1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 77 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 78 79 /* Pretend that each entry is of this size in directory's i_size */ 80 #define BOGO_DIRENT_SIZE 20 81 82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 83 #define SHORT_SYMLINK_LEN 128 84 85 /* 86 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 87 * inode->i_private (with i_mutex making sure that it has only one user at 88 * a time): we would prefer not to enlarge the shmem inode just for that. 89 */ 90 struct shmem_falloc { 91 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 92 pgoff_t start; /* start of range currently being fallocated */ 93 pgoff_t next; /* the next page offset to be fallocated */ 94 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 95 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 96 }; 97 98 /* Flag allocation requirements to shmem_getpage */ 99 enum sgp_type { 100 SGP_READ, /* don't exceed i_size, don't allocate page */ 101 SGP_CACHE, /* don't exceed i_size, may allocate page */ 102 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 103 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 104 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 105 }; 106 107 #ifdef CONFIG_TMPFS 108 static unsigned long shmem_default_max_blocks(void) 109 { 110 return totalram_pages / 2; 111 } 112 113 static unsigned long shmem_default_max_inodes(void) 114 { 115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 116 } 117 #endif 118 119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 120 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 121 struct shmem_inode_info *info, pgoff_t index); 122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 123 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 124 125 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 126 struct page **pagep, enum sgp_type sgp, int *fault_type) 127 { 128 return shmem_getpage_gfp(inode, index, pagep, sgp, 129 mapping_gfp_mask(inode->i_mapping), fault_type); 130 } 131 132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 133 { 134 return sb->s_fs_info; 135 } 136 137 /* 138 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 139 * for shared memory and for shared anonymous (/dev/zero) mappings 140 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 141 * consistent with the pre-accounting of private mappings ... 142 */ 143 static inline int shmem_acct_size(unsigned long flags, loff_t size) 144 { 145 return (flags & VM_NORESERVE) ? 146 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 147 } 148 149 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 150 { 151 if (!(flags & VM_NORESERVE)) 152 vm_unacct_memory(VM_ACCT(size)); 153 } 154 155 static inline int shmem_reacct_size(unsigned long flags, 156 loff_t oldsize, loff_t newsize) 157 { 158 if (!(flags & VM_NORESERVE)) { 159 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 160 return security_vm_enough_memory_mm(current->mm, 161 VM_ACCT(newsize) - VM_ACCT(oldsize)); 162 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 163 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 164 } 165 return 0; 166 } 167 168 /* 169 * ... whereas tmpfs objects are accounted incrementally as 170 * pages are allocated, in order to allow huge sparse files. 171 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 172 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 173 */ 174 static inline int shmem_acct_block(unsigned long flags) 175 { 176 return (flags & VM_NORESERVE) ? 177 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 178 } 179 180 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 181 { 182 if (flags & VM_NORESERVE) 183 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 184 } 185 186 static const struct super_operations shmem_ops; 187 static const struct address_space_operations shmem_aops; 188 static const struct file_operations shmem_file_operations; 189 static const struct inode_operations shmem_inode_operations; 190 static const struct inode_operations shmem_dir_inode_operations; 191 static const struct inode_operations shmem_special_inode_operations; 192 static const struct vm_operations_struct shmem_vm_ops; 193 194 static LIST_HEAD(shmem_swaplist); 195 static DEFINE_MUTEX(shmem_swaplist_mutex); 196 197 static int shmem_reserve_inode(struct super_block *sb) 198 { 199 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 200 if (sbinfo->max_inodes) { 201 spin_lock(&sbinfo->stat_lock); 202 if (!sbinfo->free_inodes) { 203 spin_unlock(&sbinfo->stat_lock); 204 return -ENOSPC; 205 } 206 sbinfo->free_inodes--; 207 spin_unlock(&sbinfo->stat_lock); 208 } 209 return 0; 210 } 211 212 static void shmem_free_inode(struct super_block *sb) 213 { 214 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 215 if (sbinfo->max_inodes) { 216 spin_lock(&sbinfo->stat_lock); 217 sbinfo->free_inodes++; 218 spin_unlock(&sbinfo->stat_lock); 219 } 220 } 221 222 /** 223 * shmem_recalc_inode - recalculate the block usage of an inode 224 * @inode: inode to recalc 225 * 226 * We have to calculate the free blocks since the mm can drop 227 * undirtied hole pages behind our back. 228 * 229 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 230 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 231 * 232 * It has to be called with the spinlock held. 233 */ 234 static void shmem_recalc_inode(struct inode *inode) 235 { 236 struct shmem_inode_info *info = SHMEM_I(inode); 237 long freed; 238 239 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 240 if (freed > 0) { 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 if (sbinfo->max_blocks) 243 percpu_counter_add(&sbinfo->used_blocks, -freed); 244 info->alloced -= freed; 245 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 246 shmem_unacct_blocks(info->flags, freed); 247 } 248 } 249 250 /* 251 * Replace item expected in radix tree by a new item, while holding tree lock. 252 */ 253 static int shmem_radix_tree_replace(struct address_space *mapping, 254 pgoff_t index, void *expected, void *replacement) 255 { 256 void **pslot; 257 void *item; 258 259 VM_BUG_ON(!expected); 260 VM_BUG_ON(!replacement); 261 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 262 if (!pslot) 263 return -ENOENT; 264 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 265 if (item != expected) 266 return -ENOENT; 267 radix_tree_replace_slot(pslot, replacement); 268 return 0; 269 } 270 271 /* 272 * Sometimes, before we decide whether to proceed or to fail, we must check 273 * that an entry was not already brought back from swap by a racing thread. 274 * 275 * Checking page is not enough: by the time a SwapCache page is locked, it 276 * might be reused, and again be SwapCache, using the same swap as before. 277 */ 278 static bool shmem_confirm_swap(struct address_space *mapping, 279 pgoff_t index, swp_entry_t swap) 280 { 281 void *item; 282 283 rcu_read_lock(); 284 item = radix_tree_lookup(&mapping->page_tree, index); 285 rcu_read_unlock(); 286 return item == swp_to_radix_entry(swap); 287 } 288 289 /* 290 * Like add_to_page_cache_locked, but error if expected item has gone. 291 */ 292 static int shmem_add_to_page_cache(struct page *page, 293 struct address_space *mapping, 294 pgoff_t index, void *expected) 295 { 296 int error; 297 298 VM_BUG_ON_PAGE(!PageLocked(page), page); 299 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 300 301 page_cache_get(page); 302 page->mapping = mapping; 303 page->index = index; 304 305 spin_lock_irq(&mapping->tree_lock); 306 if (!expected) 307 error = radix_tree_insert(&mapping->page_tree, index, page); 308 else 309 error = shmem_radix_tree_replace(mapping, index, expected, 310 page); 311 if (!error) { 312 mapping->nrpages++; 313 __inc_zone_page_state(page, NR_FILE_PAGES); 314 __inc_zone_page_state(page, NR_SHMEM); 315 spin_unlock_irq(&mapping->tree_lock); 316 } else { 317 page->mapping = NULL; 318 spin_unlock_irq(&mapping->tree_lock); 319 page_cache_release(page); 320 } 321 return error; 322 } 323 324 /* 325 * Like delete_from_page_cache, but substitutes swap for page. 326 */ 327 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 328 { 329 struct address_space *mapping = page->mapping; 330 int error; 331 332 spin_lock_irq(&mapping->tree_lock); 333 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 334 page->mapping = NULL; 335 mapping->nrpages--; 336 __dec_zone_page_state(page, NR_FILE_PAGES); 337 __dec_zone_page_state(page, NR_SHMEM); 338 spin_unlock_irq(&mapping->tree_lock); 339 page_cache_release(page); 340 BUG_ON(error); 341 } 342 343 /* 344 * Remove swap entry from radix tree, free the swap and its page cache. 345 */ 346 static int shmem_free_swap(struct address_space *mapping, 347 pgoff_t index, void *radswap) 348 { 349 void *old; 350 351 spin_lock_irq(&mapping->tree_lock); 352 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 353 spin_unlock_irq(&mapping->tree_lock); 354 if (old != radswap) 355 return -ENOENT; 356 free_swap_and_cache(radix_to_swp_entry(radswap)); 357 return 0; 358 } 359 360 /* 361 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 362 */ 363 void shmem_unlock_mapping(struct address_space *mapping) 364 { 365 struct pagevec pvec; 366 pgoff_t indices[PAGEVEC_SIZE]; 367 pgoff_t index = 0; 368 369 pagevec_init(&pvec, 0); 370 /* 371 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 372 */ 373 while (!mapping_unevictable(mapping)) { 374 /* 375 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 376 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 377 */ 378 pvec.nr = find_get_entries(mapping, index, 379 PAGEVEC_SIZE, pvec.pages, indices); 380 if (!pvec.nr) 381 break; 382 index = indices[pvec.nr - 1] + 1; 383 pagevec_remove_exceptionals(&pvec); 384 check_move_unevictable_pages(pvec.pages, pvec.nr); 385 pagevec_release(&pvec); 386 cond_resched(); 387 } 388 } 389 390 /* 391 * Remove range of pages and swap entries from radix tree, and free them. 392 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 393 */ 394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 395 bool unfalloc) 396 { 397 struct address_space *mapping = inode->i_mapping; 398 struct shmem_inode_info *info = SHMEM_I(inode); 399 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 400 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 401 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 402 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 403 struct pagevec pvec; 404 pgoff_t indices[PAGEVEC_SIZE]; 405 long nr_swaps_freed = 0; 406 pgoff_t index; 407 int i; 408 409 if (lend == -1) 410 end = -1; /* unsigned, so actually very big */ 411 412 pagevec_init(&pvec, 0); 413 index = start; 414 while (index < end) { 415 pvec.nr = find_get_entries(mapping, index, 416 min(end - index, (pgoff_t)PAGEVEC_SIZE), 417 pvec.pages, indices); 418 if (!pvec.nr) 419 break; 420 for (i = 0; i < pagevec_count(&pvec); i++) { 421 struct page *page = pvec.pages[i]; 422 423 index = indices[i]; 424 if (index >= end) 425 break; 426 427 if (radix_tree_exceptional_entry(page)) { 428 if (unfalloc) 429 continue; 430 nr_swaps_freed += !shmem_free_swap(mapping, 431 index, page); 432 continue; 433 } 434 435 if (!trylock_page(page)) 436 continue; 437 if (!unfalloc || !PageUptodate(page)) { 438 if (page->mapping == mapping) { 439 VM_BUG_ON_PAGE(PageWriteback(page), page); 440 truncate_inode_page(mapping, page); 441 } 442 } 443 unlock_page(page); 444 } 445 pagevec_remove_exceptionals(&pvec); 446 pagevec_release(&pvec); 447 cond_resched(); 448 index++; 449 } 450 451 if (partial_start) { 452 struct page *page = NULL; 453 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 454 if (page) { 455 unsigned int top = PAGE_CACHE_SIZE; 456 if (start > end) { 457 top = partial_end; 458 partial_end = 0; 459 } 460 zero_user_segment(page, partial_start, top); 461 set_page_dirty(page); 462 unlock_page(page); 463 page_cache_release(page); 464 } 465 } 466 if (partial_end) { 467 struct page *page = NULL; 468 shmem_getpage(inode, end, &page, SGP_READ, NULL); 469 if (page) { 470 zero_user_segment(page, 0, partial_end); 471 set_page_dirty(page); 472 unlock_page(page); 473 page_cache_release(page); 474 } 475 } 476 if (start >= end) 477 return; 478 479 index = start; 480 while (index < end) { 481 cond_resched(); 482 483 pvec.nr = find_get_entries(mapping, index, 484 min(end - index, (pgoff_t)PAGEVEC_SIZE), 485 pvec.pages, indices); 486 if (!pvec.nr) { 487 /* If all gone or hole-punch or unfalloc, we're done */ 488 if (index == start || end != -1) 489 break; 490 /* But if truncating, restart to make sure all gone */ 491 index = start; 492 continue; 493 } 494 for (i = 0; i < pagevec_count(&pvec); i++) { 495 struct page *page = pvec.pages[i]; 496 497 index = indices[i]; 498 if (index >= end) 499 break; 500 501 if (radix_tree_exceptional_entry(page)) { 502 if (unfalloc) 503 continue; 504 if (shmem_free_swap(mapping, index, page)) { 505 /* Swap was replaced by page: retry */ 506 index--; 507 break; 508 } 509 nr_swaps_freed++; 510 continue; 511 } 512 513 lock_page(page); 514 if (!unfalloc || !PageUptodate(page)) { 515 if (page->mapping == mapping) { 516 VM_BUG_ON_PAGE(PageWriteback(page), page); 517 truncate_inode_page(mapping, page); 518 } else { 519 /* Page was replaced by swap: retry */ 520 unlock_page(page); 521 index--; 522 break; 523 } 524 } 525 unlock_page(page); 526 } 527 pagevec_remove_exceptionals(&pvec); 528 pagevec_release(&pvec); 529 index++; 530 } 531 532 spin_lock(&info->lock); 533 info->swapped -= nr_swaps_freed; 534 shmem_recalc_inode(inode); 535 spin_unlock(&info->lock); 536 } 537 538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 539 { 540 shmem_undo_range(inode, lstart, lend, false); 541 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 542 } 543 EXPORT_SYMBOL_GPL(shmem_truncate_range); 544 545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 546 struct kstat *stat) 547 { 548 struct inode *inode = dentry->d_inode; 549 struct shmem_inode_info *info = SHMEM_I(inode); 550 551 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 552 spin_lock(&info->lock); 553 shmem_recalc_inode(inode); 554 spin_unlock(&info->lock); 555 } 556 generic_fillattr(inode, stat); 557 return 0; 558 } 559 560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 561 { 562 struct inode *inode = d_inode(dentry); 563 struct shmem_inode_info *info = SHMEM_I(inode); 564 int error; 565 566 error = inode_change_ok(inode, attr); 567 if (error) 568 return error; 569 570 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 571 loff_t oldsize = inode->i_size; 572 loff_t newsize = attr->ia_size; 573 574 /* protected by i_mutex */ 575 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 576 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 577 return -EPERM; 578 579 if (newsize != oldsize) { 580 error = shmem_reacct_size(SHMEM_I(inode)->flags, 581 oldsize, newsize); 582 if (error) 583 return error; 584 i_size_write(inode, newsize); 585 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 586 } 587 if (newsize <= oldsize) { 588 loff_t holebegin = round_up(newsize, PAGE_SIZE); 589 if (oldsize > holebegin) 590 unmap_mapping_range(inode->i_mapping, 591 holebegin, 0, 1); 592 if (info->alloced) 593 shmem_truncate_range(inode, 594 newsize, (loff_t)-1); 595 /* unmap again to remove racily COWed private pages */ 596 if (oldsize > holebegin) 597 unmap_mapping_range(inode->i_mapping, 598 holebegin, 0, 1); 599 } 600 } 601 602 setattr_copy(inode, attr); 603 if (attr->ia_valid & ATTR_MODE) 604 error = posix_acl_chmod(inode, inode->i_mode); 605 return error; 606 } 607 608 static void shmem_evict_inode(struct inode *inode) 609 { 610 struct shmem_inode_info *info = SHMEM_I(inode); 611 612 if (inode->i_mapping->a_ops == &shmem_aops) { 613 shmem_unacct_size(info->flags, inode->i_size); 614 inode->i_size = 0; 615 shmem_truncate_range(inode, 0, (loff_t)-1); 616 if (!list_empty(&info->swaplist)) { 617 mutex_lock(&shmem_swaplist_mutex); 618 list_del_init(&info->swaplist); 619 mutex_unlock(&shmem_swaplist_mutex); 620 } 621 } else 622 kfree(info->symlink); 623 624 simple_xattrs_free(&info->xattrs); 625 WARN_ON(inode->i_blocks); 626 shmem_free_inode(inode->i_sb); 627 clear_inode(inode); 628 } 629 630 /* 631 * If swap found in inode, free it and move page from swapcache to filecache. 632 */ 633 static int shmem_unuse_inode(struct shmem_inode_info *info, 634 swp_entry_t swap, struct page **pagep) 635 { 636 struct address_space *mapping = info->vfs_inode.i_mapping; 637 void *radswap; 638 pgoff_t index; 639 gfp_t gfp; 640 int error = 0; 641 642 radswap = swp_to_radix_entry(swap); 643 index = radix_tree_locate_item(&mapping->page_tree, radswap); 644 if (index == -1) 645 return -EAGAIN; /* tell shmem_unuse we found nothing */ 646 647 /* 648 * Move _head_ to start search for next from here. 649 * But be careful: shmem_evict_inode checks list_empty without taking 650 * mutex, and there's an instant in list_move_tail when info->swaplist 651 * would appear empty, if it were the only one on shmem_swaplist. 652 */ 653 if (shmem_swaplist.next != &info->swaplist) 654 list_move_tail(&shmem_swaplist, &info->swaplist); 655 656 gfp = mapping_gfp_mask(mapping); 657 if (shmem_should_replace_page(*pagep, gfp)) { 658 mutex_unlock(&shmem_swaplist_mutex); 659 error = shmem_replace_page(pagep, gfp, info, index); 660 mutex_lock(&shmem_swaplist_mutex); 661 /* 662 * We needed to drop mutex to make that restrictive page 663 * allocation, but the inode might have been freed while we 664 * dropped it: although a racing shmem_evict_inode() cannot 665 * complete without emptying the radix_tree, our page lock 666 * on this swapcache page is not enough to prevent that - 667 * free_swap_and_cache() of our swap entry will only 668 * trylock_page(), removing swap from radix_tree whatever. 669 * 670 * We must not proceed to shmem_add_to_page_cache() if the 671 * inode has been freed, but of course we cannot rely on 672 * inode or mapping or info to check that. However, we can 673 * safely check if our swap entry is still in use (and here 674 * it can't have got reused for another page): if it's still 675 * in use, then the inode cannot have been freed yet, and we 676 * can safely proceed (if it's no longer in use, that tells 677 * nothing about the inode, but we don't need to unuse swap). 678 */ 679 if (!page_swapcount(*pagep)) 680 error = -ENOENT; 681 } 682 683 /* 684 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 685 * but also to hold up shmem_evict_inode(): so inode cannot be freed 686 * beneath us (pagelock doesn't help until the page is in pagecache). 687 */ 688 if (!error) 689 error = shmem_add_to_page_cache(*pagep, mapping, index, 690 radswap); 691 if (error != -ENOMEM) { 692 /* 693 * Truncation and eviction use free_swap_and_cache(), which 694 * only does trylock page: if we raced, best clean up here. 695 */ 696 delete_from_swap_cache(*pagep); 697 set_page_dirty(*pagep); 698 if (!error) { 699 spin_lock(&info->lock); 700 info->swapped--; 701 spin_unlock(&info->lock); 702 swap_free(swap); 703 } 704 } 705 return error; 706 } 707 708 /* 709 * Search through swapped inodes to find and replace swap by page. 710 */ 711 int shmem_unuse(swp_entry_t swap, struct page *page) 712 { 713 struct list_head *this, *next; 714 struct shmem_inode_info *info; 715 struct mem_cgroup *memcg; 716 int error = 0; 717 718 /* 719 * There's a faint possibility that swap page was replaced before 720 * caller locked it: caller will come back later with the right page. 721 */ 722 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 723 goto out; 724 725 /* 726 * Charge page using GFP_KERNEL while we can wait, before taking 727 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 728 * Charged back to the user (not to caller) when swap account is used. 729 */ 730 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); 731 if (error) 732 goto out; 733 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 734 error = -EAGAIN; 735 736 mutex_lock(&shmem_swaplist_mutex); 737 list_for_each_safe(this, next, &shmem_swaplist) { 738 info = list_entry(this, struct shmem_inode_info, swaplist); 739 if (info->swapped) 740 error = shmem_unuse_inode(info, swap, &page); 741 else 742 list_del_init(&info->swaplist); 743 cond_resched(); 744 if (error != -EAGAIN) 745 break; 746 /* found nothing in this: move on to search the next */ 747 } 748 mutex_unlock(&shmem_swaplist_mutex); 749 750 if (error) { 751 if (error != -ENOMEM) 752 error = 0; 753 mem_cgroup_cancel_charge(page, memcg); 754 } else 755 mem_cgroup_commit_charge(page, memcg, true); 756 out: 757 unlock_page(page); 758 page_cache_release(page); 759 return error; 760 } 761 762 /* 763 * Move the page from the page cache to the swap cache. 764 */ 765 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 766 { 767 struct shmem_inode_info *info; 768 struct address_space *mapping; 769 struct inode *inode; 770 swp_entry_t swap; 771 pgoff_t index; 772 773 BUG_ON(!PageLocked(page)); 774 mapping = page->mapping; 775 index = page->index; 776 inode = mapping->host; 777 info = SHMEM_I(inode); 778 if (info->flags & VM_LOCKED) 779 goto redirty; 780 if (!total_swap_pages) 781 goto redirty; 782 783 /* 784 * Our capabilities prevent regular writeback or sync from ever calling 785 * shmem_writepage; but a stacking filesystem might use ->writepage of 786 * its underlying filesystem, in which case tmpfs should write out to 787 * swap only in response to memory pressure, and not for the writeback 788 * threads or sync. 789 */ 790 if (!wbc->for_reclaim) { 791 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 792 goto redirty; 793 } 794 795 /* 796 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 797 * value into swapfile.c, the only way we can correctly account for a 798 * fallocated page arriving here is now to initialize it and write it. 799 * 800 * That's okay for a page already fallocated earlier, but if we have 801 * not yet completed the fallocation, then (a) we want to keep track 802 * of this page in case we have to undo it, and (b) it may not be a 803 * good idea to continue anyway, once we're pushing into swap. So 804 * reactivate the page, and let shmem_fallocate() quit when too many. 805 */ 806 if (!PageUptodate(page)) { 807 if (inode->i_private) { 808 struct shmem_falloc *shmem_falloc; 809 spin_lock(&inode->i_lock); 810 shmem_falloc = inode->i_private; 811 if (shmem_falloc && 812 !shmem_falloc->waitq && 813 index >= shmem_falloc->start && 814 index < shmem_falloc->next) 815 shmem_falloc->nr_unswapped++; 816 else 817 shmem_falloc = NULL; 818 spin_unlock(&inode->i_lock); 819 if (shmem_falloc) 820 goto redirty; 821 } 822 clear_highpage(page); 823 flush_dcache_page(page); 824 SetPageUptodate(page); 825 } 826 827 swap = get_swap_page(); 828 if (!swap.val) 829 goto redirty; 830 831 /* 832 * Add inode to shmem_unuse()'s list of swapped-out inodes, 833 * if it's not already there. Do it now before the page is 834 * moved to swap cache, when its pagelock no longer protects 835 * the inode from eviction. But don't unlock the mutex until 836 * we've incremented swapped, because shmem_unuse_inode() will 837 * prune a !swapped inode from the swaplist under this mutex. 838 */ 839 mutex_lock(&shmem_swaplist_mutex); 840 if (list_empty(&info->swaplist)) 841 list_add_tail(&info->swaplist, &shmem_swaplist); 842 843 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 844 swap_shmem_alloc(swap); 845 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 846 847 spin_lock(&info->lock); 848 info->swapped++; 849 shmem_recalc_inode(inode); 850 spin_unlock(&info->lock); 851 852 mutex_unlock(&shmem_swaplist_mutex); 853 BUG_ON(page_mapped(page)); 854 swap_writepage(page, wbc); 855 return 0; 856 } 857 858 mutex_unlock(&shmem_swaplist_mutex); 859 swapcache_free(swap); 860 redirty: 861 set_page_dirty(page); 862 if (wbc->for_reclaim) 863 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 864 unlock_page(page); 865 return 0; 866 } 867 868 #ifdef CONFIG_NUMA 869 #ifdef CONFIG_TMPFS 870 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 871 { 872 char buffer[64]; 873 874 if (!mpol || mpol->mode == MPOL_DEFAULT) 875 return; /* show nothing */ 876 877 mpol_to_str(buffer, sizeof(buffer), mpol); 878 879 seq_printf(seq, ",mpol=%s", buffer); 880 } 881 882 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 883 { 884 struct mempolicy *mpol = NULL; 885 if (sbinfo->mpol) { 886 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 887 mpol = sbinfo->mpol; 888 mpol_get(mpol); 889 spin_unlock(&sbinfo->stat_lock); 890 } 891 return mpol; 892 } 893 #endif /* CONFIG_TMPFS */ 894 895 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 896 struct shmem_inode_info *info, pgoff_t index) 897 { 898 struct vm_area_struct pvma; 899 struct page *page; 900 901 /* Create a pseudo vma that just contains the policy */ 902 pvma.vm_start = 0; 903 /* Bias interleave by inode number to distribute better across nodes */ 904 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 905 pvma.vm_ops = NULL; 906 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 907 908 page = swapin_readahead(swap, gfp, &pvma, 0); 909 910 /* Drop reference taken by mpol_shared_policy_lookup() */ 911 mpol_cond_put(pvma.vm_policy); 912 913 return page; 914 } 915 916 static struct page *shmem_alloc_page(gfp_t gfp, 917 struct shmem_inode_info *info, pgoff_t index) 918 { 919 struct vm_area_struct pvma; 920 struct page *page; 921 922 /* Create a pseudo vma that just contains the policy */ 923 pvma.vm_start = 0; 924 /* Bias interleave by inode number to distribute better across nodes */ 925 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 926 pvma.vm_ops = NULL; 927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 928 929 page = alloc_page_vma(gfp, &pvma, 0); 930 931 /* Drop reference taken by mpol_shared_policy_lookup() */ 932 mpol_cond_put(pvma.vm_policy); 933 934 return page; 935 } 936 #else /* !CONFIG_NUMA */ 937 #ifdef CONFIG_TMPFS 938 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 939 { 940 } 941 #endif /* CONFIG_TMPFS */ 942 943 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 944 struct shmem_inode_info *info, pgoff_t index) 945 { 946 return swapin_readahead(swap, gfp, NULL, 0); 947 } 948 949 static inline struct page *shmem_alloc_page(gfp_t gfp, 950 struct shmem_inode_info *info, pgoff_t index) 951 { 952 return alloc_page(gfp); 953 } 954 #endif /* CONFIG_NUMA */ 955 956 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 957 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 958 { 959 return NULL; 960 } 961 #endif 962 963 /* 964 * When a page is moved from swapcache to shmem filecache (either by the 965 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 966 * shmem_unuse_inode()), it may have been read in earlier from swap, in 967 * ignorance of the mapping it belongs to. If that mapping has special 968 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 969 * we may need to copy to a suitable page before moving to filecache. 970 * 971 * In a future release, this may well be extended to respect cpuset and 972 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 973 * but for now it is a simple matter of zone. 974 */ 975 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 976 { 977 return page_zonenum(page) > gfp_zone(gfp); 978 } 979 980 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 981 struct shmem_inode_info *info, pgoff_t index) 982 { 983 struct page *oldpage, *newpage; 984 struct address_space *swap_mapping; 985 pgoff_t swap_index; 986 int error; 987 988 oldpage = *pagep; 989 swap_index = page_private(oldpage); 990 swap_mapping = page_mapping(oldpage); 991 992 /* 993 * We have arrived here because our zones are constrained, so don't 994 * limit chance of success by further cpuset and node constraints. 995 */ 996 gfp &= ~GFP_CONSTRAINT_MASK; 997 newpage = shmem_alloc_page(gfp, info, index); 998 if (!newpage) 999 return -ENOMEM; 1000 1001 page_cache_get(newpage); 1002 copy_highpage(newpage, oldpage); 1003 flush_dcache_page(newpage); 1004 1005 __set_page_locked(newpage); 1006 SetPageUptodate(newpage); 1007 SetPageSwapBacked(newpage); 1008 set_page_private(newpage, swap_index); 1009 SetPageSwapCache(newpage); 1010 1011 /* 1012 * Our caller will very soon move newpage out of swapcache, but it's 1013 * a nice clean interface for us to replace oldpage by newpage there. 1014 */ 1015 spin_lock_irq(&swap_mapping->tree_lock); 1016 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1017 newpage); 1018 if (!error) { 1019 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1020 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1021 } 1022 spin_unlock_irq(&swap_mapping->tree_lock); 1023 1024 if (unlikely(error)) { 1025 /* 1026 * Is this possible? I think not, now that our callers check 1027 * both PageSwapCache and page_private after getting page lock; 1028 * but be defensive. Reverse old to newpage for clear and free. 1029 */ 1030 oldpage = newpage; 1031 } else { 1032 mem_cgroup_replace_page(oldpage, newpage); 1033 lru_cache_add_anon(newpage); 1034 *pagep = newpage; 1035 } 1036 1037 ClearPageSwapCache(oldpage); 1038 set_page_private(oldpage, 0); 1039 1040 unlock_page(oldpage); 1041 page_cache_release(oldpage); 1042 page_cache_release(oldpage); 1043 return error; 1044 } 1045 1046 /* 1047 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1048 * 1049 * If we allocate a new one we do not mark it dirty. That's up to the 1050 * vm. If we swap it in we mark it dirty since we also free the swap 1051 * entry since a page cannot live in both the swap and page cache 1052 */ 1053 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1054 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1055 { 1056 struct address_space *mapping = inode->i_mapping; 1057 struct shmem_inode_info *info; 1058 struct shmem_sb_info *sbinfo; 1059 struct mem_cgroup *memcg; 1060 struct page *page; 1061 swp_entry_t swap; 1062 int error; 1063 int once = 0; 1064 int alloced = 0; 1065 1066 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1067 return -EFBIG; 1068 repeat: 1069 swap.val = 0; 1070 page = find_lock_entry(mapping, index); 1071 if (radix_tree_exceptional_entry(page)) { 1072 swap = radix_to_swp_entry(page); 1073 page = NULL; 1074 } 1075 1076 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1077 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1078 error = -EINVAL; 1079 goto failed; 1080 } 1081 1082 if (page && sgp == SGP_WRITE) 1083 mark_page_accessed(page); 1084 1085 /* fallocated page? */ 1086 if (page && !PageUptodate(page)) { 1087 if (sgp != SGP_READ) 1088 goto clear; 1089 unlock_page(page); 1090 page_cache_release(page); 1091 page = NULL; 1092 } 1093 if (page || (sgp == SGP_READ && !swap.val)) { 1094 *pagep = page; 1095 return 0; 1096 } 1097 1098 /* 1099 * Fast cache lookup did not find it: 1100 * bring it back from swap or allocate. 1101 */ 1102 info = SHMEM_I(inode); 1103 sbinfo = SHMEM_SB(inode->i_sb); 1104 1105 if (swap.val) { 1106 /* Look it up and read it in.. */ 1107 page = lookup_swap_cache(swap); 1108 if (!page) { 1109 /* here we actually do the io */ 1110 if (fault_type) 1111 *fault_type |= VM_FAULT_MAJOR; 1112 page = shmem_swapin(swap, gfp, info, index); 1113 if (!page) { 1114 error = -ENOMEM; 1115 goto failed; 1116 } 1117 } 1118 1119 /* We have to do this with page locked to prevent races */ 1120 lock_page(page); 1121 if (!PageSwapCache(page) || page_private(page) != swap.val || 1122 !shmem_confirm_swap(mapping, index, swap)) { 1123 error = -EEXIST; /* try again */ 1124 goto unlock; 1125 } 1126 if (!PageUptodate(page)) { 1127 error = -EIO; 1128 goto failed; 1129 } 1130 wait_on_page_writeback(page); 1131 1132 if (shmem_should_replace_page(page, gfp)) { 1133 error = shmem_replace_page(&page, gfp, info, index); 1134 if (error) 1135 goto failed; 1136 } 1137 1138 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1139 if (!error) { 1140 error = shmem_add_to_page_cache(page, mapping, index, 1141 swp_to_radix_entry(swap)); 1142 /* 1143 * We already confirmed swap under page lock, and make 1144 * no memory allocation here, so usually no possibility 1145 * of error; but free_swap_and_cache() only trylocks a 1146 * page, so it is just possible that the entry has been 1147 * truncated or holepunched since swap was confirmed. 1148 * shmem_undo_range() will have done some of the 1149 * unaccounting, now delete_from_swap_cache() will do 1150 * the rest. 1151 * Reset swap.val? No, leave it so "failed" goes back to 1152 * "repeat": reading a hole and writing should succeed. 1153 */ 1154 if (error) { 1155 mem_cgroup_cancel_charge(page, memcg); 1156 delete_from_swap_cache(page); 1157 } 1158 } 1159 if (error) 1160 goto failed; 1161 1162 mem_cgroup_commit_charge(page, memcg, true); 1163 1164 spin_lock(&info->lock); 1165 info->swapped--; 1166 shmem_recalc_inode(inode); 1167 spin_unlock(&info->lock); 1168 1169 if (sgp == SGP_WRITE) 1170 mark_page_accessed(page); 1171 1172 delete_from_swap_cache(page); 1173 set_page_dirty(page); 1174 swap_free(swap); 1175 1176 } else { 1177 if (shmem_acct_block(info->flags)) { 1178 error = -ENOSPC; 1179 goto failed; 1180 } 1181 if (sbinfo->max_blocks) { 1182 if (percpu_counter_compare(&sbinfo->used_blocks, 1183 sbinfo->max_blocks) >= 0) { 1184 error = -ENOSPC; 1185 goto unacct; 1186 } 1187 percpu_counter_inc(&sbinfo->used_blocks); 1188 } 1189 1190 page = shmem_alloc_page(gfp, info, index); 1191 if (!page) { 1192 error = -ENOMEM; 1193 goto decused; 1194 } 1195 1196 __SetPageSwapBacked(page); 1197 __set_page_locked(page); 1198 if (sgp == SGP_WRITE) 1199 __SetPageReferenced(page); 1200 1201 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); 1202 if (error) 1203 goto decused; 1204 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1205 if (!error) { 1206 error = shmem_add_to_page_cache(page, mapping, index, 1207 NULL); 1208 radix_tree_preload_end(); 1209 } 1210 if (error) { 1211 mem_cgroup_cancel_charge(page, memcg); 1212 goto decused; 1213 } 1214 mem_cgroup_commit_charge(page, memcg, false); 1215 lru_cache_add_anon(page); 1216 1217 spin_lock(&info->lock); 1218 info->alloced++; 1219 inode->i_blocks += BLOCKS_PER_PAGE; 1220 shmem_recalc_inode(inode); 1221 spin_unlock(&info->lock); 1222 alloced = true; 1223 1224 /* 1225 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1226 */ 1227 if (sgp == SGP_FALLOC) 1228 sgp = SGP_WRITE; 1229 clear: 1230 /* 1231 * Let SGP_WRITE caller clear ends if write does not fill page; 1232 * but SGP_FALLOC on a page fallocated earlier must initialize 1233 * it now, lest undo on failure cancel our earlier guarantee. 1234 */ 1235 if (sgp != SGP_WRITE) { 1236 clear_highpage(page); 1237 flush_dcache_page(page); 1238 SetPageUptodate(page); 1239 } 1240 if (sgp == SGP_DIRTY) 1241 set_page_dirty(page); 1242 } 1243 1244 /* Perhaps the file has been truncated since we checked */ 1245 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1246 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1247 error = -EINVAL; 1248 if (alloced) 1249 goto trunc; 1250 else 1251 goto failed; 1252 } 1253 *pagep = page; 1254 return 0; 1255 1256 /* 1257 * Error recovery. 1258 */ 1259 trunc: 1260 info = SHMEM_I(inode); 1261 ClearPageDirty(page); 1262 delete_from_page_cache(page); 1263 spin_lock(&info->lock); 1264 info->alloced--; 1265 inode->i_blocks -= BLOCKS_PER_PAGE; 1266 spin_unlock(&info->lock); 1267 decused: 1268 sbinfo = SHMEM_SB(inode->i_sb); 1269 if (sbinfo->max_blocks) 1270 percpu_counter_add(&sbinfo->used_blocks, -1); 1271 unacct: 1272 shmem_unacct_blocks(info->flags, 1); 1273 failed: 1274 if (swap.val && error != -EINVAL && 1275 !shmem_confirm_swap(mapping, index, swap)) 1276 error = -EEXIST; 1277 unlock: 1278 if (page) { 1279 unlock_page(page); 1280 page_cache_release(page); 1281 } 1282 if (error == -ENOSPC && !once++) { 1283 info = SHMEM_I(inode); 1284 spin_lock(&info->lock); 1285 shmem_recalc_inode(inode); 1286 spin_unlock(&info->lock); 1287 goto repeat; 1288 } 1289 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1290 goto repeat; 1291 return error; 1292 } 1293 1294 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1295 { 1296 struct inode *inode = file_inode(vma->vm_file); 1297 int error; 1298 int ret = VM_FAULT_LOCKED; 1299 1300 /* 1301 * Trinity finds that probing a hole which tmpfs is punching can 1302 * prevent the hole-punch from ever completing: which in turn 1303 * locks writers out with its hold on i_mutex. So refrain from 1304 * faulting pages into the hole while it's being punched. Although 1305 * shmem_undo_range() does remove the additions, it may be unable to 1306 * keep up, as each new page needs its own unmap_mapping_range() call, 1307 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1308 * 1309 * It does not matter if we sometimes reach this check just before the 1310 * hole-punch begins, so that one fault then races with the punch: 1311 * we just need to make racing faults a rare case. 1312 * 1313 * The implementation below would be much simpler if we just used a 1314 * standard mutex or completion: but we cannot take i_mutex in fault, 1315 * and bloating every shmem inode for this unlikely case would be sad. 1316 */ 1317 if (unlikely(inode->i_private)) { 1318 struct shmem_falloc *shmem_falloc; 1319 1320 spin_lock(&inode->i_lock); 1321 shmem_falloc = inode->i_private; 1322 if (shmem_falloc && 1323 shmem_falloc->waitq && 1324 vmf->pgoff >= shmem_falloc->start && 1325 vmf->pgoff < shmem_falloc->next) { 1326 wait_queue_head_t *shmem_falloc_waitq; 1327 DEFINE_WAIT(shmem_fault_wait); 1328 1329 ret = VM_FAULT_NOPAGE; 1330 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1331 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1332 /* It's polite to up mmap_sem if we can */ 1333 up_read(&vma->vm_mm->mmap_sem); 1334 ret = VM_FAULT_RETRY; 1335 } 1336 1337 shmem_falloc_waitq = shmem_falloc->waitq; 1338 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1339 TASK_UNINTERRUPTIBLE); 1340 spin_unlock(&inode->i_lock); 1341 schedule(); 1342 1343 /* 1344 * shmem_falloc_waitq points into the shmem_fallocate() 1345 * stack of the hole-punching task: shmem_falloc_waitq 1346 * is usually invalid by the time we reach here, but 1347 * finish_wait() does not dereference it in that case; 1348 * though i_lock needed lest racing with wake_up_all(). 1349 */ 1350 spin_lock(&inode->i_lock); 1351 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1352 spin_unlock(&inode->i_lock); 1353 return ret; 1354 } 1355 spin_unlock(&inode->i_lock); 1356 } 1357 1358 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1359 if (error) 1360 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1361 1362 if (ret & VM_FAULT_MAJOR) { 1363 count_vm_event(PGMAJFAULT); 1364 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1365 } 1366 return ret; 1367 } 1368 1369 #ifdef CONFIG_NUMA 1370 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1371 { 1372 struct inode *inode = file_inode(vma->vm_file); 1373 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1374 } 1375 1376 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1377 unsigned long addr) 1378 { 1379 struct inode *inode = file_inode(vma->vm_file); 1380 pgoff_t index; 1381 1382 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1383 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1384 } 1385 #endif 1386 1387 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1388 { 1389 struct inode *inode = file_inode(file); 1390 struct shmem_inode_info *info = SHMEM_I(inode); 1391 int retval = -ENOMEM; 1392 1393 spin_lock(&info->lock); 1394 if (lock && !(info->flags & VM_LOCKED)) { 1395 if (!user_shm_lock(inode->i_size, user)) 1396 goto out_nomem; 1397 info->flags |= VM_LOCKED; 1398 mapping_set_unevictable(file->f_mapping); 1399 } 1400 if (!lock && (info->flags & VM_LOCKED) && user) { 1401 user_shm_unlock(inode->i_size, user); 1402 info->flags &= ~VM_LOCKED; 1403 mapping_clear_unevictable(file->f_mapping); 1404 } 1405 retval = 0; 1406 1407 out_nomem: 1408 spin_unlock(&info->lock); 1409 return retval; 1410 } 1411 1412 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1413 { 1414 file_accessed(file); 1415 vma->vm_ops = &shmem_vm_ops; 1416 return 0; 1417 } 1418 1419 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1420 umode_t mode, dev_t dev, unsigned long flags) 1421 { 1422 struct inode *inode; 1423 struct shmem_inode_info *info; 1424 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1425 1426 if (shmem_reserve_inode(sb)) 1427 return NULL; 1428 1429 inode = new_inode(sb); 1430 if (inode) { 1431 inode->i_ino = get_next_ino(); 1432 inode_init_owner(inode, dir, mode); 1433 inode->i_blocks = 0; 1434 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1435 inode->i_generation = get_seconds(); 1436 info = SHMEM_I(inode); 1437 memset(info, 0, (char *)inode - (char *)info); 1438 spin_lock_init(&info->lock); 1439 info->seals = F_SEAL_SEAL; 1440 info->flags = flags & VM_NORESERVE; 1441 INIT_LIST_HEAD(&info->swaplist); 1442 simple_xattrs_init(&info->xattrs); 1443 cache_no_acl(inode); 1444 1445 switch (mode & S_IFMT) { 1446 default: 1447 inode->i_op = &shmem_special_inode_operations; 1448 init_special_inode(inode, mode, dev); 1449 break; 1450 case S_IFREG: 1451 inode->i_mapping->a_ops = &shmem_aops; 1452 inode->i_op = &shmem_inode_operations; 1453 inode->i_fop = &shmem_file_operations; 1454 mpol_shared_policy_init(&info->policy, 1455 shmem_get_sbmpol(sbinfo)); 1456 break; 1457 case S_IFDIR: 1458 inc_nlink(inode); 1459 /* Some things misbehave if size == 0 on a directory */ 1460 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1461 inode->i_op = &shmem_dir_inode_operations; 1462 inode->i_fop = &simple_dir_operations; 1463 break; 1464 case S_IFLNK: 1465 /* 1466 * Must not load anything in the rbtree, 1467 * mpol_free_shared_policy will not be called. 1468 */ 1469 mpol_shared_policy_init(&info->policy, NULL); 1470 break; 1471 } 1472 } else 1473 shmem_free_inode(sb); 1474 return inode; 1475 } 1476 1477 bool shmem_mapping(struct address_space *mapping) 1478 { 1479 if (!mapping->host) 1480 return false; 1481 1482 return mapping->host->i_sb->s_op == &shmem_ops; 1483 } 1484 1485 #ifdef CONFIG_TMPFS 1486 static const struct inode_operations shmem_symlink_inode_operations; 1487 static const struct inode_operations shmem_short_symlink_operations; 1488 1489 #ifdef CONFIG_TMPFS_XATTR 1490 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1491 #else 1492 #define shmem_initxattrs NULL 1493 #endif 1494 1495 static int 1496 shmem_write_begin(struct file *file, struct address_space *mapping, 1497 loff_t pos, unsigned len, unsigned flags, 1498 struct page **pagep, void **fsdata) 1499 { 1500 struct inode *inode = mapping->host; 1501 struct shmem_inode_info *info = SHMEM_I(inode); 1502 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1503 1504 /* i_mutex is held by caller */ 1505 if (unlikely(info->seals)) { 1506 if (info->seals & F_SEAL_WRITE) 1507 return -EPERM; 1508 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1509 return -EPERM; 1510 } 1511 1512 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1513 } 1514 1515 static int 1516 shmem_write_end(struct file *file, struct address_space *mapping, 1517 loff_t pos, unsigned len, unsigned copied, 1518 struct page *page, void *fsdata) 1519 { 1520 struct inode *inode = mapping->host; 1521 1522 if (pos + copied > inode->i_size) 1523 i_size_write(inode, pos + copied); 1524 1525 if (!PageUptodate(page)) { 1526 if (copied < PAGE_CACHE_SIZE) { 1527 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1528 zero_user_segments(page, 0, from, 1529 from + copied, PAGE_CACHE_SIZE); 1530 } 1531 SetPageUptodate(page); 1532 } 1533 set_page_dirty(page); 1534 unlock_page(page); 1535 page_cache_release(page); 1536 1537 return copied; 1538 } 1539 1540 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1541 { 1542 struct file *file = iocb->ki_filp; 1543 struct inode *inode = file_inode(file); 1544 struct address_space *mapping = inode->i_mapping; 1545 pgoff_t index; 1546 unsigned long offset; 1547 enum sgp_type sgp = SGP_READ; 1548 int error = 0; 1549 ssize_t retval = 0; 1550 loff_t *ppos = &iocb->ki_pos; 1551 1552 /* 1553 * Might this read be for a stacking filesystem? Then when reading 1554 * holes of a sparse file, we actually need to allocate those pages, 1555 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1556 */ 1557 if (!iter_is_iovec(to)) 1558 sgp = SGP_DIRTY; 1559 1560 index = *ppos >> PAGE_CACHE_SHIFT; 1561 offset = *ppos & ~PAGE_CACHE_MASK; 1562 1563 for (;;) { 1564 struct page *page = NULL; 1565 pgoff_t end_index; 1566 unsigned long nr, ret; 1567 loff_t i_size = i_size_read(inode); 1568 1569 end_index = i_size >> PAGE_CACHE_SHIFT; 1570 if (index > end_index) 1571 break; 1572 if (index == end_index) { 1573 nr = i_size & ~PAGE_CACHE_MASK; 1574 if (nr <= offset) 1575 break; 1576 } 1577 1578 error = shmem_getpage(inode, index, &page, sgp, NULL); 1579 if (error) { 1580 if (error == -EINVAL) 1581 error = 0; 1582 break; 1583 } 1584 if (page) 1585 unlock_page(page); 1586 1587 /* 1588 * We must evaluate after, since reads (unlike writes) 1589 * are called without i_mutex protection against truncate 1590 */ 1591 nr = PAGE_CACHE_SIZE; 1592 i_size = i_size_read(inode); 1593 end_index = i_size >> PAGE_CACHE_SHIFT; 1594 if (index == end_index) { 1595 nr = i_size & ~PAGE_CACHE_MASK; 1596 if (nr <= offset) { 1597 if (page) 1598 page_cache_release(page); 1599 break; 1600 } 1601 } 1602 nr -= offset; 1603 1604 if (page) { 1605 /* 1606 * If users can be writing to this page using arbitrary 1607 * virtual addresses, take care about potential aliasing 1608 * before reading the page on the kernel side. 1609 */ 1610 if (mapping_writably_mapped(mapping)) 1611 flush_dcache_page(page); 1612 /* 1613 * Mark the page accessed if we read the beginning. 1614 */ 1615 if (!offset) 1616 mark_page_accessed(page); 1617 } else { 1618 page = ZERO_PAGE(0); 1619 page_cache_get(page); 1620 } 1621 1622 /* 1623 * Ok, we have the page, and it's up-to-date, so 1624 * now we can copy it to user space... 1625 */ 1626 ret = copy_page_to_iter(page, offset, nr, to); 1627 retval += ret; 1628 offset += ret; 1629 index += offset >> PAGE_CACHE_SHIFT; 1630 offset &= ~PAGE_CACHE_MASK; 1631 1632 page_cache_release(page); 1633 if (!iov_iter_count(to)) 1634 break; 1635 if (ret < nr) { 1636 error = -EFAULT; 1637 break; 1638 } 1639 cond_resched(); 1640 } 1641 1642 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1643 file_accessed(file); 1644 return retval ? retval : error; 1645 } 1646 1647 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1648 struct pipe_inode_info *pipe, size_t len, 1649 unsigned int flags) 1650 { 1651 struct address_space *mapping = in->f_mapping; 1652 struct inode *inode = mapping->host; 1653 unsigned int loff, nr_pages, req_pages; 1654 struct page *pages[PIPE_DEF_BUFFERS]; 1655 struct partial_page partial[PIPE_DEF_BUFFERS]; 1656 struct page *page; 1657 pgoff_t index, end_index; 1658 loff_t isize, left; 1659 int error, page_nr; 1660 struct splice_pipe_desc spd = { 1661 .pages = pages, 1662 .partial = partial, 1663 .nr_pages_max = PIPE_DEF_BUFFERS, 1664 .flags = flags, 1665 .ops = &page_cache_pipe_buf_ops, 1666 .spd_release = spd_release_page, 1667 }; 1668 1669 isize = i_size_read(inode); 1670 if (unlikely(*ppos >= isize)) 1671 return 0; 1672 1673 left = isize - *ppos; 1674 if (unlikely(left < len)) 1675 len = left; 1676 1677 if (splice_grow_spd(pipe, &spd)) 1678 return -ENOMEM; 1679 1680 index = *ppos >> PAGE_CACHE_SHIFT; 1681 loff = *ppos & ~PAGE_CACHE_MASK; 1682 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1683 nr_pages = min(req_pages, spd.nr_pages_max); 1684 1685 spd.nr_pages = find_get_pages_contig(mapping, index, 1686 nr_pages, spd.pages); 1687 index += spd.nr_pages; 1688 error = 0; 1689 1690 while (spd.nr_pages < nr_pages) { 1691 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1692 if (error) 1693 break; 1694 unlock_page(page); 1695 spd.pages[spd.nr_pages++] = page; 1696 index++; 1697 } 1698 1699 index = *ppos >> PAGE_CACHE_SHIFT; 1700 nr_pages = spd.nr_pages; 1701 spd.nr_pages = 0; 1702 1703 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1704 unsigned int this_len; 1705 1706 if (!len) 1707 break; 1708 1709 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1710 page = spd.pages[page_nr]; 1711 1712 if (!PageUptodate(page) || page->mapping != mapping) { 1713 error = shmem_getpage(inode, index, &page, 1714 SGP_CACHE, NULL); 1715 if (error) 1716 break; 1717 unlock_page(page); 1718 page_cache_release(spd.pages[page_nr]); 1719 spd.pages[page_nr] = page; 1720 } 1721 1722 isize = i_size_read(inode); 1723 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1724 if (unlikely(!isize || index > end_index)) 1725 break; 1726 1727 if (end_index == index) { 1728 unsigned int plen; 1729 1730 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1731 if (plen <= loff) 1732 break; 1733 1734 this_len = min(this_len, plen - loff); 1735 len = this_len; 1736 } 1737 1738 spd.partial[page_nr].offset = loff; 1739 spd.partial[page_nr].len = this_len; 1740 len -= this_len; 1741 loff = 0; 1742 spd.nr_pages++; 1743 index++; 1744 } 1745 1746 while (page_nr < nr_pages) 1747 page_cache_release(spd.pages[page_nr++]); 1748 1749 if (spd.nr_pages) 1750 error = splice_to_pipe(pipe, &spd); 1751 1752 splice_shrink_spd(&spd); 1753 1754 if (error > 0) { 1755 *ppos += error; 1756 file_accessed(in); 1757 } 1758 return error; 1759 } 1760 1761 /* 1762 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1763 */ 1764 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1765 pgoff_t index, pgoff_t end, int whence) 1766 { 1767 struct page *page; 1768 struct pagevec pvec; 1769 pgoff_t indices[PAGEVEC_SIZE]; 1770 bool done = false; 1771 int i; 1772 1773 pagevec_init(&pvec, 0); 1774 pvec.nr = 1; /* start small: we may be there already */ 1775 while (!done) { 1776 pvec.nr = find_get_entries(mapping, index, 1777 pvec.nr, pvec.pages, indices); 1778 if (!pvec.nr) { 1779 if (whence == SEEK_DATA) 1780 index = end; 1781 break; 1782 } 1783 for (i = 0; i < pvec.nr; i++, index++) { 1784 if (index < indices[i]) { 1785 if (whence == SEEK_HOLE) { 1786 done = true; 1787 break; 1788 } 1789 index = indices[i]; 1790 } 1791 page = pvec.pages[i]; 1792 if (page && !radix_tree_exceptional_entry(page)) { 1793 if (!PageUptodate(page)) 1794 page = NULL; 1795 } 1796 if (index >= end || 1797 (page && whence == SEEK_DATA) || 1798 (!page && whence == SEEK_HOLE)) { 1799 done = true; 1800 break; 1801 } 1802 } 1803 pagevec_remove_exceptionals(&pvec); 1804 pagevec_release(&pvec); 1805 pvec.nr = PAGEVEC_SIZE; 1806 cond_resched(); 1807 } 1808 return index; 1809 } 1810 1811 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1812 { 1813 struct address_space *mapping = file->f_mapping; 1814 struct inode *inode = mapping->host; 1815 pgoff_t start, end; 1816 loff_t new_offset; 1817 1818 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1819 return generic_file_llseek_size(file, offset, whence, 1820 MAX_LFS_FILESIZE, i_size_read(inode)); 1821 mutex_lock(&inode->i_mutex); 1822 /* We're holding i_mutex so we can access i_size directly */ 1823 1824 if (offset < 0) 1825 offset = -EINVAL; 1826 else if (offset >= inode->i_size) 1827 offset = -ENXIO; 1828 else { 1829 start = offset >> PAGE_CACHE_SHIFT; 1830 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1831 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1832 new_offset <<= PAGE_CACHE_SHIFT; 1833 if (new_offset > offset) { 1834 if (new_offset < inode->i_size) 1835 offset = new_offset; 1836 else if (whence == SEEK_DATA) 1837 offset = -ENXIO; 1838 else 1839 offset = inode->i_size; 1840 } 1841 } 1842 1843 if (offset >= 0) 1844 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1845 mutex_unlock(&inode->i_mutex); 1846 return offset; 1847 } 1848 1849 /* 1850 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1851 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1852 */ 1853 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1854 #define LAST_SCAN 4 /* about 150ms max */ 1855 1856 static void shmem_tag_pins(struct address_space *mapping) 1857 { 1858 struct radix_tree_iter iter; 1859 void **slot; 1860 pgoff_t start; 1861 struct page *page; 1862 1863 lru_add_drain(); 1864 start = 0; 1865 rcu_read_lock(); 1866 1867 restart: 1868 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1869 page = radix_tree_deref_slot(slot); 1870 if (!page || radix_tree_exception(page)) { 1871 if (radix_tree_deref_retry(page)) 1872 goto restart; 1873 } else if (page_count(page) - page_mapcount(page) > 1) { 1874 spin_lock_irq(&mapping->tree_lock); 1875 radix_tree_tag_set(&mapping->page_tree, iter.index, 1876 SHMEM_TAG_PINNED); 1877 spin_unlock_irq(&mapping->tree_lock); 1878 } 1879 1880 if (need_resched()) { 1881 cond_resched_rcu(); 1882 start = iter.index + 1; 1883 goto restart; 1884 } 1885 } 1886 rcu_read_unlock(); 1887 } 1888 1889 /* 1890 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1891 * via get_user_pages(), drivers might have some pending I/O without any active 1892 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1893 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1894 * them to be dropped. 1895 * The caller must guarantee that no new user will acquire writable references 1896 * to those pages to avoid races. 1897 */ 1898 static int shmem_wait_for_pins(struct address_space *mapping) 1899 { 1900 struct radix_tree_iter iter; 1901 void **slot; 1902 pgoff_t start; 1903 struct page *page; 1904 int error, scan; 1905 1906 shmem_tag_pins(mapping); 1907 1908 error = 0; 1909 for (scan = 0; scan <= LAST_SCAN; scan++) { 1910 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1911 break; 1912 1913 if (!scan) 1914 lru_add_drain_all(); 1915 else if (schedule_timeout_killable((HZ << scan) / 200)) 1916 scan = LAST_SCAN; 1917 1918 start = 0; 1919 rcu_read_lock(); 1920 restart: 1921 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1922 start, SHMEM_TAG_PINNED) { 1923 1924 page = radix_tree_deref_slot(slot); 1925 if (radix_tree_exception(page)) { 1926 if (radix_tree_deref_retry(page)) 1927 goto restart; 1928 1929 page = NULL; 1930 } 1931 1932 if (page && 1933 page_count(page) - page_mapcount(page) != 1) { 1934 if (scan < LAST_SCAN) 1935 goto continue_resched; 1936 1937 /* 1938 * On the last scan, we clean up all those tags 1939 * we inserted; but make a note that we still 1940 * found pages pinned. 1941 */ 1942 error = -EBUSY; 1943 } 1944 1945 spin_lock_irq(&mapping->tree_lock); 1946 radix_tree_tag_clear(&mapping->page_tree, 1947 iter.index, SHMEM_TAG_PINNED); 1948 spin_unlock_irq(&mapping->tree_lock); 1949 continue_resched: 1950 if (need_resched()) { 1951 cond_resched_rcu(); 1952 start = iter.index + 1; 1953 goto restart; 1954 } 1955 } 1956 rcu_read_unlock(); 1957 } 1958 1959 return error; 1960 } 1961 1962 #define F_ALL_SEALS (F_SEAL_SEAL | \ 1963 F_SEAL_SHRINK | \ 1964 F_SEAL_GROW | \ 1965 F_SEAL_WRITE) 1966 1967 int shmem_add_seals(struct file *file, unsigned int seals) 1968 { 1969 struct inode *inode = file_inode(file); 1970 struct shmem_inode_info *info = SHMEM_I(inode); 1971 int error; 1972 1973 /* 1974 * SEALING 1975 * Sealing allows multiple parties to share a shmem-file but restrict 1976 * access to a specific subset of file operations. Seals can only be 1977 * added, but never removed. This way, mutually untrusted parties can 1978 * share common memory regions with a well-defined policy. A malicious 1979 * peer can thus never perform unwanted operations on a shared object. 1980 * 1981 * Seals are only supported on special shmem-files and always affect 1982 * the whole underlying inode. Once a seal is set, it may prevent some 1983 * kinds of access to the file. Currently, the following seals are 1984 * defined: 1985 * SEAL_SEAL: Prevent further seals from being set on this file 1986 * SEAL_SHRINK: Prevent the file from shrinking 1987 * SEAL_GROW: Prevent the file from growing 1988 * SEAL_WRITE: Prevent write access to the file 1989 * 1990 * As we don't require any trust relationship between two parties, we 1991 * must prevent seals from being removed. Therefore, sealing a file 1992 * only adds a given set of seals to the file, it never touches 1993 * existing seals. Furthermore, the "setting seals"-operation can be 1994 * sealed itself, which basically prevents any further seal from being 1995 * added. 1996 * 1997 * Semantics of sealing are only defined on volatile files. Only 1998 * anonymous shmem files support sealing. More importantly, seals are 1999 * never written to disk. Therefore, there's no plan to support it on 2000 * other file types. 2001 */ 2002 2003 if (file->f_op != &shmem_file_operations) 2004 return -EINVAL; 2005 if (!(file->f_mode & FMODE_WRITE)) 2006 return -EPERM; 2007 if (seals & ~(unsigned int)F_ALL_SEALS) 2008 return -EINVAL; 2009 2010 mutex_lock(&inode->i_mutex); 2011 2012 if (info->seals & F_SEAL_SEAL) { 2013 error = -EPERM; 2014 goto unlock; 2015 } 2016 2017 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2018 error = mapping_deny_writable(file->f_mapping); 2019 if (error) 2020 goto unlock; 2021 2022 error = shmem_wait_for_pins(file->f_mapping); 2023 if (error) { 2024 mapping_allow_writable(file->f_mapping); 2025 goto unlock; 2026 } 2027 } 2028 2029 info->seals |= seals; 2030 error = 0; 2031 2032 unlock: 2033 mutex_unlock(&inode->i_mutex); 2034 return error; 2035 } 2036 EXPORT_SYMBOL_GPL(shmem_add_seals); 2037 2038 int shmem_get_seals(struct file *file) 2039 { 2040 if (file->f_op != &shmem_file_operations) 2041 return -EINVAL; 2042 2043 return SHMEM_I(file_inode(file))->seals; 2044 } 2045 EXPORT_SYMBOL_GPL(shmem_get_seals); 2046 2047 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2048 { 2049 long error; 2050 2051 switch (cmd) { 2052 case F_ADD_SEALS: 2053 /* disallow upper 32bit */ 2054 if (arg > UINT_MAX) 2055 return -EINVAL; 2056 2057 error = shmem_add_seals(file, arg); 2058 break; 2059 case F_GET_SEALS: 2060 error = shmem_get_seals(file); 2061 break; 2062 default: 2063 error = -EINVAL; 2064 break; 2065 } 2066 2067 return error; 2068 } 2069 2070 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2071 loff_t len) 2072 { 2073 struct inode *inode = file_inode(file); 2074 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2075 struct shmem_inode_info *info = SHMEM_I(inode); 2076 struct shmem_falloc shmem_falloc; 2077 pgoff_t start, index, end; 2078 int error; 2079 2080 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2081 return -EOPNOTSUPP; 2082 2083 mutex_lock(&inode->i_mutex); 2084 2085 if (mode & FALLOC_FL_PUNCH_HOLE) { 2086 struct address_space *mapping = file->f_mapping; 2087 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2088 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2089 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2090 2091 /* protected by i_mutex */ 2092 if (info->seals & F_SEAL_WRITE) { 2093 error = -EPERM; 2094 goto out; 2095 } 2096 2097 shmem_falloc.waitq = &shmem_falloc_waitq; 2098 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2099 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2100 spin_lock(&inode->i_lock); 2101 inode->i_private = &shmem_falloc; 2102 spin_unlock(&inode->i_lock); 2103 2104 if ((u64)unmap_end > (u64)unmap_start) 2105 unmap_mapping_range(mapping, unmap_start, 2106 1 + unmap_end - unmap_start, 0); 2107 shmem_truncate_range(inode, offset, offset + len - 1); 2108 /* No need to unmap again: hole-punching leaves COWed pages */ 2109 2110 spin_lock(&inode->i_lock); 2111 inode->i_private = NULL; 2112 wake_up_all(&shmem_falloc_waitq); 2113 spin_unlock(&inode->i_lock); 2114 error = 0; 2115 goto out; 2116 } 2117 2118 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2119 error = inode_newsize_ok(inode, offset + len); 2120 if (error) 2121 goto out; 2122 2123 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2124 error = -EPERM; 2125 goto out; 2126 } 2127 2128 start = offset >> PAGE_CACHE_SHIFT; 2129 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 2130 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2131 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2132 error = -ENOSPC; 2133 goto out; 2134 } 2135 2136 shmem_falloc.waitq = NULL; 2137 shmem_falloc.start = start; 2138 shmem_falloc.next = start; 2139 shmem_falloc.nr_falloced = 0; 2140 shmem_falloc.nr_unswapped = 0; 2141 spin_lock(&inode->i_lock); 2142 inode->i_private = &shmem_falloc; 2143 spin_unlock(&inode->i_lock); 2144 2145 for (index = start; index < end; index++) { 2146 struct page *page; 2147 2148 /* 2149 * Good, the fallocate(2) manpage permits EINTR: we may have 2150 * been interrupted because we are using up too much memory. 2151 */ 2152 if (signal_pending(current)) 2153 error = -EINTR; 2154 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2155 error = -ENOMEM; 2156 else 2157 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2158 NULL); 2159 if (error) { 2160 /* Remove the !PageUptodate pages we added */ 2161 shmem_undo_range(inode, 2162 (loff_t)start << PAGE_CACHE_SHIFT, 2163 (loff_t)index << PAGE_CACHE_SHIFT, true); 2164 goto undone; 2165 } 2166 2167 /* 2168 * Inform shmem_writepage() how far we have reached. 2169 * No need for lock or barrier: we have the page lock. 2170 */ 2171 shmem_falloc.next++; 2172 if (!PageUptodate(page)) 2173 shmem_falloc.nr_falloced++; 2174 2175 /* 2176 * If !PageUptodate, leave it that way so that freeable pages 2177 * can be recognized if we need to rollback on error later. 2178 * But set_page_dirty so that memory pressure will swap rather 2179 * than free the pages we are allocating (and SGP_CACHE pages 2180 * might still be clean: we now need to mark those dirty too). 2181 */ 2182 set_page_dirty(page); 2183 unlock_page(page); 2184 page_cache_release(page); 2185 cond_resched(); 2186 } 2187 2188 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2189 i_size_write(inode, offset + len); 2190 inode->i_ctime = CURRENT_TIME; 2191 undone: 2192 spin_lock(&inode->i_lock); 2193 inode->i_private = NULL; 2194 spin_unlock(&inode->i_lock); 2195 out: 2196 mutex_unlock(&inode->i_mutex); 2197 return error; 2198 } 2199 2200 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2201 { 2202 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2203 2204 buf->f_type = TMPFS_MAGIC; 2205 buf->f_bsize = PAGE_CACHE_SIZE; 2206 buf->f_namelen = NAME_MAX; 2207 if (sbinfo->max_blocks) { 2208 buf->f_blocks = sbinfo->max_blocks; 2209 buf->f_bavail = 2210 buf->f_bfree = sbinfo->max_blocks - 2211 percpu_counter_sum(&sbinfo->used_blocks); 2212 } 2213 if (sbinfo->max_inodes) { 2214 buf->f_files = sbinfo->max_inodes; 2215 buf->f_ffree = sbinfo->free_inodes; 2216 } 2217 /* else leave those fields 0 like simple_statfs */ 2218 return 0; 2219 } 2220 2221 /* 2222 * File creation. Allocate an inode, and we're done.. 2223 */ 2224 static int 2225 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2226 { 2227 struct inode *inode; 2228 int error = -ENOSPC; 2229 2230 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2231 if (inode) { 2232 error = simple_acl_create(dir, inode); 2233 if (error) 2234 goto out_iput; 2235 error = security_inode_init_security(inode, dir, 2236 &dentry->d_name, 2237 shmem_initxattrs, NULL); 2238 if (error && error != -EOPNOTSUPP) 2239 goto out_iput; 2240 2241 error = 0; 2242 dir->i_size += BOGO_DIRENT_SIZE; 2243 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2244 d_instantiate(dentry, inode); 2245 dget(dentry); /* Extra count - pin the dentry in core */ 2246 } 2247 return error; 2248 out_iput: 2249 iput(inode); 2250 return error; 2251 } 2252 2253 static int 2254 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2255 { 2256 struct inode *inode; 2257 int error = -ENOSPC; 2258 2259 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2260 if (inode) { 2261 error = security_inode_init_security(inode, dir, 2262 NULL, 2263 shmem_initxattrs, NULL); 2264 if (error && error != -EOPNOTSUPP) 2265 goto out_iput; 2266 error = simple_acl_create(dir, inode); 2267 if (error) 2268 goto out_iput; 2269 d_tmpfile(dentry, inode); 2270 } 2271 return error; 2272 out_iput: 2273 iput(inode); 2274 return error; 2275 } 2276 2277 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2278 { 2279 int error; 2280 2281 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2282 return error; 2283 inc_nlink(dir); 2284 return 0; 2285 } 2286 2287 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2288 bool excl) 2289 { 2290 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2291 } 2292 2293 /* 2294 * Link a file.. 2295 */ 2296 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2297 { 2298 struct inode *inode = d_inode(old_dentry); 2299 int ret; 2300 2301 /* 2302 * No ordinary (disk based) filesystem counts links as inodes; 2303 * but each new link needs a new dentry, pinning lowmem, and 2304 * tmpfs dentries cannot be pruned until they are unlinked. 2305 */ 2306 ret = shmem_reserve_inode(inode->i_sb); 2307 if (ret) 2308 goto out; 2309 2310 dir->i_size += BOGO_DIRENT_SIZE; 2311 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2312 inc_nlink(inode); 2313 ihold(inode); /* New dentry reference */ 2314 dget(dentry); /* Extra pinning count for the created dentry */ 2315 d_instantiate(dentry, inode); 2316 out: 2317 return ret; 2318 } 2319 2320 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2321 { 2322 struct inode *inode = d_inode(dentry); 2323 2324 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2325 shmem_free_inode(inode->i_sb); 2326 2327 dir->i_size -= BOGO_DIRENT_SIZE; 2328 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2329 drop_nlink(inode); 2330 dput(dentry); /* Undo the count from "create" - this does all the work */ 2331 return 0; 2332 } 2333 2334 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2335 { 2336 if (!simple_empty(dentry)) 2337 return -ENOTEMPTY; 2338 2339 drop_nlink(d_inode(dentry)); 2340 drop_nlink(dir); 2341 return shmem_unlink(dir, dentry); 2342 } 2343 2344 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2345 { 2346 bool old_is_dir = d_is_dir(old_dentry); 2347 bool new_is_dir = d_is_dir(new_dentry); 2348 2349 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2350 if (old_is_dir) { 2351 drop_nlink(old_dir); 2352 inc_nlink(new_dir); 2353 } else { 2354 drop_nlink(new_dir); 2355 inc_nlink(old_dir); 2356 } 2357 } 2358 old_dir->i_ctime = old_dir->i_mtime = 2359 new_dir->i_ctime = new_dir->i_mtime = 2360 d_inode(old_dentry)->i_ctime = 2361 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2362 2363 return 0; 2364 } 2365 2366 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2367 { 2368 struct dentry *whiteout; 2369 int error; 2370 2371 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2372 if (!whiteout) 2373 return -ENOMEM; 2374 2375 error = shmem_mknod(old_dir, whiteout, 2376 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2377 dput(whiteout); 2378 if (error) 2379 return error; 2380 2381 /* 2382 * Cheat and hash the whiteout while the old dentry is still in 2383 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2384 * 2385 * d_lookup() will consistently find one of them at this point, 2386 * not sure which one, but that isn't even important. 2387 */ 2388 d_rehash(whiteout); 2389 return 0; 2390 } 2391 2392 /* 2393 * The VFS layer already does all the dentry stuff for rename, 2394 * we just have to decrement the usage count for the target if 2395 * it exists so that the VFS layer correctly free's it when it 2396 * gets overwritten. 2397 */ 2398 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2399 { 2400 struct inode *inode = d_inode(old_dentry); 2401 int they_are_dirs = S_ISDIR(inode->i_mode); 2402 2403 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2404 return -EINVAL; 2405 2406 if (flags & RENAME_EXCHANGE) 2407 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2408 2409 if (!simple_empty(new_dentry)) 2410 return -ENOTEMPTY; 2411 2412 if (flags & RENAME_WHITEOUT) { 2413 int error; 2414 2415 error = shmem_whiteout(old_dir, old_dentry); 2416 if (error) 2417 return error; 2418 } 2419 2420 if (d_really_is_positive(new_dentry)) { 2421 (void) shmem_unlink(new_dir, new_dentry); 2422 if (they_are_dirs) { 2423 drop_nlink(d_inode(new_dentry)); 2424 drop_nlink(old_dir); 2425 } 2426 } else if (they_are_dirs) { 2427 drop_nlink(old_dir); 2428 inc_nlink(new_dir); 2429 } 2430 2431 old_dir->i_size -= BOGO_DIRENT_SIZE; 2432 new_dir->i_size += BOGO_DIRENT_SIZE; 2433 old_dir->i_ctime = old_dir->i_mtime = 2434 new_dir->i_ctime = new_dir->i_mtime = 2435 inode->i_ctime = CURRENT_TIME; 2436 return 0; 2437 } 2438 2439 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2440 { 2441 int error; 2442 int len; 2443 struct inode *inode; 2444 struct page *page; 2445 char *kaddr; 2446 struct shmem_inode_info *info; 2447 2448 len = strlen(symname) + 1; 2449 if (len > PAGE_CACHE_SIZE) 2450 return -ENAMETOOLONG; 2451 2452 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2453 if (!inode) 2454 return -ENOSPC; 2455 2456 error = security_inode_init_security(inode, dir, &dentry->d_name, 2457 shmem_initxattrs, NULL); 2458 if (error) { 2459 if (error != -EOPNOTSUPP) { 2460 iput(inode); 2461 return error; 2462 } 2463 error = 0; 2464 } 2465 2466 info = SHMEM_I(inode); 2467 inode->i_size = len-1; 2468 if (len <= SHORT_SYMLINK_LEN) { 2469 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2470 if (!info->symlink) { 2471 iput(inode); 2472 return -ENOMEM; 2473 } 2474 inode->i_op = &shmem_short_symlink_operations; 2475 inode->i_link = info->symlink; 2476 } else { 2477 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2478 if (error) { 2479 iput(inode); 2480 return error; 2481 } 2482 inode->i_mapping->a_ops = &shmem_aops; 2483 inode->i_op = &shmem_symlink_inode_operations; 2484 kaddr = kmap_atomic(page); 2485 memcpy(kaddr, symname, len); 2486 kunmap_atomic(kaddr); 2487 SetPageUptodate(page); 2488 set_page_dirty(page); 2489 unlock_page(page); 2490 page_cache_release(page); 2491 } 2492 dir->i_size += BOGO_DIRENT_SIZE; 2493 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2494 d_instantiate(dentry, inode); 2495 dget(dentry); 2496 return 0; 2497 } 2498 2499 static const char *shmem_follow_link(struct dentry *dentry, void **cookie) 2500 { 2501 struct page *page = NULL; 2502 int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL); 2503 if (error) 2504 return ERR_PTR(error); 2505 unlock_page(page); 2506 *cookie = page; 2507 return kmap(page); 2508 } 2509 2510 static void shmem_put_link(struct inode *unused, void *cookie) 2511 { 2512 struct page *page = cookie; 2513 kunmap(page); 2514 mark_page_accessed(page); 2515 page_cache_release(page); 2516 } 2517 2518 #ifdef CONFIG_TMPFS_XATTR 2519 /* 2520 * Superblocks without xattr inode operations may get some security.* xattr 2521 * support from the LSM "for free". As soon as we have any other xattrs 2522 * like ACLs, we also need to implement the security.* handlers at 2523 * filesystem level, though. 2524 */ 2525 2526 /* 2527 * Callback for security_inode_init_security() for acquiring xattrs. 2528 */ 2529 static int shmem_initxattrs(struct inode *inode, 2530 const struct xattr *xattr_array, 2531 void *fs_info) 2532 { 2533 struct shmem_inode_info *info = SHMEM_I(inode); 2534 const struct xattr *xattr; 2535 struct simple_xattr *new_xattr; 2536 size_t len; 2537 2538 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2539 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2540 if (!new_xattr) 2541 return -ENOMEM; 2542 2543 len = strlen(xattr->name) + 1; 2544 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2545 GFP_KERNEL); 2546 if (!new_xattr->name) { 2547 kfree(new_xattr); 2548 return -ENOMEM; 2549 } 2550 2551 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2552 XATTR_SECURITY_PREFIX_LEN); 2553 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2554 xattr->name, len); 2555 2556 simple_xattr_list_add(&info->xattrs, new_xattr); 2557 } 2558 2559 return 0; 2560 } 2561 2562 static const struct xattr_handler *shmem_xattr_handlers[] = { 2563 #ifdef CONFIG_TMPFS_POSIX_ACL 2564 &posix_acl_access_xattr_handler, 2565 &posix_acl_default_xattr_handler, 2566 #endif 2567 NULL 2568 }; 2569 2570 static int shmem_xattr_validate(const char *name) 2571 { 2572 struct { const char *prefix; size_t len; } arr[] = { 2573 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2574 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2575 }; 2576 int i; 2577 2578 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2579 size_t preflen = arr[i].len; 2580 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2581 if (!name[preflen]) 2582 return -EINVAL; 2583 return 0; 2584 } 2585 } 2586 return -EOPNOTSUPP; 2587 } 2588 2589 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2590 void *buffer, size_t size) 2591 { 2592 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2593 int err; 2594 2595 /* 2596 * If this is a request for a synthetic attribute in the system.* 2597 * namespace use the generic infrastructure to resolve a handler 2598 * for it via sb->s_xattr. 2599 */ 2600 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2601 return generic_getxattr(dentry, name, buffer, size); 2602 2603 err = shmem_xattr_validate(name); 2604 if (err) 2605 return err; 2606 2607 return simple_xattr_get(&info->xattrs, name, buffer, size); 2608 } 2609 2610 static int shmem_setxattr(struct dentry *dentry, const char *name, 2611 const void *value, size_t size, int flags) 2612 { 2613 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2614 int err; 2615 2616 /* 2617 * If this is a request for a synthetic attribute in the system.* 2618 * namespace use the generic infrastructure to resolve a handler 2619 * for it via sb->s_xattr. 2620 */ 2621 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2622 return generic_setxattr(dentry, name, value, size, flags); 2623 2624 err = shmem_xattr_validate(name); 2625 if (err) 2626 return err; 2627 2628 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2629 } 2630 2631 static int shmem_removexattr(struct dentry *dentry, const char *name) 2632 { 2633 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2634 int err; 2635 2636 /* 2637 * If this is a request for a synthetic attribute in the system.* 2638 * namespace use the generic infrastructure to resolve a handler 2639 * for it via sb->s_xattr. 2640 */ 2641 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2642 return generic_removexattr(dentry, name); 2643 2644 err = shmem_xattr_validate(name); 2645 if (err) 2646 return err; 2647 2648 return simple_xattr_remove(&info->xattrs, name); 2649 } 2650 2651 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2652 { 2653 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2654 return simple_xattr_list(&info->xattrs, buffer, size); 2655 } 2656 #endif /* CONFIG_TMPFS_XATTR */ 2657 2658 static const struct inode_operations shmem_short_symlink_operations = { 2659 .readlink = generic_readlink, 2660 .follow_link = simple_follow_link, 2661 #ifdef CONFIG_TMPFS_XATTR 2662 .setxattr = shmem_setxattr, 2663 .getxattr = shmem_getxattr, 2664 .listxattr = shmem_listxattr, 2665 .removexattr = shmem_removexattr, 2666 #endif 2667 }; 2668 2669 static const struct inode_operations shmem_symlink_inode_operations = { 2670 .readlink = generic_readlink, 2671 .follow_link = shmem_follow_link, 2672 .put_link = shmem_put_link, 2673 #ifdef CONFIG_TMPFS_XATTR 2674 .setxattr = shmem_setxattr, 2675 .getxattr = shmem_getxattr, 2676 .listxattr = shmem_listxattr, 2677 .removexattr = shmem_removexattr, 2678 #endif 2679 }; 2680 2681 static struct dentry *shmem_get_parent(struct dentry *child) 2682 { 2683 return ERR_PTR(-ESTALE); 2684 } 2685 2686 static int shmem_match(struct inode *ino, void *vfh) 2687 { 2688 __u32 *fh = vfh; 2689 __u64 inum = fh[2]; 2690 inum = (inum << 32) | fh[1]; 2691 return ino->i_ino == inum && fh[0] == ino->i_generation; 2692 } 2693 2694 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2695 struct fid *fid, int fh_len, int fh_type) 2696 { 2697 struct inode *inode; 2698 struct dentry *dentry = NULL; 2699 u64 inum; 2700 2701 if (fh_len < 3) 2702 return NULL; 2703 2704 inum = fid->raw[2]; 2705 inum = (inum << 32) | fid->raw[1]; 2706 2707 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2708 shmem_match, fid->raw); 2709 if (inode) { 2710 dentry = d_find_alias(inode); 2711 iput(inode); 2712 } 2713 2714 return dentry; 2715 } 2716 2717 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2718 struct inode *parent) 2719 { 2720 if (*len < 3) { 2721 *len = 3; 2722 return FILEID_INVALID; 2723 } 2724 2725 if (inode_unhashed(inode)) { 2726 /* Unfortunately insert_inode_hash is not idempotent, 2727 * so as we hash inodes here rather than at creation 2728 * time, we need a lock to ensure we only try 2729 * to do it once 2730 */ 2731 static DEFINE_SPINLOCK(lock); 2732 spin_lock(&lock); 2733 if (inode_unhashed(inode)) 2734 __insert_inode_hash(inode, 2735 inode->i_ino + inode->i_generation); 2736 spin_unlock(&lock); 2737 } 2738 2739 fh[0] = inode->i_generation; 2740 fh[1] = inode->i_ino; 2741 fh[2] = ((__u64)inode->i_ino) >> 32; 2742 2743 *len = 3; 2744 return 1; 2745 } 2746 2747 static const struct export_operations shmem_export_ops = { 2748 .get_parent = shmem_get_parent, 2749 .encode_fh = shmem_encode_fh, 2750 .fh_to_dentry = shmem_fh_to_dentry, 2751 }; 2752 2753 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2754 bool remount) 2755 { 2756 char *this_char, *value, *rest; 2757 struct mempolicy *mpol = NULL; 2758 uid_t uid; 2759 gid_t gid; 2760 2761 while (options != NULL) { 2762 this_char = options; 2763 for (;;) { 2764 /* 2765 * NUL-terminate this option: unfortunately, 2766 * mount options form a comma-separated list, 2767 * but mpol's nodelist may also contain commas. 2768 */ 2769 options = strchr(options, ','); 2770 if (options == NULL) 2771 break; 2772 options++; 2773 if (!isdigit(*options)) { 2774 options[-1] = '\0'; 2775 break; 2776 } 2777 } 2778 if (!*this_char) 2779 continue; 2780 if ((value = strchr(this_char,'=')) != NULL) { 2781 *value++ = 0; 2782 } else { 2783 printk(KERN_ERR 2784 "tmpfs: No value for mount option '%s'\n", 2785 this_char); 2786 goto error; 2787 } 2788 2789 if (!strcmp(this_char,"size")) { 2790 unsigned long long size; 2791 size = memparse(value,&rest); 2792 if (*rest == '%') { 2793 size <<= PAGE_SHIFT; 2794 size *= totalram_pages; 2795 do_div(size, 100); 2796 rest++; 2797 } 2798 if (*rest) 2799 goto bad_val; 2800 sbinfo->max_blocks = 2801 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2802 } else if (!strcmp(this_char,"nr_blocks")) { 2803 sbinfo->max_blocks = memparse(value, &rest); 2804 if (*rest) 2805 goto bad_val; 2806 } else if (!strcmp(this_char,"nr_inodes")) { 2807 sbinfo->max_inodes = memparse(value, &rest); 2808 if (*rest) 2809 goto bad_val; 2810 } else if (!strcmp(this_char,"mode")) { 2811 if (remount) 2812 continue; 2813 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2814 if (*rest) 2815 goto bad_val; 2816 } else if (!strcmp(this_char,"uid")) { 2817 if (remount) 2818 continue; 2819 uid = simple_strtoul(value, &rest, 0); 2820 if (*rest) 2821 goto bad_val; 2822 sbinfo->uid = make_kuid(current_user_ns(), uid); 2823 if (!uid_valid(sbinfo->uid)) 2824 goto bad_val; 2825 } else if (!strcmp(this_char,"gid")) { 2826 if (remount) 2827 continue; 2828 gid = simple_strtoul(value, &rest, 0); 2829 if (*rest) 2830 goto bad_val; 2831 sbinfo->gid = make_kgid(current_user_ns(), gid); 2832 if (!gid_valid(sbinfo->gid)) 2833 goto bad_val; 2834 } else if (!strcmp(this_char,"mpol")) { 2835 mpol_put(mpol); 2836 mpol = NULL; 2837 if (mpol_parse_str(value, &mpol)) 2838 goto bad_val; 2839 } else { 2840 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2841 this_char); 2842 goto error; 2843 } 2844 } 2845 sbinfo->mpol = mpol; 2846 return 0; 2847 2848 bad_val: 2849 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2850 value, this_char); 2851 error: 2852 mpol_put(mpol); 2853 return 1; 2854 2855 } 2856 2857 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2858 { 2859 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2860 struct shmem_sb_info config = *sbinfo; 2861 unsigned long inodes; 2862 int error = -EINVAL; 2863 2864 config.mpol = NULL; 2865 if (shmem_parse_options(data, &config, true)) 2866 return error; 2867 2868 spin_lock(&sbinfo->stat_lock); 2869 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2870 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2871 goto out; 2872 if (config.max_inodes < inodes) 2873 goto out; 2874 /* 2875 * Those tests disallow limited->unlimited while any are in use; 2876 * but we must separately disallow unlimited->limited, because 2877 * in that case we have no record of how much is already in use. 2878 */ 2879 if (config.max_blocks && !sbinfo->max_blocks) 2880 goto out; 2881 if (config.max_inodes && !sbinfo->max_inodes) 2882 goto out; 2883 2884 error = 0; 2885 sbinfo->max_blocks = config.max_blocks; 2886 sbinfo->max_inodes = config.max_inodes; 2887 sbinfo->free_inodes = config.max_inodes - inodes; 2888 2889 /* 2890 * Preserve previous mempolicy unless mpol remount option was specified. 2891 */ 2892 if (config.mpol) { 2893 mpol_put(sbinfo->mpol); 2894 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2895 } 2896 out: 2897 spin_unlock(&sbinfo->stat_lock); 2898 return error; 2899 } 2900 2901 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2902 { 2903 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2904 2905 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2906 seq_printf(seq, ",size=%luk", 2907 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2908 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2909 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2910 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2911 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2912 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2913 seq_printf(seq, ",uid=%u", 2914 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2915 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2916 seq_printf(seq, ",gid=%u", 2917 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2918 shmem_show_mpol(seq, sbinfo->mpol); 2919 return 0; 2920 } 2921 2922 #define MFD_NAME_PREFIX "memfd:" 2923 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2924 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2925 2926 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2927 2928 SYSCALL_DEFINE2(memfd_create, 2929 const char __user *, uname, 2930 unsigned int, flags) 2931 { 2932 struct shmem_inode_info *info; 2933 struct file *file; 2934 int fd, error; 2935 char *name; 2936 long len; 2937 2938 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2939 return -EINVAL; 2940 2941 /* length includes terminating zero */ 2942 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2943 if (len <= 0) 2944 return -EFAULT; 2945 if (len > MFD_NAME_MAX_LEN + 1) 2946 return -EINVAL; 2947 2948 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2949 if (!name) 2950 return -ENOMEM; 2951 2952 strcpy(name, MFD_NAME_PREFIX); 2953 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2954 error = -EFAULT; 2955 goto err_name; 2956 } 2957 2958 /* terminating-zero may have changed after strnlen_user() returned */ 2959 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2960 error = -EFAULT; 2961 goto err_name; 2962 } 2963 2964 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 2965 if (fd < 0) { 2966 error = fd; 2967 goto err_name; 2968 } 2969 2970 file = shmem_file_setup(name, 0, VM_NORESERVE); 2971 if (IS_ERR(file)) { 2972 error = PTR_ERR(file); 2973 goto err_fd; 2974 } 2975 info = SHMEM_I(file_inode(file)); 2976 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 2977 file->f_flags |= O_RDWR | O_LARGEFILE; 2978 if (flags & MFD_ALLOW_SEALING) 2979 info->seals &= ~F_SEAL_SEAL; 2980 2981 fd_install(fd, file); 2982 kfree(name); 2983 return fd; 2984 2985 err_fd: 2986 put_unused_fd(fd); 2987 err_name: 2988 kfree(name); 2989 return error; 2990 } 2991 2992 #endif /* CONFIG_TMPFS */ 2993 2994 static void shmem_put_super(struct super_block *sb) 2995 { 2996 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2997 2998 percpu_counter_destroy(&sbinfo->used_blocks); 2999 mpol_put(sbinfo->mpol); 3000 kfree(sbinfo); 3001 sb->s_fs_info = NULL; 3002 } 3003 3004 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3005 { 3006 struct inode *inode; 3007 struct shmem_sb_info *sbinfo; 3008 int err = -ENOMEM; 3009 3010 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3011 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3012 L1_CACHE_BYTES), GFP_KERNEL); 3013 if (!sbinfo) 3014 return -ENOMEM; 3015 3016 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3017 sbinfo->uid = current_fsuid(); 3018 sbinfo->gid = current_fsgid(); 3019 sb->s_fs_info = sbinfo; 3020 3021 #ifdef CONFIG_TMPFS 3022 /* 3023 * Per default we only allow half of the physical ram per 3024 * tmpfs instance, limiting inodes to one per page of lowmem; 3025 * but the internal instance is left unlimited. 3026 */ 3027 if (!(sb->s_flags & MS_KERNMOUNT)) { 3028 sbinfo->max_blocks = shmem_default_max_blocks(); 3029 sbinfo->max_inodes = shmem_default_max_inodes(); 3030 if (shmem_parse_options(data, sbinfo, false)) { 3031 err = -EINVAL; 3032 goto failed; 3033 } 3034 } else { 3035 sb->s_flags |= MS_NOUSER; 3036 } 3037 sb->s_export_op = &shmem_export_ops; 3038 sb->s_flags |= MS_NOSEC; 3039 #else 3040 sb->s_flags |= MS_NOUSER; 3041 #endif 3042 3043 spin_lock_init(&sbinfo->stat_lock); 3044 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3045 goto failed; 3046 sbinfo->free_inodes = sbinfo->max_inodes; 3047 3048 sb->s_maxbytes = MAX_LFS_FILESIZE; 3049 sb->s_blocksize = PAGE_CACHE_SIZE; 3050 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 3051 sb->s_magic = TMPFS_MAGIC; 3052 sb->s_op = &shmem_ops; 3053 sb->s_time_gran = 1; 3054 #ifdef CONFIG_TMPFS_XATTR 3055 sb->s_xattr = shmem_xattr_handlers; 3056 #endif 3057 #ifdef CONFIG_TMPFS_POSIX_ACL 3058 sb->s_flags |= MS_POSIXACL; 3059 #endif 3060 3061 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3062 if (!inode) 3063 goto failed; 3064 inode->i_uid = sbinfo->uid; 3065 inode->i_gid = sbinfo->gid; 3066 sb->s_root = d_make_root(inode); 3067 if (!sb->s_root) 3068 goto failed; 3069 return 0; 3070 3071 failed: 3072 shmem_put_super(sb); 3073 return err; 3074 } 3075 3076 static struct kmem_cache *shmem_inode_cachep; 3077 3078 static struct inode *shmem_alloc_inode(struct super_block *sb) 3079 { 3080 struct shmem_inode_info *info; 3081 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3082 if (!info) 3083 return NULL; 3084 return &info->vfs_inode; 3085 } 3086 3087 static void shmem_destroy_callback(struct rcu_head *head) 3088 { 3089 struct inode *inode = container_of(head, struct inode, i_rcu); 3090 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3091 } 3092 3093 static void shmem_destroy_inode(struct inode *inode) 3094 { 3095 if (S_ISREG(inode->i_mode)) 3096 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3097 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3098 } 3099 3100 static void shmem_init_inode(void *foo) 3101 { 3102 struct shmem_inode_info *info = foo; 3103 inode_init_once(&info->vfs_inode); 3104 } 3105 3106 static int shmem_init_inodecache(void) 3107 { 3108 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3109 sizeof(struct shmem_inode_info), 3110 0, SLAB_PANIC, shmem_init_inode); 3111 return 0; 3112 } 3113 3114 static void shmem_destroy_inodecache(void) 3115 { 3116 kmem_cache_destroy(shmem_inode_cachep); 3117 } 3118 3119 static const struct address_space_operations shmem_aops = { 3120 .writepage = shmem_writepage, 3121 .set_page_dirty = __set_page_dirty_no_writeback, 3122 #ifdef CONFIG_TMPFS 3123 .write_begin = shmem_write_begin, 3124 .write_end = shmem_write_end, 3125 #endif 3126 #ifdef CONFIG_MIGRATION 3127 .migratepage = migrate_page, 3128 #endif 3129 .error_remove_page = generic_error_remove_page, 3130 }; 3131 3132 static const struct file_operations shmem_file_operations = { 3133 .mmap = shmem_mmap, 3134 #ifdef CONFIG_TMPFS 3135 .llseek = shmem_file_llseek, 3136 .read_iter = shmem_file_read_iter, 3137 .write_iter = generic_file_write_iter, 3138 .fsync = noop_fsync, 3139 .splice_read = shmem_file_splice_read, 3140 .splice_write = iter_file_splice_write, 3141 .fallocate = shmem_fallocate, 3142 #endif 3143 }; 3144 3145 static const struct inode_operations shmem_inode_operations = { 3146 .getattr = shmem_getattr, 3147 .setattr = shmem_setattr, 3148 #ifdef CONFIG_TMPFS_XATTR 3149 .setxattr = shmem_setxattr, 3150 .getxattr = shmem_getxattr, 3151 .listxattr = shmem_listxattr, 3152 .removexattr = shmem_removexattr, 3153 .set_acl = simple_set_acl, 3154 #endif 3155 }; 3156 3157 static const struct inode_operations shmem_dir_inode_operations = { 3158 #ifdef CONFIG_TMPFS 3159 .create = shmem_create, 3160 .lookup = simple_lookup, 3161 .link = shmem_link, 3162 .unlink = shmem_unlink, 3163 .symlink = shmem_symlink, 3164 .mkdir = shmem_mkdir, 3165 .rmdir = shmem_rmdir, 3166 .mknod = shmem_mknod, 3167 .rename2 = shmem_rename2, 3168 .tmpfile = shmem_tmpfile, 3169 #endif 3170 #ifdef CONFIG_TMPFS_XATTR 3171 .setxattr = shmem_setxattr, 3172 .getxattr = shmem_getxattr, 3173 .listxattr = shmem_listxattr, 3174 .removexattr = shmem_removexattr, 3175 #endif 3176 #ifdef CONFIG_TMPFS_POSIX_ACL 3177 .setattr = shmem_setattr, 3178 .set_acl = simple_set_acl, 3179 #endif 3180 }; 3181 3182 static const struct inode_operations shmem_special_inode_operations = { 3183 #ifdef CONFIG_TMPFS_XATTR 3184 .setxattr = shmem_setxattr, 3185 .getxattr = shmem_getxattr, 3186 .listxattr = shmem_listxattr, 3187 .removexattr = shmem_removexattr, 3188 #endif 3189 #ifdef CONFIG_TMPFS_POSIX_ACL 3190 .setattr = shmem_setattr, 3191 .set_acl = simple_set_acl, 3192 #endif 3193 }; 3194 3195 static const struct super_operations shmem_ops = { 3196 .alloc_inode = shmem_alloc_inode, 3197 .destroy_inode = shmem_destroy_inode, 3198 #ifdef CONFIG_TMPFS 3199 .statfs = shmem_statfs, 3200 .remount_fs = shmem_remount_fs, 3201 .show_options = shmem_show_options, 3202 #endif 3203 .evict_inode = shmem_evict_inode, 3204 .drop_inode = generic_delete_inode, 3205 .put_super = shmem_put_super, 3206 }; 3207 3208 static const struct vm_operations_struct shmem_vm_ops = { 3209 .fault = shmem_fault, 3210 .map_pages = filemap_map_pages, 3211 #ifdef CONFIG_NUMA 3212 .set_policy = shmem_set_policy, 3213 .get_policy = shmem_get_policy, 3214 #endif 3215 }; 3216 3217 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3218 int flags, const char *dev_name, void *data) 3219 { 3220 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3221 } 3222 3223 static struct file_system_type shmem_fs_type = { 3224 .owner = THIS_MODULE, 3225 .name = "tmpfs", 3226 .mount = shmem_mount, 3227 .kill_sb = kill_litter_super, 3228 .fs_flags = FS_USERNS_MOUNT, 3229 }; 3230 3231 int __init shmem_init(void) 3232 { 3233 int error; 3234 3235 /* If rootfs called this, don't re-init */ 3236 if (shmem_inode_cachep) 3237 return 0; 3238 3239 error = shmem_init_inodecache(); 3240 if (error) 3241 goto out3; 3242 3243 error = register_filesystem(&shmem_fs_type); 3244 if (error) { 3245 printk(KERN_ERR "Could not register tmpfs\n"); 3246 goto out2; 3247 } 3248 3249 shm_mnt = kern_mount(&shmem_fs_type); 3250 if (IS_ERR(shm_mnt)) { 3251 error = PTR_ERR(shm_mnt); 3252 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 3253 goto out1; 3254 } 3255 return 0; 3256 3257 out1: 3258 unregister_filesystem(&shmem_fs_type); 3259 out2: 3260 shmem_destroy_inodecache(); 3261 out3: 3262 shm_mnt = ERR_PTR(error); 3263 return error; 3264 } 3265 3266 #else /* !CONFIG_SHMEM */ 3267 3268 /* 3269 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3270 * 3271 * This is intended for small system where the benefits of the full 3272 * shmem code (swap-backed and resource-limited) are outweighed by 3273 * their complexity. On systems without swap this code should be 3274 * effectively equivalent, but much lighter weight. 3275 */ 3276 3277 static struct file_system_type shmem_fs_type = { 3278 .name = "tmpfs", 3279 .mount = ramfs_mount, 3280 .kill_sb = kill_litter_super, 3281 .fs_flags = FS_USERNS_MOUNT, 3282 }; 3283 3284 int __init shmem_init(void) 3285 { 3286 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3287 3288 shm_mnt = kern_mount(&shmem_fs_type); 3289 BUG_ON(IS_ERR(shm_mnt)); 3290 3291 return 0; 3292 } 3293 3294 int shmem_unuse(swp_entry_t swap, struct page *page) 3295 { 3296 return 0; 3297 } 3298 3299 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3300 { 3301 return 0; 3302 } 3303 3304 void shmem_unlock_mapping(struct address_space *mapping) 3305 { 3306 } 3307 3308 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3309 { 3310 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3311 } 3312 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3313 3314 #define shmem_vm_ops generic_file_vm_ops 3315 #define shmem_file_operations ramfs_file_operations 3316 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3317 #define shmem_acct_size(flags, size) 0 3318 #define shmem_unacct_size(flags, size) do {} while (0) 3319 3320 #endif /* CONFIG_SHMEM */ 3321 3322 /* common code */ 3323 3324 static struct dentry_operations anon_ops = { 3325 .d_dname = simple_dname 3326 }; 3327 3328 static struct file *__shmem_file_setup(const char *name, loff_t size, 3329 unsigned long flags, unsigned int i_flags) 3330 { 3331 struct file *res; 3332 struct inode *inode; 3333 struct path path; 3334 struct super_block *sb; 3335 struct qstr this; 3336 3337 if (IS_ERR(shm_mnt)) 3338 return ERR_CAST(shm_mnt); 3339 3340 if (size < 0 || size > MAX_LFS_FILESIZE) 3341 return ERR_PTR(-EINVAL); 3342 3343 if (shmem_acct_size(flags, size)) 3344 return ERR_PTR(-ENOMEM); 3345 3346 res = ERR_PTR(-ENOMEM); 3347 this.name = name; 3348 this.len = strlen(name); 3349 this.hash = 0; /* will go */ 3350 sb = shm_mnt->mnt_sb; 3351 path.mnt = mntget(shm_mnt); 3352 path.dentry = d_alloc_pseudo(sb, &this); 3353 if (!path.dentry) 3354 goto put_memory; 3355 d_set_d_op(path.dentry, &anon_ops); 3356 3357 res = ERR_PTR(-ENOSPC); 3358 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3359 if (!inode) 3360 goto put_memory; 3361 3362 inode->i_flags |= i_flags; 3363 d_instantiate(path.dentry, inode); 3364 inode->i_size = size; 3365 clear_nlink(inode); /* It is unlinked */ 3366 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3367 if (IS_ERR(res)) 3368 goto put_path; 3369 3370 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3371 &shmem_file_operations); 3372 if (IS_ERR(res)) 3373 goto put_path; 3374 3375 return res; 3376 3377 put_memory: 3378 shmem_unacct_size(flags, size); 3379 put_path: 3380 path_put(&path); 3381 return res; 3382 } 3383 3384 /** 3385 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3386 * kernel internal. There will be NO LSM permission checks against the 3387 * underlying inode. So users of this interface must do LSM checks at a 3388 * higher layer. The users are the big_key and shm implementations. LSM 3389 * checks are provided at the key or shm level rather than the inode. 3390 * @name: name for dentry (to be seen in /proc/<pid>/maps 3391 * @size: size to be set for the file 3392 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3393 */ 3394 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3395 { 3396 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3397 } 3398 3399 /** 3400 * shmem_file_setup - get an unlinked file living in tmpfs 3401 * @name: name for dentry (to be seen in /proc/<pid>/maps 3402 * @size: size to be set for the file 3403 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3404 */ 3405 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3406 { 3407 return __shmem_file_setup(name, size, flags, 0); 3408 } 3409 EXPORT_SYMBOL_GPL(shmem_file_setup); 3410 3411 /** 3412 * shmem_zero_setup - setup a shared anonymous mapping 3413 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3414 */ 3415 int shmem_zero_setup(struct vm_area_struct *vma) 3416 { 3417 struct file *file; 3418 loff_t size = vma->vm_end - vma->vm_start; 3419 3420 /* 3421 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3422 * between XFS directory reading and selinux: since this file is only 3423 * accessible to the user through its mapping, use S_PRIVATE flag to 3424 * bypass file security, in the same way as shmem_kernel_file_setup(). 3425 */ 3426 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3427 if (IS_ERR(file)) 3428 return PTR_ERR(file); 3429 3430 if (vma->vm_file) 3431 fput(vma->vm_file); 3432 vma->vm_file = file; 3433 vma->vm_ops = &shmem_vm_ops; 3434 return 0; 3435 } 3436 3437 /** 3438 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3439 * @mapping: the page's address_space 3440 * @index: the page index 3441 * @gfp: the page allocator flags to use if allocating 3442 * 3443 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3444 * with any new page allocations done using the specified allocation flags. 3445 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3446 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3447 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3448 * 3449 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3450 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3451 */ 3452 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3453 pgoff_t index, gfp_t gfp) 3454 { 3455 #ifdef CONFIG_SHMEM 3456 struct inode *inode = mapping->host; 3457 struct page *page; 3458 int error; 3459 3460 BUG_ON(mapping->a_ops != &shmem_aops); 3461 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3462 if (error) 3463 page = ERR_PTR(error); 3464 else 3465 unlock_page(page); 3466 return page; 3467 #else 3468 /* 3469 * The tiny !SHMEM case uses ramfs without swap 3470 */ 3471 return read_cache_page_gfp(mapping, index, gfp); 3472 #endif 3473 } 3474 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3475