1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_MUTEX(shmem_swaplist_mutex); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 */ 436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 437 { 438 struct shmem_inode_info *info = SHMEM_I(inode); 439 long freed; 440 441 spin_lock(&info->lock); 442 info->alloced += alloced; 443 info->swapped += swapped; 444 freed = info->alloced - info->swapped - 445 READ_ONCE(inode->i_mapping->nrpages); 446 /* 447 * Special case: whereas normally shmem_recalc_inode() is called 448 * after i_mapping->nrpages has already been adjusted (up or down), 449 * shmem_writeout() has to raise swapped before nrpages is lowered - 450 * to stop a racing shmem_recalc_inode() from thinking that a page has 451 * been freed. Compensate here, to avoid the need for a followup call. 452 */ 453 if (swapped > 0) 454 freed += swapped; 455 if (freed > 0) 456 info->alloced -= freed; 457 spin_unlock(&info->lock); 458 459 /* The quota case may block */ 460 if (freed > 0) 461 shmem_inode_unacct_blocks(inode, freed); 462 } 463 464 bool shmem_charge(struct inode *inode, long pages) 465 { 466 struct address_space *mapping = inode->i_mapping; 467 468 if (shmem_inode_acct_blocks(inode, pages)) 469 return false; 470 471 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 472 xa_lock_irq(&mapping->i_pages); 473 mapping->nrpages += pages; 474 xa_unlock_irq(&mapping->i_pages); 475 476 shmem_recalc_inode(inode, pages, 0); 477 return true; 478 } 479 480 void shmem_uncharge(struct inode *inode, long pages) 481 { 482 /* pages argument is currently unused: keep it to help debugging */ 483 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 484 485 shmem_recalc_inode(inode, 0, 0); 486 } 487 488 /* 489 * Replace item expected in xarray by a new item, while holding xa_lock. 490 */ 491 static int shmem_replace_entry(struct address_space *mapping, 492 pgoff_t index, void *expected, void *replacement) 493 { 494 XA_STATE(xas, &mapping->i_pages, index); 495 void *item; 496 497 VM_BUG_ON(!expected); 498 VM_BUG_ON(!replacement); 499 item = xas_load(&xas); 500 if (item != expected) 501 return -ENOENT; 502 xas_store(&xas, replacement); 503 return 0; 504 } 505 506 /* 507 * Sometimes, before we decide whether to proceed or to fail, we must check 508 * that an entry was not already brought back from swap by a racing thread. 509 * 510 * Checking folio is not enough: by the time a swapcache folio is locked, it 511 * might be reused, and again be swapcache, using the same swap as before. 512 */ 513 static bool shmem_confirm_swap(struct address_space *mapping, 514 pgoff_t index, swp_entry_t swap) 515 { 516 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 517 } 518 519 /* 520 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 521 * 522 * SHMEM_HUGE_NEVER: 523 * disables huge pages for the mount; 524 * SHMEM_HUGE_ALWAYS: 525 * enables huge pages for the mount; 526 * SHMEM_HUGE_WITHIN_SIZE: 527 * only allocate huge pages if the page will be fully within i_size, 528 * also respect madvise() hints; 529 * SHMEM_HUGE_ADVISE: 530 * only allocate huge pages if requested with madvise(); 531 */ 532 533 #define SHMEM_HUGE_NEVER 0 534 #define SHMEM_HUGE_ALWAYS 1 535 #define SHMEM_HUGE_WITHIN_SIZE 2 536 #define SHMEM_HUGE_ADVISE 3 537 538 /* 539 * Special values. 540 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 541 * 542 * SHMEM_HUGE_DENY: 543 * disables huge on shm_mnt and all mounts, for emergency use; 544 * SHMEM_HUGE_FORCE: 545 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 546 * 547 */ 548 #define SHMEM_HUGE_DENY (-1) 549 #define SHMEM_HUGE_FORCE (-2) 550 551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 552 /* ifdef here to avoid bloating shmem.o when not necessary */ 553 554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 556 557 /** 558 * shmem_mapping_size_orders - Get allowable folio orders for the given file size. 559 * @mapping: Target address_space. 560 * @index: The page index. 561 * @write_end: end of a write, could extend inode size. 562 * 563 * This returns huge orders for folios (when supported) based on the file size 564 * which the mapping currently allows at the given index. The index is relevant 565 * due to alignment considerations the mapping might have. The returned order 566 * may be less than the size passed. 567 * 568 * Return: The orders. 569 */ 570 static inline unsigned int 571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end) 572 { 573 unsigned int order; 574 size_t size; 575 576 if (!mapping_large_folio_support(mapping) || !write_end) 577 return 0; 578 579 /* Calculate the write size based on the write_end */ 580 size = write_end - (index << PAGE_SHIFT); 581 order = filemap_get_order(size); 582 if (!order) 583 return 0; 584 585 /* If we're not aligned, allocate a smaller folio */ 586 if (index & ((1UL << order) - 1)) 587 order = __ffs(index); 588 589 order = min_t(size_t, order, MAX_PAGECACHE_ORDER); 590 return order > 0 ? BIT(order + 1) - 1 : 0; 591 } 592 593 static unsigned int shmem_get_orders_within_size(struct inode *inode, 594 unsigned long within_size_orders, pgoff_t index, 595 loff_t write_end) 596 { 597 pgoff_t aligned_index; 598 unsigned long order; 599 loff_t i_size; 600 601 order = highest_order(within_size_orders); 602 while (within_size_orders) { 603 aligned_index = round_up(index + 1, 1 << order); 604 i_size = max(write_end, i_size_read(inode)); 605 i_size = round_up(i_size, PAGE_SIZE); 606 if (i_size >> PAGE_SHIFT >= aligned_index) 607 return within_size_orders; 608 609 order = next_order(&within_size_orders, order); 610 } 611 612 return 0; 613 } 614 615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 616 loff_t write_end, bool shmem_huge_force, 617 struct vm_area_struct *vma, 618 unsigned long vm_flags) 619 { 620 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 621 0 : BIT(HPAGE_PMD_ORDER); 622 unsigned long within_size_orders; 623 624 if (!S_ISREG(inode->i_mode)) 625 return 0; 626 if (shmem_huge == SHMEM_HUGE_DENY) 627 return 0; 628 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 629 return maybe_pmd_order; 630 631 /* 632 * The huge order allocation for anon shmem is controlled through 633 * the mTHP interface, so we still use PMD-sized huge order to 634 * check whether global control is enabled. 635 * 636 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 637 * allocate huge pages due to lack of a write size hint. 638 * 639 * Otherwise, tmpfs will allow getting a highest order hint based on 640 * the size of write and fallocate paths, then will try each allowable 641 * huge orders. 642 */ 643 switch (SHMEM_SB(inode->i_sb)->huge) { 644 case SHMEM_HUGE_ALWAYS: 645 if (vma) 646 return maybe_pmd_order; 647 648 return shmem_mapping_size_orders(inode->i_mapping, index, write_end); 649 case SHMEM_HUGE_WITHIN_SIZE: 650 if (vma) 651 within_size_orders = maybe_pmd_order; 652 else 653 within_size_orders = shmem_mapping_size_orders(inode->i_mapping, 654 index, write_end); 655 656 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 657 index, write_end); 658 if (within_size_orders > 0) 659 return within_size_orders; 660 661 fallthrough; 662 case SHMEM_HUGE_ADVISE: 663 if (vm_flags & VM_HUGEPAGE) 664 return maybe_pmd_order; 665 fallthrough; 666 default: 667 return 0; 668 } 669 } 670 671 static int shmem_parse_huge(const char *str) 672 { 673 int huge; 674 675 if (!str) 676 return -EINVAL; 677 678 if (!strcmp(str, "never")) 679 huge = SHMEM_HUGE_NEVER; 680 else if (!strcmp(str, "always")) 681 huge = SHMEM_HUGE_ALWAYS; 682 else if (!strcmp(str, "within_size")) 683 huge = SHMEM_HUGE_WITHIN_SIZE; 684 else if (!strcmp(str, "advise")) 685 huge = SHMEM_HUGE_ADVISE; 686 else if (!strcmp(str, "deny")) 687 huge = SHMEM_HUGE_DENY; 688 else if (!strcmp(str, "force")) 689 huge = SHMEM_HUGE_FORCE; 690 else 691 return -EINVAL; 692 693 if (!has_transparent_hugepage() && 694 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 695 return -EINVAL; 696 697 /* Do not override huge allocation policy with non-PMD sized mTHP */ 698 if (huge == SHMEM_HUGE_FORCE && 699 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 700 return -EINVAL; 701 702 return huge; 703 } 704 705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 706 static const char *shmem_format_huge(int huge) 707 { 708 switch (huge) { 709 case SHMEM_HUGE_NEVER: 710 return "never"; 711 case SHMEM_HUGE_ALWAYS: 712 return "always"; 713 case SHMEM_HUGE_WITHIN_SIZE: 714 return "within_size"; 715 case SHMEM_HUGE_ADVISE: 716 return "advise"; 717 case SHMEM_HUGE_DENY: 718 return "deny"; 719 case SHMEM_HUGE_FORCE: 720 return "force"; 721 default: 722 VM_BUG_ON(1); 723 return "bad_val"; 724 } 725 } 726 #endif 727 728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 729 struct shrink_control *sc, unsigned long nr_to_free) 730 { 731 LIST_HEAD(list), *pos, *next; 732 struct inode *inode; 733 struct shmem_inode_info *info; 734 struct folio *folio; 735 unsigned long batch = sc ? sc->nr_to_scan : 128; 736 unsigned long split = 0, freed = 0; 737 738 if (list_empty(&sbinfo->shrinklist)) 739 return SHRINK_STOP; 740 741 spin_lock(&sbinfo->shrinklist_lock); 742 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 743 info = list_entry(pos, struct shmem_inode_info, shrinklist); 744 745 /* pin the inode */ 746 inode = igrab(&info->vfs_inode); 747 748 /* inode is about to be evicted */ 749 if (!inode) { 750 list_del_init(&info->shrinklist); 751 goto next; 752 } 753 754 list_move(&info->shrinklist, &list); 755 next: 756 sbinfo->shrinklist_len--; 757 if (!--batch) 758 break; 759 } 760 spin_unlock(&sbinfo->shrinklist_lock); 761 762 list_for_each_safe(pos, next, &list) { 763 pgoff_t next, end; 764 loff_t i_size; 765 int ret; 766 767 info = list_entry(pos, struct shmem_inode_info, shrinklist); 768 inode = &info->vfs_inode; 769 770 if (nr_to_free && freed >= nr_to_free) 771 goto move_back; 772 773 i_size = i_size_read(inode); 774 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 775 if (!folio || xa_is_value(folio)) 776 goto drop; 777 778 /* No large folio at the end of the file: nothing to split */ 779 if (!folio_test_large(folio)) { 780 folio_put(folio); 781 goto drop; 782 } 783 784 /* Check if there is anything to gain from splitting */ 785 next = folio_next_index(folio); 786 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 787 if (end <= folio->index || end >= next) { 788 folio_put(folio); 789 goto drop; 790 } 791 792 /* 793 * Move the inode on the list back to shrinklist if we failed 794 * to lock the page at this time. 795 * 796 * Waiting for the lock may lead to deadlock in the 797 * reclaim path. 798 */ 799 if (!folio_trylock(folio)) { 800 folio_put(folio); 801 goto move_back; 802 } 803 804 ret = split_folio(folio); 805 folio_unlock(folio); 806 folio_put(folio); 807 808 /* If split failed move the inode on the list back to shrinklist */ 809 if (ret) 810 goto move_back; 811 812 freed += next - end; 813 split++; 814 drop: 815 list_del_init(&info->shrinklist); 816 goto put; 817 move_back: 818 /* 819 * Make sure the inode is either on the global list or deleted 820 * from any local list before iput() since it could be deleted 821 * in another thread once we put the inode (then the local list 822 * is corrupted). 823 */ 824 spin_lock(&sbinfo->shrinklist_lock); 825 list_move(&info->shrinklist, &sbinfo->shrinklist); 826 sbinfo->shrinklist_len++; 827 spin_unlock(&sbinfo->shrinklist_lock); 828 put: 829 iput(inode); 830 } 831 832 return split; 833 } 834 835 static long shmem_unused_huge_scan(struct super_block *sb, 836 struct shrink_control *sc) 837 { 838 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 839 840 if (!READ_ONCE(sbinfo->shrinklist_len)) 841 return SHRINK_STOP; 842 843 return shmem_unused_huge_shrink(sbinfo, sc, 0); 844 } 845 846 static long shmem_unused_huge_count(struct super_block *sb, 847 struct shrink_control *sc) 848 { 849 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 850 return READ_ONCE(sbinfo->shrinklist_len); 851 } 852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 853 854 #define shmem_huge SHMEM_HUGE_DENY 855 856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 857 struct shrink_control *sc, unsigned long nr_to_free) 858 { 859 return 0; 860 } 861 862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 863 loff_t write_end, bool shmem_huge_force, 864 struct vm_area_struct *vma, 865 unsigned long vm_flags) 866 { 867 return 0; 868 } 869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 870 871 static void shmem_update_stats(struct folio *folio, int nr_pages) 872 { 873 if (folio_test_pmd_mappable(folio)) 874 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 875 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 876 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 877 } 878 879 /* 880 * Somewhat like filemap_add_folio, but error if expected item has gone. 881 */ 882 static int shmem_add_to_page_cache(struct folio *folio, 883 struct address_space *mapping, 884 pgoff_t index, void *expected, gfp_t gfp) 885 { 886 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 887 long nr = folio_nr_pages(folio); 888 889 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 890 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 891 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 892 893 folio_ref_add(folio, nr); 894 folio->mapping = mapping; 895 folio->index = index; 896 897 gfp &= GFP_RECLAIM_MASK; 898 folio_throttle_swaprate(folio, gfp); 899 900 do { 901 xas_lock_irq(&xas); 902 if (expected != xas_find_conflict(&xas)) { 903 xas_set_err(&xas, -EEXIST); 904 goto unlock; 905 } 906 if (expected && xas_find_conflict(&xas)) { 907 xas_set_err(&xas, -EEXIST); 908 goto unlock; 909 } 910 xas_store(&xas, folio); 911 if (xas_error(&xas)) 912 goto unlock; 913 shmem_update_stats(folio, nr); 914 mapping->nrpages += nr; 915 unlock: 916 xas_unlock_irq(&xas); 917 } while (xas_nomem(&xas, gfp)); 918 919 if (xas_error(&xas)) { 920 folio->mapping = NULL; 921 folio_ref_sub(folio, nr); 922 return xas_error(&xas); 923 } 924 925 return 0; 926 } 927 928 /* 929 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 930 */ 931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 932 { 933 struct address_space *mapping = folio->mapping; 934 long nr = folio_nr_pages(folio); 935 int error; 936 937 xa_lock_irq(&mapping->i_pages); 938 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 939 folio->mapping = NULL; 940 mapping->nrpages -= nr; 941 shmem_update_stats(folio, -nr); 942 xa_unlock_irq(&mapping->i_pages); 943 folio_put_refs(folio, nr); 944 BUG_ON(error); 945 } 946 947 /* 948 * Remove swap entry from page cache, free the swap and its page cache. Returns 949 * the number of pages being freed. 0 means entry not found in XArray (0 pages 950 * being freed). 951 */ 952 static long shmem_free_swap(struct address_space *mapping, 953 pgoff_t index, void *radswap) 954 { 955 int order = xa_get_order(&mapping->i_pages, index); 956 void *old; 957 958 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 959 if (old != radswap) 960 return 0; 961 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 962 963 return 1 << order; 964 } 965 966 /* 967 * Determine (in bytes) how many of the shmem object's pages mapped by the 968 * given offsets are swapped out. 969 * 970 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 971 * as long as the inode doesn't go away and racy results are not a problem. 972 */ 973 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 974 pgoff_t start, pgoff_t end) 975 { 976 XA_STATE(xas, &mapping->i_pages, start); 977 struct page *page; 978 unsigned long swapped = 0; 979 unsigned long max = end - 1; 980 981 rcu_read_lock(); 982 xas_for_each(&xas, page, max) { 983 if (xas_retry(&xas, page)) 984 continue; 985 if (xa_is_value(page)) 986 swapped += 1 << xas_get_order(&xas); 987 if (xas.xa_index == max) 988 break; 989 if (need_resched()) { 990 xas_pause(&xas); 991 cond_resched_rcu(); 992 } 993 } 994 rcu_read_unlock(); 995 996 return swapped << PAGE_SHIFT; 997 } 998 999 /* 1000 * Determine (in bytes) how many of the shmem object's pages mapped by the 1001 * given vma is swapped out. 1002 * 1003 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1004 * as long as the inode doesn't go away and racy results are not a problem. 1005 */ 1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1007 { 1008 struct inode *inode = file_inode(vma->vm_file); 1009 struct shmem_inode_info *info = SHMEM_I(inode); 1010 struct address_space *mapping = inode->i_mapping; 1011 unsigned long swapped; 1012 1013 /* Be careful as we don't hold info->lock */ 1014 swapped = READ_ONCE(info->swapped); 1015 1016 /* 1017 * The easier cases are when the shmem object has nothing in swap, or 1018 * the vma maps it whole. Then we can simply use the stats that we 1019 * already track. 1020 */ 1021 if (!swapped) 1022 return 0; 1023 1024 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1025 return swapped << PAGE_SHIFT; 1026 1027 /* Here comes the more involved part */ 1028 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1029 vma->vm_pgoff + vma_pages(vma)); 1030 } 1031 1032 /* 1033 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1034 */ 1035 void shmem_unlock_mapping(struct address_space *mapping) 1036 { 1037 struct folio_batch fbatch; 1038 pgoff_t index = 0; 1039 1040 folio_batch_init(&fbatch); 1041 /* 1042 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1043 */ 1044 while (!mapping_unevictable(mapping) && 1045 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1046 check_move_unevictable_folios(&fbatch); 1047 folio_batch_release(&fbatch); 1048 cond_resched(); 1049 } 1050 } 1051 1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1053 { 1054 struct folio *folio; 1055 1056 /* 1057 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1058 * beyond i_size, and reports fallocated folios as holes. 1059 */ 1060 folio = filemap_get_entry(inode->i_mapping, index); 1061 if (!folio) 1062 return folio; 1063 if (!xa_is_value(folio)) { 1064 folio_lock(folio); 1065 if (folio->mapping == inode->i_mapping) 1066 return folio; 1067 /* The folio has been swapped out */ 1068 folio_unlock(folio); 1069 folio_put(folio); 1070 } 1071 /* 1072 * But read a folio back from swap if any of it is within i_size 1073 * (although in some cases this is just a waste of time). 1074 */ 1075 folio = NULL; 1076 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1077 return folio; 1078 } 1079 1080 /* 1081 * Remove range of pages and swap entries from page cache, and free them. 1082 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1083 */ 1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1085 bool unfalloc) 1086 { 1087 struct address_space *mapping = inode->i_mapping; 1088 struct shmem_inode_info *info = SHMEM_I(inode); 1089 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1090 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1091 struct folio_batch fbatch; 1092 pgoff_t indices[PAGEVEC_SIZE]; 1093 struct folio *folio; 1094 bool same_folio; 1095 long nr_swaps_freed = 0; 1096 pgoff_t index; 1097 int i; 1098 1099 if (lend == -1) 1100 end = -1; /* unsigned, so actually very big */ 1101 1102 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1103 info->fallocend = start; 1104 1105 folio_batch_init(&fbatch); 1106 index = start; 1107 while (index < end && find_lock_entries(mapping, &index, end - 1, 1108 &fbatch, indices)) { 1109 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1110 folio = fbatch.folios[i]; 1111 1112 if (xa_is_value(folio)) { 1113 if (unfalloc) 1114 continue; 1115 nr_swaps_freed += shmem_free_swap(mapping, 1116 indices[i], folio); 1117 continue; 1118 } 1119 1120 if (!unfalloc || !folio_test_uptodate(folio)) 1121 truncate_inode_folio(mapping, folio); 1122 folio_unlock(folio); 1123 } 1124 folio_batch_remove_exceptionals(&fbatch); 1125 folio_batch_release(&fbatch); 1126 cond_resched(); 1127 } 1128 1129 /* 1130 * When undoing a failed fallocate, we want none of the partial folio 1131 * zeroing and splitting below, but shall want to truncate the whole 1132 * folio when !uptodate indicates that it was added by this fallocate, 1133 * even when [lstart, lend] covers only a part of the folio. 1134 */ 1135 if (unfalloc) 1136 goto whole_folios; 1137 1138 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1139 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1140 if (folio) { 1141 same_folio = lend < folio_pos(folio) + folio_size(folio); 1142 folio_mark_dirty(folio); 1143 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1144 start = folio_next_index(folio); 1145 if (same_folio) 1146 end = folio->index; 1147 } 1148 folio_unlock(folio); 1149 folio_put(folio); 1150 folio = NULL; 1151 } 1152 1153 if (!same_folio) 1154 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1155 if (folio) { 1156 folio_mark_dirty(folio); 1157 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1158 end = folio->index; 1159 folio_unlock(folio); 1160 folio_put(folio); 1161 } 1162 1163 whole_folios: 1164 1165 index = start; 1166 while (index < end) { 1167 cond_resched(); 1168 1169 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1170 indices)) { 1171 /* If all gone or hole-punch or unfalloc, we're done */ 1172 if (index == start || end != -1) 1173 break; 1174 /* But if truncating, restart to make sure all gone */ 1175 index = start; 1176 continue; 1177 } 1178 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1179 folio = fbatch.folios[i]; 1180 1181 if (xa_is_value(folio)) { 1182 long swaps_freed; 1183 1184 if (unfalloc) 1185 continue; 1186 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1187 if (!swaps_freed) { 1188 /* Swap was replaced by page: retry */ 1189 index = indices[i]; 1190 break; 1191 } 1192 nr_swaps_freed += swaps_freed; 1193 continue; 1194 } 1195 1196 folio_lock(folio); 1197 1198 if (!unfalloc || !folio_test_uptodate(folio)) { 1199 if (folio_mapping(folio) != mapping) { 1200 /* Page was replaced by swap: retry */ 1201 folio_unlock(folio); 1202 index = indices[i]; 1203 break; 1204 } 1205 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1206 folio); 1207 1208 if (!folio_test_large(folio)) { 1209 truncate_inode_folio(mapping, folio); 1210 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1211 /* 1212 * If we split a page, reset the loop so 1213 * that we pick up the new sub pages. 1214 * Otherwise the THP was entirely 1215 * dropped or the target range was 1216 * zeroed, so just continue the loop as 1217 * is. 1218 */ 1219 if (!folio_test_large(folio)) { 1220 folio_unlock(folio); 1221 index = start; 1222 break; 1223 } 1224 } 1225 } 1226 folio_unlock(folio); 1227 } 1228 folio_batch_remove_exceptionals(&fbatch); 1229 folio_batch_release(&fbatch); 1230 } 1231 1232 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1233 } 1234 1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1236 { 1237 shmem_undo_range(inode, lstart, lend, false); 1238 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1239 inode_inc_iversion(inode); 1240 } 1241 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1242 1243 static int shmem_getattr(struct mnt_idmap *idmap, 1244 const struct path *path, struct kstat *stat, 1245 u32 request_mask, unsigned int query_flags) 1246 { 1247 struct inode *inode = path->dentry->d_inode; 1248 struct shmem_inode_info *info = SHMEM_I(inode); 1249 1250 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1251 shmem_recalc_inode(inode, 0, 0); 1252 1253 if (info->fsflags & FS_APPEND_FL) 1254 stat->attributes |= STATX_ATTR_APPEND; 1255 if (info->fsflags & FS_IMMUTABLE_FL) 1256 stat->attributes |= STATX_ATTR_IMMUTABLE; 1257 if (info->fsflags & FS_NODUMP_FL) 1258 stat->attributes |= STATX_ATTR_NODUMP; 1259 stat->attributes_mask |= (STATX_ATTR_APPEND | 1260 STATX_ATTR_IMMUTABLE | 1261 STATX_ATTR_NODUMP); 1262 generic_fillattr(idmap, request_mask, inode, stat); 1263 1264 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1265 stat->blksize = HPAGE_PMD_SIZE; 1266 1267 if (request_mask & STATX_BTIME) { 1268 stat->result_mask |= STATX_BTIME; 1269 stat->btime.tv_sec = info->i_crtime.tv_sec; 1270 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static int shmem_setattr(struct mnt_idmap *idmap, 1277 struct dentry *dentry, struct iattr *attr) 1278 { 1279 struct inode *inode = d_inode(dentry); 1280 struct shmem_inode_info *info = SHMEM_I(inode); 1281 int error; 1282 bool update_mtime = false; 1283 bool update_ctime = true; 1284 1285 error = setattr_prepare(idmap, dentry, attr); 1286 if (error) 1287 return error; 1288 1289 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1290 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1291 return -EPERM; 1292 } 1293 } 1294 1295 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1296 loff_t oldsize = inode->i_size; 1297 loff_t newsize = attr->ia_size; 1298 1299 /* protected by i_rwsem */ 1300 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1301 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1302 return -EPERM; 1303 1304 if (newsize != oldsize) { 1305 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1306 oldsize, newsize); 1307 if (error) 1308 return error; 1309 i_size_write(inode, newsize); 1310 update_mtime = true; 1311 } else { 1312 update_ctime = false; 1313 } 1314 if (newsize <= oldsize) { 1315 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1316 if (oldsize > holebegin) 1317 unmap_mapping_range(inode->i_mapping, 1318 holebegin, 0, 1); 1319 if (info->alloced) 1320 shmem_truncate_range(inode, 1321 newsize, (loff_t)-1); 1322 /* unmap again to remove racily COWed private pages */ 1323 if (oldsize > holebegin) 1324 unmap_mapping_range(inode->i_mapping, 1325 holebegin, 0, 1); 1326 } 1327 } 1328 1329 if (is_quota_modification(idmap, inode, attr)) { 1330 error = dquot_initialize(inode); 1331 if (error) 1332 return error; 1333 } 1334 1335 /* Transfer quota accounting */ 1336 if (i_uid_needs_update(idmap, attr, inode) || 1337 i_gid_needs_update(idmap, attr, inode)) { 1338 error = dquot_transfer(idmap, inode, attr); 1339 if (error) 1340 return error; 1341 } 1342 1343 setattr_copy(idmap, inode, attr); 1344 if (attr->ia_valid & ATTR_MODE) 1345 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1346 if (!error && update_ctime) { 1347 inode_set_ctime_current(inode); 1348 if (update_mtime) 1349 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1350 inode_inc_iversion(inode); 1351 } 1352 return error; 1353 } 1354 1355 static void shmem_evict_inode(struct inode *inode) 1356 { 1357 struct shmem_inode_info *info = SHMEM_I(inode); 1358 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1359 size_t freed = 0; 1360 1361 if (shmem_mapping(inode->i_mapping)) { 1362 shmem_unacct_size(info->flags, inode->i_size); 1363 inode->i_size = 0; 1364 mapping_set_exiting(inode->i_mapping); 1365 shmem_truncate_range(inode, 0, (loff_t)-1); 1366 if (!list_empty(&info->shrinklist)) { 1367 spin_lock(&sbinfo->shrinklist_lock); 1368 if (!list_empty(&info->shrinklist)) { 1369 list_del_init(&info->shrinklist); 1370 sbinfo->shrinklist_len--; 1371 } 1372 spin_unlock(&sbinfo->shrinklist_lock); 1373 } 1374 while (!list_empty(&info->swaplist)) { 1375 /* Wait while shmem_unuse() is scanning this inode... */ 1376 wait_var_event(&info->stop_eviction, 1377 !atomic_read(&info->stop_eviction)); 1378 mutex_lock(&shmem_swaplist_mutex); 1379 /* ...but beware of the race if we peeked too early */ 1380 if (!atomic_read(&info->stop_eviction)) 1381 list_del_init(&info->swaplist); 1382 mutex_unlock(&shmem_swaplist_mutex); 1383 } 1384 } 1385 1386 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1387 shmem_free_inode(inode->i_sb, freed); 1388 WARN_ON(inode->i_blocks); 1389 clear_inode(inode); 1390 #ifdef CONFIG_TMPFS_QUOTA 1391 dquot_free_inode(inode); 1392 dquot_drop(inode); 1393 #endif 1394 } 1395 1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1397 pgoff_t start, struct folio_batch *fbatch, 1398 pgoff_t *indices, unsigned int type) 1399 { 1400 XA_STATE(xas, &mapping->i_pages, start); 1401 struct folio *folio; 1402 swp_entry_t entry; 1403 1404 rcu_read_lock(); 1405 xas_for_each(&xas, folio, ULONG_MAX) { 1406 if (xas_retry(&xas, folio)) 1407 continue; 1408 1409 if (!xa_is_value(folio)) 1410 continue; 1411 1412 entry = radix_to_swp_entry(folio); 1413 /* 1414 * swapin error entries can be found in the mapping. But they're 1415 * deliberately ignored here as we've done everything we can do. 1416 */ 1417 if (swp_type(entry) != type) 1418 continue; 1419 1420 indices[folio_batch_count(fbatch)] = xas.xa_index; 1421 if (!folio_batch_add(fbatch, folio)) 1422 break; 1423 1424 if (need_resched()) { 1425 xas_pause(&xas); 1426 cond_resched_rcu(); 1427 } 1428 } 1429 rcu_read_unlock(); 1430 1431 return folio_batch_count(fbatch); 1432 } 1433 1434 /* 1435 * Move the swapped pages for an inode to page cache. Returns the count 1436 * of pages swapped in, or the error in case of failure. 1437 */ 1438 static int shmem_unuse_swap_entries(struct inode *inode, 1439 struct folio_batch *fbatch, pgoff_t *indices) 1440 { 1441 int i = 0; 1442 int ret = 0; 1443 int error = 0; 1444 struct address_space *mapping = inode->i_mapping; 1445 1446 for (i = 0; i < folio_batch_count(fbatch); i++) { 1447 struct folio *folio = fbatch->folios[i]; 1448 1449 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1450 mapping_gfp_mask(mapping), NULL, NULL); 1451 if (error == 0) { 1452 folio_unlock(folio); 1453 folio_put(folio); 1454 ret++; 1455 } 1456 if (error == -ENOMEM) 1457 break; 1458 error = 0; 1459 } 1460 return error ? error : ret; 1461 } 1462 1463 /* 1464 * If swap found in inode, free it and move page from swapcache to filecache. 1465 */ 1466 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1467 { 1468 struct address_space *mapping = inode->i_mapping; 1469 pgoff_t start = 0; 1470 struct folio_batch fbatch; 1471 pgoff_t indices[PAGEVEC_SIZE]; 1472 int ret = 0; 1473 1474 do { 1475 folio_batch_init(&fbatch); 1476 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1477 indices, type)) { 1478 ret = 0; 1479 break; 1480 } 1481 1482 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1483 if (ret < 0) 1484 break; 1485 1486 start = indices[folio_batch_count(&fbatch) - 1]; 1487 } while (true); 1488 1489 return ret; 1490 } 1491 1492 /* 1493 * Read all the shared memory data that resides in the swap 1494 * device 'type' back into memory, so the swap device can be 1495 * unused. 1496 */ 1497 int shmem_unuse(unsigned int type) 1498 { 1499 struct shmem_inode_info *info, *next; 1500 int error = 0; 1501 1502 if (list_empty(&shmem_swaplist)) 1503 return 0; 1504 1505 mutex_lock(&shmem_swaplist_mutex); 1506 start_over: 1507 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1508 if (!info->swapped) { 1509 list_del_init(&info->swaplist); 1510 continue; 1511 } 1512 /* 1513 * Drop the swaplist mutex while searching the inode for swap; 1514 * but before doing so, make sure shmem_evict_inode() will not 1515 * remove placeholder inode from swaplist, nor let it be freed 1516 * (igrab() would protect from unlink, but not from unmount). 1517 */ 1518 atomic_inc(&info->stop_eviction); 1519 mutex_unlock(&shmem_swaplist_mutex); 1520 1521 error = shmem_unuse_inode(&info->vfs_inode, type); 1522 cond_resched(); 1523 1524 mutex_lock(&shmem_swaplist_mutex); 1525 if (atomic_dec_and_test(&info->stop_eviction)) 1526 wake_up_var(&info->stop_eviction); 1527 if (error) 1528 break; 1529 if (list_empty(&info->swaplist)) 1530 goto start_over; 1531 next = list_next_entry(info, swaplist); 1532 if (!info->swapped) 1533 list_del_init(&info->swaplist); 1534 } 1535 mutex_unlock(&shmem_swaplist_mutex); 1536 1537 return error; 1538 } 1539 1540 /** 1541 * shmem_writeout - Write the folio to swap 1542 * @folio: The folio to write 1543 * @wbc: How writeback is to be done 1544 * 1545 * Move the folio from the page cache to the swap cache. 1546 */ 1547 int shmem_writeout(struct folio *folio, struct writeback_control *wbc) 1548 { 1549 struct address_space *mapping = folio->mapping; 1550 struct inode *inode = mapping->host; 1551 struct shmem_inode_info *info = SHMEM_I(inode); 1552 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1553 pgoff_t index; 1554 int nr_pages; 1555 bool split = false; 1556 1557 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1558 goto redirty; 1559 1560 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1561 goto redirty; 1562 1563 if (!total_swap_pages) 1564 goto redirty; 1565 1566 /* 1567 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1568 * split when swapping. 1569 * 1570 * And shrinkage of pages beyond i_size does not split swap, so 1571 * swapout of a large folio crossing i_size needs to split too 1572 * (unless fallocate has been used to preallocate beyond EOF). 1573 */ 1574 if (folio_test_large(folio)) { 1575 index = shmem_fallocend(inode, 1576 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1577 if ((index > folio->index && index < folio_next_index(folio)) || 1578 !IS_ENABLED(CONFIG_THP_SWAP)) 1579 split = true; 1580 } 1581 1582 if (split) { 1583 try_split: 1584 /* Ensure the subpages are still dirty */ 1585 folio_test_set_dirty(folio); 1586 if (split_folio_to_list(folio, wbc->list)) 1587 goto redirty; 1588 folio_clear_dirty(folio); 1589 } 1590 1591 index = folio->index; 1592 nr_pages = folio_nr_pages(folio); 1593 1594 /* 1595 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1596 * value into swapfile.c, the only way we can correctly account for a 1597 * fallocated folio arriving here is now to initialize it and write it. 1598 * 1599 * That's okay for a folio already fallocated earlier, but if we have 1600 * not yet completed the fallocation, then (a) we want to keep track 1601 * of this folio in case we have to undo it, and (b) it may not be a 1602 * good idea to continue anyway, once we're pushing into swap. So 1603 * reactivate the folio, and let shmem_fallocate() quit when too many. 1604 */ 1605 if (!folio_test_uptodate(folio)) { 1606 if (inode->i_private) { 1607 struct shmem_falloc *shmem_falloc; 1608 spin_lock(&inode->i_lock); 1609 shmem_falloc = inode->i_private; 1610 if (shmem_falloc && 1611 !shmem_falloc->waitq && 1612 index >= shmem_falloc->start && 1613 index < shmem_falloc->next) 1614 shmem_falloc->nr_unswapped += nr_pages; 1615 else 1616 shmem_falloc = NULL; 1617 spin_unlock(&inode->i_lock); 1618 if (shmem_falloc) 1619 goto redirty; 1620 } 1621 folio_zero_range(folio, 0, folio_size(folio)); 1622 flush_dcache_folio(folio); 1623 folio_mark_uptodate(folio); 1624 } 1625 1626 /* 1627 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1628 * if it's not already there. Do it now before the folio is 1629 * moved to swap cache, when its pagelock no longer protects 1630 * the inode from eviction. But don't unlock the mutex until 1631 * we've incremented swapped, because shmem_unuse_inode() will 1632 * prune a !swapped inode from the swaplist under this mutex. 1633 */ 1634 mutex_lock(&shmem_swaplist_mutex); 1635 if (list_empty(&info->swaplist)) 1636 list_add(&info->swaplist, &shmem_swaplist); 1637 1638 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1639 shmem_recalc_inode(inode, 0, nr_pages); 1640 swap_shmem_alloc(folio->swap, nr_pages); 1641 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1642 1643 mutex_unlock(&shmem_swaplist_mutex); 1644 BUG_ON(folio_mapped(folio)); 1645 return swap_writeout(folio, wbc); 1646 } 1647 if (!info->swapped) 1648 list_del_init(&info->swaplist); 1649 mutex_unlock(&shmem_swaplist_mutex); 1650 if (nr_pages > 1) 1651 goto try_split; 1652 redirty: 1653 folio_mark_dirty(folio); 1654 if (wbc->for_reclaim) 1655 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1656 folio_unlock(folio); 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(shmem_writeout); 1660 1661 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1662 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1663 { 1664 char buffer[64]; 1665 1666 if (!mpol || mpol->mode == MPOL_DEFAULT) 1667 return; /* show nothing */ 1668 1669 mpol_to_str(buffer, sizeof(buffer), mpol); 1670 1671 seq_printf(seq, ",mpol=%s", buffer); 1672 } 1673 1674 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1675 { 1676 struct mempolicy *mpol = NULL; 1677 if (sbinfo->mpol) { 1678 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1679 mpol = sbinfo->mpol; 1680 mpol_get(mpol); 1681 raw_spin_unlock(&sbinfo->stat_lock); 1682 } 1683 return mpol; 1684 } 1685 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1686 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1687 { 1688 } 1689 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1690 { 1691 return NULL; 1692 } 1693 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1694 1695 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1696 pgoff_t index, unsigned int order, pgoff_t *ilx); 1697 1698 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1699 struct shmem_inode_info *info, pgoff_t index) 1700 { 1701 struct mempolicy *mpol; 1702 pgoff_t ilx; 1703 struct folio *folio; 1704 1705 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1706 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1707 mpol_cond_put(mpol); 1708 1709 return folio; 1710 } 1711 1712 /* 1713 * Make sure huge_gfp is always more limited than limit_gfp. 1714 * Some of the flags set permissions, while others set limitations. 1715 */ 1716 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1717 { 1718 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1719 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1720 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1721 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1722 1723 /* Allow allocations only from the originally specified zones. */ 1724 result |= zoneflags; 1725 1726 /* 1727 * Minimize the result gfp by taking the union with the deny flags, 1728 * and the intersection of the allow flags. 1729 */ 1730 result |= (limit_gfp & denyflags); 1731 result |= (huge_gfp & limit_gfp) & allowflags; 1732 1733 return result; 1734 } 1735 1736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1737 bool shmem_hpage_pmd_enabled(void) 1738 { 1739 if (shmem_huge == SHMEM_HUGE_DENY) 1740 return false; 1741 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1742 return true; 1743 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1744 return true; 1745 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1746 return true; 1747 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1748 shmem_huge != SHMEM_HUGE_NEVER) 1749 return true; 1750 1751 return false; 1752 } 1753 1754 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1755 struct vm_area_struct *vma, pgoff_t index, 1756 loff_t write_end, bool shmem_huge_force) 1757 { 1758 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1759 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1760 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1761 unsigned int global_orders; 1762 1763 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1764 return 0; 1765 1766 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1767 shmem_huge_force, vma, vm_flags); 1768 /* Tmpfs huge pages allocation */ 1769 if (!vma || !vma_is_anon_shmem(vma)) 1770 return global_orders; 1771 1772 /* 1773 * Following the 'deny' semantics of the top level, force the huge 1774 * option off from all mounts. 1775 */ 1776 if (shmem_huge == SHMEM_HUGE_DENY) 1777 return 0; 1778 1779 /* 1780 * Only allow inherit orders if the top-level value is 'force', which 1781 * means non-PMD sized THP can not override 'huge' mount option now. 1782 */ 1783 if (shmem_huge == SHMEM_HUGE_FORCE) 1784 return READ_ONCE(huge_shmem_orders_inherit); 1785 1786 /* Allow mTHP that will be fully within i_size. */ 1787 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1788 1789 if (vm_flags & VM_HUGEPAGE) 1790 mask |= READ_ONCE(huge_shmem_orders_madvise); 1791 1792 if (global_orders > 0) 1793 mask |= READ_ONCE(huge_shmem_orders_inherit); 1794 1795 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1796 } 1797 1798 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1799 struct address_space *mapping, pgoff_t index, 1800 unsigned long orders) 1801 { 1802 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1803 pgoff_t aligned_index; 1804 unsigned long pages; 1805 int order; 1806 1807 if (vma) { 1808 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1809 if (!orders) 1810 return 0; 1811 } 1812 1813 /* Find the highest order that can add into the page cache */ 1814 order = highest_order(orders); 1815 while (orders) { 1816 pages = 1UL << order; 1817 aligned_index = round_down(index, pages); 1818 /* 1819 * Check for conflict before waiting on a huge allocation. 1820 * Conflict might be that a huge page has just been allocated 1821 * and added to page cache by a racing thread, or that there 1822 * is already at least one small page in the huge extent. 1823 * Be careful to retry when appropriate, but not forever! 1824 * Elsewhere -EEXIST would be the right code, but not here. 1825 */ 1826 if (!xa_find(&mapping->i_pages, &aligned_index, 1827 aligned_index + pages - 1, XA_PRESENT)) 1828 break; 1829 order = next_order(&orders, order); 1830 } 1831 1832 return orders; 1833 } 1834 #else 1835 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1836 struct address_space *mapping, pgoff_t index, 1837 unsigned long orders) 1838 { 1839 return 0; 1840 } 1841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1842 1843 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1844 struct shmem_inode_info *info, pgoff_t index) 1845 { 1846 struct mempolicy *mpol; 1847 pgoff_t ilx; 1848 struct folio *folio; 1849 1850 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1851 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1852 mpol_cond_put(mpol); 1853 1854 return folio; 1855 } 1856 1857 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1858 gfp_t gfp, struct inode *inode, pgoff_t index, 1859 struct mm_struct *fault_mm, unsigned long orders) 1860 { 1861 struct address_space *mapping = inode->i_mapping; 1862 struct shmem_inode_info *info = SHMEM_I(inode); 1863 unsigned long suitable_orders = 0; 1864 struct folio *folio = NULL; 1865 long pages; 1866 int error, order; 1867 1868 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1869 orders = 0; 1870 1871 if (orders > 0) { 1872 suitable_orders = shmem_suitable_orders(inode, vmf, 1873 mapping, index, orders); 1874 1875 order = highest_order(suitable_orders); 1876 while (suitable_orders) { 1877 pages = 1UL << order; 1878 index = round_down(index, pages); 1879 folio = shmem_alloc_folio(gfp, order, info, index); 1880 if (folio) 1881 goto allocated; 1882 1883 if (pages == HPAGE_PMD_NR) 1884 count_vm_event(THP_FILE_FALLBACK); 1885 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1886 order = next_order(&suitable_orders, order); 1887 } 1888 } else { 1889 pages = 1; 1890 folio = shmem_alloc_folio(gfp, 0, info, index); 1891 } 1892 if (!folio) 1893 return ERR_PTR(-ENOMEM); 1894 1895 allocated: 1896 __folio_set_locked(folio); 1897 __folio_set_swapbacked(folio); 1898 1899 gfp &= GFP_RECLAIM_MASK; 1900 error = mem_cgroup_charge(folio, fault_mm, gfp); 1901 if (error) { 1902 if (xa_find(&mapping->i_pages, &index, 1903 index + pages - 1, XA_PRESENT)) { 1904 error = -EEXIST; 1905 } else if (pages > 1) { 1906 if (pages == HPAGE_PMD_NR) { 1907 count_vm_event(THP_FILE_FALLBACK); 1908 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1909 } 1910 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1911 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1912 } 1913 goto unlock; 1914 } 1915 1916 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1917 if (error) 1918 goto unlock; 1919 1920 error = shmem_inode_acct_blocks(inode, pages); 1921 if (error) { 1922 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1923 long freed; 1924 /* 1925 * Try to reclaim some space by splitting a few 1926 * large folios beyond i_size on the filesystem. 1927 */ 1928 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1929 /* 1930 * And do a shmem_recalc_inode() to account for freed pages: 1931 * except our folio is there in cache, so not quite balanced. 1932 */ 1933 spin_lock(&info->lock); 1934 freed = pages + info->alloced - info->swapped - 1935 READ_ONCE(mapping->nrpages); 1936 if (freed > 0) 1937 info->alloced -= freed; 1938 spin_unlock(&info->lock); 1939 if (freed > 0) 1940 shmem_inode_unacct_blocks(inode, freed); 1941 error = shmem_inode_acct_blocks(inode, pages); 1942 if (error) { 1943 filemap_remove_folio(folio); 1944 goto unlock; 1945 } 1946 } 1947 1948 shmem_recalc_inode(inode, pages, 0); 1949 folio_add_lru(folio); 1950 return folio; 1951 1952 unlock: 1953 folio_unlock(folio); 1954 folio_put(folio); 1955 return ERR_PTR(error); 1956 } 1957 1958 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1959 struct vm_area_struct *vma, pgoff_t index, 1960 swp_entry_t entry, int order, gfp_t gfp) 1961 { 1962 struct shmem_inode_info *info = SHMEM_I(inode); 1963 struct folio *new; 1964 void *shadow; 1965 int nr_pages; 1966 1967 /* 1968 * We have arrived here because our zones are constrained, so don't 1969 * limit chance of success with further cpuset and node constraints. 1970 */ 1971 gfp &= ~GFP_CONSTRAINT_MASK; 1972 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) { 1973 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1974 1975 gfp = limit_gfp_mask(huge_gfp, gfp); 1976 } 1977 1978 new = shmem_alloc_folio(gfp, order, info, index); 1979 if (!new) 1980 return ERR_PTR(-ENOMEM); 1981 1982 nr_pages = folio_nr_pages(new); 1983 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 1984 gfp, entry)) { 1985 folio_put(new); 1986 return ERR_PTR(-ENOMEM); 1987 } 1988 1989 /* 1990 * Prevent parallel swapin from proceeding with the swap cache flag. 1991 * 1992 * Of course there is another possible concurrent scenario as well, 1993 * that is to say, the swap cache flag of a large folio has already 1994 * been set by swapcache_prepare(), while another thread may have 1995 * already split the large swap entry stored in the shmem mapping. 1996 * In this case, shmem_add_to_page_cache() will help identify the 1997 * concurrent swapin and return -EEXIST. 1998 */ 1999 if (swapcache_prepare(entry, nr_pages)) { 2000 folio_put(new); 2001 return ERR_PTR(-EEXIST); 2002 } 2003 2004 __folio_set_locked(new); 2005 __folio_set_swapbacked(new); 2006 new->swap = entry; 2007 2008 memcg1_swapin(entry, nr_pages); 2009 shadow = get_shadow_from_swap_cache(entry); 2010 if (shadow) 2011 workingset_refault(new, shadow); 2012 folio_add_lru(new); 2013 swap_read_folio(new, NULL); 2014 return new; 2015 } 2016 2017 /* 2018 * When a page is moved from swapcache to shmem filecache (either by the 2019 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2020 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2021 * ignorance of the mapping it belongs to. If that mapping has special 2022 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2023 * we may need to copy to a suitable page before moving to filecache. 2024 * 2025 * In a future release, this may well be extended to respect cpuset and 2026 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2027 * but for now it is a simple matter of zone. 2028 */ 2029 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2030 { 2031 return folio_zonenum(folio) > gfp_zone(gfp); 2032 } 2033 2034 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2035 struct shmem_inode_info *info, pgoff_t index, 2036 struct vm_area_struct *vma) 2037 { 2038 struct folio *new, *old = *foliop; 2039 swp_entry_t entry = old->swap; 2040 struct address_space *swap_mapping = swap_address_space(entry); 2041 pgoff_t swap_index = swap_cache_index(entry); 2042 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 2043 int nr_pages = folio_nr_pages(old); 2044 int error = 0, i; 2045 2046 /* 2047 * We have arrived here because our zones are constrained, so don't 2048 * limit chance of success by further cpuset and node constraints. 2049 */ 2050 gfp &= ~GFP_CONSTRAINT_MASK; 2051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2052 if (nr_pages > 1) { 2053 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2054 2055 gfp = limit_gfp_mask(huge_gfp, gfp); 2056 } 2057 #endif 2058 2059 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2060 if (!new) 2061 return -ENOMEM; 2062 2063 folio_ref_add(new, nr_pages); 2064 folio_copy(new, old); 2065 flush_dcache_folio(new); 2066 2067 __folio_set_locked(new); 2068 __folio_set_swapbacked(new); 2069 folio_mark_uptodate(new); 2070 new->swap = entry; 2071 folio_set_swapcache(new); 2072 2073 /* Swap cache still stores N entries instead of a high-order entry */ 2074 xa_lock_irq(&swap_mapping->i_pages); 2075 for (i = 0; i < nr_pages; i++) { 2076 void *item = xas_load(&xas); 2077 2078 if (item != old) { 2079 error = -ENOENT; 2080 break; 2081 } 2082 2083 xas_store(&xas, new); 2084 xas_next(&xas); 2085 } 2086 if (!error) { 2087 mem_cgroup_replace_folio(old, new); 2088 shmem_update_stats(new, nr_pages); 2089 shmem_update_stats(old, -nr_pages); 2090 } 2091 xa_unlock_irq(&swap_mapping->i_pages); 2092 2093 if (unlikely(error)) { 2094 /* 2095 * Is this possible? I think not, now that our callers 2096 * check both the swapcache flag and folio->private 2097 * after getting the folio lock; but be defensive. 2098 * Reverse old to newpage for clear and free. 2099 */ 2100 old = new; 2101 } else { 2102 folio_add_lru(new); 2103 *foliop = new; 2104 } 2105 2106 folio_clear_swapcache(old); 2107 old->private = NULL; 2108 2109 folio_unlock(old); 2110 /* 2111 * The old folio are removed from swap cache, drop the 'nr_pages' 2112 * reference, as well as one temporary reference getting from swap 2113 * cache. 2114 */ 2115 folio_put_refs(old, nr_pages + 1); 2116 return error; 2117 } 2118 2119 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2120 struct folio *folio, swp_entry_t swap, 2121 bool skip_swapcache) 2122 { 2123 struct address_space *mapping = inode->i_mapping; 2124 swp_entry_t swapin_error; 2125 void *old; 2126 int nr_pages; 2127 2128 swapin_error = make_poisoned_swp_entry(); 2129 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2130 swp_to_radix_entry(swap), 2131 swp_to_radix_entry(swapin_error), 0); 2132 if (old != swp_to_radix_entry(swap)) 2133 return; 2134 2135 nr_pages = folio_nr_pages(folio); 2136 folio_wait_writeback(folio); 2137 if (!skip_swapcache) 2138 delete_from_swap_cache(folio); 2139 /* 2140 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2141 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2142 * in shmem_evict_inode(). 2143 */ 2144 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2145 swap_free_nr(swap, nr_pages); 2146 } 2147 2148 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2149 swp_entry_t swap, gfp_t gfp) 2150 { 2151 struct address_space *mapping = inode->i_mapping; 2152 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2153 int split_order = 0, entry_order; 2154 int i; 2155 2156 /* Convert user data gfp flags to xarray node gfp flags */ 2157 gfp &= GFP_RECLAIM_MASK; 2158 2159 for (;;) { 2160 void *old = NULL; 2161 int cur_order; 2162 pgoff_t swap_index; 2163 2164 xas_lock_irq(&xas); 2165 old = xas_load(&xas); 2166 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2167 xas_set_err(&xas, -EEXIST); 2168 goto unlock; 2169 } 2170 2171 entry_order = xas_get_order(&xas); 2172 2173 if (!entry_order) 2174 goto unlock; 2175 2176 /* Try to split large swap entry in pagecache */ 2177 cur_order = entry_order; 2178 swap_index = round_down(index, 1 << entry_order); 2179 2180 split_order = xas_try_split_min_order(cur_order); 2181 2182 while (cur_order > 0) { 2183 pgoff_t aligned_index = 2184 round_down(index, 1 << cur_order); 2185 pgoff_t swap_offset = aligned_index - swap_index; 2186 2187 xas_set_order(&xas, index, split_order); 2188 xas_try_split(&xas, old, cur_order); 2189 if (xas_error(&xas)) 2190 goto unlock; 2191 2192 /* 2193 * Re-set the swap entry after splitting, and the swap 2194 * offset of the original large entry must be continuous. 2195 */ 2196 for (i = 0; i < 1 << cur_order; 2197 i += (1 << split_order)) { 2198 swp_entry_t tmp; 2199 2200 tmp = swp_entry(swp_type(swap), 2201 swp_offset(swap) + swap_offset + 2202 i); 2203 __xa_store(&mapping->i_pages, aligned_index + i, 2204 swp_to_radix_entry(tmp), 0); 2205 } 2206 cur_order = split_order; 2207 split_order = xas_try_split_min_order(split_order); 2208 } 2209 2210 unlock: 2211 xas_unlock_irq(&xas); 2212 2213 if (!xas_nomem(&xas, gfp)) 2214 break; 2215 } 2216 2217 if (xas_error(&xas)) 2218 return xas_error(&xas); 2219 2220 return entry_order; 2221 } 2222 2223 /* 2224 * Swap in the folio pointed to by *foliop. 2225 * Caller has to make sure that *foliop contains a valid swapped folio. 2226 * Returns 0 and the folio in foliop if success. On failure, returns the 2227 * error code and NULL in *foliop. 2228 */ 2229 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2230 struct folio **foliop, enum sgp_type sgp, 2231 gfp_t gfp, struct vm_area_struct *vma, 2232 vm_fault_t *fault_type) 2233 { 2234 struct address_space *mapping = inode->i_mapping; 2235 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2236 struct shmem_inode_info *info = SHMEM_I(inode); 2237 struct swap_info_struct *si; 2238 struct folio *folio = NULL; 2239 bool skip_swapcache = false; 2240 swp_entry_t swap; 2241 int error, nr_pages, order, split_order; 2242 2243 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2244 swap = radix_to_swp_entry(*foliop); 2245 *foliop = NULL; 2246 2247 if (is_poisoned_swp_entry(swap)) 2248 return -EIO; 2249 2250 si = get_swap_device(swap); 2251 if (!si) { 2252 if (!shmem_confirm_swap(mapping, index, swap)) 2253 return -EEXIST; 2254 else 2255 return -EINVAL; 2256 } 2257 2258 /* Look it up and read it in.. */ 2259 folio = swap_cache_get_folio(swap, NULL, 0); 2260 order = xa_get_order(&mapping->i_pages, index); 2261 if (!folio) { 2262 bool fallback_order0 = false; 2263 2264 /* Or update major stats only when swapin succeeds?? */ 2265 if (fault_type) { 2266 *fault_type |= VM_FAULT_MAJOR; 2267 count_vm_event(PGMAJFAULT); 2268 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2269 } 2270 2271 /* 2272 * If uffd is active for the vma, we need per-page fault 2273 * fidelity to maintain the uffd semantics, then fallback 2274 * to swapin order-0 folio, as well as for zswap case. 2275 */ 2276 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) || 2277 !zswap_never_enabled())) 2278 fallback_order0 = true; 2279 2280 /* Skip swapcache for synchronous device. */ 2281 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2282 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp); 2283 if (!IS_ERR(folio)) { 2284 skip_swapcache = true; 2285 goto alloced; 2286 } 2287 2288 /* 2289 * Fallback to swapin order-0 folio unless the swap entry 2290 * already exists. 2291 */ 2292 error = PTR_ERR(folio); 2293 folio = NULL; 2294 if (error == -EEXIST) 2295 goto failed; 2296 } 2297 2298 /* 2299 * Now swap device can only swap in order 0 folio, then we 2300 * should split the large swap entry stored in the pagecache 2301 * if necessary. 2302 */ 2303 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2304 if (split_order < 0) { 2305 error = split_order; 2306 goto failed; 2307 } 2308 2309 /* 2310 * If the large swap entry has already been split, it is 2311 * necessary to recalculate the new swap entry based on 2312 * the old order alignment. 2313 */ 2314 if (split_order > 0) { 2315 pgoff_t offset = index - round_down(index, 1 << split_order); 2316 2317 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2318 } 2319 2320 /* Here we actually start the io */ 2321 folio = shmem_swapin_cluster(swap, gfp, info, index); 2322 if (!folio) { 2323 error = -ENOMEM; 2324 goto failed; 2325 } 2326 } else if (order != folio_order(folio)) { 2327 /* 2328 * Swap readahead may swap in order 0 folios into swapcache 2329 * asynchronously, while the shmem mapping can still stores 2330 * large swap entries. In such cases, we should split the 2331 * large swap entry to prevent possible data corruption. 2332 */ 2333 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2334 if (split_order < 0) { 2335 folio_put(folio); 2336 folio = NULL; 2337 error = split_order; 2338 goto failed; 2339 } 2340 2341 /* 2342 * If the large swap entry has already been split, it is 2343 * necessary to recalculate the new swap entry based on 2344 * the old order alignment. 2345 */ 2346 if (split_order > 0) { 2347 pgoff_t offset = index - round_down(index, 1 << split_order); 2348 2349 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2350 } 2351 } 2352 2353 alloced: 2354 /* We have to do this with folio locked to prevent races */ 2355 folio_lock(folio); 2356 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2357 folio->swap.val != swap.val || 2358 !shmem_confirm_swap(mapping, index, swap) || 2359 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) { 2360 error = -EEXIST; 2361 goto unlock; 2362 } 2363 if (!folio_test_uptodate(folio)) { 2364 error = -EIO; 2365 goto failed; 2366 } 2367 folio_wait_writeback(folio); 2368 nr_pages = folio_nr_pages(folio); 2369 2370 /* 2371 * Some architectures may have to restore extra metadata to the 2372 * folio after reading from swap. 2373 */ 2374 arch_swap_restore(folio_swap(swap, folio), folio); 2375 2376 if (shmem_should_replace_folio(folio, gfp)) { 2377 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2378 if (error) 2379 goto failed; 2380 } 2381 2382 error = shmem_add_to_page_cache(folio, mapping, 2383 round_down(index, nr_pages), 2384 swp_to_radix_entry(swap), gfp); 2385 if (error) 2386 goto failed; 2387 2388 shmem_recalc_inode(inode, 0, -nr_pages); 2389 2390 if (sgp == SGP_WRITE) 2391 folio_mark_accessed(folio); 2392 2393 if (skip_swapcache) { 2394 folio->swap.val = 0; 2395 swapcache_clear(si, swap, nr_pages); 2396 } else { 2397 delete_from_swap_cache(folio); 2398 } 2399 folio_mark_dirty(folio); 2400 swap_free_nr(swap, nr_pages); 2401 put_swap_device(si); 2402 2403 *foliop = folio; 2404 return 0; 2405 failed: 2406 if (!shmem_confirm_swap(mapping, index, swap)) 2407 error = -EEXIST; 2408 if (error == -EIO) 2409 shmem_set_folio_swapin_error(inode, index, folio, swap, 2410 skip_swapcache); 2411 unlock: 2412 if (skip_swapcache) 2413 swapcache_clear(si, swap, folio_nr_pages(folio)); 2414 if (folio) { 2415 folio_unlock(folio); 2416 folio_put(folio); 2417 } 2418 put_swap_device(si); 2419 2420 return error; 2421 } 2422 2423 /* 2424 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2425 * 2426 * If we allocate a new one we do not mark it dirty. That's up to the 2427 * vm. If we swap it in we mark it dirty since we also free the swap 2428 * entry since a page cannot live in both the swap and page cache. 2429 * 2430 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2431 */ 2432 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2433 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2434 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2435 { 2436 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2437 struct mm_struct *fault_mm; 2438 struct folio *folio; 2439 int error; 2440 bool alloced; 2441 unsigned long orders = 0; 2442 2443 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2444 return -EINVAL; 2445 2446 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2447 return -EFBIG; 2448 repeat: 2449 if (sgp <= SGP_CACHE && 2450 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2451 return -EINVAL; 2452 2453 alloced = false; 2454 fault_mm = vma ? vma->vm_mm : NULL; 2455 2456 folio = filemap_get_entry(inode->i_mapping, index); 2457 if (folio && vma && userfaultfd_minor(vma)) { 2458 if (!xa_is_value(folio)) 2459 folio_put(folio); 2460 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2461 return 0; 2462 } 2463 2464 if (xa_is_value(folio)) { 2465 error = shmem_swapin_folio(inode, index, &folio, 2466 sgp, gfp, vma, fault_type); 2467 if (error == -EEXIST) 2468 goto repeat; 2469 2470 *foliop = folio; 2471 return error; 2472 } 2473 2474 if (folio) { 2475 folio_lock(folio); 2476 2477 /* Has the folio been truncated or swapped out? */ 2478 if (unlikely(folio->mapping != inode->i_mapping)) { 2479 folio_unlock(folio); 2480 folio_put(folio); 2481 goto repeat; 2482 } 2483 if (sgp == SGP_WRITE) 2484 folio_mark_accessed(folio); 2485 if (folio_test_uptodate(folio)) 2486 goto out; 2487 /* fallocated folio */ 2488 if (sgp != SGP_READ) 2489 goto clear; 2490 folio_unlock(folio); 2491 folio_put(folio); 2492 } 2493 2494 /* 2495 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2496 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2497 */ 2498 *foliop = NULL; 2499 if (sgp == SGP_READ) 2500 return 0; 2501 if (sgp == SGP_NOALLOC) 2502 return -ENOENT; 2503 2504 /* 2505 * Fast cache lookup and swap lookup did not find it: allocate. 2506 */ 2507 2508 if (vma && userfaultfd_missing(vma)) { 2509 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2510 return 0; 2511 } 2512 2513 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2514 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2515 if (orders > 0) { 2516 gfp_t huge_gfp; 2517 2518 huge_gfp = vma_thp_gfp_mask(vma); 2519 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2520 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2521 inode, index, fault_mm, orders); 2522 if (!IS_ERR(folio)) { 2523 if (folio_test_pmd_mappable(folio)) 2524 count_vm_event(THP_FILE_ALLOC); 2525 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2526 goto alloced; 2527 } 2528 if (PTR_ERR(folio) == -EEXIST) 2529 goto repeat; 2530 } 2531 2532 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2533 if (IS_ERR(folio)) { 2534 error = PTR_ERR(folio); 2535 if (error == -EEXIST) 2536 goto repeat; 2537 folio = NULL; 2538 goto unlock; 2539 } 2540 2541 alloced: 2542 alloced = true; 2543 if (folio_test_large(folio) && 2544 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2545 folio_next_index(folio)) { 2546 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2547 struct shmem_inode_info *info = SHMEM_I(inode); 2548 /* 2549 * Part of the large folio is beyond i_size: subject 2550 * to shrink under memory pressure. 2551 */ 2552 spin_lock(&sbinfo->shrinklist_lock); 2553 /* 2554 * _careful to defend against unlocked access to 2555 * ->shrink_list in shmem_unused_huge_shrink() 2556 */ 2557 if (list_empty_careful(&info->shrinklist)) { 2558 list_add_tail(&info->shrinklist, 2559 &sbinfo->shrinklist); 2560 sbinfo->shrinklist_len++; 2561 } 2562 spin_unlock(&sbinfo->shrinklist_lock); 2563 } 2564 2565 if (sgp == SGP_WRITE) 2566 folio_set_referenced(folio); 2567 /* 2568 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2569 */ 2570 if (sgp == SGP_FALLOC) 2571 sgp = SGP_WRITE; 2572 clear: 2573 /* 2574 * Let SGP_WRITE caller clear ends if write does not fill folio; 2575 * but SGP_FALLOC on a folio fallocated earlier must initialize 2576 * it now, lest undo on failure cancel our earlier guarantee. 2577 */ 2578 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2579 long i, n = folio_nr_pages(folio); 2580 2581 for (i = 0; i < n; i++) 2582 clear_highpage(folio_page(folio, i)); 2583 flush_dcache_folio(folio); 2584 folio_mark_uptodate(folio); 2585 } 2586 2587 /* Perhaps the file has been truncated since we checked */ 2588 if (sgp <= SGP_CACHE && 2589 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2590 error = -EINVAL; 2591 goto unlock; 2592 } 2593 out: 2594 *foliop = folio; 2595 return 0; 2596 2597 /* 2598 * Error recovery. 2599 */ 2600 unlock: 2601 if (alloced) 2602 filemap_remove_folio(folio); 2603 shmem_recalc_inode(inode, 0, 0); 2604 if (folio) { 2605 folio_unlock(folio); 2606 folio_put(folio); 2607 } 2608 return error; 2609 } 2610 2611 /** 2612 * shmem_get_folio - find, and lock a shmem folio. 2613 * @inode: inode to search 2614 * @index: the page index. 2615 * @write_end: end of a write, could extend inode size 2616 * @foliop: pointer to the folio if found 2617 * @sgp: SGP_* flags to control behavior 2618 * 2619 * Looks up the page cache entry at @inode & @index. If a folio is 2620 * present, it is returned locked with an increased refcount. 2621 * 2622 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2623 * before unlocking the folio to ensure that the folio is not reclaimed. 2624 * There is no need to reserve space before calling folio_mark_dirty(). 2625 * 2626 * When no folio is found, the behavior depends on @sgp: 2627 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2628 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2629 * - for all other flags a new folio is allocated, inserted into the 2630 * page cache and returned locked in @foliop. 2631 * 2632 * Context: May sleep. 2633 * Return: 0 if successful, else a negative error code. 2634 */ 2635 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2636 struct folio **foliop, enum sgp_type sgp) 2637 { 2638 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2639 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2640 } 2641 EXPORT_SYMBOL_GPL(shmem_get_folio); 2642 2643 /* 2644 * This is like autoremove_wake_function, but it removes the wait queue 2645 * entry unconditionally - even if something else had already woken the 2646 * target. 2647 */ 2648 static int synchronous_wake_function(wait_queue_entry_t *wait, 2649 unsigned int mode, int sync, void *key) 2650 { 2651 int ret = default_wake_function(wait, mode, sync, key); 2652 list_del_init(&wait->entry); 2653 return ret; 2654 } 2655 2656 /* 2657 * Trinity finds that probing a hole which tmpfs is punching can 2658 * prevent the hole-punch from ever completing: which in turn 2659 * locks writers out with its hold on i_rwsem. So refrain from 2660 * faulting pages into the hole while it's being punched. Although 2661 * shmem_undo_range() does remove the additions, it may be unable to 2662 * keep up, as each new page needs its own unmap_mapping_range() call, 2663 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2664 * 2665 * It does not matter if we sometimes reach this check just before the 2666 * hole-punch begins, so that one fault then races with the punch: 2667 * we just need to make racing faults a rare case. 2668 * 2669 * The implementation below would be much simpler if we just used a 2670 * standard mutex or completion: but we cannot take i_rwsem in fault, 2671 * and bloating every shmem inode for this unlikely case would be sad. 2672 */ 2673 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2674 { 2675 struct shmem_falloc *shmem_falloc; 2676 struct file *fpin = NULL; 2677 vm_fault_t ret = 0; 2678 2679 spin_lock(&inode->i_lock); 2680 shmem_falloc = inode->i_private; 2681 if (shmem_falloc && 2682 shmem_falloc->waitq && 2683 vmf->pgoff >= shmem_falloc->start && 2684 vmf->pgoff < shmem_falloc->next) { 2685 wait_queue_head_t *shmem_falloc_waitq; 2686 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2687 2688 ret = VM_FAULT_NOPAGE; 2689 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2690 shmem_falloc_waitq = shmem_falloc->waitq; 2691 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2692 TASK_UNINTERRUPTIBLE); 2693 spin_unlock(&inode->i_lock); 2694 schedule(); 2695 2696 /* 2697 * shmem_falloc_waitq points into the shmem_fallocate() 2698 * stack of the hole-punching task: shmem_falloc_waitq 2699 * is usually invalid by the time we reach here, but 2700 * finish_wait() does not dereference it in that case; 2701 * though i_lock needed lest racing with wake_up_all(). 2702 */ 2703 spin_lock(&inode->i_lock); 2704 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2705 } 2706 spin_unlock(&inode->i_lock); 2707 if (fpin) { 2708 fput(fpin); 2709 ret = VM_FAULT_RETRY; 2710 } 2711 return ret; 2712 } 2713 2714 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2715 { 2716 struct inode *inode = file_inode(vmf->vma->vm_file); 2717 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2718 struct folio *folio = NULL; 2719 vm_fault_t ret = 0; 2720 int err; 2721 2722 /* 2723 * Trinity finds that probing a hole which tmpfs is punching can 2724 * prevent the hole-punch from ever completing: noted in i_private. 2725 */ 2726 if (unlikely(inode->i_private)) { 2727 ret = shmem_falloc_wait(vmf, inode); 2728 if (ret) 2729 return ret; 2730 } 2731 2732 WARN_ON_ONCE(vmf->page != NULL); 2733 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2734 gfp, vmf, &ret); 2735 if (err) 2736 return vmf_error(err); 2737 if (folio) { 2738 vmf->page = folio_file_page(folio, vmf->pgoff); 2739 ret |= VM_FAULT_LOCKED; 2740 } 2741 return ret; 2742 } 2743 2744 unsigned long shmem_get_unmapped_area(struct file *file, 2745 unsigned long uaddr, unsigned long len, 2746 unsigned long pgoff, unsigned long flags) 2747 { 2748 unsigned long addr; 2749 unsigned long offset; 2750 unsigned long inflated_len; 2751 unsigned long inflated_addr; 2752 unsigned long inflated_offset; 2753 unsigned long hpage_size; 2754 2755 if (len > TASK_SIZE) 2756 return -ENOMEM; 2757 2758 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2759 flags); 2760 2761 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2762 return addr; 2763 if (IS_ERR_VALUE(addr)) 2764 return addr; 2765 if (addr & ~PAGE_MASK) 2766 return addr; 2767 if (addr > TASK_SIZE - len) 2768 return addr; 2769 2770 if (shmem_huge == SHMEM_HUGE_DENY) 2771 return addr; 2772 if (flags & MAP_FIXED) 2773 return addr; 2774 /* 2775 * Our priority is to support MAP_SHARED mapped hugely; 2776 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2777 * But if caller specified an address hint and we allocated area there 2778 * successfully, respect that as before. 2779 */ 2780 if (uaddr == addr) 2781 return addr; 2782 2783 hpage_size = HPAGE_PMD_SIZE; 2784 if (shmem_huge != SHMEM_HUGE_FORCE) { 2785 struct super_block *sb; 2786 unsigned long __maybe_unused hpage_orders; 2787 int order = 0; 2788 2789 if (file) { 2790 VM_BUG_ON(file->f_op != &shmem_file_operations); 2791 sb = file_inode(file)->i_sb; 2792 } else { 2793 /* 2794 * Called directly from mm/mmap.c, or drivers/char/mem.c 2795 * for "/dev/zero", to create a shared anonymous object. 2796 */ 2797 if (IS_ERR(shm_mnt)) 2798 return addr; 2799 sb = shm_mnt->mnt_sb; 2800 2801 /* 2802 * Find the highest mTHP order used for anonymous shmem to 2803 * provide a suitable alignment address. 2804 */ 2805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2806 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2807 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2808 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2809 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2810 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2811 2812 if (hpage_orders > 0) { 2813 order = highest_order(hpage_orders); 2814 hpage_size = PAGE_SIZE << order; 2815 } 2816 #endif 2817 } 2818 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2819 return addr; 2820 } 2821 2822 if (len < hpage_size) 2823 return addr; 2824 2825 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2826 if (offset && offset + len < 2 * hpage_size) 2827 return addr; 2828 if ((addr & (hpage_size - 1)) == offset) 2829 return addr; 2830 2831 inflated_len = len + hpage_size - PAGE_SIZE; 2832 if (inflated_len > TASK_SIZE) 2833 return addr; 2834 if (inflated_len < len) 2835 return addr; 2836 2837 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2838 inflated_len, 0, flags); 2839 if (IS_ERR_VALUE(inflated_addr)) 2840 return addr; 2841 if (inflated_addr & ~PAGE_MASK) 2842 return addr; 2843 2844 inflated_offset = inflated_addr & (hpage_size - 1); 2845 inflated_addr += offset - inflated_offset; 2846 if (inflated_offset > offset) 2847 inflated_addr += hpage_size; 2848 2849 if (inflated_addr > TASK_SIZE - len) 2850 return addr; 2851 return inflated_addr; 2852 } 2853 2854 #ifdef CONFIG_NUMA 2855 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2856 { 2857 struct inode *inode = file_inode(vma->vm_file); 2858 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2859 } 2860 2861 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2862 unsigned long addr, pgoff_t *ilx) 2863 { 2864 struct inode *inode = file_inode(vma->vm_file); 2865 pgoff_t index; 2866 2867 /* 2868 * Bias interleave by inode number to distribute better across nodes; 2869 * but this interface is independent of which page order is used, so 2870 * supplies only that bias, letting caller apply the offset (adjusted 2871 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2872 */ 2873 *ilx = inode->i_ino; 2874 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2875 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2876 } 2877 2878 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2879 pgoff_t index, unsigned int order, pgoff_t *ilx) 2880 { 2881 struct mempolicy *mpol; 2882 2883 /* Bias interleave by inode number to distribute better across nodes */ 2884 *ilx = info->vfs_inode.i_ino + (index >> order); 2885 2886 mpol = mpol_shared_policy_lookup(&info->policy, index); 2887 return mpol ? mpol : get_task_policy(current); 2888 } 2889 #else 2890 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2891 pgoff_t index, unsigned int order, pgoff_t *ilx) 2892 { 2893 *ilx = 0; 2894 return NULL; 2895 } 2896 #endif /* CONFIG_NUMA */ 2897 2898 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2899 { 2900 struct inode *inode = file_inode(file); 2901 struct shmem_inode_info *info = SHMEM_I(inode); 2902 int retval = -ENOMEM; 2903 2904 /* 2905 * What serializes the accesses to info->flags? 2906 * ipc_lock_object() when called from shmctl_do_lock(), 2907 * no serialization needed when called from shm_destroy(). 2908 */ 2909 if (lock && !(info->flags & VM_LOCKED)) { 2910 if (!user_shm_lock(inode->i_size, ucounts)) 2911 goto out_nomem; 2912 info->flags |= VM_LOCKED; 2913 mapping_set_unevictable(file->f_mapping); 2914 } 2915 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2916 user_shm_unlock(inode->i_size, ucounts); 2917 info->flags &= ~VM_LOCKED; 2918 mapping_clear_unevictable(file->f_mapping); 2919 } 2920 retval = 0; 2921 2922 out_nomem: 2923 return retval; 2924 } 2925 2926 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2927 { 2928 struct inode *inode = file_inode(file); 2929 2930 file_accessed(file); 2931 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2932 if (inode->i_nlink) 2933 vma->vm_ops = &shmem_vm_ops; 2934 else 2935 vma->vm_ops = &shmem_anon_vm_ops; 2936 return 0; 2937 } 2938 2939 static int shmem_file_open(struct inode *inode, struct file *file) 2940 { 2941 file->f_mode |= FMODE_CAN_ODIRECT; 2942 return generic_file_open(inode, file); 2943 } 2944 2945 #ifdef CONFIG_TMPFS_XATTR 2946 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2947 2948 #if IS_ENABLED(CONFIG_UNICODE) 2949 /* 2950 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2951 * 2952 * The casefold file attribute needs some special checks. I can just be added to 2953 * an empty dir, and can't be removed from a non-empty dir. 2954 */ 2955 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2956 struct dentry *dentry, unsigned int *i_flags) 2957 { 2958 unsigned int old = inode->i_flags; 2959 struct super_block *sb = inode->i_sb; 2960 2961 if (fsflags & FS_CASEFOLD_FL) { 2962 if (!(old & S_CASEFOLD)) { 2963 if (!sb->s_encoding) 2964 return -EOPNOTSUPP; 2965 2966 if (!S_ISDIR(inode->i_mode)) 2967 return -ENOTDIR; 2968 2969 if (dentry && !simple_empty(dentry)) 2970 return -ENOTEMPTY; 2971 } 2972 2973 *i_flags = *i_flags | S_CASEFOLD; 2974 } else if (old & S_CASEFOLD) { 2975 if (dentry && !simple_empty(dentry)) 2976 return -ENOTEMPTY; 2977 } 2978 2979 return 0; 2980 } 2981 #else 2982 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2983 struct dentry *dentry, unsigned int *i_flags) 2984 { 2985 if (fsflags & FS_CASEFOLD_FL) 2986 return -EOPNOTSUPP; 2987 2988 return 0; 2989 } 2990 #endif 2991 2992 /* 2993 * chattr's fsflags are unrelated to extended attributes, 2994 * but tmpfs has chosen to enable them under the same config option. 2995 */ 2996 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2997 { 2998 unsigned int i_flags = 0; 2999 int ret; 3000 3001 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3002 if (ret) 3003 return ret; 3004 3005 if (fsflags & FS_NOATIME_FL) 3006 i_flags |= S_NOATIME; 3007 if (fsflags & FS_APPEND_FL) 3008 i_flags |= S_APPEND; 3009 if (fsflags & FS_IMMUTABLE_FL) 3010 i_flags |= S_IMMUTABLE; 3011 /* 3012 * But FS_NODUMP_FL does not require any action in i_flags. 3013 */ 3014 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3015 3016 return 0; 3017 } 3018 #else 3019 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3020 { 3021 } 3022 #define shmem_initxattrs NULL 3023 #endif 3024 3025 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3026 { 3027 return &SHMEM_I(inode)->dir_offsets; 3028 } 3029 3030 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3031 struct super_block *sb, 3032 struct inode *dir, umode_t mode, 3033 dev_t dev, unsigned long flags) 3034 { 3035 struct inode *inode; 3036 struct shmem_inode_info *info; 3037 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3038 ino_t ino; 3039 int err; 3040 3041 err = shmem_reserve_inode(sb, &ino); 3042 if (err) 3043 return ERR_PTR(err); 3044 3045 inode = new_inode(sb); 3046 if (!inode) { 3047 shmem_free_inode(sb, 0); 3048 return ERR_PTR(-ENOSPC); 3049 } 3050 3051 inode->i_ino = ino; 3052 inode_init_owner(idmap, inode, dir, mode); 3053 inode->i_blocks = 0; 3054 simple_inode_init_ts(inode); 3055 inode->i_generation = get_random_u32(); 3056 info = SHMEM_I(inode); 3057 memset(info, 0, (char *)inode - (char *)info); 3058 spin_lock_init(&info->lock); 3059 atomic_set(&info->stop_eviction, 0); 3060 info->seals = F_SEAL_SEAL; 3061 info->flags = flags & VM_NORESERVE; 3062 info->i_crtime = inode_get_mtime(inode); 3063 info->fsflags = (dir == NULL) ? 0 : 3064 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3065 if (info->fsflags) 3066 shmem_set_inode_flags(inode, info->fsflags, NULL); 3067 INIT_LIST_HEAD(&info->shrinklist); 3068 INIT_LIST_HEAD(&info->swaplist); 3069 simple_xattrs_init(&info->xattrs); 3070 cache_no_acl(inode); 3071 if (sbinfo->noswap) 3072 mapping_set_unevictable(inode->i_mapping); 3073 3074 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3075 if (sbinfo->huge) 3076 mapping_set_large_folios(inode->i_mapping); 3077 3078 switch (mode & S_IFMT) { 3079 default: 3080 inode->i_op = &shmem_special_inode_operations; 3081 init_special_inode(inode, mode, dev); 3082 break; 3083 case S_IFREG: 3084 inode->i_mapping->a_ops = &shmem_aops; 3085 inode->i_op = &shmem_inode_operations; 3086 inode->i_fop = &shmem_file_operations; 3087 mpol_shared_policy_init(&info->policy, 3088 shmem_get_sbmpol(sbinfo)); 3089 break; 3090 case S_IFDIR: 3091 inc_nlink(inode); 3092 /* Some things misbehave if size == 0 on a directory */ 3093 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3094 inode->i_op = &shmem_dir_inode_operations; 3095 inode->i_fop = &simple_offset_dir_operations; 3096 simple_offset_init(shmem_get_offset_ctx(inode)); 3097 break; 3098 case S_IFLNK: 3099 /* 3100 * Must not load anything in the rbtree, 3101 * mpol_free_shared_policy will not be called. 3102 */ 3103 mpol_shared_policy_init(&info->policy, NULL); 3104 break; 3105 } 3106 3107 lockdep_annotate_inode_mutex_key(inode); 3108 return inode; 3109 } 3110 3111 #ifdef CONFIG_TMPFS_QUOTA 3112 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3113 struct super_block *sb, struct inode *dir, 3114 umode_t mode, dev_t dev, unsigned long flags) 3115 { 3116 int err; 3117 struct inode *inode; 3118 3119 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3120 if (IS_ERR(inode)) 3121 return inode; 3122 3123 err = dquot_initialize(inode); 3124 if (err) 3125 goto errout; 3126 3127 err = dquot_alloc_inode(inode); 3128 if (err) { 3129 dquot_drop(inode); 3130 goto errout; 3131 } 3132 return inode; 3133 3134 errout: 3135 inode->i_flags |= S_NOQUOTA; 3136 iput(inode); 3137 return ERR_PTR(err); 3138 } 3139 #else 3140 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3141 struct super_block *sb, struct inode *dir, 3142 umode_t mode, dev_t dev, unsigned long flags) 3143 { 3144 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3145 } 3146 #endif /* CONFIG_TMPFS_QUOTA */ 3147 3148 #ifdef CONFIG_USERFAULTFD 3149 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3150 struct vm_area_struct *dst_vma, 3151 unsigned long dst_addr, 3152 unsigned long src_addr, 3153 uffd_flags_t flags, 3154 struct folio **foliop) 3155 { 3156 struct inode *inode = file_inode(dst_vma->vm_file); 3157 struct shmem_inode_info *info = SHMEM_I(inode); 3158 struct address_space *mapping = inode->i_mapping; 3159 gfp_t gfp = mapping_gfp_mask(mapping); 3160 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3161 void *page_kaddr; 3162 struct folio *folio; 3163 int ret; 3164 pgoff_t max_off; 3165 3166 if (shmem_inode_acct_blocks(inode, 1)) { 3167 /* 3168 * We may have got a page, returned -ENOENT triggering a retry, 3169 * and now we find ourselves with -ENOMEM. Release the page, to 3170 * avoid a BUG_ON in our caller. 3171 */ 3172 if (unlikely(*foliop)) { 3173 folio_put(*foliop); 3174 *foliop = NULL; 3175 } 3176 return -ENOMEM; 3177 } 3178 3179 if (!*foliop) { 3180 ret = -ENOMEM; 3181 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3182 if (!folio) 3183 goto out_unacct_blocks; 3184 3185 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3186 page_kaddr = kmap_local_folio(folio, 0); 3187 /* 3188 * The read mmap_lock is held here. Despite the 3189 * mmap_lock being read recursive a deadlock is still 3190 * possible if a writer has taken a lock. For example: 3191 * 3192 * process A thread 1 takes read lock on own mmap_lock 3193 * process A thread 2 calls mmap, blocks taking write lock 3194 * process B thread 1 takes page fault, read lock on own mmap lock 3195 * process B thread 2 calls mmap, blocks taking write lock 3196 * process A thread 1 blocks taking read lock on process B 3197 * process B thread 1 blocks taking read lock on process A 3198 * 3199 * Disable page faults to prevent potential deadlock 3200 * and retry the copy outside the mmap_lock. 3201 */ 3202 pagefault_disable(); 3203 ret = copy_from_user(page_kaddr, 3204 (const void __user *)src_addr, 3205 PAGE_SIZE); 3206 pagefault_enable(); 3207 kunmap_local(page_kaddr); 3208 3209 /* fallback to copy_from_user outside mmap_lock */ 3210 if (unlikely(ret)) { 3211 *foliop = folio; 3212 ret = -ENOENT; 3213 /* don't free the page */ 3214 goto out_unacct_blocks; 3215 } 3216 3217 flush_dcache_folio(folio); 3218 } else { /* ZEROPAGE */ 3219 clear_user_highpage(&folio->page, dst_addr); 3220 } 3221 } else { 3222 folio = *foliop; 3223 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3224 *foliop = NULL; 3225 } 3226 3227 VM_BUG_ON(folio_test_locked(folio)); 3228 VM_BUG_ON(folio_test_swapbacked(folio)); 3229 __folio_set_locked(folio); 3230 __folio_set_swapbacked(folio); 3231 __folio_mark_uptodate(folio); 3232 3233 ret = -EFAULT; 3234 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3235 if (unlikely(pgoff >= max_off)) 3236 goto out_release; 3237 3238 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3239 if (ret) 3240 goto out_release; 3241 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3242 if (ret) 3243 goto out_release; 3244 3245 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3246 &folio->page, true, flags); 3247 if (ret) 3248 goto out_delete_from_cache; 3249 3250 shmem_recalc_inode(inode, 1, 0); 3251 folio_unlock(folio); 3252 return 0; 3253 out_delete_from_cache: 3254 filemap_remove_folio(folio); 3255 out_release: 3256 folio_unlock(folio); 3257 folio_put(folio); 3258 out_unacct_blocks: 3259 shmem_inode_unacct_blocks(inode, 1); 3260 return ret; 3261 } 3262 #endif /* CONFIG_USERFAULTFD */ 3263 3264 #ifdef CONFIG_TMPFS 3265 static const struct inode_operations shmem_symlink_inode_operations; 3266 static const struct inode_operations shmem_short_symlink_operations; 3267 3268 static int 3269 shmem_write_begin(struct file *file, struct address_space *mapping, 3270 loff_t pos, unsigned len, 3271 struct folio **foliop, void **fsdata) 3272 { 3273 struct inode *inode = mapping->host; 3274 struct shmem_inode_info *info = SHMEM_I(inode); 3275 pgoff_t index = pos >> PAGE_SHIFT; 3276 struct folio *folio; 3277 int ret = 0; 3278 3279 /* i_rwsem is held by caller */ 3280 if (unlikely(info->seals & (F_SEAL_GROW | 3281 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3282 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3283 return -EPERM; 3284 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3285 return -EPERM; 3286 } 3287 3288 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3289 if (ret) 3290 return ret; 3291 3292 if (folio_contain_hwpoisoned_page(folio)) { 3293 folio_unlock(folio); 3294 folio_put(folio); 3295 return -EIO; 3296 } 3297 3298 *foliop = folio; 3299 return 0; 3300 } 3301 3302 static int 3303 shmem_write_end(struct file *file, struct address_space *mapping, 3304 loff_t pos, unsigned len, unsigned copied, 3305 struct folio *folio, void *fsdata) 3306 { 3307 struct inode *inode = mapping->host; 3308 3309 if (pos + copied > inode->i_size) 3310 i_size_write(inode, pos + copied); 3311 3312 if (!folio_test_uptodate(folio)) { 3313 if (copied < folio_size(folio)) { 3314 size_t from = offset_in_folio(folio, pos); 3315 folio_zero_segments(folio, 0, from, 3316 from + copied, folio_size(folio)); 3317 } 3318 folio_mark_uptodate(folio); 3319 } 3320 folio_mark_dirty(folio); 3321 folio_unlock(folio); 3322 folio_put(folio); 3323 3324 return copied; 3325 } 3326 3327 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3328 { 3329 struct file *file = iocb->ki_filp; 3330 struct inode *inode = file_inode(file); 3331 struct address_space *mapping = inode->i_mapping; 3332 pgoff_t index; 3333 unsigned long offset; 3334 int error = 0; 3335 ssize_t retval = 0; 3336 3337 for (;;) { 3338 struct folio *folio = NULL; 3339 struct page *page = NULL; 3340 unsigned long nr, ret; 3341 loff_t end_offset, i_size = i_size_read(inode); 3342 bool fallback_page_copy = false; 3343 size_t fsize; 3344 3345 if (unlikely(iocb->ki_pos >= i_size)) 3346 break; 3347 3348 index = iocb->ki_pos >> PAGE_SHIFT; 3349 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3350 if (error) { 3351 if (error == -EINVAL) 3352 error = 0; 3353 break; 3354 } 3355 if (folio) { 3356 folio_unlock(folio); 3357 3358 page = folio_file_page(folio, index); 3359 if (PageHWPoison(page)) { 3360 folio_put(folio); 3361 error = -EIO; 3362 break; 3363 } 3364 3365 if (folio_test_large(folio) && 3366 folio_test_has_hwpoisoned(folio)) 3367 fallback_page_copy = true; 3368 } 3369 3370 /* 3371 * We must evaluate after, since reads (unlike writes) 3372 * are called without i_rwsem protection against truncate 3373 */ 3374 i_size = i_size_read(inode); 3375 if (unlikely(iocb->ki_pos >= i_size)) { 3376 if (folio) 3377 folio_put(folio); 3378 break; 3379 } 3380 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3381 if (folio && likely(!fallback_page_copy)) 3382 fsize = folio_size(folio); 3383 else 3384 fsize = PAGE_SIZE; 3385 offset = iocb->ki_pos & (fsize - 1); 3386 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3387 3388 if (folio) { 3389 /* 3390 * If users can be writing to this page using arbitrary 3391 * virtual addresses, take care about potential aliasing 3392 * before reading the page on the kernel side. 3393 */ 3394 if (mapping_writably_mapped(mapping)) { 3395 if (likely(!fallback_page_copy)) 3396 flush_dcache_folio(folio); 3397 else 3398 flush_dcache_page(page); 3399 } 3400 3401 /* 3402 * Mark the folio accessed if we read the beginning. 3403 */ 3404 if (!offset) 3405 folio_mark_accessed(folio); 3406 /* 3407 * Ok, we have the page, and it's up-to-date, so 3408 * now we can copy it to user space... 3409 */ 3410 if (likely(!fallback_page_copy)) 3411 ret = copy_folio_to_iter(folio, offset, nr, to); 3412 else 3413 ret = copy_page_to_iter(page, offset, nr, to); 3414 folio_put(folio); 3415 } else if (user_backed_iter(to)) { 3416 /* 3417 * Copy to user tends to be so well optimized, but 3418 * clear_user() not so much, that it is noticeably 3419 * faster to copy the zero page instead of clearing. 3420 */ 3421 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3422 } else { 3423 /* 3424 * But submitting the same page twice in a row to 3425 * splice() - or others? - can result in confusion: 3426 * so don't attempt that optimization on pipes etc. 3427 */ 3428 ret = iov_iter_zero(nr, to); 3429 } 3430 3431 retval += ret; 3432 iocb->ki_pos += ret; 3433 3434 if (!iov_iter_count(to)) 3435 break; 3436 if (ret < nr) { 3437 error = -EFAULT; 3438 break; 3439 } 3440 cond_resched(); 3441 } 3442 3443 file_accessed(file); 3444 return retval ? retval : error; 3445 } 3446 3447 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3448 { 3449 struct file *file = iocb->ki_filp; 3450 struct inode *inode = file->f_mapping->host; 3451 ssize_t ret; 3452 3453 inode_lock(inode); 3454 ret = generic_write_checks(iocb, from); 3455 if (ret <= 0) 3456 goto unlock; 3457 ret = file_remove_privs(file); 3458 if (ret) 3459 goto unlock; 3460 ret = file_update_time(file); 3461 if (ret) 3462 goto unlock; 3463 ret = generic_perform_write(iocb, from); 3464 unlock: 3465 inode_unlock(inode); 3466 return ret; 3467 } 3468 3469 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3470 struct pipe_buffer *buf) 3471 { 3472 return true; 3473 } 3474 3475 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3476 struct pipe_buffer *buf) 3477 { 3478 } 3479 3480 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3481 struct pipe_buffer *buf) 3482 { 3483 return false; 3484 } 3485 3486 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3487 .release = zero_pipe_buf_release, 3488 .try_steal = zero_pipe_buf_try_steal, 3489 .get = zero_pipe_buf_get, 3490 }; 3491 3492 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3493 loff_t fpos, size_t size) 3494 { 3495 size_t offset = fpos & ~PAGE_MASK; 3496 3497 size = min_t(size_t, size, PAGE_SIZE - offset); 3498 3499 if (!pipe_is_full(pipe)) { 3500 struct pipe_buffer *buf = pipe_head_buf(pipe); 3501 3502 *buf = (struct pipe_buffer) { 3503 .ops = &zero_pipe_buf_ops, 3504 .page = ZERO_PAGE(0), 3505 .offset = offset, 3506 .len = size, 3507 }; 3508 pipe->head++; 3509 } 3510 3511 return size; 3512 } 3513 3514 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3515 struct pipe_inode_info *pipe, 3516 size_t len, unsigned int flags) 3517 { 3518 struct inode *inode = file_inode(in); 3519 struct address_space *mapping = inode->i_mapping; 3520 struct folio *folio = NULL; 3521 size_t total_spliced = 0, used, npages, n, part; 3522 loff_t isize; 3523 int error = 0; 3524 3525 /* Work out how much data we can actually add into the pipe */ 3526 used = pipe_buf_usage(pipe); 3527 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3528 len = min_t(size_t, len, npages * PAGE_SIZE); 3529 3530 do { 3531 bool fallback_page_splice = false; 3532 struct page *page = NULL; 3533 pgoff_t index; 3534 size_t size; 3535 3536 if (*ppos >= i_size_read(inode)) 3537 break; 3538 3539 index = *ppos >> PAGE_SHIFT; 3540 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3541 if (error) { 3542 if (error == -EINVAL) 3543 error = 0; 3544 break; 3545 } 3546 if (folio) { 3547 folio_unlock(folio); 3548 3549 page = folio_file_page(folio, index); 3550 if (PageHWPoison(page)) { 3551 error = -EIO; 3552 break; 3553 } 3554 3555 if (folio_test_large(folio) && 3556 folio_test_has_hwpoisoned(folio)) 3557 fallback_page_splice = true; 3558 } 3559 3560 /* 3561 * i_size must be checked after we know the pages are Uptodate. 3562 * 3563 * Checking i_size after the check allows us to calculate 3564 * the correct value for "nr", which means the zero-filled 3565 * part of the page is not copied back to userspace (unless 3566 * another truncate extends the file - this is desired though). 3567 */ 3568 isize = i_size_read(inode); 3569 if (unlikely(*ppos >= isize)) 3570 break; 3571 /* 3572 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3573 * pages. 3574 */ 3575 size = len; 3576 if (unlikely(fallback_page_splice)) { 3577 size_t offset = *ppos & ~PAGE_MASK; 3578 3579 size = umin(size, PAGE_SIZE - offset); 3580 } 3581 part = min_t(loff_t, isize - *ppos, size); 3582 3583 if (folio) { 3584 /* 3585 * If users can be writing to this page using arbitrary 3586 * virtual addresses, take care about potential aliasing 3587 * before reading the page on the kernel side. 3588 */ 3589 if (mapping_writably_mapped(mapping)) { 3590 if (likely(!fallback_page_splice)) 3591 flush_dcache_folio(folio); 3592 else 3593 flush_dcache_page(page); 3594 } 3595 folio_mark_accessed(folio); 3596 /* 3597 * Ok, we have the page, and it's up-to-date, so we can 3598 * now splice it into the pipe. 3599 */ 3600 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3601 folio_put(folio); 3602 folio = NULL; 3603 } else { 3604 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3605 } 3606 3607 if (!n) 3608 break; 3609 len -= n; 3610 total_spliced += n; 3611 *ppos += n; 3612 in->f_ra.prev_pos = *ppos; 3613 if (pipe_is_full(pipe)) 3614 break; 3615 3616 cond_resched(); 3617 } while (len); 3618 3619 if (folio) 3620 folio_put(folio); 3621 3622 file_accessed(in); 3623 return total_spliced ? total_spliced : error; 3624 } 3625 3626 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3627 { 3628 struct address_space *mapping = file->f_mapping; 3629 struct inode *inode = mapping->host; 3630 3631 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3632 return generic_file_llseek_size(file, offset, whence, 3633 MAX_LFS_FILESIZE, i_size_read(inode)); 3634 if (offset < 0) 3635 return -ENXIO; 3636 3637 inode_lock(inode); 3638 /* We're holding i_rwsem so we can access i_size directly */ 3639 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3640 if (offset >= 0) 3641 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3642 inode_unlock(inode); 3643 return offset; 3644 } 3645 3646 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3647 loff_t len) 3648 { 3649 struct inode *inode = file_inode(file); 3650 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3651 struct shmem_inode_info *info = SHMEM_I(inode); 3652 struct shmem_falloc shmem_falloc; 3653 pgoff_t start, index, end, undo_fallocend; 3654 int error; 3655 3656 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3657 return -EOPNOTSUPP; 3658 3659 inode_lock(inode); 3660 3661 if (mode & FALLOC_FL_PUNCH_HOLE) { 3662 struct address_space *mapping = file->f_mapping; 3663 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3664 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3666 3667 /* protected by i_rwsem */ 3668 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3669 error = -EPERM; 3670 goto out; 3671 } 3672 3673 shmem_falloc.waitq = &shmem_falloc_waitq; 3674 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3675 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3676 spin_lock(&inode->i_lock); 3677 inode->i_private = &shmem_falloc; 3678 spin_unlock(&inode->i_lock); 3679 3680 if ((u64)unmap_end > (u64)unmap_start) 3681 unmap_mapping_range(mapping, unmap_start, 3682 1 + unmap_end - unmap_start, 0); 3683 shmem_truncate_range(inode, offset, offset + len - 1); 3684 /* No need to unmap again: hole-punching leaves COWed pages */ 3685 3686 spin_lock(&inode->i_lock); 3687 inode->i_private = NULL; 3688 wake_up_all(&shmem_falloc_waitq); 3689 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3690 spin_unlock(&inode->i_lock); 3691 error = 0; 3692 goto out; 3693 } 3694 3695 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3696 error = inode_newsize_ok(inode, offset + len); 3697 if (error) 3698 goto out; 3699 3700 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3701 error = -EPERM; 3702 goto out; 3703 } 3704 3705 start = offset >> PAGE_SHIFT; 3706 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3707 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3708 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3709 error = -ENOSPC; 3710 goto out; 3711 } 3712 3713 shmem_falloc.waitq = NULL; 3714 shmem_falloc.start = start; 3715 shmem_falloc.next = start; 3716 shmem_falloc.nr_falloced = 0; 3717 shmem_falloc.nr_unswapped = 0; 3718 spin_lock(&inode->i_lock); 3719 inode->i_private = &shmem_falloc; 3720 spin_unlock(&inode->i_lock); 3721 3722 /* 3723 * info->fallocend is only relevant when huge pages might be 3724 * involved: to prevent split_huge_page() freeing fallocated 3725 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3726 */ 3727 undo_fallocend = info->fallocend; 3728 if (info->fallocend < end) 3729 info->fallocend = end; 3730 3731 for (index = start; index < end; ) { 3732 struct folio *folio; 3733 3734 /* 3735 * Check for fatal signal so that we abort early in OOM 3736 * situations. We don't want to abort in case of non-fatal 3737 * signals as large fallocate can take noticeable time and 3738 * e.g. periodic timers may result in fallocate constantly 3739 * restarting. 3740 */ 3741 if (fatal_signal_pending(current)) 3742 error = -EINTR; 3743 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3744 error = -ENOMEM; 3745 else 3746 error = shmem_get_folio(inode, index, offset + len, 3747 &folio, SGP_FALLOC); 3748 if (error) { 3749 info->fallocend = undo_fallocend; 3750 /* Remove the !uptodate folios we added */ 3751 if (index > start) { 3752 shmem_undo_range(inode, 3753 (loff_t)start << PAGE_SHIFT, 3754 ((loff_t)index << PAGE_SHIFT) - 1, true); 3755 } 3756 goto undone; 3757 } 3758 3759 /* 3760 * Here is a more important optimization than it appears: 3761 * a second SGP_FALLOC on the same large folio will clear it, 3762 * making it uptodate and un-undoable if we fail later. 3763 */ 3764 index = folio_next_index(folio); 3765 /* Beware 32-bit wraparound */ 3766 if (!index) 3767 index--; 3768 3769 /* 3770 * Inform shmem_writeout() how far we have reached. 3771 * No need for lock or barrier: we have the page lock. 3772 */ 3773 if (!folio_test_uptodate(folio)) 3774 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3775 shmem_falloc.next = index; 3776 3777 /* 3778 * If !uptodate, leave it that way so that freeable folios 3779 * can be recognized if we need to rollback on error later. 3780 * But mark it dirty so that memory pressure will swap rather 3781 * than free the folios we are allocating (and SGP_CACHE folios 3782 * might still be clean: we now need to mark those dirty too). 3783 */ 3784 folio_mark_dirty(folio); 3785 folio_unlock(folio); 3786 folio_put(folio); 3787 cond_resched(); 3788 } 3789 3790 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3791 i_size_write(inode, offset + len); 3792 undone: 3793 spin_lock(&inode->i_lock); 3794 inode->i_private = NULL; 3795 spin_unlock(&inode->i_lock); 3796 out: 3797 if (!error) 3798 file_modified(file); 3799 inode_unlock(inode); 3800 return error; 3801 } 3802 3803 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3804 { 3805 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3806 3807 buf->f_type = TMPFS_MAGIC; 3808 buf->f_bsize = PAGE_SIZE; 3809 buf->f_namelen = NAME_MAX; 3810 if (sbinfo->max_blocks) { 3811 buf->f_blocks = sbinfo->max_blocks; 3812 buf->f_bavail = 3813 buf->f_bfree = sbinfo->max_blocks - 3814 percpu_counter_sum(&sbinfo->used_blocks); 3815 } 3816 if (sbinfo->max_inodes) { 3817 buf->f_files = sbinfo->max_inodes; 3818 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3819 } 3820 /* else leave those fields 0 like simple_statfs */ 3821 3822 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3823 3824 return 0; 3825 } 3826 3827 /* 3828 * File creation. Allocate an inode, and we're done.. 3829 */ 3830 static int 3831 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3832 struct dentry *dentry, umode_t mode, dev_t dev) 3833 { 3834 struct inode *inode; 3835 int error; 3836 3837 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3838 return -EINVAL; 3839 3840 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3841 if (IS_ERR(inode)) 3842 return PTR_ERR(inode); 3843 3844 error = simple_acl_create(dir, inode); 3845 if (error) 3846 goto out_iput; 3847 error = security_inode_init_security(inode, dir, &dentry->d_name, 3848 shmem_initxattrs, NULL); 3849 if (error && error != -EOPNOTSUPP) 3850 goto out_iput; 3851 3852 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3853 if (error) 3854 goto out_iput; 3855 3856 dir->i_size += BOGO_DIRENT_SIZE; 3857 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3858 inode_inc_iversion(dir); 3859 3860 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3861 d_add(dentry, inode); 3862 else 3863 d_instantiate(dentry, inode); 3864 3865 dget(dentry); /* Extra count - pin the dentry in core */ 3866 return error; 3867 3868 out_iput: 3869 iput(inode); 3870 return error; 3871 } 3872 3873 static int 3874 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3875 struct file *file, umode_t mode) 3876 { 3877 struct inode *inode; 3878 int error; 3879 3880 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3881 if (IS_ERR(inode)) { 3882 error = PTR_ERR(inode); 3883 goto err_out; 3884 } 3885 error = security_inode_init_security(inode, dir, NULL, 3886 shmem_initxattrs, NULL); 3887 if (error && error != -EOPNOTSUPP) 3888 goto out_iput; 3889 error = simple_acl_create(dir, inode); 3890 if (error) 3891 goto out_iput; 3892 d_tmpfile(file, inode); 3893 3894 err_out: 3895 return finish_open_simple(file, error); 3896 out_iput: 3897 iput(inode); 3898 return error; 3899 } 3900 3901 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3902 struct dentry *dentry, umode_t mode) 3903 { 3904 int error; 3905 3906 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3907 if (error) 3908 return ERR_PTR(error); 3909 inc_nlink(dir); 3910 return NULL; 3911 } 3912 3913 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3914 struct dentry *dentry, umode_t mode, bool excl) 3915 { 3916 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3917 } 3918 3919 /* 3920 * Link a file.. 3921 */ 3922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3923 struct dentry *dentry) 3924 { 3925 struct inode *inode = d_inode(old_dentry); 3926 int ret = 0; 3927 3928 /* 3929 * No ordinary (disk based) filesystem counts links as inodes; 3930 * but each new link needs a new dentry, pinning lowmem, and 3931 * tmpfs dentries cannot be pruned until they are unlinked. 3932 * But if an O_TMPFILE file is linked into the tmpfs, the 3933 * first link must skip that, to get the accounting right. 3934 */ 3935 if (inode->i_nlink) { 3936 ret = shmem_reserve_inode(inode->i_sb, NULL); 3937 if (ret) 3938 goto out; 3939 } 3940 3941 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3942 if (ret) { 3943 if (inode->i_nlink) 3944 shmem_free_inode(inode->i_sb, 0); 3945 goto out; 3946 } 3947 3948 dir->i_size += BOGO_DIRENT_SIZE; 3949 inode_set_mtime_to_ts(dir, 3950 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3951 inode_inc_iversion(dir); 3952 inc_nlink(inode); 3953 ihold(inode); /* New dentry reference */ 3954 dget(dentry); /* Extra pinning count for the created dentry */ 3955 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3956 d_add(dentry, inode); 3957 else 3958 d_instantiate(dentry, inode); 3959 out: 3960 return ret; 3961 } 3962 3963 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3964 { 3965 struct inode *inode = d_inode(dentry); 3966 3967 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3968 shmem_free_inode(inode->i_sb, 0); 3969 3970 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3971 3972 dir->i_size -= BOGO_DIRENT_SIZE; 3973 inode_set_mtime_to_ts(dir, 3974 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3975 inode_inc_iversion(dir); 3976 drop_nlink(inode); 3977 dput(dentry); /* Undo the count from "create" - does all the work */ 3978 3979 /* 3980 * For now, VFS can't deal with case-insensitive negative dentries, so 3981 * we invalidate them 3982 */ 3983 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3984 d_invalidate(dentry); 3985 3986 return 0; 3987 } 3988 3989 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3990 { 3991 if (!simple_empty(dentry)) 3992 return -ENOTEMPTY; 3993 3994 drop_nlink(d_inode(dentry)); 3995 drop_nlink(dir); 3996 return shmem_unlink(dir, dentry); 3997 } 3998 3999 static int shmem_whiteout(struct mnt_idmap *idmap, 4000 struct inode *old_dir, struct dentry *old_dentry) 4001 { 4002 struct dentry *whiteout; 4003 int error; 4004 4005 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4006 if (!whiteout) 4007 return -ENOMEM; 4008 4009 error = shmem_mknod(idmap, old_dir, whiteout, 4010 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4011 dput(whiteout); 4012 if (error) 4013 return error; 4014 4015 /* 4016 * Cheat and hash the whiteout while the old dentry is still in 4017 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4018 * 4019 * d_lookup() will consistently find one of them at this point, 4020 * not sure which one, but that isn't even important. 4021 */ 4022 d_rehash(whiteout); 4023 return 0; 4024 } 4025 4026 /* 4027 * The VFS layer already does all the dentry stuff for rename, 4028 * we just have to decrement the usage count for the target if 4029 * it exists so that the VFS layer correctly free's it when it 4030 * gets overwritten. 4031 */ 4032 static int shmem_rename2(struct mnt_idmap *idmap, 4033 struct inode *old_dir, struct dentry *old_dentry, 4034 struct inode *new_dir, struct dentry *new_dentry, 4035 unsigned int flags) 4036 { 4037 struct inode *inode = d_inode(old_dentry); 4038 int they_are_dirs = S_ISDIR(inode->i_mode); 4039 int error; 4040 4041 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4042 return -EINVAL; 4043 4044 if (flags & RENAME_EXCHANGE) 4045 return simple_offset_rename_exchange(old_dir, old_dentry, 4046 new_dir, new_dentry); 4047 4048 if (!simple_empty(new_dentry)) 4049 return -ENOTEMPTY; 4050 4051 if (flags & RENAME_WHITEOUT) { 4052 error = shmem_whiteout(idmap, old_dir, old_dentry); 4053 if (error) 4054 return error; 4055 } 4056 4057 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4058 if (error) 4059 return error; 4060 4061 if (d_really_is_positive(new_dentry)) { 4062 (void) shmem_unlink(new_dir, new_dentry); 4063 if (they_are_dirs) { 4064 drop_nlink(d_inode(new_dentry)); 4065 drop_nlink(old_dir); 4066 } 4067 } else if (they_are_dirs) { 4068 drop_nlink(old_dir); 4069 inc_nlink(new_dir); 4070 } 4071 4072 old_dir->i_size -= BOGO_DIRENT_SIZE; 4073 new_dir->i_size += BOGO_DIRENT_SIZE; 4074 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4075 inode_inc_iversion(old_dir); 4076 inode_inc_iversion(new_dir); 4077 return 0; 4078 } 4079 4080 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4081 struct dentry *dentry, const char *symname) 4082 { 4083 int error; 4084 int len; 4085 struct inode *inode; 4086 struct folio *folio; 4087 char *link; 4088 4089 len = strlen(symname) + 1; 4090 if (len > PAGE_SIZE) 4091 return -ENAMETOOLONG; 4092 4093 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4094 VM_NORESERVE); 4095 if (IS_ERR(inode)) 4096 return PTR_ERR(inode); 4097 4098 error = security_inode_init_security(inode, dir, &dentry->d_name, 4099 shmem_initxattrs, NULL); 4100 if (error && error != -EOPNOTSUPP) 4101 goto out_iput; 4102 4103 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4104 if (error) 4105 goto out_iput; 4106 4107 inode->i_size = len-1; 4108 if (len <= SHORT_SYMLINK_LEN) { 4109 link = kmemdup(symname, len, GFP_KERNEL); 4110 if (!link) { 4111 error = -ENOMEM; 4112 goto out_remove_offset; 4113 } 4114 inode->i_op = &shmem_short_symlink_operations; 4115 inode_set_cached_link(inode, link, len - 1); 4116 } else { 4117 inode_nohighmem(inode); 4118 inode->i_mapping->a_ops = &shmem_aops; 4119 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4120 if (error) 4121 goto out_remove_offset; 4122 inode->i_op = &shmem_symlink_inode_operations; 4123 memcpy(folio_address(folio), symname, len); 4124 folio_mark_uptodate(folio); 4125 folio_mark_dirty(folio); 4126 folio_unlock(folio); 4127 folio_put(folio); 4128 } 4129 dir->i_size += BOGO_DIRENT_SIZE; 4130 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4131 inode_inc_iversion(dir); 4132 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4133 d_add(dentry, inode); 4134 else 4135 d_instantiate(dentry, inode); 4136 dget(dentry); 4137 return 0; 4138 4139 out_remove_offset: 4140 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4141 out_iput: 4142 iput(inode); 4143 return error; 4144 } 4145 4146 static void shmem_put_link(void *arg) 4147 { 4148 folio_mark_accessed(arg); 4149 folio_put(arg); 4150 } 4151 4152 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4153 struct delayed_call *done) 4154 { 4155 struct folio *folio = NULL; 4156 int error; 4157 4158 if (!dentry) { 4159 folio = filemap_get_folio(inode->i_mapping, 0); 4160 if (IS_ERR(folio)) 4161 return ERR_PTR(-ECHILD); 4162 if (PageHWPoison(folio_page(folio, 0)) || 4163 !folio_test_uptodate(folio)) { 4164 folio_put(folio); 4165 return ERR_PTR(-ECHILD); 4166 } 4167 } else { 4168 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4169 if (error) 4170 return ERR_PTR(error); 4171 if (!folio) 4172 return ERR_PTR(-ECHILD); 4173 if (PageHWPoison(folio_page(folio, 0))) { 4174 folio_unlock(folio); 4175 folio_put(folio); 4176 return ERR_PTR(-ECHILD); 4177 } 4178 folio_unlock(folio); 4179 } 4180 set_delayed_call(done, shmem_put_link, folio); 4181 return folio_address(folio); 4182 } 4183 4184 #ifdef CONFIG_TMPFS_XATTR 4185 4186 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 4187 { 4188 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4189 4190 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4191 4192 return 0; 4193 } 4194 4195 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4196 struct dentry *dentry, struct fileattr *fa) 4197 { 4198 struct inode *inode = d_inode(dentry); 4199 struct shmem_inode_info *info = SHMEM_I(inode); 4200 int ret, flags; 4201 4202 if (fileattr_has_fsx(fa)) 4203 return -EOPNOTSUPP; 4204 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4205 return -EOPNOTSUPP; 4206 4207 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4208 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4209 4210 ret = shmem_set_inode_flags(inode, flags, dentry); 4211 4212 if (ret) 4213 return ret; 4214 4215 info->fsflags = flags; 4216 4217 inode_set_ctime_current(inode); 4218 inode_inc_iversion(inode); 4219 return 0; 4220 } 4221 4222 /* 4223 * Superblocks without xattr inode operations may get some security.* xattr 4224 * support from the LSM "for free". As soon as we have any other xattrs 4225 * like ACLs, we also need to implement the security.* handlers at 4226 * filesystem level, though. 4227 */ 4228 4229 /* 4230 * Callback for security_inode_init_security() for acquiring xattrs. 4231 */ 4232 static int shmem_initxattrs(struct inode *inode, 4233 const struct xattr *xattr_array, void *fs_info) 4234 { 4235 struct shmem_inode_info *info = SHMEM_I(inode); 4236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4237 const struct xattr *xattr; 4238 struct simple_xattr *new_xattr; 4239 size_t ispace = 0; 4240 size_t len; 4241 4242 if (sbinfo->max_inodes) { 4243 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4244 ispace += simple_xattr_space(xattr->name, 4245 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4246 } 4247 if (ispace) { 4248 raw_spin_lock(&sbinfo->stat_lock); 4249 if (sbinfo->free_ispace < ispace) 4250 ispace = 0; 4251 else 4252 sbinfo->free_ispace -= ispace; 4253 raw_spin_unlock(&sbinfo->stat_lock); 4254 if (!ispace) 4255 return -ENOSPC; 4256 } 4257 } 4258 4259 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4260 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4261 if (!new_xattr) 4262 break; 4263 4264 len = strlen(xattr->name) + 1; 4265 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4266 GFP_KERNEL_ACCOUNT); 4267 if (!new_xattr->name) { 4268 kvfree(new_xattr); 4269 break; 4270 } 4271 4272 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4273 XATTR_SECURITY_PREFIX_LEN); 4274 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4275 xattr->name, len); 4276 4277 simple_xattr_add(&info->xattrs, new_xattr); 4278 } 4279 4280 if (xattr->name != NULL) { 4281 if (ispace) { 4282 raw_spin_lock(&sbinfo->stat_lock); 4283 sbinfo->free_ispace += ispace; 4284 raw_spin_unlock(&sbinfo->stat_lock); 4285 } 4286 simple_xattrs_free(&info->xattrs, NULL); 4287 return -ENOMEM; 4288 } 4289 4290 return 0; 4291 } 4292 4293 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4294 struct dentry *unused, struct inode *inode, 4295 const char *name, void *buffer, size_t size) 4296 { 4297 struct shmem_inode_info *info = SHMEM_I(inode); 4298 4299 name = xattr_full_name(handler, name); 4300 return simple_xattr_get(&info->xattrs, name, buffer, size); 4301 } 4302 4303 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4304 struct mnt_idmap *idmap, 4305 struct dentry *unused, struct inode *inode, 4306 const char *name, const void *value, 4307 size_t size, int flags) 4308 { 4309 struct shmem_inode_info *info = SHMEM_I(inode); 4310 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4311 struct simple_xattr *old_xattr; 4312 size_t ispace = 0; 4313 4314 name = xattr_full_name(handler, name); 4315 if (value && sbinfo->max_inodes) { 4316 ispace = simple_xattr_space(name, size); 4317 raw_spin_lock(&sbinfo->stat_lock); 4318 if (sbinfo->free_ispace < ispace) 4319 ispace = 0; 4320 else 4321 sbinfo->free_ispace -= ispace; 4322 raw_spin_unlock(&sbinfo->stat_lock); 4323 if (!ispace) 4324 return -ENOSPC; 4325 } 4326 4327 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4328 if (!IS_ERR(old_xattr)) { 4329 ispace = 0; 4330 if (old_xattr && sbinfo->max_inodes) 4331 ispace = simple_xattr_space(old_xattr->name, 4332 old_xattr->size); 4333 simple_xattr_free(old_xattr); 4334 old_xattr = NULL; 4335 inode_set_ctime_current(inode); 4336 inode_inc_iversion(inode); 4337 } 4338 if (ispace) { 4339 raw_spin_lock(&sbinfo->stat_lock); 4340 sbinfo->free_ispace += ispace; 4341 raw_spin_unlock(&sbinfo->stat_lock); 4342 } 4343 return PTR_ERR(old_xattr); 4344 } 4345 4346 static const struct xattr_handler shmem_security_xattr_handler = { 4347 .prefix = XATTR_SECURITY_PREFIX, 4348 .get = shmem_xattr_handler_get, 4349 .set = shmem_xattr_handler_set, 4350 }; 4351 4352 static const struct xattr_handler shmem_trusted_xattr_handler = { 4353 .prefix = XATTR_TRUSTED_PREFIX, 4354 .get = shmem_xattr_handler_get, 4355 .set = shmem_xattr_handler_set, 4356 }; 4357 4358 static const struct xattr_handler shmem_user_xattr_handler = { 4359 .prefix = XATTR_USER_PREFIX, 4360 .get = shmem_xattr_handler_get, 4361 .set = shmem_xattr_handler_set, 4362 }; 4363 4364 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4365 &shmem_security_xattr_handler, 4366 &shmem_trusted_xattr_handler, 4367 &shmem_user_xattr_handler, 4368 NULL 4369 }; 4370 4371 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4372 { 4373 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4374 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4375 } 4376 #endif /* CONFIG_TMPFS_XATTR */ 4377 4378 static const struct inode_operations shmem_short_symlink_operations = { 4379 .getattr = shmem_getattr, 4380 .setattr = shmem_setattr, 4381 .get_link = simple_get_link, 4382 #ifdef CONFIG_TMPFS_XATTR 4383 .listxattr = shmem_listxattr, 4384 #endif 4385 }; 4386 4387 static const struct inode_operations shmem_symlink_inode_operations = { 4388 .getattr = shmem_getattr, 4389 .setattr = shmem_setattr, 4390 .get_link = shmem_get_link, 4391 #ifdef CONFIG_TMPFS_XATTR 4392 .listxattr = shmem_listxattr, 4393 #endif 4394 }; 4395 4396 static struct dentry *shmem_get_parent(struct dentry *child) 4397 { 4398 return ERR_PTR(-ESTALE); 4399 } 4400 4401 static int shmem_match(struct inode *ino, void *vfh) 4402 { 4403 __u32 *fh = vfh; 4404 __u64 inum = fh[2]; 4405 inum = (inum << 32) | fh[1]; 4406 return ino->i_ino == inum && fh[0] == ino->i_generation; 4407 } 4408 4409 /* Find any alias of inode, but prefer a hashed alias */ 4410 static struct dentry *shmem_find_alias(struct inode *inode) 4411 { 4412 struct dentry *alias = d_find_alias(inode); 4413 4414 return alias ?: d_find_any_alias(inode); 4415 } 4416 4417 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4418 struct fid *fid, int fh_len, int fh_type) 4419 { 4420 struct inode *inode; 4421 struct dentry *dentry = NULL; 4422 u64 inum; 4423 4424 if (fh_len < 3) 4425 return NULL; 4426 4427 inum = fid->raw[2]; 4428 inum = (inum << 32) | fid->raw[1]; 4429 4430 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4431 shmem_match, fid->raw); 4432 if (inode) { 4433 dentry = shmem_find_alias(inode); 4434 iput(inode); 4435 } 4436 4437 return dentry; 4438 } 4439 4440 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4441 struct inode *parent) 4442 { 4443 if (*len < 3) { 4444 *len = 3; 4445 return FILEID_INVALID; 4446 } 4447 4448 if (inode_unhashed(inode)) { 4449 /* Unfortunately insert_inode_hash is not idempotent, 4450 * so as we hash inodes here rather than at creation 4451 * time, we need a lock to ensure we only try 4452 * to do it once 4453 */ 4454 static DEFINE_SPINLOCK(lock); 4455 spin_lock(&lock); 4456 if (inode_unhashed(inode)) 4457 __insert_inode_hash(inode, 4458 inode->i_ino + inode->i_generation); 4459 spin_unlock(&lock); 4460 } 4461 4462 fh[0] = inode->i_generation; 4463 fh[1] = inode->i_ino; 4464 fh[2] = ((__u64)inode->i_ino) >> 32; 4465 4466 *len = 3; 4467 return 1; 4468 } 4469 4470 static const struct export_operations shmem_export_ops = { 4471 .get_parent = shmem_get_parent, 4472 .encode_fh = shmem_encode_fh, 4473 .fh_to_dentry = shmem_fh_to_dentry, 4474 }; 4475 4476 enum shmem_param { 4477 Opt_gid, 4478 Opt_huge, 4479 Opt_mode, 4480 Opt_mpol, 4481 Opt_nr_blocks, 4482 Opt_nr_inodes, 4483 Opt_size, 4484 Opt_uid, 4485 Opt_inode32, 4486 Opt_inode64, 4487 Opt_noswap, 4488 Opt_quota, 4489 Opt_usrquota, 4490 Opt_grpquota, 4491 Opt_usrquota_block_hardlimit, 4492 Opt_usrquota_inode_hardlimit, 4493 Opt_grpquota_block_hardlimit, 4494 Opt_grpquota_inode_hardlimit, 4495 Opt_casefold_version, 4496 Opt_casefold, 4497 Opt_strict_encoding, 4498 }; 4499 4500 static const struct constant_table shmem_param_enums_huge[] = { 4501 {"never", SHMEM_HUGE_NEVER }, 4502 {"always", SHMEM_HUGE_ALWAYS }, 4503 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4504 {"advise", SHMEM_HUGE_ADVISE }, 4505 {} 4506 }; 4507 4508 const struct fs_parameter_spec shmem_fs_parameters[] = { 4509 fsparam_gid ("gid", Opt_gid), 4510 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4511 fsparam_u32oct("mode", Opt_mode), 4512 fsparam_string("mpol", Opt_mpol), 4513 fsparam_string("nr_blocks", Opt_nr_blocks), 4514 fsparam_string("nr_inodes", Opt_nr_inodes), 4515 fsparam_string("size", Opt_size), 4516 fsparam_uid ("uid", Opt_uid), 4517 fsparam_flag ("inode32", Opt_inode32), 4518 fsparam_flag ("inode64", Opt_inode64), 4519 fsparam_flag ("noswap", Opt_noswap), 4520 #ifdef CONFIG_TMPFS_QUOTA 4521 fsparam_flag ("quota", Opt_quota), 4522 fsparam_flag ("usrquota", Opt_usrquota), 4523 fsparam_flag ("grpquota", Opt_grpquota), 4524 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4525 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4526 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4527 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4528 #endif 4529 fsparam_string("casefold", Opt_casefold_version), 4530 fsparam_flag ("casefold", Opt_casefold), 4531 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4532 {} 4533 }; 4534 4535 #if IS_ENABLED(CONFIG_UNICODE) 4536 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4537 bool latest_version) 4538 { 4539 struct shmem_options *ctx = fc->fs_private; 4540 int version = UTF8_LATEST; 4541 struct unicode_map *encoding; 4542 char *version_str = param->string + 5; 4543 4544 if (!latest_version) { 4545 if (strncmp(param->string, "utf8-", 5)) 4546 return invalfc(fc, "Only UTF-8 encodings are supported " 4547 "in the format: utf8-<version number>"); 4548 4549 version = utf8_parse_version(version_str); 4550 if (version < 0) 4551 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4552 } 4553 4554 encoding = utf8_load(version); 4555 4556 if (IS_ERR(encoding)) { 4557 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4558 unicode_major(version), unicode_minor(version), 4559 unicode_rev(version)); 4560 } 4561 4562 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4563 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4564 4565 ctx->encoding = encoding; 4566 4567 return 0; 4568 } 4569 #else 4570 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4571 bool latest_version) 4572 { 4573 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4574 } 4575 #endif 4576 4577 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4578 { 4579 struct shmem_options *ctx = fc->fs_private; 4580 struct fs_parse_result result; 4581 unsigned long long size; 4582 char *rest; 4583 int opt; 4584 kuid_t kuid; 4585 kgid_t kgid; 4586 4587 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4588 if (opt < 0) 4589 return opt; 4590 4591 switch (opt) { 4592 case Opt_size: 4593 size = memparse(param->string, &rest); 4594 if (*rest == '%') { 4595 size <<= PAGE_SHIFT; 4596 size *= totalram_pages(); 4597 do_div(size, 100); 4598 rest++; 4599 } 4600 if (*rest) 4601 goto bad_value; 4602 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4603 ctx->seen |= SHMEM_SEEN_BLOCKS; 4604 break; 4605 case Opt_nr_blocks: 4606 ctx->blocks = memparse(param->string, &rest); 4607 if (*rest || ctx->blocks > LONG_MAX) 4608 goto bad_value; 4609 ctx->seen |= SHMEM_SEEN_BLOCKS; 4610 break; 4611 case Opt_nr_inodes: 4612 ctx->inodes = memparse(param->string, &rest); 4613 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4614 goto bad_value; 4615 ctx->seen |= SHMEM_SEEN_INODES; 4616 break; 4617 case Opt_mode: 4618 ctx->mode = result.uint_32 & 07777; 4619 break; 4620 case Opt_uid: 4621 kuid = result.uid; 4622 4623 /* 4624 * The requested uid must be representable in the 4625 * filesystem's idmapping. 4626 */ 4627 if (!kuid_has_mapping(fc->user_ns, kuid)) 4628 goto bad_value; 4629 4630 ctx->uid = kuid; 4631 break; 4632 case Opt_gid: 4633 kgid = result.gid; 4634 4635 /* 4636 * The requested gid must be representable in the 4637 * filesystem's idmapping. 4638 */ 4639 if (!kgid_has_mapping(fc->user_ns, kgid)) 4640 goto bad_value; 4641 4642 ctx->gid = kgid; 4643 break; 4644 case Opt_huge: 4645 ctx->huge = result.uint_32; 4646 if (ctx->huge != SHMEM_HUGE_NEVER && 4647 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4648 has_transparent_hugepage())) 4649 goto unsupported_parameter; 4650 ctx->seen |= SHMEM_SEEN_HUGE; 4651 break; 4652 case Opt_mpol: 4653 if (IS_ENABLED(CONFIG_NUMA)) { 4654 mpol_put(ctx->mpol); 4655 ctx->mpol = NULL; 4656 if (mpol_parse_str(param->string, &ctx->mpol)) 4657 goto bad_value; 4658 break; 4659 } 4660 goto unsupported_parameter; 4661 case Opt_inode32: 4662 ctx->full_inums = false; 4663 ctx->seen |= SHMEM_SEEN_INUMS; 4664 break; 4665 case Opt_inode64: 4666 if (sizeof(ino_t) < 8) { 4667 return invalfc(fc, 4668 "Cannot use inode64 with <64bit inums in kernel\n"); 4669 } 4670 ctx->full_inums = true; 4671 ctx->seen |= SHMEM_SEEN_INUMS; 4672 break; 4673 case Opt_noswap: 4674 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4675 return invalfc(fc, 4676 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4677 } 4678 ctx->noswap = true; 4679 ctx->seen |= SHMEM_SEEN_NOSWAP; 4680 break; 4681 case Opt_quota: 4682 if (fc->user_ns != &init_user_ns) 4683 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4684 ctx->seen |= SHMEM_SEEN_QUOTA; 4685 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4686 break; 4687 case Opt_usrquota: 4688 if (fc->user_ns != &init_user_ns) 4689 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4690 ctx->seen |= SHMEM_SEEN_QUOTA; 4691 ctx->quota_types |= QTYPE_MASK_USR; 4692 break; 4693 case Opt_grpquota: 4694 if (fc->user_ns != &init_user_ns) 4695 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4696 ctx->seen |= SHMEM_SEEN_QUOTA; 4697 ctx->quota_types |= QTYPE_MASK_GRP; 4698 break; 4699 case Opt_usrquota_block_hardlimit: 4700 size = memparse(param->string, &rest); 4701 if (*rest || !size) 4702 goto bad_value; 4703 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4704 return invalfc(fc, 4705 "User quota block hardlimit too large."); 4706 ctx->qlimits.usrquota_bhardlimit = size; 4707 break; 4708 case Opt_grpquota_block_hardlimit: 4709 size = memparse(param->string, &rest); 4710 if (*rest || !size) 4711 goto bad_value; 4712 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4713 return invalfc(fc, 4714 "Group quota block hardlimit too large."); 4715 ctx->qlimits.grpquota_bhardlimit = size; 4716 break; 4717 case Opt_usrquota_inode_hardlimit: 4718 size = memparse(param->string, &rest); 4719 if (*rest || !size) 4720 goto bad_value; 4721 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4722 return invalfc(fc, 4723 "User quota inode hardlimit too large."); 4724 ctx->qlimits.usrquota_ihardlimit = size; 4725 break; 4726 case Opt_grpquota_inode_hardlimit: 4727 size = memparse(param->string, &rest); 4728 if (*rest || !size) 4729 goto bad_value; 4730 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4731 return invalfc(fc, 4732 "Group quota inode hardlimit too large."); 4733 ctx->qlimits.grpquota_ihardlimit = size; 4734 break; 4735 case Opt_casefold_version: 4736 return shmem_parse_opt_casefold(fc, param, false); 4737 case Opt_casefold: 4738 return shmem_parse_opt_casefold(fc, param, true); 4739 case Opt_strict_encoding: 4740 #if IS_ENABLED(CONFIG_UNICODE) 4741 ctx->strict_encoding = true; 4742 break; 4743 #else 4744 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4745 #endif 4746 } 4747 return 0; 4748 4749 unsupported_parameter: 4750 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4751 bad_value: 4752 return invalfc(fc, "Bad value for '%s'", param->key); 4753 } 4754 4755 static char *shmem_next_opt(char **s) 4756 { 4757 char *sbegin = *s; 4758 char *p; 4759 4760 if (sbegin == NULL) 4761 return NULL; 4762 4763 /* 4764 * NUL-terminate this option: unfortunately, 4765 * mount options form a comma-separated list, 4766 * but mpol's nodelist may also contain commas. 4767 */ 4768 for (;;) { 4769 p = strchr(*s, ','); 4770 if (p == NULL) 4771 break; 4772 *s = p + 1; 4773 if (!isdigit(*(p+1))) { 4774 *p = '\0'; 4775 return sbegin; 4776 } 4777 } 4778 4779 *s = NULL; 4780 return sbegin; 4781 } 4782 4783 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4784 { 4785 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4786 } 4787 4788 /* 4789 * Reconfigure a shmem filesystem. 4790 */ 4791 static int shmem_reconfigure(struct fs_context *fc) 4792 { 4793 struct shmem_options *ctx = fc->fs_private; 4794 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4795 unsigned long used_isp; 4796 struct mempolicy *mpol = NULL; 4797 const char *err; 4798 4799 raw_spin_lock(&sbinfo->stat_lock); 4800 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4801 4802 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4803 if (!sbinfo->max_blocks) { 4804 err = "Cannot retroactively limit size"; 4805 goto out; 4806 } 4807 if (percpu_counter_compare(&sbinfo->used_blocks, 4808 ctx->blocks) > 0) { 4809 err = "Too small a size for current use"; 4810 goto out; 4811 } 4812 } 4813 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4814 if (!sbinfo->max_inodes) { 4815 err = "Cannot retroactively limit inodes"; 4816 goto out; 4817 } 4818 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4819 err = "Too few inodes for current use"; 4820 goto out; 4821 } 4822 } 4823 4824 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4825 sbinfo->next_ino > UINT_MAX) { 4826 err = "Current inum too high to switch to 32-bit inums"; 4827 goto out; 4828 } 4829 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4830 err = "Cannot disable swap on remount"; 4831 goto out; 4832 } 4833 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4834 err = "Cannot enable swap on remount if it was disabled on first mount"; 4835 goto out; 4836 } 4837 4838 if (ctx->seen & SHMEM_SEEN_QUOTA && 4839 !sb_any_quota_loaded(fc->root->d_sb)) { 4840 err = "Cannot enable quota on remount"; 4841 goto out; 4842 } 4843 4844 #ifdef CONFIG_TMPFS_QUOTA 4845 #define CHANGED_LIMIT(name) \ 4846 (ctx->qlimits.name## hardlimit && \ 4847 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4848 4849 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4850 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4851 err = "Cannot change global quota limit on remount"; 4852 goto out; 4853 } 4854 #endif /* CONFIG_TMPFS_QUOTA */ 4855 4856 if (ctx->seen & SHMEM_SEEN_HUGE) 4857 sbinfo->huge = ctx->huge; 4858 if (ctx->seen & SHMEM_SEEN_INUMS) 4859 sbinfo->full_inums = ctx->full_inums; 4860 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4861 sbinfo->max_blocks = ctx->blocks; 4862 if (ctx->seen & SHMEM_SEEN_INODES) { 4863 sbinfo->max_inodes = ctx->inodes; 4864 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4865 } 4866 4867 /* 4868 * Preserve previous mempolicy unless mpol remount option was specified. 4869 */ 4870 if (ctx->mpol) { 4871 mpol = sbinfo->mpol; 4872 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4873 ctx->mpol = NULL; 4874 } 4875 4876 if (ctx->noswap) 4877 sbinfo->noswap = true; 4878 4879 raw_spin_unlock(&sbinfo->stat_lock); 4880 mpol_put(mpol); 4881 return 0; 4882 out: 4883 raw_spin_unlock(&sbinfo->stat_lock); 4884 return invalfc(fc, "%s", err); 4885 } 4886 4887 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4888 { 4889 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4890 struct mempolicy *mpol; 4891 4892 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4893 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4894 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4895 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4896 if (sbinfo->mode != (0777 | S_ISVTX)) 4897 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4898 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4899 seq_printf(seq, ",uid=%u", 4900 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4901 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4902 seq_printf(seq, ",gid=%u", 4903 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4904 4905 /* 4906 * Showing inode{64,32} might be useful even if it's the system default, 4907 * since then people don't have to resort to checking both here and 4908 * /proc/config.gz to confirm 64-bit inums were successfully applied 4909 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4910 * 4911 * We hide it when inode64 isn't the default and we are using 32-bit 4912 * inodes, since that probably just means the feature isn't even under 4913 * consideration. 4914 * 4915 * As such: 4916 * 4917 * +-----------------+-----------------+ 4918 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4919 * +------------------+-----------------+-----------------+ 4920 * | full_inums=true | show | show | 4921 * | full_inums=false | show | hide | 4922 * +------------------+-----------------+-----------------+ 4923 * 4924 */ 4925 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4926 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4928 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4929 if (sbinfo->huge) 4930 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4931 #endif 4932 mpol = shmem_get_sbmpol(sbinfo); 4933 shmem_show_mpol(seq, mpol); 4934 mpol_put(mpol); 4935 if (sbinfo->noswap) 4936 seq_printf(seq, ",noswap"); 4937 #ifdef CONFIG_TMPFS_QUOTA 4938 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4939 seq_printf(seq, ",usrquota"); 4940 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4941 seq_printf(seq, ",grpquota"); 4942 if (sbinfo->qlimits.usrquota_bhardlimit) 4943 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4944 sbinfo->qlimits.usrquota_bhardlimit); 4945 if (sbinfo->qlimits.grpquota_bhardlimit) 4946 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4947 sbinfo->qlimits.grpquota_bhardlimit); 4948 if (sbinfo->qlimits.usrquota_ihardlimit) 4949 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4950 sbinfo->qlimits.usrquota_ihardlimit); 4951 if (sbinfo->qlimits.grpquota_ihardlimit) 4952 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4953 sbinfo->qlimits.grpquota_ihardlimit); 4954 #endif 4955 return 0; 4956 } 4957 4958 #endif /* CONFIG_TMPFS */ 4959 4960 static void shmem_put_super(struct super_block *sb) 4961 { 4962 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4963 4964 #if IS_ENABLED(CONFIG_UNICODE) 4965 if (sb->s_encoding) 4966 utf8_unload(sb->s_encoding); 4967 #endif 4968 4969 #ifdef CONFIG_TMPFS_QUOTA 4970 shmem_disable_quotas(sb); 4971 #endif 4972 free_percpu(sbinfo->ino_batch); 4973 percpu_counter_destroy(&sbinfo->used_blocks); 4974 mpol_put(sbinfo->mpol); 4975 kfree(sbinfo); 4976 sb->s_fs_info = NULL; 4977 } 4978 4979 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4980 static const struct dentry_operations shmem_ci_dentry_ops = { 4981 .d_hash = generic_ci_d_hash, 4982 .d_compare = generic_ci_d_compare, 4983 .d_delete = always_delete_dentry, 4984 }; 4985 #endif 4986 4987 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4988 { 4989 struct shmem_options *ctx = fc->fs_private; 4990 struct inode *inode; 4991 struct shmem_sb_info *sbinfo; 4992 int error = -ENOMEM; 4993 4994 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4995 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4996 L1_CACHE_BYTES), GFP_KERNEL); 4997 if (!sbinfo) 4998 return error; 4999 5000 sb->s_fs_info = sbinfo; 5001 5002 #ifdef CONFIG_TMPFS 5003 /* 5004 * Per default we only allow half of the physical ram per 5005 * tmpfs instance, limiting inodes to one per page of lowmem; 5006 * but the internal instance is left unlimited. 5007 */ 5008 if (!(sb->s_flags & SB_KERNMOUNT)) { 5009 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5010 ctx->blocks = shmem_default_max_blocks(); 5011 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5012 ctx->inodes = shmem_default_max_inodes(); 5013 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5014 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5015 sbinfo->noswap = ctx->noswap; 5016 } else { 5017 sb->s_flags |= SB_NOUSER; 5018 } 5019 sb->s_export_op = &shmem_export_ops; 5020 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 5021 5022 #if IS_ENABLED(CONFIG_UNICODE) 5023 if (!ctx->encoding && ctx->strict_encoding) { 5024 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5025 error = -EINVAL; 5026 goto failed; 5027 } 5028 5029 if (ctx->encoding) { 5030 sb->s_encoding = ctx->encoding; 5031 sb->s_d_op = &shmem_ci_dentry_ops; 5032 if (ctx->strict_encoding) 5033 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5034 } 5035 #endif 5036 5037 #else 5038 sb->s_flags |= SB_NOUSER; 5039 #endif /* CONFIG_TMPFS */ 5040 sbinfo->max_blocks = ctx->blocks; 5041 sbinfo->max_inodes = ctx->inodes; 5042 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5043 if (sb->s_flags & SB_KERNMOUNT) { 5044 sbinfo->ino_batch = alloc_percpu(ino_t); 5045 if (!sbinfo->ino_batch) 5046 goto failed; 5047 } 5048 sbinfo->uid = ctx->uid; 5049 sbinfo->gid = ctx->gid; 5050 sbinfo->full_inums = ctx->full_inums; 5051 sbinfo->mode = ctx->mode; 5052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5053 if (ctx->seen & SHMEM_SEEN_HUGE) 5054 sbinfo->huge = ctx->huge; 5055 else 5056 sbinfo->huge = tmpfs_huge; 5057 #endif 5058 sbinfo->mpol = ctx->mpol; 5059 ctx->mpol = NULL; 5060 5061 raw_spin_lock_init(&sbinfo->stat_lock); 5062 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5063 goto failed; 5064 spin_lock_init(&sbinfo->shrinklist_lock); 5065 INIT_LIST_HEAD(&sbinfo->shrinklist); 5066 5067 sb->s_maxbytes = MAX_LFS_FILESIZE; 5068 sb->s_blocksize = PAGE_SIZE; 5069 sb->s_blocksize_bits = PAGE_SHIFT; 5070 sb->s_magic = TMPFS_MAGIC; 5071 sb->s_op = &shmem_ops; 5072 sb->s_time_gran = 1; 5073 #ifdef CONFIG_TMPFS_XATTR 5074 sb->s_xattr = shmem_xattr_handlers; 5075 #endif 5076 #ifdef CONFIG_TMPFS_POSIX_ACL 5077 sb->s_flags |= SB_POSIXACL; 5078 #endif 5079 uuid_t uuid; 5080 uuid_gen(&uuid); 5081 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5082 5083 #ifdef CONFIG_TMPFS_QUOTA 5084 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5085 sb->dq_op = &shmem_quota_operations; 5086 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5087 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5088 5089 /* Copy the default limits from ctx into sbinfo */ 5090 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5091 sizeof(struct shmem_quota_limits)); 5092 5093 if (shmem_enable_quotas(sb, ctx->quota_types)) 5094 goto failed; 5095 } 5096 #endif /* CONFIG_TMPFS_QUOTA */ 5097 5098 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5099 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5100 if (IS_ERR(inode)) { 5101 error = PTR_ERR(inode); 5102 goto failed; 5103 } 5104 inode->i_uid = sbinfo->uid; 5105 inode->i_gid = sbinfo->gid; 5106 sb->s_root = d_make_root(inode); 5107 if (!sb->s_root) 5108 goto failed; 5109 return 0; 5110 5111 failed: 5112 shmem_put_super(sb); 5113 return error; 5114 } 5115 5116 static int shmem_get_tree(struct fs_context *fc) 5117 { 5118 return get_tree_nodev(fc, shmem_fill_super); 5119 } 5120 5121 static void shmem_free_fc(struct fs_context *fc) 5122 { 5123 struct shmem_options *ctx = fc->fs_private; 5124 5125 if (ctx) { 5126 mpol_put(ctx->mpol); 5127 kfree(ctx); 5128 } 5129 } 5130 5131 static const struct fs_context_operations shmem_fs_context_ops = { 5132 .free = shmem_free_fc, 5133 .get_tree = shmem_get_tree, 5134 #ifdef CONFIG_TMPFS 5135 .parse_monolithic = shmem_parse_monolithic, 5136 .parse_param = shmem_parse_one, 5137 .reconfigure = shmem_reconfigure, 5138 #endif 5139 }; 5140 5141 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5142 5143 static struct inode *shmem_alloc_inode(struct super_block *sb) 5144 { 5145 struct shmem_inode_info *info; 5146 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5147 if (!info) 5148 return NULL; 5149 return &info->vfs_inode; 5150 } 5151 5152 static void shmem_free_in_core_inode(struct inode *inode) 5153 { 5154 if (S_ISLNK(inode->i_mode)) 5155 kfree(inode->i_link); 5156 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5157 } 5158 5159 static void shmem_destroy_inode(struct inode *inode) 5160 { 5161 if (S_ISREG(inode->i_mode)) 5162 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5163 if (S_ISDIR(inode->i_mode)) 5164 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5165 } 5166 5167 static void shmem_init_inode(void *foo) 5168 { 5169 struct shmem_inode_info *info = foo; 5170 inode_init_once(&info->vfs_inode); 5171 } 5172 5173 static void __init shmem_init_inodecache(void) 5174 { 5175 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5176 sizeof(struct shmem_inode_info), 5177 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5178 } 5179 5180 static void __init shmem_destroy_inodecache(void) 5181 { 5182 kmem_cache_destroy(shmem_inode_cachep); 5183 } 5184 5185 /* Keep the page in page cache instead of truncating it */ 5186 static int shmem_error_remove_folio(struct address_space *mapping, 5187 struct folio *folio) 5188 { 5189 return 0; 5190 } 5191 5192 static const struct address_space_operations shmem_aops = { 5193 .dirty_folio = noop_dirty_folio, 5194 #ifdef CONFIG_TMPFS 5195 .write_begin = shmem_write_begin, 5196 .write_end = shmem_write_end, 5197 #endif 5198 #ifdef CONFIG_MIGRATION 5199 .migrate_folio = migrate_folio, 5200 #endif 5201 .error_remove_folio = shmem_error_remove_folio, 5202 }; 5203 5204 static const struct file_operations shmem_file_operations = { 5205 .mmap = shmem_mmap, 5206 .open = shmem_file_open, 5207 .get_unmapped_area = shmem_get_unmapped_area, 5208 #ifdef CONFIG_TMPFS 5209 .llseek = shmem_file_llseek, 5210 .read_iter = shmem_file_read_iter, 5211 .write_iter = shmem_file_write_iter, 5212 .fsync = noop_fsync, 5213 .splice_read = shmem_file_splice_read, 5214 .splice_write = iter_file_splice_write, 5215 .fallocate = shmem_fallocate, 5216 #endif 5217 }; 5218 5219 static const struct inode_operations shmem_inode_operations = { 5220 .getattr = shmem_getattr, 5221 .setattr = shmem_setattr, 5222 #ifdef CONFIG_TMPFS_XATTR 5223 .listxattr = shmem_listxattr, 5224 .set_acl = simple_set_acl, 5225 .fileattr_get = shmem_fileattr_get, 5226 .fileattr_set = shmem_fileattr_set, 5227 #endif 5228 }; 5229 5230 static const struct inode_operations shmem_dir_inode_operations = { 5231 #ifdef CONFIG_TMPFS 5232 .getattr = shmem_getattr, 5233 .create = shmem_create, 5234 .lookup = simple_lookup, 5235 .link = shmem_link, 5236 .unlink = shmem_unlink, 5237 .symlink = shmem_symlink, 5238 .mkdir = shmem_mkdir, 5239 .rmdir = shmem_rmdir, 5240 .mknod = shmem_mknod, 5241 .rename = shmem_rename2, 5242 .tmpfile = shmem_tmpfile, 5243 .get_offset_ctx = shmem_get_offset_ctx, 5244 #endif 5245 #ifdef CONFIG_TMPFS_XATTR 5246 .listxattr = shmem_listxattr, 5247 .fileattr_get = shmem_fileattr_get, 5248 .fileattr_set = shmem_fileattr_set, 5249 #endif 5250 #ifdef CONFIG_TMPFS_POSIX_ACL 5251 .setattr = shmem_setattr, 5252 .set_acl = simple_set_acl, 5253 #endif 5254 }; 5255 5256 static const struct inode_operations shmem_special_inode_operations = { 5257 .getattr = shmem_getattr, 5258 #ifdef CONFIG_TMPFS_XATTR 5259 .listxattr = shmem_listxattr, 5260 #endif 5261 #ifdef CONFIG_TMPFS_POSIX_ACL 5262 .setattr = shmem_setattr, 5263 .set_acl = simple_set_acl, 5264 #endif 5265 }; 5266 5267 static const struct super_operations shmem_ops = { 5268 .alloc_inode = shmem_alloc_inode, 5269 .free_inode = shmem_free_in_core_inode, 5270 .destroy_inode = shmem_destroy_inode, 5271 #ifdef CONFIG_TMPFS 5272 .statfs = shmem_statfs, 5273 .show_options = shmem_show_options, 5274 #endif 5275 #ifdef CONFIG_TMPFS_QUOTA 5276 .get_dquots = shmem_get_dquots, 5277 #endif 5278 .evict_inode = shmem_evict_inode, 5279 .drop_inode = generic_delete_inode, 5280 .put_super = shmem_put_super, 5281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5282 .nr_cached_objects = shmem_unused_huge_count, 5283 .free_cached_objects = shmem_unused_huge_scan, 5284 #endif 5285 }; 5286 5287 static const struct vm_operations_struct shmem_vm_ops = { 5288 .fault = shmem_fault, 5289 .map_pages = filemap_map_pages, 5290 #ifdef CONFIG_NUMA 5291 .set_policy = shmem_set_policy, 5292 .get_policy = shmem_get_policy, 5293 #endif 5294 }; 5295 5296 static const struct vm_operations_struct shmem_anon_vm_ops = { 5297 .fault = shmem_fault, 5298 .map_pages = filemap_map_pages, 5299 #ifdef CONFIG_NUMA 5300 .set_policy = shmem_set_policy, 5301 .get_policy = shmem_get_policy, 5302 #endif 5303 }; 5304 5305 int shmem_init_fs_context(struct fs_context *fc) 5306 { 5307 struct shmem_options *ctx; 5308 5309 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5310 if (!ctx) 5311 return -ENOMEM; 5312 5313 ctx->mode = 0777 | S_ISVTX; 5314 ctx->uid = current_fsuid(); 5315 ctx->gid = current_fsgid(); 5316 5317 #if IS_ENABLED(CONFIG_UNICODE) 5318 ctx->encoding = NULL; 5319 #endif 5320 5321 fc->fs_private = ctx; 5322 fc->ops = &shmem_fs_context_ops; 5323 return 0; 5324 } 5325 5326 static struct file_system_type shmem_fs_type = { 5327 .owner = THIS_MODULE, 5328 .name = "tmpfs", 5329 .init_fs_context = shmem_init_fs_context, 5330 #ifdef CONFIG_TMPFS 5331 .parameters = shmem_fs_parameters, 5332 #endif 5333 .kill_sb = kill_litter_super, 5334 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5335 }; 5336 5337 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5338 5339 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5340 { \ 5341 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5342 .show = _show, \ 5343 .store = _store, \ 5344 } 5345 5346 #define TMPFS_ATTR_W(_name, _store) \ 5347 static struct kobj_attribute tmpfs_attr_##_name = \ 5348 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5349 5350 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5351 static struct kobj_attribute tmpfs_attr_##_name = \ 5352 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5353 5354 #define TMPFS_ATTR_RO(_name, _show) \ 5355 static struct kobj_attribute tmpfs_attr_##_name = \ 5356 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5357 5358 #if IS_ENABLED(CONFIG_UNICODE) 5359 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5360 char *buf) 5361 { 5362 return sysfs_emit(buf, "supported\n"); 5363 } 5364 TMPFS_ATTR_RO(casefold, casefold_show); 5365 #endif 5366 5367 static struct attribute *tmpfs_attributes[] = { 5368 #if IS_ENABLED(CONFIG_UNICODE) 5369 &tmpfs_attr_casefold.attr, 5370 #endif 5371 NULL 5372 }; 5373 5374 static const struct attribute_group tmpfs_attribute_group = { 5375 .attrs = tmpfs_attributes, 5376 .name = "features" 5377 }; 5378 5379 static struct kobject *tmpfs_kobj; 5380 5381 static int __init tmpfs_sysfs_init(void) 5382 { 5383 int ret; 5384 5385 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5386 if (!tmpfs_kobj) 5387 return -ENOMEM; 5388 5389 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5390 if (ret) 5391 kobject_put(tmpfs_kobj); 5392 5393 return ret; 5394 } 5395 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5396 5397 void __init shmem_init(void) 5398 { 5399 int error; 5400 5401 shmem_init_inodecache(); 5402 5403 #ifdef CONFIG_TMPFS_QUOTA 5404 register_quota_format(&shmem_quota_format); 5405 #endif 5406 5407 error = register_filesystem(&shmem_fs_type); 5408 if (error) { 5409 pr_err("Could not register tmpfs\n"); 5410 goto out2; 5411 } 5412 5413 shm_mnt = kern_mount(&shmem_fs_type); 5414 if (IS_ERR(shm_mnt)) { 5415 error = PTR_ERR(shm_mnt); 5416 pr_err("Could not kern_mount tmpfs\n"); 5417 goto out1; 5418 } 5419 5420 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5421 error = tmpfs_sysfs_init(); 5422 if (error) { 5423 pr_err("Could not init tmpfs sysfs\n"); 5424 goto out1; 5425 } 5426 #endif 5427 5428 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5429 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5430 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5431 else 5432 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5433 5434 /* 5435 * Default to setting PMD-sized THP to inherit the global setting and 5436 * disable all other multi-size THPs. 5437 */ 5438 if (!shmem_orders_configured) 5439 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5440 #endif 5441 return; 5442 5443 out1: 5444 unregister_filesystem(&shmem_fs_type); 5445 out2: 5446 #ifdef CONFIG_TMPFS_QUOTA 5447 unregister_quota_format(&shmem_quota_format); 5448 #endif 5449 shmem_destroy_inodecache(); 5450 shm_mnt = ERR_PTR(error); 5451 } 5452 5453 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5454 static ssize_t shmem_enabled_show(struct kobject *kobj, 5455 struct kobj_attribute *attr, char *buf) 5456 { 5457 static const int values[] = { 5458 SHMEM_HUGE_ALWAYS, 5459 SHMEM_HUGE_WITHIN_SIZE, 5460 SHMEM_HUGE_ADVISE, 5461 SHMEM_HUGE_NEVER, 5462 SHMEM_HUGE_DENY, 5463 SHMEM_HUGE_FORCE, 5464 }; 5465 int len = 0; 5466 int i; 5467 5468 for (i = 0; i < ARRAY_SIZE(values); i++) { 5469 len += sysfs_emit_at(buf, len, 5470 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5471 i ? " " : "", shmem_format_huge(values[i])); 5472 } 5473 len += sysfs_emit_at(buf, len, "\n"); 5474 5475 return len; 5476 } 5477 5478 static ssize_t shmem_enabled_store(struct kobject *kobj, 5479 struct kobj_attribute *attr, const char *buf, size_t count) 5480 { 5481 char tmp[16]; 5482 int huge, err; 5483 5484 if (count + 1 > sizeof(tmp)) 5485 return -EINVAL; 5486 memcpy(tmp, buf, count); 5487 tmp[count] = '\0'; 5488 if (count && tmp[count - 1] == '\n') 5489 tmp[count - 1] = '\0'; 5490 5491 huge = shmem_parse_huge(tmp); 5492 if (huge == -EINVAL) 5493 return huge; 5494 5495 shmem_huge = huge; 5496 if (shmem_huge > SHMEM_HUGE_DENY) 5497 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5498 5499 err = start_stop_khugepaged(); 5500 return err ? err : count; 5501 } 5502 5503 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5504 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5505 5506 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5507 struct kobj_attribute *attr, char *buf) 5508 { 5509 int order = to_thpsize(kobj)->order; 5510 const char *output; 5511 5512 if (test_bit(order, &huge_shmem_orders_always)) 5513 output = "[always] inherit within_size advise never"; 5514 else if (test_bit(order, &huge_shmem_orders_inherit)) 5515 output = "always [inherit] within_size advise never"; 5516 else if (test_bit(order, &huge_shmem_orders_within_size)) 5517 output = "always inherit [within_size] advise never"; 5518 else if (test_bit(order, &huge_shmem_orders_madvise)) 5519 output = "always inherit within_size [advise] never"; 5520 else 5521 output = "always inherit within_size advise [never]"; 5522 5523 return sysfs_emit(buf, "%s\n", output); 5524 } 5525 5526 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5527 struct kobj_attribute *attr, 5528 const char *buf, size_t count) 5529 { 5530 int order = to_thpsize(kobj)->order; 5531 ssize_t ret = count; 5532 5533 if (sysfs_streq(buf, "always")) { 5534 spin_lock(&huge_shmem_orders_lock); 5535 clear_bit(order, &huge_shmem_orders_inherit); 5536 clear_bit(order, &huge_shmem_orders_madvise); 5537 clear_bit(order, &huge_shmem_orders_within_size); 5538 set_bit(order, &huge_shmem_orders_always); 5539 spin_unlock(&huge_shmem_orders_lock); 5540 } else if (sysfs_streq(buf, "inherit")) { 5541 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5542 if (shmem_huge == SHMEM_HUGE_FORCE && 5543 order != HPAGE_PMD_ORDER) 5544 return -EINVAL; 5545 5546 spin_lock(&huge_shmem_orders_lock); 5547 clear_bit(order, &huge_shmem_orders_always); 5548 clear_bit(order, &huge_shmem_orders_madvise); 5549 clear_bit(order, &huge_shmem_orders_within_size); 5550 set_bit(order, &huge_shmem_orders_inherit); 5551 spin_unlock(&huge_shmem_orders_lock); 5552 } else if (sysfs_streq(buf, "within_size")) { 5553 spin_lock(&huge_shmem_orders_lock); 5554 clear_bit(order, &huge_shmem_orders_always); 5555 clear_bit(order, &huge_shmem_orders_inherit); 5556 clear_bit(order, &huge_shmem_orders_madvise); 5557 set_bit(order, &huge_shmem_orders_within_size); 5558 spin_unlock(&huge_shmem_orders_lock); 5559 } else if (sysfs_streq(buf, "advise")) { 5560 spin_lock(&huge_shmem_orders_lock); 5561 clear_bit(order, &huge_shmem_orders_always); 5562 clear_bit(order, &huge_shmem_orders_inherit); 5563 clear_bit(order, &huge_shmem_orders_within_size); 5564 set_bit(order, &huge_shmem_orders_madvise); 5565 spin_unlock(&huge_shmem_orders_lock); 5566 } else if (sysfs_streq(buf, "never")) { 5567 spin_lock(&huge_shmem_orders_lock); 5568 clear_bit(order, &huge_shmem_orders_always); 5569 clear_bit(order, &huge_shmem_orders_inherit); 5570 clear_bit(order, &huge_shmem_orders_within_size); 5571 clear_bit(order, &huge_shmem_orders_madvise); 5572 spin_unlock(&huge_shmem_orders_lock); 5573 } else { 5574 ret = -EINVAL; 5575 } 5576 5577 if (ret > 0) { 5578 int err = start_stop_khugepaged(); 5579 5580 if (err) 5581 ret = err; 5582 } 5583 return ret; 5584 } 5585 5586 struct kobj_attribute thpsize_shmem_enabled_attr = 5587 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5588 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5589 5590 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5591 5592 static int __init setup_transparent_hugepage_shmem(char *str) 5593 { 5594 int huge; 5595 5596 huge = shmem_parse_huge(str); 5597 if (huge == -EINVAL) { 5598 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5599 return huge; 5600 } 5601 5602 shmem_huge = huge; 5603 return 1; 5604 } 5605 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5606 5607 static int __init setup_transparent_hugepage_tmpfs(char *str) 5608 { 5609 int huge; 5610 5611 huge = shmem_parse_huge(str); 5612 if (huge < 0) { 5613 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5614 return huge; 5615 } 5616 5617 tmpfs_huge = huge; 5618 return 1; 5619 } 5620 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5621 5622 static char str_dup[PAGE_SIZE] __initdata; 5623 static int __init setup_thp_shmem(char *str) 5624 { 5625 char *token, *range, *policy, *subtoken; 5626 unsigned long always, inherit, madvise, within_size; 5627 char *start_size, *end_size; 5628 int start, end, nr; 5629 char *p; 5630 5631 if (!str || strlen(str) + 1 > PAGE_SIZE) 5632 goto err; 5633 strscpy(str_dup, str); 5634 5635 always = huge_shmem_orders_always; 5636 inherit = huge_shmem_orders_inherit; 5637 madvise = huge_shmem_orders_madvise; 5638 within_size = huge_shmem_orders_within_size; 5639 p = str_dup; 5640 while ((token = strsep(&p, ";")) != NULL) { 5641 range = strsep(&token, ":"); 5642 policy = token; 5643 5644 if (!policy) 5645 goto err; 5646 5647 while ((subtoken = strsep(&range, ",")) != NULL) { 5648 if (strchr(subtoken, '-')) { 5649 start_size = strsep(&subtoken, "-"); 5650 end_size = subtoken; 5651 5652 start = get_order_from_str(start_size, 5653 THP_ORDERS_ALL_FILE_DEFAULT); 5654 end = get_order_from_str(end_size, 5655 THP_ORDERS_ALL_FILE_DEFAULT); 5656 } else { 5657 start_size = end_size = subtoken; 5658 start = end = get_order_from_str(subtoken, 5659 THP_ORDERS_ALL_FILE_DEFAULT); 5660 } 5661 5662 if (start < 0) { 5663 pr_err("invalid size %s in thp_shmem boot parameter\n", 5664 start_size); 5665 goto err; 5666 } 5667 5668 if (end < 0) { 5669 pr_err("invalid size %s in thp_shmem boot parameter\n", 5670 end_size); 5671 goto err; 5672 } 5673 5674 if (start > end) 5675 goto err; 5676 5677 nr = end - start + 1; 5678 if (!strcmp(policy, "always")) { 5679 bitmap_set(&always, start, nr); 5680 bitmap_clear(&inherit, start, nr); 5681 bitmap_clear(&madvise, start, nr); 5682 bitmap_clear(&within_size, start, nr); 5683 } else if (!strcmp(policy, "advise")) { 5684 bitmap_set(&madvise, start, nr); 5685 bitmap_clear(&inherit, start, nr); 5686 bitmap_clear(&always, start, nr); 5687 bitmap_clear(&within_size, start, nr); 5688 } else if (!strcmp(policy, "inherit")) { 5689 bitmap_set(&inherit, start, nr); 5690 bitmap_clear(&madvise, start, nr); 5691 bitmap_clear(&always, start, nr); 5692 bitmap_clear(&within_size, start, nr); 5693 } else if (!strcmp(policy, "within_size")) { 5694 bitmap_set(&within_size, start, nr); 5695 bitmap_clear(&inherit, start, nr); 5696 bitmap_clear(&madvise, start, nr); 5697 bitmap_clear(&always, start, nr); 5698 } else if (!strcmp(policy, "never")) { 5699 bitmap_clear(&inherit, start, nr); 5700 bitmap_clear(&madvise, start, nr); 5701 bitmap_clear(&always, start, nr); 5702 bitmap_clear(&within_size, start, nr); 5703 } else { 5704 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5705 goto err; 5706 } 5707 } 5708 } 5709 5710 huge_shmem_orders_always = always; 5711 huge_shmem_orders_madvise = madvise; 5712 huge_shmem_orders_inherit = inherit; 5713 huge_shmem_orders_within_size = within_size; 5714 shmem_orders_configured = true; 5715 return 1; 5716 5717 err: 5718 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5719 return 0; 5720 } 5721 __setup("thp_shmem=", setup_thp_shmem); 5722 5723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5724 5725 #else /* !CONFIG_SHMEM */ 5726 5727 /* 5728 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5729 * 5730 * This is intended for small system where the benefits of the full 5731 * shmem code (swap-backed and resource-limited) are outweighed by 5732 * their complexity. On systems without swap this code should be 5733 * effectively equivalent, but much lighter weight. 5734 */ 5735 5736 static struct file_system_type shmem_fs_type = { 5737 .name = "tmpfs", 5738 .init_fs_context = ramfs_init_fs_context, 5739 .parameters = ramfs_fs_parameters, 5740 .kill_sb = ramfs_kill_sb, 5741 .fs_flags = FS_USERNS_MOUNT, 5742 }; 5743 5744 void __init shmem_init(void) 5745 { 5746 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5747 5748 shm_mnt = kern_mount(&shmem_fs_type); 5749 BUG_ON(IS_ERR(shm_mnt)); 5750 } 5751 5752 int shmem_unuse(unsigned int type) 5753 { 5754 return 0; 5755 } 5756 5757 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5758 { 5759 return 0; 5760 } 5761 5762 void shmem_unlock_mapping(struct address_space *mapping) 5763 { 5764 } 5765 5766 #ifdef CONFIG_MMU 5767 unsigned long shmem_get_unmapped_area(struct file *file, 5768 unsigned long addr, unsigned long len, 5769 unsigned long pgoff, unsigned long flags) 5770 { 5771 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5772 } 5773 #endif 5774 5775 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5776 { 5777 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5778 } 5779 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5780 5781 #define shmem_vm_ops generic_file_vm_ops 5782 #define shmem_anon_vm_ops generic_file_vm_ops 5783 #define shmem_file_operations ramfs_file_operations 5784 #define shmem_acct_size(flags, size) 0 5785 #define shmem_unacct_size(flags, size) do {} while (0) 5786 5787 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5788 struct super_block *sb, struct inode *dir, 5789 umode_t mode, dev_t dev, unsigned long flags) 5790 { 5791 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5792 return inode ? inode : ERR_PTR(-ENOSPC); 5793 } 5794 5795 #endif /* CONFIG_SHMEM */ 5796 5797 /* common code */ 5798 5799 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5800 loff_t size, unsigned long flags, unsigned int i_flags) 5801 { 5802 struct inode *inode; 5803 struct file *res; 5804 5805 if (IS_ERR(mnt)) 5806 return ERR_CAST(mnt); 5807 5808 if (size < 0 || size > MAX_LFS_FILESIZE) 5809 return ERR_PTR(-EINVAL); 5810 5811 if (is_idmapped_mnt(mnt)) 5812 return ERR_PTR(-EINVAL); 5813 5814 if (shmem_acct_size(flags, size)) 5815 return ERR_PTR(-ENOMEM); 5816 5817 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5818 S_IFREG | S_IRWXUGO, 0, flags); 5819 if (IS_ERR(inode)) { 5820 shmem_unacct_size(flags, size); 5821 return ERR_CAST(inode); 5822 } 5823 inode->i_flags |= i_flags; 5824 inode->i_size = size; 5825 clear_nlink(inode); /* It is unlinked */ 5826 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5827 if (!IS_ERR(res)) 5828 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5829 &shmem_file_operations); 5830 if (IS_ERR(res)) 5831 iput(inode); 5832 return res; 5833 } 5834 5835 /** 5836 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5837 * kernel internal. There will be NO LSM permission checks against the 5838 * underlying inode. So users of this interface must do LSM checks at a 5839 * higher layer. The users are the big_key and shm implementations. LSM 5840 * checks are provided at the key or shm level rather than the inode. 5841 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5842 * @size: size to be set for the file 5843 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5844 */ 5845 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5846 { 5847 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5848 } 5849 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5850 5851 /** 5852 * shmem_file_setup - get an unlinked file living in tmpfs 5853 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5854 * @size: size to be set for the file 5855 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5856 */ 5857 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5858 { 5859 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5860 } 5861 EXPORT_SYMBOL_GPL(shmem_file_setup); 5862 5863 /** 5864 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5865 * @mnt: the tmpfs mount where the file will be created 5866 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5867 * @size: size to be set for the file 5868 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5869 */ 5870 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5871 loff_t size, unsigned long flags) 5872 { 5873 return __shmem_file_setup(mnt, name, size, flags, 0); 5874 } 5875 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5876 5877 /** 5878 * shmem_zero_setup - setup a shared anonymous mapping 5879 * @vma: the vma to be mmapped is prepared by do_mmap 5880 */ 5881 int shmem_zero_setup(struct vm_area_struct *vma) 5882 { 5883 struct file *file; 5884 loff_t size = vma->vm_end - vma->vm_start; 5885 5886 /* 5887 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5888 * between XFS directory reading and selinux: since this file is only 5889 * accessible to the user through its mapping, use S_PRIVATE flag to 5890 * bypass file security, in the same way as shmem_kernel_file_setup(). 5891 */ 5892 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5893 if (IS_ERR(file)) 5894 return PTR_ERR(file); 5895 5896 if (vma->vm_file) 5897 fput(vma->vm_file); 5898 vma->vm_file = file; 5899 vma->vm_ops = &shmem_anon_vm_ops; 5900 5901 return 0; 5902 } 5903 5904 /** 5905 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5906 * @mapping: the folio's address_space 5907 * @index: the folio index 5908 * @gfp: the page allocator flags to use if allocating 5909 * 5910 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5911 * with any new page allocations done using the specified allocation flags. 5912 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5913 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5914 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5915 * 5916 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5917 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5918 */ 5919 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5920 pgoff_t index, gfp_t gfp) 5921 { 5922 #ifdef CONFIG_SHMEM 5923 struct inode *inode = mapping->host; 5924 struct folio *folio; 5925 int error; 5926 5927 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5928 gfp, NULL, NULL); 5929 if (error) 5930 return ERR_PTR(error); 5931 5932 folio_unlock(folio); 5933 return folio; 5934 #else 5935 /* 5936 * The tiny !SHMEM case uses ramfs without swap 5937 */ 5938 return mapping_read_folio_gfp(mapping, index, gfp); 5939 #endif 5940 } 5941 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5942 5943 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5944 pgoff_t index, gfp_t gfp) 5945 { 5946 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5947 struct page *page; 5948 5949 if (IS_ERR(folio)) 5950 return &folio->page; 5951 5952 page = folio_file_page(folio, index); 5953 if (PageHWPoison(page)) { 5954 folio_put(folio); 5955 return ERR_PTR(-EIO); 5956 } 5957 5958 return page; 5959 } 5960 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5961