinklist_lock);
2563 	}
2564 
2565 	if (sgp == SGP_WRITE)
2566 		folio_set_referenced(folio);
2567 	/*
2568 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2569 	 */
2570 	if (sgp == SGP_FALLOC)
2571 		sgp = SGP_WRITE;
2572 clear:
2573 	/*
2574 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2575 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2576 	 * it now, lest undo on failure cancel our earlier guarantee.
2577 	 */
2578 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2579 		long i, n = folio_nr_pages(folio);
2580 
2581 		for (i = 0; i < n; i++)
2582 			clear_highpage(folio_page(folio, i));
2583 		flush_dcache_folio(folio);
2584 		folio_mark_uptodate(folio);
2585 	}
2586 
2587 	/* Perhaps the file has been truncated since we checked */
2588 	if (sgp <= SGP_CACHE &&
2589 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2590 		error = -EINVAL;
2591 		goto unlock;
2592 	}
2593 out:
2594 	*foliop = folio;
2595 	return 0;
2596 
2597 	/*
2598 	 * Error recovery.
2599 	 */
2600 unlock:
2601 	if (alloced)
2602 		filemap_remove_folio(folio);
2603 	shmem_recalc_inode(inode, 0, 0);
2604 	if (folio) {
2605 		folio_unlock(folio);
2606 		folio_put(folio);
2607 	}
2608 	return error;
2609 }
2610 
2611 /**
2612  * shmem_get_folio - find, and lock a shmem folio.
2613  * @inode:	inode to search
2614  * @index:	the page index.
2615  * @write_end:	end of a write, could extend inode size
2616  * @foliop:	pointer to the folio if found
2617  * @sgp:	SGP_* flags to control behavior
2618  *
2619  * Looks up the page cache entry at @inode & @index.  If a folio is
2620  * present, it is returned locked with an increased refcount.
2621  *
2622  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2623  * before unlocking the folio to ensure that the folio is not reclaimed.
2624  * There is no need to reserve space before calling folio_mark_dirty().
2625  *
2626  * When no folio is found, the behavior depends on @sgp:
2627  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2628  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2629  *  - for all other flags a new folio is allocated, inserted into the
2630  *    page cache and returned locked in @foliop.
2631  *
2632  * Context: May sleep.
2633  * Return: 0 if successful, else a negative error code.
2634  */
2635 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2636 		    struct folio **foliop, enum sgp_type sgp)
2637 {
2638 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2639 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2640 }
2641 EXPORT_SYMBOL_GPL(shmem_get_folio);
2642 
2643 /*
2644  * This is like autoremove_wake_function, but it removes the wait queue
2645  * entry unconditionally - even if something else had already woken the
2646  * target.
2647  */
2648 static int synchronous_wake_function(wait_queue_entry_t *wait,
2649 			unsigned int mode, int sync, void *key)
2650 {
2651 	int ret = default_wake_function(wait, mode, sync, key);
2652 	list_del_init(&wait->entry);
2653 	return ret;
2654 }
2655 
2656 /*
2657  * Trinity finds that probing a hole which tmpfs is punching can
2658  * prevent the hole-punch from ever completing: which in turn
2659  * locks writers out with its hold on i_rwsem.  So refrain from
2660  * faulting pages into the hole while it's being punched.  Although
2661  * shmem_undo_range() does remove the additions, it may be unable to
2662  * keep up, as each new page needs its own unmap_mapping_range() call,
2663  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2664  *
2665  * It does not matter if we sometimes reach this check just before the
2666  * hole-punch begins, so that one fault then races with the punch:
2667  * we just need to make racing faults a rare case.
2668  *
2669  * The implementation below would be much simpler if we just used a
2670  * standard mutex or completion: but we cannot take i_rwsem in fault,
2671  * and bloating every shmem inode for this unlikely case would be sad.
2672  */
2673 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2674 {
2675 	struct shmem_falloc *shmem_falloc;
2676 	struct file *fpin = NULL;
2677 	vm_fault_t ret = 0;
2678 
2679 	spin_lock(&inode->i_lock);
2680 	shmem_falloc = inode->i_private;
2681 	if (shmem_falloc &&
2682 	    shmem_falloc->waitq &&
2683 	    vmf->pgoff >= shmem_falloc->start &&
2684 	    vmf->pgoff < shmem_falloc->next) {
2685 		wait_queue_head_t *shmem_falloc_waitq;
2686 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2687 
2688 		ret = VM_FAULT_NOPAGE;
2689 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2690 		shmem_falloc_waitq = shmem_falloc->waitq;
2691 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2692 				TASK_UNINTERRUPTIBLE);
2693 		spin_unlock(&inode->i_lock);
2694 		schedule();
2695 
2696 		/*
2697 		 * shmem_falloc_waitq points into the shmem_fallocate()
2698 		 * stack of the hole-punching task: shmem_falloc_waitq
2699 		 * is usually invalid by the time we reach here, but
2700 		 * finish_wait() does not dereference it in that case;
2701 		 * though i_lock needed lest racing with wake_up_all().
2702 		 */
2703 		spin_lock(&inode->i_lock);
2704 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2705 	}
2706 	spin_unlock(&inode->i_lock);
2707 	if (fpin) {
2708 		fput(fpin);
2709 		ret = VM_FAULT_RETRY;
2710 	}
2711 	return ret;
2712 }
2713 
2714 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2715 {
2716 	struct inode *inode = file_inode(vmf->vma->vm_file);
2717 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2718 	struct folio *folio = NULL;
2719 	vm_fault_t ret = 0;
2720 	int err;
2721 
2722 	/*
2723 	 * Trinity finds that probing a hole which tmpfs is punching can
2724 	 * prevent the hole-punch from ever completing: noted in i_private.
2725 	 */
2726 	if (unlikely(inode->i_private)) {
2727 		ret = shmem_falloc_wait(vmf, inode);
2728 		if (ret)
2729 			return ret;
2730 	}
2731 
2732 	WARN_ON_ONCE(vmf->page != NULL);
2733 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2734 				  gfp, vmf, &ret);
2735 	if (err)
2736 		return vmf_error(err);
2737 	if (folio) {
2738 		vmf->page = folio_file_page(folio, vmf->pgoff);
2739 		ret |= VM_FAULT_LOCKED;
2740 	}
2741 	return ret;
2742 }
2743 
2744 unsigned long shmem_get_unmapped_area(struct file *file,
2745 				      unsigned long uaddr, unsigned long len,
2746 				      unsigned long pgoff, unsigned long flags)
2747 {
2748 	unsigned long addr;
2749 	unsigned long offset;
2750 	unsigned long inflated_len;
2751 	unsigned long inflated_addr;
2752 	unsigned long inflated_offset;
2753 	unsigned long hpage_size;
2754 
2755 	if (len > TASK_SIZE)
2756 		return -ENOMEM;
2757 
2758 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2759 				    flags);
2760 
2761 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2762 		return addr;
2763 	if (IS_ERR_VALUE(addr))
2764 		return addr;
2765 	if (addr & ~PAGE_MASK)
2766 		return addr;
2767 	if (addr > TASK_SIZE - len)
2768 		return addr;
2769 
2770 	if (shmem_huge == SHMEM_HUGE_DENY)
2771 		return addr;
2772 	if (flags & MAP_FIXED)
2773 		return addr;
2774 	/*
2775 	 * Our priority is to support MAP_SHARED mapped hugely;
2776 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2777 	 * But if caller specified an address hint and we allocated area there
2778 	 * successfully, respect that as before.
2779 	 */
2780 	if (uaddr == addr)
2781 		return addr;
2782 
2783 	hpage_size = HPAGE_PMD_SIZE;
2784 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2785 		struct super_block *sb;
2786 		unsigned long __maybe_unused hpage_orders;
2787 		int order = 0;
2788 
2789 		if (file) {
2790 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2791 			sb = file_inode(file)->i_sb;
2792 		} else {
2793 			/*
2794 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2795 			 * for "/dev/zero", to create a shared anonymous object.
2796 			 */
2797 			if (IS_ERR(shm_mnt))
2798 				return addr;
2799 			sb = shm_mnt->mnt_sb;
2800 
2801 			/*
2802 			 * Find the highest mTHP order used for anonymous shmem to
2803 			 * provide a suitable alignment address.
2804 			 */
2805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2806 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2807 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2808 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2809 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2810 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2811 
2812 			if (hpage_orders > 0) {
2813 				order = highest_order(hpage_orders);
2814 				hpage_size = PAGE_SIZE << order;
2815 			}
2816 #endif
2817 		}
2818 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2819 			return addr;
2820 	}
2821 
2822 	if (len < hpage_size)
2823 		return addr;
2824 
2825 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2826 	if (offset && offset + len < 2 * hpage_size)
2827 		return addr;
2828 	if ((addr & (hpage_size - 1)) == offset)
2829 		return addr;
2830 
2831 	inflated_len = len + hpage_size - PAGE_SIZE;
2832 	if (inflated_len > TASK_SIZE)
2833 		return addr;
2834 	if (inflated_len < len)
2835 		return addr;
2836 
2837 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2838 					     inflated_len, 0, flags);
2839 	if (IS_ERR_VALUE(inflated_addr))
2840 		return addr;
2841 	if (inflated_addr & ~PAGE_MASK)
2842 		return addr;
2843 
2844 	inflated_offset = inflated_addr & (hpage_size - 1);
2845 	inflated_addr += offset - inflated_offset;
2846 	if (inflated_offset > offset)
2847 		inflated_addr += hpage_size;
2848 
2849 	if (inflated_addr > TASK_SIZE - len)
2850 		return addr;
2851 	return inflated_addr;
2852 }
2853 
2854 #ifdef CONFIG_NUMA
2855 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2856 {
2857 	struct inode *inode = file_inode(vma->vm_file);
2858 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2859 }
2860 
2861 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2862 					  unsigned long addr, pgoff_t *ilx)
2863 {
2864 	struct inode *inode = file_inode(vma->vm_file);
2865 	pgoff_t index;
2866 
2867 	/*
2868 	 * Bias interleave by inode number to distribute better across nodes;
2869 	 * but this interface is independent of which page order is used, so
2870 	 * supplies only that bias, letting caller apply the offset (adjusted
2871 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2872 	 */
2873 	*ilx = inode->i_ino;
2874 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2875 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2876 }
2877 
2878 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2879 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2880 {
2881 	struct mempolicy *mpol;
2882 
2883 	/* Bias interleave by inode number to distribute better across nodes */
2884 	*ilx = info->vfs_inode.i_ino + (index >> order);
2885 
2886 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2887 	return mpol ? mpol : get_task_policy(current);
2888 }
2889 #else
2890 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2891 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2892 {
2893 	*ilx = 0;
2894 	return NULL;
2895 }
2896 #endif /* CONFIG_NUMA */
2897 
2898 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2899 {
2900 	struct inode *inode = file_inode(file);
2901 	struct shmem_inode_info *info = SHMEM_I(inode);
2902 	int retval = -ENOMEM;
2903 
2904 	/*
2905 	 * What serializes the accesses to info->flags?
2906 	 * ipc_lock_object() when called from shmctl_do_lock(),
2907 	 * no serialization needed when called from shm_destroy().
2908 	 */
2909 	if (lock && !(info->flags & VM_LOCKED)) {
2910 		if (!user_shm_lock(inode->i_size, ucounts))
2911 			goto out_nomem;
2912 		info->flags |= VM_LOCKED;
2913 		mapping_set_unevictable(file->f_mapping);
2914 	}
2915 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2916 		user_shm_unlock(inode->i_size, ucounts);
2917 		info->flags &= ~VM_LOCKED;
2918 		mapping_clear_unevictable(file->f_mapping);
2919 	}
2920 	retval = 0;
2921 
2922 out_nomem:
2923 	return retval;
2924 }
2925 
2926 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2927 {
2928 	struct inode *inode = file_inode(file);
2929 
2930 	file_accessed(file);
2931 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2932 	if (inode->i_nlink)
2933 		vma->vm_ops = &shmem_vm_ops;
2934 	else
2935 		vma->vm_ops = &shmem_anon_vm_ops;
2936 	return 0;
2937 }
2938 
2939 static int shmem_file_open(struct inode *inode, struct file *file)
2940 {
2941 	file->f_mode |= FMODE_CAN_ODIRECT;
2942 	return generic_file_open(inode, file);
2943 }
2944 
2945 #ifdef CONFIG_TMPFS_XATTR
2946 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2947 
2948 #if IS_ENABLED(CONFIG_UNICODE)
2949 /*
2950  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2951  *
2952  * The casefold file attribute needs some special checks. I can just be added to
2953  * an empty dir, and can't be removed from a non-empty dir.
2954  */
2955 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2956 				      struct dentry *dentry, unsigned int *i_flags)
2957 {
2958 	unsigned int old = inode->i_flags;
2959 	struct super_block *sb = inode->i_sb;
2960 
2961 	if (fsflags & FS_CASEFOLD_FL) {
2962 		if (!(old & S_CASEFOLD)) {
2963 			if (!sb->s_encoding)
2964 				return -EOPNOTSUPP;
2965 
2966 			if (!S_ISDIR(inode->i_mode))
2967 				return -ENOTDIR;
2968 
2969 			if (dentry && !simple_empty(dentry))
2970 				return -ENOTEMPTY;
2971 		}
2972 
2973 		*i_flags = *i_flags | S_CASEFOLD;
2974 	} else if (old & S_CASEFOLD) {
2975 		if (dentry && !simple_empty(dentry))
2976 			return -ENOTEMPTY;
2977 	}
2978 
2979 	return 0;
2980 }
2981 #else
2982 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2983 				      struct dentry *dentry, unsigned int *i_flags)
2984 {
2985 	if (fsflags & FS_CASEFOLD_FL)
2986 		return -EOPNOTSUPP;
2987 
2988 	return 0;
2989 }
2990 #endif
2991 
2992 /*
2993  * chattr's fsflags are unrelated to extended attributes,
2994  * but tmpfs has chosen to enable them under the same config option.
2995  */
2996 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2997 {
2998 	unsigned int i_flags = 0;
2999 	int ret;
3000 
3001 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3002 	if (ret)
3003 		return ret;
3004 
3005 	if (fsflags & FS_NOATIME_FL)
3006 		i_flags |= S_NOATIME;
3007 	if (fsflags & FS_APPEND_FL)
3008 		i_flags |= S_APPEND;
3009 	if (fsflags & FS_IMMUTABLE_FL)
3010 		i_flags |= S_IMMUTABLE;
3011 	/*
3012 	 * But FS_NODUMP_FL does not require any action in i_flags.
3013 	 */
3014 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3015 
3016 	return 0;
3017 }
3018 #else
3019 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3020 {
3021 }
3022 #define shmem_initxattrs NULL
3023 #endif
3024 
3025 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3026 {
3027 	return &SHMEM_I(inode)->dir_offsets;
3028 }
3029 
3030 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3031 					     struct super_block *sb,
3032 					     struct inode *dir, umode_t mode,
3033 					     dev_t dev, unsigned long flags)
3034 {
3035 	struct inode *inode;
3036 	struct shmem_inode_info *info;
3037 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3038 	ino_t ino;
3039 	int err;
3040 
3041 	err = shmem_reserve_inode(sb, &ino);
3042 	if (err)
3043 		return ERR_PTR(err);
3044 
3045 	inode = new_inode(sb);
3046 	if (!inode) {
3047 		shmem_free_inode(sb, 0);
3048 		return ERR_PTR(-ENOSPC);
3049 	}
3050 
3051 	inode->i_ino = ino;
3052 	inode_init_owner(idmap, inode, dir, mode);
3053 	inode->i_blocks = 0;
3054 	simple_inode_init_ts(inode);
3055 	inode->i_generation = get_random_u32();
3056 	info = SHMEM_I(inode);
3057 	memset(info, 0, (char *)inode - (char *)info);
3058 	spin_lock_init(&info->lock);
3059 	atomic_set(&info->stop_eviction, 0);
3060 	info->seals = F_SEAL_SEAL;
3061 	info->flags = flags & VM_NORESERVE;
3062 	info->i_crtime = inode_get_mtime(inode);
3063 	info->fsflags = (dir == NULL) ? 0 :
3064 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3065 	if (info->fsflags)
3066 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3067 	INIT_LIST_HEAD(&info->shrinklist);
3068 	INIT_LIST_HEAD(&info->swaplist);
3069 	simple_xattrs_init(&info->xattrs);
3070 	cache_no_acl(inode);
3071 	if (sbinfo->noswap)
3072 		mapping_set_unevictable(inode->i_mapping);
3073 
3074 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3075 	if (sbinfo->huge)
3076 		mapping_set_large_folios(inode->i_mapping);
3077 
3078 	switch (mode & S_IFMT) {
3079 	default:
3080 		inode->i_op = &shmem_special_inode_operations;
3081 		init_special_inode(inode, mode, dev);
3082 		break;
3083 	case S_IFREG:
3084 		inode->i_mapping->a_ops = &shmem_aops;
3085 		inode->i_op = &shmem_inode_operations;
3086 		inode->i_fop = &shmem_file_operations;
3087 		mpol_shared_policy_init(&info->policy,
3088 					 shmem_get_sbmpol(sbinfo));
3089 		break;
3090 	case S_IFDIR:
3091 		inc_nlink(inode);
3092 		/* Some things misbehave if size == 0 on a directory */
3093 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3094 		inode->i_op = &shmem_dir_inode_operations;
3095 		inode->i_fop = &simple_offset_dir_operations;
3096 		simple_offset_init(shmem_get_offset_ctx(inode));
3097 		break;
3098 	case S_IFLNK:
3099 		/*
3100 		 * Must not load anything in the rbtree,
3101 		 * mpol_free_shared_policy will not be called.
3102 		 */
3103 		mpol_shared_policy_init(&info->policy, NULL);
3104 		break;
3105 	}
3106 
3107 	lockdep_annotate_inode_mutex_key(inode);
3108 	return inode;
3109 }
3110 
3111 #ifdef CONFIG_TMPFS_QUOTA
3112 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3113 				     struct super_block *sb, struct inode *dir,
3114 				     umode_t mode, dev_t dev, unsigned long flags)
3115 {
3116 	int err;
3117 	struct inode *inode;
3118 
3119 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3120 	if (IS_ERR(inode))
3121 		return inode;
3122 
3123 	err = dquot_initialize(inode);
3124 	if (err)
3125 		goto errout;
3126 
3127 	err = dquot_alloc_inode(inode);
3128 	if (err) {
3129 		dquot_drop(inode);
3130 		goto errout;
3131 	}
3132 	return inode;
3133 
3134 errout:
3135 	inode->i_flags |= S_NOQUOTA;
3136 	iput(inode);
3137 	return ERR_PTR(err);
3138 }
3139 #else
3140 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3141 				     struct super_block *sb, struct inode *dir,
3142 				     umode_t mode, dev_t dev, unsigned long flags)
3143 {
3144 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3145 }
3146 #endif /* CONFIG_TMPFS_QUOTA */
3147 
3148 #ifdef CONFIG_USERFAULTFD
3149 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3150 			   struct vm_area_struct *dst_vma,
3151 			   unsigned long dst_addr,
3152 			   unsigned long src_addr,
3153 			   uffd_flags_t flags,
3154 			   struct folio **foliop)
3155 {
3156 	struct inode *inode = file_inode(dst_vma->vm_file);
3157 	struct shmem_inode_info *info = SHMEM_I(inode);
3158 	struct address_space *mapping = inode->i_mapping;
3159 	gfp_t gfp = mapping_gfp_mask(mapping);
3160 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3161 	void *page_kaddr;
3162 	struct folio *folio;
3163 	int ret;
3164 	pgoff_t max_off;
3165 
3166 	if (shmem_inode_acct_blocks(inode, 1)) {
3167 		/*
3168 		 * We may have got a page, returned -ENOENT triggering a retry,
3169 		 * and now we find ourselves with -ENOMEM. Release the page, to
3170 		 * avoid a BUG_ON in our caller.
3171 		 */
3172 		if (unlikely(*foliop)) {
3173 			folio_put(*foliop);
3174 			*foliop = NULL;
3175 		}
3176 		return -ENOMEM;
3177 	}
3178 
3179 	if (!*foliop) {
3180 		ret = -ENOMEM;
3181 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3182 		if (!folio)
3183 			goto out_unacct_blocks;
3184 
3185 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3186 			page_kaddr = kmap_local_folio(folio, 0);
3187 			/*
3188 			 * The read mmap_lock is held here.  Despite the
3189 			 * mmap_lock being read recursive a deadlock is still
3190 			 * possible if a writer has taken a lock.  For example:
3191 			 *
3192 			 * process A thread 1 takes read lock on own mmap_lock
3193 			 * process A thread 2 calls mmap, blocks taking write lock
3194 			 * process B thread 1 takes page fault, read lock on own mmap lock
3195 			 * process B thread 2 calls mmap, blocks taking write lock
3196 			 * process A thread 1 blocks taking read lock on process B
3197 			 * process B thread 1 blocks taking read lock on process A
3198 			 *
3199 			 * Disable page faults to prevent potential deadlock
3200 			 * and retry the copy outside the mmap_lock.
3201 			 */
3202 			pagefault_disable();
3203 			ret = copy_from_user(page_kaddr,
3204 					     (const void __user *)src_addr,
3205 					     PAGE_SIZE);
3206 			pagefault_enable();
3207 			kunmap_local(page_kaddr);
3208 
3209 			/* fallback to copy_from_user outside mmap_lock */
3210 			if (unlikely(ret)) {
3211 				*foliop = folio;
3212 				ret = -ENOENT;
3213 				/* don't free the page */
3214 				goto out_unacct_blocks;
3215 			}
3216 
3217 			flush_dcache_folio(folio);
3218 		} else {		/* ZEROPAGE */
3219 			clear_user_highpage(&folio->page, dst_addr);
3220 		}
3221 	} else {
3222 		folio = *foliop;
3223 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3224 		*foliop = NULL;
3225 	}
3226 
3227 	VM_BUG_ON(folio_test_locked(folio));
3228 	VM_BUG_ON(folio_test_swapbacked(folio));
3229 	__folio_set_locked(folio);
3230 	__folio_set_swapbacked(folio);
3231 	__folio_mark_uptodate(folio);
3232 
3233 	ret = -EFAULT;
3234 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3235 	if (unlikely(pgoff >= max_off))
3236 		goto out_release;
3237 
3238 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3239 	if (ret)
3240 		goto out_release;
3241 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3242 	if (ret)
3243 		goto out_release;
3244 
3245 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3246 				       &folio->page, true, flags);
3247 	if (ret)
3248 		goto out_delete_from_cache;
3249 
3250 	shmem_recalc_inode(inode, 1, 0);
3251 	folio_unlock(folio);
3252 	return 0;
3253 out_delete_from_cache:
3254 	filemap_remove_folio(folio);
3255 out_release:
3256 	folio_unlock(folio);
3257 	folio_put(folio);
3258 out_unacct_blocks:
3259 	shmem_inode_unacct_blocks(inode, 1);
3260 	return ret;
3261 }
3262 #endif /* CONFIG_USERFAULTFD */
3263 
3264 #ifdef CONFIG_TMPFS
3265 static const struct inode_operations shmem_symlink_inode_operations;
3266 static const struct inode_operations shmem_short_symlink_operations;
3267 
3268 static int
3269 shmem_write_begin(struct file *file, struct address_space *mapping,
3270 			loff_t pos, unsigned len,
3271 			struct folio **foliop, void **fsdata)
3272 {
3273 	struct inode *inode = mapping->host;
3274 	struct shmem_inode_info *info = SHMEM_I(inode);
3275 	pgoff_t index = pos >> PAGE_SHIFT;
3276 	struct folio *folio;
3277 	int ret = 0;
3278 
3279 	/* i_rwsem is held by caller */
3280 	if (unlikely(info->seals & (F_SEAL_GROW |
3281 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3282 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3283 			return -EPERM;
3284 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3285 			return -EPERM;
3286 	}
3287 
3288 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3289 	if (ret)
3290 		return ret;
3291 
3292 	if (folio_contain_hwpoisoned_page(folio)) {
3293 		folio_unlock(folio);
3294 		folio_put(folio);
3295 		return -EIO;
3296 	}
3297 
3298 	*foliop = folio;
3299 	return 0;
3300 }
3301 
3302 static int
3303 shmem_write_end(struct file *file, struct address_space *mapping,
3304 			loff_t pos, unsigned len, unsigned copied,
3305 			struct folio *folio, void *fsdata)
3306 {
3307 	struct inode *inode = mapping->host;
3308 
3309 	if (pos + copied > inode->i_size)
3310 		i_size_write(inode, pos + copied);
3311 
3312 	if (!folio_test_uptodate(folio)) {
3313 		if (copied < folio_size(folio)) {
3314 			size_t from = offset_in_folio(folio, pos);
3315 			folio_zero_segments(folio, 0, from,
3316 					from + copied, folio_size(folio));
3317 		}
3318 		folio_mark_uptodate(folio);
3319 	}
3320 	folio_mark_dirty(folio);
3321 	folio_unlock(folio);
3322 	folio_put(folio);
3323 
3324 	return copied;
3325 }
3326 
3327 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3328 {
3329 	struct file *file = iocb->ki_filp;
3330 	struct inode *inode = file_inode(file);
3331 	struct address_space *mapping = inode->i_mapping;
3332 	pgoff_t index;
3333 	unsigned long offset;
3334 	int error = 0;
3335 	ssize_t retval = 0;
3336 
3337 	for (;;) {
3338 		struct folio *folio = NULL;
3339 		struct page *page = NULL;
3340 		unsigned long nr, ret;
3341 		loff_t end_offset, i_size = i_size_read(inode);
3342 		bool fallback_page_copy = false;
3343 		size_t fsize;
3344 
3345 		if (unlikely(iocb->ki_pos >= i_size))
3346 			break;
3347 
3348 		index = iocb->ki_pos >> PAGE_SHIFT;
3349 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3350 		if (error) {
3351 			if (error == -EINVAL)
3352 				error = 0;
3353 			break;
3354 		}
3355 		if (folio) {
3356 			folio_unlock(folio);
3357 
3358 			page = folio_file_page(folio, index);
3359 			if (PageHWPoison(page)) {
3360 				folio_put(folio);
3361 				error = -EIO;
3362 				break;
3363 			}
3364 
3365 			if (folio_test_large(folio) &&
3366 			    folio_test_has_hwpoisoned(folio))
3367 				fallback_page_copy = true;
3368 		}
3369 
3370 		/*
3371 		 * We must evaluate after, since reads (unlike writes)
3372 		 * are called without i_rwsem protection against truncate
3373 		 */
3374 		i_size = i_size_read(inode);
3375 		if (unlikely(iocb->ki_pos >= i_size)) {
3376 			if (folio)
3377 				folio_put(folio);
3378 			break;
3379 		}
3380 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3381 		if (folio && likely(!fallback_page_copy))
3382 			fsize = folio_size(folio);
3383 		else
3384 			fsize = PAGE_SIZE;
3385 		offset = iocb->ki_pos & (fsize - 1);
3386 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3387 
3388 		if (folio) {
3389 			/*
3390 			 * If users can be writing to this page using arbitrary
3391 			 * virtual addresses, take care about potential aliasing
3392 			 * before reading the page on the kernel side.
3393 			 */
3394 			if (mapping_writably_mapped(mapping)) {
3395 				if (likely(!fallback_page_copy))
3396 					flush_dcache_folio(folio);
3397 				else
3398 					flush_dcache_page(page);
3399 			}
3400 
3401 			/*
3402 			 * Mark the folio accessed if we read the beginning.
3403 			 */
3404 			if (!offset)
3405 				folio_mark_accessed(folio);
3406 			/*
3407 			 * Ok, we have the page, and it's up-to-date, so
3408 			 * now we can copy it to user space...
3409 			 */
3410 			if (likely(!fallback_page_copy))
3411 				ret = copy_folio_to_iter(folio, offset, nr, to);
3412 			else
3413 				ret = copy_page_to_iter(page, offset, nr, to);
3414 			folio_put(folio);
3415 		} else if (user_backed_iter(to)) {
3416 			/*
3417 			 * Copy to user tends to be so well optimized, but
3418 			 * clear_user() not so much, that it is noticeably
3419 			 * faster to copy the zero page instead of clearing.
3420 			 */
3421 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3422 		} else {
3423 			/*
3424 			 * But submitting the same page twice in a row to
3425 			 * splice() - or others? - can result in confusion:
3426 			 * so don't attempt that optimization on pipes etc.
3427 			 */
3428 			ret = iov_iter_zero(nr, to);
3429 		}
3430 
3431 		retval += ret;
3432 		iocb->ki_pos += ret;
3433 
3434 		if (!iov_iter_count(to))
3435 			break;
3436 		if (ret < nr) {
3437 			error = -EFAULT;
3438 			break;
3439 		}
3440 		cond_resched();
3441 	}
3442 
3443 	file_accessed(file);
3444 	return retval ? retval : error;
3445 }
3446 
3447 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3448 {
3449 	struct file *file = iocb->ki_filp;
3450 	struct inode *inode = file->f_mapping->host;
3451 	ssize_t ret;
3452 
3453 	inode_lock(inode);
3454 	ret = generic_write_checks(iocb, from);
3455 	if (ret <= 0)
3456 		goto unlock;
3457 	ret = file_remove_privs(file);
3458 	if (ret)
3459 		goto unlock;
3460 	ret = file_update_time(file);
3461 	if (ret)
3462 		goto unlock;
3463 	ret = generic_perform_write(iocb, from);
3464 unlock:
3465 	inode_unlock(inode);
3466 	return ret;
3467 }
3468 
3469 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3470 			      struct pipe_buffer *buf)
3471 {
3472 	return true;
3473 }
3474 
3475 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3476 				  struct pipe_buffer *buf)
3477 {
3478 }
3479 
3480 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3481 				    struct pipe_buffer *buf)
3482 {
3483 	return false;
3484 }
3485 
3486 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3487 	.release	= zero_pipe_buf_release,
3488 	.try_steal	= zero_pipe_buf_try_steal,
3489 	.get		= zero_pipe_buf_get,
3490 };
3491 
3492 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3493 					loff_t fpos, size_t size)
3494 {
3495 	size_t offset = fpos & ~PAGE_MASK;
3496 
3497 	size = min_t(size_t, size, PAGE_SIZE - offset);
3498 
3499 	if (!pipe_is_full(pipe)) {
3500 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3501 
3502 		*buf = (struct pipe_buffer) {
3503 			.ops	= &zero_pipe_buf_ops,
3504 			.page	= ZERO_PAGE(0),
3505 			.offset	= offset,
3506 			.len	= size,
3507 		};
3508 		pipe->head++;
3509 	}
3510 
3511 	return size;
3512 }
3513 
3514 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3515 				      struct pipe_inode_info *pipe,
3516 				      size_t len, unsigned int flags)
3517 {
3518 	struct inode *inode = file_inode(in);
3519 	struct address_space *mapping = inode->i_mapping;
3520 	struct folio *folio = NULL;
3521 	size_t total_spliced = 0, used, npages, n, part;
3522 	loff_t isize;
3523 	int error = 0;
3524 
3525 	/* Work out how much data we can actually add into the pipe */
3526 	used = pipe_buf_usage(pipe);
3527 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3528 	len = min_t(size_t, len, npages * PAGE_SIZE);
3529 
3530 	do {
3531 		bool fallback_page_splice = false;
3532 		struct page *page = NULL;
3533 		pgoff_t index;
3534 		size_t size;
3535 
3536 		if (*ppos >= i_size_read(inode))
3537 			break;
3538 
3539 		index = *ppos >> PAGE_SHIFT;
3540 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3541 		if (error) {
3542 			if (error == -EINVAL)
3543 				error = 0;
3544 			break;
3545 		}
3546 		if (folio) {
3547 			folio_unlock(folio);
3548 
3549 			page = folio_file_page(folio, index);
3550 			if (PageHWPoison(page)) {
3551 				error = -EIO;
3552 				break;
3553 			}
3554 
3555 			if (folio_test_large(folio) &&
3556 			    folio_test_has_hwpoisoned(folio))
3557 				fallback_page_splice = true;
3558 		}
3559 
3560 		/*
3561 		 * i_size must be checked after we know the pages are Uptodate.
3562 		 *
3563 		 * Checking i_size after the check allows us to calculate
3564 		 * the correct value for "nr", which means the zero-filled
3565 		 * part of the page is not copied back to userspace (unless
3566 		 * another truncate extends the file - this is desired though).
3567 		 */
3568 		isize = i_size_read(inode);
3569 		if (unlikely(*ppos >= isize))
3570 			break;
3571 		/*
3572 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3573 		 * pages.
3574 		 */
3575 		size = len;
3576 		if (unlikely(fallback_page_splice)) {
3577 			size_t offset = *ppos & ~PAGE_MASK;
3578 
3579 			size = umin(size, PAGE_SIZE - offset);
3580 		}
3581 		part = min_t(loff_t, isize - *ppos, size);
3582 
3583 		if (folio) {
3584 			/*
3585 			 * If users can be writing to this page using arbitrary
3586 			 * virtual addresses, take care about potential aliasing
3587 			 * before reading the page on the kernel side.
3588 			 */
3589 			if (mapping_writably_mapped(mapping)) {
3590 				if (likely(!fallback_page_splice))
3591 					flush_dcache_folio(folio);
3592 				else
3593 					flush_dcache_page(page);
3594 			}
3595 			folio_mark_accessed(folio);
3596 			/*
3597 			 * Ok, we have the page, and it's up-to-date, so we can
3598 			 * now splice it into the pipe.
3599 			 */
3600 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3601 			folio_put(folio);
3602 			folio = NULL;
3603 		} else {
3604 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3605 		}
3606 
3607 		if (!n)
3608 			break;
3609 		len -= n;
3610 		total_spliced += n;
3611 		*ppos += n;
3612 		in->f_ra.prev_pos = *ppos;
3613 		if (pipe_is_full(pipe))
3614 			break;
3615 
3616 		cond_resched();
3617 	} while (len);
3618 
3619 	if (folio)
3620 		folio_put(folio);
3621 
3622 	file_accessed(in);
3623 	return total_spliced ? total_spliced : error;
3624 }
3625 
3626 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3627 {
3628 	struct address_space *mapping = file->f_mapping;
3629 	struct inode *inode = mapping->host;
3630 
3631 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3632 		return generic_file_llseek_size(file, offset, whence,
3633 					MAX_LFS_FILESIZE, i_size_read(inode));
3634 	if (offset < 0)
3635 		return -ENXIO;
3636 
3637 	inode_lock(inode);
3638 	/* We're holding i_rwsem so we can access i_size directly */
3639 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3640 	if (offset >= 0)
3641 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3642 	inode_unlock(inode);
3643 	return offset;
3644 }
3645 
3646 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3647 							 loff_t len)
3648 {
3649 	struct inode *inode = file_inode(file);
3650 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3651 	struct shmem_inode_info *info = SHMEM_I(inode);
3652 	struct shmem_falloc shmem_falloc;
3653 	pgoff_t start, index, end, undo_fallocend;
3654 	int error;
3655 
3656 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3657 		return -EOPNOTSUPP;
3658 
3659 	inode_lock(inode);
3660 
3661 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3662 		struct address_space *mapping = file->f_mapping;
3663 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3664 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3665 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3666 
3667 		/* protected by i_rwsem */
3668 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3669 			error = -EPERM;
3670 			goto out;
3671 		}
3672 
3673 		shmem_falloc.waitq = &shmem_falloc_waitq;
3674 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3675 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3676 		spin_lock(&inode->i_lock);
3677 		inode->i_private = &shmem_falloc;
3678 		spin_unlock(&inode->i_lock);
3679 
3680 		if ((u64)unmap_end > (u64)unmap_start)
3681 			unmap_mapping_range(mapping, unmap_start,
3682 					    1 + unmap_end - unmap_start, 0);
3683 		shmem_truncate_range(inode, offset, offset + len - 1);
3684 		/* No need to unmap again: hole-punching leaves COWed pages */
3685 
3686 		spin_lock(&inode->i_lock);
3687 		inode->i_private = NULL;
3688 		wake_up_all(&shmem_falloc_waitq);
3689 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3690 		spin_unlock(&inode->i_lock);
3691 		error = 0;
3692 		goto out;
3693 	}
3694 
3695 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3696 	error = inode_newsize_ok(inode, offset + len);
3697 	if (error)
3698 		goto out;
3699 
3700 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3701 		error = -EPERM;
3702 		goto out;
3703 	}
3704 
3705 	start = offset >> PAGE_SHIFT;
3706 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3707 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3708 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3709 		error = -ENOSPC;
3710 		goto out;
3711 	}
3712 
3713 	shmem_falloc.waitq = NULL;
3714 	shmem_falloc.start = start;
3715 	shmem_falloc.next  = start;
3716 	shmem_falloc.nr_falloced = 0;
3717 	shmem_falloc.nr_unswapped = 0;
3718 	spin_lock(&inode->i_lock);
3719 	inode->i_private = &shmem_falloc;
3720 	spin_unlock(&inode->i_lock);
3721 
3722 	/*
3723 	 * info->fallocend is only relevant when huge pages might be
3724 	 * involved: to prevent split_huge_page() freeing fallocated
3725 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3726 	 */
3727 	undo_fallocend = info->fallocend;
3728 	if (info->fallocend < end)
3729 		info->fallocend = end;
3730 
3731 	for (index = start; index < end; ) {
3732 		struct folio *folio;
3733 
3734 		/*
3735 		 * Check for fatal signal so that we abort early in OOM
3736 		 * situations. We don't want to abort in case of non-fatal
3737 		 * signals as large fallocate can take noticeable time and
3738 		 * e.g. periodic timers may result in fallocate constantly
3739 		 * restarting.
3740 		 */
3741 		if (fatal_signal_pending(current))
3742 			error = -EINTR;
3743 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3744 			error = -ENOMEM;
3745 		else
3746 			error = shmem_get_folio(inode, index, offset + len,
3747 						&folio, SGP_FALLOC);
3748 		if (error) {
3749 			info->fallocend = undo_fallocend;
3750 			/* Remove the !uptodate folios we added */
3751 			if (index > start) {
3752 				shmem_undo_range(inode,
3753 				    (loff_t)start << PAGE_SHIFT,
3754 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3755 			}
3756 			goto undone;
3757 		}
3758 
3759 		/*
3760 		 * Here is a more important optimization than it appears:
3761 		 * a second SGP_FALLOC on the same large folio will clear it,
3762 		 * making it uptodate and un-undoable if we fail later.
3763 		 */
3764 		index = folio_next_index(folio);
3765 		/* Beware 32-bit wraparound */
3766 		if (!index)
3767 			index--;
3768 
3769 		/*
3770 		 * Inform shmem_writeout() how far we have reached.
3771 		 * No need for lock or barrier: we have the page lock.
3772 		 */
3773 		if (!folio_test_uptodate(folio))
3774 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3775 		shmem_falloc.next = index;
3776 
3777 		/*
3778 		 * If !uptodate, leave it that way so that freeable folios
3779 		 * can be recognized if we need to rollback on error later.
3780 		 * But mark it dirty so that memory pressure will swap rather
3781 		 * than free the folios we are allocating (and SGP_CACHE folios
3782 		 * might still be clean: we now need to mark those dirty too).
3783 		 */
3784 		folio_mark_dirty(folio);
3785 		folio_unlock(folio);
3786 		folio_put(folio);
3787 		cond_resched();
3788 	}
3789 
3790 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3791 		i_size_write(inode, offset + len);
3792 undone:
3793 	spin_lock(&inode->i_lock);
3794 	inode->i_private = NULL;
3795 	spin_unlock(&inode->i_lock);
3796 out:
3797 	if (!error)
3798 		file_modified(file);
3799 	inode_unlock(inode);
3800 	return error;
3801 }
3802 
3803 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3804 {
3805 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3806 
3807 	buf->f_type = TMPFS_MAGIC;
3808 	buf->f_bsize = PAGE_SIZE;
3809 	buf->f_namelen = NAME_MAX;
3810 	if (sbinfo->max_blocks) {
3811 		buf->f_blocks = sbinfo->max_blocks;
3812 		buf->f_bavail =
3813 		buf->f_bfree  = sbinfo->max_blocks -
3814 				percpu_counter_sum(&sbinfo->used_blocks);
3815 	}
3816 	if (sbinfo->max_inodes) {
3817 		buf->f_files = sbinfo->max_inodes;
3818 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3819 	}
3820 	/* else leave those fields 0 like simple_statfs */
3821 
3822 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3823 
3824 	return 0;
3825 }
3826 
3827 /*
3828  * File creation. Allocate an inode, and we're done..
3829  */
3830 static int
3831 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3832 	    struct dentry *dentry, umode_t mode, dev_t dev)
3833 {
3834 	struct inode *inode;
3835 	int error;
3836 
3837 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3838 		return -EINVAL;
3839 
3840 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3841 	if (IS_ERR(inode))
3842 		return PTR_ERR(inode);
3843 
3844 	error = simple_acl_create(dir, inode);
3845 	if (error)
3846 		goto out_iput;
3847 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3848 					     shmem_initxattrs, NULL);
3849 	if (error && error != -EOPNOTSUPP)
3850 		goto out_iput;
3851 
3852 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3853 	if (error)
3854 		goto out_iput;
3855 
3856 	dir->i_size += BOGO_DIRENT_SIZE;
3857 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3858 	inode_inc_iversion(dir);
3859 
3860 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3861 		d_add(dentry, inode);
3862 	else
3863 		d_instantiate(dentry, inode);
3864 
3865 	dget(dentry); /* Extra count - pin the dentry in core */
3866 	return error;
3867 
3868 out_iput:
3869 	iput(inode);
3870 	return error;
3871 }
3872 
3873 static int
3874 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3875 	      struct file *file, umode_t mode)
3876 {
3877 	struct inode *inode;
3878 	int error;
3879 
3880 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3881 	if (IS_ERR(inode)) {
3882 		error = PTR_ERR(inode);
3883 		goto err_out;
3884 	}
3885 	error = security_inode_init_security(inode, dir, NULL,
3886 					     shmem_initxattrs, NULL);
3887 	if (error && error != -EOPNOTSUPP)
3888 		goto out_iput;
3889 	error = simple_acl_create(dir, inode);
3890 	if (error)
3891 		goto out_iput;
3892 	d_tmpfile(file, inode);
3893 
3894 err_out:
3895 	return finish_open_simple(file, error);
3896 out_iput:
3897 	iput(inode);
3898 	return error;
3899 }
3900 
3901 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3902 				  struct dentry *dentry, umode_t mode)
3903 {
3904 	int error;
3905 
3906 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3907 	if (error)
3908 		return ERR_PTR(error);
3909 	inc_nlink(dir);
3910 	return NULL;
3911 }
3912 
3913 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3914 			struct dentry *dentry, umode_t mode, bool excl)
3915 {
3916 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3917 }
3918 
3919 /*
3920  * Link a file..
3921  */
3922 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3923 		      struct dentry *dentry)
3924 {
3925 	struct inode *inode = d_inode(old_dentry);
3926 	int ret = 0;
3927 
3928 	/*
3929 	 * No ordinary (disk based) filesystem counts links as inodes;
3930 	 * but each new link needs a new dentry, pinning lowmem, and
3931 	 * tmpfs dentries cannot be pruned until they are unlinked.
3932 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3933 	 * first link must skip that, to get the accounting right.
3934 	 */
3935 	if (inode->i_nlink) {
3936 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3937 		if (ret)
3938 			goto out;
3939 	}
3940 
3941 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3942 	if (ret) {
3943 		if (inode->i_nlink)
3944 			shmem_free_inode(inode->i_sb, 0);
3945 		goto out;
3946 	}
3947 
3948 	dir->i_size += BOGO_DIRENT_SIZE;
3949 	inode_set_mtime_to_ts(dir,
3950 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3951 	inode_inc_iversion(dir);
3952 	inc_nlink(inode);
3953 	ihold(inode);	/* New dentry reference */
3954 	dget(dentry);	/* Extra pinning count for the created dentry */
3955 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3956 		d_add(dentry, inode);
3957 	else
3958 		d_instantiate(dentry, inode);
3959 out:
3960 	return ret;
3961 }
3962 
3963 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3964 {
3965 	struct inode *inode = d_inode(dentry);
3966 
3967 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3968 		shmem_free_inode(inode->i_sb, 0);
3969 
3970 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3971 
3972 	dir->i_size -= BOGO_DIRENT_SIZE;
3973 	inode_set_mtime_to_ts(dir,
3974 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3975 	inode_inc_iversion(dir);
3976 	drop_nlink(inode);
3977 	dput(dentry);	/* Undo the count from "create" - does all the work */
3978 
3979 	/*
3980 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3981 	 * we invalidate them
3982 	 */
3983 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3984 		d_invalidate(dentry);
3985 
3986 	return 0;
3987 }
3988 
3989 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3990 {
3991 	if (!simple_empty(dentry))
3992 		return -ENOTEMPTY;
3993 
3994 	drop_nlink(d_inode(dentry));
3995 	drop_nlink(dir);
3996 	return shmem_unlink(dir, dentry);
3997 }
3998 
3999 static int shmem_whiteout(struct mnt_idmap *idmap,
4000 			  struct inode *old_dir, struct dentry *old_dentry)
4001 {
4002 	struct dentry *whiteout;
4003 	int error;
4004 
4005 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4006 	if (!whiteout)
4007 		return -ENOMEM;
4008 
4009 	error = shmem_mknod(idmap, old_dir, whiteout,
4010 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4011 	dput(whiteout);
4012 	if (error)
4013 		return error;
4014 
4015 	/*
4016 	 * Cheat and hash the whiteout while the old dentry is still in
4017 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4018 	 *
4019 	 * d_lookup() will consistently find one of them at this point,
4020 	 * not sure which one, but that isn't even important.
4021 	 */
4022 	d_rehash(whiteout);
4023 	return 0;
4024 }
4025 
4026 /*
4027  * The VFS layer already does all the dentry stuff for rename,
4028  * we just have to decrement the usage count for the target if
4029  * it exists so that the VFS layer correctly free's it when it
4030  * gets overwritten.
4031  */
4032 static int shmem_rename2(struct mnt_idmap *idmap,
4033 			 struct inode *old_dir, struct dentry *old_dentry,
4034 			 struct inode *new_dir, struct dentry *new_dentry,
4035 			 unsigned int flags)
4036 {
4037 	struct inode *inode = d_inode(old_dentry);
4038 	int they_are_dirs = S_ISDIR(inode->i_mode);
4039 	int error;
4040 
4041 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4042 		return -EINVAL;
4043 
4044 	if (flags & RENAME_EXCHANGE)
4045 		return simple_offset_rename_exchange(old_dir, old_dentry,
4046 						     new_dir, new_dentry);
4047 
4048 	if (!simple_empty(new_dentry))
4049 		return -ENOTEMPTY;
4050 
4051 	if (flags & RENAME_WHITEOUT) {
4052 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4053 		if (error)
4054 			return error;
4055 	}
4056 
4057 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4058 	if (error)
4059 		return error;
4060 
4061 	if (d_really_is_positive(new_dentry)) {
4062 		(void) shmem_unlink(new_dir, new_dentry);
4063 		if (they_are_dirs) {
4064 			drop_nlink(d_inode(new_dentry));
4065 			drop_nlink(old_dir);
4066 		}
4067 	} else if (they_are_dirs) {
4068 		drop_nlink(old_dir);
4069 		inc_nlink(new_dir);
4070 	}
4071 
4072 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4073 	new_dir->i_size += BOGO_DIRENT_SIZE;
4074 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4075 	inode_inc_iversion(old_dir);
4076 	inode_inc_iversion(new_dir);
4077 	return 0;
4078 }
4079 
4080 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4081 			 struct dentry *dentry, const char *symname)
4082 {
4083 	int error;
4084 	int len;
4085 	struct inode *inode;
4086 	struct folio *folio;
4087 	char *link;
4088 
4089 	len = strlen(symname) + 1;
4090 	if (len > PAGE_SIZE)
4091 		return -ENAMETOOLONG;
4092 
4093 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4094 				VM_NORESERVE);
4095 	if (IS_ERR(inode))
4096 		return PTR_ERR(inode);
4097 
4098 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4099 					     shmem_initxattrs, NULL);
4100 	if (error && error != -EOPNOTSUPP)
4101 		goto out_iput;
4102 
4103 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4104 	if (error)
4105 		goto out_iput;
4106 
4107 	inode->i_size = len-1;
4108 	if (len <= SHORT_SYMLINK_LEN) {
4109 		link = kmemdup(symname, len, GFP_KERNEL);
4110 		if (!link) {
4111 			error = -ENOMEM;
4112 			goto out_remove_offset;
4113 		}
4114 		inode->i_op = &shmem_short_symlink_operations;
4115 		inode_set_cached_link(inode, link, len - 1);
4116 	} else {
4117 		inode_nohighmem(inode);
4118 		inode->i_mapping->a_ops = &shmem_aops;
4119 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4120 		if (error)
4121 			goto out_remove_offset;
4122 		inode->i_op = &shmem_symlink_inode_operations;
4123 		memcpy(folio_address(folio), symname, len);
4124 		folio_mark_uptodate(folio);
4125 		folio_mark_dirty(folio);
4126 		folio_unlock(folio);
4127 		folio_put(folio);
4128 	}
4129 	dir->i_size += BOGO_DIRENT_SIZE;
4130 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4131 	inode_inc_iversion(dir);
4132 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4133 		d_add(dentry, inode);
4134 	else
4135 		d_instantiate(dentry, inode);
4136 	dget(dentry);
4137 	return 0;
4138 
4139 out_remove_offset:
4140 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4141 out_iput:
4142 	iput(inode);
4143 	return error;
4144 }
4145 
4146 static void shmem_put_link(void *arg)
4147 {
4148 	folio_mark_accessed(arg);
4149 	folio_put(arg);
4150 }
4151 
4152 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4153 				  struct delayed_call *done)
4154 {
4155 	struct folio *folio = NULL;
4156 	int error;
4157 
4158 	if (!dentry) {
4159 		folio = filemap_get_folio(inode->i_mapping, 0);
4160 		if (IS_ERR(folio))
4161 			return ERR_PTR(-ECHILD);
4162 		if (PageHWPoison(folio_page(folio, 0)) ||
4163 		    !folio_test_uptodate(folio)) {
4164 			folio_put(folio);
4165 			return ERR_PTR(-ECHILD);
4166 		}
4167 	} else {
4168 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4169 		if (error)
4170 			return ERR_PTR(error);
4171 		if (!folio)
4172 			return ERR_PTR(-ECHILD);
4173 		if (PageHWPoison(folio_page(folio, 0))) {
4174 			folio_unlock(folio);
4175 			folio_put(folio);
4176 			return ERR_PTR(-ECHILD);
4177 		}
4178 		folio_unlock(folio);
4179 	}
4180 	set_delayed_call(done, shmem_put_link, folio);
4181 	return folio_address(folio);
4182 }
4183 
4184 #ifdef CONFIG_TMPFS_XATTR
4185 
4186 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4187 {
4188 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4189 
4190 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4191 
4192 	return 0;
4193 }
4194 
4195 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4196 			      struct dentry *dentry, struct fileattr *fa)
4197 {
4198 	struct inode *inode = d_inode(dentry);
4199 	struct shmem_inode_info *info = SHMEM_I(inode);
4200 	int ret, flags;
4201 
4202 	if (fileattr_has_fsx(fa))
4203 		return -EOPNOTSUPP;
4204 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4205 		return -EOPNOTSUPP;
4206 
4207 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4208 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4209 
4210 	ret = shmem_set_inode_flags(inode, flags, dentry);
4211 
4212 	if (ret)
4213 		return ret;
4214 
4215 	info->fsflags = flags;
4216 
4217 	inode_set_ctime_current(inode);
4218 	inode_inc_iversion(inode);
4219 	return 0;
4220 }
4221 
4222 /*
4223  * Superblocks without xattr inode operations may get some security.* xattr
4224  * support from the LSM "for free". As soon as we have any other xattrs
4225  * like ACLs, we also need to implement the security.* handlers at
4226  * filesystem level, though.
4227  */
4228 
4229 /*
4230  * Callback for security_inode_init_security() for acquiring xattrs.
4231  */
4232 static int shmem_initxattrs(struct inode *inode,
4233 			    const struct xattr *xattr_array, void *fs_info)
4234 {
4235 	struct shmem_inode_info *info = SHMEM_I(inode);
4236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4237 	const struct xattr *xattr;
4238 	struct simple_xattr *new_xattr;
4239 	size_t ispace = 0;
4240 	size_t len;
4241 
4242 	if (sbinfo->max_inodes) {
4243 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4244 			ispace += simple_xattr_space(xattr->name,
4245 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4246 		}
4247 		if (ispace) {
4248 			raw_spin_lock(&sbinfo->stat_lock);
4249 			if (sbinfo->free_ispace < ispace)
4250 				ispace = 0;
4251 			else
4252 				sbinfo->free_ispace -= ispace;
4253 			raw_spin_unlock(&sbinfo->stat_lock);
4254 			if (!ispace)
4255 				return -ENOSPC;
4256 		}
4257 	}
4258 
4259 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4260 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4261 		if (!new_xattr)
4262 			break;
4263 
4264 		len = strlen(xattr->name) + 1;
4265 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4266 					  GFP_KERNEL_ACCOUNT);
4267 		if (!new_xattr->name) {
4268 			kvfree(new_xattr);
4269 			break;
4270 		}
4271 
4272 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4273 		       XATTR_SECURITY_PREFIX_LEN);
4274 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4275 		       xattr->name, len);
4276 
4277 		simple_xattr_add(&info->xattrs, new_xattr);
4278 	}
4279 
4280 	if (xattr->name != NULL) {
4281 		if (ispace) {
4282 			raw_spin_lock(&sbinfo->stat_lock);
4283 			sbinfo->free_ispace += ispace;
4284 			raw_spin_unlock(&sbinfo->stat_lock);
4285 		}
4286 		simple_xattrs_free(&info->xattrs, NULL);
4287 		return -ENOMEM;
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4294 				   struct dentry *unused, struct inode *inode,
4295 				   const char *name, void *buffer, size_t size)
4296 {
4297 	struct shmem_inode_info *info = SHMEM_I(inode);
4298 
4299 	name = xattr_full_name(handler, name);
4300 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4301 }
4302 
4303 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4304 				   struct mnt_idmap *idmap,
4305 				   struct dentry *unused, struct inode *inode,
4306 				   const char *name, const void *value,
4307 				   size_t size, int flags)
4308 {
4309 	struct shmem_inode_info *info = SHMEM_I(inode);
4310 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4311 	struct simple_xattr *old_xattr;
4312 	size_t ispace = 0;
4313 
4314 	name = xattr_full_name(handler, name);
4315 	if (value && sbinfo->max_inodes) {
4316 		ispace = simple_xattr_space(name, size);
4317 		raw_spin_lock(&sbinfo->stat_lock);
4318 		if (sbinfo->free_ispace < ispace)
4319 			ispace = 0;
4320 		else
4321 			sbinfo->free_ispace -= ispace;
4322 		raw_spin_unlock(&sbinfo->stat_lock);
4323 		if (!ispace)
4324 			return -ENOSPC;
4325 	}
4326 
4327 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4328 	if (!IS_ERR(old_xattr)) {
4329 		ispace = 0;
4330 		if (old_xattr && sbinfo->max_inodes)
4331 			ispace = simple_xattr_space(old_xattr->name,
4332 						    old_xattr->size);
4333 		simple_xattr_free(old_xattr);
4334 		old_xattr = NULL;
4335 		inode_set_ctime_current(inode);
4336 		inode_inc_iversion(inode);
4337 	}
4338 	if (ispace) {
4339 		raw_spin_lock(&sbinfo->stat_lock);
4340 		sbinfo->free_ispace += ispace;
4341 		raw_spin_unlock(&sbinfo->stat_lock);
4342 	}
4343 	return PTR_ERR(old_xattr);
4344 }
4345 
4346 static const struct xattr_handler shmem_security_xattr_handler = {
4347 	.prefix = XATTR_SECURITY_PREFIX,
4348 	.get = shmem_xattr_handler_get,
4349 	.set = shmem_xattr_handler_set,
4350 };
4351 
4352 static const struct xattr_handler shmem_trusted_xattr_handler = {
4353 	.prefix = XATTR_TRUSTED_PREFIX,
4354 	.get = shmem_xattr_handler_get,
4355 	.set = shmem_xattr_handler_set,
4356 };
4357 
4358 static const struct xattr_handler shmem_user_xattr_handler = {
4359 	.prefix = XATTR_USER_PREFIX,
4360 	.get = shmem_xattr_handler_get,
4361 	.set = shmem_xattr_handler_set,
4362 };
4363 
4364 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4365 	&shmem_security_xattr_handler,
4366 	&shmem_trusted_xattr_handler,
4367 	&shmem_user_xattr_handler,
4368 	NULL
4369 };
4370 
4371 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4372 {
4373 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4374 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4375 }
4376 #endif /* CONFIG_TMPFS_XATTR */
4377 
4378 static const struct inode_operations shmem_short_symlink_operations = {
4379 	.getattr	= shmem_getattr,
4380 	.setattr	= shmem_setattr,
4381 	.get_link	= simple_get_link,
4382 #ifdef CONFIG_TMPFS_XATTR
4383 	.listxattr	= shmem_listxattr,
4384 #endif
4385 };
4386 
4387 static const struct inode_operations shmem_symlink_inode_operations = {
4388 	.getattr	= shmem_getattr,
4389 	.setattr	= shmem_setattr,
4390 	.get_link	= shmem_get_link,
4391 #ifdef CONFIG_TMPFS_XATTR
4392 	.listxattr	= shmem_listxattr,
4393 #endif
4394 };
4395 
4396 static struct dentry *shmem_get_parent(struct dentry *child)
4397 {
4398 	return ERR_PTR(-ESTALE);
4399 }
4400 
4401 static int shmem_match(struct inode *ino, void *vfh)
4402 {
4403 	__u32 *fh = vfh;
4404 	__u64 inum = fh[2];
4405 	inum = (inum << 32) | fh[1];
4406 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4407 }
4408 
4409 /* Find any alias of inode, but prefer a hashed alias */
4410 static struct dentry *shmem_find_alias(struct inode *inode)
4411 {
4412 	struct dentry *alias = d_find_alias(inode);
4413 
4414 	return alias ?: d_find_any_alias(inode);
4415 }
4416 
4417 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4418 		struct fid *fid, int fh_len, int fh_type)
4419 {
4420 	struct inode *inode;
4421 	struct dentry *dentry = NULL;
4422 	u64 inum;
4423 
4424 	if (fh_len < 3)
4425 		return NULL;
4426 
4427 	inum = fid->raw[2];
4428 	inum = (inum << 32) | fid->raw[1];
4429 
4430 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4431 			shmem_match, fid->raw);
4432 	if (inode) {
4433 		dentry = shmem_find_alias(inode);
4434 		iput(inode);
4435 	}
4436 
4437 	return dentry;
4438 }
4439 
4440 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4441 				struct inode *parent)
4442 {
4443 	if (*len < 3) {
4444 		*len = 3;
4445 		return FILEID_INVALID;
4446 	}
4447 
4448 	if (inode_unhashed(inode)) {
4449 		/* Unfortunately insert_inode_hash is not idempotent,
4450 		 * so as we hash inodes here rather than at creation
4451 		 * time, we need a lock to ensure we only try
4452 		 * to do it once
4453 		 */
4454 		static DEFINE_SPINLOCK(lock);
4455 		spin_lock(&lock);
4456 		if (inode_unhashed(inode))
4457 			__insert_inode_hash(inode,
4458 					    inode->i_ino + inode->i_generation);
4459 		spin_unlock(&lock);
4460 	}
4461 
4462 	fh[0] = inode->i_generation;
4463 	fh[1] = inode->i_ino;
4464 	fh[2] = ((__u64)inode->i_ino) >> 32;
4465 
4466 	*len = 3;
4467 	return 1;
4468 }
4469 
4470 static const struct export_operations shmem_export_ops = {
4471 	.get_parent     = shmem_get_parent,
4472 	.encode_fh      = shmem_encode_fh,
4473 	.fh_to_dentry	= shmem_fh_to_dentry,
4474 };
4475 
4476 enum shmem_param {
4477 	Opt_gid,
4478 	Opt_huge,
4479 	Opt_mode,
4480 	Opt_mpol,
4481 	Opt_nr_blocks,
4482 	Opt_nr_inodes,
4483 	Opt_size,
4484 	Opt_uid,
4485 	Opt_inode32,
4486 	Opt_inode64,
4487 	Opt_noswap,
4488 	Opt_quota,
4489 	Opt_usrquota,
4490 	Opt_grpquota,
4491 	Opt_usrquota_block_hardlimit,
4492 	Opt_usrquota_inode_hardlimit,
4493 	Opt_grpquota_block_hardlimit,
4494 	Opt_grpquota_inode_hardlimit,
4495 	Opt_casefold_version,
4496 	Opt_casefold,
4497 	Opt_strict_encoding,
4498 };
4499 
4500 static const struct constant_table shmem_param_enums_huge[] = {
4501 	{"never",	SHMEM_HUGE_NEVER },
4502 	{"always",	SHMEM_HUGE_ALWAYS },
4503 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4504 	{"advise",	SHMEM_HUGE_ADVISE },
4505 	{}
4506 };
4507 
4508 const struct fs_parameter_spec shmem_fs_parameters[] = {
4509 	fsparam_gid   ("gid",		Opt_gid),
4510 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4511 	fsparam_u32oct("mode",		Opt_mode),
4512 	fsparam_string("mpol",		Opt_mpol),
4513 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4514 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4515 	fsparam_string("size",		Opt_size),
4516 	fsparam_uid   ("uid",		Opt_uid),
4517 	fsparam_flag  ("inode32",	Opt_inode32),
4518 	fsparam_flag  ("inode64",	Opt_inode64),
4519 	fsparam_flag  ("noswap",	Opt_noswap),
4520 #ifdef CONFIG_TMPFS_QUOTA
4521 	fsparam_flag  ("quota",		Opt_quota),
4522 	fsparam_flag  ("usrquota",	Opt_usrquota),
4523 	fsparam_flag  ("grpquota",	Opt_grpquota),
4524 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4525 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4526 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4527 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4528 #endif
4529 	fsparam_string("casefold",	Opt_casefold_version),
4530 	fsparam_flag  ("casefold",	Opt_casefold),
4531 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4532 	{}
4533 };
4534 
4535 #if IS_ENABLED(CONFIG_UNICODE)
4536 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4537 				    bool latest_version)
4538 {
4539 	struct shmem_options *ctx = fc->fs_private;
4540 	int version = UTF8_LATEST;
4541 	struct unicode_map *encoding;
4542 	char *version_str = param->string + 5;
4543 
4544 	if (!latest_version) {
4545 		if (strncmp(param->string, "utf8-", 5))
4546 			return invalfc(fc, "Only UTF-8 encodings are supported "
4547 				       "in the format: utf8-<version number>");
4548 
4549 		version = utf8_parse_version(version_str);
4550 		if (version < 0)
4551 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4552 	}
4553 
4554 	encoding = utf8_load(version);
4555 
4556 	if (IS_ERR(encoding)) {
4557 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4558 			       unicode_major(version), unicode_minor(version),
4559 			       unicode_rev(version));
4560 	}
4561 
4562 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4563 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4564 
4565 	ctx->encoding = encoding;
4566 
4567 	return 0;
4568 }
4569 #else
4570 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4571 				    bool latest_version)
4572 {
4573 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4574 }
4575 #endif
4576 
4577 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4578 {
4579 	struct shmem_options *ctx = fc->fs_private;
4580 	struct fs_parse_result result;
4581 	unsigned long long size;
4582 	char *rest;
4583 	int opt;
4584 	kuid_t kuid;
4585 	kgid_t kgid;
4586 
4587 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4588 	if (opt < 0)
4589 		return opt;
4590 
4591 	switch (opt) {
4592 	case Opt_size:
4593 		size = memparse(param->string, &rest);
4594 		if (*rest == '%') {
4595 			size <<= PAGE_SHIFT;
4596 			size *= totalram_pages();
4597 			do_div(size, 100);
4598 			rest++;
4599 		}
4600 		if (*rest)
4601 			goto bad_value;
4602 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4603 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4604 		break;
4605 	case Opt_nr_blocks:
4606 		ctx->blocks = memparse(param->string, &rest);
4607 		if (*rest || ctx->blocks > LONG_MAX)
4608 			goto bad_value;
4609 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4610 		break;
4611 	case Opt_nr_inodes:
4612 		ctx->inodes = memparse(param->string, &rest);
4613 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4614 			goto bad_value;
4615 		ctx->seen |= SHMEM_SEEN_INODES;
4616 		break;
4617 	case Opt_mode:
4618 		ctx->mode = result.uint_32 & 07777;
4619 		break;
4620 	case Opt_uid:
4621 		kuid = result.uid;
4622 
4623 		/*
4624 		 * The requested uid must be representable in the
4625 		 * filesystem's idmapping.
4626 		 */
4627 		if (!kuid_has_mapping(fc->user_ns, kuid))
4628 			goto bad_value;
4629 
4630 		ctx->uid = kuid;
4631 		break;
4632 	case Opt_gid:
4633 		kgid = result.gid;
4634 
4635 		/*
4636 		 * The requested gid must be representable in the
4637 		 * filesystem's idmapping.
4638 		 */
4639 		if (!kgid_has_mapping(fc->user_ns, kgid))
4640 			goto bad_value;
4641 
4642 		ctx->gid = kgid;
4643 		break;
4644 	case Opt_huge:
4645 		ctx->huge = result.uint_32;
4646 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4647 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4648 		      has_transparent_hugepage()))
4649 			goto unsupported_parameter;
4650 		ctx->seen |= SHMEM_SEEN_HUGE;
4651 		break;
4652 	case Opt_mpol:
4653 		if (IS_ENABLED(CONFIG_NUMA)) {
4654 			mpol_put(ctx->mpol);
4655 			ctx->mpol = NULL;
4656 			if (mpol_parse_str(param->string, &ctx->mpol))
4657 				goto bad_value;
4658 			break;
4659 		}
4660 		goto unsupported_parameter;
4661 	case Opt_inode32:
4662 		ctx->full_inums = false;
4663 		ctx->seen |= SHMEM_SEEN_INUMS;
4664 		break;
4665 	case Opt_inode64:
4666 		if (sizeof(ino_t) < 8) {
4667 			return invalfc(fc,
4668 				       "Cannot use inode64 with <64bit inums in kernel\n");
4669 		}
4670 		ctx->full_inums = true;
4671 		ctx->seen |= SHMEM_SEEN_INUMS;
4672 		break;
4673 	case Opt_noswap:
4674 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4675 			return invalfc(fc,
4676 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4677 		}
4678 		ctx->noswap = true;
4679 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4680 		break;
4681 	case Opt_quota:
4682 		if (fc->user_ns != &init_user_ns)
4683 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4684 		ctx->seen |= SHMEM_SEEN_QUOTA;
4685 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4686 		break;
4687 	case Opt_usrquota:
4688 		if (fc->user_ns != &init_user_ns)
4689 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4690 		ctx->seen |= SHMEM_SEEN_QUOTA;
4691 		ctx->quota_types |= QTYPE_MASK_USR;
4692 		break;
4693 	case Opt_grpquota:
4694 		if (fc->user_ns != &init_user_ns)
4695 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4696 		ctx->seen |= SHMEM_SEEN_QUOTA;
4697 		ctx->quota_types |= QTYPE_MASK_GRP;
4698 		break;
4699 	case Opt_usrquota_block_hardlimit:
4700 		size = memparse(param->string, &rest);
4701 		if (*rest || !size)
4702 			goto bad_value;
4703 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4704 			return invalfc(fc,
4705 				       "User quota block hardlimit too large.");
4706 		ctx->qlimits.usrquota_bhardlimit = size;
4707 		break;
4708 	case Opt_grpquota_block_hardlimit:
4709 		size = memparse(param->string, &rest);
4710 		if (*rest || !size)
4711 			goto bad_value;
4712 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4713 			return invalfc(fc,
4714 				       "Group quota block hardlimit too large.");
4715 		ctx->qlimits.grpquota_bhardlimit = size;
4716 		break;
4717 	case Opt_usrquota_inode_hardlimit:
4718 		size = memparse(param->string, &rest);
4719 		if (*rest || !size)
4720 			goto bad_value;
4721 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4722 			return invalfc(fc,
4723 				       "User quota inode hardlimit too large.");
4724 		ctx->qlimits.usrquota_ihardlimit = size;
4725 		break;
4726 	case Opt_grpquota_inode_hardlimit:
4727 		size = memparse(param->string, &rest);
4728 		if (*rest || !size)
4729 			goto bad_value;
4730 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4731 			return invalfc(fc,
4732 				       "Group quota inode hardlimit too large.");
4733 		ctx->qlimits.grpquota_ihardlimit = size;
4734 		break;
4735 	case Opt_casefold_version:
4736 		return shmem_parse_opt_casefold(fc, param, false);
4737 	case Opt_casefold:
4738 		return shmem_parse_opt_casefold(fc, param, true);
4739 	case Opt_strict_encoding:
4740 #if IS_ENABLED(CONFIG_UNICODE)
4741 		ctx->strict_encoding = true;
4742 		break;
4743 #else
4744 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4745 #endif
4746 	}
4747 	return 0;
4748 
4749 unsupported_parameter:
4750 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4751 bad_value:
4752 	return invalfc(fc, "Bad value for '%s'", param->key);
4753 }
4754 
4755 static char *shmem_next_opt(char **s)
4756 {
4757 	char *sbegin = *s;
4758 	char *p;
4759 
4760 	if (sbegin == NULL)
4761 		return NULL;
4762 
4763 	/*
4764 	 * NUL-terminate this option: unfortunately,
4765 	 * mount options form a comma-separated list,
4766 	 * but mpol's nodelist may also contain commas.
4767 	 */
4768 	for (;;) {
4769 		p = strchr(*s, ',');
4770 		if (p == NULL)
4771 			break;
4772 		*s = p + 1;
4773 		if (!isdigit(*(p+1))) {
4774 			*p = '\0';
4775 			return sbegin;
4776 		}
4777 	}
4778 
4779 	*s = NULL;
4780 	return sbegin;
4781 }
4782 
4783 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4784 {
4785 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4786 }
4787 
4788 /*
4789  * Reconfigure a shmem filesystem.
4790  */
4791 static int shmem_reconfigure(struct fs_context *fc)
4792 {
4793 	struct shmem_options *ctx = fc->fs_private;
4794 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4795 	unsigned long used_isp;
4796 	struct mempolicy *mpol = NULL;
4797 	const char *err;
4798 
4799 	raw_spin_lock(&sbinfo->stat_lock);
4800 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4801 
4802 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4803 		if (!sbinfo->max_blocks) {
4804 			err = "Cannot retroactively limit size";
4805 			goto out;
4806 		}
4807 		if (percpu_counter_compare(&sbinfo->used_blocks,
4808 					   ctx->blocks) > 0) {
4809 			err = "Too small a size for current use";
4810 			goto out;
4811 		}
4812 	}
4813 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4814 		if (!sbinfo->max_inodes) {
4815 			err = "Cannot retroactively limit inodes";
4816 			goto out;
4817 		}
4818 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4819 			err = "Too few inodes for current use";
4820 			goto out;
4821 		}
4822 	}
4823 
4824 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4825 	    sbinfo->next_ino > UINT_MAX) {
4826 		err = "Current inum too high to switch to 32-bit inums";
4827 		goto out;
4828 	}
4829 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4830 		err = "Cannot disable swap on remount";
4831 		goto out;
4832 	}
4833 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4834 		err = "Cannot enable swap on remount if it was disabled on first mount";
4835 		goto out;
4836 	}
4837 
4838 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4839 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4840 		err = "Cannot enable quota on remount";
4841 		goto out;
4842 	}
4843 
4844 #ifdef CONFIG_TMPFS_QUOTA
4845 #define CHANGED_LIMIT(name)						\
4846 	(ctx->qlimits.name## hardlimit &&				\
4847 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4848 
4849 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4850 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4851 		err = "Cannot change global quota limit on remount";
4852 		goto out;
4853 	}
4854 #endif /* CONFIG_TMPFS_QUOTA */
4855 
4856 	if (ctx->seen & SHMEM_SEEN_HUGE)
4857 		sbinfo->huge = ctx->huge;
4858 	if (ctx->seen & SHMEM_SEEN_INUMS)
4859 		sbinfo->full_inums = ctx->full_inums;
4860 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4861 		sbinfo->max_blocks  = ctx->blocks;
4862 	if (ctx->seen & SHMEM_SEEN_INODES) {
4863 		sbinfo->max_inodes  = ctx->inodes;
4864 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4865 	}
4866 
4867 	/*
4868 	 * Preserve previous mempolicy unless mpol remount option was specified.
4869 	 */
4870 	if (ctx->mpol) {
4871 		mpol = sbinfo->mpol;
4872 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4873 		ctx->mpol = NULL;
4874 	}
4875 
4876 	if (ctx->noswap)
4877 		sbinfo->noswap = true;
4878 
4879 	raw_spin_unlock(&sbinfo->stat_lock);
4880 	mpol_put(mpol);
4881 	return 0;
4882 out:
4883 	raw_spin_unlock(&sbinfo->stat_lock);
4884 	return invalfc(fc, "%s", err);
4885 }
4886 
4887 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4888 {
4889 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4890 	struct mempolicy *mpol;
4891 
4892 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4893 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4894 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4895 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4896 	if (sbinfo->mode != (0777 | S_ISVTX))
4897 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4898 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4899 		seq_printf(seq, ",uid=%u",
4900 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4901 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4902 		seq_printf(seq, ",gid=%u",
4903 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4904 
4905 	/*
4906 	 * Showing inode{64,32} might be useful even if it's the system default,
4907 	 * since then people don't have to resort to checking both here and
4908 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4909 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4910 	 *
4911 	 * We hide it when inode64 isn't the default and we are using 32-bit
4912 	 * inodes, since that probably just means the feature isn't even under
4913 	 * consideration.
4914 	 *
4915 	 * As such:
4916 	 *
4917 	 *                     +-----------------+-----------------+
4918 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4919 	 *  +------------------+-----------------+-----------------+
4920 	 *  | full_inums=true  | show            | show            |
4921 	 *  | full_inums=false | show            | hide            |
4922 	 *  +------------------+-----------------+-----------------+
4923 	 *
4924 	 */
4925 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4926 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4928 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4929 	if (sbinfo->huge)
4930 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4931 #endif
4932 	mpol = shmem_get_sbmpol(sbinfo);
4933 	shmem_show_mpol(seq, mpol);
4934 	mpol_put(mpol);
4935 	if (sbinfo->noswap)
4936 		seq_printf(seq, ",noswap");
4937 #ifdef CONFIG_TMPFS_QUOTA
4938 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4939 		seq_printf(seq, ",usrquota");
4940 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4941 		seq_printf(seq, ",grpquota");
4942 	if (sbinfo->qlimits.usrquota_bhardlimit)
4943 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4944 			   sbinfo->qlimits.usrquota_bhardlimit);
4945 	if (sbinfo->qlimits.grpquota_bhardlimit)
4946 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4947 			   sbinfo->qlimits.grpquota_bhardlimit);
4948 	if (sbinfo->qlimits.usrquota_ihardlimit)
4949 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4950 			   sbinfo->qlimits.usrquota_ihardlimit);
4951 	if (sbinfo->qlimits.grpquota_ihardlimit)
4952 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4953 			   sbinfo->qlimits.grpquota_ihardlimit);
4954 #endif
4955 	return 0;
4956 }
4957 
4958 #endif /* CONFIG_TMPFS */
4959 
4960 static void shmem_put_super(struct super_block *sb)
4961 {
4962 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4963 
4964 #if IS_ENABLED(CONFIG_UNICODE)
4965 	if (sb->s_encoding)
4966 		utf8_unload(sb->s_encoding);
4967 #endif
4968 
4969 #ifdef CONFIG_TMPFS_QUOTA
4970 	shmem_disable_quotas(sb);
4971 #endif
4972 	free_percpu(sbinfo->ino_batch);
4973 	percpu_counter_destroy(&sbinfo->used_blocks);
4974 	mpol_put(sbinfo->mpol);
4975 	kfree(sbinfo);
4976 	sb->s_fs_info = NULL;
4977 }
4978 
4979 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4980 static const struct dentry_operations shmem_ci_dentry_ops = {
4981 	.d_hash = generic_ci_d_hash,
4982 	.d_compare = generic_ci_d_compare,
4983 	.d_delete = always_delete_dentry,
4984 };
4985 #endif
4986 
4987 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4988 {
4989 	struct shmem_options *ctx = fc->fs_private;
4990 	struct inode *inode;
4991 	struct shmem_sb_info *sbinfo;
4992 	int error = -ENOMEM;
4993 
4994 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4995 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4996 				L1_CACHE_BYTES), GFP_KERNEL);
4997 	if (!sbinfo)
4998 		return error;
4999 
5000 	sb->s_fs_info = sbinfo;
5001 
5002 #ifdef CONFIG_TMPFS
5003 	/*
5004 	 * Per default we only allow half of the physical ram per
5005 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5006 	 * but the internal instance is left unlimited.
5007 	 */
5008 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5009 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5010 			ctx->blocks = shmem_default_max_blocks();
5011 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5012 			ctx->inodes = shmem_default_max_inodes();
5013 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5014 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5015 		sbinfo->noswap = ctx->noswap;
5016 	} else {
5017 		sb->s_flags |= SB_NOUSER;
5018 	}
5019 	sb->s_export_op = &shmem_export_ops;
5020 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5021 
5022 #if IS_ENABLED(CONFIG_UNICODE)
5023 	if (!ctx->encoding && ctx->strict_encoding) {
5024 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5025 		error = -EINVAL;
5026 		goto failed;
5027 	}
5028 
5029 	if (ctx->encoding) {
5030 		sb->s_encoding = ctx->encoding;
5031 		sb->s_d_op = &shmem_ci_dentry_ops;
5032 		if (ctx->strict_encoding)
5033 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5034 	}
5035 #endif
5036 
5037 #else
5038 	sb->s_flags |= SB_NOUSER;
5039 #endif /* CONFIG_TMPFS */
5040 	sbinfo->max_blocks = ctx->blocks;
5041 	sbinfo->max_inodes = ctx->inodes;
5042 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5043 	if (sb->s_flags & SB_KERNMOUNT) {
5044 		sbinfo->ino_batch = alloc_percpu(ino_t);
5045 		if (!sbinfo->ino_batch)
5046 			goto failed;
5047 	}
5048 	sbinfo->uid = ctx->uid;
5049 	sbinfo->gid = ctx->gid;
5050 	sbinfo->full_inums = ctx->full_inums;
5051 	sbinfo->mode = ctx->mode;
5052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5053 	if (ctx->seen & SHMEM_SEEN_HUGE)
5054 		sbinfo->huge = ctx->huge;
5055 	else
5056 		sbinfo->huge = tmpfs_huge;
5057 #endif
5058 	sbinfo->mpol = ctx->mpol;
5059 	ctx->mpol = NULL;
5060 
5061 	raw_spin_lock_init(&sbinfo->stat_lock);
5062 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5063 		goto failed;
5064 	spin_lock_init(&sbinfo->shrinklist_lock);
5065 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5066 
5067 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5068 	sb->s_blocksize = PAGE_SIZE;
5069 	sb->s_blocksize_bits = PAGE_SHIFT;
5070 	sb->s_magic = TMPFS_MAGIC;
5071 	sb->s_op = &shmem_ops;
5072 	sb->s_time_gran = 1;
5073 #ifdef CONFIG_TMPFS_XATTR
5074 	sb->s_xattr = shmem_xattr_handlers;
5075 #endif
5076 #ifdef CONFIG_TMPFS_POSIX_ACL
5077 	sb->s_flags |= SB_POSIXACL;
5078 #endif
5079 	uuid_t uuid;
5080 	uuid_gen(&uuid);
5081 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5082 
5083 #ifdef CONFIG_TMPFS_QUOTA
5084 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5085 		sb->dq_op = &shmem_quota_operations;
5086 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5087 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5088 
5089 		/* Copy the default limits from ctx into sbinfo */
5090 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5091 		       sizeof(struct shmem_quota_limits));
5092 
5093 		if (shmem_enable_quotas(sb, ctx->quota_types))
5094 			goto failed;
5095 	}
5096 #endif /* CONFIG_TMPFS_QUOTA */
5097 
5098 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5099 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5100 	if (IS_ERR(inode)) {
5101 		error = PTR_ERR(inode);
5102 		goto failed;
5103 	}
5104 	inode->i_uid = sbinfo->uid;
5105 	inode->i_gid = sbinfo->gid;
5106 	sb->s_root = d_make_root(inode);
5107 	if (!sb->s_root)
5108 		goto failed;
5109 	return 0;
5110 
5111 failed:
5112 	shmem_put_super(sb);
5113 	return error;
5114 }
5115 
5116 static int shmem_get_tree(struct fs_context *fc)
5117 {
5118 	return get_tree_nodev(fc, shmem_fill_super);
5119 }
5120 
5121 static void shmem_free_fc(struct fs_context *fc)
5122 {
5123 	struct shmem_options *ctx = fc->fs_private;
5124 
5125 	if (ctx) {
5126 		mpol_put(ctx->mpol);
5127 		kfree(ctx);
5128 	}
5129 }
5130 
5131 static const struct fs_context_operations shmem_fs_context_ops = {
5132 	.free			= shmem_free_fc,
5133 	.get_tree		= shmem_get_tree,
5134 #ifdef CONFIG_TMPFS
5135 	.parse_monolithic	= shmem_parse_monolithic,
5136 	.parse_param		= shmem_parse_one,
5137 	.reconfigure		= shmem_reconfigure,
5138 #endif
5139 };
5140 
5141 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5142 
5143 static struct inode *shmem_alloc_inode(struct super_block *sb)
5144 {
5145 	struct shmem_inode_info *info;
5146 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5147 	if (!info)
5148 		return NULL;
5149 	return &info->vfs_inode;
5150 }
5151 
5152 static void shmem_free_in_core_inode(struct inode *inode)
5153 {
5154 	if (S_ISLNK(inode->i_mode))
5155 		kfree(inode->i_link);
5156 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5157 }
5158 
5159 static void shmem_destroy_inode(struct inode *inode)
5160 {
5161 	if (S_ISREG(inode->i_mode))
5162 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5163 	if (S_ISDIR(inode->i_mode))
5164 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5165 }
5166 
5167 static void shmem_init_inode(void *foo)
5168 {
5169 	struct shmem_inode_info *info = foo;
5170 	inode_init_once(&info->vfs_inode);
5171 }
5172 
5173 static void __init shmem_init_inodecache(void)
5174 {
5175 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5176 				sizeof(struct shmem_inode_info),
5177 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5178 }
5179 
5180 static void __init shmem_destroy_inodecache(void)
5181 {
5182 	kmem_cache_destroy(shmem_inode_cachep);
5183 }
5184 
5185 /* Keep the page in page cache instead of truncating it */
5186 static int shmem_error_remove_folio(struct address_space *mapping,
5187 				   struct folio *folio)
5188 {
5189 	return 0;
5190 }
5191 
5192 static const struct address_space_operations shmem_aops = {
5193 	.dirty_folio	= noop_dirty_folio,
5194 #ifdef CONFIG_TMPFS
5195 	.write_begin	= shmem_write_begin,
5196 	.write_end	= shmem_write_end,
5197 #endif
5198 #ifdef CONFIG_MIGRATION
5199 	.migrate_folio	= migrate_folio,
5200 #endif
5201 	.error_remove_folio = shmem_error_remove_folio,
5202 };
5203 
5204 static const struct file_operations shmem_file_operations = {
5205 	.mmap		= shmem_mmap,
5206 	.open		= shmem_file_open,
5207 	.get_unmapped_area = shmem_get_unmapped_area,
5208 #ifdef CONFIG_TMPFS
5209 	.llseek		= shmem_file_llseek,
5210 	.read_iter	= shmem_file_read_iter,
5211 	.write_iter	= shmem_file_write_iter,
5212 	.fsync		= noop_fsync,
5213 	.splice_read	= shmem_file_splice_read,
5214 	.splice_write	= iter_file_splice_write,
5215 	.fallocate	= shmem_fallocate,
5216 #endif
5217 };
5218 
5219 static const struct inode_operations shmem_inode_operations = {
5220 	.getattr	= shmem_getattr,
5221 	.setattr	= shmem_setattr,
5222 #ifdef CONFIG_TMPFS_XATTR
5223 	.listxattr	= shmem_listxattr,
5224 	.set_acl	= simple_set_acl,
5225 	.fileattr_get	= shmem_fileattr_get,
5226 	.fileattr_set	= shmem_fileattr_set,
5227 #endif
5228 };
5229 
5230 static const struct inode_operations shmem_dir_inode_operations = {
5231 #ifdef CONFIG_TMPFS
5232 	.getattr	= shmem_getattr,
5233 	.create		= shmem_create,
5234 	.lookup		= simple_lookup,
5235 	.link		= shmem_link,
5236 	.unlink		= shmem_unlink,
5237 	.symlink	= shmem_symlink,
5238 	.mkdir		= shmem_mkdir,
5239 	.rmdir		= shmem_rmdir,
5240 	.mknod		= shmem_mknod,
5241 	.rename		= shmem_rename2,
5242 	.tmpfile	= shmem_tmpfile,
5243 	.get_offset_ctx	= shmem_get_offset_ctx,
5244 #endif
5245 #ifdef CONFIG_TMPFS_XATTR
5246 	.listxattr	= shmem_listxattr,
5247 	.fileattr_get	= shmem_fileattr_get,
5248 	.fileattr_set	= shmem_fileattr_set,
5249 #endif
5250 #ifdef CONFIG_TMPFS_POSIX_ACL
5251 	.setattr	= shmem_setattr,
5252 	.set_acl	= simple_set_acl,
5253 #endif
5254 };
5255 
5256 static const struct inode_operations shmem_special_inode_operations = {
5257 	.getattr	= shmem_getattr,
5258 #ifdef CONFIG_TMPFS_XATTR
5259 	.listxattr	= shmem_listxattr,
5260 #endif
5261 #ifdef CONFIG_TMPFS_POSIX_ACL
5262 	.setattr	= shmem_setattr,
5263 	.set_acl	= simple_set_acl,
5264 #endif
5265 };
5266 
5267 static const struct super_operations shmem_ops = {
5268 	.alloc_inode	= shmem_alloc_inode,
5269 	.free_inode	= shmem_free_in_core_inode,
5270 	.destroy_inode	= shmem_destroy_inode,
5271 #ifdef CONFIG_TMPFS
5272 	.statfs		= shmem_statfs,
5273 	.show_options	= shmem_show_options,
5274 #endif
5275 #ifdef CONFIG_TMPFS_QUOTA
5276 	.get_dquots	= shmem_get_dquots,
5277 #endif
5278 	.evict_inode	= shmem_evict_inode,
5279 	.drop_inode	= generic_delete_inode,
5280 	.put_super	= shmem_put_super,
5281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5282 	.nr_cached_objects	= shmem_unused_huge_count,
5283 	.free_cached_objects	= shmem_unused_huge_scan,
5284 #endif
5285 };
5286 
5287 static const struct vm_operations_struct shmem_vm_ops = {
5288 	.fault		= shmem_fault,
5289 	.map_pages	= filemap_map_pages,
5290 #ifdef CONFIG_NUMA
5291 	.set_policy     = shmem_set_policy,
5292 	.get_policy     = shmem_get_policy,
5293 #endif
5294 };
5295 
5296 static const struct vm_operations_struct shmem_anon_vm_ops = {
5297 	.fault		= shmem_fault,
5298 	.map_pages	= filemap_map_pages,
5299 #ifdef CONFIG_NUMA
5300 	.set_policy     = shmem_set_policy,
5301 	.get_policy     = shmem_get_policy,
5302 #endif
5303 };
5304 
5305 int shmem_init_fs_context(struct fs_context *fc)
5306 {
5307 	struct shmem_options *ctx;
5308 
5309 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5310 	if (!ctx)
5311 		return -ENOMEM;
5312 
5313 	ctx->mode = 0777 | S_ISVTX;
5314 	ctx->uid = current_fsuid();
5315 	ctx->gid = current_fsgid();
5316 
5317 #if IS_ENABLED(CONFIG_UNICODE)
5318 	ctx->encoding = NULL;
5319 #endif
5320 
5321 	fc->fs_private = ctx;
5322 	fc->ops = &shmem_fs_context_ops;
5323 	return 0;
5324 }
5325 
5326 static struct file_system_type shmem_fs_type = {
5327 	.owner		= THIS_MODULE,
5328 	.name		= "tmpfs",
5329 	.init_fs_context = shmem_init_fs_context,
5330 #ifdef CONFIG_TMPFS
5331 	.parameters	= shmem_fs_parameters,
5332 #endif
5333 	.kill_sb	= kill_litter_super,
5334 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5335 };
5336 
5337 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5338 
5339 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5340 {									\
5341 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5342 	.show	= _show,						\
5343 	.store	= _store,						\
5344 }
5345 
5346 #define TMPFS_ATTR_W(_name, _store)				\
5347 	static struct kobj_attribute tmpfs_attr_##_name =	\
5348 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5349 
5350 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5351 	static struct kobj_attribute tmpfs_attr_##_name =	\
5352 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5353 
5354 #define TMPFS_ATTR_RO(_name, _show)				\
5355 	static struct kobj_attribute tmpfs_attr_##_name =	\
5356 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5357 
5358 #if IS_ENABLED(CONFIG_UNICODE)
5359 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5360 			char *buf)
5361 {
5362 		return sysfs_emit(buf, "supported\n");
5363 }
5364 TMPFS_ATTR_RO(casefold, casefold_show);
5365 #endif
5366 
5367 static struct attribute *tmpfs_attributes[] = {
5368 #if IS_ENABLED(CONFIG_UNICODE)
5369 	&tmpfs_attr_casefold.attr,
5370 #endif
5371 	NULL
5372 };
5373 
5374 static const struct attribute_group tmpfs_attribute_group = {
5375 	.attrs = tmpfs_attributes,
5376 	.name = "features"
5377 };
5378 
5379 static struct kobject *tmpfs_kobj;
5380 
5381 static int __init tmpfs_sysfs_init(void)
5382 {
5383 	int ret;
5384 
5385 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5386 	if (!tmpfs_kobj)
5387 		return -ENOMEM;
5388 
5389 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5390 	if (ret)
5391 		kobject_put(tmpfs_kobj);
5392 
5393 	return ret;
5394 }
5395 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5396 
5397 void __init shmem_init(void)
5398 {
5399 	int error;
5400 
5401 	shmem_init_inodecache();
5402 
5403 #ifdef CONFIG_TMPFS_QUOTA
5404 	register_quota_format(&shmem_quota_format);
5405 #endif
5406 
5407 	error = register_filesystem(&shmem_fs_type);
5408 	if (error) {
5409 		pr_err("Could not register tmpfs\n");
5410 		goto out2;
5411 	}
5412 
5413 	shm_mnt = kern_mount(&shmem_fs_type);
5414 	if (IS_ERR(shm_mnt)) {
5415 		error = PTR_ERR(shm_mnt);
5416 		pr_err("Could not kern_mount tmpfs\n");
5417 		goto out1;
5418 	}
5419 
5420 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5421 	error = tmpfs_sysfs_init();
5422 	if (error) {
5423 		pr_err("Could not init tmpfs sysfs\n");
5424 		goto out1;
5425 	}
5426 #endif
5427 
5428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5429 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5430 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5431 	else
5432 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5433 
5434 	/*
5435 	 * Default to setting PMD-sized THP to inherit the global setting and
5436 	 * disable all other multi-size THPs.
5437 	 */
5438 	if (!shmem_orders_configured)
5439 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5440 #endif
5441 	return;
5442 
5443 out1:
5444 	unregister_filesystem(&shmem_fs_type);
5445 out2:
5446 #ifdef CONFIG_TMPFS_QUOTA
5447 	unregister_quota_format(&shmem_quota_format);
5448 #endif
5449 	shmem_destroy_inodecache();
5450 	shm_mnt = ERR_PTR(error);
5451 }
5452 
5453 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5454 static ssize_t shmem_enabled_show(struct kobject *kobj,
5455 				  struct kobj_attribute *attr, char *buf)
5456 {
5457 	static const int values[] = {
5458 		SHMEM_HUGE_ALWAYS,
5459 		SHMEM_HUGE_WITHIN_SIZE,
5460 		SHMEM_HUGE_ADVISE,
5461 		SHMEM_HUGE_NEVER,
5462 		SHMEM_HUGE_DENY,
5463 		SHMEM_HUGE_FORCE,
5464 	};
5465 	int len = 0;
5466 	int i;
5467 
5468 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5469 		len += sysfs_emit_at(buf, len,
5470 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5471 				i ? " " : "", shmem_format_huge(values[i]));
5472 	}
5473 	len += sysfs_emit_at(buf, len, "\n");
5474 
5475 	return len;
5476 }
5477 
5478 static ssize_t shmem_enabled_store(struct kobject *kobj,
5479 		struct kobj_attribute *attr, const char *buf, size_t count)
5480 {
5481 	char tmp[16];
5482 	int huge, err;
5483 
5484 	if (count + 1 > sizeof(tmp))
5485 		return -EINVAL;
5486 	memcpy(tmp, buf, count);
5487 	tmp[count] = '\0';
5488 	if (count && tmp[count - 1] == '\n')
5489 		tmp[count - 1] = '\0';
5490 
5491 	huge = shmem_parse_huge(tmp);
5492 	if (huge == -EINVAL)
5493 		return huge;
5494 
5495 	shmem_huge = huge;
5496 	if (shmem_huge > SHMEM_HUGE_DENY)
5497 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5498 
5499 	err = start_stop_khugepaged();
5500 	return err ? err : count;
5501 }
5502 
5503 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5504 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5505 
5506 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5507 					  struct kobj_attribute *attr, char *buf)
5508 {
5509 	int order = to_thpsize(kobj)->order;
5510 	const char *output;
5511 
5512 	if (test_bit(order, &huge_shmem_orders_always))
5513 		output = "[always] inherit within_size advise never";
5514 	else if (test_bit(order, &huge_shmem_orders_inherit))
5515 		output = "always [inherit] within_size advise never";
5516 	else if (test_bit(order, &huge_shmem_orders_within_size))
5517 		output = "always inherit [within_size] advise never";
5518 	else if (test_bit(order, &huge_shmem_orders_madvise))
5519 		output = "always inherit within_size [advise] never";
5520 	else
5521 		output = "always inherit within_size advise [never]";
5522 
5523 	return sysfs_emit(buf, "%s\n", output);
5524 }
5525 
5526 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5527 					   struct kobj_attribute *attr,
5528 					   const char *buf, size_t count)
5529 {
5530 	int order = to_thpsize(kobj)->order;
5531 	ssize_t ret = count;
5532 
5533 	if (sysfs_streq(buf, "always")) {
5534 		spin_lock(&huge_shmem_orders_lock);
5535 		clear_bit(order, &huge_shmem_orders_inherit);
5536 		clear_bit(order, &huge_shmem_orders_madvise);
5537 		clear_bit(order, &huge_shmem_orders_within_size);
5538 		set_bit(order, &huge_shmem_orders_always);
5539 		spin_unlock(&huge_shmem_orders_lock);
5540 	} else if (sysfs_streq(buf, "inherit")) {
5541 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5542 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5543 		    order != HPAGE_PMD_ORDER)
5544 			return -EINVAL;
5545 
5546 		spin_lock(&huge_shmem_orders_lock);
5547 		clear_bit(order, &huge_shmem_orders_always);
5548 		clear_bit(order, &huge_shmem_orders_madvise);
5549 		clear_bit(order, &huge_shmem_orders_within_size);
5550 		set_bit(order, &huge_shmem_orders_inherit);
5551 		spin_unlock(&huge_shmem_orders_lock);
5552 	} else if (sysfs_streq(buf, "within_size")) {
5553 		spin_lock(&huge_shmem_orders_lock);
5554 		clear_bit(order, &huge_shmem_orders_always);
5555 		clear_bit(order, &huge_shmem_orders_inherit);
5556 		clear_bit(order, &huge_shmem_orders_madvise);
5557 		set_bit(order, &huge_shmem_orders_within_size);
5558 		spin_unlock(&huge_shmem_orders_lock);
5559 	} else if (sysfs_streq(buf, "advise")) {
5560 		spin_lock(&huge_shmem_orders_lock);
5561 		clear_bit(order, &huge_shmem_orders_always);
5562 		clear_bit(order, &huge_shmem_orders_inherit);
5563 		clear_bit(order, &huge_shmem_orders_within_size);
5564 		set_bit(order, &huge_shmem_orders_madvise);
5565 		spin_unlock(&huge_shmem_orders_lock);
5566 	} else if (sysfs_streq(buf, "never")) {
5567 		spin_lock(&huge_shmem_orders_lock);
5568 		clear_bit(order, &huge_shmem_orders_always);
5569 		clear_bit(order, &huge_shmem_orders_inherit);
5570 		clear_bit(order, &huge_shmem_orders_within_size);
5571 		clear_bit(order, &huge_shmem_orders_madvise);
5572 		spin_unlock(&huge_shmem_orders_lock);
5573 	} else {
5574 		ret = -EINVAL;
5575 	}
5576 
5577 	if (ret > 0) {
5578 		int err = start_stop_khugepaged();
5579 
5580 		if (err)
5581 			ret = err;
5582 	}
5583 	return ret;
5584 }
5585 
5586 struct kobj_attribute thpsize_shmem_enabled_attr =
5587 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5589 
5590 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5591 
5592 static int __init setup_transparent_hugepage_shmem(char *str)
5593 {
5594 	int huge;
5595 
5596 	huge = shmem_parse_huge(str);
5597 	if (huge == -EINVAL) {
5598 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5599 		return huge;
5600 	}
5601 
5602 	shmem_huge = huge;
5603 	return 1;
5604 }
5605 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5606 
5607 static int __init setup_transparent_hugepage_tmpfs(char *str)
5608 {
5609 	int huge;
5610 
5611 	huge = shmem_parse_huge(str);
5612 	if (huge < 0) {
5613 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5614 		return huge;
5615 	}
5616 
5617 	tmpfs_huge = huge;
5618 	return 1;
5619 }
5620 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5621 
5622 static char str_dup[PAGE_SIZE] __initdata;
5623 static int __init setup_thp_shmem(char *str)
5624 {
5625 	char *token, *range, *policy, *subtoken;
5626 	unsigned long always, inherit, madvise, within_size;
5627 	char *start_size, *end_size;
5628 	int start, end, nr;
5629 	char *p;
5630 
5631 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5632 		goto err;
5633 	strscpy(str_dup, str);
5634 
5635 	always = huge_shmem_orders_always;
5636 	inherit = huge_shmem_orders_inherit;
5637 	madvise = huge_shmem_orders_madvise;
5638 	within_size = huge_shmem_orders_within_size;
5639 	p = str_dup;
5640 	while ((token = strsep(&p, ";")) != NULL) {
5641 		range = strsep(&token, ":");
5642 		policy = token;
5643 
5644 		if (!policy)
5645 			goto err;
5646 
5647 		while ((subtoken = strsep(&range, ",")) != NULL) {
5648 			if (strchr(subtoken, '-')) {
5649 				start_size = strsep(&subtoken, "-");
5650 				end_size = subtoken;
5651 
5652 				start = get_order_from_str(start_size,
5653 							   THP_ORDERS_ALL_FILE_DEFAULT);
5654 				end = get_order_from_str(end_size,
5655 							 THP_ORDERS_ALL_FILE_DEFAULT);
5656 			} else {
5657 				start_size = end_size = subtoken;
5658 				start = end = get_order_from_str(subtoken,
5659 								 THP_ORDERS_ALL_FILE_DEFAULT);
5660 			}
5661 
5662 			if (start < 0) {
5663 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5664 				       start_size);
5665 				goto err;
5666 			}
5667 
5668 			if (end < 0) {
5669 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5670 				       end_size);
5671 				goto err;
5672 			}
5673 
5674 			if (start > end)
5675 				goto err;
5676 
5677 			nr = end - start + 1;
5678 			if (!strcmp(policy, "always")) {
5679 				bitmap_set(&always, start, nr);
5680 				bitmap_clear(&inherit, start, nr);
5681 				bitmap_clear(&madvise, start, nr);
5682 				bitmap_clear(&within_size, start, nr);
5683 			} else if (!strcmp(policy, "advise")) {
5684 				bitmap_set(&madvise, start, nr);
5685 				bitmap_clear(&inherit, start, nr);
5686 				bitmap_clear(&always, start, nr);
5687 				bitmap_clear(&within_size, start, nr);
5688 			} else if (!strcmp(policy, "inherit")) {
5689 				bitmap_set(&inherit, start, nr);
5690 				bitmap_clear(&madvise, start, nr);
5691 				bitmap_clear(&always, start, nr);
5692 				bitmap_clear(&within_size, start, nr);
5693 			} else if (!strcmp(policy, "within_size")) {
5694 				bitmap_set(&within_size, start, nr);
5695 				bitmap_clear(&inherit, start, nr);
5696 				bitmap_clear(&madvise, start, nr);
5697 				bitmap_clear(&always, start, nr);
5698 			} else if (!strcmp(policy, "never")) {
5699 				bitmap_clear(&inherit, start, nr);
5700 				bitmap_clear(&madvise, start, nr);
5701 				bitmap_clear(&always, start, nr);
5702 				bitmap_clear(&within_size, start, nr);
5703 			} else {
5704 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5705 				goto err;
5706 			}
5707 		}
5708 	}
5709 
5710 	huge_shmem_orders_always = always;
5711 	huge_shmem_orders_madvise = madvise;
5712 	huge_shmem_orders_inherit = inherit;
5713 	huge_shmem_orders_within_size = within_size;
5714 	shmem_orders_configured = true;
5715 	return 1;
5716 
5717 err:
5718 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5719 	return 0;
5720 }
5721 __setup("thp_shmem=", setup_thp_shmem);
5722 
5723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5724 
5725 #else /* !CONFIG_SHMEM */
5726 
5727 /*
5728  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5729  *
5730  * This is intended for small system where the benefits of the full
5731  * shmem code (swap-backed and resource-limited) are outweighed by
5732  * their complexity. On systems without swap this code should be
5733  * effectively equivalent, but much lighter weight.
5734  */
5735 
5736 static struct file_system_type shmem_fs_type = {
5737 	.name		= "tmpfs",
5738 	.init_fs_context = ramfs_init_fs_context,
5739 	.parameters	= ramfs_fs_parameters,
5740 	.kill_sb	= ramfs_kill_sb,
5741 	.fs_flags	= FS_USERNS_MOUNT,
5742 };
5743 
5744 void __init shmem_init(void)
5745 {
5746 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5747 
5748 	shm_mnt = kern_mount(&shmem_fs_type);
5749 	BUG_ON(IS_ERR(shm_mnt));
5750 }
5751 
5752 int shmem_unuse(unsigned int type)
5753 {
5754 	return 0;
5755 }
5756 
5757 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5758 {
5759 	return 0;
5760 }
5761 
5762 void shmem_unlock_mapping(struct address_space *mapping)
5763 {
5764 }
5765 
5766 #ifdef CONFIG_MMU
5767 unsigned long shmem_get_unmapped_area(struct file *file,
5768 				      unsigned long addr, unsigned long len,
5769 				      unsigned long pgoff, unsigned long flags)
5770 {
5771 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5772 }
5773 #endif
5774 
5775 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5776 {
5777 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5778 }
5779 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5780 
5781 #define shmem_vm_ops				generic_file_vm_ops
5782 #define shmem_anon_vm_ops			generic_file_vm_ops
5783 #define shmem_file_operations			ramfs_file_operations
5784 #define shmem_acct_size(flags, size)		0
5785 #define shmem_unacct_size(flags, size)		do {} while (0)
5786 
5787 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5788 				struct super_block *sb, struct inode *dir,
5789 				umode_t mode, dev_t dev, unsigned long flags)
5790 {
5791 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5792 	return inode ? inode : ERR_PTR(-ENOSPC);
5793 }
5794 
5795 #endif /* CONFIG_SHMEM */
5796 
5797 /* common code */
5798 
5799 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5800 			loff_t size, unsigned long flags, unsigned int i_flags)
5801 {
5802 	struct inode *inode;
5803 	struct file *res;
5804 
5805 	if (IS_ERR(mnt))
5806 		return ERR_CAST(mnt);
5807 
5808 	if (size < 0 || size > MAX_LFS_FILESIZE)
5809 		return ERR_PTR(-EINVAL);
5810 
5811 	if (is_idmapped_mnt(mnt))
5812 		return ERR_PTR(-EINVAL);
5813 
5814 	if (shmem_acct_size(flags, size))
5815 		return ERR_PTR(-ENOMEM);
5816 
5817 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5818 				S_IFREG | S_IRWXUGO, 0, flags);
5819 	if (IS_ERR(inode)) {
5820 		shmem_unacct_size(flags, size);
5821 		return ERR_CAST(inode);
5822 	}
5823 	inode->i_flags |= i_flags;
5824 	inode->i_size = size;
5825 	clear_nlink(inode);	/* It is unlinked */
5826 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5827 	if (!IS_ERR(res))
5828 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5829 				&shmem_file_operations);
5830 	if (IS_ERR(res))
5831 		iput(inode);
5832 	return res;
5833 }
5834 
5835 /**
5836  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5837  * 	kernel internal.  There will be NO LSM permission checks against the
5838  * 	underlying inode.  So users of this interface must do LSM checks at a
5839  *	higher layer.  The users are the big_key and shm implementations.  LSM
5840  *	checks are provided at the key or shm level rather than the inode.
5841  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5842  * @size: size to be set for the file
5843  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5844  */
5845 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5846 {
5847 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5848 }
5849 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5850 
5851 /**
5852  * shmem_file_setup - get an unlinked file living in tmpfs
5853  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5854  * @size: size to be set for the file
5855  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5856  */
5857 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5858 {
5859 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5860 }
5861 EXPORT_SYMBOL_GPL(shmem_file_setup);
5862 
5863 /**
5864  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5865  * @mnt: the tmpfs mount where the file will be created
5866  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5867  * @size: size to be set for the file
5868  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5869  */
5870 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5871 				       loff_t size, unsigned long flags)
5872 {
5873 	return __shmem_file_setup(mnt, name, size, flags, 0);
5874 }
5875 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5876 
5877 /**
5878  * shmem_zero_setup - setup a shared anonymous mapping
5879  * @vma: the vma to be mmapped is prepared by do_mmap
5880  */
5881 int shmem_zero_setup(struct vm_area_struct *vma)
5882 {
5883 	struct file *file;
5884 	loff_t size = vma->vm_end - vma->vm_start;
5885 
5886 	/*
5887 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5888 	 * between XFS directory reading and selinux: since this file is only
5889 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5890 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5891 	 */
5892 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5893 	if (IS_ERR(file))
5894 		return PTR_ERR(file);
5895 
5896 	if (vma->vm_file)
5897 		fput(vma->vm_file);
5898 	vma->vm_file = file;
5899 	vma->vm_ops = &shmem_anon_vm_ops;
5900 
5901 	return 0;
5902 }
5903 
5904 /**
5905  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5906  * @mapping:	the folio's address_space
5907  * @index:	the folio index
5908  * @gfp:	the page allocator flags to use if allocating
5909  *
5910  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5911  * with any new page allocations done using the specified allocation flags.
5912  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5913  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5914  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5915  *
5916  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5917  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5918  */
5919 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5920 		pgoff_t index, gfp_t gfp)
5921 {
5922 #ifdef CONFIG_SHMEM
5923 	struct inode *inode = mapping->host;
5924 	struct folio *folio;
5925 	int error;
5926 
5927 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5928 				    gfp, NULL, NULL);
5929 	if (error)
5930 		return ERR_PTR(error);
5931 
5932 	folio_unlock(folio);
5933 	return folio;
5934 #else
5935 	/*
5936 	 * The tiny !SHMEM case uses ramfs without swap
5937 	 */
5938 	return mapping_read_folio_gfp(mapping, index, gfp);
5939 #endif
5940 }
5941 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5942 
5943 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5944 					 pgoff_t index, gfp_t gfp)
5945 {
5946 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5947 	struct page *page;
5948 
5949 	if (IS_ERR(folio))
5950 		return &folio->page;
5951 
5952 	page = folio_file_page(folio, index);
5953 	if (PageHWPoison(page)) {
5954 		folio_put(folio);
5955 		return ERR_PTR(-EIO);
5956 	}
5957 
5958 	return page;
5959 }
5960 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5961