xref: /linux/mm/shmem.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 	bool noswap;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 #define SHMEM_SEEN_NOSWAP 16
124 };
125 
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
141 			     struct folio **foliop, enum sgp_type sgp,
142 			     gfp_t gfp, struct vm_area_struct *vma,
143 			     vm_fault_t *fault_type);
144 
145 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
146 {
147 	return sb->s_fs_info;
148 }
149 
150 /*
151  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
152  * for shared memory and for shared anonymous (/dev/zero) mappings
153  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
154  * consistent with the pre-accounting of private mappings ...
155  */
156 static inline int shmem_acct_size(unsigned long flags, loff_t size)
157 {
158 	return (flags & VM_NORESERVE) ?
159 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
160 }
161 
162 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
163 {
164 	if (!(flags & VM_NORESERVE))
165 		vm_unacct_memory(VM_ACCT(size));
166 }
167 
168 static inline int shmem_reacct_size(unsigned long flags,
169 		loff_t oldsize, loff_t newsize)
170 {
171 	if (!(flags & VM_NORESERVE)) {
172 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
173 			return security_vm_enough_memory_mm(current->mm,
174 					VM_ACCT(newsize) - VM_ACCT(oldsize));
175 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
176 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
177 	}
178 	return 0;
179 }
180 
181 /*
182  * ... whereas tmpfs objects are accounted incrementally as
183  * pages are allocated, in order to allow large sparse files.
184  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
185  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
186  */
187 static inline int shmem_acct_block(unsigned long flags, long pages)
188 {
189 	if (!(flags & VM_NORESERVE))
190 		return 0;
191 
192 	return security_vm_enough_memory_mm(current->mm,
193 			pages * VM_ACCT(PAGE_SIZE));
194 }
195 
196 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 {
198 	if (flags & VM_NORESERVE)
199 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
200 }
201 
202 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
203 {
204 	struct shmem_inode_info *info = SHMEM_I(inode);
205 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
206 
207 	if (shmem_acct_block(info->flags, pages))
208 		return false;
209 
210 	if (sbinfo->max_blocks) {
211 		if (percpu_counter_compare(&sbinfo->used_blocks,
212 					   sbinfo->max_blocks - pages) > 0)
213 			goto unacct;
214 		percpu_counter_add(&sbinfo->used_blocks, pages);
215 	}
216 
217 	return true;
218 
219 unacct:
220 	shmem_unacct_blocks(info->flags, pages);
221 	return false;
222 }
223 
224 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
225 {
226 	struct shmem_inode_info *info = SHMEM_I(inode);
227 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 
229 	if (sbinfo->max_blocks)
230 		percpu_counter_sub(&sbinfo->used_blocks, pages);
231 	shmem_unacct_blocks(info->flags, pages);
232 }
233 
234 static const struct super_operations shmem_ops;
235 const struct address_space_operations shmem_aops;
236 static const struct file_operations shmem_file_operations;
237 static const struct inode_operations shmem_inode_operations;
238 static const struct inode_operations shmem_dir_inode_operations;
239 static const struct inode_operations shmem_special_inode_operations;
240 static const struct vm_operations_struct shmem_vm_ops;
241 static const struct vm_operations_struct shmem_anon_vm_ops;
242 static struct file_system_type shmem_fs_type;
243 
244 bool vma_is_anon_shmem(struct vm_area_struct *vma)
245 {
246 	return vma->vm_ops == &shmem_anon_vm_ops;
247 }
248 
249 bool vma_is_shmem(struct vm_area_struct *vma)
250 {
251 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
252 }
253 
254 static LIST_HEAD(shmem_swaplist);
255 static DEFINE_MUTEX(shmem_swaplist_mutex);
256 
257 /*
258  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
259  * produces a novel ino for the newly allocated inode.
260  *
261  * It may also be called when making a hard link to permit the space needed by
262  * each dentry. However, in that case, no new inode number is needed since that
263  * internally draws from another pool of inode numbers (currently global
264  * get_next_ino()). This case is indicated by passing NULL as inop.
265  */
266 #define SHMEM_INO_BATCH 1024
267 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
268 {
269 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
270 	ino_t ino;
271 
272 	if (!(sb->s_flags & SB_KERNMOUNT)) {
273 		raw_spin_lock(&sbinfo->stat_lock);
274 		if (sbinfo->max_inodes) {
275 			if (!sbinfo->free_inodes) {
276 				raw_spin_unlock(&sbinfo->stat_lock);
277 				return -ENOSPC;
278 			}
279 			sbinfo->free_inodes--;
280 		}
281 		if (inop) {
282 			ino = sbinfo->next_ino++;
283 			if (unlikely(is_zero_ino(ino)))
284 				ino = sbinfo->next_ino++;
285 			if (unlikely(!sbinfo->full_inums &&
286 				     ino > UINT_MAX)) {
287 				/*
288 				 * Emulate get_next_ino uint wraparound for
289 				 * compatibility
290 				 */
291 				if (IS_ENABLED(CONFIG_64BIT))
292 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
293 						__func__, MINOR(sb->s_dev));
294 				sbinfo->next_ino = 1;
295 				ino = sbinfo->next_ino++;
296 			}
297 			*inop = ino;
298 		}
299 		raw_spin_unlock(&sbinfo->stat_lock);
300 	} else if (inop) {
301 		/*
302 		 * __shmem_file_setup, one of our callers, is lock-free: it
303 		 * doesn't hold stat_lock in shmem_reserve_inode since
304 		 * max_inodes is always 0, and is called from potentially
305 		 * unknown contexts. As such, use a per-cpu batched allocator
306 		 * which doesn't require the per-sb stat_lock unless we are at
307 		 * the batch boundary.
308 		 *
309 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
310 		 * shmem mounts are not exposed to userspace, so we don't need
311 		 * to worry about things like glibc compatibility.
312 		 */
313 		ino_t *next_ino;
314 
315 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
316 		ino = *next_ino;
317 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
318 			raw_spin_lock(&sbinfo->stat_lock);
319 			ino = sbinfo->next_ino;
320 			sbinfo->next_ino += SHMEM_INO_BATCH;
321 			raw_spin_unlock(&sbinfo->stat_lock);
322 			if (unlikely(is_zero_ino(ino)))
323 				ino++;
324 		}
325 		*inop = ino;
326 		*next_ino = ++ino;
327 		put_cpu();
328 	}
329 
330 	return 0;
331 }
332 
333 static void shmem_free_inode(struct super_block *sb)
334 {
335 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
336 	if (sbinfo->max_inodes) {
337 		raw_spin_lock(&sbinfo->stat_lock);
338 		sbinfo->free_inodes++;
339 		raw_spin_unlock(&sbinfo->stat_lock);
340 	}
341 }
342 
343 /**
344  * shmem_recalc_inode - recalculate the block usage of an inode
345  * @inode: inode to recalc
346  *
347  * We have to calculate the free blocks since the mm can drop
348  * undirtied hole pages behind our back.
349  *
350  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
351  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
352  *
353  * It has to be called with the spinlock held.
354  */
355 static void shmem_recalc_inode(struct inode *inode)
356 {
357 	struct shmem_inode_info *info = SHMEM_I(inode);
358 	long freed;
359 
360 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
361 	if (freed > 0) {
362 		info->alloced -= freed;
363 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
364 		shmem_inode_unacct_blocks(inode, freed);
365 	}
366 }
367 
368 bool shmem_charge(struct inode *inode, long pages)
369 {
370 	struct shmem_inode_info *info = SHMEM_I(inode);
371 	unsigned long flags;
372 
373 	if (!shmem_inode_acct_block(inode, pages))
374 		return false;
375 
376 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
377 	inode->i_mapping->nrpages += pages;
378 
379 	spin_lock_irqsave(&info->lock, flags);
380 	info->alloced += pages;
381 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
382 	shmem_recalc_inode(inode);
383 	spin_unlock_irqrestore(&info->lock, flags);
384 
385 	return true;
386 }
387 
388 void shmem_uncharge(struct inode *inode, long pages)
389 {
390 	struct shmem_inode_info *info = SHMEM_I(inode);
391 	unsigned long flags;
392 
393 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
394 
395 	spin_lock_irqsave(&info->lock, flags);
396 	info->alloced -= pages;
397 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
398 	shmem_recalc_inode(inode);
399 	spin_unlock_irqrestore(&info->lock, flags);
400 
401 	shmem_inode_unacct_blocks(inode, pages);
402 }
403 
404 /*
405  * Replace item expected in xarray by a new item, while holding xa_lock.
406  */
407 static int shmem_replace_entry(struct address_space *mapping,
408 			pgoff_t index, void *expected, void *replacement)
409 {
410 	XA_STATE(xas, &mapping->i_pages, index);
411 	void *item;
412 
413 	VM_BUG_ON(!expected);
414 	VM_BUG_ON(!replacement);
415 	item = xas_load(&xas);
416 	if (item != expected)
417 		return -ENOENT;
418 	xas_store(&xas, replacement);
419 	return 0;
420 }
421 
422 /*
423  * Sometimes, before we decide whether to proceed or to fail, we must check
424  * that an entry was not already brought back from swap by a racing thread.
425  *
426  * Checking page is not enough: by the time a SwapCache page is locked, it
427  * might be reused, and again be SwapCache, using the same swap as before.
428  */
429 static bool shmem_confirm_swap(struct address_space *mapping,
430 			       pgoff_t index, swp_entry_t swap)
431 {
432 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
433 }
434 
435 /*
436  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
437  *
438  * SHMEM_HUGE_NEVER:
439  *	disables huge pages for the mount;
440  * SHMEM_HUGE_ALWAYS:
441  *	enables huge pages for the mount;
442  * SHMEM_HUGE_WITHIN_SIZE:
443  *	only allocate huge pages if the page will be fully within i_size,
444  *	also respect fadvise()/madvise() hints;
445  * SHMEM_HUGE_ADVISE:
446  *	only allocate huge pages if requested with fadvise()/madvise();
447  */
448 
449 #define SHMEM_HUGE_NEVER	0
450 #define SHMEM_HUGE_ALWAYS	1
451 #define SHMEM_HUGE_WITHIN_SIZE	2
452 #define SHMEM_HUGE_ADVISE	3
453 
454 /*
455  * Special values.
456  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
457  *
458  * SHMEM_HUGE_DENY:
459  *	disables huge on shm_mnt and all mounts, for emergency use;
460  * SHMEM_HUGE_FORCE:
461  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
462  *
463  */
464 #define SHMEM_HUGE_DENY		(-1)
465 #define SHMEM_HUGE_FORCE	(-2)
466 
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 /* ifdef here to avoid bloating shmem.o when not necessary */
469 
470 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
471 
472 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
473 		   struct mm_struct *mm, unsigned long vm_flags)
474 {
475 	loff_t i_size;
476 
477 	if (!S_ISREG(inode->i_mode))
478 		return false;
479 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
484 		return true;
485 
486 	switch (SHMEM_SB(inode->i_sb)->huge) {
487 	case SHMEM_HUGE_ALWAYS:
488 		return true;
489 	case SHMEM_HUGE_WITHIN_SIZE:
490 		index = round_up(index + 1, HPAGE_PMD_NR);
491 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 		if (i_size >> PAGE_SHIFT >= index)
493 			return true;
494 		fallthrough;
495 	case SHMEM_HUGE_ADVISE:
496 		if (mm && (vm_flags & VM_HUGEPAGE))
497 			return true;
498 		fallthrough;
499 	default:
500 		return false;
501 	}
502 }
503 
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
506 {
507 	if (!strcmp(str, "never"))
508 		return SHMEM_HUGE_NEVER;
509 	if (!strcmp(str, "always"))
510 		return SHMEM_HUGE_ALWAYS;
511 	if (!strcmp(str, "within_size"))
512 		return SHMEM_HUGE_WITHIN_SIZE;
513 	if (!strcmp(str, "advise"))
514 		return SHMEM_HUGE_ADVISE;
515 	if (!strcmp(str, "deny"))
516 		return SHMEM_HUGE_DENY;
517 	if (!strcmp(str, "force"))
518 		return SHMEM_HUGE_FORCE;
519 	return -EINVAL;
520 }
521 #endif
522 
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
525 {
526 	switch (huge) {
527 	case SHMEM_HUGE_NEVER:
528 		return "never";
529 	case SHMEM_HUGE_ALWAYS:
530 		return "always";
531 	case SHMEM_HUGE_WITHIN_SIZE:
532 		return "within_size";
533 	case SHMEM_HUGE_ADVISE:
534 		return "advise";
535 	case SHMEM_HUGE_DENY:
536 		return "deny";
537 	case SHMEM_HUGE_FORCE:
538 		return "force";
539 	default:
540 		VM_BUG_ON(1);
541 		return "bad_val";
542 	}
543 }
544 #endif
545 
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 		struct shrink_control *sc, unsigned long nr_to_split)
548 {
549 	LIST_HEAD(list), *pos, *next;
550 	LIST_HEAD(to_remove);
551 	struct inode *inode;
552 	struct shmem_inode_info *info;
553 	struct folio *folio;
554 	unsigned long batch = sc ? sc->nr_to_scan : 128;
555 	int split = 0;
556 
557 	if (list_empty(&sbinfo->shrinklist))
558 		return SHRINK_STOP;
559 
560 	spin_lock(&sbinfo->shrinklist_lock);
561 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
563 
564 		/* pin the inode */
565 		inode = igrab(&info->vfs_inode);
566 
567 		/* inode is about to be evicted */
568 		if (!inode) {
569 			list_del_init(&info->shrinklist);
570 			goto next;
571 		}
572 
573 		/* Check if there's anything to gain */
574 		if (round_up(inode->i_size, PAGE_SIZE) ==
575 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 			list_move(&info->shrinklist, &to_remove);
577 			goto next;
578 		}
579 
580 		list_move(&info->shrinklist, &list);
581 next:
582 		sbinfo->shrinklist_len--;
583 		if (!--batch)
584 			break;
585 	}
586 	spin_unlock(&sbinfo->shrinklist_lock);
587 
588 	list_for_each_safe(pos, next, &to_remove) {
589 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 		inode = &info->vfs_inode;
591 		list_del_init(&info->shrinklist);
592 		iput(inode);
593 	}
594 
595 	list_for_each_safe(pos, next, &list) {
596 		int ret;
597 		pgoff_t index;
598 
599 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 		inode = &info->vfs_inode;
601 
602 		if (nr_to_split && split >= nr_to_split)
603 			goto move_back;
604 
605 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 		folio = filemap_get_folio(inode->i_mapping, index);
607 		if (IS_ERR(folio))
608 			goto drop;
609 
610 		/* No huge page at the end of the file: nothing to split */
611 		if (!folio_test_large(folio)) {
612 			folio_put(folio);
613 			goto drop;
614 		}
615 
616 		/*
617 		 * Move the inode on the list back to shrinklist if we failed
618 		 * to lock the page at this time.
619 		 *
620 		 * Waiting for the lock may lead to deadlock in the
621 		 * reclaim path.
622 		 */
623 		if (!folio_trylock(folio)) {
624 			folio_put(folio);
625 			goto move_back;
626 		}
627 
628 		ret = split_folio(folio);
629 		folio_unlock(folio);
630 		folio_put(folio);
631 
632 		/* If split failed move the inode on the list back to shrinklist */
633 		if (ret)
634 			goto move_back;
635 
636 		split++;
637 drop:
638 		list_del_init(&info->shrinklist);
639 		goto put;
640 move_back:
641 		/*
642 		 * Make sure the inode is either on the global list or deleted
643 		 * from any local list before iput() since it could be deleted
644 		 * in another thread once we put the inode (then the local list
645 		 * is corrupted).
646 		 */
647 		spin_lock(&sbinfo->shrinklist_lock);
648 		list_move(&info->shrinklist, &sbinfo->shrinklist);
649 		sbinfo->shrinklist_len++;
650 		spin_unlock(&sbinfo->shrinklist_lock);
651 put:
652 		iput(inode);
653 	}
654 
655 	return split;
656 }
657 
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 		struct shrink_control *sc)
660 {
661 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662 
663 	if (!READ_ONCE(sbinfo->shrinklist_len))
664 		return SHRINK_STOP;
665 
666 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
667 }
668 
669 static long shmem_unused_huge_count(struct super_block *sb,
670 		struct shrink_control *sc)
671 {
672 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 	return READ_ONCE(sbinfo->shrinklist_len);
674 }
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676 
677 #define shmem_huge SHMEM_HUGE_DENY
678 
679 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
680 		   struct mm_struct *mm, unsigned long vm_flags)
681 {
682 	return false;
683 }
684 
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 		struct shrink_control *sc, unsigned long nr_to_split)
687 {
688 	return 0;
689 }
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691 
692 /*
693  * Like filemap_add_folio, but error if expected item has gone.
694  */
695 static int shmem_add_to_page_cache(struct folio *folio,
696 				   struct address_space *mapping,
697 				   pgoff_t index, void *expected, gfp_t gfp,
698 				   struct mm_struct *charge_mm)
699 {
700 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 	long nr = folio_nr_pages(folio);
702 	int error;
703 
704 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 	VM_BUG_ON(expected && folio_test_large(folio));
708 
709 	folio_ref_add(folio, nr);
710 	folio->mapping = mapping;
711 	folio->index = index;
712 
713 	if (!folio_test_swapcache(folio)) {
714 		error = mem_cgroup_charge(folio, charge_mm, gfp);
715 		if (error) {
716 			if (folio_test_pmd_mappable(folio)) {
717 				count_vm_event(THP_FILE_FALLBACK);
718 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
719 			}
720 			goto error;
721 		}
722 	}
723 	folio_throttle_swaprate(folio, gfp);
724 
725 	do {
726 		xas_lock_irq(&xas);
727 		if (expected != xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		if (expected && xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		xas_store(&xas, folio);
736 		if (xas_error(&xas))
737 			goto unlock;
738 		if (folio_test_pmd_mappable(folio)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	folio->mapping = NULL;
757 	folio_ref_sub(folio, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for @folio.
763  */
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
765 {
766 	struct address_space *mapping = folio->mapping;
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	xa_lock_irq(&mapping->i_pages);
771 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 	folio->mapping = NULL;
773 	mapping->nrpages -= nr;
774 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 	xa_unlock_irq(&mapping->i_pages);
777 	folio_put(folio);
778 	BUG_ON(error);
779 }
780 
781 /*
782  * Remove swap entry from page cache, free the swap and its page cache.
783  */
784 static int shmem_free_swap(struct address_space *mapping,
785 			   pgoff_t index, void *radswap)
786 {
787 	void *old;
788 
789 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
790 	if (old != radswap)
791 		return -ENOENT;
792 	free_swap_and_cache(radix_to_swp_entry(radswap));
793 	return 0;
794 }
795 
796 /*
797  * Determine (in bytes) how many of the shmem object's pages mapped by the
798  * given offsets are swapped out.
799  *
800  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801  * as long as the inode doesn't go away and racy results are not a problem.
802  */
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 						pgoff_t start, pgoff_t end)
805 {
806 	XA_STATE(xas, &mapping->i_pages, start);
807 	struct page *page;
808 	unsigned long swapped = 0;
809 	unsigned long max = end - 1;
810 
811 	rcu_read_lock();
812 	xas_for_each(&xas, page, max) {
813 		if (xas_retry(&xas, page))
814 			continue;
815 		if (xa_is_value(page))
816 			swapped++;
817 		if (xas.xa_index == max)
818 			break;
819 		if (need_resched()) {
820 			xas_pause(&xas);
821 			cond_resched_rcu();
822 		}
823 	}
824 
825 	rcu_read_unlock();
826 
827 	return swapped << PAGE_SHIFT;
828 }
829 
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839 	struct inode *inode = file_inode(vma->vm_file);
840 	struct shmem_inode_info *info = SHMEM_I(inode);
841 	struct address_space *mapping = inode->i_mapping;
842 	unsigned long swapped;
843 
844 	/* Be careful as we don't hold info->lock */
845 	swapped = READ_ONCE(info->swapped);
846 
847 	/*
848 	 * The easier cases are when the shmem object has nothing in swap, or
849 	 * the vma maps it whole. Then we can simply use the stats that we
850 	 * already track.
851 	 */
852 	if (!swapped)
853 		return 0;
854 
855 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 		return swapped << PAGE_SHIFT;
857 
858 	/* Here comes the more involved part */
859 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
860 					vma->vm_pgoff + vma_pages(vma));
861 }
862 
863 /*
864  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865  */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 	struct folio_batch fbatch;
869 	pgoff_t index = 0;
870 
871 	folio_batch_init(&fbatch);
872 	/*
873 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 	 */
875 	while (!mapping_unevictable(mapping) &&
876 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
877 		check_move_unevictable_folios(&fbatch);
878 		folio_batch_release(&fbatch);
879 		cond_resched();
880 	}
881 }
882 
883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
884 {
885 	struct folio *folio;
886 
887 	/*
888 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
889 	 * beyond i_size, and reports fallocated folios as holes.
890 	 */
891 	folio = filemap_get_entry(inode->i_mapping, index);
892 	if (!folio)
893 		return folio;
894 	if (!xa_is_value(folio)) {
895 		folio_lock(folio);
896 		if (folio->mapping == inode->i_mapping)
897 			return folio;
898 		/* The folio has been swapped out */
899 		folio_unlock(folio);
900 		folio_put(folio);
901 	}
902 	/*
903 	 * But read a folio back from swap if any of it is within i_size
904 	 * (although in some cases this is just a waste of time).
905 	 */
906 	folio = NULL;
907 	shmem_get_folio(inode, index, &folio, SGP_READ);
908 	return folio;
909 }
910 
911 /*
912  * Remove range of pages and swap entries from page cache, and free them.
913  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
914  */
915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916 								 bool unfalloc)
917 {
918 	struct address_space *mapping = inode->i_mapping;
919 	struct shmem_inode_info *info = SHMEM_I(inode);
920 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
921 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
922 	struct folio_batch fbatch;
923 	pgoff_t indices[PAGEVEC_SIZE];
924 	struct folio *folio;
925 	bool same_folio;
926 	long nr_swaps_freed = 0;
927 	pgoff_t index;
928 	int i;
929 
930 	if (lend == -1)
931 		end = -1;	/* unsigned, so actually very big */
932 
933 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
934 		info->fallocend = start;
935 
936 	folio_batch_init(&fbatch);
937 	index = start;
938 	while (index < end && find_lock_entries(mapping, &index, end - 1,
939 			&fbatch, indices)) {
940 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
941 			folio = fbatch.folios[i];
942 
943 			if (xa_is_value(folio)) {
944 				if (unfalloc)
945 					continue;
946 				nr_swaps_freed += !shmem_free_swap(mapping,
947 							indices[i], folio);
948 				continue;
949 			}
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 	}
959 
960 	/*
961 	 * When undoing a failed fallocate, we want none of the partial folio
962 	 * zeroing and splitting below, but shall want to truncate the whole
963 	 * folio when !uptodate indicates that it was added by this fallocate,
964 	 * even when [lstart, lend] covers only a part of the folio.
965 	 */
966 	if (unfalloc)
967 		goto whole_folios;
968 
969 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
970 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
971 	if (folio) {
972 		same_folio = lend < folio_pos(folio) + folio_size(folio);
973 		folio_mark_dirty(folio);
974 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
975 			start = folio_next_index(folio);
976 			if (same_folio)
977 				end = folio->index;
978 		}
979 		folio_unlock(folio);
980 		folio_put(folio);
981 		folio = NULL;
982 	}
983 
984 	if (!same_folio)
985 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
986 	if (folio) {
987 		folio_mark_dirty(folio);
988 		if (!truncate_inode_partial_folio(folio, lstart, lend))
989 			end = folio->index;
990 		folio_unlock(folio);
991 		folio_put(folio);
992 	}
993 
994 whole_folios:
995 
996 	index = start;
997 	while (index < end) {
998 		cond_resched();
999 
1000 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1001 				indices)) {
1002 			/* If all gone or hole-punch or unfalloc, we're done */
1003 			if (index == start || end != -1)
1004 				break;
1005 			/* But if truncating, restart to make sure all gone */
1006 			index = start;
1007 			continue;
1008 		}
1009 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1010 			folio = fbatch.folios[i];
1011 
1012 			if (xa_is_value(folio)) {
1013 				if (unfalloc)
1014 					continue;
1015 				if (shmem_free_swap(mapping, indices[i], folio)) {
1016 					/* Swap was replaced by page: retry */
1017 					index = indices[i];
1018 					break;
1019 				}
1020 				nr_swaps_freed++;
1021 				continue;
1022 			}
1023 
1024 			folio_lock(folio);
1025 
1026 			if (!unfalloc || !folio_test_uptodate(folio)) {
1027 				if (folio_mapping(folio) != mapping) {
1028 					/* Page was replaced by swap: retry */
1029 					folio_unlock(folio);
1030 					index = indices[i];
1031 					break;
1032 				}
1033 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1034 						folio);
1035 				truncate_inode_folio(mapping, folio);
1036 			}
1037 			folio_unlock(folio);
1038 		}
1039 		folio_batch_remove_exceptionals(&fbatch);
1040 		folio_batch_release(&fbatch);
1041 	}
1042 
1043 	spin_lock_irq(&info->lock);
1044 	info->swapped -= nr_swaps_freed;
1045 	shmem_recalc_inode(inode);
1046 	spin_unlock_irq(&info->lock);
1047 }
1048 
1049 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1050 {
1051 	shmem_undo_range(inode, lstart, lend, false);
1052 	inode->i_ctime = inode->i_mtime = current_time(inode);
1053 	inode_inc_iversion(inode);
1054 }
1055 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1056 
1057 static int shmem_getattr(struct mnt_idmap *idmap,
1058 			 const struct path *path, struct kstat *stat,
1059 			 u32 request_mask, unsigned int query_flags)
1060 {
1061 	struct inode *inode = path->dentry->d_inode;
1062 	struct shmem_inode_info *info = SHMEM_I(inode);
1063 
1064 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1065 		spin_lock_irq(&info->lock);
1066 		shmem_recalc_inode(inode);
1067 		spin_unlock_irq(&info->lock);
1068 	}
1069 	if (info->fsflags & FS_APPEND_FL)
1070 		stat->attributes |= STATX_ATTR_APPEND;
1071 	if (info->fsflags & FS_IMMUTABLE_FL)
1072 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1073 	if (info->fsflags & FS_NODUMP_FL)
1074 		stat->attributes |= STATX_ATTR_NODUMP;
1075 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1076 			STATX_ATTR_IMMUTABLE |
1077 			STATX_ATTR_NODUMP);
1078 	generic_fillattr(idmap, inode, stat);
1079 
1080 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1081 		stat->blksize = HPAGE_PMD_SIZE;
1082 
1083 	if (request_mask & STATX_BTIME) {
1084 		stat->result_mask |= STATX_BTIME;
1085 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1086 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static int shmem_setattr(struct mnt_idmap *idmap,
1093 			 struct dentry *dentry, struct iattr *attr)
1094 {
1095 	struct inode *inode = d_inode(dentry);
1096 	struct shmem_inode_info *info = SHMEM_I(inode);
1097 	int error;
1098 	bool update_mtime = false;
1099 	bool update_ctime = true;
1100 
1101 	error = setattr_prepare(idmap, dentry, attr);
1102 	if (error)
1103 		return error;
1104 
1105 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1106 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1107 			return -EPERM;
1108 		}
1109 	}
1110 
1111 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1112 		loff_t oldsize = inode->i_size;
1113 		loff_t newsize = attr->ia_size;
1114 
1115 		/* protected by i_rwsem */
1116 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1117 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1118 			return -EPERM;
1119 
1120 		if (newsize != oldsize) {
1121 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1122 					oldsize, newsize);
1123 			if (error)
1124 				return error;
1125 			i_size_write(inode, newsize);
1126 			update_mtime = true;
1127 		} else {
1128 			update_ctime = false;
1129 		}
1130 		if (newsize <= oldsize) {
1131 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1132 			if (oldsize > holebegin)
1133 				unmap_mapping_range(inode->i_mapping,
1134 							holebegin, 0, 1);
1135 			if (info->alloced)
1136 				shmem_truncate_range(inode,
1137 							newsize, (loff_t)-1);
1138 			/* unmap again to remove racily COWed private pages */
1139 			if (oldsize > holebegin)
1140 				unmap_mapping_range(inode->i_mapping,
1141 							holebegin, 0, 1);
1142 		}
1143 	}
1144 
1145 	setattr_copy(idmap, inode, attr);
1146 	if (attr->ia_valid & ATTR_MODE)
1147 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1148 	if (!error && update_ctime) {
1149 		inode->i_ctime = current_time(inode);
1150 		if (update_mtime)
1151 			inode->i_mtime = inode->i_ctime;
1152 		inode_inc_iversion(inode);
1153 	}
1154 	return error;
1155 }
1156 
1157 static void shmem_evict_inode(struct inode *inode)
1158 {
1159 	struct shmem_inode_info *info = SHMEM_I(inode);
1160 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1161 
1162 	if (shmem_mapping(inode->i_mapping)) {
1163 		shmem_unacct_size(info->flags, inode->i_size);
1164 		inode->i_size = 0;
1165 		mapping_set_exiting(inode->i_mapping);
1166 		shmem_truncate_range(inode, 0, (loff_t)-1);
1167 		if (!list_empty(&info->shrinklist)) {
1168 			spin_lock(&sbinfo->shrinklist_lock);
1169 			if (!list_empty(&info->shrinklist)) {
1170 				list_del_init(&info->shrinklist);
1171 				sbinfo->shrinklist_len--;
1172 			}
1173 			spin_unlock(&sbinfo->shrinklist_lock);
1174 		}
1175 		while (!list_empty(&info->swaplist)) {
1176 			/* Wait while shmem_unuse() is scanning this inode... */
1177 			wait_var_event(&info->stop_eviction,
1178 				       !atomic_read(&info->stop_eviction));
1179 			mutex_lock(&shmem_swaplist_mutex);
1180 			/* ...but beware of the race if we peeked too early */
1181 			if (!atomic_read(&info->stop_eviction))
1182 				list_del_init(&info->swaplist);
1183 			mutex_unlock(&shmem_swaplist_mutex);
1184 		}
1185 	}
1186 
1187 	simple_xattrs_free(&info->xattrs);
1188 	WARN_ON(inode->i_blocks);
1189 	shmem_free_inode(inode->i_sb);
1190 	clear_inode(inode);
1191 }
1192 
1193 static int shmem_find_swap_entries(struct address_space *mapping,
1194 				   pgoff_t start, struct folio_batch *fbatch,
1195 				   pgoff_t *indices, unsigned int type)
1196 {
1197 	XA_STATE(xas, &mapping->i_pages, start);
1198 	struct folio *folio;
1199 	swp_entry_t entry;
1200 
1201 	rcu_read_lock();
1202 	xas_for_each(&xas, folio, ULONG_MAX) {
1203 		if (xas_retry(&xas, folio))
1204 			continue;
1205 
1206 		if (!xa_is_value(folio))
1207 			continue;
1208 
1209 		entry = radix_to_swp_entry(folio);
1210 		/*
1211 		 * swapin error entries can be found in the mapping. But they're
1212 		 * deliberately ignored here as we've done everything we can do.
1213 		 */
1214 		if (swp_type(entry) != type)
1215 			continue;
1216 
1217 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1218 		if (!folio_batch_add(fbatch, folio))
1219 			break;
1220 
1221 		if (need_resched()) {
1222 			xas_pause(&xas);
1223 			cond_resched_rcu();
1224 		}
1225 	}
1226 	rcu_read_unlock();
1227 
1228 	return xas.xa_index;
1229 }
1230 
1231 /*
1232  * Move the swapped pages for an inode to page cache. Returns the count
1233  * of pages swapped in, or the error in case of failure.
1234  */
1235 static int shmem_unuse_swap_entries(struct inode *inode,
1236 		struct folio_batch *fbatch, pgoff_t *indices)
1237 {
1238 	int i = 0;
1239 	int ret = 0;
1240 	int error = 0;
1241 	struct address_space *mapping = inode->i_mapping;
1242 
1243 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1244 		struct folio *folio = fbatch->folios[i];
1245 
1246 		if (!xa_is_value(folio))
1247 			continue;
1248 		error = shmem_swapin_folio(inode, indices[i],
1249 					  &folio, SGP_CACHE,
1250 					  mapping_gfp_mask(mapping),
1251 					  NULL, NULL);
1252 		if (error == 0) {
1253 			folio_unlock(folio);
1254 			folio_put(folio);
1255 			ret++;
1256 		}
1257 		if (error == -ENOMEM)
1258 			break;
1259 		error = 0;
1260 	}
1261 	return error ? error : ret;
1262 }
1263 
1264 /*
1265  * If swap found in inode, free it and move page from swapcache to filecache.
1266  */
1267 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1268 {
1269 	struct address_space *mapping = inode->i_mapping;
1270 	pgoff_t start = 0;
1271 	struct folio_batch fbatch;
1272 	pgoff_t indices[PAGEVEC_SIZE];
1273 	int ret = 0;
1274 
1275 	do {
1276 		folio_batch_init(&fbatch);
1277 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1278 		if (folio_batch_count(&fbatch) == 0) {
1279 			ret = 0;
1280 			break;
1281 		}
1282 
1283 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1284 		if (ret < 0)
1285 			break;
1286 
1287 		start = indices[folio_batch_count(&fbatch) - 1];
1288 	} while (true);
1289 
1290 	return ret;
1291 }
1292 
1293 /*
1294  * Read all the shared memory data that resides in the swap
1295  * device 'type' back into memory, so the swap device can be
1296  * unused.
1297  */
1298 int shmem_unuse(unsigned int type)
1299 {
1300 	struct shmem_inode_info *info, *next;
1301 	int error = 0;
1302 
1303 	if (list_empty(&shmem_swaplist))
1304 		return 0;
1305 
1306 	mutex_lock(&shmem_swaplist_mutex);
1307 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1308 		if (!info->swapped) {
1309 			list_del_init(&info->swaplist);
1310 			continue;
1311 		}
1312 		/*
1313 		 * Drop the swaplist mutex while searching the inode for swap;
1314 		 * but before doing so, make sure shmem_evict_inode() will not
1315 		 * remove placeholder inode from swaplist, nor let it be freed
1316 		 * (igrab() would protect from unlink, but not from unmount).
1317 		 */
1318 		atomic_inc(&info->stop_eviction);
1319 		mutex_unlock(&shmem_swaplist_mutex);
1320 
1321 		error = shmem_unuse_inode(&info->vfs_inode, type);
1322 		cond_resched();
1323 
1324 		mutex_lock(&shmem_swaplist_mutex);
1325 		next = list_next_entry(info, swaplist);
1326 		if (!info->swapped)
1327 			list_del_init(&info->swaplist);
1328 		if (atomic_dec_and_test(&info->stop_eviction))
1329 			wake_up_var(&info->stop_eviction);
1330 		if (error)
1331 			break;
1332 	}
1333 	mutex_unlock(&shmem_swaplist_mutex);
1334 
1335 	return error;
1336 }
1337 
1338 /*
1339  * Move the page from the page cache to the swap cache.
1340  */
1341 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1342 {
1343 	struct folio *folio = page_folio(page);
1344 	struct address_space *mapping = folio->mapping;
1345 	struct inode *inode = mapping->host;
1346 	struct shmem_inode_info *info = SHMEM_I(inode);
1347 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1348 	swp_entry_t swap;
1349 	pgoff_t index;
1350 
1351 	/*
1352 	 * Our capabilities prevent regular writeback or sync from ever calling
1353 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1354 	 * its underlying filesystem, in which case tmpfs should write out to
1355 	 * swap only in response to memory pressure, and not for the writeback
1356 	 * threads or sync.
1357 	 */
1358 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1359 		goto redirty;
1360 
1361 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1362 		goto redirty;
1363 
1364 	if (!total_swap_pages)
1365 		goto redirty;
1366 
1367 	/*
1368 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1369 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1370 	 * and its shmem_writeback() needs them to be split when swapping.
1371 	 */
1372 	if (folio_test_large(folio)) {
1373 		/* Ensure the subpages are still dirty */
1374 		folio_test_set_dirty(folio);
1375 		if (split_huge_page(page) < 0)
1376 			goto redirty;
1377 		folio = page_folio(page);
1378 		folio_clear_dirty(folio);
1379 	}
1380 
1381 	index = folio->index;
1382 
1383 	/*
1384 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1385 	 * value into swapfile.c, the only way we can correctly account for a
1386 	 * fallocated folio arriving here is now to initialize it and write it.
1387 	 *
1388 	 * That's okay for a folio already fallocated earlier, but if we have
1389 	 * not yet completed the fallocation, then (a) we want to keep track
1390 	 * of this folio in case we have to undo it, and (b) it may not be a
1391 	 * good idea to continue anyway, once we're pushing into swap.  So
1392 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1393 	 */
1394 	if (!folio_test_uptodate(folio)) {
1395 		if (inode->i_private) {
1396 			struct shmem_falloc *shmem_falloc;
1397 			spin_lock(&inode->i_lock);
1398 			shmem_falloc = inode->i_private;
1399 			if (shmem_falloc &&
1400 			    !shmem_falloc->waitq &&
1401 			    index >= shmem_falloc->start &&
1402 			    index < shmem_falloc->next)
1403 				shmem_falloc->nr_unswapped++;
1404 			else
1405 				shmem_falloc = NULL;
1406 			spin_unlock(&inode->i_lock);
1407 			if (shmem_falloc)
1408 				goto redirty;
1409 		}
1410 		folio_zero_range(folio, 0, folio_size(folio));
1411 		flush_dcache_folio(folio);
1412 		folio_mark_uptodate(folio);
1413 	}
1414 
1415 	swap = folio_alloc_swap(folio);
1416 	if (!swap.val)
1417 		goto redirty;
1418 
1419 	/*
1420 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1421 	 * if it's not already there.  Do it now before the folio is
1422 	 * moved to swap cache, when its pagelock no longer protects
1423 	 * the inode from eviction.  But don't unlock the mutex until
1424 	 * we've incremented swapped, because shmem_unuse_inode() will
1425 	 * prune a !swapped inode from the swaplist under this mutex.
1426 	 */
1427 	mutex_lock(&shmem_swaplist_mutex);
1428 	if (list_empty(&info->swaplist))
1429 		list_add(&info->swaplist, &shmem_swaplist);
1430 
1431 	if (add_to_swap_cache(folio, swap,
1432 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1433 			NULL) == 0) {
1434 		spin_lock_irq(&info->lock);
1435 		shmem_recalc_inode(inode);
1436 		info->swapped++;
1437 		spin_unlock_irq(&info->lock);
1438 
1439 		swap_shmem_alloc(swap);
1440 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1441 
1442 		mutex_unlock(&shmem_swaplist_mutex);
1443 		BUG_ON(folio_mapped(folio));
1444 		swap_writepage(&folio->page, wbc);
1445 		return 0;
1446 	}
1447 
1448 	mutex_unlock(&shmem_swaplist_mutex);
1449 	put_swap_folio(folio, swap);
1450 redirty:
1451 	folio_mark_dirty(folio);
1452 	if (wbc->for_reclaim)
1453 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1454 	folio_unlock(folio);
1455 	return 0;
1456 }
1457 
1458 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1459 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1460 {
1461 	char buffer[64];
1462 
1463 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1464 		return;		/* show nothing */
1465 
1466 	mpol_to_str(buffer, sizeof(buffer), mpol);
1467 
1468 	seq_printf(seq, ",mpol=%s", buffer);
1469 }
1470 
1471 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1472 {
1473 	struct mempolicy *mpol = NULL;
1474 	if (sbinfo->mpol) {
1475 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1476 		mpol = sbinfo->mpol;
1477 		mpol_get(mpol);
1478 		raw_spin_unlock(&sbinfo->stat_lock);
1479 	}
1480 	return mpol;
1481 }
1482 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1483 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1484 {
1485 }
1486 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1487 {
1488 	return NULL;
1489 }
1490 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1491 #ifndef CONFIG_NUMA
1492 #define vm_policy vm_private_data
1493 #endif
1494 
1495 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1496 		struct shmem_inode_info *info, pgoff_t index)
1497 {
1498 	/* Create a pseudo vma that just contains the policy */
1499 	vma_init(vma, NULL);
1500 	/* Bias interleave by inode number to distribute better across nodes */
1501 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1502 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1503 }
1504 
1505 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1506 {
1507 	/* Drop reference taken by mpol_shared_policy_lookup() */
1508 	mpol_cond_put(vma->vm_policy);
1509 }
1510 
1511 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1512 			struct shmem_inode_info *info, pgoff_t index)
1513 {
1514 	struct vm_area_struct pvma;
1515 	struct page *page;
1516 	struct vm_fault vmf = {
1517 		.vma = &pvma,
1518 	};
1519 
1520 	shmem_pseudo_vma_init(&pvma, info, index);
1521 	page = swap_cluster_readahead(swap, gfp, &vmf);
1522 	shmem_pseudo_vma_destroy(&pvma);
1523 
1524 	if (!page)
1525 		return NULL;
1526 	return page_folio(page);
1527 }
1528 
1529 /*
1530  * Make sure huge_gfp is always more limited than limit_gfp.
1531  * Some of the flags set permissions, while others set limitations.
1532  */
1533 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1534 {
1535 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1536 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1537 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1538 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1539 
1540 	/* Allow allocations only from the originally specified zones. */
1541 	result |= zoneflags;
1542 
1543 	/*
1544 	 * Minimize the result gfp by taking the union with the deny flags,
1545 	 * and the intersection of the allow flags.
1546 	 */
1547 	result |= (limit_gfp & denyflags);
1548 	result |= (huge_gfp & limit_gfp) & allowflags;
1549 
1550 	return result;
1551 }
1552 
1553 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1554 		struct shmem_inode_info *info, pgoff_t index)
1555 {
1556 	struct vm_area_struct pvma;
1557 	struct address_space *mapping = info->vfs_inode.i_mapping;
1558 	pgoff_t hindex;
1559 	struct folio *folio;
1560 
1561 	hindex = round_down(index, HPAGE_PMD_NR);
1562 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1563 								XA_PRESENT))
1564 		return NULL;
1565 
1566 	shmem_pseudo_vma_init(&pvma, info, hindex);
1567 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1568 	shmem_pseudo_vma_destroy(&pvma);
1569 	if (!folio)
1570 		count_vm_event(THP_FILE_FALLBACK);
1571 	return folio;
1572 }
1573 
1574 static struct folio *shmem_alloc_folio(gfp_t gfp,
1575 			struct shmem_inode_info *info, pgoff_t index)
1576 {
1577 	struct vm_area_struct pvma;
1578 	struct folio *folio;
1579 
1580 	shmem_pseudo_vma_init(&pvma, info, index);
1581 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1582 	shmem_pseudo_vma_destroy(&pvma);
1583 
1584 	return folio;
1585 }
1586 
1587 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1588 		pgoff_t index, bool huge)
1589 {
1590 	struct shmem_inode_info *info = SHMEM_I(inode);
1591 	struct folio *folio;
1592 	int nr;
1593 	int err = -ENOSPC;
1594 
1595 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596 		huge = false;
1597 	nr = huge ? HPAGE_PMD_NR : 1;
1598 
1599 	if (!shmem_inode_acct_block(inode, nr))
1600 		goto failed;
1601 
1602 	if (huge)
1603 		folio = shmem_alloc_hugefolio(gfp, info, index);
1604 	else
1605 		folio = shmem_alloc_folio(gfp, info, index);
1606 	if (folio) {
1607 		__folio_set_locked(folio);
1608 		__folio_set_swapbacked(folio);
1609 		return folio;
1610 	}
1611 
1612 	err = -ENOMEM;
1613 	shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615 	return ERR_PTR(err);
1616 }
1617 
1618 /*
1619  * When a page is moved from swapcache to shmem filecache (either by the
1620  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1621  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622  * ignorance of the mapping it belongs to.  If that mapping has special
1623  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624  * we may need to copy to a suitable page before moving to filecache.
1625  *
1626  * In a future release, this may well be extended to respect cpuset and
1627  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628  * but for now it is a simple matter of zone.
1629  */
1630 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1631 {
1632 	return folio_zonenum(folio) > gfp_zone(gfp);
1633 }
1634 
1635 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1636 				struct shmem_inode_info *info, pgoff_t index)
1637 {
1638 	struct folio *old, *new;
1639 	struct address_space *swap_mapping;
1640 	swp_entry_t entry;
1641 	pgoff_t swap_index;
1642 	int error;
1643 
1644 	old = *foliop;
1645 	entry = folio_swap_entry(old);
1646 	swap_index = swp_offset(entry);
1647 	swap_mapping = swap_address_space(entry);
1648 
1649 	/*
1650 	 * We have arrived here because our zones are constrained, so don't
1651 	 * limit chance of success by further cpuset and node constraints.
1652 	 */
1653 	gfp &= ~GFP_CONSTRAINT_MASK;
1654 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1655 	new = shmem_alloc_folio(gfp, info, index);
1656 	if (!new)
1657 		return -ENOMEM;
1658 
1659 	folio_get(new);
1660 	folio_copy(new, old);
1661 	flush_dcache_folio(new);
1662 
1663 	__folio_set_locked(new);
1664 	__folio_set_swapbacked(new);
1665 	folio_mark_uptodate(new);
1666 	folio_set_swap_entry(new, entry);
1667 	folio_set_swapcache(new);
1668 
1669 	/*
1670 	 * Our caller will very soon move newpage out of swapcache, but it's
1671 	 * a nice clean interface for us to replace oldpage by newpage there.
1672 	 */
1673 	xa_lock_irq(&swap_mapping->i_pages);
1674 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1675 	if (!error) {
1676 		mem_cgroup_migrate(old, new);
1677 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1678 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1679 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1680 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1681 	}
1682 	xa_unlock_irq(&swap_mapping->i_pages);
1683 
1684 	if (unlikely(error)) {
1685 		/*
1686 		 * Is this possible?  I think not, now that our callers check
1687 		 * both PageSwapCache and page_private after getting page lock;
1688 		 * but be defensive.  Reverse old to newpage for clear and free.
1689 		 */
1690 		old = new;
1691 	} else {
1692 		folio_add_lru(new);
1693 		*foliop = new;
1694 	}
1695 
1696 	folio_clear_swapcache(old);
1697 	old->private = NULL;
1698 
1699 	folio_unlock(old);
1700 	folio_put_refs(old, 2);
1701 	return error;
1702 }
1703 
1704 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1705 					 struct folio *folio, swp_entry_t swap)
1706 {
1707 	struct address_space *mapping = inode->i_mapping;
1708 	struct shmem_inode_info *info = SHMEM_I(inode);
1709 	swp_entry_t swapin_error;
1710 	void *old;
1711 
1712 	swapin_error = make_poisoned_swp_entry();
1713 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1714 			     swp_to_radix_entry(swap),
1715 			     swp_to_radix_entry(swapin_error), 0);
1716 	if (old != swp_to_radix_entry(swap))
1717 		return;
1718 
1719 	folio_wait_writeback(folio);
1720 	delete_from_swap_cache(folio);
1721 	spin_lock_irq(&info->lock);
1722 	/*
1723 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1724 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1725 	 * shmem_evict_inode.
1726 	 */
1727 	info->alloced--;
1728 	info->swapped--;
1729 	shmem_recalc_inode(inode);
1730 	spin_unlock_irq(&info->lock);
1731 	swap_free(swap);
1732 }
1733 
1734 /*
1735  * Swap in the folio pointed to by *foliop.
1736  * Caller has to make sure that *foliop contains a valid swapped folio.
1737  * Returns 0 and the folio in foliop if success. On failure, returns the
1738  * error code and NULL in *foliop.
1739  */
1740 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1741 			     struct folio **foliop, enum sgp_type sgp,
1742 			     gfp_t gfp, struct vm_area_struct *vma,
1743 			     vm_fault_t *fault_type)
1744 {
1745 	struct address_space *mapping = inode->i_mapping;
1746 	struct shmem_inode_info *info = SHMEM_I(inode);
1747 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1748 	struct swap_info_struct *si;
1749 	struct folio *folio = NULL;
1750 	swp_entry_t swap;
1751 	int error;
1752 
1753 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1754 	swap = radix_to_swp_entry(*foliop);
1755 	*foliop = NULL;
1756 
1757 	if (is_poisoned_swp_entry(swap))
1758 		return -EIO;
1759 
1760 	si = get_swap_device(swap);
1761 	if (!si) {
1762 		if (!shmem_confirm_swap(mapping, index, swap))
1763 			return -EEXIST;
1764 		else
1765 			return -EINVAL;
1766 	}
1767 
1768 	/* Look it up and read it in.. */
1769 	folio = swap_cache_get_folio(swap, NULL, 0);
1770 	if (!folio) {
1771 		/* Or update major stats only when swapin succeeds?? */
1772 		if (fault_type) {
1773 			*fault_type |= VM_FAULT_MAJOR;
1774 			count_vm_event(PGMAJFAULT);
1775 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1776 		}
1777 		/* Here we actually start the io */
1778 		folio = shmem_swapin(swap, gfp, info, index);
1779 		if (!folio) {
1780 			error = -ENOMEM;
1781 			goto failed;
1782 		}
1783 	}
1784 
1785 	/* We have to do this with folio locked to prevent races */
1786 	folio_lock(folio);
1787 	if (!folio_test_swapcache(folio) ||
1788 	    folio_swap_entry(folio).val != swap.val ||
1789 	    !shmem_confirm_swap(mapping, index, swap)) {
1790 		error = -EEXIST;
1791 		goto unlock;
1792 	}
1793 	if (!folio_test_uptodate(folio)) {
1794 		error = -EIO;
1795 		goto failed;
1796 	}
1797 	folio_wait_writeback(folio);
1798 
1799 	/*
1800 	 * Some architectures may have to restore extra metadata to the
1801 	 * folio after reading from swap.
1802 	 */
1803 	arch_swap_restore(swap, folio);
1804 
1805 	if (shmem_should_replace_folio(folio, gfp)) {
1806 		error = shmem_replace_folio(&folio, gfp, info, index);
1807 		if (error)
1808 			goto failed;
1809 	}
1810 
1811 	error = shmem_add_to_page_cache(folio, mapping, index,
1812 					swp_to_radix_entry(swap), gfp,
1813 					charge_mm);
1814 	if (error)
1815 		goto failed;
1816 
1817 	spin_lock_irq(&info->lock);
1818 	info->swapped--;
1819 	shmem_recalc_inode(inode);
1820 	spin_unlock_irq(&info->lock);
1821 
1822 	if (sgp == SGP_WRITE)
1823 		folio_mark_accessed(folio);
1824 
1825 	delete_from_swap_cache(folio);
1826 	folio_mark_dirty(folio);
1827 	swap_free(swap);
1828 	put_swap_device(si);
1829 
1830 	*foliop = folio;
1831 	return 0;
1832 failed:
1833 	if (!shmem_confirm_swap(mapping, index, swap))
1834 		error = -EEXIST;
1835 	if (error == -EIO)
1836 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1837 unlock:
1838 	if (folio) {
1839 		folio_unlock(folio);
1840 		folio_put(folio);
1841 	}
1842 	put_swap_device(si);
1843 
1844 	return error;
1845 }
1846 
1847 /*
1848  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1849  *
1850  * If we allocate a new one we do not mark it dirty. That's up to the
1851  * vm. If we swap it in we mark it dirty since we also free the swap
1852  * entry since a page cannot live in both the swap and page cache.
1853  *
1854  * vma, vmf, and fault_type are only supplied by shmem_fault:
1855  * otherwise they are NULL.
1856  */
1857 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1858 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1859 		struct vm_area_struct *vma, struct vm_fault *vmf,
1860 		vm_fault_t *fault_type)
1861 {
1862 	struct address_space *mapping = inode->i_mapping;
1863 	struct shmem_inode_info *info = SHMEM_I(inode);
1864 	struct shmem_sb_info *sbinfo;
1865 	struct mm_struct *charge_mm;
1866 	struct folio *folio;
1867 	pgoff_t hindex;
1868 	gfp_t huge_gfp;
1869 	int error;
1870 	int once = 0;
1871 	int alloced = 0;
1872 
1873 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1874 		return -EFBIG;
1875 repeat:
1876 	if (sgp <= SGP_CACHE &&
1877 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1878 		return -EINVAL;
1879 	}
1880 
1881 	sbinfo = SHMEM_SB(inode->i_sb);
1882 	charge_mm = vma ? vma->vm_mm : NULL;
1883 
1884 	folio = filemap_get_entry(mapping, index);
1885 	if (folio && vma && userfaultfd_minor(vma)) {
1886 		if (!xa_is_value(folio))
1887 			folio_put(folio);
1888 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1889 		return 0;
1890 	}
1891 
1892 	if (xa_is_value(folio)) {
1893 		error = shmem_swapin_folio(inode, index, &folio,
1894 					  sgp, gfp, vma, fault_type);
1895 		if (error == -EEXIST)
1896 			goto repeat;
1897 
1898 		*foliop = folio;
1899 		return error;
1900 	}
1901 
1902 	if (folio) {
1903 		folio_lock(folio);
1904 
1905 		/* Has the folio been truncated or swapped out? */
1906 		if (unlikely(folio->mapping != mapping)) {
1907 			folio_unlock(folio);
1908 			folio_put(folio);
1909 			goto repeat;
1910 		}
1911 		if (sgp == SGP_WRITE)
1912 			folio_mark_accessed(folio);
1913 		if (folio_test_uptodate(folio))
1914 			goto out;
1915 		/* fallocated folio */
1916 		if (sgp != SGP_READ)
1917 			goto clear;
1918 		folio_unlock(folio);
1919 		folio_put(folio);
1920 	}
1921 
1922 	/*
1923 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1924 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1925 	 */
1926 	*foliop = NULL;
1927 	if (sgp == SGP_READ)
1928 		return 0;
1929 	if (sgp == SGP_NOALLOC)
1930 		return -ENOENT;
1931 
1932 	/*
1933 	 * Fast cache lookup and swap lookup did not find it: allocate.
1934 	 */
1935 
1936 	if (vma && userfaultfd_missing(vma)) {
1937 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1938 		return 0;
1939 	}
1940 
1941 	if (!shmem_is_huge(inode, index, false,
1942 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1943 		goto alloc_nohuge;
1944 
1945 	huge_gfp = vma_thp_gfp_mask(vma);
1946 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1947 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1948 	if (IS_ERR(folio)) {
1949 alloc_nohuge:
1950 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1951 	}
1952 	if (IS_ERR(folio)) {
1953 		int retry = 5;
1954 
1955 		error = PTR_ERR(folio);
1956 		folio = NULL;
1957 		if (error != -ENOSPC)
1958 			goto unlock;
1959 		/*
1960 		 * Try to reclaim some space by splitting a large folio
1961 		 * beyond i_size on the filesystem.
1962 		 */
1963 		while (retry--) {
1964 			int ret;
1965 
1966 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1967 			if (ret == SHRINK_STOP)
1968 				break;
1969 			if (ret)
1970 				goto alloc_nohuge;
1971 		}
1972 		goto unlock;
1973 	}
1974 
1975 	hindex = round_down(index, folio_nr_pages(folio));
1976 
1977 	if (sgp == SGP_WRITE)
1978 		__folio_set_referenced(folio);
1979 
1980 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1981 					NULL, gfp & GFP_RECLAIM_MASK,
1982 					charge_mm);
1983 	if (error)
1984 		goto unacct;
1985 	folio_add_lru(folio);
1986 
1987 	spin_lock_irq(&info->lock);
1988 	info->alloced += folio_nr_pages(folio);
1989 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1990 	shmem_recalc_inode(inode);
1991 	spin_unlock_irq(&info->lock);
1992 	alloced = true;
1993 
1994 	if (folio_test_pmd_mappable(folio) &&
1995 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1996 					folio_next_index(folio) - 1) {
1997 		/*
1998 		 * Part of the large folio is beyond i_size: subject
1999 		 * to shrink under memory pressure.
2000 		 */
2001 		spin_lock(&sbinfo->shrinklist_lock);
2002 		/*
2003 		 * _careful to defend against unlocked access to
2004 		 * ->shrink_list in shmem_unused_huge_shrink()
2005 		 */
2006 		if (list_empty_careful(&info->shrinklist)) {
2007 			list_add_tail(&info->shrinklist,
2008 				      &sbinfo->shrinklist);
2009 			sbinfo->shrinklist_len++;
2010 		}
2011 		spin_unlock(&sbinfo->shrinklist_lock);
2012 	}
2013 
2014 	/*
2015 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2016 	 */
2017 	if (sgp == SGP_FALLOC)
2018 		sgp = SGP_WRITE;
2019 clear:
2020 	/*
2021 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2022 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2023 	 * it now, lest undo on failure cancel our earlier guarantee.
2024 	 */
2025 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2026 		long i, n = folio_nr_pages(folio);
2027 
2028 		for (i = 0; i < n; i++)
2029 			clear_highpage(folio_page(folio, i));
2030 		flush_dcache_folio(folio);
2031 		folio_mark_uptodate(folio);
2032 	}
2033 
2034 	/* Perhaps the file has been truncated since we checked */
2035 	if (sgp <= SGP_CACHE &&
2036 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2037 		if (alloced) {
2038 			folio_clear_dirty(folio);
2039 			filemap_remove_folio(folio);
2040 			spin_lock_irq(&info->lock);
2041 			shmem_recalc_inode(inode);
2042 			spin_unlock_irq(&info->lock);
2043 		}
2044 		error = -EINVAL;
2045 		goto unlock;
2046 	}
2047 out:
2048 	*foliop = folio;
2049 	return 0;
2050 
2051 	/*
2052 	 * Error recovery.
2053 	 */
2054 unacct:
2055 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2056 
2057 	if (folio_test_large(folio)) {
2058 		folio_unlock(folio);
2059 		folio_put(folio);
2060 		goto alloc_nohuge;
2061 	}
2062 unlock:
2063 	if (folio) {
2064 		folio_unlock(folio);
2065 		folio_put(folio);
2066 	}
2067 	if (error == -ENOSPC && !once++) {
2068 		spin_lock_irq(&info->lock);
2069 		shmem_recalc_inode(inode);
2070 		spin_unlock_irq(&info->lock);
2071 		goto repeat;
2072 	}
2073 	if (error == -EEXIST)
2074 		goto repeat;
2075 	return error;
2076 }
2077 
2078 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2079 		enum sgp_type sgp)
2080 {
2081 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2082 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2083 }
2084 
2085 /*
2086  * This is like autoremove_wake_function, but it removes the wait queue
2087  * entry unconditionally - even if something else had already woken the
2088  * target.
2089  */
2090 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2091 {
2092 	int ret = default_wake_function(wait, mode, sync, key);
2093 	list_del_init(&wait->entry);
2094 	return ret;
2095 }
2096 
2097 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2098 {
2099 	struct vm_area_struct *vma = vmf->vma;
2100 	struct inode *inode = file_inode(vma->vm_file);
2101 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2102 	struct folio *folio = NULL;
2103 	int err;
2104 	vm_fault_t ret = VM_FAULT_LOCKED;
2105 
2106 	/*
2107 	 * Trinity finds that probing a hole which tmpfs is punching can
2108 	 * prevent the hole-punch from ever completing: which in turn
2109 	 * locks writers out with its hold on i_rwsem.  So refrain from
2110 	 * faulting pages into the hole while it's being punched.  Although
2111 	 * shmem_undo_range() does remove the additions, it may be unable to
2112 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2113 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2114 	 *
2115 	 * It does not matter if we sometimes reach this check just before the
2116 	 * hole-punch begins, so that one fault then races with the punch:
2117 	 * we just need to make racing faults a rare case.
2118 	 *
2119 	 * The implementation below would be much simpler if we just used a
2120 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2121 	 * and bloating every shmem inode for this unlikely case would be sad.
2122 	 */
2123 	if (unlikely(inode->i_private)) {
2124 		struct shmem_falloc *shmem_falloc;
2125 
2126 		spin_lock(&inode->i_lock);
2127 		shmem_falloc = inode->i_private;
2128 		if (shmem_falloc &&
2129 		    shmem_falloc->waitq &&
2130 		    vmf->pgoff >= shmem_falloc->start &&
2131 		    vmf->pgoff < shmem_falloc->next) {
2132 			struct file *fpin;
2133 			wait_queue_head_t *shmem_falloc_waitq;
2134 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2135 
2136 			ret = VM_FAULT_NOPAGE;
2137 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2138 			if (fpin)
2139 				ret = VM_FAULT_RETRY;
2140 
2141 			shmem_falloc_waitq = shmem_falloc->waitq;
2142 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2143 					TASK_UNINTERRUPTIBLE);
2144 			spin_unlock(&inode->i_lock);
2145 			schedule();
2146 
2147 			/*
2148 			 * shmem_falloc_waitq points into the shmem_fallocate()
2149 			 * stack of the hole-punching task: shmem_falloc_waitq
2150 			 * is usually invalid by the time we reach here, but
2151 			 * finish_wait() does not dereference it in that case;
2152 			 * though i_lock needed lest racing with wake_up_all().
2153 			 */
2154 			spin_lock(&inode->i_lock);
2155 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2156 			spin_unlock(&inode->i_lock);
2157 
2158 			if (fpin)
2159 				fput(fpin);
2160 			return ret;
2161 		}
2162 		spin_unlock(&inode->i_lock);
2163 	}
2164 
2165 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2166 				  gfp, vma, vmf, &ret);
2167 	if (err)
2168 		return vmf_error(err);
2169 	if (folio)
2170 		vmf->page = folio_file_page(folio, vmf->pgoff);
2171 	return ret;
2172 }
2173 
2174 unsigned long shmem_get_unmapped_area(struct file *file,
2175 				      unsigned long uaddr, unsigned long len,
2176 				      unsigned long pgoff, unsigned long flags)
2177 {
2178 	unsigned long (*get_area)(struct file *,
2179 		unsigned long, unsigned long, unsigned long, unsigned long);
2180 	unsigned long addr;
2181 	unsigned long offset;
2182 	unsigned long inflated_len;
2183 	unsigned long inflated_addr;
2184 	unsigned long inflated_offset;
2185 
2186 	if (len > TASK_SIZE)
2187 		return -ENOMEM;
2188 
2189 	get_area = current->mm->get_unmapped_area;
2190 	addr = get_area(file, uaddr, len, pgoff, flags);
2191 
2192 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2193 		return addr;
2194 	if (IS_ERR_VALUE(addr))
2195 		return addr;
2196 	if (addr & ~PAGE_MASK)
2197 		return addr;
2198 	if (addr > TASK_SIZE - len)
2199 		return addr;
2200 
2201 	if (shmem_huge == SHMEM_HUGE_DENY)
2202 		return addr;
2203 	if (len < HPAGE_PMD_SIZE)
2204 		return addr;
2205 	if (flags & MAP_FIXED)
2206 		return addr;
2207 	/*
2208 	 * Our priority is to support MAP_SHARED mapped hugely;
2209 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2210 	 * But if caller specified an address hint and we allocated area there
2211 	 * successfully, respect that as before.
2212 	 */
2213 	if (uaddr == addr)
2214 		return addr;
2215 
2216 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2217 		struct super_block *sb;
2218 
2219 		if (file) {
2220 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2221 			sb = file_inode(file)->i_sb;
2222 		} else {
2223 			/*
2224 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2225 			 * for "/dev/zero", to create a shared anonymous object.
2226 			 */
2227 			if (IS_ERR(shm_mnt))
2228 				return addr;
2229 			sb = shm_mnt->mnt_sb;
2230 		}
2231 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2232 			return addr;
2233 	}
2234 
2235 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2236 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2237 		return addr;
2238 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2239 		return addr;
2240 
2241 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2242 	if (inflated_len > TASK_SIZE)
2243 		return addr;
2244 	if (inflated_len < len)
2245 		return addr;
2246 
2247 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2248 	if (IS_ERR_VALUE(inflated_addr))
2249 		return addr;
2250 	if (inflated_addr & ~PAGE_MASK)
2251 		return addr;
2252 
2253 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2254 	inflated_addr += offset - inflated_offset;
2255 	if (inflated_offset > offset)
2256 		inflated_addr += HPAGE_PMD_SIZE;
2257 
2258 	if (inflated_addr > TASK_SIZE - len)
2259 		return addr;
2260 	return inflated_addr;
2261 }
2262 
2263 #ifdef CONFIG_NUMA
2264 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2265 {
2266 	struct inode *inode = file_inode(vma->vm_file);
2267 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2268 }
2269 
2270 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2271 					  unsigned long addr)
2272 {
2273 	struct inode *inode = file_inode(vma->vm_file);
2274 	pgoff_t index;
2275 
2276 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2277 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2278 }
2279 #endif
2280 
2281 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2282 {
2283 	struct inode *inode = file_inode(file);
2284 	struct shmem_inode_info *info = SHMEM_I(inode);
2285 	int retval = -ENOMEM;
2286 
2287 	/*
2288 	 * What serializes the accesses to info->flags?
2289 	 * ipc_lock_object() when called from shmctl_do_lock(),
2290 	 * no serialization needed when called from shm_destroy().
2291 	 */
2292 	if (lock && !(info->flags & VM_LOCKED)) {
2293 		if (!user_shm_lock(inode->i_size, ucounts))
2294 			goto out_nomem;
2295 		info->flags |= VM_LOCKED;
2296 		mapping_set_unevictable(file->f_mapping);
2297 	}
2298 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2299 		user_shm_unlock(inode->i_size, ucounts);
2300 		info->flags &= ~VM_LOCKED;
2301 		mapping_clear_unevictable(file->f_mapping);
2302 	}
2303 	retval = 0;
2304 
2305 out_nomem:
2306 	return retval;
2307 }
2308 
2309 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2310 {
2311 	struct inode *inode = file_inode(file);
2312 	struct shmem_inode_info *info = SHMEM_I(inode);
2313 	int ret;
2314 
2315 	ret = seal_check_future_write(info->seals, vma);
2316 	if (ret)
2317 		return ret;
2318 
2319 	/* arm64 - allow memory tagging on RAM-based files */
2320 	vm_flags_set(vma, VM_MTE_ALLOWED);
2321 
2322 	file_accessed(file);
2323 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2324 	if (inode->i_nlink)
2325 		vma->vm_ops = &shmem_vm_ops;
2326 	else
2327 		vma->vm_ops = &shmem_anon_vm_ops;
2328 	return 0;
2329 }
2330 
2331 #ifdef CONFIG_TMPFS_XATTR
2332 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2333 
2334 /*
2335  * chattr's fsflags are unrelated to extended attributes,
2336  * but tmpfs has chosen to enable them under the same config option.
2337  */
2338 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2339 {
2340 	unsigned int i_flags = 0;
2341 
2342 	if (fsflags & FS_NOATIME_FL)
2343 		i_flags |= S_NOATIME;
2344 	if (fsflags & FS_APPEND_FL)
2345 		i_flags |= S_APPEND;
2346 	if (fsflags & FS_IMMUTABLE_FL)
2347 		i_flags |= S_IMMUTABLE;
2348 	/*
2349 	 * But FS_NODUMP_FL does not require any action in i_flags.
2350 	 */
2351 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2352 }
2353 #else
2354 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2355 {
2356 }
2357 #define shmem_initxattrs NULL
2358 #endif
2359 
2360 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2361 				     struct inode *dir, umode_t mode, dev_t dev,
2362 				     unsigned long flags)
2363 {
2364 	struct inode *inode;
2365 	struct shmem_inode_info *info;
2366 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2367 	ino_t ino;
2368 
2369 	if (shmem_reserve_inode(sb, &ino))
2370 		return NULL;
2371 
2372 	inode = new_inode(sb);
2373 	if (inode) {
2374 		inode->i_ino = ino;
2375 		inode_init_owner(idmap, inode, dir, mode);
2376 		inode->i_blocks = 0;
2377 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2378 		inode->i_generation = get_random_u32();
2379 		info = SHMEM_I(inode);
2380 		memset(info, 0, (char *)inode - (char *)info);
2381 		spin_lock_init(&info->lock);
2382 		atomic_set(&info->stop_eviction, 0);
2383 		info->seals = F_SEAL_SEAL;
2384 		info->flags = flags & VM_NORESERVE;
2385 		info->i_crtime = inode->i_mtime;
2386 		info->fsflags = (dir == NULL) ? 0 :
2387 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2388 		if (info->fsflags)
2389 			shmem_set_inode_flags(inode, info->fsflags);
2390 		INIT_LIST_HEAD(&info->shrinklist);
2391 		INIT_LIST_HEAD(&info->swaplist);
2392 		if (sbinfo->noswap)
2393 			mapping_set_unevictable(inode->i_mapping);
2394 		simple_xattrs_init(&info->xattrs);
2395 		cache_no_acl(inode);
2396 		mapping_set_large_folios(inode->i_mapping);
2397 
2398 		switch (mode & S_IFMT) {
2399 		default:
2400 			inode->i_op = &shmem_special_inode_operations;
2401 			init_special_inode(inode, mode, dev);
2402 			break;
2403 		case S_IFREG:
2404 			inode->i_mapping->a_ops = &shmem_aops;
2405 			inode->i_op = &shmem_inode_operations;
2406 			inode->i_fop = &shmem_file_operations;
2407 			mpol_shared_policy_init(&info->policy,
2408 						 shmem_get_sbmpol(sbinfo));
2409 			break;
2410 		case S_IFDIR:
2411 			inc_nlink(inode);
2412 			/* Some things misbehave if size == 0 on a directory */
2413 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2414 			inode->i_op = &shmem_dir_inode_operations;
2415 			inode->i_fop = &simple_dir_operations;
2416 			break;
2417 		case S_IFLNK:
2418 			/*
2419 			 * Must not load anything in the rbtree,
2420 			 * mpol_free_shared_policy will not be called.
2421 			 */
2422 			mpol_shared_policy_init(&info->policy, NULL);
2423 			break;
2424 		}
2425 
2426 		lockdep_annotate_inode_mutex_key(inode);
2427 	} else
2428 		shmem_free_inode(sb);
2429 	return inode;
2430 }
2431 
2432 #ifdef CONFIG_USERFAULTFD
2433 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2434 			   struct vm_area_struct *dst_vma,
2435 			   unsigned long dst_addr,
2436 			   unsigned long src_addr,
2437 			   uffd_flags_t flags,
2438 			   struct folio **foliop)
2439 {
2440 	struct inode *inode = file_inode(dst_vma->vm_file);
2441 	struct shmem_inode_info *info = SHMEM_I(inode);
2442 	struct address_space *mapping = inode->i_mapping;
2443 	gfp_t gfp = mapping_gfp_mask(mapping);
2444 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2445 	void *page_kaddr;
2446 	struct folio *folio;
2447 	int ret;
2448 	pgoff_t max_off;
2449 
2450 	if (!shmem_inode_acct_block(inode, 1)) {
2451 		/*
2452 		 * We may have got a page, returned -ENOENT triggering a retry,
2453 		 * and now we find ourselves with -ENOMEM. Release the page, to
2454 		 * avoid a BUG_ON in our caller.
2455 		 */
2456 		if (unlikely(*foliop)) {
2457 			folio_put(*foliop);
2458 			*foliop = NULL;
2459 		}
2460 		return -ENOMEM;
2461 	}
2462 
2463 	if (!*foliop) {
2464 		ret = -ENOMEM;
2465 		folio = shmem_alloc_folio(gfp, info, pgoff);
2466 		if (!folio)
2467 			goto out_unacct_blocks;
2468 
2469 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2470 			page_kaddr = kmap_local_folio(folio, 0);
2471 			/*
2472 			 * The read mmap_lock is held here.  Despite the
2473 			 * mmap_lock being read recursive a deadlock is still
2474 			 * possible if a writer has taken a lock.  For example:
2475 			 *
2476 			 * process A thread 1 takes read lock on own mmap_lock
2477 			 * process A thread 2 calls mmap, blocks taking write lock
2478 			 * process B thread 1 takes page fault, read lock on own mmap lock
2479 			 * process B thread 2 calls mmap, blocks taking write lock
2480 			 * process A thread 1 blocks taking read lock on process B
2481 			 * process B thread 1 blocks taking read lock on process A
2482 			 *
2483 			 * Disable page faults to prevent potential deadlock
2484 			 * and retry the copy outside the mmap_lock.
2485 			 */
2486 			pagefault_disable();
2487 			ret = copy_from_user(page_kaddr,
2488 					     (const void __user *)src_addr,
2489 					     PAGE_SIZE);
2490 			pagefault_enable();
2491 			kunmap_local(page_kaddr);
2492 
2493 			/* fallback to copy_from_user outside mmap_lock */
2494 			if (unlikely(ret)) {
2495 				*foliop = folio;
2496 				ret = -ENOENT;
2497 				/* don't free the page */
2498 				goto out_unacct_blocks;
2499 			}
2500 
2501 			flush_dcache_folio(folio);
2502 		} else {		/* ZEROPAGE */
2503 			clear_user_highpage(&folio->page, dst_addr);
2504 		}
2505 	} else {
2506 		folio = *foliop;
2507 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2508 		*foliop = NULL;
2509 	}
2510 
2511 	VM_BUG_ON(folio_test_locked(folio));
2512 	VM_BUG_ON(folio_test_swapbacked(folio));
2513 	__folio_set_locked(folio);
2514 	__folio_set_swapbacked(folio);
2515 	__folio_mark_uptodate(folio);
2516 
2517 	ret = -EFAULT;
2518 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2519 	if (unlikely(pgoff >= max_off))
2520 		goto out_release;
2521 
2522 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2523 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2524 	if (ret)
2525 		goto out_release;
2526 
2527 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2528 				       &folio->page, true, flags);
2529 	if (ret)
2530 		goto out_delete_from_cache;
2531 
2532 	spin_lock_irq(&info->lock);
2533 	info->alloced++;
2534 	inode->i_blocks += BLOCKS_PER_PAGE;
2535 	shmem_recalc_inode(inode);
2536 	spin_unlock_irq(&info->lock);
2537 
2538 	folio_unlock(folio);
2539 	return 0;
2540 out_delete_from_cache:
2541 	filemap_remove_folio(folio);
2542 out_release:
2543 	folio_unlock(folio);
2544 	folio_put(folio);
2545 out_unacct_blocks:
2546 	shmem_inode_unacct_blocks(inode, 1);
2547 	return ret;
2548 }
2549 #endif /* CONFIG_USERFAULTFD */
2550 
2551 #ifdef CONFIG_TMPFS
2552 static const struct inode_operations shmem_symlink_inode_operations;
2553 static const struct inode_operations shmem_short_symlink_operations;
2554 
2555 static int
2556 shmem_write_begin(struct file *file, struct address_space *mapping,
2557 			loff_t pos, unsigned len,
2558 			struct page **pagep, void **fsdata)
2559 {
2560 	struct inode *inode = mapping->host;
2561 	struct shmem_inode_info *info = SHMEM_I(inode);
2562 	pgoff_t index = pos >> PAGE_SHIFT;
2563 	struct folio *folio;
2564 	int ret = 0;
2565 
2566 	/* i_rwsem is held by caller */
2567 	if (unlikely(info->seals & (F_SEAL_GROW |
2568 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2569 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2570 			return -EPERM;
2571 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2572 			return -EPERM;
2573 	}
2574 
2575 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2576 
2577 	if (ret)
2578 		return ret;
2579 
2580 	*pagep = folio_file_page(folio, index);
2581 	if (PageHWPoison(*pagep)) {
2582 		folio_unlock(folio);
2583 		folio_put(folio);
2584 		*pagep = NULL;
2585 		return -EIO;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int
2592 shmem_write_end(struct file *file, struct address_space *mapping,
2593 			loff_t pos, unsigned len, unsigned copied,
2594 			struct page *page, void *fsdata)
2595 {
2596 	struct folio *folio = page_folio(page);
2597 	struct inode *inode = mapping->host;
2598 
2599 	if (pos + copied > inode->i_size)
2600 		i_size_write(inode, pos + copied);
2601 
2602 	if (!folio_test_uptodate(folio)) {
2603 		if (copied < folio_size(folio)) {
2604 			size_t from = offset_in_folio(folio, pos);
2605 			folio_zero_segments(folio, 0, from,
2606 					from + copied, folio_size(folio));
2607 		}
2608 		folio_mark_uptodate(folio);
2609 	}
2610 	folio_mark_dirty(folio);
2611 	folio_unlock(folio);
2612 	folio_put(folio);
2613 
2614 	return copied;
2615 }
2616 
2617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2618 {
2619 	struct file *file = iocb->ki_filp;
2620 	struct inode *inode = file_inode(file);
2621 	struct address_space *mapping = inode->i_mapping;
2622 	pgoff_t index;
2623 	unsigned long offset;
2624 	int error = 0;
2625 	ssize_t retval = 0;
2626 	loff_t *ppos = &iocb->ki_pos;
2627 
2628 	index = *ppos >> PAGE_SHIFT;
2629 	offset = *ppos & ~PAGE_MASK;
2630 
2631 	for (;;) {
2632 		struct folio *folio = NULL;
2633 		struct page *page = NULL;
2634 		pgoff_t end_index;
2635 		unsigned long nr, ret;
2636 		loff_t i_size = i_size_read(inode);
2637 
2638 		end_index = i_size >> PAGE_SHIFT;
2639 		if (index > end_index)
2640 			break;
2641 		if (index == end_index) {
2642 			nr = i_size & ~PAGE_MASK;
2643 			if (nr <= offset)
2644 				break;
2645 		}
2646 
2647 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2648 		if (error) {
2649 			if (error == -EINVAL)
2650 				error = 0;
2651 			break;
2652 		}
2653 		if (folio) {
2654 			folio_unlock(folio);
2655 
2656 			page = folio_file_page(folio, index);
2657 			if (PageHWPoison(page)) {
2658 				folio_put(folio);
2659 				error = -EIO;
2660 				break;
2661 			}
2662 		}
2663 
2664 		/*
2665 		 * We must evaluate after, since reads (unlike writes)
2666 		 * are called without i_rwsem protection against truncate
2667 		 */
2668 		nr = PAGE_SIZE;
2669 		i_size = i_size_read(inode);
2670 		end_index = i_size >> PAGE_SHIFT;
2671 		if (index == end_index) {
2672 			nr = i_size & ~PAGE_MASK;
2673 			if (nr <= offset) {
2674 				if (folio)
2675 					folio_put(folio);
2676 				break;
2677 			}
2678 		}
2679 		nr -= offset;
2680 
2681 		if (folio) {
2682 			/*
2683 			 * If users can be writing to this page using arbitrary
2684 			 * virtual addresses, take care about potential aliasing
2685 			 * before reading the page on the kernel side.
2686 			 */
2687 			if (mapping_writably_mapped(mapping))
2688 				flush_dcache_page(page);
2689 			/*
2690 			 * Mark the page accessed if we read the beginning.
2691 			 */
2692 			if (!offset)
2693 				folio_mark_accessed(folio);
2694 			/*
2695 			 * Ok, we have the page, and it's up-to-date, so
2696 			 * now we can copy it to user space...
2697 			 */
2698 			ret = copy_page_to_iter(page, offset, nr, to);
2699 			folio_put(folio);
2700 
2701 		} else if (user_backed_iter(to)) {
2702 			/*
2703 			 * Copy to user tends to be so well optimized, but
2704 			 * clear_user() not so much, that it is noticeably
2705 			 * faster to copy the zero page instead of clearing.
2706 			 */
2707 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2708 		} else {
2709 			/*
2710 			 * But submitting the same page twice in a row to
2711 			 * splice() - or others? - can result in confusion:
2712 			 * so don't attempt that optimization on pipes etc.
2713 			 */
2714 			ret = iov_iter_zero(nr, to);
2715 		}
2716 
2717 		retval += ret;
2718 		offset += ret;
2719 		index += offset >> PAGE_SHIFT;
2720 		offset &= ~PAGE_MASK;
2721 
2722 		if (!iov_iter_count(to))
2723 			break;
2724 		if (ret < nr) {
2725 			error = -EFAULT;
2726 			break;
2727 		}
2728 		cond_resched();
2729 	}
2730 
2731 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2732 	file_accessed(file);
2733 	return retval ? retval : error;
2734 }
2735 
2736 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2737 			      struct pipe_buffer *buf)
2738 {
2739 	return true;
2740 }
2741 
2742 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2743 				  struct pipe_buffer *buf)
2744 {
2745 }
2746 
2747 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2748 				    struct pipe_buffer *buf)
2749 {
2750 	return false;
2751 }
2752 
2753 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2754 	.release	= zero_pipe_buf_release,
2755 	.try_steal	= zero_pipe_buf_try_steal,
2756 	.get		= zero_pipe_buf_get,
2757 };
2758 
2759 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2760 					loff_t fpos, size_t size)
2761 {
2762 	size_t offset = fpos & ~PAGE_MASK;
2763 
2764 	size = min_t(size_t, size, PAGE_SIZE - offset);
2765 
2766 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2767 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2768 
2769 		*buf = (struct pipe_buffer) {
2770 			.ops	= &zero_pipe_buf_ops,
2771 			.page	= ZERO_PAGE(0),
2772 			.offset	= offset,
2773 			.len	= size,
2774 		};
2775 		pipe->head++;
2776 	}
2777 
2778 	return size;
2779 }
2780 
2781 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2782 				      struct pipe_inode_info *pipe,
2783 				      size_t len, unsigned int flags)
2784 {
2785 	struct inode *inode = file_inode(in);
2786 	struct address_space *mapping = inode->i_mapping;
2787 	struct folio *folio = NULL;
2788 	size_t total_spliced = 0, used, npages, n, part;
2789 	loff_t isize;
2790 	int error = 0;
2791 
2792 	/* Work out how much data we can actually add into the pipe */
2793 	used = pipe_occupancy(pipe->head, pipe->tail);
2794 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2795 	len = min_t(size_t, len, npages * PAGE_SIZE);
2796 
2797 	do {
2798 		if (*ppos >= i_size_read(inode))
2799 			break;
2800 
2801 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2802 					SGP_READ);
2803 		if (error) {
2804 			if (error == -EINVAL)
2805 				error = 0;
2806 			break;
2807 		}
2808 		if (folio) {
2809 			folio_unlock(folio);
2810 
2811 			if (folio_test_hwpoison(folio) ||
2812 			    (folio_test_large(folio) &&
2813 			     folio_test_has_hwpoisoned(folio))) {
2814 				error = -EIO;
2815 				break;
2816 			}
2817 		}
2818 
2819 		/*
2820 		 * i_size must be checked after we know the pages are Uptodate.
2821 		 *
2822 		 * Checking i_size after the check allows us to calculate
2823 		 * the correct value for "nr", which means the zero-filled
2824 		 * part of the page is not copied back to userspace (unless
2825 		 * another truncate extends the file - this is desired though).
2826 		 */
2827 		isize = i_size_read(inode);
2828 		if (unlikely(*ppos >= isize))
2829 			break;
2830 		part = min_t(loff_t, isize - *ppos, len);
2831 
2832 		if (folio) {
2833 			/*
2834 			 * If users can be writing to this page using arbitrary
2835 			 * virtual addresses, take care about potential aliasing
2836 			 * before reading the page on the kernel side.
2837 			 */
2838 			if (mapping_writably_mapped(mapping))
2839 				flush_dcache_folio(folio);
2840 			folio_mark_accessed(folio);
2841 			/*
2842 			 * Ok, we have the page, and it's up-to-date, so we can
2843 			 * now splice it into the pipe.
2844 			 */
2845 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2846 			folio_put(folio);
2847 			folio = NULL;
2848 		} else {
2849 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
2850 		}
2851 
2852 		if (!n)
2853 			break;
2854 		len -= n;
2855 		total_spliced += n;
2856 		*ppos += n;
2857 		in->f_ra.prev_pos = *ppos;
2858 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2859 			break;
2860 
2861 		cond_resched();
2862 	} while (len);
2863 
2864 	if (folio)
2865 		folio_put(folio);
2866 
2867 	file_accessed(in);
2868 	return total_spliced ? total_spliced : error;
2869 }
2870 
2871 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2872 {
2873 	struct address_space *mapping = file->f_mapping;
2874 	struct inode *inode = mapping->host;
2875 
2876 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2877 		return generic_file_llseek_size(file, offset, whence,
2878 					MAX_LFS_FILESIZE, i_size_read(inode));
2879 	if (offset < 0)
2880 		return -ENXIO;
2881 
2882 	inode_lock(inode);
2883 	/* We're holding i_rwsem so we can access i_size directly */
2884 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2885 	if (offset >= 0)
2886 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2887 	inode_unlock(inode);
2888 	return offset;
2889 }
2890 
2891 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2892 							 loff_t len)
2893 {
2894 	struct inode *inode = file_inode(file);
2895 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2896 	struct shmem_inode_info *info = SHMEM_I(inode);
2897 	struct shmem_falloc shmem_falloc;
2898 	pgoff_t start, index, end, undo_fallocend;
2899 	int error;
2900 
2901 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2902 		return -EOPNOTSUPP;
2903 
2904 	inode_lock(inode);
2905 
2906 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2907 		struct address_space *mapping = file->f_mapping;
2908 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2909 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2910 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2911 
2912 		/* protected by i_rwsem */
2913 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2914 			error = -EPERM;
2915 			goto out;
2916 		}
2917 
2918 		shmem_falloc.waitq = &shmem_falloc_waitq;
2919 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2920 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2921 		spin_lock(&inode->i_lock);
2922 		inode->i_private = &shmem_falloc;
2923 		spin_unlock(&inode->i_lock);
2924 
2925 		if ((u64)unmap_end > (u64)unmap_start)
2926 			unmap_mapping_range(mapping, unmap_start,
2927 					    1 + unmap_end - unmap_start, 0);
2928 		shmem_truncate_range(inode, offset, offset + len - 1);
2929 		/* No need to unmap again: hole-punching leaves COWed pages */
2930 
2931 		spin_lock(&inode->i_lock);
2932 		inode->i_private = NULL;
2933 		wake_up_all(&shmem_falloc_waitq);
2934 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2935 		spin_unlock(&inode->i_lock);
2936 		error = 0;
2937 		goto out;
2938 	}
2939 
2940 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2941 	error = inode_newsize_ok(inode, offset + len);
2942 	if (error)
2943 		goto out;
2944 
2945 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2946 		error = -EPERM;
2947 		goto out;
2948 	}
2949 
2950 	start = offset >> PAGE_SHIFT;
2951 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2952 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2953 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2954 		error = -ENOSPC;
2955 		goto out;
2956 	}
2957 
2958 	shmem_falloc.waitq = NULL;
2959 	shmem_falloc.start = start;
2960 	shmem_falloc.next  = start;
2961 	shmem_falloc.nr_falloced = 0;
2962 	shmem_falloc.nr_unswapped = 0;
2963 	spin_lock(&inode->i_lock);
2964 	inode->i_private = &shmem_falloc;
2965 	spin_unlock(&inode->i_lock);
2966 
2967 	/*
2968 	 * info->fallocend is only relevant when huge pages might be
2969 	 * involved: to prevent split_huge_page() freeing fallocated
2970 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2971 	 */
2972 	undo_fallocend = info->fallocend;
2973 	if (info->fallocend < end)
2974 		info->fallocend = end;
2975 
2976 	for (index = start; index < end; ) {
2977 		struct folio *folio;
2978 
2979 		/*
2980 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2981 		 * been interrupted because we are using up too much memory.
2982 		 */
2983 		if (signal_pending(current))
2984 			error = -EINTR;
2985 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2986 			error = -ENOMEM;
2987 		else
2988 			error = shmem_get_folio(inode, index, &folio,
2989 						SGP_FALLOC);
2990 		if (error) {
2991 			info->fallocend = undo_fallocend;
2992 			/* Remove the !uptodate folios we added */
2993 			if (index > start) {
2994 				shmem_undo_range(inode,
2995 				    (loff_t)start << PAGE_SHIFT,
2996 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2997 			}
2998 			goto undone;
2999 		}
3000 
3001 		/*
3002 		 * Here is a more important optimization than it appears:
3003 		 * a second SGP_FALLOC on the same large folio will clear it,
3004 		 * making it uptodate and un-undoable if we fail later.
3005 		 */
3006 		index = folio_next_index(folio);
3007 		/* Beware 32-bit wraparound */
3008 		if (!index)
3009 			index--;
3010 
3011 		/*
3012 		 * Inform shmem_writepage() how far we have reached.
3013 		 * No need for lock or barrier: we have the page lock.
3014 		 */
3015 		if (!folio_test_uptodate(folio))
3016 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3017 		shmem_falloc.next = index;
3018 
3019 		/*
3020 		 * If !uptodate, leave it that way so that freeable folios
3021 		 * can be recognized if we need to rollback on error later.
3022 		 * But mark it dirty so that memory pressure will swap rather
3023 		 * than free the folios we are allocating (and SGP_CACHE folios
3024 		 * might still be clean: we now need to mark those dirty too).
3025 		 */
3026 		folio_mark_dirty(folio);
3027 		folio_unlock(folio);
3028 		folio_put(folio);
3029 		cond_resched();
3030 	}
3031 
3032 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3033 		i_size_write(inode, offset + len);
3034 undone:
3035 	spin_lock(&inode->i_lock);
3036 	inode->i_private = NULL;
3037 	spin_unlock(&inode->i_lock);
3038 out:
3039 	if (!error)
3040 		file_modified(file);
3041 	inode_unlock(inode);
3042 	return error;
3043 }
3044 
3045 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3046 {
3047 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3048 
3049 	buf->f_type = TMPFS_MAGIC;
3050 	buf->f_bsize = PAGE_SIZE;
3051 	buf->f_namelen = NAME_MAX;
3052 	if (sbinfo->max_blocks) {
3053 		buf->f_blocks = sbinfo->max_blocks;
3054 		buf->f_bavail =
3055 		buf->f_bfree  = sbinfo->max_blocks -
3056 				percpu_counter_sum(&sbinfo->used_blocks);
3057 	}
3058 	if (sbinfo->max_inodes) {
3059 		buf->f_files = sbinfo->max_inodes;
3060 		buf->f_ffree = sbinfo->free_inodes;
3061 	}
3062 	/* else leave those fields 0 like simple_statfs */
3063 
3064 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3065 
3066 	return 0;
3067 }
3068 
3069 /*
3070  * File creation. Allocate an inode, and we're done..
3071  */
3072 static int
3073 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3074 	    struct dentry *dentry, umode_t mode, dev_t dev)
3075 {
3076 	struct inode *inode;
3077 	int error = -ENOSPC;
3078 
3079 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3080 	if (inode) {
3081 		error = simple_acl_create(dir, inode);
3082 		if (error)
3083 			goto out_iput;
3084 		error = security_inode_init_security(inode, dir,
3085 						     &dentry->d_name,
3086 						     shmem_initxattrs, NULL);
3087 		if (error && error != -EOPNOTSUPP)
3088 			goto out_iput;
3089 
3090 		error = 0;
3091 		dir->i_size += BOGO_DIRENT_SIZE;
3092 		dir->i_ctime = dir->i_mtime = current_time(dir);
3093 		inode_inc_iversion(dir);
3094 		d_instantiate(dentry, inode);
3095 		dget(dentry); /* Extra count - pin the dentry in core */
3096 	}
3097 	return error;
3098 out_iput:
3099 	iput(inode);
3100 	return error;
3101 }
3102 
3103 static int
3104 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3105 	      struct file *file, umode_t mode)
3106 {
3107 	struct inode *inode;
3108 	int error = -ENOSPC;
3109 
3110 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3111 	if (inode) {
3112 		error = security_inode_init_security(inode, dir,
3113 						     NULL,
3114 						     shmem_initxattrs, NULL);
3115 		if (error && error != -EOPNOTSUPP)
3116 			goto out_iput;
3117 		error = simple_acl_create(dir, inode);
3118 		if (error)
3119 			goto out_iput;
3120 		d_tmpfile(file, inode);
3121 	}
3122 	return finish_open_simple(file, error);
3123 out_iput:
3124 	iput(inode);
3125 	return error;
3126 }
3127 
3128 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3129 		       struct dentry *dentry, umode_t mode)
3130 {
3131 	int error;
3132 
3133 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3134 	if (error)
3135 		return error;
3136 	inc_nlink(dir);
3137 	return 0;
3138 }
3139 
3140 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3141 			struct dentry *dentry, umode_t mode, bool excl)
3142 {
3143 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3144 }
3145 
3146 /*
3147  * Link a file..
3148  */
3149 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3150 {
3151 	struct inode *inode = d_inode(old_dentry);
3152 	int ret = 0;
3153 
3154 	/*
3155 	 * No ordinary (disk based) filesystem counts links as inodes;
3156 	 * but each new link needs a new dentry, pinning lowmem, and
3157 	 * tmpfs dentries cannot be pruned until they are unlinked.
3158 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3159 	 * first link must skip that, to get the accounting right.
3160 	 */
3161 	if (inode->i_nlink) {
3162 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3163 		if (ret)
3164 			goto out;
3165 	}
3166 
3167 	dir->i_size += BOGO_DIRENT_SIZE;
3168 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3169 	inode_inc_iversion(dir);
3170 	inc_nlink(inode);
3171 	ihold(inode);	/* New dentry reference */
3172 	dget(dentry);		/* Extra pinning count for the created dentry */
3173 	d_instantiate(dentry, inode);
3174 out:
3175 	return ret;
3176 }
3177 
3178 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3179 {
3180 	struct inode *inode = d_inode(dentry);
3181 
3182 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3183 		shmem_free_inode(inode->i_sb);
3184 
3185 	dir->i_size -= BOGO_DIRENT_SIZE;
3186 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3187 	inode_inc_iversion(dir);
3188 	drop_nlink(inode);
3189 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3190 	return 0;
3191 }
3192 
3193 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3194 {
3195 	if (!simple_empty(dentry))
3196 		return -ENOTEMPTY;
3197 
3198 	drop_nlink(d_inode(dentry));
3199 	drop_nlink(dir);
3200 	return shmem_unlink(dir, dentry);
3201 }
3202 
3203 static int shmem_whiteout(struct mnt_idmap *idmap,
3204 			  struct inode *old_dir, struct dentry *old_dentry)
3205 {
3206 	struct dentry *whiteout;
3207 	int error;
3208 
3209 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3210 	if (!whiteout)
3211 		return -ENOMEM;
3212 
3213 	error = shmem_mknod(idmap, old_dir, whiteout,
3214 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3215 	dput(whiteout);
3216 	if (error)
3217 		return error;
3218 
3219 	/*
3220 	 * Cheat and hash the whiteout while the old dentry is still in
3221 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3222 	 *
3223 	 * d_lookup() will consistently find one of them at this point,
3224 	 * not sure which one, but that isn't even important.
3225 	 */
3226 	d_rehash(whiteout);
3227 	return 0;
3228 }
3229 
3230 /*
3231  * The VFS layer already does all the dentry stuff for rename,
3232  * we just have to decrement the usage count for the target if
3233  * it exists so that the VFS layer correctly free's it when it
3234  * gets overwritten.
3235  */
3236 static int shmem_rename2(struct mnt_idmap *idmap,
3237 			 struct inode *old_dir, struct dentry *old_dentry,
3238 			 struct inode *new_dir, struct dentry *new_dentry,
3239 			 unsigned int flags)
3240 {
3241 	struct inode *inode = d_inode(old_dentry);
3242 	int they_are_dirs = S_ISDIR(inode->i_mode);
3243 
3244 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3245 		return -EINVAL;
3246 
3247 	if (flags & RENAME_EXCHANGE)
3248 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3249 
3250 	if (!simple_empty(new_dentry))
3251 		return -ENOTEMPTY;
3252 
3253 	if (flags & RENAME_WHITEOUT) {
3254 		int error;
3255 
3256 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3257 		if (error)
3258 			return error;
3259 	}
3260 
3261 	if (d_really_is_positive(new_dentry)) {
3262 		(void) shmem_unlink(new_dir, new_dentry);
3263 		if (they_are_dirs) {
3264 			drop_nlink(d_inode(new_dentry));
3265 			drop_nlink(old_dir);
3266 		}
3267 	} else if (they_are_dirs) {
3268 		drop_nlink(old_dir);
3269 		inc_nlink(new_dir);
3270 	}
3271 
3272 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3273 	new_dir->i_size += BOGO_DIRENT_SIZE;
3274 	old_dir->i_ctime = old_dir->i_mtime =
3275 	new_dir->i_ctime = new_dir->i_mtime =
3276 	inode->i_ctime = current_time(old_dir);
3277 	inode_inc_iversion(old_dir);
3278 	inode_inc_iversion(new_dir);
3279 	return 0;
3280 }
3281 
3282 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3283 			 struct dentry *dentry, const char *symname)
3284 {
3285 	int error;
3286 	int len;
3287 	struct inode *inode;
3288 	struct folio *folio;
3289 
3290 	len = strlen(symname) + 1;
3291 	if (len > PAGE_SIZE)
3292 		return -ENAMETOOLONG;
3293 
3294 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3295 				VM_NORESERVE);
3296 	if (!inode)
3297 		return -ENOSPC;
3298 
3299 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3300 					     shmem_initxattrs, NULL);
3301 	if (error && error != -EOPNOTSUPP) {
3302 		iput(inode);
3303 		return error;
3304 	}
3305 
3306 	inode->i_size = len-1;
3307 	if (len <= SHORT_SYMLINK_LEN) {
3308 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3309 		if (!inode->i_link) {
3310 			iput(inode);
3311 			return -ENOMEM;
3312 		}
3313 		inode->i_op = &shmem_short_symlink_operations;
3314 	} else {
3315 		inode_nohighmem(inode);
3316 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3317 		if (error) {
3318 			iput(inode);
3319 			return error;
3320 		}
3321 		inode->i_mapping->a_ops = &shmem_aops;
3322 		inode->i_op = &shmem_symlink_inode_operations;
3323 		memcpy(folio_address(folio), symname, len);
3324 		folio_mark_uptodate(folio);
3325 		folio_mark_dirty(folio);
3326 		folio_unlock(folio);
3327 		folio_put(folio);
3328 	}
3329 	dir->i_size += BOGO_DIRENT_SIZE;
3330 	dir->i_ctime = dir->i_mtime = current_time(dir);
3331 	inode_inc_iversion(dir);
3332 	d_instantiate(dentry, inode);
3333 	dget(dentry);
3334 	return 0;
3335 }
3336 
3337 static void shmem_put_link(void *arg)
3338 {
3339 	folio_mark_accessed(arg);
3340 	folio_put(arg);
3341 }
3342 
3343 static const char *shmem_get_link(struct dentry *dentry,
3344 				  struct inode *inode,
3345 				  struct delayed_call *done)
3346 {
3347 	struct folio *folio = NULL;
3348 	int error;
3349 
3350 	if (!dentry) {
3351 		folio = filemap_get_folio(inode->i_mapping, 0);
3352 		if (IS_ERR(folio))
3353 			return ERR_PTR(-ECHILD);
3354 		if (PageHWPoison(folio_page(folio, 0)) ||
3355 		    !folio_test_uptodate(folio)) {
3356 			folio_put(folio);
3357 			return ERR_PTR(-ECHILD);
3358 		}
3359 	} else {
3360 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3361 		if (error)
3362 			return ERR_PTR(error);
3363 		if (!folio)
3364 			return ERR_PTR(-ECHILD);
3365 		if (PageHWPoison(folio_page(folio, 0))) {
3366 			folio_unlock(folio);
3367 			folio_put(folio);
3368 			return ERR_PTR(-ECHILD);
3369 		}
3370 		folio_unlock(folio);
3371 	}
3372 	set_delayed_call(done, shmem_put_link, folio);
3373 	return folio_address(folio);
3374 }
3375 
3376 #ifdef CONFIG_TMPFS_XATTR
3377 
3378 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3379 {
3380 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3381 
3382 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3383 
3384 	return 0;
3385 }
3386 
3387 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3388 			      struct dentry *dentry, struct fileattr *fa)
3389 {
3390 	struct inode *inode = d_inode(dentry);
3391 	struct shmem_inode_info *info = SHMEM_I(inode);
3392 
3393 	if (fileattr_has_fsx(fa))
3394 		return -EOPNOTSUPP;
3395 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3396 		return -EOPNOTSUPP;
3397 
3398 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3399 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3400 
3401 	shmem_set_inode_flags(inode, info->fsflags);
3402 	inode->i_ctime = current_time(inode);
3403 	inode_inc_iversion(inode);
3404 	return 0;
3405 }
3406 
3407 /*
3408  * Superblocks without xattr inode operations may get some security.* xattr
3409  * support from the LSM "for free". As soon as we have any other xattrs
3410  * like ACLs, we also need to implement the security.* handlers at
3411  * filesystem level, though.
3412  */
3413 
3414 /*
3415  * Callback for security_inode_init_security() for acquiring xattrs.
3416  */
3417 static int shmem_initxattrs(struct inode *inode,
3418 			    const struct xattr *xattr_array,
3419 			    void *fs_info)
3420 {
3421 	struct shmem_inode_info *info = SHMEM_I(inode);
3422 	const struct xattr *xattr;
3423 	struct simple_xattr *new_xattr;
3424 	size_t len;
3425 
3426 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3427 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3428 		if (!new_xattr)
3429 			return -ENOMEM;
3430 
3431 		len = strlen(xattr->name) + 1;
3432 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3433 					  GFP_KERNEL);
3434 		if (!new_xattr->name) {
3435 			kvfree(new_xattr);
3436 			return -ENOMEM;
3437 		}
3438 
3439 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3440 		       XATTR_SECURITY_PREFIX_LEN);
3441 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3442 		       xattr->name, len);
3443 
3444 		simple_xattr_add(&info->xattrs, new_xattr);
3445 	}
3446 
3447 	return 0;
3448 }
3449 
3450 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3451 				   struct dentry *unused, struct inode *inode,
3452 				   const char *name, void *buffer, size_t size)
3453 {
3454 	struct shmem_inode_info *info = SHMEM_I(inode);
3455 
3456 	name = xattr_full_name(handler, name);
3457 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3458 }
3459 
3460 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3461 				   struct mnt_idmap *idmap,
3462 				   struct dentry *unused, struct inode *inode,
3463 				   const char *name, const void *value,
3464 				   size_t size, int flags)
3465 {
3466 	struct shmem_inode_info *info = SHMEM_I(inode);
3467 	int err;
3468 
3469 	name = xattr_full_name(handler, name);
3470 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3471 	if (!err) {
3472 		inode->i_ctime = current_time(inode);
3473 		inode_inc_iversion(inode);
3474 	}
3475 	return err;
3476 }
3477 
3478 static const struct xattr_handler shmem_security_xattr_handler = {
3479 	.prefix = XATTR_SECURITY_PREFIX,
3480 	.get = shmem_xattr_handler_get,
3481 	.set = shmem_xattr_handler_set,
3482 };
3483 
3484 static const struct xattr_handler shmem_trusted_xattr_handler = {
3485 	.prefix = XATTR_TRUSTED_PREFIX,
3486 	.get = shmem_xattr_handler_get,
3487 	.set = shmem_xattr_handler_set,
3488 };
3489 
3490 static const struct xattr_handler *shmem_xattr_handlers[] = {
3491 	&shmem_security_xattr_handler,
3492 	&shmem_trusted_xattr_handler,
3493 	NULL
3494 };
3495 
3496 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3497 {
3498 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3499 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3500 }
3501 #endif /* CONFIG_TMPFS_XATTR */
3502 
3503 static const struct inode_operations shmem_short_symlink_operations = {
3504 	.getattr	= shmem_getattr,
3505 	.get_link	= simple_get_link,
3506 #ifdef CONFIG_TMPFS_XATTR
3507 	.listxattr	= shmem_listxattr,
3508 #endif
3509 };
3510 
3511 static const struct inode_operations shmem_symlink_inode_operations = {
3512 	.getattr	= shmem_getattr,
3513 	.get_link	= shmem_get_link,
3514 #ifdef CONFIG_TMPFS_XATTR
3515 	.listxattr	= shmem_listxattr,
3516 #endif
3517 };
3518 
3519 static struct dentry *shmem_get_parent(struct dentry *child)
3520 {
3521 	return ERR_PTR(-ESTALE);
3522 }
3523 
3524 static int shmem_match(struct inode *ino, void *vfh)
3525 {
3526 	__u32 *fh = vfh;
3527 	__u64 inum = fh[2];
3528 	inum = (inum << 32) | fh[1];
3529 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3530 }
3531 
3532 /* Find any alias of inode, but prefer a hashed alias */
3533 static struct dentry *shmem_find_alias(struct inode *inode)
3534 {
3535 	struct dentry *alias = d_find_alias(inode);
3536 
3537 	return alias ?: d_find_any_alias(inode);
3538 }
3539 
3540 
3541 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3542 		struct fid *fid, int fh_len, int fh_type)
3543 {
3544 	struct inode *inode;
3545 	struct dentry *dentry = NULL;
3546 	u64 inum;
3547 
3548 	if (fh_len < 3)
3549 		return NULL;
3550 
3551 	inum = fid->raw[2];
3552 	inum = (inum << 32) | fid->raw[1];
3553 
3554 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3555 			shmem_match, fid->raw);
3556 	if (inode) {
3557 		dentry = shmem_find_alias(inode);
3558 		iput(inode);
3559 	}
3560 
3561 	return dentry;
3562 }
3563 
3564 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3565 				struct inode *parent)
3566 {
3567 	if (*len < 3) {
3568 		*len = 3;
3569 		return FILEID_INVALID;
3570 	}
3571 
3572 	if (inode_unhashed(inode)) {
3573 		/* Unfortunately insert_inode_hash is not idempotent,
3574 		 * so as we hash inodes here rather than at creation
3575 		 * time, we need a lock to ensure we only try
3576 		 * to do it once
3577 		 */
3578 		static DEFINE_SPINLOCK(lock);
3579 		spin_lock(&lock);
3580 		if (inode_unhashed(inode))
3581 			__insert_inode_hash(inode,
3582 					    inode->i_ino + inode->i_generation);
3583 		spin_unlock(&lock);
3584 	}
3585 
3586 	fh[0] = inode->i_generation;
3587 	fh[1] = inode->i_ino;
3588 	fh[2] = ((__u64)inode->i_ino) >> 32;
3589 
3590 	*len = 3;
3591 	return 1;
3592 }
3593 
3594 static const struct export_operations shmem_export_ops = {
3595 	.get_parent     = shmem_get_parent,
3596 	.encode_fh      = shmem_encode_fh,
3597 	.fh_to_dentry	= shmem_fh_to_dentry,
3598 };
3599 
3600 enum shmem_param {
3601 	Opt_gid,
3602 	Opt_huge,
3603 	Opt_mode,
3604 	Opt_mpol,
3605 	Opt_nr_blocks,
3606 	Opt_nr_inodes,
3607 	Opt_size,
3608 	Opt_uid,
3609 	Opt_inode32,
3610 	Opt_inode64,
3611 	Opt_noswap,
3612 };
3613 
3614 static const struct constant_table shmem_param_enums_huge[] = {
3615 	{"never",	SHMEM_HUGE_NEVER },
3616 	{"always",	SHMEM_HUGE_ALWAYS },
3617 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3618 	{"advise",	SHMEM_HUGE_ADVISE },
3619 	{}
3620 };
3621 
3622 const struct fs_parameter_spec shmem_fs_parameters[] = {
3623 	fsparam_u32   ("gid",		Opt_gid),
3624 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3625 	fsparam_u32oct("mode",		Opt_mode),
3626 	fsparam_string("mpol",		Opt_mpol),
3627 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3628 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3629 	fsparam_string("size",		Opt_size),
3630 	fsparam_u32   ("uid",		Opt_uid),
3631 	fsparam_flag  ("inode32",	Opt_inode32),
3632 	fsparam_flag  ("inode64",	Opt_inode64),
3633 	fsparam_flag  ("noswap",	Opt_noswap),
3634 	{}
3635 };
3636 
3637 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3638 {
3639 	struct shmem_options *ctx = fc->fs_private;
3640 	struct fs_parse_result result;
3641 	unsigned long long size;
3642 	char *rest;
3643 	int opt;
3644 
3645 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3646 	if (opt < 0)
3647 		return opt;
3648 
3649 	switch (opt) {
3650 	case Opt_size:
3651 		size = memparse(param->string, &rest);
3652 		if (*rest == '%') {
3653 			size <<= PAGE_SHIFT;
3654 			size *= totalram_pages();
3655 			do_div(size, 100);
3656 			rest++;
3657 		}
3658 		if (*rest)
3659 			goto bad_value;
3660 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3661 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3662 		break;
3663 	case Opt_nr_blocks:
3664 		ctx->blocks = memparse(param->string, &rest);
3665 		if (*rest || ctx->blocks > S64_MAX)
3666 			goto bad_value;
3667 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3668 		break;
3669 	case Opt_nr_inodes:
3670 		ctx->inodes = memparse(param->string, &rest);
3671 		if (*rest)
3672 			goto bad_value;
3673 		ctx->seen |= SHMEM_SEEN_INODES;
3674 		break;
3675 	case Opt_mode:
3676 		ctx->mode = result.uint_32 & 07777;
3677 		break;
3678 	case Opt_uid:
3679 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3680 		if (!uid_valid(ctx->uid))
3681 			goto bad_value;
3682 		break;
3683 	case Opt_gid:
3684 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3685 		if (!gid_valid(ctx->gid))
3686 			goto bad_value;
3687 		break;
3688 	case Opt_huge:
3689 		ctx->huge = result.uint_32;
3690 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3691 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3692 		      has_transparent_hugepage()))
3693 			goto unsupported_parameter;
3694 		ctx->seen |= SHMEM_SEEN_HUGE;
3695 		break;
3696 	case Opt_mpol:
3697 		if (IS_ENABLED(CONFIG_NUMA)) {
3698 			mpol_put(ctx->mpol);
3699 			ctx->mpol = NULL;
3700 			if (mpol_parse_str(param->string, &ctx->mpol))
3701 				goto bad_value;
3702 			break;
3703 		}
3704 		goto unsupported_parameter;
3705 	case Opt_inode32:
3706 		ctx->full_inums = false;
3707 		ctx->seen |= SHMEM_SEEN_INUMS;
3708 		break;
3709 	case Opt_inode64:
3710 		if (sizeof(ino_t) < 8) {
3711 			return invalfc(fc,
3712 				       "Cannot use inode64 with <64bit inums in kernel\n");
3713 		}
3714 		ctx->full_inums = true;
3715 		ctx->seen |= SHMEM_SEEN_INUMS;
3716 		break;
3717 	case Opt_noswap:
3718 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3719 			return invalfc(fc,
3720 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
3721 		}
3722 		ctx->noswap = true;
3723 		ctx->seen |= SHMEM_SEEN_NOSWAP;
3724 		break;
3725 	}
3726 	return 0;
3727 
3728 unsupported_parameter:
3729 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3730 bad_value:
3731 	return invalfc(fc, "Bad value for '%s'", param->key);
3732 }
3733 
3734 static int shmem_parse_options(struct fs_context *fc, void *data)
3735 {
3736 	char *options = data;
3737 
3738 	if (options) {
3739 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3740 		if (err)
3741 			return err;
3742 	}
3743 
3744 	while (options != NULL) {
3745 		char *this_char = options;
3746 		for (;;) {
3747 			/*
3748 			 * NUL-terminate this option: unfortunately,
3749 			 * mount options form a comma-separated list,
3750 			 * but mpol's nodelist may also contain commas.
3751 			 */
3752 			options = strchr(options, ',');
3753 			if (options == NULL)
3754 				break;
3755 			options++;
3756 			if (!isdigit(*options)) {
3757 				options[-1] = '\0';
3758 				break;
3759 			}
3760 		}
3761 		if (*this_char) {
3762 			char *value = strchr(this_char, '=');
3763 			size_t len = 0;
3764 			int err;
3765 
3766 			if (value) {
3767 				*value++ = '\0';
3768 				len = strlen(value);
3769 			}
3770 			err = vfs_parse_fs_string(fc, this_char, value, len);
3771 			if (err < 0)
3772 				return err;
3773 		}
3774 	}
3775 	return 0;
3776 }
3777 
3778 /*
3779  * Reconfigure a shmem filesystem.
3780  *
3781  * Note that we disallow change from limited->unlimited blocks/inodes while any
3782  * are in use; but we must separately disallow unlimited->limited, because in
3783  * that case we have no record of how much is already in use.
3784  */
3785 static int shmem_reconfigure(struct fs_context *fc)
3786 {
3787 	struct shmem_options *ctx = fc->fs_private;
3788 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3789 	unsigned long inodes;
3790 	struct mempolicy *mpol = NULL;
3791 	const char *err;
3792 
3793 	raw_spin_lock(&sbinfo->stat_lock);
3794 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3795 
3796 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3797 		if (!sbinfo->max_blocks) {
3798 			err = "Cannot retroactively limit size";
3799 			goto out;
3800 		}
3801 		if (percpu_counter_compare(&sbinfo->used_blocks,
3802 					   ctx->blocks) > 0) {
3803 			err = "Too small a size for current use";
3804 			goto out;
3805 		}
3806 	}
3807 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3808 		if (!sbinfo->max_inodes) {
3809 			err = "Cannot retroactively limit inodes";
3810 			goto out;
3811 		}
3812 		if (ctx->inodes < inodes) {
3813 			err = "Too few inodes for current use";
3814 			goto out;
3815 		}
3816 	}
3817 
3818 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3819 	    sbinfo->next_ino > UINT_MAX) {
3820 		err = "Current inum too high to switch to 32-bit inums";
3821 		goto out;
3822 	}
3823 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
3824 		err = "Cannot disable swap on remount";
3825 		goto out;
3826 	}
3827 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
3828 		err = "Cannot enable swap on remount if it was disabled on first mount";
3829 		goto out;
3830 	}
3831 
3832 	if (ctx->seen & SHMEM_SEEN_HUGE)
3833 		sbinfo->huge = ctx->huge;
3834 	if (ctx->seen & SHMEM_SEEN_INUMS)
3835 		sbinfo->full_inums = ctx->full_inums;
3836 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3837 		sbinfo->max_blocks  = ctx->blocks;
3838 	if (ctx->seen & SHMEM_SEEN_INODES) {
3839 		sbinfo->max_inodes  = ctx->inodes;
3840 		sbinfo->free_inodes = ctx->inodes - inodes;
3841 	}
3842 
3843 	/*
3844 	 * Preserve previous mempolicy unless mpol remount option was specified.
3845 	 */
3846 	if (ctx->mpol) {
3847 		mpol = sbinfo->mpol;
3848 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3849 		ctx->mpol = NULL;
3850 	}
3851 
3852 	if (ctx->noswap)
3853 		sbinfo->noswap = true;
3854 
3855 	raw_spin_unlock(&sbinfo->stat_lock);
3856 	mpol_put(mpol);
3857 	return 0;
3858 out:
3859 	raw_spin_unlock(&sbinfo->stat_lock);
3860 	return invalfc(fc, "%s", err);
3861 }
3862 
3863 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3864 {
3865 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3866 	struct mempolicy *mpol;
3867 
3868 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3869 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
3870 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3871 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3872 	if (sbinfo->mode != (0777 | S_ISVTX))
3873 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3874 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3875 		seq_printf(seq, ",uid=%u",
3876 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3877 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3878 		seq_printf(seq, ",gid=%u",
3879 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3880 
3881 	/*
3882 	 * Showing inode{64,32} might be useful even if it's the system default,
3883 	 * since then people don't have to resort to checking both here and
3884 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3885 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3886 	 *
3887 	 * We hide it when inode64 isn't the default and we are using 32-bit
3888 	 * inodes, since that probably just means the feature isn't even under
3889 	 * consideration.
3890 	 *
3891 	 * As such:
3892 	 *
3893 	 *                     +-----------------+-----------------+
3894 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3895 	 *  +------------------+-----------------+-----------------+
3896 	 *  | full_inums=true  | show            | show            |
3897 	 *  | full_inums=false | show            | hide            |
3898 	 *  +------------------+-----------------+-----------------+
3899 	 *
3900 	 */
3901 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3902 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3904 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3905 	if (sbinfo->huge)
3906 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3907 #endif
3908 	mpol = shmem_get_sbmpol(sbinfo);
3909 	shmem_show_mpol(seq, mpol);
3910 	mpol_put(mpol);
3911 	if (sbinfo->noswap)
3912 		seq_printf(seq, ",noswap");
3913 	return 0;
3914 }
3915 
3916 #endif /* CONFIG_TMPFS */
3917 
3918 static void shmem_put_super(struct super_block *sb)
3919 {
3920 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3921 
3922 	free_percpu(sbinfo->ino_batch);
3923 	percpu_counter_destroy(&sbinfo->used_blocks);
3924 	mpol_put(sbinfo->mpol);
3925 	kfree(sbinfo);
3926 	sb->s_fs_info = NULL;
3927 }
3928 
3929 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3930 {
3931 	struct shmem_options *ctx = fc->fs_private;
3932 	struct inode *inode;
3933 	struct shmem_sb_info *sbinfo;
3934 
3935 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3936 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3937 				L1_CACHE_BYTES), GFP_KERNEL);
3938 	if (!sbinfo)
3939 		return -ENOMEM;
3940 
3941 	sb->s_fs_info = sbinfo;
3942 
3943 #ifdef CONFIG_TMPFS
3944 	/*
3945 	 * Per default we only allow half of the physical ram per
3946 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3947 	 * but the internal instance is left unlimited.
3948 	 */
3949 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3950 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3951 			ctx->blocks = shmem_default_max_blocks();
3952 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3953 			ctx->inodes = shmem_default_max_inodes();
3954 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3955 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3956 		sbinfo->noswap = ctx->noswap;
3957 	} else {
3958 		sb->s_flags |= SB_NOUSER;
3959 	}
3960 	sb->s_export_op = &shmem_export_ops;
3961 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3962 #else
3963 	sb->s_flags |= SB_NOUSER;
3964 #endif
3965 	sbinfo->max_blocks = ctx->blocks;
3966 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3967 	if (sb->s_flags & SB_KERNMOUNT) {
3968 		sbinfo->ino_batch = alloc_percpu(ino_t);
3969 		if (!sbinfo->ino_batch)
3970 			goto failed;
3971 	}
3972 	sbinfo->uid = ctx->uid;
3973 	sbinfo->gid = ctx->gid;
3974 	sbinfo->full_inums = ctx->full_inums;
3975 	sbinfo->mode = ctx->mode;
3976 	sbinfo->huge = ctx->huge;
3977 	sbinfo->mpol = ctx->mpol;
3978 	ctx->mpol = NULL;
3979 
3980 	raw_spin_lock_init(&sbinfo->stat_lock);
3981 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3982 		goto failed;
3983 	spin_lock_init(&sbinfo->shrinklist_lock);
3984 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3985 
3986 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3987 	sb->s_blocksize = PAGE_SIZE;
3988 	sb->s_blocksize_bits = PAGE_SHIFT;
3989 	sb->s_magic = TMPFS_MAGIC;
3990 	sb->s_op = &shmem_ops;
3991 	sb->s_time_gran = 1;
3992 #ifdef CONFIG_TMPFS_XATTR
3993 	sb->s_xattr = shmem_xattr_handlers;
3994 #endif
3995 #ifdef CONFIG_TMPFS_POSIX_ACL
3996 	sb->s_flags |= SB_POSIXACL;
3997 #endif
3998 	uuid_gen(&sb->s_uuid);
3999 
4000 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4001 				VM_NORESERVE);
4002 	if (!inode)
4003 		goto failed;
4004 	inode->i_uid = sbinfo->uid;
4005 	inode->i_gid = sbinfo->gid;
4006 	sb->s_root = d_make_root(inode);
4007 	if (!sb->s_root)
4008 		goto failed;
4009 	return 0;
4010 
4011 failed:
4012 	shmem_put_super(sb);
4013 	return -ENOMEM;
4014 }
4015 
4016 static int shmem_get_tree(struct fs_context *fc)
4017 {
4018 	return get_tree_nodev(fc, shmem_fill_super);
4019 }
4020 
4021 static void shmem_free_fc(struct fs_context *fc)
4022 {
4023 	struct shmem_options *ctx = fc->fs_private;
4024 
4025 	if (ctx) {
4026 		mpol_put(ctx->mpol);
4027 		kfree(ctx);
4028 	}
4029 }
4030 
4031 static const struct fs_context_operations shmem_fs_context_ops = {
4032 	.free			= shmem_free_fc,
4033 	.get_tree		= shmem_get_tree,
4034 #ifdef CONFIG_TMPFS
4035 	.parse_monolithic	= shmem_parse_options,
4036 	.parse_param		= shmem_parse_one,
4037 	.reconfigure		= shmem_reconfigure,
4038 #endif
4039 };
4040 
4041 static struct kmem_cache *shmem_inode_cachep;
4042 
4043 static struct inode *shmem_alloc_inode(struct super_block *sb)
4044 {
4045 	struct shmem_inode_info *info;
4046 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4047 	if (!info)
4048 		return NULL;
4049 	return &info->vfs_inode;
4050 }
4051 
4052 static void shmem_free_in_core_inode(struct inode *inode)
4053 {
4054 	if (S_ISLNK(inode->i_mode))
4055 		kfree(inode->i_link);
4056 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4057 }
4058 
4059 static void shmem_destroy_inode(struct inode *inode)
4060 {
4061 	if (S_ISREG(inode->i_mode))
4062 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4063 }
4064 
4065 static void shmem_init_inode(void *foo)
4066 {
4067 	struct shmem_inode_info *info = foo;
4068 	inode_init_once(&info->vfs_inode);
4069 }
4070 
4071 static void shmem_init_inodecache(void)
4072 {
4073 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4074 				sizeof(struct shmem_inode_info),
4075 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4076 }
4077 
4078 static void shmem_destroy_inodecache(void)
4079 {
4080 	kmem_cache_destroy(shmem_inode_cachep);
4081 }
4082 
4083 /* Keep the page in page cache instead of truncating it */
4084 static int shmem_error_remove_page(struct address_space *mapping,
4085 				   struct page *page)
4086 {
4087 	return 0;
4088 }
4089 
4090 const struct address_space_operations shmem_aops = {
4091 	.writepage	= shmem_writepage,
4092 	.dirty_folio	= noop_dirty_folio,
4093 #ifdef CONFIG_TMPFS
4094 	.write_begin	= shmem_write_begin,
4095 	.write_end	= shmem_write_end,
4096 #endif
4097 #ifdef CONFIG_MIGRATION
4098 	.migrate_folio	= migrate_folio,
4099 #endif
4100 	.error_remove_page = shmem_error_remove_page,
4101 };
4102 EXPORT_SYMBOL(shmem_aops);
4103 
4104 static const struct file_operations shmem_file_operations = {
4105 	.mmap		= shmem_mmap,
4106 	.open		= generic_file_open,
4107 	.get_unmapped_area = shmem_get_unmapped_area,
4108 #ifdef CONFIG_TMPFS
4109 	.llseek		= shmem_file_llseek,
4110 	.read_iter	= shmem_file_read_iter,
4111 	.write_iter	= generic_file_write_iter,
4112 	.fsync		= noop_fsync,
4113 	.splice_read	= shmem_file_splice_read,
4114 	.splice_write	= iter_file_splice_write,
4115 	.fallocate	= shmem_fallocate,
4116 #endif
4117 };
4118 
4119 static const struct inode_operations shmem_inode_operations = {
4120 	.getattr	= shmem_getattr,
4121 	.setattr	= shmem_setattr,
4122 #ifdef CONFIG_TMPFS_XATTR
4123 	.listxattr	= shmem_listxattr,
4124 	.set_acl	= simple_set_acl,
4125 	.fileattr_get	= shmem_fileattr_get,
4126 	.fileattr_set	= shmem_fileattr_set,
4127 #endif
4128 };
4129 
4130 static const struct inode_operations shmem_dir_inode_operations = {
4131 #ifdef CONFIG_TMPFS
4132 	.getattr	= shmem_getattr,
4133 	.create		= shmem_create,
4134 	.lookup		= simple_lookup,
4135 	.link		= shmem_link,
4136 	.unlink		= shmem_unlink,
4137 	.symlink	= shmem_symlink,
4138 	.mkdir		= shmem_mkdir,
4139 	.rmdir		= shmem_rmdir,
4140 	.mknod		= shmem_mknod,
4141 	.rename		= shmem_rename2,
4142 	.tmpfile	= shmem_tmpfile,
4143 #endif
4144 #ifdef CONFIG_TMPFS_XATTR
4145 	.listxattr	= shmem_listxattr,
4146 	.fileattr_get	= shmem_fileattr_get,
4147 	.fileattr_set	= shmem_fileattr_set,
4148 #endif
4149 #ifdef CONFIG_TMPFS_POSIX_ACL
4150 	.setattr	= shmem_setattr,
4151 	.set_acl	= simple_set_acl,
4152 #endif
4153 };
4154 
4155 static const struct inode_operations shmem_special_inode_operations = {
4156 	.getattr	= shmem_getattr,
4157 #ifdef CONFIG_TMPFS_XATTR
4158 	.listxattr	= shmem_listxattr,
4159 #endif
4160 #ifdef CONFIG_TMPFS_POSIX_ACL
4161 	.setattr	= shmem_setattr,
4162 	.set_acl	= simple_set_acl,
4163 #endif
4164 };
4165 
4166 static const struct super_operations shmem_ops = {
4167 	.alloc_inode	= shmem_alloc_inode,
4168 	.free_inode	= shmem_free_in_core_inode,
4169 	.destroy_inode	= shmem_destroy_inode,
4170 #ifdef CONFIG_TMPFS
4171 	.statfs		= shmem_statfs,
4172 	.show_options	= shmem_show_options,
4173 #endif
4174 	.evict_inode	= shmem_evict_inode,
4175 	.drop_inode	= generic_delete_inode,
4176 	.put_super	= shmem_put_super,
4177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4178 	.nr_cached_objects	= shmem_unused_huge_count,
4179 	.free_cached_objects	= shmem_unused_huge_scan,
4180 #endif
4181 };
4182 
4183 static const struct vm_operations_struct shmem_vm_ops = {
4184 	.fault		= shmem_fault,
4185 	.map_pages	= filemap_map_pages,
4186 #ifdef CONFIG_NUMA
4187 	.set_policy     = shmem_set_policy,
4188 	.get_policy     = shmem_get_policy,
4189 #endif
4190 };
4191 
4192 static const struct vm_operations_struct shmem_anon_vm_ops = {
4193 	.fault		= shmem_fault,
4194 	.map_pages	= filemap_map_pages,
4195 #ifdef CONFIG_NUMA
4196 	.set_policy     = shmem_set_policy,
4197 	.get_policy     = shmem_get_policy,
4198 #endif
4199 };
4200 
4201 int shmem_init_fs_context(struct fs_context *fc)
4202 {
4203 	struct shmem_options *ctx;
4204 
4205 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4206 	if (!ctx)
4207 		return -ENOMEM;
4208 
4209 	ctx->mode = 0777 | S_ISVTX;
4210 	ctx->uid = current_fsuid();
4211 	ctx->gid = current_fsgid();
4212 
4213 	fc->fs_private = ctx;
4214 	fc->ops = &shmem_fs_context_ops;
4215 	return 0;
4216 }
4217 
4218 static struct file_system_type shmem_fs_type = {
4219 	.owner		= THIS_MODULE,
4220 	.name		= "tmpfs",
4221 	.init_fs_context = shmem_init_fs_context,
4222 #ifdef CONFIG_TMPFS
4223 	.parameters	= shmem_fs_parameters,
4224 #endif
4225 	.kill_sb	= kill_litter_super,
4226 #ifdef CONFIG_SHMEM
4227 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4228 #else
4229 	.fs_flags	= FS_USERNS_MOUNT,
4230 #endif
4231 };
4232 
4233 void __init shmem_init(void)
4234 {
4235 	int error;
4236 
4237 	shmem_init_inodecache();
4238 
4239 	error = register_filesystem(&shmem_fs_type);
4240 	if (error) {
4241 		pr_err("Could not register tmpfs\n");
4242 		goto out2;
4243 	}
4244 
4245 	shm_mnt = kern_mount(&shmem_fs_type);
4246 	if (IS_ERR(shm_mnt)) {
4247 		error = PTR_ERR(shm_mnt);
4248 		pr_err("Could not kern_mount tmpfs\n");
4249 		goto out1;
4250 	}
4251 
4252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4253 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4254 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4255 	else
4256 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4257 #endif
4258 	return;
4259 
4260 out1:
4261 	unregister_filesystem(&shmem_fs_type);
4262 out2:
4263 	shmem_destroy_inodecache();
4264 	shm_mnt = ERR_PTR(error);
4265 }
4266 
4267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4268 static ssize_t shmem_enabled_show(struct kobject *kobj,
4269 				  struct kobj_attribute *attr, char *buf)
4270 {
4271 	static const int values[] = {
4272 		SHMEM_HUGE_ALWAYS,
4273 		SHMEM_HUGE_WITHIN_SIZE,
4274 		SHMEM_HUGE_ADVISE,
4275 		SHMEM_HUGE_NEVER,
4276 		SHMEM_HUGE_DENY,
4277 		SHMEM_HUGE_FORCE,
4278 	};
4279 	int len = 0;
4280 	int i;
4281 
4282 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4283 		len += sysfs_emit_at(buf, len,
4284 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4285 				     i ? " " : "",
4286 				     shmem_format_huge(values[i]));
4287 	}
4288 
4289 	len += sysfs_emit_at(buf, len, "\n");
4290 
4291 	return len;
4292 }
4293 
4294 static ssize_t shmem_enabled_store(struct kobject *kobj,
4295 		struct kobj_attribute *attr, const char *buf, size_t count)
4296 {
4297 	char tmp[16];
4298 	int huge;
4299 
4300 	if (count + 1 > sizeof(tmp))
4301 		return -EINVAL;
4302 	memcpy(tmp, buf, count);
4303 	tmp[count] = '\0';
4304 	if (count && tmp[count - 1] == '\n')
4305 		tmp[count - 1] = '\0';
4306 
4307 	huge = shmem_parse_huge(tmp);
4308 	if (huge == -EINVAL)
4309 		return -EINVAL;
4310 	if (!has_transparent_hugepage() &&
4311 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4312 		return -EINVAL;
4313 
4314 	shmem_huge = huge;
4315 	if (shmem_huge > SHMEM_HUGE_DENY)
4316 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4317 	return count;
4318 }
4319 
4320 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4321 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4322 
4323 #else /* !CONFIG_SHMEM */
4324 
4325 /*
4326  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4327  *
4328  * This is intended for small system where the benefits of the full
4329  * shmem code (swap-backed and resource-limited) are outweighed by
4330  * their complexity. On systems without swap this code should be
4331  * effectively equivalent, but much lighter weight.
4332  */
4333 
4334 static struct file_system_type shmem_fs_type = {
4335 	.name		= "tmpfs",
4336 	.init_fs_context = ramfs_init_fs_context,
4337 	.parameters	= ramfs_fs_parameters,
4338 	.kill_sb	= ramfs_kill_sb,
4339 	.fs_flags	= FS_USERNS_MOUNT,
4340 };
4341 
4342 void __init shmem_init(void)
4343 {
4344 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4345 
4346 	shm_mnt = kern_mount(&shmem_fs_type);
4347 	BUG_ON(IS_ERR(shm_mnt));
4348 }
4349 
4350 int shmem_unuse(unsigned int type)
4351 {
4352 	return 0;
4353 }
4354 
4355 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4356 {
4357 	return 0;
4358 }
4359 
4360 void shmem_unlock_mapping(struct address_space *mapping)
4361 {
4362 }
4363 
4364 #ifdef CONFIG_MMU
4365 unsigned long shmem_get_unmapped_area(struct file *file,
4366 				      unsigned long addr, unsigned long len,
4367 				      unsigned long pgoff, unsigned long flags)
4368 {
4369 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4370 }
4371 #endif
4372 
4373 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4374 {
4375 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4376 }
4377 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4378 
4379 #define shmem_vm_ops				generic_file_vm_ops
4380 #define shmem_anon_vm_ops			generic_file_vm_ops
4381 #define shmem_file_operations			ramfs_file_operations
4382 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4383 #define shmem_acct_size(flags, size)		0
4384 #define shmem_unacct_size(flags, size)		do {} while (0)
4385 
4386 #endif /* CONFIG_SHMEM */
4387 
4388 /* common code */
4389 
4390 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4391 				       unsigned long flags, unsigned int i_flags)
4392 {
4393 	struct inode *inode;
4394 	struct file *res;
4395 
4396 	if (IS_ERR(mnt))
4397 		return ERR_CAST(mnt);
4398 
4399 	if (size < 0 || size > MAX_LFS_FILESIZE)
4400 		return ERR_PTR(-EINVAL);
4401 
4402 	if (shmem_acct_size(flags, size))
4403 		return ERR_PTR(-ENOMEM);
4404 
4405 	if (is_idmapped_mnt(mnt))
4406 		return ERR_PTR(-EINVAL);
4407 
4408 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4409 				S_IFREG | S_IRWXUGO, 0, flags);
4410 	if (unlikely(!inode)) {
4411 		shmem_unacct_size(flags, size);
4412 		return ERR_PTR(-ENOSPC);
4413 	}
4414 	inode->i_flags |= i_flags;
4415 	inode->i_size = size;
4416 	clear_nlink(inode);	/* It is unlinked */
4417 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4418 	if (!IS_ERR(res))
4419 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4420 				&shmem_file_operations);
4421 	if (IS_ERR(res))
4422 		iput(inode);
4423 	return res;
4424 }
4425 
4426 /**
4427  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4428  * 	kernel internal.  There will be NO LSM permission checks against the
4429  * 	underlying inode.  So users of this interface must do LSM checks at a
4430  *	higher layer.  The users are the big_key and shm implementations.  LSM
4431  *	checks are provided at the key or shm level rather than the inode.
4432  * @name: name for dentry (to be seen in /proc/<pid>/maps
4433  * @size: size to be set for the file
4434  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4435  */
4436 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4437 {
4438 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4439 }
4440 
4441 /**
4442  * shmem_file_setup - get an unlinked file living in tmpfs
4443  * @name: name for dentry (to be seen in /proc/<pid>/maps
4444  * @size: size to be set for the file
4445  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4446  */
4447 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4448 {
4449 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4450 }
4451 EXPORT_SYMBOL_GPL(shmem_file_setup);
4452 
4453 /**
4454  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4455  * @mnt: the tmpfs mount where the file will be created
4456  * @name: name for dentry (to be seen in /proc/<pid>/maps
4457  * @size: size to be set for the file
4458  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4459  */
4460 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4461 				       loff_t size, unsigned long flags)
4462 {
4463 	return __shmem_file_setup(mnt, name, size, flags, 0);
4464 }
4465 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4466 
4467 /**
4468  * shmem_zero_setup - setup a shared anonymous mapping
4469  * @vma: the vma to be mmapped is prepared by do_mmap
4470  */
4471 int shmem_zero_setup(struct vm_area_struct *vma)
4472 {
4473 	struct file *file;
4474 	loff_t size = vma->vm_end - vma->vm_start;
4475 
4476 	/*
4477 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4478 	 * between XFS directory reading and selinux: since this file is only
4479 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4480 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4481 	 */
4482 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4483 	if (IS_ERR(file))
4484 		return PTR_ERR(file);
4485 
4486 	if (vma->vm_file)
4487 		fput(vma->vm_file);
4488 	vma->vm_file = file;
4489 	vma->vm_ops = &shmem_anon_vm_ops;
4490 
4491 	return 0;
4492 }
4493 
4494 /**
4495  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4496  * @mapping:	the folio's address_space
4497  * @index:	the folio index
4498  * @gfp:	the page allocator flags to use if allocating
4499  *
4500  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4501  * with any new page allocations done using the specified allocation flags.
4502  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4503  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4504  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4505  *
4506  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4507  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4508  */
4509 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4510 		pgoff_t index, gfp_t gfp)
4511 {
4512 #ifdef CONFIG_SHMEM
4513 	struct inode *inode = mapping->host;
4514 	struct folio *folio;
4515 	int error;
4516 
4517 	BUG_ON(!shmem_mapping(mapping));
4518 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4519 				  gfp, NULL, NULL, NULL);
4520 	if (error)
4521 		return ERR_PTR(error);
4522 
4523 	folio_unlock(folio);
4524 	return folio;
4525 #else
4526 	/*
4527 	 * The tiny !SHMEM case uses ramfs without swap
4528 	 */
4529 	return mapping_read_folio_gfp(mapping, index, gfp);
4530 #endif
4531 }
4532 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4533 
4534 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4535 					 pgoff_t index, gfp_t gfp)
4536 {
4537 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4538 	struct page *page;
4539 
4540 	if (IS_ERR(folio))
4541 		return &folio->page;
4542 
4543 	page = folio_file_page(folio, index);
4544 	if (PageHWPoison(page)) {
4545 		folio_put(folio);
4546 		return ERR_PTR(-EIO);
4547 	}
4548 
4549 	return page;
4550 }
4551 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4552