xref: /linux/mm/shmem.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78 
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81 
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84 
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 	pgoff_t start;		/* start of range currently being fallocated */
93 	pgoff_t next;		/* the next page offset to be fallocated */
94 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96 };
97 
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 	SGP_READ,	/* don't exceed i_size, don't allocate page */
101 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124 
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 	struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 			mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 	return (flags & VM_NORESERVE) ?
177 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179 
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 	if (flags & VM_NORESERVE)
183 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193 
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196 
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 	if (sbinfo->max_inodes) {
201 		spin_lock(&sbinfo->stat_lock);
202 		if (!sbinfo->free_inodes) {
203 			spin_unlock(&sbinfo->stat_lock);
204 			return -ENOSPC;
205 		}
206 		sbinfo->free_inodes--;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 	return 0;
210 }
211 
212 static void shmem_free_inode(struct super_block *sb)
213 {
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 	if (sbinfo->max_inodes) {
216 		spin_lock(&sbinfo->stat_lock);
217 		sbinfo->free_inodes++;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 }
221 
222 /**
223  * shmem_recalc_inode - recalculate the block usage of an inode
224  * @inode: inode to recalc
225  *
226  * We have to calculate the free blocks since the mm can drop
227  * undirtied hole pages behind our back.
228  *
229  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231  *
232  * It has to be called with the spinlock held.
233  */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236 	struct shmem_inode_info *info = SHMEM_I(inode);
237 	long freed;
238 
239 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 	if (freed > 0) {
241 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 		if (sbinfo->max_blocks)
243 			percpu_counter_add(&sbinfo->used_blocks, -freed);
244 		info->alloced -= freed;
245 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246 		shmem_unacct_blocks(info->flags, freed);
247 	}
248 }
249 
250 /*
251  * Replace item expected in radix tree by a new item, while holding tree lock.
252  */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254 			pgoff_t index, void *expected, void *replacement)
255 {
256 	void **pslot;
257 	void *item;
258 
259 	VM_BUG_ON(!expected);
260 	VM_BUG_ON(!replacement);
261 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262 	if (!pslot)
263 		return -ENOENT;
264 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265 	if (item != expected)
266 		return -ENOENT;
267 	radix_tree_replace_slot(pslot, replacement);
268 	return 0;
269 }
270 
271 /*
272  * Sometimes, before we decide whether to proceed or to fail, we must check
273  * that an entry was not already brought back from swap by a racing thread.
274  *
275  * Checking page is not enough: by the time a SwapCache page is locked, it
276  * might be reused, and again be SwapCache, using the same swap as before.
277  */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279 			       pgoff_t index, swp_entry_t swap)
280 {
281 	void *item;
282 
283 	rcu_read_lock();
284 	item = radix_tree_lookup(&mapping->page_tree, index);
285 	rcu_read_unlock();
286 	return item == swp_to_radix_entry(swap);
287 }
288 
289 /*
290  * Like add_to_page_cache_locked, but error if expected item has gone.
291  */
292 static int shmem_add_to_page_cache(struct page *page,
293 				   struct address_space *mapping,
294 				   pgoff_t index, void *expected)
295 {
296 	int error;
297 
298 	VM_BUG_ON_PAGE(!PageLocked(page), page);
299 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300 
301 	page_cache_get(page);
302 	page->mapping = mapping;
303 	page->index = index;
304 
305 	spin_lock_irq(&mapping->tree_lock);
306 	if (!expected)
307 		error = radix_tree_insert(&mapping->page_tree, index, page);
308 	else
309 		error = shmem_radix_tree_replace(mapping, index, expected,
310 								 page);
311 	if (!error) {
312 		mapping->nrpages++;
313 		__inc_zone_page_state(page, NR_FILE_PAGES);
314 		__inc_zone_page_state(page, NR_SHMEM);
315 		spin_unlock_irq(&mapping->tree_lock);
316 	} else {
317 		page->mapping = NULL;
318 		spin_unlock_irq(&mapping->tree_lock);
319 		page_cache_release(page);
320 	}
321 	return error;
322 }
323 
324 /*
325  * Like delete_from_page_cache, but substitutes swap for page.
326  */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329 	struct address_space *mapping = page->mapping;
330 	int error;
331 
332 	spin_lock_irq(&mapping->tree_lock);
333 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 	page->mapping = NULL;
335 	mapping->nrpages--;
336 	__dec_zone_page_state(page, NR_FILE_PAGES);
337 	__dec_zone_page_state(page, NR_SHMEM);
338 	spin_unlock_irq(&mapping->tree_lock);
339 	page_cache_release(page);
340 	BUG_ON(error);
341 }
342 
343 /*
344  * Remove swap entry from radix tree, free the swap and its page cache.
345  */
346 static int shmem_free_swap(struct address_space *mapping,
347 			   pgoff_t index, void *radswap)
348 {
349 	void *old;
350 
351 	spin_lock_irq(&mapping->tree_lock);
352 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353 	spin_unlock_irq(&mapping->tree_lock);
354 	if (old != radswap)
355 		return -ENOENT;
356 	free_swap_and_cache(radix_to_swp_entry(radswap));
357 	return 0;
358 }
359 
360 /*
361  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362  */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365 	struct pagevec pvec;
366 	pgoff_t indices[PAGEVEC_SIZE];
367 	pgoff_t index = 0;
368 
369 	pagevec_init(&pvec, 0);
370 	/*
371 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 	 */
373 	while (!mapping_unevictable(mapping)) {
374 		/*
375 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 		 */
378 		pvec.nr = find_get_entries(mapping, index,
379 					   PAGEVEC_SIZE, pvec.pages, indices);
380 		if (!pvec.nr)
381 			break;
382 		index = indices[pvec.nr - 1] + 1;
383 		pagevec_remove_exceptionals(&pvec);
384 		check_move_unevictable_pages(pvec.pages, pvec.nr);
385 		pagevec_release(&pvec);
386 		cond_resched();
387 	}
388 }
389 
390 /*
391  * Remove range of pages and swap entries from radix tree, and free them.
392  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393  */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 								 bool unfalloc)
396 {
397 	struct address_space *mapping = inode->i_mapping;
398 	struct shmem_inode_info *info = SHMEM_I(inode);
399 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403 	struct pagevec pvec;
404 	pgoff_t indices[PAGEVEC_SIZE];
405 	long nr_swaps_freed = 0;
406 	pgoff_t index;
407 	int i;
408 
409 	if (lend == -1)
410 		end = -1;	/* unsigned, so actually very big */
411 
412 	pagevec_init(&pvec, 0);
413 	index = start;
414 	while (index < end) {
415 		pvec.nr = find_get_entries(mapping, index,
416 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 			pvec.pages, indices);
418 		if (!pvec.nr)
419 			break;
420 		for (i = 0; i < pagevec_count(&pvec); i++) {
421 			struct page *page = pvec.pages[i];
422 
423 			index = indices[i];
424 			if (index >= end)
425 				break;
426 
427 			if (radix_tree_exceptional_entry(page)) {
428 				if (unfalloc)
429 					continue;
430 				nr_swaps_freed += !shmem_free_swap(mapping,
431 								index, page);
432 				continue;
433 			}
434 
435 			if (!trylock_page(page))
436 				continue;
437 			if (!unfalloc || !PageUptodate(page)) {
438 				if (page->mapping == mapping) {
439 					VM_BUG_ON_PAGE(PageWriteback(page), page);
440 					truncate_inode_page(mapping, page);
441 				}
442 			}
443 			unlock_page(page);
444 		}
445 		pagevec_remove_exceptionals(&pvec);
446 		pagevec_release(&pvec);
447 		cond_resched();
448 		index++;
449 	}
450 
451 	if (partial_start) {
452 		struct page *page = NULL;
453 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 		if (page) {
455 			unsigned int top = PAGE_CACHE_SIZE;
456 			if (start > end) {
457 				top = partial_end;
458 				partial_end = 0;
459 			}
460 			zero_user_segment(page, partial_start, top);
461 			set_page_dirty(page);
462 			unlock_page(page);
463 			page_cache_release(page);
464 		}
465 	}
466 	if (partial_end) {
467 		struct page *page = NULL;
468 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 		if (page) {
470 			zero_user_segment(page, 0, partial_end);
471 			set_page_dirty(page);
472 			unlock_page(page);
473 			page_cache_release(page);
474 		}
475 	}
476 	if (start >= end)
477 		return;
478 
479 	index = start;
480 	while (index < end) {
481 		cond_resched();
482 
483 		pvec.nr = find_get_entries(mapping, index,
484 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
485 				pvec.pages, indices);
486 		if (!pvec.nr) {
487 			/* If all gone or hole-punch or unfalloc, we're done */
488 			if (index == start || end != -1)
489 				break;
490 			/* But if truncating, restart to make sure all gone */
491 			index = start;
492 			continue;
493 		}
494 		for (i = 0; i < pagevec_count(&pvec); i++) {
495 			struct page *page = pvec.pages[i];
496 
497 			index = indices[i];
498 			if (index >= end)
499 				break;
500 
501 			if (radix_tree_exceptional_entry(page)) {
502 				if (unfalloc)
503 					continue;
504 				if (shmem_free_swap(mapping, index, page)) {
505 					/* Swap was replaced by page: retry */
506 					index--;
507 					break;
508 				}
509 				nr_swaps_freed++;
510 				continue;
511 			}
512 
513 			lock_page(page);
514 			if (!unfalloc || !PageUptodate(page)) {
515 				if (page->mapping == mapping) {
516 					VM_BUG_ON_PAGE(PageWriteback(page), page);
517 					truncate_inode_page(mapping, page);
518 				} else {
519 					/* Page was replaced by swap: retry */
520 					unlock_page(page);
521 					index--;
522 					break;
523 				}
524 			}
525 			unlock_page(page);
526 		}
527 		pagevec_remove_exceptionals(&pvec);
528 		pagevec_release(&pvec);
529 		index++;
530 	}
531 
532 	spin_lock(&info->lock);
533 	info->swapped -= nr_swaps_freed;
534 	shmem_recalc_inode(inode);
535 	spin_unlock(&info->lock);
536 }
537 
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540 	shmem_undo_range(inode, lstart, lend, false);
541 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544 
545 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
546 			 struct kstat *stat)
547 {
548 	struct inode *inode = dentry->d_inode;
549 	struct shmem_inode_info *info = SHMEM_I(inode);
550 
551 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
552 		spin_lock(&info->lock);
553 		shmem_recalc_inode(inode);
554 		spin_unlock(&info->lock);
555 	}
556 	generic_fillattr(inode, stat);
557 	return 0;
558 }
559 
560 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
561 {
562 	struct inode *inode = d_inode(dentry);
563 	struct shmem_inode_info *info = SHMEM_I(inode);
564 	int error;
565 
566 	error = inode_change_ok(inode, attr);
567 	if (error)
568 		return error;
569 
570 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
571 		loff_t oldsize = inode->i_size;
572 		loff_t newsize = attr->ia_size;
573 
574 		/* protected by i_mutex */
575 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
576 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
577 			return -EPERM;
578 
579 		if (newsize != oldsize) {
580 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
581 					oldsize, newsize);
582 			if (error)
583 				return error;
584 			i_size_write(inode, newsize);
585 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
586 		}
587 		if (newsize <= oldsize) {
588 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
589 			if (oldsize > holebegin)
590 				unmap_mapping_range(inode->i_mapping,
591 							holebegin, 0, 1);
592 			if (info->alloced)
593 				shmem_truncate_range(inode,
594 							newsize, (loff_t)-1);
595 			/* unmap again to remove racily COWed private pages */
596 			if (oldsize > holebegin)
597 				unmap_mapping_range(inode->i_mapping,
598 							holebegin, 0, 1);
599 		}
600 	}
601 
602 	setattr_copy(inode, attr);
603 	if (attr->ia_valid & ATTR_MODE)
604 		error = posix_acl_chmod(inode, inode->i_mode);
605 	return error;
606 }
607 
608 static void shmem_evict_inode(struct inode *inode)
609 {
610 	struct shmem_inode_info *info = SHMEM_I(inode);
611 
612 	if (inode->i_mapping->a_ops == &shmem_aops) {
613 		shmem_unacct_size(info->flags, inode->i_size);
614 		inode->i_size = 0;
615 		shmem_truncate_range(inode, 0, (loff_t)-1);
616 		if (!list_empty(&info->swaplist)) {
617 			mutex_lock(&shmem_swaplist_mutex);
618 			list_del_init(&info->swaplist);
619 			mutex_unlock(&shmem_swaplist_mutex);
620 		}
621 	} else
622 		kfree(info->symlink);
623 
624 	simple_xattrs_free(&info->xattrs);
625 	WARN_ON(inode->i_blocks);
626 	shmem_free_inode(inode->i_sb);
627 	clear_inode(inode);
628 }
629 
630 /*
631  * If swap found in inode, free it and move page from swapcache to filecache.
632  */
633 static int shmem_unuse_inode(struct shmem_inode_info *info,
634 			     swp_entry_t swap, struct page **pagep)
635 {
636 	struct address_space *mapping = info->vfs_inode.i_mapping;
637 	void *radswap;
638 	pgoff_t index;
639 	gfp_t gfp;
640 	int error = 0;
641 
642 	radswap = swp_to_radix_entry(swap);
643 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
644 	if (index == -1)
645 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
646 
647 	/*
648 	 * Move _head_ to start search for next from here.
649 	 * But be careful: shmem_evict_inode checks list_empty without taking
650 	 * mutex, and there's an instant in list_move_tail when info->swaplist
651 	 * would appear empty, if it were the only one on shmem_swaplist.
652 	 */
653 	if (shmem_swaplist.next != &info->swaplist)
654 		list_move_tail(&shmem_swaplist, &info->swaplist);
655 
656 	gfp = mapping_gfp_mask(mapping);
657 	if (shmem_should_replace_page(*pagep, gfp)) {
658 		mutex_unlock(&shmem_swaplist_mutex);
659 		error = shmem_replace_page(pagep, gfp, info, index);
660 		mutex_lock(&shmem_swaplist_mutex);
661 		/*
662 		 * We needed to drop mutex to make that restrictive page
663 		 * allocation, but the inode might have been freed while we
664 		 * dropped it: although a racing shmem_evict_inode() cannot
665 		 * complete without emptying the radix_tree, our page lock
666 		 * on this swapcache page is not enough to prevent that -
667 		 * free_swap_and_cache() of our swap entry will only
668 		 * trylock_page(), removing swap from radix_tree whatever.
669 		 *
670 		 * We must not proceed to shmem_add_to_page_cache() if the
671 		 * inode has been freed, but of course we cannot rely on
672 		 * inode or mapping or info to check that.  However, we can
673 		 * safely check if our swap entry is still in use (and here
674 		 * it can't have got reused for another page): if it's still
675 		 * in use, then the inode cannot have been freed yet, and we
676 		 * can safely proceed (if it's no longer in use, that tells
677 		 * nothing about the inode, but we don't need to unuse swap).
678 		 */
679 		if (!page_swapcount(*pagep))
680 			error = -ENOENT;
681 	}
682 
683 	/*
684 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
685 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
686 	 * beneath us (pagelock doesn't help until the page is in pagecache).
687 	 */
688 	if (!error)
689 		error = shmem_add_to_page_cache(*pagep, mapping, index,
690 						radswap);
691 	if (error != -ENOMEM) {
692 		/*
693 		 * Truncation and eviction use free_swap_and_cache(), which
694 		 * only does trylock page: if we raced, best clean up here.
695 		 */
696 		delete_from_swap_cache(*pagep);
697 		set_page_dirty(*pagep);
698 		if (!error) {
699 			spin_lock(&info->lock);
700 			info->swapped--;
701 			spin_unlock(&info->lock);
702 			swap_free(swap);
703 		}
704 	}
705 	return error;
706 }
707 
708 /*
709  * Search through swapped inodes to find and replace swap by page.
710  */
711 int shmem_unuse(swp_entry_t swap, struct page *page)
712 {
713 	struct list_head *this, *next;
714 	struct shmem_inode_info *info;
715 	struct mem_cgroup *memcg;
716 	int error = 0;
717 
718 	/*
719 	 * There's a faint possibility that swap page was replaced before
720 	 * caller locked it: caller will come back later with the right page.
721 	 */
722 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
723 		goto out;
724 
725 	/*
726 	 * Charge page using GFP_KERNEL while we can wait, before taking
727 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
728 	 * Charged back to the user (not to caller) when swap account is used.
729 	 */
730 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
731 	if (error)
732 		goto out;
733 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
734 	error = -EAGAIN;
735 
736 	mutex_lock(&shmem_swaplist_mutex);
737 	list_for_each_safe(this, next, &shmem_swaplist) {
738 		info = list_entry(this, struct shmem_inode_info, swaplist);
739 		if (info->swapped)
740 			error = shmem_unuse_inode(info, swap, &page);
741 		else
742 			list_del_init(&info->swaplist);
743 		cond_resched();
744 		if (error != -EAGAIN)
745 			break;
746 		/* found nothing in this: move on to search the next */
747 	}
748 	mutex_unlock(&shmem_swaplist_mutex);
749 
750 	if (error) {
751 		if (error != -ENOMEM)
752 			error = 0;
753 		mem_cgroup_cancel_charge(page, memcg);
754 	} else
755 		mem_cgroup_commit_charge(page, memcg, true);
756 out:
757 	unlock_page(page);
758 	page_cache_release(page);
759 	return error;
760 }
761 
762 /*
763  * Move the page from the page cache to the swap cache.
764  */
765 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
766 {
767 	struct shmem_inode_info *info;
768 	struct address_space *mapping;
769 	struct inode *inode;
770 	swp_entry_t swap;
771 	pgoff_t index;
772 
773 	BUG_ON(!PageLocked(page));
774 	mapping = page->mapping;
775 	index = page->index;
776 	inode = mapping->host;
777 	info = SHMEM_I(inode);
778 	if (info->flags & VM_LOCKED)
779 		goto redirty;
780 	if (!total_swap_pages)
781 		goto redirty;
782 
783 	/*
784 	 * Our capabilities prevent regular writeback or sync from ever calling
785 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
786 	 * its underlying filesystem, in which case tmpfs should write out to
787 	 * swap only in response to memory pressure, and not for the writeback
788 	 * threads or sync.
789 	 */
790 	if (!wbc->for_reclaim) {
791 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
792 		goto redirty;
793 	}
794 
795 	/*
796 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
797 	 * value into swapfile.c, the only way we can correctly account for a
798 	 * fallocated page arriving here is now to initialize it and write it.
799 	 *
800 	 * That's okay for a page already fallocated earlier, but if we have
801 	 * not yet completed the fallocation, then (a) we want to keep track
802 	 * of this page in case we have to undo it, and (b) it may not be a
803 	 * good idea to continue anyway, once we're pushing into swap.  So
804 	 * reactivate the page, and let shmem_fallocate() quit when too many.
805 	 */
806 	if (!PageUptodate(page)) {
807 		if (inode->i_private) {
808 			struct shmem_falloc *shmem_falloc;
809 			spin_lock(&inode->i_lock);
810 			shmem_falloc = inode->i_private;
811 			if (shmem_falloc &&
812 			    !shmem_falloc->waitq &&
813 			    index >= shmem_falloc->start &&
814 			    index < shmem_falloc->next)
815 				shmem_falloc->nr_unswapped++;
816 			else
817 				shmem_falloc = NULL;
818 			spin_unlock(&inode->i_lock);
819 			if (shmem_falloc)
820 				goto redirty;
821 		}
822 		clear_highpage(page);
823 		flush_dcache_page(page);
824 		SetPageUptodate(page);
825 	}
826 
827 	swap = get_swap_page();
828 	if (!swap.val)
829 		goto redirty;
830 
831 	/*
832 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
833 	 * if it's not already there.  Do it now before the page is
834 	 * moved to swap cache, when its pagelock no longer protects
835 	 * the inode from eviction.  But don't unlock the mutex until
836 	 * we've incremented swapped, because shmem_unuse_inode() will
837 	 * prune a !swapped inode from the swaplist under this mutex.
838 	 */
839 	mutex_lock(&shmem_swaplist_mutex);
840 	if (list_empty(&info->swaplist))
841 		list_add_tail(&info->swaplist, &shmem_swaplist);
842 
843 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
844 		swap_shmem_alloc(swap);
845 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
846 
847 		spin_lock(&info->lock);
848 		info->swapped++;
849 		shmem_recalc_inode(inode);
850 		spin_unlock(&info->lock);
851 
852 		mutex_unlock(&shmem_swaplist_mutex);
853 		BUG_ON(page_mapped(page));
854 		swap_writepage(page, wbc);
855 		return 0;
856 	}
857 
858 	mutex_unlock(&shmem_swaplist_mutex);
859 	swapcache_free(swap);
860 redirty:
861 	set_page_dirty(page);
862 	if (wbc->for_reclaim)
863 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
864 	unlock_page(page);
865 	return 0;
866 }
867 
868 #ifdef CONFIG_NUMA
869 #ifdef CONFIG_TMPFS
870 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
871 {
872 	char buffer[64];
873 
874 	if (!mpol || mpol->mode == MPOL_DEFAULT)
875 		return;		/* show nothing */
876 
877 	mpol_to_str(buffer, sizeof(buffer), mpol);
878 
879 	seq_printf(seq, ",mpol=%s", buffer);
880 }
881 
882 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
883 {
884 	struct mempolicy *mpol = NULL;
885 	if (sbinfo->mpol) {
886 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
887 		mpol = sbinfo->mpol;
888 		mpol_get(mpol);
889 		spin_unlock(&sbinfo->stat_lock);
890 	}
891 	return mpol;
892 }
893 #endif /* CONFIG_TMPFS */
894 
895 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
896 			struct shmem_inode_info *info, pgoff_t index)
897 {
898 	struct vm_area_struct pvma;
899 	struct page *page;
900 
901 	/* Create a pseudo vma that just contains the policy */
902 	pvma.vm_start = 0;
903 	/* Bias interleave by inode number to distribute better across nodes */
904 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905 	pvma.vm_ops = NULL;
906 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907 
908 	page = swapin_readahead(swap, gfp, &pvma, 0);
909 
910 	/* Drop reference taken by mpol_shared_policy_lookup() */
911 	mpol_cond_put(pvma.vm_policy);
912 
913 	return page;
914 }
915 
916 static struct page *shmem_alloc_page(gfp_t gfp,
917 			struct shmem_inode_info *info, pgoff_t index)
918 {
919 	struct vm_area_struct pvma;
920 	struct page *page;
921 
922 	/* Create a pseudo vma that just contains the policy */
923 	pvma.vm_start = 0;
924 	/* Bias interleave by inode number to distribute better across nodes */
925 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
926 	pvma.vm_ops = NULL;
927 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928 
929 	page = alloc_page_vma(gfp, &pvma, 0);
930 
931 	/* Drop reference taken by mpol_shared_policy_lookup() */
932 	mpol_cond_put(pvma.vm_policy);
933 
934 	return page;
935 }
936 #else /* !CONFIG_NUMA */
937 #ifdef CONFIG_TMPFS
938 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
939 {
940 }
941 #endif /* CONFIG_TMPFS */
942 
943 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
944 			struct shmem_inode_info *info, pgoff_t index)
945 {
946 	return swapin_readahead(swap, gfp, NULL, 0);
947 }
948 
949 static inline struct page *shmem_alloc_page(gfp_t gfp,
950 			struct shmem_inode_info *info, pgoff_t index)
951 {
952 	return alloc_page(gfp);
953 }
954 #endif /* CONFIG_NUMA */
955 
956 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
957 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
958 {
959 	return NULL;
960 }
961 #endif
962 
963 /*
964  * When a page is moved from swapcache to shmem filecache (either by the
965  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
966  * shmem_unuse_inode()), it may have been read in earlier from swap, in
967  * ignorance of the mapping it belongs to.  If that mapping has special
968  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
969  * we may need to copy to a suitable page before moving to filecache.
970  *
971  * In a future release, this may well be extended to respect cpuset and
972  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
973  * but for now it is a simple matter of zone.
974  */
975 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
976 {
977 	return page_zonenum(page) > gfp_zone(gfp);
978 }
979 
980 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
981 				struct shmem_inode_info *info, pgoff_t index)
982 {
983 	struct page *oldpage, *newpage;
984 	struct address_space *swap_mapping;
985 	pgoff_t swap_index;
986 	int error;
987 
988 	oldpage = *pagep;
989 	swap_index = page_private(oldpage);
990 	swap_mapping = page_mapping(oldpage);
991 
992 	/*
993 	 * We have arrived here because our zones are constrained, so don't
994 	 * limit chance of success by further cpuset and node constraints.
995 	 */
996 	gfp &= ~GFP_CONSTRAINT_MASK;
997 	newpage = shmem_alloc_page(gfp, info, index);
998 	if (!newpage)
999 		return -ENOMEM;
1000 
1001 	page_cache_get(newpage);
1002 	copy_highpage(newpage, oldpage);
1003 	flush_dcache_page(newpage);
1004 
1005 	__set_page_locked(newpage);
1006 	SetPageUptodate(newpage);
1007 	SetPageSwapBacked(newpage);
1008 	set_page_private(newpage, swap_index);
1009 	SetPageSwapCache(newpage);
1010 
1011 	/*
1012 	 * Our caller will very soon move newpage out of swapcache, but it's
1013 	 * a nice clean interface for us to replace oldpage by newpage there.
1014 	 */
1015 	spin_lock_irq(&swap_mapping->tree_lock);
1016 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1017 								   newpage);
1018 	if (!error) {
1019 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1020 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1021 	}
1022 	spin_unlock_irq(&swap_mapping->tree_lock);
1023 
1024 	if (unlikely(error)) {
1025 		/*
1026 		 * Is this possible?  I think not, now that our callers check
1027 		 * both PageSwapCache and page_private after getting page lock;
1028 		 * but be defensive.  Reverse old to newpage for clear and free.
1029 		 */
1030 		oldpage = newpage;
1031 	} else {
1032 		mem_cgroup_replace_page(oldpage, newpage);
1033 		lru_cache_add_anon(newpage);
1034 		*pagep = newpage;
1035 	}
1036 
1037 	ClearPageSwapCache(oldpage);
1038 	set_page_private(oldpage, 0);
1039 
1040 	unlock_page(oldpage);
1041 	page_cache_release(oldpage);
1042 	page_cache_release(oldpage);
1043 	return error;
1044 }
1045 
1046 /*
1047  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1048  *
1049  * If we allocate a new one we do not mark it dirty. That's up to the
1050  * vm. If we swap it in we mark it dirty since we also free the swap
1051  * entry since a page cannot live in both the swap and page cache
1052  */
1053 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1054 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1055 {
1056 	struct address_space *mapping = inode->i_mapping;
1057 	struct shmem_inode_info *info;
1058 	struct shmem_sb_info *sbinfo;
1059 	struct mem_cgroup *memcg;
1060 	struct page *page;
1061 	swp_entry_t swap;
1062 	int error;
1063 	int once = 0;
1064 	int alloced = 0;
1065 
1066 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1067 		return -EFBIG;
1068 repeat:
1069 	swap.val = 0;
1070 	page = find_lock_entry(mapping, index);
1071 	if (radix_tree_exceptional_entry(page)) {
1072 		swap = radix_to_swp_entry(page);
1073 		page = NULL;
1074 	}
1075 
1076 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1077 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1078 		error = -EINVAL;
1079 		goto failed;
1080 	}
1081 
1082 	if (page && sgp == SGP_WRITE)
1083 		mark_page_accessed(page);
1084 
1085 	/* fallocated page? */
1086 	if (page && !PageUptodate(page)) {
1087 		if (sgp != SGP_READ)
1088 			goto clear;
1089 		unlock_page(page);
1090 		page_cache_release(page);
1091 		page = NULL;
1092 	}
1093 	if (page || (sgp == SGP_READ && !swap.val)) {
1094 		*pagep = page;
1095 		return 0;
1096 	}
1097 
1098 	/*
1099 	 * Fast cache lookup did not find it:
1100 	 * bring it back from swap or allocate.
1101 	 */
1102 	info = SHMEM_I(inode);
1103 	sbinfo = SHMEM_SB(inode->i_sb);
1104 
1105 	if (swap.val) {
1106 		/* Look it up and read it in.. */
1107 		page = lookup_swap_cache(swap);
1108 		if (!page) {
1109 			/* here we actually do the io */
1110 			if (fault_type)
1111 				*fault_type |= VM_FAULT_MAJOR;
1112 			page = shmem_swapin(swap, gfp, info, index);
1113 			if (!page) {
1114 				error = -ENOMEM;
1115 				goto failed;
1116 			}
1117 		}
1118 
1119 		/* We have to do this with page locked to prevent races */
1120 		lock_page(page);
1121 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1122 		    !shmem_confirm_swap(mapping, index, swap)) {
1123 			error = -EEXIST;	/* try again */
1124 			goto unlock;
1125 		}
1126 		if (!PageUptodate(page)) {
1127 			error = -EIO;
1128 			goto failed;
1129 		}
1130 		wait_on_page_writeback(page);
1131 
1132 		if (shmem_should_replace_page(page, gfp)) {
1133 			error = shmem_replace_page(&page, gfp, info, index);
1134 			if (error)
1135 				goto failed;
1136 		}
1137 
1138 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1139 		if (!error) {
1140 			error = shmem_add_to_page_cache(page, mapping, index,
1141 						swp_to_radix_entry(swap));
1142 			/*
1143 			 * We already confirmed swap under page lock, and make
1144 			 * no memory allocation here, so usually no possibility
1145 			 * of error; but free_swap_and_cache() only trylocks a
1146 			 * page, so it is just possible that the entry has been
1147 			 * truncated or holepunched since swap was confirmed.
1148 			 * shmem_undo_range() will have done some of the
1149 			 * unaccounting, now delete_from_swap_cache() will do
1150 			 * the rest.
1151 			 * Reset swap.val? No, leave it so "failed" goes back to
1152 			 * "repeat": reading a hole and writing should succeed.
1153 			 */
1154 			if (error) {
1155 				mem_cgroup_cancel_charge(page, memcg);
1156 				delete_from_swap_cache(page);
1157 			}
1158 		}
1159 		if (error)
1160 			goto failed;
1161 
1162 		mem_cgroup_commit_charge(page, memcg, true);
1163 
1164 		spin_lock(&info->lock);
1165 		info->swapped--;
1166 		shmem_recalc_inode(inode);
1167 		spin_unlock(&info->lock);
1168 
1169 		if (sgp == SGP_WRITE)
1170 			mark_page_accessed(page);
1171 
1172 		delete_from_swap_cache(page);
1173 		set_page_dirty(page);
1174 		swap_free(swap);
1175 
1176 	} else {
1177 		if (shmem_acct_block(info->flags)) {
1178 			error = -ENOSPC;
1179 			goto failed;
1180 		}
1181 		if (sbinfo->max_blocks) {
1182 			if (percpu_counter_compare(&sbinfo->used_blocks,
1183 						sbinfo->max_blocks) >= 0) {
1184 				error = -ENOSPC;
1185 				goto unacct;
1186 			}
1187 			percpu_counter_inc(&sbinfo->used_blocks);
1188 		}
1189 
1190 		page = shmem_alloc_page(gfp, info, index);
1191 		if (!page) {
1192 			error = -ENOMEM;
1193 			goto decused;
1194 		}
1195 
1196 		__SetPageSwapBacked(page);
1197 		__set_page_locked(page);
1198 		if (sgp == SGP_WRITE)
1199 			__SetPageReferenced(page);
1200 
1201 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1202 		if (error)
1203 			goto decused;
1204 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1205 		if (!error) {
1206 			error = shmem_add_to_page_cache(page, mapping, index,
1207 							NULL);
1208 			radix_tree_preload_end();
1209 		}
1210 		if (error) {
1211 			mem_cgroup_cancel_charge(page, memcg);
1212 			goto decused;
1213 		}
1214 		mem_cgroup_commit_charge(page, memcg, false);
1215 		lru_cache_add_anon(page);
1216 
1217 		spin_lock(&info->lock);
1218 		info->alloced++;
1219 		inode->i_blocks += BLOCKS_PER_PAGE;
1220 		shmem_recalc_inode(inode);
1221 		spin_unlock(&info->lock);
1222 		alloced = true;
1223 
1224 		/*
1225 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1226 		 */
1227 		if (sgp == SGP_FALLOC)
1228 			sgp = SGP_WRITE;
1229 clear:
1230 		/*
1231 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1232 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1233 		 * it now, lest undo on failure cancel our earlier guarantee.
1234 		 */
1235 		if (sgp != SGP_WRITE) {
1236 			clear_highpage(page);
1237 			flush_dcache_page(page);
1238 			SetPageUptodate(page);
1239 		}
1240 		if (sgp == SGP_DIRTY)
1241 			set_page_dirty(page);
1242 	}
1243 
1244 	/* Perhaps the file has been truncated since we checked */
1245 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1246 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1247 		error = -EINVAL;
1248 		if (alloced)
1249 			goto trunc;
1250 		else
1251 			goto failed;
1252 	}
1253 	*pagep = page;
1254 	return 0;
1255 
1256 	/*
1257 	 * Error recovery.
1258 	 */
1259 trunc:
1260 	info = SHMEM_I(inode);
1261 	ClearPageDirty(page);
1262 	delete_from_page_cache(page);
1263 	spin_lock(&info->lock);
1264 	info->alloced--;
1265 	inode->i_blocks -= BLOCKS_PER_PAGE;
1266 	spin_unlock(&info->lock);
1267 decused:
1268 	sbinfo = SHMEM_SB(inode->i_sb);
1269 	if (sbinfo->max_blocks)
1270 		percpu_counter_add(&sbinfo->used_blocks, -1);
1271 unacct:
1272 	shmem_unacct_blocks(info->flags, 1);
1273 failed:
1274 	if (swap.val && error != -EINVAL &&
1275 	    !shmem_confirm_swap(mapping, index, swap))
1276 		error = -EEXIST;
1277 unlock:
1278 	if (page) {
1279 		unlock_page(page);
1280 		page_cache_release(page);
1281 	}
1282 	if (error == -ENOSPC && !once++) {
1283 		info = SHMEM_I(inode);
1284 		spin_lock(&info->lock);
1285 		shmem_recalc_inode(inode);
1286 		spin_unlock(&info->lock);
1287 		goto repeat;
1288 	}
1289 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1290 		goto repeat;
1291 	return error;
1292 }
1293 
1294 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1295 {
1296 	struct inode *inode = file_inode(vma->vm_file);
1297 	int error;
1298 	int ret = VM_FAULT_LOCKED;
1299 
1300 	/*
1301 	 * Trinity finds that probing a hole which tmpfs is punching can
1302 	 * prevent the hole-punch from ever completing: which in turn
1303 	 * locks writers out with its hold on i_mutex.  So refrain from
1304 	 * faulting pages into the hole while it's being punched.  Although
1305 	 * shmem_undo_range() does remove the additions, it may be unable to
1306 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1307 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1308 	 *
1309 	 * It does not matter if we sometimes reach this check just before the
1310 	 * hole-punch begins, so that one fault then races with the punch:
1311 	 * we just need to make racing faults a rare case.
1312 	 *
1313 	 * The implementation below would be much simpler if we just used a
1314 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1315 	 * and bloating every shmem inode for this unlikely case would be sad.
1316 	 */
1317 	if (unlikely(inode->i_private)) {
1318 		struct shmem_falloc *shmem_falloc;
1319 
1320 		spin_lock(&inode->i_lock);
1321 		shmem_falloc = inode->i_private;
1322 		if (shmem_falloc &&
1323 		    shmem_falloc->waitq &&
1324 		    vmf->pgoff >= shmem_falloc->start &&
1325 		    vmf->pgoff < shmem_falloc->next) {
1326 			wait_queue_head_t *shmem_falloc_waitq;
1327 			DEFINE_WAIT(shmem_fault_wait);
1328 
1329 			ret = VM_FAULT_NOPAGE;
1330 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1331 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1332 				/* It's polite to up mmap_sem if we can */
1333 				up_read(&vma->vm_mm->mmap_sem);
1334 				ret = VM_FAULT_RETRY;
1335 			}
1336 
1337 			shmem_falloc_waitq = shmem_falloc->waitq;
1338 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1339 					TASK_UNINTERRUPTIBLE);
1340 			spin_unlock(&inode->i_lock);
1341 			schedule();
1342 
1343 			/*
1344 			 * shmem_falloc_waitq points into the shmem_fallocate()
1345 			 * stack of the hole-punching task: shmem_falloc_waitq
1346 			 * is usually invalid by the time we reach here, but
1347 			 * finish_wait() does not dereference it in that case;
1348 			 * though i_lock needed lest racing with wake_up_all().
1349 			 */
1350 			spin_lock(&inode->i_lock);
1351 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1352 			spin_unlock(&inode->i_lock);
1353 			return ret;
1354 		}
1355 		spin_unlock(&inode->i_lock);
1356 	}
1357 
1358 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1359 	if (error)
1360 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1361 
1362 	if (ret & VM_FAULT_MAJOR) {
1363 		count_vm_event(PGMAJFAULT);
1364 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1365 	}
1366 	return ret;
1367 }
1368 
1369 #ifdef CONFIG_NUMA
1370 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1371 {
1372 	struct inode *inode = file_inode(vma->vm_file);
1373 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1374 }
1375 
1376 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1377 					  unsigned long addr)
1378 {
1379 	struct inode *inode = file_inode(vma->vm_file);
1380 	pgoff_t index;
1381 
1382 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1383 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1384 }
1385 #endif
1386 
1387 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1388 {
1389 	struct inode *inode = file_inode(file);
1390 	struct shmem_inode_info *info = SHMEM_I(inode);
1391 	int retval = -ENOMEM;
1392 
1393 	spin_lock(&info->lock);
1394 	if (lock && !(info->flags & VM_LOCKED)) {
1395 		if (!user_shm_lock(inode->i_size, user))
1396 			goto out_nomem;
1397 		info->flags |= VM_LOCKED;
1398 		mapping_set_unevictable(file->f_mapping);
1399 	}
1400 	if (!lock && (info->flags & VM_LOCKED) && user) {
1401 		user_shm_unlock(inode->i_size, user);
1402 		info->flags &= ~VM_LOCKED;
1403 		mapping_clear_unevictable(file->f_mapping);
1404 	}
1405 	retval = 0;
1406 
1407 out_nomem:
1408 	spin_unlock(&info->lock);
1409 	return retval;
1410 }
1411 
1412 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414 	file_accessed(file);
1415 	vma->vm_ops = &shmem_vm_ops;
1416 	return 0;
1417 }
1418 
1419 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1420 				     umode_t mode, dev_t dev, unsigned long flags)
1421 {
1422 	struct inode *inode;
1423 	struct shmem_inode_info *info;
1424 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1425 
1426 	if (shmem_reserve_inode(sb))
1427 		return NULL;
1428 
1429 	inode = new_inode(sb);
1430 	if (inode) {
1431 		inode->i_ino = get_next_ino();
1432 		inode_init_owner(inode, dir, mode);
1433 		inode->i_blocks = 0;
1434 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1435 		inode->i_generation = get_seconds();
1436 		info = SHMEM_I(inode);
1437 		memset(info, 0, (char *)inode - (char *)info);
1438 		spin_lock_init(&info->lock);
1439 		info->seals = F_SEAL_SEAL;
1440 		info->flags = flags & VM_NORESERVE;
1441 		INIT_LIST_HEAD(&info->swaplist);
1442 		simple_xattrs_init(&info->xattrs);
1443 		cache_no_acl(inode);
1444 
1445 		switch (mode & S_IFMT) {
1446 		default:
1447 			inode->i_op = &shmem_special_inode_operations;
1448 			init_special_inode(inode, mode, dev);
1449 			break;
1450 		case S_IFREG:
1451 			inode->i_mapping->a_ops = &shmem_aops;
1452 			inode->i_op = &shmem_inode_operations;
1453 			inode->i_fop = &shmem_file_operations;
1454 			mpol_shared_policy_init(&info->policy,
1455 						 shmem_get_sbmpol(sbinfo));
1456 			break;
1457 		case S_IFDIR:
1458 			inc_nlink(inode);
1459 			/* Some things misbehave if size == 0 on a directory */
1460 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1461 			inode->i_op = &shmem_dir_inode_operations;
1462 			inode->i_fop = &simple_dir_operations;
1463 			break;
1464 		case S_IFLNK:
1465 			/*
1466 			 * Must not load anything in the rbtree,
1467 			 * mpol_free_shared_policy will not be called.
1468 			 */
1469 			mpol_shared_policy_init(&info->policy, NULL);
1470 			break;
1471 		}
1472 	} else
1473 		shmem_free_inode(sb);
1474 	return inode;
1475 }
1476 
1477 bool shmem_mapping(struct address_space *mapping)
1478 {
1479 	if (!mapping->host)
1480 		return false;
1481 
1482 	return mapping->host->i_sb->s_op == &shmem_ops;
1483 }
1484 
1485 #ifdef CONFIG_TMPFS
1486 static const struct inode_operations shmem_symlink_inode_operations;
1487 static const struct inode_operations shmem_short_symlink_operations;
1488 
1489 #ifdef CONFIG_TMPFS_XATTR
1490 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1491 #else
1492 #define shmem_initxattrs NULL
1493 #endif
1494 
1495 static int
1496 shmem_write_begin(struct file *file, struct address_space *mapping,
1497 			loff_t pos, unsigned len, unsigned flags,
1498 			struct page **pagep, void **fsdata)
1499 {
1500 	struct inode *inode = mapping->host;
1501 	struct shmem_inode_info *info = SHMEM_I(inode);
1502 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1503 
1504 	/* i_mutex is held by caller */
1505 	if (unlikely(info->seals)) {
1506 		if (info->seals & F_SEAL_WRITE)
1507 			return -EPERM;
1508 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1509 			return -EPERM;
1510 	}
1511 
1512 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1513 }
1514 
1515 static int
1516 shmem_write_end(struct file *file, struct address_space *mapping,
1517 			loff_t pos, unsigned len, unsigned copied,
1518 			struct page *page, void *fsdata)
1519 {
1520 	struct inode *inode = mapping->host;
1521 
1522 	if (pos + copied > inode->i_size)
1523 		i_size_write(inode, pos + copied);
1524 
1525 	if (!PageUptodate(page)) {
1526 		if (copied < PAGE_CACHE_SIZE) {
1527 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1528 			zero_user_segments(page, 0, from,
1529 					from + copied, PAGE_CACHE_SIZE);
1530 		}
1531 		SetPageUptodate(page);
1532 	}
1533 	set_page_dirty(page);
1534 	unlock_page(page);
1535 	page_cache_release(page);
1536 
1537 	return copied;
1538 }
1539 
1540 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1541 {
1542 	struct file *file = iocb->ki_filp;
1543 	struct inode *inode = file_inode(file);
1544 	struct address_space *mapping = inode->i_mapping;
1545 	pgoff_t index;
1546 	unsigned long offset;
1547 	enum sgp_type sgp = SGP_READ;
1548 	int error = 0;
1549 	ssize_t retval = 0;
1550 	loff_t *ppos = &iocb->ki_pos;
1551 
1552 	/*
1553 	 * Might this read be for a stacking filesystem?  Then when reading
1554 	 * holes of a sparse file, we actually need to allocate those pages,
1555 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1556 	 */
1557 	if (!iter_is_iovec(to))
1558 		sgp = SGP_DIRTY;
1559 
1560 	index = *ppos >> PAGE_CACHE_SHIFT;
1561 	offset = *ppos & ~PAGE_CACHE_MASK;
1562 
1563 	for (;;) {
1564 		struct page *page = NULL;
1565 		pgoff_t end_index;
1566 		unsigned long nr, ret;
1567 		loff_t i_size = i_size_read(inode);
1568 
1569 		end_index = i_size >> PAGE_CACHE_SHIFT;
1570 		if (index > end_index)
1571 			break;
1572 		if (index == end_index) {
1573 			nr = i_size & ~PAGE_CACHE_MASK;
1574 			if (nr <= offset)
1575 				break;
1576 		}
1577 
1578 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1579 		if (error) {
1580 			if (error == -EINVAL)
1581 				error = 0;
1582 			break;
1583 		}
1584 		if (page)
1585 			unlock_page(page);
1586 
1587 		/*
1588 		 * We must evaluate after, since reads (unlike writes)
1589 		 * are called without i_mutex protection against truncate
1590 		 */
1591 		nr = PAGE_CACHE_SIZE;
1592 		i_size = i_size_read(inode);
1593 		end_index = i_size >> PAGE_CACHE_SHIFT;
1594 		if (index == end_index) {
1595 			nr = i_size & ~PAGE_CACHE_MASK;
1596 			if (nr <= offset) {
1597 				if (page)
1598 					page_cache_release(page);
1599 				break;
1600 			}
1601 		}
1602 		nr -= offset;
1603 
1604 		if (page) {
1605 			/*
1606 			 * If users can be writing to this page using arbitrary
1607 			 * virtual addresses, take care about potential aliasing
1608 			 * before reading the page on the kernel side.
1609 			 */
1610 			if (mapping_writably_mapped(mapping))
1611 				flush_dcache_page(page);
1612 			/*
1613 			 * Mark the page accessed if we read the beginning.
1614 			 */
1615 			if (!offset)
1616 				mark_page_accessed(page);
1617 		} else {
1618 			page = ZERO_PAGE(0);
1619 			page_cache_get(page);
1620 		}
1621 
1622 		/*
1623 		 * Ok, we have the page, and it's up-to-date, so
1624 		 * now we can copy it to user space...
1625 		 */
1626 		ret = copy_page_to_iter(page, offset, nr, to);
1627 		retval += ret;
1628 		offset += ret;
1629 		index += offset >> PAGE_CACHE_SHIFT;
1630 		offset &= ~PAGE_CACHE_MASK;
1631 
1632 		page_cache_release(page);
1633 		if (!iov_iter_count(to))
1634 			break;
1635 		if (ret < nr) {
1636 			error = -EFAULT;
1637 			break;
1638 		}
1639 		cond_resched();
1640 	}
1641 
1642 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1643 	file_accessed(file);
1644 	return retval ? retval : error;
1645 }
1646 
1647 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1648 				struct pipe_inode_info *pipe, size_t len,
1649 				unsigned int flags)
1650 {
1651 	struct address_space *mapping = in->f_mapping;
1652 	struct inode *inode = mapping->host;
1653 	unsigned int loff, nr_pages, req_pages;
1654 	struct page *pages[PIPE_DEF_BUFFERS];
1655 	struct partial_page partial[PIPE_DEF_BUFFERS];
1656 	struct page *page;
1657 	pgoff_t index, end_index;
1658 	loff_t isize, left;
1659 	int error, page_nr;
1660 	struct splice_pipe_desc spd = {
1661 		.pages = pages,
1662 		.partial = partial,
1663 		.nr_pages_max = PIPE_DEF_BUFFERS,
1664 		.flags = flags,
1665 		.ops = &page_cache_pipe_buf_ops,
1666 		.spd_release = spd_release_page,
1667 	};
1668 
1669 	isize = i_size_read(inode);
1670 	if (unlikely(*ppos >= isize))
1671 		return 0;
1672 
1673 	left = isize - *ppos;
1674 	if (unlikely(left < len))
1675 		len = left;
1676 
1677 	if (splice_grow_spd(pipe, &spd))
1678 		return -ENOMEM;
1679 
1680 	index = *ppos >> PAGE_CACHE_SHIFT;
1681 	loff = *ppos & ~PAGE_CACHE_MASK;
1682 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1683 	nr_pages = min(req_pages, spd.nr_pages_max);
1684 
1685 	spd.nr_pages = find_get_pages_contig(mapping, index,
1686 						nr_pages, spd.pages);
1687 	index += spd.nr_pages;
1688 	error = 0;
1689 
1690 	while (spd.nr_pages < nr_pages) {
1691 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1692 		if (error)
1693 			break;
1694 		unlock_page(page);
1695 		spd.pages[spd.nr_pages++] = page;
1696 		index++;
1697 	}
1698 
1699 	index = *ppos >> PAGE_CACHE_SHIFT;
1700 	nr_pages = spd.nr_pages;
1701 	spd.nr_pages = 0;
1702 
1703 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1704 		unsigned int this_len;
1705 
1706 		if (!len)
1707 			break;
1708 
1709 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1710 		page = spd.pages[page_nr];
1711 
1712 		if (!PageUptodate(page) || page->mapping != mapping) {
1713 			error = shmem_getpage(inode, index, &page,
1714 							SGP_CACHE, NULL);
1715 			if (error)
1716 				break;
1717 			unlock_page(page);
1718 			page_cache_release(spd.pages[page_nr]);
1719 			spd.pages[page_nr] = page;
1720 		}
1721 
1722 		isize = i_size_read(inode);
1723 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1724 		if (unlikely(!isize || index > end_index))
1725 			break;
1726 
1727 		if (end_index == index) {
1728 			unsigned int plen;
1729 
1730 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1731 			if (plen <= loff)
1732 				break;
1733 
1734 			this_len = min(this_len, plen - loff);
1735 			len = this_len;
1736 		}
1737 
1738 		spd.partial[page_nr].offset = loff;
1739 		spd.partial[page_nr].len = this_len;
1740 		len -= this_len;
1741 		loff = 0;
1742 		spd.nr_pages++;
1743 		index++;
1744 	}
1745 
1746 	while (page_nr < nr_pages)
1747 		page_cache_release(spd.pages[page_nr++]);
1748 
1749 	if (spd.nr_pages)
1750 		error = splice_to_pipe(pipe, &spd);
1751 
1752 	splice_shrink_spd(&spd);
1753 
1754 	if (error > 0) {
1755 		*ppos += error;
1756 		file_accessed(in);
1757 	}
1758 	return error;
1759 }
1760 
1761 /*
1762  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1763  */
1764 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1765 				    pgoff_t index, pgoff_t end, int whence)
1766 {
1767 	struct page *page;
1768 	struct pagevec pvec;
1769 	pgoff_t indices[PAGEVEC_SIZE];
1770 	bool done = false;
1771 	int i;
1772 
1773 	pagevec_init(&pvec, 0);
1774 	pvec.nr = 1;		/* start small: we may be there already */
1775 	while (!done) {
1776 		pvec.nr = find_get_entries(mapping, index,
1777 					pvec.nr, pvec.pages, indices);
1778 		if (!pvec.nr) {
1779 			if (whence == SEEK_DATA)
1780 				index = end;
1781 			break;
1782 		}
1783 		for (i = 0; i < pvec.nr; i++, index++) {
1784 			if (index < indices[i]) {
1785 				if (whence == SEEK_HOLE) {
1786 					done = true;
1787 					break;
1788 				}
1789 				index = indices[i];
1790 			}
1791 			page = pvec.pages[i];
1792 			if (page && !radix_tree_exceptional_entry(page)) {
1793 				if (!PageUptodate(page))
1794 					page = NULL;
1795 			}
1796 			if (index >= end ||
1797 			    (page && whence == SEEK_DATA) ||
1798 			    (!page && whence == SEEK_HOLE)) {
1799 				done = true;
1800 				break;
1801 			}
1802 		}
1803 		pagevec_remove_exceptionals(&pvec);
1804 		pagevec_release(&pvec);
1805 		pvec.nr = PAGEVEC_SIZE;
1806 		cond_resched();
1807 	}
1808 	return index;
1809 }
1810 
1811 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1812 {
1813 	struct address_space *mapping = file->f_mapping;
1814 	struct inode *inode = mapping->host;
1815 	pgoff_t start, end;
1816 	loff_t new_offset;
1817 
1818 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1819 		return generic_file_llseek_size(file, offset, whence,
1820 					MAX_LFS_FILESIZE, i_size_read(inode));
1821 	mutex_lock(&inode->i_mutex);
1822 	/* We're holding i_mutex so we can access i_size directly */
1823 
1824 	if (offset < 0)
1825 		offset = -EINVAL;
1826 	else if (offset >= inode->i_size)
1827 		offset = -ENXIO;
1828 	else {
1829 		start = offset >> PAGE_CACHE_SHIFT;
1830 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1832 		new_offset <<= PAGE_CACHE_SHIFT;
1833 		if (new_offset > offset) {
1834 			if (new_offset < inode->i_size)
1835 				offset = new_offset;
1836 			else if (whence == SEEK_DATA)
1837 				offset = -ENXIO;
1838 			else
1839 				offset = inode->i_size;
1840 		}
1841 	}
1842 
1843 	if (offset >= 0)
1844 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1845 	mutex_unlock(&inode->i_mutex);
1846 	return offset;
1847 }
1848 
1849 /*
1850  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1851  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1852  */
1853 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1854 #define LAST_SCAN               4       /* about 150ms max */
1855 
1856 static void shmem_tag_pins(struct address_space *mapping)
1857 {
1858 	struct radix_tree_iter iter;
1859 	void **slot;
1860 	pgoff_t start;
1861 	struct page *page;
1862 
1863 	lru_add_drain();
1864 	start = 0;
1865 	rcu_read_lock();
1866 
1867 restart:
1868 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1869 		page = radix_tree_deref_slot(slot);
1870 		if (!page || radix_tree_exception(page)) {
1871 			if (radix_tree_deref_retry(page))
1872 				goto restart;
1873 		} else if (page_count(page) - page_mapcount(page) > 1) {
1874 			spin_lock_irq(&mapping->tree_lock);
1875 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1876 					   SHMEM_TAG_PINNED);
1877 			spin_unlock_irq(&mapping->tree_lock);
1878 		}
1879 
1880 		if (need_resched()) {
1881 			cond_resched_rcu();
1882 			start = iter.index + 1;
1883 			goto restart;
1884 		}
1885 	}
1886 	rcu_read_unlock();
1887 }
1888 
1889 /*
1890  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1891  * via get_user_pages(), drivers might have some pending I/O without any active
1892  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1893  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1894  * them to be dropped.
1895  * The caller must guarantee that no new user will acquire writable references
1896  * to those pages to avoid races.
1897  */
1898 static int shmem_wait_for_pins(struct address_space *mapping)
1899 {
1900 	struct radix_tree_iter iter;
1901 	void **slot;
1902 	pgoff_t start;
1903 	struct page *page;
1904 	int error, scan;
1905 
1906 	shmem_tag_pins(mapping);
1907 
1908 	error = 0;
1909 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1910 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1911 			break;
1912 
1913 		if (!scan)
1914 			lru_add_drain_all();
1915 		else if (schedule_timeout_killable((HZ << scan) / 200))
1916 			scan = LAST_SCAN;
1917 
1918 		start = 0;
1919 		rcu_read_lock();
1920 restart:
1921 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1922 					   start, SHMEM_TAG_PINNED) {
1923 
1924 			page = radix_tree_deref_slot(slot);
1925 			if (radix_tree_exception(page)) {
1926 				if (radix_tree_deref_retry(page))
1927 					goto restart;
1928 
1929 				page = NULL;
1930 			}
1931 
1932 			if (page &&
1933 			    page_count(page) - page_mapcount(page) != 1) {
1934 				if (scan < LAST_SCAN)
1935 					goto continue_resched;
1936 
1937 				/*
1938 				 * On the last scan, we clean up all those tags
1939 				 * we inserted; but make a note that we still
1940 				 * found pages pinned.
1941 				 */
1942 				error = -EBUSY;
1943 			}
1944 
1945 			spin_lock_irq(&mapping->tree_lock);
1946 			radix_tree_tag_clear(&mapping->page_tree,
1947 					     iter.index, SHMEM_TAG_PINNED);
1948 			spin_unlock_irq(&mapping->tree_lock);
1949 continue_resched:
1950 			if (need_resched()) {
1951 				cond_resched_rcu();
1952 				start = iter.index + 1;
1953 				goto restart;
1954 			}
1955 		}
1956 		rcu_read_unlock();
1957 	}
1958 
1959 	return error;
1960 }
1961 
1962 #define F_ALL_SEALS (F_SEAL_SEAL | \
1963 		     F_SEAL_SHRINK | \
1964 		     F_SEAL_GROW | \
1965 		     F_SEAL_WRITE)
1966 
1967 int shmem_add_seals(struct file *file, unsigned int seals)
1968 {
1969 	struct inode *inode = file_inode(file);
1970 	struct shmem_inode_info *info = SHMEM_I(inode);
1971 	int error;
1972 
1973 	/*
1974 	 * SEALING
1975 	 * Sealing allows multiple parties to share a shmem-file but restrict
1976 	 * access to a specific subset of file operations. Seals can only be
1977 	 * added, but never removed. This way, mutually untrusted parties can
1978 	 * share common memory regions with a well-defined policy. A malicious
1979 	 * peer can thus never perform unwanted operations on a shared object.
1980 	 *
1981 	 * Seals are only supported on special shmem-files and always affect
1982 	 * the whole underlying inode. Once a seal is set, it may prevent some
1983 	 * kinds of access to the file. Currently, the following seals are
1984 	 * defined:
1985 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1986 	 *   SEAL_SHRINK: Prevent the file from shrinking
1987 	 *   SEAL_GROW: Prevent the file from growing
1988 	 *   SEAL_WRITE: Prevent write access to the file
1989 	 *
1990 	 * As we don't require any trust relationship between two parties, we
1991 	 * must prevent seals from being removed. Therefore, sealing a file
1992 	 * only adds a given set of seals to the file, it never touches
1993 	 * existing seals. Furthermore, the "setting seals"-operation can be
1994 	 * sealed itself, which basically prevents any further seal from being
1995 	 * added.
1996 	 *
1997 	 * Semantics of sealing are only defined on volatile files. Only
1998 	 * anonymous shmem files support sealing. More importantly, seals are
1999 	 * never written to disk. Therefore, there's no plan to support it on
2000 	 * other file types.
2001 	 */
2002 
2003 	if (file->f_op != &shmem_file_operations)
2004 		return -EINVAL;
2005 	if (!(file->f_mode & FMODE_WRITE))
2006 		return -EPERM;
2007 	if (seals & ~(unsigned int)F_ALL_SEALS)
2008 		return -EINVAL;
2009 
2010 	mutex_lock(&inode->i_mutex);
2011 
2012 	if (info->seals & F_SEAL_SEAL) {
2013 		error = -EPERM;
2014 		goto unlock;
2015 	}
2016 
2017 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2018 		error = mapping_deny_writable(file->f_mapping);
2019 		if (error)
2020 			goto unlock;
2021 
2022 		error = shmem_wait_for_pins(file->f_mapping);
2023 		if (error) {
2024 			mapping_allow_writable(file->f_mapping);
2025 			goto unlock;
2026 		}
2027 	}
2028 
2029 	info->seals |= seals;
2030 	error = 0;
2031 
2032 unlock:
2033 	mutex_unlock(&inode->i_mutex);
2034 	return error;
2035 }
2036 EXPORT_SYMBOL_GPL(shmem_add_seals);
2037 
2038 int shmem_get_seals(struct file *file)
2039 {
2040 	if (file->f_op != &shmem_file_operations)
2041 		return -EINVAL;
2042 
2043 	return SHMEM_I(file_inode(file))->seals;
2044 }
2045 EXPORT_SYMBOL_GPL(shmem_get_seals);
2046 
2047 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2048 {
2049 	long error;
2050 
2051 	switch (cmd) {
2052 	case F_ADD_SEALS:
2053 		/* disallow upper 32bit */
2054 		if (arg > UINT_MAX)
2055 			return -EINVAL;
2056 
2057 		error = shmem_add_seals(file, arg);
2058 		break;
2059 	case F_GET_SEALS:
2060 		error = shmem_get_seals(file);
2061 		break;
2062 	default:
2063 		error = -EINVAL;
2064 		break;
2065 	}
2066 
2067 	return error;
2068 }
2069 
2070 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2071 							 loff_t len)
2072 {
2073 	struct inode *inode = file_inode(file);
2074 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2075 	struct shmem_inode_info *info = SHMEM_I(inode);
2076 	struct shmem_falloc shmem_falloc;
2077 	pgoff_t start, index, end;
2078 	int error;
2079 
2080 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2081 		return -EOPNOTSUPP;
2082 
2083 	mutex_lock(&inode->i_mutex);
2084 
2085 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2086 		struct address_space *mapping = file->f_mapping;
2087 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2088 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2089 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2090 
2091 		/* protected by i_mutex */
2092 		if (info->seals & F_SEAL_WRITE) {
2093 			error = -EPERM;
2094 			goto out;
2095 		}
2096 
2097 		shmem_falloc.waitq = &shmem_falloc_waitq;
2098 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2099 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2100 		spin_lock(&inode->i_lock);
2101 		inode->i_private = &shmem_falloc;
2102 		spin_unlock(&inode->i_lock);
2103 
2104 		if ((u64)unmap_end > (u64)unmap_start)
2105 			unmap_mapping_range(mapping, unmap_start,
2106 					    1 + unmap_end - unmap_start, 0);
2107 		shmem_truncate_range(inode, offset, offset + len - 1);
2108 		/* No need to unmap again: hole-punching leaves COWed pages */
2109 
2110 		spin_lock(&inode->i_lock);
2111 		inode->i_private = NULL;
2112 		wake_up_all(&shmem_falloc_waitq);
2113 		spin_unlock(&inode->i_lock);
2114 		error = 0;
2115 		goto out;
2116 	}
2117 
2118 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2119 	error = inode_newsize_ok(inode, offset + len);
2120 	if (error)
2121 		goto out;
2122 
2123 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2124 		error = -EPERM;
2125 		goto out;
2126 	}
2127 
2128 	start = offset >> PAGE_CACHE_SHIFT;
2129 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2130 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2131 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2132 		error = -ENOSPC;
2133 		goto out;
2134 	}
2135 
2136 	shmem_falloc.waitq = NULL;
2137 	shmem_falloc.start = start;
2138 	shmem_falloc.next  = start;
2139 	shmem_falloc.nr_falloced = 0;
2140 	shmem_falloc.nr_unswapped = 0;
2141 	spin_lock(&inode->i_lock);
2142 	inode->i_private = &shmem_falloc;
2143 	spin_unlock(&inode->i_lock);
2144 
2145 	for (index = start; index < end; index++) {
2146 		struct page *page;
2147 
2148 		/*
2149 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2150 		 * been interrupted because we are using up too much memory.
2151 		 */
2152 		if (signal_pending(current))
2153 			error = -EINTR;
2154 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2155 			error = -ENOMEM;
2156 		else
2157 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2158 									NULL);
2159 		if (error) {
2160 			/* Remove the !PageUptodate pages we added */
2161 			shmem_undo_range(inode,
2162 				(loff_t)start << PAGE_CACHE_SHIFT,
2163 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2164 			goto undone;
2165 		}
2166 
2167 		/*
2168 		 * Inform shmem_writepage() how far we have reached.
2169 		 * No need for lock or barrier: we have the page lock.
2170 		 */
2171 		shmem_falloc.next++;
2172 		if (!PageUptodate(page))
2173 			shmem_falloc.nr_falloced++;
2174 
2175 		/*
2176 		 * If !PageUptodate, leave it that way so that freeable pages
2177 		 * can be recognized if we need to rollback on error later.
2178 		 * But set_page_dirty so that memory pressure will swap rather
2179 		 * than free the pages we are allocating (and SGP_CACHE pages
2180 		 * might still be clean: we now need to mark those dirty too).
2181 		 */
2182 		set_page_dirty(page);
2183 		unlock_page(page);
2184 		page_cache_release(page);
2185 		cond_resched();
2186 	}
2187 
2188 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2189 		i_size_write(inode, offset + len);
2190 	inode->i_ctime = CURRENT_TIME;
2191 undone:
2192 	spin_lock(&inode->i_lock);
2193 	inode->i_private = NULL;
2194 	spin_unlock(&inode->i_lock);
2195 out:
2196 	mutex_unlock(&inode->i_mutex);
2197 	return error;
2198 }
2199 
2200 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2201 {
2202 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2203 
2204 	buf->f_type = TMPFS_MAGIC;
2205 	buf->f_bsize = PAGE_CACHE_SIZE;
2206 	buf->f_namelen = NAME_MAX;
2207 	if (sbinfo->max_blocks) {
2208 		buf->f_blocks = sbinfo->max_blocks;
2209 		buf->f_bavail =
2210 		buf->f_bfree  = sbinfo->max_blocks -
2211 				percpu_counter_sum(&sbinfo->used_blocks);
2212 	}
2213 	if (sbinfo->max_inodes) {
2214 		buf->f_files = sbinfo->max_inodes;
2215 		buf->f_ffree = sbinfo->free_inodes;
2216 	}
2217 	/* else leave those fields 0 like simple_statfs */
2218 	return 0;
2219 }
2220 
2221 /*
2222  * File creation. Allocate an inode, and we're done..
2223  */
2224 static int
2225 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2226 {
2227 	struct inode *inode;
2228 	int error = -ENOSPC;
2229 
2230 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2231 	if (inode) {
2232 		error = simple_acl_create(dir, inode);
2233 		if (error)
2234 			goto out_iput;
2235 		error = security_inode_init_security(inode, dir,
2236 						     &dentry->d_name,
2237 						     shmem_initxattrs, NULL);
2238 		if (error && error != -EOPNOTSUPP)
2239 			goto out_iput;
2240 
2241 		error = 0;
2242 		dir->i_size += BOGO_DIRENT_SIZE;
2243 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2244 		d_instantiate(dentry, inode);
2245 		dget(dentry); /* Extra count - pin the dentry in core */
2246 	}
2247 	return error;
2248 out_iput:
2249 	iput(inode);
2250 	return error;
2251 }
2252 
2253 static int
2254 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2255 {
2256 	struct inode *inode;
2257 	int error = -ENOSPC;
2258 
2259 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2260 	if (inode) {
2261 		error = security_inode_init_security(inode, dir,
2262 						     NULL,
2263 						     shmem_initxattrs, NULL);
2264 		if (error && error != -EOPNOTSUPP)
2265 			goto out_iput;
2266 		error = simple_acl_create(dir, inode);
2267 		if (error)
2268 			goto out_iput;
2269 		d_tmpfile(dentry, inode);
2270 	}
2271 	return error;
2272 out_iput:
2273 	iput(inode);
2274 	return error;
2275 }
2276 
2277 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2278 {
2279 	int error;
2280 
2281 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2282 		return error;
2283 	inc_nlink(dir);
2284 	return 0;
2285 }
2286 
2287 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2288 		bool excl)
2289 {
2290 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2291 }
2292 
2293 /*
2294  * Link a file..
2295  */
2296 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2297 {
2298 	struct inode *inode = d_inode(old_dentry);
2299 	int ret;
2300 
2301 	/*
2302 	 * No ordinary (disk based) filesystem counts links as inodes;
2303 	 * but each new link needs a new dentry, pinning lowmem, and
2304 	 * tmpfs dentries cannot be pruned until they are unlinked.
2305 	 */
2306 	ret = shmem_reserve_inode(inode->i_sb);
2307 	if (ret)
2308 		goto out;
2309 
2310 	dir->i_size += BOGO_DIRENT_SIZE;
2311 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2312 	inc_nlink(inode);
2313 	ihold(inode);	/* New dentry reference */
2314 	dget(dentry);		/* Extra pinning count for the created dentry */
2315 	d_instantiate(dentry, inode);
2316 out:
2317 	return ret;
2318 }
2319 
2320 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2321 {
2322 	struct inode *inode = d_inode(dentry);
2323 
2324 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2325 		shmem_free_inode(inode->i_sb);
2326 
2327 	dir->i_size -= BOGO_DIRENT_SIZE;
2328 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2329 	drop_nlink(inode);
2330 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2331 	return 0;
2332 }
2333 
2334 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2335 {
2336 	if (!simple_empty(dentry))
2337 		return -ENOTEMPTY;
2338 
2339 	drop_nlink(d_inode(dentry));
2340 	drop_nlink(dir);
2341 	return shmem_unlink(dir, dentry);
2342 }
2343 
2344 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2345 {
2346 	bool old_is_dir = d_is_dir(old_dentry);
2347 	bool new_is_dir = d_is_dir(new_dentry);
2348 
2349 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2350 		if (old_is_dir) {
2351 			drop_nlink(old_dir);
2352 			inc_nlink(new_dir);
2353 		} else {
2354 			drop_nlink(new_dir);
2355 			inc_nlink(old_dir);
2356 		}
2357 	}
2358 	old_dir->i_ctime = old_dir->i_mtime =
2359 	new_dir->i_ctime = new_dir->i_mtime =
2360 	d_inode(old_dentry)->i_ctime =
2361 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2362 
2363 	return 0;
2364 }
2365 
2366 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2367 {
2368 	struct dentry *whiteout;
2369 	int error;
2370 
2371 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2372 	if (!whiteout)
2373 		return -ENOMEM;
2374 
2375 	error = shmem_mknod(old_dir, whiteout,
2376 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2377 	dput(whiteout);
2378 	if (error)
2379 		return error;
2380 
2381 	/*
2382 	 * Cheat and hash the whiteout while the old dentry is still in
2383 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2384 	 *
2385 	 * d_lookup() will consistently find one of them at this point,
2386 	 * not sure which one, but that isn't even important.
2387 	 */
2388 	d_rehash(whiteout);
2389 	return 0;
2390 }
2391 
2392 /*
2393  * The VFS layer already does all the dentry stuff for rename,
2394  * we just have to decrement the usage count for the target if
2395  * it exists so that the VFS layer correctly free's it when it
2396  * gets overwritten.
2397  */
2398 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2399 {
2400 	struct inode *inode = d_inode(old_dentry);
2401 	int they_are_dirs = S_ISDIR(inode->i_mode);
2402 
2403 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2404 		return -EINVAL;
2405 
2406 	if (flags & RENAME_EXCHANGE)
2407 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2408 
2409 	if (!simple_empty(new_dentry))
2410 		return -ENOTEMPTY;
2411 
2412 	if (flags & RENAME_WHITEOUT) {
2413 		int error;
2414 
2415 		error = shmem_whiteout(old_dir, old_dentry);
2416 		if (error)
2417 			return error;
2418 	}
2419 
2420 	if (d_really_is_positive(new_dentry)) {
2421 		(void) shmem_unlink(new_dir, new_dentry);
2422 		if (they_are_dirs) {
2423 			drop_nlink(d_inode(new_dentry));
2424 			drop_nlink(old_dir);
2425 		}
2426 	} else if (they_are_dirs) {
2427 		drop_nlink(old_dir);
2428 		inc_nlink(new_dir);
2429 	}
2430 
2431 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2432 	new_dir->i_size += BOGO_DIRENT_SIZE;
2433 	old_dir->i_ctime = old_dir->i_mtime =
2434 	new_dir->i_ctime = new_dir->i_mtime =
2435 	inode->i_ctime = CURRENT_TIME;
2436 	return 0;
2437 }
2438 
2439 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2440 {
2441 	int error;
2442 	int len;
2443 	struct inode *inode;
2444 	struct page *page;
2445 	char *kaddr;
2446 	struct shmem_inode_info *info;
2447 
2448 	len = strlen(symname) + 1;
2449 	if (len > PAGE_CACHE_SIZE)
2450 		return -ENAMETOOLONG;
2451 
2452 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2453 	if (!inode)
2454 		return -ENOSPC;
2455 
2456 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2457 					     shmem_initxattrs, NULL);
2458 	if (error) {
2459 		if (error != -EOPNOTSUPP) {
2460 			iput(inode);
2461 			return error;
2462 		}
2463 		error = 0;
2464 	}
2465 
2466 	info = SHMEM_I(inode);
2467 	inode->i_size = len-1;
2468 	if (len <= SHORT_SYMLINK_LEN) {
2469 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2470 		if (!info->symlink) {
2471 			iput(inode);
2472 			return -ENOMEM;
2473 		}
2474 		inode->i_op = &shmem_short_symlink_operations;
2475 		inode->i_link = info->symlink;
2476 	} else {
2477 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2478 		if (error) {
2479 			iput(inode);
2480 			return error;
2481 		}
2482 		inode->i_mapping->a_ops = &shmem_aops;
2483 		inode->i_op = &shmem_symlink_inode_operations;
2484 		kaddr = kmap_atomic(page);
2485 		memcpy(kaddr, symname, len);
2486 		kunmap_atomic(kaddr);
2487 		SetPageUptodate(page);
2488 		set_page_dirty(page);
2489 		unlock_page(page);
2490 		page_cache_release(page);
2491 	}
2492 	dir->i_size += BOGO_DIRENT_SIZE;
2493 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2494 	d_instantiate(dentry, inode);
2495 	dget(dentry);
2496 	return 0;
2497 }
2498 
2499 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2500 {
2501 	struct page *page = NULL;
2502 	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2503 	if (error)
2504 		return ERR_PTR(error);
2505 	unlock_page(page);
2506 	*cookie = page;
2507 	return kmap(page);
2508 }
2509 
2510 static void shmem_put_link(struct inode *unused, void *cookie)
2511 {
2512 	struct page *page = cookie;
2513 	kunmap(page);
2514 	mark_page_accessed(page);
2515 	page_cache_release(page);
2516 }
2517 
2518 #ifdef CONFIG_TMPFS_XATTR
2519 /*
2520  * Superblocks without xattr inode operations may get some security.* xattr
2521  * support from the LSM "for free". As soon as we have any other xattrs
2522  * like ACLs, we also need to implement the security.* handlers at
2523  * filesystem level, though.
2524  */
2525 
2526 /*
2527  * Callback for security_inode_init_security() for acquiring xattrs.
2528  */
2529 static int shmem_initxattrs(struct inode *inode,
2530 			    const struct xattr *xattr_array,
2531 			    void *fs_info)
2532 {
2533 	struct shmem_inode_info *info = SHMEM_I(inode);
2534 	const struct xattr *xattr;
2535 	struct simple_xattr *new_xattr;
2536 	size_t len;
2537 
2538 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2539 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2540 		if (!new_xattr)
2541 			return -ENOMEM;
2542 
2543 		len = strlen(xattr->name) + 1;
2544 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2545 					  GFP_KERNEL);
2546 		if (!new_xattr->name) {
2547 			kfree(new_xattr);
2548 			return -ENOMEM;
2549 		}
2550 
2551 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2552 		       XATTR_SECURITY_PREFIX_LEN);
2553 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2554 		       xattr->name, len);
2555 
2556 		simple_xattr_list_add(&info->xattrs, new_xattr);
2557 	}
2558 
2559 	return 0;
2560 }
2561 
2562 static const struct xattr_handler *shmem_xattr_handlers[] = {
2563 #ifdef CONFIG_TMPFS_POSIX_ACL
2564 	&posix_acl_access_xattr_handler,
2565 	&posix_acl_default_xattr_handler,
2566 #endif
2567 	NULL
2568 };
2569 
2570 static int shmem_xattr_validate(const char *name)
2571 {
2572 	struct { const char *prefix; size_t len; } arr[] = {
2573 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2574 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2575 	};
2576 	int i;
2577 
2578 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2579 		size_t preflen = arr[i].len;
2580 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2581 			if (!name[preflen])
2582 				return -EINVAL;
2583 			return 0;
2584 		}
2585 	}
2586 	return -EOPNOTSUPP;
2587 }
2588 
2589 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2590 			      void *buffer, size_t size)
2591 {
2592 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2593 	int err;
2594 
2595 	/*
2596 	 * If this is a request for a synthetic attribute in the system.*
2597 	 * namespace use the generic infrastructure to resolve a handler
2598 	 * for it via sb->s_xattr.
2599 	 */
2600 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2601 		return generic_getxattr(dentry, name, buffer, size);
2602 
2603 	err = shmem_xattr_validate(name);
2604 	if (err)
2605 		return err;
2606 
2607 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2608 }
2609 
2610 static int shmem_setxattr(struct dentry *dentry, const char *name,
2611 			  const void *value, size_t size, int flags)
2612 {
2613 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2614 	int err;
2615 
2616 	/*
2617 	 * If this is a request for a synthetic attribute in the system.*
2618 	 * namespace use the generic infrastructure to resolve a handler
2619 	 * for it via sb->s_xattr.
2620 	 */
2621 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2622 		return generic_setxattr(dentry, name, value, size, flags);
2623 
2624 	err = shmem_xattr_validate(name);
2625 	if (err)
2626 		return err;
2627 
2628 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2629 }
2630 
2631 static int shmem_removexattr(struct dentry *dentry, const char *name)
2632 {
2633 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2634 	int err;
2635 
2636 	/*
2637 	 * If this is a request for a synthetic attribute in the system.*
2638 	 * namespace use the generic infrastructure to resolve a handler
2639 	 * for it via sb->s_xattr.
2640 	 */
2641 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2642 		return generic_removexattr(dentry, name);
2643 
2644 	err = shmem_xattr_validate(name);
2645 	if (err)
2646 		return err;
2647 
2648 	return simple_xattr_remove(&info->xattrs, name);
2649 }
2650 
2651 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2652 {
2653 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2654 	return simple_xattr_list(&info->xattrs, buffer, size);
2655 }
2656 #endif /* CONFIG_TMPFS_XATTR */
2657 
2658 static const struct inode_operations shmem_short_symlink_operations = {
2659 	.readlink	= generic_readlink,
2660 	.follow_link	= simple_follow_link,
2661 #ifdef CONFIG_TMPFS_XATTR
2662 	.setxattr	= shmem_setxattr,
2663 	.getxattr	= shmem_getxattr,
2664 	.listxattr	= shmem_listxattr,
2665 	.removexattr	= shmem_removexattr,
2666 #endif
2667 };
2668 
2669 static const struct inode_operations shmem_symlink_inode_operations = {
2670 	.readlink	= generic_readlink,
2671 	.follow_link	= shmem_follow_link,
2672 	.put_link	= shmem_put_link,
2673 #ifdef CONFIG_TMPFS_XATTR
2674 	.setxattr	= shmem_setxattr,
2675 	.getxattr	= shmem_getxattr,
2676 	.listxattr	= shmem_listxattr,
2677 	.removexattr	= shmem_removexattr,
2678 #endif
2679 };
2680 
2681 static struct dentry *shmem_get_parent(struct dentry *child)
2682 {
2683 	return ERR_PTR(-ESTALE);
2684 }
2685 
2686 static int shmem_match(struct inode *ino, void *vfh)
2687 {
2688 	__u32 *fh = vfh;
2689 	__u64 inum = fh[2];
2690 	inum = (inum << 32) | fh[1];
2691 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2692 }
2693 
2694 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2695 		struct fid *fid, int fh_len, int fh_type)
2696 {
2697 	struct inode *inode;
2698 	struct dentry *dentry = NULL;
2699 	u64 inum;
2700 
2701 	if (fh_len < 3)
2702 		return NULL;
2703 
2704 	inum = fid->raw[2];
2705 	inum = (inum << 32) | fid->raw[1];
2706 
2707 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2708 			shmem_match, fid->raw);
2709 	if (inode) {
2710 		dentry = d_find_alias(inode);
2711 		iput(inode);
2712 	}
2713 
2714 	return dentry;
2715 }
2716 
2717 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2718 				struct inode *parent)
2719 {
2720 	if (*len < 3) {
2721 		*len = 3;
2722 		return FILEID_INVALID;
2723 	}
2724 
2725 	if (inode_unhashed(inode)) {
2726 		/* Unfortunately insert_inode_hash is not idempotent,
2727 		 * so as we hash inodes here rather than at creation
2728 		 * time, we need a lock to ensure we only try
2729 		 * to do it once
2730 		 */
2731 		static DEFINE_SPINLOCK(lock);
2732 		spin_lock(&lock);
2733 		if (inode_unhashed(inode))
2734 			__insert_inode_hash(inode,
2735 					    inode->i_ino + inode->i_generation);
2736 		spin_unlock(&lock);
2737 	}
2738 
2739 	fh[0] = inode->i_generation;
2740 	fh[1] = inode->i_ino;
2741 	fh[2] = ((__u64)inode->i_ino) >> 32;
2742 
2743 	*len = 3;
2744 	return 1;
2745 }
2746 
2747 static const struct export_operations shmem_export_ops = {
2748 	.get_parent     = shmem_get_parent,
2749 	.encode_fh      = shmem_encode_fh,
2750 	.fh_to_dentry	= shmem_fh_to_dentry,
2751 };
2752 
2753 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2754 			       bool remount)
2755 {
2756 	char *this_char, *value, *rest;
2757 	struct mempolicy *mpol = NULL;
2758 	uid_t uid;
2759 	gid_t gid;
2760 
2761 	while (options != NULL) {
2762 		this_char = options;
2763 		for (;;) {
2764 			/*
2765 			 * NUL-terminate this option: unfortunately,
2766 			 * mount options form a comma-separated list,
2767 			 * but mpol's nodelist may also contain commas.
2768 			 */
2769 			options = strchr(options, ',');
2770 			if (options == NULL)
2771 				break;
2772 			options++;
2773 			if (!isdigit(*options)) {
2774 				options[-1] = '\0';
2775 				break;
2776 			}
2777 		}
2778 		if (!*this_char)
2779 			continue;
2780 		if ((value = strchr(this_char,'=')) != NULL) {
2781 			*value++ = 0;
2782 		} else {
2783 			printk(KERN_ERR
2784 			    "tmpfs: No value for mount option '%s'\n",
2785 			    this_char);
2786 			goto error;
2787 		}
2788 
2789 		if (!strcmp(this_char,"size")) {
2790 			unsigned long long size;
2791 			size = memparse(value,&rest);
2792 			if (*rest == '%') {
2793 				size <<= PAGE_SHIFT;
2794 				size *= totalram_pages;
2795 				do_div(size, 100);
2796 				rest++;
2797 			}
2798 			if (*rest)
2799 				goto bad_val;
2800 			sbinfo->max_blocks =
2801 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2802 		} else if (!strcmp(this_char,"nr_blocks")) {
2803 			sbinfo->max_blocks = memparse(value, &rest);
2804 			if (*rest)
2805 				goto bad_val;
2806 		} else if (!strcmp(this_char,"nr_inodes")) {
2807 			sbinfo->max_inodes = memparse(value, &rest);
2808 			if (*rest)
2809 				goto bad_val;
2810 		} else if (!strcmp(this_char,"mode")) {
2811 			if (remount)
2812 				continue;
2813 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2814 			if (*rest)
2815 				goto bad_val;
2816 		} else if (!strcmp(this_char,"uid")) {
2817 			if (remount)
2818 				continue;
2819 			uid = simple_strtoul(value, &rest, 0);
2820 			if (*rest)
2821 				goto bad_val;
2822 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2823 			if (!uid_valid(sbinfo->uid))
2824 				goto bad_val;
2825 		} else if (!strcmp(this_char,"gid")) {
2826 			if (remount)
2827 				continue;
2828 			gid = simple_strtoul(value, &rest, 0);
2829 			if (*rest)
2830 				goto bad_val;
2831 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2832 			if (!gid_valid(sbinfo->gid))
2833 				goto bad_val;
2834 		} else if (!strcmp(this_char,"mpol")) {
2835 			mpol_put(mpol);
2836 			mpol = NULL;
2837 			if (mpol_parse_str(value, &mpol))
2838 				goto bad_val;
2839 		} else {
2840 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2841 			       this_char);
2842 			goto error;
2843 		}
2844 	}
2845 	sbinfo->mpol = mpol;
2846 	return 0;
2847 
2848 bad_val:
2849 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2850 	       value, this_char);
2851 error:
2852 	mpol_put(mpol);
2853 	return 1;
2854 
2855 }
2856 
2857 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2858 {
2859 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2860 	struct shmem_sb_info config = *sbinfo;
2861 	unsigned long inodes;
2862 	int error = -EINVAL;
2863 
2864 	config.mpol = NULL;
2865 	if (shmem_parse_options(data, &config, true))
2866 		return error;
2867 
2868 	spin_lock(&sbinfo->stat_lock);
2869 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2870 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2871 		goto out;
2872 	if (config.max_inodes < inodes)
2873 		goto out;
2874 	/*
2875 	 * Those tests disallow limited->unlimited while any are in use;
2876 	 * but we must separately disallow unlimited->limited, because
2877 	 * in that case we have no record of how much is already in use.
2878 	 */
2879 	if (config.max_blocks && !sbinfo->max_blocks)
2880 		goto out;
2881 	if (config.max_inodes && !sbinfo->max_inodes)
2882 		goto out;
2883 
2884 	error = 0;
2885 	sbinfo->max_blocks  = config.max_blocks;
2886 	sbinfo->max_inodes  = config.max_inodes;
2887 	sbinfo->free_inodes = config.max_inodes - inodes;
2888 
2889 	/*
2890 	 * Preserve previous mempolicy unless mpol remount option was specified.
2891 	 */
2892 	if (config.mpol) {
2893 		mpol_put(sbinfo->mpol);
2894 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2895 	}
2896 out:
2897 	spin_unlock(&sbinfo->stat_lock);
2898 	return error;
2899 }
2900 
2901 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2902 {
2903 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2904 
2905 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2906 		seq_printf(seq, ",size=%luk",
2907 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2908 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2909 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2910 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2911 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2912 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2913 		seq_printf(seq, ",uid=%u",
2914 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2915 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2916 		seq_printf(seq, ",gid=%u",
2917 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2918 	shmem_show_mpol(seq, sbinfo->mpol);
2919 	return 0;
2920 }
2921 
2922 #define MFD_NAME_PREFIX "memfd:"
2923 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2924 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2925 
2926 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2927 
2928 SYSCALL_DEFINE2(memfd_create,
2929 		const char __user *, uname,
2930 		unsigned int, flags)
2931 {
2932 	struct shmem_inode_info *info;
2933 	struct file *file;
2934 	int fd, error;
2935 	char *name;
2936 	long len;
2937 
2938 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2939 		return -EINVAL;
2940 
2941 	/* length includes terminating zero */
2942 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2943 	if (len <= 0)
2944 		return -EFAULT;
2945 	if (len > MFD_NAME_MAX_LEN + 1)
2946 		return -EINVAL;
2947 
2948 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2949 	if (!name)
2950 		return -ENOMEM;
2951 
2952 	strcpy(name, MFD_NAME_PREFIX);
2953 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2954 		error = -EFAULT;
2955 		goto err_name;
2956 	}
2957 
2958 	/* terminating-zero may have changed after strnlen_user() returned */
2959 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2960 		error = -EFAULT;
2961 		goto err_name;
2962 	}
2963 
2964 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2965 	if (fd < 0) {
2966 		error = fd;
2967 		goto err_name;
2968 	}
2969 
2970 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2971 	if (IS_ERR(file)) {
2972 		error = PTR_ERR(file);
2973 		goto err_fd;
2974 	}
2975 	info = SHMEM_I(file_inode(file));
2976 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2977 	file->f_flags |= O_RDWR | O_LARGEFILE;
2978 	if (flags & MFD_ALLOW_SEALING)
2979 		info->seals &= ~F_SEAL_SEAL;
2980 
2981 	fd_install(fd, file);
2982 	kfree(name);
2983 	return fd;
2984 
2985 err_fd:
2986 	put_unused_fd(fd);
2987 err_name:
2988 	kfree(name);
2989 	return error;
2990 }
2991 
2992 #endif /* CONFIG_TMPFS */
2993 
2994 static void shmem_put_super(struct super_block *sb)
2995 {
2996 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2997 
2998 	percpu_counter_destroy(&sbinfo->used_blocks);
2999 	mpol_put(sbinfo->mpol);
3000 	kfree(sbinfo);
3001 	sb->s_fs_info = NULL;
3002 }
3003 
3004 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3005 {
3006 	struct inode *inode;
3007 	struct shmem_sb_info *sbinfo;
3008 	int err = -ENOMEM;
3009 
3010 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3011 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3012 				L1_CACHE_BYTES), GFP_KERNEL);
3013 	if (!sbinfo)
3014 		return -ENOMEM;
3015 
3016 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
3017 	sbinfo->uid = current_fsuid();
3018 	sbinfo->gid = current_fsgid();
3019 	sb->s_fs_info = sbinfo;
3020 
3021 #ifdef CONFIG_TMPFS
3022 	/*
3023 	 * Per default we only allow half of the physical ram per
3024 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3025 	 * but the internal instance is left unlimited.
3026 	 */
3027 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3028 		sbinfo->max_blocks = shmem_default_max_blocks();
3029 		sbinfo->max_inodes = shmem_default_max_inodes();
3030 		if (shmem_parse_options(data, sbinfo, false)) {
3031 			err = -EINVAL;
3032 			goto failed;
3033 		}
3034 	} else {
3035 		sb->s_flags |= MS_NOUSER;
3036 	}
3037 	sb->s_export_op = &shmem_export_ops;
3038 	sb->s_flags |= MS_NOSEC;
3039 #else
3040 	sb->s_flags |= MS_NOUSER;
3041 #endif
3042 
3043 	spin_lock_init(&sbinfo->stat_lock);
3044 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3045 		goto failed;
3046 	sbinfo->free_inodes = sbinfo->max_inodes;
3047 
3048 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3049 	sb->s_blocksize = PAGE_CACHE_SIZE;
3050 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3051 	sb->s_magic = TMPFS_MAGIC;
3052 	sb->s_op = &shmem_ops;
3053 	sb->s_time_gran = 1;
3054 #ifdef CONFIG_TMPFS_XATTR
3055 	sb->s_xattr = shmem_xattr_handlers;
3056 #endif
3057 #ifdef CONFIG_TMPFS_POSIX_ACL
3058 	sb->s_flags |= MS_POSIXACL;
3059 #endif
3060 
3061 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3062 	if (!inode)
3063 		goto failed;
3064 	inode->i_uid = sbinfo->uid;
3065 	inode->i_gid = sbinfo->gid;
3066 	sb->s_root = d_make_root(inode);
3067 	if (!sb->s_root)
3068 		goto failed;
3069 	return 0;
3070 
3071 failed:
3072 	shmem_put_super(sb);
3073 	return err;
3074 }
3075 
3076 static struct kmem_cache *shmem_inode_cachep;
3077 
3078 static struct inode *shmem_alloc_inode(struct super_block *sb)
3079 {
3080 	struct shmem_inode_info *info;
3081 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3082 	if (!info)
3083 		return NULL;
3084 	return &info->vfs_inode;
3085 }
3086 
3087 static void shmem_destroy_callback(struct rcu_head *head)
3088 {
3089 	struct inode *inode = container_of(head, struct inode, i_rcu);
3090 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3091 }
3092 
3093 static void shmem_destroy_inode(struct inode *inode)
3094 {
3095 	if (S_ISREG(inode->i_mode))
3096 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3097 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3098 }
3099 
3100 static void shmem_init_inode(void *foo)
3101 {
3102 	struct shmem_inode_info *info = foo;
3103 	inode_init_once(&info->vfs_inode);
3104 }
3105 
3106 static int shmem_init_inodecache(void)
3107 {
3108 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3109 				sizeof(struct shmem_inode_info),
3110 				0, SLAB_PANIC, shmem_init_inode);
3111 	return 0;
3112 }
3113 
3114 static void shmem_destroy_inodecache(void)
3115 {
3116 	kmem_cache_destroy(shmem_inode_cachep);
3117 }
3118 
3119 static const struct address_space_operations shmem_aops = {
3120 	.writepage	= shmem_writepage,
3121 	.set_page_dirty	= __set_page_dirty_no_writeback,
3122 #ifdef CONFIG_TMPFS
3123 	.write_begin	= shmem_write_begin,
3124 	.write_end	= shmem_write_end,
3125 #endif
3126 #ifdef CONFIG_MIGRATION
3127 	.migratepage	= migrate_page,
3128 #endif
3129 	.error_remove_page = generic_error_remove_page,
3130 };
3131 
3132 static const struct file_operations shmem_file_operations = {
3133 	.mmap		= shmem_mmap,
3134 #ifdef CONFIG_TMPFS
3135 	.llseek		= shmem_file_llseek,
3136 	.read_iter	= shmem_file_read_iter,
3137 	.write_iter	= generic_file_write_iter,
3138 	.fsync		= noop_fsync,
3139 	.splice_read	= shmem_file_splice_read,
3140 	.splice_write	= iter_file_splice_write,
3141 	.fallocate	= shmem_fallocate,
3142 #endif
3143 };
3144 
3145 static const struct inode_operations shmem_inode_operations = {
3146 	.getattr	= shmem_getattr,
3147 	.setattr	= shmem_setattr,
3148 #ifdef CONFIG_TMPFS_XATTR
3149 	.setxattr	= shmem_setxattr,
3150 	.getxattr	= shmem_getxattr,
3151 	.listxattr	= shmem_listxattr,
3152 	.removexattr	= shmem_removexattr,
3153 	.set_acl	= simple_set_acl,
3154 #endif
3155 };
3156 
3157 static const struct inode_operations shmem_dir_inode_operations = {
3158 #ifdef CONFIG_TMPFS
3159 	.create		= shmem_create,
3160 	.lookup		= simple_lookup,
3161 	.link		= shmem_link,
3162 	.unlink		= shmem_unlink,
3163 	.symlink	= shmem_symlink,
3164 	.mkdir		= shmem_mkdir,
3165 	.rmdir		= shmem_rmdir,
3166 	.mknod		= shmem_mknod,
3167 	.rename2	= shmem_rename2,
3168 	.tmpfile	= shmem_tmpfile,
3169 #endif
3170 #ifdef CONFIG_TMPFS_XATTR
3171 	.setxattr	= shmem_setxattr,
3172 	.getxattr	= shmem_getxattr,
3173 	.listxattr	= shmem_listxattr,
3174 	.removexattr	= shmem_removexattr,
3175 #endif
3176 #ifdef CONFIG_TMPFS_POSIX_ACL
3177 	.setattr	= shmem_setattr,
3178 	.set_acl	= simple_set_acl,
3179 #endif
3180 };
3181 
3182 static const struct inode_operations shmem_special_inode_operations = {
3183 #ifdef CONFIG_TMPFS_XATTR
3184 	.setxattr	= shmem_setxattr,
3185 	.getxattr	= shmem_getxattr,
3186 	.listxattr	= shmem_listxattr,
3187 	.removexattr	= shmem_removexattr,
3188 #endif
3189 #ifdef CONFIG_TMPFS_POSIX_ACL
3190 	.setattr	= shmem_setattr,
3191 	.set_acl	= simple_set_acl,
3192 #endif
3193 };
3194 
3195 static const struct super_operations shmem_ops = {
3196 	.alloc_inode	= shmem_alloc_inode,
3197 	.destroy_inode	= shmem_destroy_inode,
3198 #ifdef CONFIG_TMPFS
3199 	.statfs		= shmem_statfs,
3200 	.remount_fs	= shmem_remount_fs,
3201 	.show_options	= shmem_show_options,
3202 #endif
3203 	.evict_inode	= shmem_evict_inode,
3204 	.drop_inode	= generic_delete_inode,
3205 	.put_super	= shmem_put_super,
3206 };
3207 
3208 static const struct vm_operations_struct shmem_vm_ops = {
3209 	.fault		= shmem_fault,
3210 	.map_pages	= filemap_map_pages,
3211 #ifdef CONFIG_NUMA
3212 	.set_policy     = shmem_set_policy,
3213 	.get_policy     = shmem_get_policy,
3214 #endif
3215 };
3216 
3217 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3218 	int flags, const char *dev_name, void *data)
3219 {
3220 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3221 }
3222 
3223 static struct file_system_type shmem_fs_type = {
3224 	.owner		= THIS_MODULE,
3225 	.name		= "tmpfs",
3226 	.mount		= shmem_mount,
3227 	.kill_sb	= kill_litter_super,
3228 	.fs_flags	= FS_USERNS_MOUNT,
3229 };
3230 
3231 int __init shmem_init(void)
3232 {
3233 	int error;
3234 
3235 	/* If rootfs called this, don't re-init */
3236 	if (shmem_inode_cachep)
3237 		return 0;
3238 
3239 	error = shmem_init_inodecache();
3240 	if (error)
3241 		goto out3;
3242 
3243 	error = register_filesystem(&shmem_fs_type);
3244 	if (error) {
3245 		printk(KERN_ERR "Could not register tmpfs\n");
3246 		goto out2;
3247 	}
3248 
3249 	shm_mnt = kern_mount(&shmem_fs_type);
3250 	if (IS_ERR(shm_mnt)) {
3251 		error = PTR_ERR(shm_mnt);
3252 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3253 		goto out1;
3254 	}
3255 	return 0;
3256 
3257 out1:
3258 	unregister_filesystem(&shmem_fs_type);
3259 out2:
3260 	shmem_destroy_inodecache();
3261 out3:
3262 	shm_mnt = ERR_PTR(error);
3263 	return error;
3264 }
3265 
3266 #else /* !CONFIG_SHMEM */
3267 
3268 /*
3269  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3270  *
3271  * This is intended for small system where the benefits of the full
3272  * shmem code (swap-backed and resource-limited) are outweighed by
3273  * their complexity. On systems without swap this code should be
3274  * effectively equivalent, but much lighter weight.
3275  */
3276 
3277 static struct file_system_type shmem_fs_type = {
3278 	.name		= "tmpfs",
3279 	.mount		= ramfs_mount,
3280 	.kill_sb	= kill_litter_super,
3281 	.fs_flags	= FS_USERNS_MOUNT,
3282 };
3283 
3284 int __init shmem_init(void)
3285 {
3286 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3287 
3288 	shm_mnt = kern_mount(&shmem_fs_type);
3289 	BUG_ON(IS_ERR(shm_mnt));
3290 
3291 	return 0;
3292 }
3293 
3294 int shmem_unuse(swp_entry_t swap, struct page *page)
3295 {
3296 	return 0;
3297 }
3298 
3299 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3300 {
3301 	return 0;
3302 }
3303 
3304 void shmem_unlock_mapping(struct address_space *mapping)
3305 {
3306 }
3307 
3308 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3309 {
3310 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3311 }
3312 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3313 
3314 #define shmem_vm_ops				generic_file_vm_ops
3315 #define shmem_file_operations			ramfs_file_operations
3316 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3317 #define shmem_acct_size(flags, size)		0
3318 #define shmem_unacct_size(flags, size)		do {} while (0)
3319 
3320 #endif /* CONFIG_SHMEM */
3321 
3322 /* common code */
3323 
3324 static struct dentry_operations anon_ops = {
3325 	.d_dname = simple_dname
3326 };
3327 
3328 static struct file *__shmem_file_setup(const char *name, loff_t size,
3329 				       unsigned long flags, unsigned int i_flags)
3330 {
3331 	struct file *res;
3332 	struct inode *inode;
3333 	struct path path;
3334 	struct super_block *sb;
3335 	struct qstr this;
3336 
3337 	if (IS_ERR(shm_mnt))
3338 		return ERR_CAST(shm_mnt);
3339 
3340 	if (size < 0 || size > MAX_LFS_FILESIZE)
3341 		return ERR_PTR(-EINVAL);
3342 
3343 	if (shmem_acct_size(flags, size))
3344 		return ERR_PTR(-ENOMEM);
3345 
3346 	res = ERR_PTR(-ENOMEM);
3347 	this.name = name;
3348 	this.len = strlen(name);
3349 	this.hash = 0; /* will go */
3350 	sb = shm_mnt->mnt_sb;
3351 	path.mnt = mntget(shm_mnt);
3352 	path.dentry = d_alloc_pseudo(sb, &this);
3353 	if (!path.dentry)
3354 		goto put_memory;
3355 	d_set_d_op(path.dentry, &anon_ops);
3356 
3357 	res = ERR_PTR(-ENOSPC);
3358 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3359 	if (!inode)
3360 		goto put_memory;
3361 
3362 	inode->i_flags |= i_flags;
3363 	d_instantiate(path.dentry, inode);
3364 	inode->i_size = size;
3365 	clear_nlink(inode);	/* It is unlinked */
3366 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3367 	if (IS_ERR(res))
3368 		goto put_path;
3369 
3370 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3371 		  &shmem_file_operations);
3372 	if (IS_ERR(res))
3373 		goto put_path;
3374 
3375 	return res;
3376 
3377 put_memory:
3378 	shmem_unacct_size(flags, size);
3379 put_path:
3380 	path_put(&path);
3381 	return res;
3382 }
3383 
3384 /**
3385  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3386  * 	kernel internal.  There will be NO LSM permission checks against the
3387  * 	underlying inode.  So users of this interface must do LSM checks at a
3388  *	higher layer.  The users are the big_key and shm implementations.  LSM
3389  *	checks are provided at the key or shm level rather than the inode.
3390  * @name: name for dentry (to be seen in /proc/<pid>/maps
3391  * @size: size to be set for the file
3392  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3393  */
3394 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3395 {
3396 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3397 }
3398 
3399 /**
3400  * shmem_file_setup - get an unlinked file living in tmpfs
3401  * @name: name for dentry (to be seen in /proc/<pid>/maps
3402  * @size: size to be set for the file
3403  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3404  */
3405 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3406 {
3407 	return __shmem_file_setup(name, size, flags, 0);
3408 }
3409 EXPORT_SYMBOL_GPL(shmem_file_setup);
3410 
3411 /**
3412  * shmem_zero_setup - setup a shared anonymous mapping
3413  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3414  */
3415 int shmem_zero_setup(struct vm_area_struct *vma)
3416 {
3417 	struct file *file;
3418 	loff_t size = vma->vm_end - vma->vm_start;
3419 
3420 	/*
3421 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3422 	 * between XFS directory reading and selinux: since this file is only
3423 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3424 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3425 	 */
3426 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3427 	if (IS_ERR(file))
3428 		return PTR_ERR(file);
3429 
3430 	if (vma->vm_file)
3431 		fput(vma->vm_file);
3432 	vma->vm_file = file;
3433 	vma->vm_ops = &shmem_vm_ops;
3434 	return 0;
3435 }
3436 
3437 /**
3438  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3439  * @mapping:	the page's address_space
3440  * @index:	the page index
3441  * @gfp:	the page allocator flags to use if allocating
3442  *
3443  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3444  * with any new page allocations done using the specified allocation flags.
3445  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3446  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3447  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3448  *
3449  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3450  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3451  */
3452 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3453 					 pgoff_t index, gfp_t gfp)
3454 {
3455 #ifdef CONFIG_SHMEM
3456 	struct inode *inode = mapping->host;
3457 	struct page *page;
3458 	int error;
3459 
3460 	BUG_ON(mapping->a_ops != &shmem_aops);
3461 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3462 	if (error)
3463 		page = ERR_PTR(error);
3464 	else
3465 		unlock_page(page);
3466 	return page;
3467 #else
3468 	/*
3469 	 * The tiny !SHMEM case uses ramfs without swap
3470 	 */
3471 	return read_cache_page_gfp(mapping, index, gfp);
3472 #endif
3473 }
3474 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3475