1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_rwsem making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 struct shmem_options { 109 unsigned long long blocks; 110 unsigned long long inodes; 111 struct mempolicy *mpol; 112 kuid_t uid; 113 kgid_t gid; 114 umode_t mode; 115 bool full_inums; 116 int huge; 117 int seen; 118 bool noswap; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 #define SHMEM_SEEN_NOSWAP 16 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 141 struct folio **foliop, enum sgp_type sgp, 142 gfp_t gfp, struct vm_area_struct *vma, 143 vm_fault_t *fault_type); 144 145 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 146 { 147 return sb->s_fs_info; 148 } 149 150 /* 151 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 152 * for shared memory and for shared anonymous (/dev/zero) mappings 153 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 154 * consistent with the pre-accounting of private mappings ... 155 */ 156 static inline int shmem_acct_size(unsigned long flags, loff_t size) 157 { 158 return (flags & VM_NORESERVE) ? 159 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 160 } 161 162 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 163 { 164 if (!(flags & VM_NORESERVE)) 165 vm_unacct_memory(VM_ACCT(size)); 166 } 167 168 static inline int shmem_reacct_size(unsigned long flags, 169 loff_t oldsize, loff_t newsize) 170 { 171 if (!(flags & VM_NORESERVE)) { 172 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 173 return security_vm_enough_memory_mm(current->mm, 174 VM_ACCT(newsize) - VM_ACCT(oldsize)); 175 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 176 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 177 } 178 return 0; 179 } 180 181 /* 182 * ... whereas tmpfs objects are accounted incrementally as 183 * pages are allocated, in order to allow large sparse files. 184 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 185 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 186 */ 187 static inline int shmem_acct_block(unsigned long flags, long pages) 188 { 189 if (!(flags & VM_NORESERVE)) 190 return 0; 191 192 return security_vm_enough_memory_mm(current->mm, 193 pages * VM_ACCT(PAGE_SIZE)); 194 } 195 196 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 197 { 198 if (flags & VM_NORESERVE) 199 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 200 } 201 202 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 203 { 204 struct shmem_inode_info *info = SHMEM_I(inode); 205 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 206 207 if (shmem_acct_block(info->flags, pages)) 208 return false; 209 210 if (sbinfo->max_blocks) { 211 if (percpu_counter_compare(&sbinfo->used_blocks, 212 sbinfo->max_blocks - pages) > 0) 213 goto unacct; 214 percpu_counter_add(&sbinfo->used_blocks, pages); 215 } 216 217 return true; 218 219 unacct: 220 shmem_unacct_blocks(info->flags, pages); 221 return false; 222 } 223 224 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 225 { 226 struct shmem_inode_info *info = SHMEM_I(inode); 227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 228 229 if (sbinfo->max_blocks) 230 percpu_counter_sub(&sbinfo->used_blocks, pages); 231 shmem_unacct_blocks(info->flags, pages); 232 } 233 234 static const struct super_operations shmem_ops; 235 const struct address_space_operations shmem_aops; 236 static const struct file_operations shmem_file_operations; 237 static const struct inode_operations shmem_inode_operations; 238 static const struct inode_operations shmem_dir_inode_operations; 239 static const struct inode_operations shmem_special_inode_operations; 240 static const struct vm_operations_struct shmem_vm_ops; 241 static const struct vm_operations_struct shmem_anon_vm_ops; 242 static struct file_system_type shmem_fs_type; 243 244 bool vma_is_anon_shmem(struct vm_area_struct *vma) 245 { 246 return vma->vm_ops == &shmem_anon_vm_ops; 247 } 248 249 bool vma_is_shmem(struct vm_area_struct *vma) 250 { 251 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 252 } 253 254 static LIST_HEAD(shmem_swaplist); 255 static DEFINE_MUTEX(shmem_swaplist_mutex); 256 257 /* 258 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 259 * produces a novel ino for the newly allocated inode. 260 * 261 * It may also be called when making a hard link to permit the space needed by 262 * each dentry. However, in that case, no new inode number is needed since that 263 * internally draws from another pool of inode numbers (currently global 264 * get_next_ino()). This case is indicated by passing NULL as inop. 265 */ 266 #define SHMEM_INO_BATCH 1024 267 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 268 { 269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 270 ino_t ino; 271 272 if (!(sb->s_flags & SB_KERNMOUNT)) { 273 raw_spin_lock(&sbinfo->stat_lock); 274 if (sbinfo->max_inodes) { 275 if (!sbinfo->free_inodes) { 276 raw_spin_unlock(&sbinfo->stat_lock); 277 return -ENOSPC; 278 } 279 sbinfo->free_inodes--; 280 } 281 if (inop) { 282 ino = sbinfo->next_ino++; 283 if (unlikely(is_zero_ino(ino))) 284 ino = sbinfo->next_ino++; 285 if (unlikely(!sbinfo->full_inums && 286 ino > UINT_MAX)) { 287 /* 288 * Emulate get_next_ino uint wraparound for 289 * compatibility 290 */ 291 if (IS_ENABLED(CONFIG_64BIT)) 292 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 293 __func__, MINOR(sb->s_dev)); 294 sbinfo->next_ino = 1; 295 ino = sbinfo->next_ino++; 296 } 297 *inop = ino; 298 } 299 raw_spin_unlock(&sbinfo->stat_lock); 300 } else if (inop) { 301 /* 302 * __shmem_file_setup, one of our callers, is lock-free: it 303 * doesn't hold stat_lock in shmem_reserve_inode since 304 * max_inodes is always 0, and is called from potentially 305 * unknown contexts. As such, use a per-cpu batched allocator 306 * which doesn't require the per-sb stat_lock unless we are at 307 * the batch boundary. 308 * 309 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 310 * shmem mounts are not exposed to userspace, so we don't need 311 * to worry about things like glibc compatibility. 312 */ 313 ino_t *next_ino; 314 315 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 316 ino = *next_ino; 317 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 318 raw_spin_lock(&sbinfo->stat_lock); 319 ino = sbinfo->next_ino; 320 sbinfo->next_ino += SHMEM_INO_BATCH; 321 raw_spin_unlock(&sbinfo->stat_lock); 322 if (unlikely(is_zero_ino(ino))) 323 ino++; 324 } 325 *inop = ino; 326 *next_ino = ++ino; 327 put_cpu(); 328 } 329 330 return 0; 331 } 332 333 static void shmem_free_inode(struct super_block *sb) 334 { 335 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 336 if (sbinfo->max_inodes) { 337 raw_spin_lock(&sbinfo->stat_lock); 338 sbinfo->free_inodes++; 339 raw_spin_unlock(&sbinfo->stat_lock); 340 } 341 } 342 343 /** 344 * shmem_recalc_inode - recalculate the block usage of an inode 345 * @inode: inode to recalc 346 * 347 * We have to calculate the free blocks since the mm can drop 348 * undirtied hole pages behind our back. 349 * 350 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 351 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 352 * 353 * It has to be called with the spinlock held. 354 */ 355 static void shmem_recalc_inode(struct inode *inode) 356 { 357 struct shmem_inode_info *info = SHMEM_I(inode); 358 long freed; 359 360 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 361 if (freed > 0) { 362 info->alloced -= freed; 363 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 364 shmem_inode_unacct_blocks(inode, freed); 365 } 366 } 367 368 bool shmem_charge(struct inode *inode, long pages) 369 { 370 struct shmem_inode_info *info = SHMEM_I(inode); 371 unsigned long flags; 372 373 if (!shmem_inode_acct_block(inode, pages)) 374 return false; 375 376 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 377 inode->i_mapping->nrpages += pages; 378 379 spin_lock_irqsave(&info->lock, flags); 380 info->alloced += pages; 381 inode->i_blocks += pages * BLOCKS_PER_PAGE; 382 shmem_recalc_inode(inode); 383 spin_unlock_irqrestore(&info->lock, flags); 384 385 return true; 386 } 387 388 void shmem_uncharge(struct inode *inode, long pages) 389 { 390 struct shmem_inode_info *info = SHMEM_I(inode); 391 unsigned long flags; 392 393 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 394 395 spin_lock_irqsave(&info->lock, flags); 396 info->alloced -= pages; 397 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 398 shmem_recalc_inode(inode); 399 spin_unlock_irqrestore(&info->lock, flags); 400 401 shmem_inode_unacct_blocks(inode, pages); 402 } 403 404 /* 405 * Replace item expected in xarray by a new item, while holding xa_lock. 406 */ 407 static int shmem_replace_entry(struct address_space *mapping, 408 pgoff_t index, void *expected, void *replacement) 409 { 410 XA_STATE(xas, &mapping->i_pages, index); 411 void *item; 412 413 VM_BUG_ON(!expected); 414 VM_BUG_ON(!replacement); 415 item = xas_load(&xas); 416 if (item != expected) 417 return -ENOENT; 418 xas_store(&xas, replacement); 419 return 0; 420 } 421 422 /* 423 * Sometimes, before we decide whether to proceed or to fail, we must check 424 * that an entry was not already brought back from swap by a racing thread. 425 * 426 * Checking page is not enough: by the time a SwapCache page is locked, it 427 * might be reused, and again be SwapCache, using the same swap as before. 428 */ 429 static bool shmem_confirm_swap(struct address_space *mapping, 430 pgoff_t index, swp_entry_t swap) 431 { 432 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 433 } 434 435 /* 436 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 437 * 438 * SHMEM_HUGE_NEVER: 439 * disables huge pages for the mount; 440 * SHMEM_HUGE_ALWAYS: 441 * enables huge pages for the mount; 442 * SHMEM_HUGE_WITHIN_SIZE: 443 * only allocate huge pages if the page will be fully within i_size, 444 * also respect fadvise()/madvise() hints; 445 * SHMEM_HUGE_ADVISE: 446 * only allocate huge pages if requested with fadvise()/madvise(); 447 */ 448 449 #define SHMEM_HUGE_NEVER 0 450 #define SHMEM_HUGE_ALWAYS 1 451 #define SHMEM_HUGE_WITHIN_SIZE 2 452 #define SHMEM_HUGE_ADVISE 3 453 454 /* 455 * Special values. 456 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 457 * 458 * SHMEM_HUGE_DENY: 459 * disables huge on shm_mnt and all mounts, for emergency use; 460 * SHMEM_HUGE_FORCE: 461 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 462 * 463 */ 464 #define SHMEM_HUGE_DENY (-1) 465 #define SHMEM_HUGE_FORCE (-2) 466 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 /* ifdef here to avoid bloating shmem.o when not necessary */ 469 470 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 471 472 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 473 struct mm_struct *mm, unsigned long vm_flags) 474 { 475 loff_t i_size; 476 477 if (!S_ISREG(inode->i_mode)) 478 return false; 479 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 484 return true; 485 486 switch (SHMEM_SB(inode->i_sb)->huge) { 487 case SHMEM_HUGE_ALWAYS: 488 return true; 489 case SHMEM_HUGE_WITHIN_SIZE: 490 index = round_up(index + 1, HPAGE_PMD_NR); 491 i_size = round_up(i_size_read(inode), PAGE_SIZE); 492 if (i_size >> PAGE_SHIFT >= index) 493 return true; 494 fallthrough; 495 case SHMEM_HUGE_ADVISE: 496 if (mm && (vm_flags & VM_HUGEPAGE)) 497 return true; 498 fallthrough; 499 default: 500 return false; 501 } 502 } 503 504 #if defined(CONFIG_SYSFS) 505 static int shmem_parse_huge(const char *str) 506 { 507 if (!strcmp(str, "never")) 508 return SHMEM_HUGE_NEVER; 509 if (!strcmp(str, "always")) 510 return SHMEM_HUGE_ALWAYS; 511 if (!strcmp(str, "within_size")) 512 return SHMEM_HUGE_WITHIN_SIZE; 513 if (!strcmp(str, "advise")) 514 return SHMEM_HUGE_ADVISE; 515 if (!strcmp(str, "deny")) 516 return SHMEM_HUGE_DENY; 517 if (!strcmp(str, "force")) 518 return SHMEM_HUGE_FORCE; 519 return -EINVAL; 520 } 521 #endif 522 523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 524 static const char *shmem_format_huge(int huge) 525 { 526 switch (huge) { 527 case SHMEM_HUGE_NEVER: 528 return "never"; 529 case SHMEM_HUGE_ALWAYS: 530 return "always"; 531 case SHMEM_HUGE_WITHIN_SIZE: 532 return "within_size"; 533 case SHMEM_HUGE_ADVISE: 534 return "advise"; 535 case SHMEM_HUGE_DENY: 536 return "deny"; 537 case SHMEM_HUGE_FORCE: 538 return "force"; 539 default: 540 VM_BUG_ON(1); 541 return "bad_val"; 542 } 543 } 544 #endif 545 546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 547 struct shrink_control *sc, unsigned long nr_to_split) 548 { 549 LIST_HEAD(list), *pos, *next; 550 LIST_HEAD(to_remove); 551 struct inode *inode; 552 struct shmem_inode_info *info; 553 struct folio *folio; 554 unsigned long batch = sc ? sc->nr_to_scan : 128; 555 int split = 0; 556 557 if (list_empty(&sbinfo->shrinklist)) 558 return SHRINK_STOP; 559 560 spin_lock(&sbinfo->shrinklist_lock); 561 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 562 info = list_entry(pos, struct shmem_inode_info, shrinklist); 563 564 /* pin the inode */ 565 inode = igrab(&info->vfs_inode); 566 567 /* inode is about to be evicted */ 568 if (!inode) { 569 list_del_init(&info->shrinklist); 570 goto next; 571 } 572 573 /* Check if there's anything to gain */ 574 if (round_up(inode->i_size, PAGE_SIZE) == 575 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 576 list_move(&info->shrinklist, &to_remove); 577 goto next; 578 } 579 580 list_move(&info->shrinklist, &list); 581 next: 582 sbinfo->shrinklist_len--; 583 if (!--batch) 584 break; 585 } 586 spin_unlock(&sbinfo->shrinklist_lock); 587 588 list_for_each_safe(pos, next, &to_remove) { 589 info = list_entry(pos, struct shmem_inode_info, shrinklist); 590 inode = &info->vfs_inode; 591 list_del_init(&info->shrinklist); 592 iput(inode); 593 } 594 595 list_for_each_safe(pos, next, &list) { 596 int ret; 597 pgoff_t index; 598 599 info = list_entry(pos, struct shmem_inode_info, shrinklist); 600 inode = &info->vfs_inode; 601 602 if (nr_to_split && split >= nr_to_split) 603 goto move_back; 604 605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 606 folio = filemap_get_folio(inode->i_mapping, index); 607 if (IS_ERR(folio)) 608 goto drop; 609 610 /* No huge page at the end of the file: nothing to split */ 611 if (!folio_test_large(folio)) { 612 folio_put(folio); 613 goto drop; 614 } 615 616 /* 617 * Move the inode on the list back to shrinklist if we failed 618 * to lock the page at this time. 619 * 620 * Waiting for the lock may lead to deadlock in the 621 * reclaim path. 622 */ 623 if (!folio_trylock(folio)) { 624 folio_put(folio); 625 goto move_back; 626 } 627 628 ret = split_folio(folio); 629 folio_unlock(folio); 630 folio_put(folio); 631 632 /* If split failed move the inode on the list back to shrinklist */ 633 if (ret) 634 goto move_back; 635 636 split++; 637 drop: 638 list_del_init(&info->shrinklist); 639 goto put; 640 move_back: 641 /* 642 * Make sure the inode is either on the global list or deleted 643 * from any local list before iput() since it could be deleted 644 * in another thread once we put the inode (then the local list 645 * is corrupted). 646 */ 647 spin_lock(&sbinfo->shrinklist_lock); 648 list_move(&info->shrinklist, &sbinfo->shrinklist); 649 sbinfo->shrinklist_len++; 650 spin_unlock(&sbinfo->shrinklist_lock); 651 put: 652 iput(inode); 653 } 654 655 return split; 656 } 657 658 static long shmem_unused_huge_scan(struct super_block *sb, 659 struct shrink_control *sc) 660 { 661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 662 663 if (!READ_ONCE(sbinfo->shrinklist_len)) 664 return SHRINK_STOP; 665 666 return shmem_unused_huge_shrink(sbinfo, sc, 0); 667 } 668 669 static long shmem_unused_huge_count(struct super_block *sb, 670 struct shrink_control *sc) 671 { 672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 673 return READ_ONCE(sbinfo->shrinklist_len); 674 } 675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 676 677 #define shmem_huge SHMEM_HUGE_DENY 678 679 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 680 struct mm_struct *mm, unsigned long vm_flags) 681 { 682 return false; 683 } 684 685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 686 struct shrink_control *sc, unsigned long nr_to_split) 687 { 688 return 0; 689 } 690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 691 692 /* 693 * Like filemap_add_folio, but error if expected item has gone. 694 */ 695 static int shmem_add_to_page_cache(struct folio *folio, 696 struct address_space *mapping, 697 pgoff_t index, void *expected, gfp_t gfp, 698 struct mm_struct *charge_mm) 699 { 700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 701 long nr = folio_nr_pages(folio); 702 int error; 703 704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 707 VM_BUG_ON(expected && folio_test_large(folio)); 708 709 folio_ref_add(folio, nr); 710 folio->mapping = mapping; 711 folio->index = index; 712 713 if (!folio_test_swapcache(folio)) { 714 error = mem_cgroup_charge(folio, charge_mm, gfp); 715 if (error) { 716 if (folio_test_pmd_mappable(folio)) { 717 count_vm_event(THP_FILE_FALLBACK); 718 count_vm_event(THP_FILE_FALLBACK_CHARGE); 719 } 720 goto error; 721 } 722 } 723 folio_throttle_swaprate(folio, gfp); 724 725 do { 726 xas_lock_irq(&xas); 727 if (expected != xas_find_conflict(&xas)) { 728 xas_set_err(&xas, -EEXIST); 729 goto unlock; 730 } 731 if (expected && xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 xas_store(&xas, folio); 736 if (xas_error(&xas)) 737 goto unlock; 738 if (folio_test_pmd_mappable(folio)) { 739 count_vm_event(THP_FILE_ALLOC); 740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 741 } 742 mapping->nrpages += nr; 743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 745 unlock: 746 xas_unlock_irq(&xas); 747 } while (xas_nomem(&xas, gfp)); 748 749 if (xas_error(&xas)) { 750 error = xas_error(&xas); 751 goto error; 752 } 753 754 return 0; 755 error: 756 folio->mapping = NULL; 757 folio_ref_sub(folio, nr); 758 return error; 759 } 760 761 /* 762 * Like delete_from_page_cache, but substitutes swap for @folio. 763 */ 764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 765 { 766 struct address_space *mapping = folio->mapping; 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 xa_lock_irq(&mapping->i_pages); 771 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 772 folio->mapping = NULL; 773 mapping->nrpages -= nr; 774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 776 xa_unlock_irq(&mapping->i_pages); 777 folio_put(folio); 778 BUG_ON(error); 779 } 780 781 /* 782 * Remove swap entry from page cache, free the swap and its page cache. 783 */ 784 static int shmem_free_swap(struct address_space *mapping, 785 pgoff_t index, void *radswap) 786 { 787 void *old; 788 789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 790 if (old != radswap) 791 return -ENOENT; 792 free_swap_and_cache(radix_to_swp_entry(radswap)); 793 return 0; 794 } 795 796 /* 797 * Determine (in bytes) how many of the shmem object's pages mapped by the 798 * given offsets are swapped out. 799 * 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 801 * as long as the inode doesn't go away and racy results are not a problem. 802 */ 803 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 804 pgoff_t start, pgoff_t end) 805 { 806 XA_STATE(xas, &mapping->i_pages, start); 807 struct page *page; 808 unsigned long swapped = 0; 809 unsigned long max = end - 1; 810 811 rcu_read_lock(); 812 xas_for_each(&xas, page, max) { 813 if (xas_retry(&xas, page)) 814 continue; 815 if (xa_is_value(page)) 816 swapped++; 817 if (xas.xa_index == max) 818 break; 819 if (need_resched()) { 820 xas_pause(&xas); 821 cond_resched_rcu(); 822 } 823 } 824 825 rcu_read_unlock(); 826 827 return swapped << PAGE_SHIFT; 828 } 829 830 /* 831 * Determine (in bytes) how many of the shmem object's pages mapped by the 832 * given vma is swapped out. 833 * 834 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 835 * as long as the inode doesn't go away and racy results are not a problem. 836 */ 837 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 838 { 839 struct inode *inode = file_inode(vma->vm_file); 840 struct shmem_inode_info *info = SHMEM_I(inode); 841 struct address_space *mapping = inode->i_mapping; 842 unsigned long swapped; 843 844 /* Be careful as we don't hold info->lock */ 845 swapped = READ_ONCE(info->swapped); 846 847 /* 848 * The easier cases are when the shmem object has nothing in swap, or 849 * the vma maps it whole. Then we can simply use the stats that we 850 * already track. 851 */ 852 if (!swapped) 853 return 0; 854 855 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 856 return swapped << PAGE_SHIFT; 857 858 /* Here comes the more involved part */ 859 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 860 vma->vm_pgoff + vma_pages(vma)); 861 } 862 863 /* 864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 865 */ 866 void shmem_unlock_mapping(struct address_space *mapping) 867 { 868 struct folio_batch fbatch; 869 pgoff_t index = 0; 870 871 folio_batch_init(&fbatch); 872 /* 873 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 874 */ 875 while (!mapping_unevictable(mapping) && 876 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 877 check_move_unevictable_folios(&fbatch); 878 folio_batch_release(&fbatch); 879 cond_resched(); 880 } 881 } 882 883 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 884 { 885 struct folio *folio; 886 887 /* 888 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 889 * beyond i_size, and reports fallocated folios as holes. 890 */ 891 folio = filemap_get_entry(inode->i_mapping, index); 892 if (!folio) 893 return folio; 894 if (!xa_is_value(folio)) { 895 folio_lock(folio); 896 if (folio->mapping == inode->i_mapping) 897 return folio; 898 /* The folio has been swapped out */ 899 folio_unlock(folio); 900 folio_put(folio); 901 } 902 /* 903 * But read a folio back from swap if any of it is within i_size 904 * (although in some cases this is just a waste of time). 905 */ 906 folio = NULL; 907 shmem_get_folio(inode, index, &folio, SGP_READ); 908 return folio; 909 } 910 911 /* 912 * Remove range of pages and swap entries from page cache, and free them. 913 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 914 */ 915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 916 bool unfalloc) 917 { 918 struct address_space *mapping = inode->i_mapping; 919 struct shmem_inode_info *info = SHMEM_I(inode); 920 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 921 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 922 struct folio_batch fbatch; 923 pgoff_t indices[PAGEVEC_SIZE]; 924 struct folio *folio; 925 bool same_folio; 926 long nr_swaps_freed = 0; 927 pgoff_t index; 928 int i; 929 930 if (lend == -1) 931 end = -1; /* unsigned, so actually very big */ 932 933 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 934 info->fallocend = start; 935 936 folio_batch_init(&fbatch); 937 index = start; 938 while (index < end && find_lock_entries(mapping, &index, end - 1, 939 &fbatch, indices)) { 940 for (i = 0; i < folio_batch_count(&fbatch); i++) { 941 folio = fbatch.folios[i]; 942 943 if (xa_is_value(folio)) { 944 if (unfalloc) 945 continue; 946 nr_swaps_freed += !shmem_free_swap(mapping, 947 indices[i], folio); 948 continue; 949 } 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 } 959 960 /* 961 * When undoing a failed fallocate, we want none of the partial folio 962 * zeroing and splitting below, but shall want to truncate the whole 963 * folio when !uptodate indicates that it was added by this fallocate, 964 * even when [lstart, lend] covers only a part of the folio. 965 */ 966 if (unfalloc) 967 goto whole_folios; 968 969 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 970 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 971 if (folio) { 972 same_folio = lend < folio_pos(folio) + folio_size(folio); 973 folio_mark_dirty(folio); 974 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 975 start = folio_next_index(folio); 976 if (same_folio) 977 end = folio->index; 978 } 979 folio_unlock(folio); 980 folio_put(folio); 981 folio = NULL; 982 } 983 984 if (!same_folio) 985 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 986 if (folio) { 987 folio_mark_dirty(folio); 988 if (!truncate_inode_partial_folio(folio, lstart, lend)) 989 end = folio->index; 990 folio_unlock(folio); 991 folio_put(folio); 992 } 993 994 whole_folios: 995 996 index = start; 997 while (index < end) { 998 cond_resched(); 999 1000 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1001 indices)) { 1002 /* If all gone or hole-punch or unfalloc, we're done */ 1003 if (index == start || end != -1) 1004 break; 1005 /* But if truncating, restart to make sure all gone */ 1006 index = start; 1007 continue; 1008 } 1009 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1010 folio = fbatch.folios[i]; 1011 1012 if (xa_is_value(folio)) { 1013 if (unfalloc) 1014 continue; 1015 if (shmem_free_swap(mapping, indices[i], folio)) { 1016 /* Swap was replaced by page: retry */ 1017 index = indices[i]; 1018 break; 1019 } 1020 nr_swaps_freed++; 1021 continue; 1022 } 1023 1024 folio_lock(folio); 1025 1026 if (!unfalloc || !folio_test_uptodate(folio)) { 1027 if (folio_mapping(folio) != mapping) { 1028 /* Page was replaced by swap: retry */ 1029 folio_unlock(folio); 1030 index = indices[i]; 1031 break; 1032 } 1033 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1034 folio); 1035 truncate_inode_folio(mapping, folio); 1036 } 1037 folio_unlock(folio); 1038 } 1039 folio_batch_remove_exceptionals(&fbatch); 1040 folio_batch_release(&fbatch); 1041 } 1042 1043 spin_lock_irq(&info->lock); 1044 info->swapped -= nr_swaps_freed; 1045 shmem_recalc_inode(inode); 1046 spin_unlock_irq(&info->lock); 1047 } 1048 1049 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1050 { 1051 shmem_undo_range(inode, lstart, lend, false); 1052 inode->i_ctime = inode->i_mtime = current_time(inode); 1053 inode_inc_iversion(inode); 1054 } 1055 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1056 1057 static int shmem_getattr(struct mnt_idmap *idmap, 1058 const struct path *path, struct kstat *stat, 1059 u32 request_mask, unsigned int query_flags) 1060 { 1061 struct inode *inode = path->dentry->d_inode; 1062 struct shmem_inode_info *info = SHMEM_I(inode); 1063 1064 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1065 spin_lock_irq(&info->lock); 1066 shmem_recalc_inode(inode); 1067 spin_unlock_irq(&info->lock); 1068 } 1069 if (info->fsflags & FS_APPEND_FL) 1070 stat->attributes |= STATX_ATTR_APPEND; 1071 if (info->fsflags & FS_IMMUTABLE_FL) 1072 stat->attributes |= STATX_ATTR_IMMUTABLE; 1073 if (info->fsflags & FS_NODUMP_FL) 1074 stat->attributes |= STATX_ATTR_NODUMP; 1075 stat->attributes_mask |= (STATX_ATTR_APPEND | 1076 STATX_ATTR_IMMUTABLE | 1077 STATX_ATTR_NODUMP); 1078 generic_fillattr(idmap, inode, stat); 1079 1080 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1081 stat->blksize = HPAGE_PMD_SIZE; 1082 1083 if (request_mask & STATX_BTIME) { 1084 stat->result_mask |= STATX_BTIME; 1085 stat->btime.tv_sec = info->i_crtime.tv_sec; 1086 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1087 } 1088 1089 return 0; 1090 } 1091 1092 static int shmem_setattr(struct mnt_idmap *idmap, 1093 struct dentry *dentry, struct iattr *attr) 1094 { 1095 struct inode *inode = d_inode(dentry); 1096 struct shmem_inode_info *info = SHMEM_I(inode); 1097 int error; 1098 bool update_mtime = false; 1099 bool update_ctime = true; 1100 1101 error = setattr_prepare(idmap, dentry, attr); 1102 if (error) 1103 return error; 1104 1105 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1106 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1107 return -EPERM; 1108 } 1109 } 1110 1111 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1112 loff_t oldsize = inode->i_size; 1113 loff_t newsize = attr->ia_size; 1114 1115 /* protected by i_rwsem */ 1116 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1117 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1118 return -EPERM; 1119 1120 if (newsize != oldsize) { 1121 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1122 oldsize, newsize); 1123 if (error) 1124 return error; 1125 i_size_write(inode, newsize); 1126 update_mtime = true; 1127 } else { 1128 update_ctime = false; 1129 } 1130 if (newsize <= oldsize) { 1131 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1132 if (oldsize > holebegin) 1133 unmap_mapping_range(inode->i_mapping, 1134 holebegin, 0, 1); 1135 if (info->alloced) 1136 shmem_truncate_range(inode, 1137 newsize, (loff_t)-1); 1138 /* unmap again to remove racily COWed private pages */ 1139 if (oldsize > holebegin) 1140 unmap_mapping_range(inode->i_mapping, 1141 holebegin, 0, 1); 1142 } 1143 } 1144 1145 setattr_copy(idmap, inode, attr); 1146 if (attr->ia_valid & ATTR_MODE) 1147 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1148 if (!error && update_ctime) { 1149 inode->i_ctime = current_time(inode); 1150 if (update_mtime) 1151 inode->i_mtime = inode->i_ctime; 1152 inode_inc_iversion(inode); 1153 } 1154 return error; 1155 } 1156 1157 static void shmem_evict_inode(struct inode *inode) 1158 { 1159 struct shmem_inode_info *info = SHMEM_I(inode); 1160 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1161 1162 if (shmem_mapping(inode->i_mapping)) { 1163 shmem_unacct_size(info->flags, inode->i_size); 1164 inode->i_size = 0; 1165 mapping_set_exiting(inode->i_mapping); 1166 shmem_truncate_range(inode, 0, (loff_t)-1); 1167 if (!list_empty(&info->shrinklist)) { 1168 spin_lock(&sbinfo->shrinklist_lock); 1169 if (!list_empty(&info->shrinklist)) { 1170 list_del_init(&info->shrinklist); 1171 sbinfo->shrinklist_len--; 1172 } 1173 spin_unlock(&sbinfo->shrinklist_lock); 1174 } 1175 while (!list_empty(&info->swaplist)) { 1176 /* Wait while shmem_unuse() is scanning this inode... */ 1177 wait_var_event(&info->stop_eviction, 1178 !atomic_read(&info->stop_eviction)); 1179 mutex_lock(&shmem_swaplist_mutex); 1180 /* ...but beware of the race if we peeked too early */ 1181 if (!atomic_read(&info->stop_eviction)) 1182 list_del_init(&info->swaplist); 1183 mutex_unlock(&shmem_swaplist_mutex); 1184 } 1185 } 1186 1187 simple_xattrs_free(&info->xattrs); 1188 WARN_ON(inode->i_blocks); 1189 shmem_free_inode(inode->i_sb); 1190 clear_inode(inode); 1191 } 1192 1193 static int shmem_find_swap_entries(struct address_space *mapping, 1194 pgoff_t start, struct folio_batch *fbatch, 1195 pgoff_t *indices, unsigned int type) 1196 { 1197 XA_STATE(xas, &mapping->i_pages, start); 1198 struct folio *folio; 1199 swp_entry_t entry; 1200 1201 rcu_read_lock(); 1202 xas_for_each(&xas, folio, ULONG_MAX) { 1203 if (xas_retry(&xas, folio)) 1204 continue; 1205 1206 if (!xa_is_value(folio)) 1207 continue; 1208 1209 entry = radix_to_swp_entry(folio); 1210 /* 1211 * swapin error entries can be found in the mapping. But they're 1212 * deliberately ignored here as we've done everything we can do. 1213 */ 1214 if (swp_type(entry) != type) 1215 continue; 1216 1217 indices[folio_batch_count(fbatch)] = xas.xa_index; 1218 if (!folio_batch_add(fbatch, folio)) 1219 break; 1220 1221 if (need_resched()) { 1222 xas_pause(&xas); 1223 cond_resched_rcu(); 1224 } 1225 } 1226 rcu_read_unlock(); 1227 1228 return xas.xa_index; 1229 } 1230 1231 /* 1232 * Move the swapped pages for an inode to page cache. Returns the count 1233 * of pages swapped in, or the error in case of failure. 1234 */ 1235 static int shmem_unuse_swap_entries(struct inode *inode, 1236 struct folio_batch *fbatch, pgoff_t *indices) 1237 { 1238 int i = 0; 1239 int ret = 0; 1240 int error = 0; 1241 struct address_space *mapping = inode->i_mapping; 1242 1243 for (i = 0; i < folio_batch_count(fbatch); i++) { 1244 struct folio *folio = fbatch->folios[i]; 1245 1246 if (!xa_is_value(folio)) 1247 continue; 1248 error = shmem_swapin_folio(inode, indices[i], 1249 &folio, SGP_CACHE, 1250 mapping_gfp_mask(mapping), 1251 NULL, NULL); 1252 if (error == 0) { 1253 folio_unlock(folio); 1254 folio_put(folio); 1255 ret++; 1256 } 1257 if (error == -ENOMEM) 1258 break; 1259 error = 0; 1260 } 1261 return error ? error : ret; 1262 } 1263 1264 /* 1265 * If swap found in inode, free it and move page from swapcache to filecache. 1266 */ 1267 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1268 { 1269 struct address_space *mapping = inode->i_mapping; 1270 pgoff_t start = 0; 1271 struct folio_batch fbatch; 1272 pgoff_t indices[PAGEVEC_SIZE]; 1273 int ret = 0; 1274 1275 do { 1276 folio_batch_init(&fbatch); 1277 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1278 if (folio_batch_count(&fbatch) == 0) { 1279 ret = 0; 1280 break; 1281 } 1282 1283 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1284 if (ret < 0) 1285 break; 1286 1287 start = indices[folio_batch_count(&fbatch) - 1]; 1288 } while (true); 1289 1290 return ret; 1291 } 1292 1293 /* 1294 * Read all the shared memory data that resides in the swap 1295 * device 'type' back into memory, so the swap device can be 1296 * unused. 1297 */ 1298 int shmem_unuse(unsigned int type) 1299 { 1300 struct shmem_inode_info *info, *next; 1301 int error = 0; 1302 1303 if (list_empty(&shmem_swaplist)) 1304 return 0; 1305 1306 mutex_lock(&shmem_swaplist_mutex); 1307 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1308 if (!info->swapped) { 1309 list_del_init(&info->swaplist); 1310 continue; 1311 } 1312 /* 1313 * Drop the swaplist mutex while searching the inode for swap; 1314 * but before doing so, make sure shmem_evict_inode() will not 1315 * remove placeholder inode from swaplist, nor let it be freed 1316 * (igrab() would protect from unlink, but not from unmount). 1317 */ 1318 atomic_inc(&info->stop_eviction); 1319 mutex_unlock(&shmem_swaplist_mutex); 1320 1321 error = shmem_unuse_inode(&info->vfs_inode, type); 1322 cond_resched(); 1323 1324 mutex_lock(&shmem_swaplist_mutex); 1325 next = list_next_entry(info, swaplist); 1326 if (!info->swapped) 1327 list_del_init(&info->swaplist); 1328 if (atomic_dec_and_test(&info->stop_eviction)) 1329 wake_up_var(&info->stop_eviction); 1330 if (error) 1331 break; 1332 } 1333 mutex_unlock(&shmem_swaplist_mutex); 1334 1335 return error; 1336 } 1337 1338 /* 1339 * Move the page from the page cache to the swap cache. 1340 */ 1341 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1342 { 1343 struct folio *folio = page_folio(page); 1344 struct address_space *mapping = folio->mapping; 1345 struct inode *inode = mapping->host; 1346 struct shmem_inode_info *info = SHMEM_I(inode); 1347 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1348 swp_entry_t swap; 1349 pgoff_t index; 1350 1351 /* 1352 * Our capabilities prevent regular writeback or sync from ever calling 1353 * shmem_writepage; but a stacking filesystem might use ->writepage of 1354 * its underlying filesystem, in which case tmpfs should write out to 1355 * swap only in response to memory pressure, and not for the writeback 1356 * threads or sync. 1357 */ 1358 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1359 goto redirty; 1360 1361 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1362 goto redirty; 1363 1364 if (!total_swap_pages) 1365 goto redirty; 1366 1367 /* 1368 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1369 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1370 * and its shmem_writeback() needs them to be split when swapping. 1371 */ 1372 if (folio_test_large(folio)) { 1373 /* Ensure the subpages are still dirty */ 1374 folio_test_set_dirty(folio); 1375 if (split_huge_page(page) < 0) 1376 goto redirty; 1377 folio = page_folio(page); 1378 folio_clear_dirty(folio); 1379 } 1380 1381 index = folio->index; 1382 1383 /* 1384 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1385 * value into swapfile.c, the only way we can correctly account for a 1386 * fallocated folio arriving here is now to initialize it and write it. 1387 * 1388 * That's okay for a folio already fallocated earlier, but if we have 1389 * not yet completed the fallocation, then (a) we want to keep track 1390 * of this folio in case we have to undo it, and (b) it may not be a 1391 * good idea to continue anyway, once we're pushing into swap. So 1392 * reactivate the folio, and let shmem_fallocate() quit when too many. 1393 */ 1394 if (!folio_test_uptodate(folio)) { 1395 if (inode->i_private) { 1396 struct shmem_falloc *shmem_falloc; 1397 spin_lock(&inode->i_lock); 1398 shmem_falloc = inode->i_private; 1399 if (shmem_falloc && 1400 !shmem_falloc->waitq && 1401 index >= shmem_falloc->start && 1402 index < shmem_falloc->next) 1403 shmem_falloc->nr_unswapped++; 1404 else 1405 shmem_falloc = NULL; 1406 spin_unlock(&inode->i_lock); 1407 if (shmem_falloc) 1408 goto redirty; 1409 } 1410 folio_zero_range(folio, 0, folio_size(folio)); 1411 flush_dcache_folio(folio); 1412 folio_mark_uptodate(folio); 1413 } 1414 1415 swap = folio_alloc_swap(folio); 1416 if (!swap.val) 1417 goto redirty; 1418 1419 /* 1420 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1421 * if it's not already there. Do it now before the folio is 1422 * moved to swap cache, when its pagelock no longer protects 1423 * the inode from eviction. But don't unlock the mutex until 1424 * we've incremented swapped, because shmem_unuse_inode() will 1425 * prune a !swapped inode from the swaplist under this mutex. 1426 */ 1427 mutex_lock(&shmem_swaplist_mutex); 1428 if (list_empty(&info->swaplist)) 1429 list_add(&info->swaplist, &shmem_swaplist); 1430 1431 if (add_to_swap_cache(folio, swap, 1432 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1433 NULL) == 0) { 1434 spin_lock_irq(&info->lock); 1435 shmem_recalc_inode(inode); 1436 info->swapped++; 1437 spin_unlock_irq(&info->lock); 1438 1439 swap_shmem_alloc(swap); 1440 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1441 1442 mutex_unlock(&shmem_swaplist_mutex); 1443 BUG_ON(folio_mapped(folio)); 1444 swap_writepage(&folio->page, wbc); 1445 return 0; 1446 } 1447 1448 mutex_unlock(&shmem_swaplist_mutex); 1449 put_swap_folio(folio, swap); 1450 redirty: 1451 folio_mark_dirty(folio); 1452 if (wbc->for_reclaim) 1453 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1454 folio_unlock(folio); 1455 return 0; 1456 } 1457 1458 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1459 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1460 { 1461 char buffer[64]; 1462 1463 if (!mpol || mpol->mode == MPOL_DEFAULT) 1464 return; /* show nothing */ 1465 1466 mpol_to_str(buffer, sizeof(buffer), mpol); 1467 1468 seq_printf(seq, ",mpol=%s", buffer); 1469 } 1470 1471 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1472 { 1473 struct mempolicy *mpol = NULL; 1474 if (sbinfo->mpol) { 1475 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1476 mpol = sbinfo->mpol; 1477 mpol_get(mpol); 1478 raw_spin_unlock(&sbinfo->stat_lock); 1479 } 1480 return mpol; 1481 } 1482 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1483 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1484 { 1485 } 1486 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1487 { 1488 return NULL; 1489 } 1490 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1491 #ifndef CONFIG_NUMA 1492 #define vm_policy vm_private_data 1493 #endif 1494 1495 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1496 struct shmem_inode_info *info, pgoff_t index) 1497 { 1498 /* Create a pseudo vma that just contains the policy */ 1499 vma_init(vma, NULL); 1500 /* Bias interleave by inode number to distribute better across nodes */ 1501 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1502 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1503 } 1504 1505 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1506 { 1507 /* Drop reference taken by mpol_shared_policy_lookup() */ 1508 mpol_cond_put(vma->vm_policy); 1509 } 1510 1511 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1512 struct shmem_inode_info *info, pgoff_t index) 1513 { 1514 struct vm_area_struct pvma; 1515 struct page *page; 1516 struct vm_fault vmf = { 1517 .vma = &pvma, 1518 }; 1519 1520 shmem_pseudo_vma_init(&pvma, info, index); 1521 page = swap_cluster_readahead(swap, gfp, &vmf); 1522 shmem_pseudo_vma_destroy(&pvma); 1523 1524 if (!page) 1525 return NULL; 1526 return page_folio(page); 1527 } 1528 1529 /* 1530 * Make sure huge_gfp is always more limited than limit_gfp. 1531 * Some of the flags set permissions, while others set limitations. 1532 */ 1533 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1534 { 1535 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1536 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1537 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1538 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1539 1540 /* Allow allocations only from the originally specified zones. */ 1541 result |= zoneflags; 1542 1543 /* 1544 * Minimize the result gfp by taking the union with the deny flags, 1545 * and the intersection of the allow flags. 1546 */ 1547 result |= (limit_gfp & denyflags); 1548 result |= (huge_gfp & limit_gfp) & allowflags; 1549 1550 return result; 1551 } 1552 1553 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1554 struct shmem_inode_info *info, pgoff_t index) 1555 { 1556 struct vm_area_struct pvma; 1557 struct address_space *mapping = info->vfs_inode.i_mapping; 1558 pgoff_t hindex; 1559 struct folio *folio; 1560 1561 hindex = round_down(index, HPAGE_PMD_NR); 1562 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1563 XA_PRESENT)) 1564 return NULL; 1565 1566 shmem_pseudo_vma_init(&pvma, info, hindex); 1567 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1568 shmem_pseudo_vma_destroy(&pvma); 1569 if (!folio) 1570 count_vm_event(THP_FILE_FALLBACK); 1571 return folio; 1572 } 1573 1574 static struct folio *shmem_alloc_folio(gfp_t gfp, 1575 struct shmem_inode_info *info, pgoff_t index) 1576 { 1577 struct vm_area_struct pvma; 1578 struct folio *folio; 1579 1580 shmem_pseudo_vma_init(&pvma, info, index); 1581 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1582 shmem_pseudo_vma_destroy(&pvma); 1583 1584 return folio; 1585 } 1586 1587 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1588 pgoff_t index, bool huge) 1589 { 1590 struct shmem_inode_info *info = SHMEM_I(inode); 1591 struct folio *folio; 1592 int nr; 1593 int err = -ENOSPC; 1594 1595 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1596 huge = false; 1597 nr = huge ? HPAGE_PMD_NR : 1; 1598 1599 if (!shmem_inode_acct_block(inode, nr)) 1600 goto failed; 1601 1602 if (huge) 1603 folio = shmem_alloc_hugefolio(gfp, info, index); 1604 else 1605 folio = shmem_alloc_folio(gfp, info, index); 1606 if (folio) { 1607 __folio_set_locked(folio); 1608 __folio_set_swapbacked(folio); 1609 return folio; 1610 } 1611 1612 err = -ENOMEM; 1613 shmem_inode_unacct_blocks(inode, nr); 1614 failed: 1615 return ERR_PTR(err); 1616 } 1617 1618 /* 1619 * When a page is moved from swapcache to shmem filecache (either by the 1620 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1621 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1622 * ignorance of the mapping it belongs to. If that mapping has special 1623 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1624 * we may need to copy to a suitable page before moving to filecache. 1625 * 1626 * In a future release, this may well be extended to respect cpuset and 1627 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1628 * but for now it is a simple matter of zone. 1629 */ 1630 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1631 { 1632 return folio_zonenum(folio) > gfp_zone(gfp); 1633 } 1634 1635 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1636 struct shmem_inode_info *info, pgoff_t index) 1637 { 1638 struct folio *old, *new; 1639 struct address_space *swap_mapping; 1640 swp_entry_t entry; 1641 pgoff_t swap_index; 1642 int error; 1643 1644 old = *foliop; 1645 entry = folio_swap_entry(old); 1646 swap_index = swp_offset(entry); 1647 swap_mapping = swap_address_space(entry); 1648 1649 /* 1650 * We have arrived here because our zones are constrained, so don't 1651 * limit chance of success by further cpuset and node constraints. 1652 */ 1653 gfp &= ~GFP_CONSTRAINT_MASK; 1654 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1655 new = shmem_alloc_folio(gfp, info, index); 1656 if (!new) 1657 return -ENOMEM; 1658 1659 folio_get(new); 1660 folio_copy(new, old); 1661 flush_dcache_folio(new); 1662 1663 __folio_set_locked(new); 1664 __folio_set_swapbacked(new); 1665 folio_mark_uptodate(new); 1666 folio_set_swap_entry(new, entry); 1667 folio_set_swapcache(new); 1668 1669 /* 1670 * Our caller will very soon move newpage out of swapcache, but it's 1671 * a nice clean interface for us to replace oldpage by newpage there. 1672 */ 1673 xa_lock_irq(&swap_mapping->i_pages); 1674 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1675 if (!error) { 1676 mem_cgroup_migrate(old, new); 1677 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1678 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1679 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1680 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1681 } 1682 xa_unlock_irq(&swap_mapping->i_pages); 1683 1684 if (unlikely(error)) { 1685 /* 1686 * Is this possible? I think not, now that our callers check 1687 * both PageSwapCache and page_private after getting page lock; 1688 * but be defensive. Reverse old to newpage for clear and free. 1689 */ 1690 old = new; 1691 } else { 1692 folio_add_lru(new); 1693 *foliop = new; 1694 } 1695 1696 folio_clear_swapcache(old); 1697 old->private = NULL; 1698 1699 folio_unlock(old); 1700 folio_put_refs(old, 2); 1701 return error; 1702 } 1703 1704 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1705 struct folio *folio, swp_entry_t swap) 1706 { 1707 struct address_space *mapping = inode->i_mapping; 1708 struct shmem_inode_info *info = SHMEM_I(inode); 1709 swp_entry_t swapin_error; 1710 void *old; 1711 1712 swapin_error = make_poisoned_swp_entry(); 1713 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1714 swp_to_radix_entry(swap), 1715 swp_to_radix_entry(swapin_error), 0); 1716 if (old != swp_to_radix_entry(swap)) 1717 return; 1718 1719 folio_wait_writeback(folio); 1720 delete_from_swap_cache(folio); 1721 spin_lock_irq(&info->lock); 1722 /* 1723 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1724 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1725 * shmem_evict_inode. 1726 */ 1727 info->alloced--; 1728 info->swapped--; 1729 shmem_recalc_inode(inode); 1730 spin_unlock_irq(&info->lock); 1731 swap_free(swap); 1732 } 1733 1734 /* 1735 * Swap in the folio pointed to by *foliop. 1736 * Caller has to make sure that *foliop contains a valid swapped folio. 1737 * Returns 0 and the folio in foliop if success. On failure, returns the 1738 * error code and NULL in *foliop. 1739 */ 1740 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1741 struct folio **foliop, enum sgp_type sgp, 1742 gfp_t gfp, struct vm_area_struct *vma, 1743 vm_fault_t *fault_type) 1744 { 1745 struct address_space *mapping = inode->i_mapping; 1746 struct shmem_inode_info *info = SHMEM_I(inode); 1747 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1748 struct swap_info_struct *si; 1749 struct folio *folio = NULL; 1750 swp_entry_t swap; 1751 int error; 1752 1753 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1754 swap = radix_to_swp_entry(*foliop); 1755 *foliop = NULL; 1756 1757 if (is_poisoned_swp_entry(swap)) 1758 return -EIO; 1759 1760 si = get_swap_device(swap); 1761 if (!si) { 1762 if (!shmem_confirm_swap(mapping, index, swap)) 1763 return -EEXIST; 1764 else 1765 return -EINVAL; 1766 } 1767 1768 /* Look it up and read it in.. */ 1769 folio = swap_cache_get_folio(swap, NULL, 0); 1770 if (!folio) { 1771 /* Or update major stats only when swapin succeeds?? */ 1772 if (fault_type) { 1773 *fault_type |= VM_FAULT_MAJOR; 1774 count_vm_event(PGMAJFAULT); 1775 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1776 } 1777 /* Here we actually start the io */ 1778 folio = shmem_swapin(swap, gfp, info, index); 1779 if (!folio) { 1780 error = -ENOMEM; 1781 goto failed; 1782 } 1783 } 1784 1785 /* We have to do this with folio locked to prevent races */ 1786 folio_lock(folio); 1787 if (!folio_test_swapcache(folio) || 1788 folio_swap_entry(folio).val != swap.val || 1789 !shmem_confirm_swap(mapping, index, swap)) { 1790 error = -EEXIST; 1791 goto unlock; 1792 } 1793 if (!folio_test_uptodate(folio)) { 1794 error = -EIO; 1795 goto failed; 1796 } 1797 folio_wait_writeback(folio); 1798 1799 /* 1800 * Some architectures may have to restore extra metadata to the 1801 * folio after reading from swap. 1802 */ 1803 arch_swap_restore(swap, folio); 1804 1805 if (shmem_should_replace_folio(folio, gfp)) { 1806 error = shmem_replace_folio(&folio, gfp, info, index); 1807 if (error) 1808 goto failed; 1809 } 1810 1811 error = shmem_add_to_page_cache(folio, mapping, index, 1812 swp_to_radix_entry(swap), gfp, 1813 charge_mm); 1814 if (error) 1815 goto failed; 1816 1817 spin_lock_irq(&info->lock); 1818 info->swapped--; 1819 shmem_recalc_inode(inode); 1820 spin_unlock_irq(&info->lock); 1821 1822 if (sgp == SGP_WRITE) 1823 folio_mark_accessed(folio); 1824 1825 delete_from_swap_cache(folio); 1826 folio_mark_dirty(folio); 1827 swap_free(swap); 1828 put_swap_device(si); 1829 1830 *foliop = folio; 1831 return 0; 1832 failed: 1833 if (!shmem_confirm_swap(mapping, index, swap)) 1834 error = -EEXIST; 1835 if (error == -EIO) 1836 shmem_set_folio_swapin_error(inode, index, folio, swap); 1837 unlock: 1838 if (folio) { 1839 folio_unlock(folio); 1840 folio_put(folio); 1841 } 1842 put_swap_device(si); 1843 1844 return error; 1845 } 1846 1847 /* 1848 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1849 * 1850 * If we allocate a new one we do not mark it dirty. That's up to the 1851 * vm. If we swap it in we mark it dirty since we also free the swap 1852 * entry since a page cannot live in both the swap and page cache. 1853 * 1854 * vma, vmf, and fault_type are only supplied by shmem_fault: 1855 * otherwise they are NULL. 1856 */ 1857 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1858 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1859 struct vm_area_struct *vma, struct vm_fault *vmf, 1860 vm_fault_t *fault_type) 1861 { 1862 struct address_space *mapping = inode->i_mapping; 1863 struct shmem_inode_info *info = SHMEM_I(inode); 1864 struct shmem_sb_info *sbinfo; 1865 struct mm_struct *charge_mm; 1866 struct folio *folio; 1867 pgoff_t hindex; 1868 gfp_t huge_gfp; 1869 int error; 1870 int once = 0; 1871 int alloced = 0; 1872 1873 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1874 return -EFBIG; 1875 repeat: 1876 if (sgp <= SGP_CACHE && 1877 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1878 return -EINVAL; 1879 } 1880 1881 sbinfo = SHMEM_SB(inode->i_sb); 1882 charge_mm = vma ? vma->vm_mm : NULL; 1883 1884 folio = filemap_get_entry(mapping, index); 1885 if (folio && vma && userfaultfd_minor(vma)) { 1886 if (!xa_is_value(folio)) 1887 folio_put(folio); 1888 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1889 return 0; 1890 } 1891 1892 if (xa_is_value(folio)) { 1893 error = shmem_swapin_folio(inode, index, &folio, 1894 sgp, gfp, vma, fault_type); 1895 if (error == -EEXIST) 1896 goto repeat; 1897 1898 *foliop = folio; 1899 return error; 1900 } 1901 1902 if (folio) { 1903 folio_lock(folio); 1904 1905 /* Has the folio been truncated or swapped out? */ 1906 if (unlikely(folio->mapping != mapping)) { 1907 folio_unlock(folio); 1908 folio_put(folio); 1909 goto repeat; 1910 } 1911 if (sgp == SGP_WRITE) 1912 folio_mark_accessed(folio); 1913 if (folio_test_uptodate(folio)) 1914 goto out; 1915 /* fallocated folio */ 1916 if (sgp != SGP_READ) 1917 goto clear; 1918 folio_unlock(folio); 1919 folio_put(folio); 1920 } 1921 1922 /* 1923 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1924 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1925 */ 1926 *foliop = NULL; 1927 if (sgp == SGP_READ) 1928 return 0; 1929 if (sgp == SGP_NOALLOC) 1930 return -ENOENT; 1931 1932 /* 1933 * Fast cache lookup and swap lookup did not find it: allocate. 1934 */ 1935 1936 if (vma && userfaultfd_missing(vma)) { 1937 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1938 return 0; 1939 } 1940 1941 if (!shmem_is_huge(inode, index, false, 1942 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 1943 goto alloc_nohuge; 1944 1945 huge_gfp = vma_thp_gfp_mask(vma); 1946 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1947 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1948 if (IS_ERR(folio)) { 1949 alloc_nohuge: 1950 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1951 } 1952 if (IS_ERR(folio)) { 1953 int retry = 5; 1954 1955 error = PTR_ERR(folio); 1956 folio = NULL; 1957 if (error != -ENOSPC) 1958 goto unlock; 1959 /* 1960 * Try to reclaim some space by splitting a large folio 1961 * beyond i_size on the filesystem. 1962 */ 1963 while (retry--) { 1964 int ret; 1965 1966 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1967 if (ret == SHRINK_STOP) 1968 break; 1969 if (ret) 1970 goto alloc_nohuge; 1971 } 1972 goto unlock; 1973 } 1974 1975 hindex = round_down(index, folio_nr_pages(folio)); 1976 1977 if (sgp == SGP_WRITE) 1978 __folio_set_referenced(folio); 1979 1980 error = shmem_add_to_page_cache(folio, mapping, hindex, 1981 NULL, gfp & GFP_RECLAIM_MASK, 1982 charge_mm); 1983 if (error) 1984 goto unacct; 1985 folio_add_lru(folio); 1986 1987 spin_lock_irq(&info->lock); 1988 info->alloced += folio_nr_pages(folio); 1989 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1990 shmem_recalc_inode(inode); 1991 spin_unlock_irq(&info->lock); 1992 alloced = true; 1993 1994 if (folio_test_pmd_mappable(folio) && 1995 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1996 folio_next_index(folio) - 1) { 1997 /* 1998 * Part of the large folio is beyond i_size: subject 1999 * to shrink under memory pressure. 2000 */ 2001 spin_lock(&sbinfo->shrinklist_lock); 2002 /* 2003 * _careful to defend against unlocked access to 2004 * ->shrink_list in shmem_unused_huge_shrink() 2005 */ 2006 if (list_empty_careful(&info->shrinklist)) { 2007 list_add_tail(&info->shrinklist, 2008 &sbinfo->shrinklist); 2009 sbinfo->shrinklist_len++; 2010 } 2011 spin_unlock(&sbinfo->shrinklist_lock); 2012 } 2013 2014 /* 2015 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2016 */ 2017 if (sgp == SGP_FALLOC) 2018 sgp = SGP_WRITE; 2019 clear: 2020 /* 2021 * Let SGP_WRITE caller clear ends if write does not fill folio; 2022 * but SGP_FALLOC on a folio fallocated earlier must initialize 2023 * it now, lest undo on failure cancel our earlier guarantee. 2024 */ 2025 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2026 long i, n = folio_nr_pages(folio); 2027 2028 for (i = 0; i < n; i++) 2029 clear_highpage(folio_page(folio, i)); 2030 flush_dcache_folio(folio); 2031 folio_mark_uptodate(folio); 2032 } 2033 2034 /* Perhaps the file has been truncated since we checked */ 2035 if (sgp <= SGP_CACHE && 2036 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2037 if (alloced) { 2038 folio_clear_dirty(folio); 2039 filemap_remove_folio(folio); 2040 spin_lock_irq(&info->lock); 2041 shmem_recalc_inode(inode); 2042 spin_unlock_irq(&info->lock); 2043 } 2044 error = -EINVAL; 2045 goto unlock; 2046 } 2047 out: 2048 *foliop = folio; 2049 return 0; 2050 2051 /* 2052 * Error recovery. 2053 */ 2054 unacct: 2055 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2056 2057 if (folio_test_large(folio)) { 2058 folio_unlock(folio); 2059 folio_put(folio); 2060 goto alloc_nohuge; 2061 } 2062 unlock: 2063 if (folio) { 2064 folio_unlock(folio); 2065 folio_put(folio); 2066 } 2067 if (error == -ENOSPC && !once++) { 2068 spin_lock_irq(&info->lock); 2069 shmem_recalc_inode(inode); 2070 spin_unlock_irq(&info->lock); 2071 goto repeat; 2072 } 2073 if (error == -EEXIST) 2074 goto repeat; 2075 return error; 2076 } 2077 2078 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2079 enum sgp_type sgp) 2080 { 2081 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2082 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2083 } 2084 2085 /* 2086 * This is like autoremove_wake_function, but it removes the wait queue 2087 * entry unconditionally - even if something else had already woken the 2088 * target. 2089 */ 2090 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2091 { 2092 int ret = default_wake_function(wait, mode, sync, key); 2093 list_del_init(&wait->entry); 2094 return ret; 2095 } 2096 2097 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2098 { 2099 struct vm_area_struct *vma = vmf->vma; 2100 struct inode *inode = file_inode(vma->vm_file); 2101 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2102 struct folio *folio = NULL; 2103 int err; 2104 vm_fault_t ret = VM_FAULT_LOCKED; 2105 2106 /* 2107 * Trinity finds that probing a hole which tmpfs is punching can 2108 * prevent the hole-punch from ever completing: which in turn 2109 * locks writers out with its hold on i_rwsem. So refrain from 2110 * faulting pages into the hole while it's being punched. Although 2111 * shmem_undo_range() does remove the additions, it may be unable to 2112 * keep up, as each new page needs its own unmap_mapping_range() call, 2113 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2114 * 2115 * It does not matter if we sometimes reach this check just before the 2116 * hole-punch begins, so that one fault then races with the punch: 2117 * we just need to make racing faults a rare case. 2118 * 2119 * The implementation below would be much simpler if we just used a 2120 * standard mutex or completion: but we cannot take i_rwsem in fault, 2121 * and bloating every shmem inode for this unlikely case would be sad. 2122 */ 2123 if (unlikely(inode->i_private)) { 2124 struct shmem_falloc *shmem_falloc; 2125 2126 spin_lock(&inode->i_lock); 2127 shmem_falloc = inode->i_private; 2128 if (shmem_falloc && 2129 shmem_falloc->waitq && 2130 vmf->pgoff >= shmem_falloc->start && 2131 vmf->pgoff < shmem_falloc->next) { 2132 struct file *fpin; 2133 wait_queue_head_t *shmem_falloc_waitq; 2134 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2135 2136 ret = VM_FAULT_NOPAGE; 2137 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2138 if (fpin) 2139 ret = VM_FAULT_RETRY; 2140 2141 shmem_falloc_waitq = shmem_falloc->waitq; 2142 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2143 TASK_UNINTERRUPTIBLE); 2144 spin_unlock(&inode->i_lock); 2145 schedule(); 2146 2147 /* 2148 * shmem_falloc_waitq points into the shmem_fallocate() 2149 * stack of the hole-punching task: shmem_falloc_waitq 2150 * is usually invalid by the time we reach here, but 2151 * finish_wait() does not dereference it in that case; 2152 * though i_lock needed lest racing with wake_up_all(). 2153 */ 2154 spin_lock(&inode->i_lock); 2155 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2156 spin_unlock(&inode->i_lock); 2157 2158 if (fpin) 2159 fput(fpin); 2160 return ret; 2161 } 2162 spin_unlock(&inode->i_lock); 2163 } 2164 2165 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2166 gfp, vma, vmf, &ret); 2167 if (err) 2168 return vmf_error(err); 2169 if (folio) 2170 vmf->page = folio_file_page(folio, vmf->pgoff); 2171 return ret; 2172 } 2173 2174 unsigned long shmem_get_unmapped_area(struct file *file, 2175 unsigned long uaddr, unsigned long len, 2176 unsigned long pgoff, unsigned long flags) 2177 { 2178 unsigned long (*get_area)(struct file *, 2179 unsigned long, unsigned long, unsigned long, unsigned long); 2180 unsigned long addr; 2181 unsigned long offset; 2182 unsigned long inflated_len; 2183 unsigned long inflated_addr; 2184 unsigned long inflated_offset; 2185 2186 if (len > TASK_SIZE) 2187 return -ENOMEM; 2188 2189 get_area = current->mm->get_unmapped_area; 2190 addr = get_area(file, uaddr, len, pgoff, flags); 2191 2192 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2193 return addr; 2194 if (IS_ERR_VALUE(addr)) 2195 return addr; 2196 if (addr & ~PAGE_MASK) 2197 return addr; 2198 if (addr > TASK_SIZE - len) 2199 return addr; 2200 2201 if (shmem_huge == SHMEM_HUGE_DENY) 2202 return addr; 2203 if (len < HPAGE_PMD_SIZE) 2204 return addr; 2205 if (flags & MAP_FIXED) 2206 return addr; 2207 /* 2208 * Our priority is to support MAP_SHARED mapped hugely; 2209 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2210 * But if caller specified an address hint and we allocated area there 2211 * successfully, respect that as before. 2212 */ 2213 if (uaddr == addr) 2214 return addr; 2215 2216 if (shmem_huge != SHMEM_HUGE_FORCE) { 2217 struct super_block *sb; 2218 2219 if (file) { 2220 VM_BUG_ON(file->f_op != &shmem_file_operations); 2221 sb = file_inode(file)->i_sb; 2222 } else { 2223 /* 2224 * Called directly from mm/mmap.c, or drivers/char/mem.c 2225 * for "/dev/zero", to create a shared anonymous object. 2226 */ 2227 if (IS_ERR(shm_mnt)) 2228 return addr; 2229 sb = shm_mnt->mnt_sb; 2230 } 2231 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2232 return addr; 2233 } 2234 2235 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2236 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2237 return addr; 2238 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2239 return addr; 2240 2241 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2242 if (inflated_len > TASK_SIZE) 2243 return addr; 2244 if (inflated_len < len) 2245 return addr; 2246 2247 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2248 if (IS_ERR_VALUE(inflated_addr)) 2249 return addr; 2250 if (inflated_addr & ~PAGE_MASK) 2251 return addr; 2252 2253 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2254 inflated_addr += offset - inflated_offset; 2255 if (inflated_offset > offset) 2256 inflated_addr += HPAGE_PMD_SIZE; 2257 2258 if (inflated_addr > TASK_SIZE - len) 2259 return addr; 2260 return inflated_addr; 2261 } 2262 2263 #ifdef CONFIG_NUMA 2264 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2265 { 2266 struct inode *inode = file_inode(vma->vm_file); 2267 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2268 } 2269 2270 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2271 unsigned long addr) 2272 { 2273 struct inode *inode = file_inode(vma->vm_file); 2274 pgoff_t index; 2275 2276 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2277 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2278 } 2279 #endif 2280 2281 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2282 { 2283 struct inode *inode = file_inode(file); 2284 struct shmem_inode_info *info = SHMEM_I(inode); 2285 int retval = -ENOMEM; 2286 2287 /* 2288 * What serializes the accesses to info->flags? 2289 * ipc_lock_object() when called from shmctl_do_lock(), 2290 * no serialization needed when called from shm_destroy(). 2291 */ 2292 if (lock && !(info->flags & VM_LOCKED)) { 2293 if (!user_shm_lock(inode->i_size, ucounts)) 2294 goto out_nomem; 2295 info->flags |= VM_LOCKED; 2296 mapping_set_unevictable(file->f_mapping); 2297 } 2298 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2299 user_shm_unlock(inode->i_size, ucounts); 2300 info->flags &= ~VM_LOCKED; 2301 mapping_clear_unevictable(file->f_mapping); 2302 } 2303 retval = 0; 2304 2305 out_nomem: 2306 return retval; 2307 } 2308 2309 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2310 { 2311 struct inode *inode = file_inode(file); 2312 struct shmem_inode_info *info = SHMEM_I(inode); 2313 int ret; 2314 2315 ret = seal_check_future_write(info->seals, vma); 2316 if (ret) 2317 return ret; 2318 2319 /* arm64 - allow memory tagging on RAM-based files */ 2320 vm_flags_set(vma, VM_MTE_ALLOWED); 2321 2322 file_accessed(file); 2323 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2324 if (inode->i_nlink) 2325 vma->vm_ops = &shmem_vm_ops; 2326 else 2327 vma->vm_ops = &shmem_anon_vm_ops; 2328 return 0; 2329 } 2330 2331 #ifdef CONFIG_TMPFS_XATTR 2332 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2333 2334 /* 2335 * chattr's fsflags are unrelated to extended attributes, 2336 * but tmpfs has chosen to enable them under the same config option. 2337 */ 2338 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2339 { 2340 unsigned int i_flags = 0; 2341 2342 if (fsflags & FS_NOATIME_FL) 2343 i_flags |= S_NOATIME; 2344 if (fsflags & FS_APPEND_FL) 2345 i_flags |= S_APPEND; 2346 if (fsflags & FS_IMMUTABLE_FL) 2347 i_flags |= S_IMMUTABLE; 2348 /* 2349 * But FS_NODUMP_FL does not require any action in i_flags. 2350 */ 2351 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2352 } 2353 #else 2354 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2355 { 2356 } 2357 #define shmem_initxattrs NULL 2358 #endif 2359 2360 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, 2361 struct inode *dir, umode_t mode, dev_t dev, 2362 unsigned long flags) 2363 { 2364 struct inode *inode; 2365 struct shmem_inode_info *info; 2366 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2367 ino_t ino; 2368 2369 if (shmem_reserve_inode(sb, &ino)) 2370 return NULL; 2371 2372 inode = new_inode(sb); 2373 if (inode) { 2374 inode->i_ino = ino; 2375 inode_init_owner(idmap, inode, dir, mode); 2376 inode->i_blocks = 0; 2377 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2378 inode->i_generation = get_random_u32(); 2379 info = SHMEM_I(inode); 2380 memset(info, 0, (char *)inode - (char *)info); 2381 spin_lock_init(&info->lock); 2382 atomic_set(&info->stop_eviction, 0); 2383 info->seals = F_SEAL_SEAL; 2384 info->flags = flags & VM_NORESERVE; 2385 info->i_crtime = inode->i_mtime; 2386 info->fsflags = (dir == NULL) ? 0 : 2387 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2388 if (info->fsflags) 2389 shmem_set_inode_flags(inode, info->fsflags); 2390 INIT_LIST_HEAD(&info->shrinklist); 2391 INIT_LIST_HEAD(&info->swaplist); 2392 if (sbinfo->noswap) 2393 mapping_set_unevictable(inode->i_mapping); 2394 simple_xattrs_init(&info->xattrs); 2395 cache_no_acl(inode); 2396 mapping_set_large_folios(inode->i_mapping); 2397 2398 switch (mode & S_IFMT) { 2399 default: 2400 inode->i_op = &shmem_special_inode_operations; 2401 init_special_inode(inode, mode, dev); 2402 break; 2403 case S_IFREG: 2404 inode->i_mapping->a_ops = &shmem_aops; 2405 inode->i_op = &shmem_inode_operations; 2406 inode->i_fop = &shmem_file_operations; 2407 mpol_shared_policy_init(&info->policy, 2408 shmem_get_sbmpol(sbinfo)); 2409 break; 2410 case S_IFDIR: 2411 inc_nlink(inode); 2412 /* Some things misbehave if size == 0 on a directory */ 2413 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2414 inode->i_op = &shmem_dir_inode_operations; 2415 inode->i_fop = &simple_dir_operations; 2416 break; 2417 case S_IFLNK: 2418 /* 2419 * Must not load anything in the rbtree, 2420 * mpol_free_shared_policy will not be called. 2421 */ 2422 mpol_shared_policy_init(&info->policy, NULL); 2423 break; 2424 } 2425 2426 lockdep_annotate_inode_mutex_key(inode); 2427 } else 2428 shmem_free_inode(sb); 2429 return inode; 2430 } 2431 2432 #ifdef CONFIG_USERFAULTFD 2433 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2434 struct vm_area_struct *dst_vma, 2435 unsigned long dst_addr, 2436 unsigned long src_addr, 2437 uffd_flags_t flags, 2438 struct folio **foliop) 2439 { 2440 struct inode *inode = file_inode(dst_vma->vm_file); 2441 struct shmem_inode_info *info = SHMEM_I(inode); 2442 struct address_space *mapping = inode->i_mapping; 2443 gfp_t gfp = mapping_gfp_mask(mapping); 2444 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2445 void *page_kaddr; 2446 struct folio *folio; 2447 int ret; 2448 pgoff_t max_off; 2449 2450 if (!shmem_inode_acct_block(inode, 1)) { 2451 /* 2452 * We may have got a page, returned -ENOENT triggering a retry, 2453 * and now we find ourselves with -ENOMEM. Release the page, to 2454 * avoid a BUG_ON in our caller. 2455 */ 2456 if (unlikely(*foliop)) { 2457 folio_put(*foliop); 2458 *foliop = NULL; 2459 } 2460 return -ENOMEM; 2461 } 2462 2463 if (!*foliop) { 2464 ret = -ENOMEM; 2465 folio = shmem_alloc_folio(gfp, info, pgoff); 2466 if (!folio) 2467 goto out_unacct_blocks; 2468 2469 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2470 page_kaddr = kmap_local_folio(folio, 0); 2471 /* 2472 * The read mmap_lock is held here. Despite the 2473 * mmap_lock being read recursive a deadlock is still 2474 * possible if a writer has taken a lock. For example: 2475 * 2476 * process A thread 1 takes read lock on own mmap_lock 2477 * process A thread 2 calls mmap, blocks taking write lock 2478 * process B thread 1 takes page fault, read lock on own mmap lock 2479 * process B thread 2 calls mmap, blocks taking write lock 2480 * process A thread 1 blocks taking read lock on process B 2481 * process B thread 1 blocks taking read lock on process A 2482 * 2483 * Disable page faults to prevent potential deadlock 2484 * and retry the copy outside the mmap_lock. 2485 */ 2486 pagefault_disable(); 2487 ret = copy_from_user(page_kaddr, 2488 (const void __user *)src_addr, 2489 PAGE_SIZE); 2490 pagefault_enable(); 2491 kunmap_local(page_kaddr); 2492 2493 /* fallback to copy_from_user outside mmap_lock */ 2494 if (unlikely(ret)) { 2495 *foliop = folio; 2496 ret = -ENOENT; 2497 /* don't free the page */ 2498 goto out_unacct_blocks; 2499 } 2500 2501 flush_dcache_folio(folio); 2502 } else { /* ZEROPAGE */ 2503 clear_user_highpage(&folio->page, dst_addr); 2504 } 2505 } else { 2506 folio = *foliop; 2507 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2508 *foliop = NULL; 2509 } 2510 2511 VM_BUG_ON(folio_test_locked(folio)); 2512 VM_BUG_ON(folio_test_swapbacked(folio)); 2513 __folio_set_locked(folio); 2514 __folio_set_swapbacked(folio); 2515 __folio_mark_uptodate(folio); 2516 2517 ret = -EFAULT; 2518 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2519 if (unlikely(pgoff >= max_off)) 2520 goto out_release; 2521 2522 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2523 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2524 if (ret) 2525 goto out_release; 2526 2527 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2528 &folio->page, true, flags); 2529 if (ret) 2530 goto out_delete_from_cache; 2531 2532 spin_lock_irq(&info->lock); 2533 info->alloced++; 2534 inode->i_blocks += BLOCKS_PER_PAGE; 2535 shmem_recalc_inode(inode); 2536 spin_unlock_irq(&info->lock); 2537 2538 folio_unlock(folio); 2539 return 0; 2540 out_delete_from_cache: 2541 filemap_remove_folio(folio); 2542 out_release: 2543 folio_unlock(folio); 2544 folio_put(folio); 2545 out_unacct_blocks: 2546 shmem_inode_unacct_blocks(inode, 1); 2547 return ret; 2548 } 2549 #endif /* CONFIG_USERFAULTFD */ 2550 2551 #ifdef CONFIG_TMPFS 2552 static const struct inode_operations shmem_symlink_inode_operations; 2553 static const struct inode_operations shmem_short_symlink_operations; 2554 2555 static int 2556 shmem_write_begin(struct file *file, struct address_space *mapping, 2557 loff_t pos, unsigned len, 2558 struct page **pagep, void **fsdata) 2559 { 2560 struct inode *inode = mapping->host; 2561 struct shmem_inode_info *info = SHMEM_I(inode); 2562 pgoff_t index = pos >> PAGE_SHIFT; 2563 struct folio *folio; 2564 int ret = 0; 2565 2566 /* i_rwsem is held by caller */ 2567 if (unlikely(info->seals & (F_SEAL_GROW | 2568 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2569 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2570 return -EPERM; 2571 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2572 return -EPERM; 2573 } 2574 2575 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2576 2577 if (ret) 2578 return ret; 2579 2580 *pagep = folio_file_page(folio, index); 2581 if (PageHWPoison(*pagep)) { 2582 folio_unlock(folio); 2583 folio_put(folio); 2584 *pagep = NULL; 2585 return -EIO; 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int 2592 shmem_write_end(struct file *file, struct address_space *mapping, 2593 loff_t pos, unsigned len, unsigned copied, 2594 struct page *page, void *fsdata) 2595 { 2596 struct folio *folio = page_folio(page); 2597 struct inode *inode = mapping->host; 2598 2599 if (pos + copied > inode->i_size) 2600 i_size_write(inode, pos + copied); 2601 2602 if (!folio_test_uptodate(folio)) { 2603 if (copied < folio_size(folio)) { 2604 size_t from = offset_in_folio(folio, pos); 2605 folio_zero_segments(folio, 0, from, 2606 from + copied, folio_size(folio)); 2607 } 2608 folio_mark_uptodate(folio); 2609 } 2610 folio_mark_dirty(folio); 2611 folio_unlock(folio); 2612 folio_put(folio); 2613 2614 return copied; 2615 } 2616 2617 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2618 { 2619 struct file *file = iocb->ki_filp; 2620 struct inode *inode = file_inode(file); 2621 struct address_space *mapping = inode->i_mapping; 2622 pgoff_t index; 2623 unsigned long offset; 2624 int error = 0; 2625 ssize_t retval = 0; 2626 loff_t *ppos = &iocb->ki_pos; 2627 2628 index = *ppos >> PAGE_SHIFT; 2629 offset = *ppos & ~PAGE_MASK; 2630 2631 for (;;) { 2632 struct folio *folio = NULL; 2633 struct page *page = NULL; 2634 pgoff_t end_index; 2635 unsigned long nr, ret; 2636 loff_t i_size = i_size_read(inode); 2637 2638 end_index = i_size >> PAGE_SHIFT; 2639 if (index > end_index) 2640 break; 2641 if (index == end_index) { 2642 nr = i_size & ~PAGE_MASK; 2643 if (nr <= offset) 2644 break; 2645 } 2646 2647 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2648 if (error) { 2649 if (error == -EINVAL) 2650 error = 0; 2651 break; 2652 } 2653 if (folio) { 2654 folio_unlock(folio); 2655 2656 page = folio_file_page(folio, index); 2657 if (PageHWPoison(page)) { 2658 folio_put(folio); 2659 error = -EIO; 2660 break; 2661 } 2662 } 2663 2664 /* 2665 * We must evaluate after, since reads (unlike writes) 2666 * are called without i_rwsem protection against truncate 2667 */ 2668 nr = PAGE_SIZE; 2669 i_size = i_size_read(inode); 2670 end_index = i_size >> PAGE_SHIFT; 2671 if (index == end_index) { 2672 nr = i_size & ~PAGE_MASK; 2673 if (nr <= offset) { 2674 if (folio) 2675 folio_put(folio); 2676 break; 2677 } 2678 } 2679 nr -= offset; 2680 2681 if (folio) { 2682 /* 2683 * If users can be writing to this page using arbitrary 2684 * virtual addresses, take care about potential aliasing 2685 * before reading the page on the kernel side. 2686 */ 2687 if (mapping_writably_mapped(mapping)) 2688 flush_dcache_page(page); 2689 /* 2690 * Mark the page accessed if we read the beginning. 2691 */ 2692 if (!offset) 2693 folio_mark_accessed(folio); 2694 /* 2695 * Ok, we have the page, and it's up-to-date, so 2696 * now we can copy it to user space... 2697 */ 2698 ret = copy_page_to_iter(page, offset, nr, to); 2699 folio_put(folio); 2700 2701 } else if (user_backed_iter(to)) { 2702 /* 2703 * Copy to user tends to be so well optimized, but 2704 * clear_user() not so much, that it is noticeably 2705 * faster to copy the zero page instead of clearing. 2706 */ 2707 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2708 } else { 2709 /* 2710 * But submitting the same page twice in a row to 2711 * splice() - or others? - can result in confusion: 2712 * so don't attempt that optimization on pipes etc. 2713 */ 2714 ret = iov_iter_zero(nr, to); 2715 } 2716 2717 retval += ret; 2718 offset += ret; 2719 index += offset >> PAGE_SHIFT; 2720 offset &= ~PAGE_MASK; 2721 2722 if (!iov_iter_count(to)) 2723 break; 2724 if (ret < nr) { 2725 error = -EFAULT; 2726 break; 2727 } 2728 cond_resched(); 2729 } 2730 2731 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2732 file_accessed(file); 2733 return retval ? retval : error; 2734 } 2735 2736 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2737 struct pipe_buffer *buf) 2738 { 2739 return true; 2740 } 2741 2742 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2743 struct pipe_buffer *buf) 2744 { 2745 } 2746 2747 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2748 struct pipe_buffer *buf) 2749 { 2750 return false; 2751 } 2752 2753 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2754 .release = zero_pipe_buf_release, 2755 .try_steal = zero_pipe_buf_try_steal, 2756 .get = zero_pipe_buf_get, 2757 }; 2758 2759 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2760 loff_t fpos, size_t size) 2761 { 2762 size_t offset = fpos & ~PAGE_MASK; 2763 2764 size = min_t(size_t, size, PAGE_SIZE - offset); 2765 2766 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2767 struct pipe_buffer *buf = pipe_head_buf(pipe); 2768 2769 *buf = (struct pipe_buffer) { 2770 .ops = &zero_pipe_buf_ops, 2771 .page = ZERO_PAGE(0), 2772 .offset = offset, 2773 .len = size, 2774 }; 2775 pipe->head++; 2776 } 2777 2778 return size; 2779 } 2780 2781 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2782 struct pipe_inode_info *pipe, 2783 size_t len, unsigned int flags) 2784 { 2785 struct inode *inode = file_inode(in); 2786 struct address_space *mapping = inode->i_mapping; 2787 struct folio *folio = NULL; 2788 size_t total_spliced = 0, used, npages, n, part; 2789 loff_t isize; 2790 int error = 0; 2791 2792 /* Work out how much data we can actually add into the pipe */ 2793 used = pipe_occupancy(pipe->head, pipe->tail); 2794 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2795 len = min_t(size_t, len, npages * PAGE_SIZE); 2796 2797 do { 2798 if (*ppos >= i_size_read(inode)) 2799 break; 2800 2801 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2802 SGP_READ); 2803 if (error) { 2804 if (error == -EINVAL) 2805 error = 0; 2806 break; 2807 } 2808 if (folio) { 2809 folio_unlock(folio); 2810 2811 if (folio_test_hwpoison(folio) || 2812 (folio_test_large(folio) && 2813 folio_test_has_hwpoisoned(folio))) { 2814 error = -EIO; 2815 break; 2816 } 2817 } 2818 2819 /* 2820 * i_size must be checked after we know the pages are Uptodate. 2821 * 2822 * Checking i_size after the check allows us to calculate 2823 * the correct value for "nr", which means the zero-filled 2824 * part of the page is not copied back to userspace (unless 2825 * another truncate extends the file - this is desired though). 2826 */ 2827 isize = i_size_read(inode); 2828 if (unlikely(*ppos >= isize)) 2829 break; 2830 part = min_t(loff_t, isize - *ppos, len); 2831 2832 if (folio) { 2833 /* 2834 * If users can be writing to this page using arbitrary 2835 * virtual addresses, take care about potential aliasing 2836 * before reading the page on the kernel side. 2837 */ 2838 if (mapping_writably_mapped(mapping)) 2839 flush_dcache_folio(folio); 2840 folio_mark_accessed(folio); 2841 /* 2842 * Ok, we have the page, and it's up-to-date, so we can 2843 * now splice it into the pipe. 2844 */ 2845 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2846 folio_put(folio); 2847 folio = NULL; 2848 } else { 2849 n = splice_zeropage_into_pipe(pipe, *ppos, part); 2850 } 2851 2852 if (!n) 2853 break; 2854 len -= n; 2855 total_spliced += n; 2856 *ppos += n; 2857 in->f_ra.prev_pos = *ppos; 2858 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2859 break; 2860 2861 cond_resched(); 2862 } while (len); 2863 2864 if (folio) 2865 folio_put(folio); 2866 2867 file_accessed(in); 2868 return total_spliced ? total_spliced : error; 2869 } 2870 2871 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2872 { 2873 struct address_space *mapping = file->f_mapping; 2874 struct inode *inode = mapping->host; 2875 2876 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2877 return generic_file_llseek_size(file, offset, whence, 2878 MAX_LFS_FILESIZE, i_size_read(inode)); 2879 if (offset < 0) 2880 return -ENXIO; 2881 2882 inode_lock(inode); 2883 /* We're holding i_rwsem so we can access i_size directly */ 2884 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2885 if (offset >= 0) 2886 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2887 inode_unlock(inode); 2888 return offset; 2889 } 2890 2891 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2892 loff_t len) 2893 { 2894 struct inode *inode = file_inode(file); 2895 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2896 struct shmem_inode_info *info = SHMEM_I(inode); 2897 struct shmem_falloc shmem_falloc; 2898 pgoff_t start, index, end, undo_fallocend; 2899 int error; 2900 2901 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2902 return -EOPNOTSUPP; 2903 2904 inode_lock(inode); 2905 2906 if (mode & FALLOC_FL_PUNCH_HOLE) { 2907 struct address_space *mapping = file->f_mapping; 2908 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2909 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2910 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2911 2912 /* protected by i_rwsem */ 2913 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2914 error = -EPERM; 2915 goto out; 2916 } 2917 2918 shmem_falloc.waitq = &shmem_falloc_waitq; 2919 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2920 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2921 spin_lock(&inode->i_lock); 2922 inode->i_private = &shmem_falloc; 2923 spin_unlock(&inode->i_lock); 2924 2925 if ((u64)unmap_end > (u64)unmap_start) 2926 unmap_mapping_range(mapping, unmap_start, 2927 1 + unmap_end - unmap_start, 0); 2928 shmem_truncate_range(inode, offset, offset + len - 1); 2929 /* No need to unmap again: hole-punching leaves COWed pages */ 2930 2931 spin_lock(&inode->i_lock); 2932 inode->i_private = NULL; 2933 wake_up_all(&shmem_falloc_waitq); 2934 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2935 spin_unlock(&inode->i_lock); 2936 error = 0; 2937 goto out; 2938 } 2939 2940 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2941 error = inode_newsize_ok(inode, offset + len); 2942 if (error) 2943 goto out; 2944 2945 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2946 error = -EPERM; 2947 goto out; 2948 } 2949 2950 start = offset >> PAGE_SHIFT; 2951 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2952 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2953 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2954 error = -ENOSPC; 2955 goto out; 2956 } 2957 2958 shmem_falloc.waitq = NULL; 2959 shmem_falloc.start = start; 2960 shmem_falloc.next = start; 2961 shmem_falloc.nr_falloced = 0; 2962 shmem_falloc.nr_unswapped = 0; 2963 spin_lock(&inode->i_lock); 2964 inode->i_private = &shmem_falloc; 2965 spin_unlock(&inode->i_lock); 2966 2967 /* 2968 * info->fallocend is only relevant when huge pages might be 2969 * involved: to prevent split_huge_page() freeing fallocated 2970 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2971 */ 2972 undo_fallocend = info->fallocend; 2973 if (info->fallocend < end) 2974 info->fallocend = end; 2975 2976 for (index = start; index < end; ) { 2977 struct folio *folio; 2978 2979 /* 2980 * Good, the fallocate(2) manpage permits EINTR: we may have 2981 * been interrupted because we are using up too much memory. 2982 */ 2983 if (signal_pending(current)) 2984 error = -EINTR; 2985 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2986 error = -ENOMEM; 2987 else 2988 error = shmem_get_folio(inode, index, &folio, 2989 SGP_FALLOC); 2990 if (error) { 2991 info->fallocend = undo_fallocend; 2992 /* Remove the !uptodate folios we added */ 2993 if (index > start) { 2994 shmem_undo_range(inode, 2995 (loff_t)start << PAGE_SHIFT, 2996 ((loff_t)index << PAGE_SHIFT) - 1, true); 2997 } 2998 goto undone; 2999 } 3000 3001 /* 3002 * Here is a more important optimization than it appears: 3003 * a second SGP_FALLOC on the same large folio will clear it, 3004 * making it uptodate and un-undoable if we fail later. 3005 */ 3006 index = folio_next_index(folio); 3007 /* Beware 32-bit wraparound */ 3008 if (!index) 3009 index--; 3010 3011 /* 3012 * Inform shmem_writepage() how far we have reached. 3013 * No need for lock or barrier: we have the page lock. 3014 */ 3015 if (!folio_test_uptodate(folio)) 3016 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3017 shmem_falloc.next = index; 3018 3019 /* 3020 * If !uptodate, leave it that way so that freeable folios 3021 * can be recognized if we need to rollback on error later. 3022 * But mark it dirty so that memory pressure will swap rather 3023 * than free the folios we are allocating (and SGP_CACHE folios 3024 * might still be clean: we now need to mark those dirty too). 3025 */ 3026 folio_mark_dirty(folio); 3027 folio_unlock(folio); 3028 folio_put(folio); 3029 cond_resched(); 3030 } 3031 3032 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3033 i_size_write(inode, offset + len); 3034 undone: 3035 spin_lock(&inode->i_lock); 3036 inode->i_private = NULL; 3037 spin_unlock(&inode->i_lock); 3038 out: 3039 if (!error) 3040 file_modified(file); 3041 inode_unlock(inode); 3042 return error; 3043 } 3044 3045 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3046 { 3047 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3048 3049 buf->f_type = TMPFS_MAGIC; 3050 buf->f_bsize = PAGE_SIZE; 3051 buf->f_namelen = NAME_MAX; 3052 if (sbinfo->max_blocks) { 3053 buf->f_blocks = sbinfo->max_blocks; 3054 buf->f_bavail = 3055 buf->f_bfree = sbinfo->max_blocks - 3056 percpu_counter_sum(&sbinfo->used_blocks); 3057 } 3058 if (sbinfo->max_inodes) { 3059 buf->f_files = sbinfo->max_inodes; 3060 buf->f_ffree = sbinfo->free_inodes; 3061 } 3062 /* else leave those fields 0 like simple_statfs */ 3063 3064 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * File creation. Allocate an inode, and we're done.. 3071 */ 3072 static int 3073 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3074 struct dentry *dentry, umode_t mode, dev_t dev) 3075 { 3076 struct inode *inode; 3077 int error = -ENOSPC; 3078 3079 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3080 if (inode) { 3081 error = simple_acl_create(dir, inode); 3082 if (error) 3083 goto out_iput; 3084 error = security_inode_init_security(inode, dir, 3085 &dentry->d_name, 3086 shmem_initxattrs, NULL); 3087 if (error && error != -EOPNOTSUPP) 3088 goto out_iput; 3089 3090 error = 0; 3091 dir->i_size += BOGO_DIRENT_SIZE; 3092 dir->i_ctime = dir->i_mtime = current_time(dir); 3093 inode_inc_iversion(dir); 3094 d_instantiate(dentry, inode); 3095 dget(dentry); /* Extra count - pin the dentry in core */ 3096 } 3097 return error; 3098 out_iput: 3099 iput(inode); 3100 return error; 3101 } 3102 3103 static int 3104 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3105 struct file *file, umode_t mode) 3106 { 3107 struct inode *inode; 3108 int error = -ENOSPC; 3109 3110 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3111 if (inode) { 3112 error = security_inode_init_security(inode, dir, 3113 NULL, 3114 shmem_initxattrs, NULL); 3115 if (error && error != -EOPNOTSUPP) 3116 goto out_iput; 3117 error = simple_acl_create(dir, inode); 3118 if (error) 3119 goto out_iput; 3120 d_tmpfile(file, inode); 3121 } 3122 return finish_open_simple(file, error); 3123 out_iput: 3124 iput(inode); 3125 return error; 3126 } 3127 3128 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3129 struct dentry *dentry, umode_t mode) 3130 { 3131 int error; 3132 3133 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3134 if (error) 3135 return error; 3136 inc_nlink(dir); 3137 return 0; 3138 } 3139 3140 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3141 struct dentry *dentry, umode_t mode, bool excl) 3142 { 3143 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3144 } 3145 3146 /* 3147 * Link a file.. 3148 */ 3149 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3150 { 3151 struct inode *inode = d_inode(old_dentry); 3152 int ret = 0; 3153 3154 /* 3155 * No ordinary (disk based) filesystem counts links as inodes; 3156 * but each new link needs a new dentry, pinning lowmem, and 3157 * tmpfs dentries cannot be pruned until they are unlinked. 3158 * But if an O_TMPFILE file is linked into the tmpfs, the 3159 * first link must skip that, to get the accounting right. 3160 */ 3161 if (inode->i_nlink) { 3162 ret = shmem_reserve_inode(inode->i_sb, NULL); 3163 if (ret) 3164 goto out; 3165 } 3166 3167 dir->i_size += BOGO_DIRENT_SIZE; 3168 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3169 inode_inc_iversion(dir); 3170 inc_nlink(inode); 3171 ihold(inode); /* New dentry reference */ 3172 dget(dentry); /* Extra pinning count for the created dentry */ 3173 d_instantiate(dentry, inode); 3174 out: 3175 return ret; 3176 } 3177 3178 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3179 { 3180 struct inode *inode = d_inode(dentry); 3181 3182 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3183 shmem_free_inode(inode->i_sb); 3184 3185 dir->i_size -= BOGO_DIRENT_SIZE; 3186 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3187 inode_inc_iversion(dir); 3188 drop_nlink(inode); 3189 dput(dentry); /* Undo the count from "create" - this does all the work */ 3190 return 0; 3191 } 3192 3193 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3194 { 3195 if (!simple_empty(dentry)) 3196 return -ENOTEMPTY; 3197 3198 drop_nlink(d_inode(dentry)); 3199 drop_nlink(dir); 3200 return shmem_unlink(dir, dentry); 3201 } 3202 3203 static int shmem_whiteout(struct mnt_idmap *idmap, 3204 struct inode *old_dir, struct dentry *old_dentry) 3205 { 3206 struct dentry *whiteout; 3207 int error; 3208 3209 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3210 if (!whiteout) 3211 return -ENOMEM; 3212 3213 error = shmem_mknod(idmap, old_dir, whiteout, 3214 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3215 dput(whiteout); 3216 if (error) 3217 return error; 3218 3219 /* 3220 * Cheat and hash the whiteout while the old dentry is still in 3221 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3222 * 3223 * d_lookup() will consistently find one of them at this point, 3224 * not sure which one, but that isn't even important. 3225 */ 3226 d_rehash(whiteout); 3227 return 0; 3228 } 3229 3230 /* 3231 * The VFS layer already does all the dentry stuff for rename, 3232 * we just have to decrement the usage count for the target if 3233 * it exists so that the VFS layer correctly free's it when it 3234 * gets overwritten. 3235 */ 3236 static int shmem_rename2(struct mnt_idmap *idmap, 3237 struct inode *old_dir, struct dentry *old_dentry, 3238 struct inode *new_dir, struct dentry *new_dentry, 3239 unsigned int flags) 3240 { 3241 struct inode *inode = d_inode(old_dentry); 3242 int they_are_dirs = S_ISDIR(inode->i_mode); 3243 3244 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3245 return -EINVAL; 3246 3247 if (flags & RENAME_EXCHANGE) 3248 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3249 3250 if (!simple_empty(new_dentry)) 3251 return -ENOTEMPTY; 3252 3253 if (flags & RENAME_WHITEOUT) { 3254 int error; 3255 3256 error = shmem_whiteout(idmap, old_dir, old_dentry); 3257 if (error) 3258 return error; 3259 } 3260 3261 if (d_really_is_positive(new_dentry)) { 3262 (void) shmem_unlink(new_dir, new_dentry); 3263 if (they_are_dirs) { 3264 drop_nlink(d_inode(new_dentry)); 3265 drop_nlink(old_dir); 3266 } 3267 } else if (they_are_dirs) { 3268 drop_nlink(old_dir); 3269 inc_nlink(new_dir); 3270 } 3271 3272 old_dir->i_size -= BOGO_DIRENT_SIZE; 3273 new_dir->i_size += BOGO_DIRENT_SIZE; 3274 old_dir->i_ctime = old_dir->i_mtime = 3275 new_dir->i_ctime = new_dir->i_mtime = 3276 inode->i_ctime = current_time(old_dir); 3277 inode_inc_iversion(old_dir); 3278 inode_inc_iversion(new_dir); 3279 return 0; 3280 } 3281 3282 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3283 struct dentry *dentry, const char *symname) 3284 { 3285 int error; 3286 int len; 3287 struct inode *inode; 3288 struct folio *folio; 3289 3290 len = strlen(symname) + 1; 3291 if (len > PAGE_SIZE) 3292 return -ENAMETOOLONG; 3293 3294 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3295 VM_NORESERVE); 3296 if (!inode) 3297 return -ENOSPC; 3298 3299 error = security_inode_init_security(inode, dir, &dentry->d_name, 3300 shmem_initxattrs, NULL); 3301 if (error && error != -EOPNOTSUPP) { 3302 iput(inode); 3303 return error; 3304 } 3305 3306 inode->i_size = len-1; 3307 if (len <= SHORT_SYMLINK_LEN) { 3308 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3309 if (!inode->i_link) { 3310 iput(inode); 3311 return -ENOMEM; 3312 } 3313 inode->i_op = &shmem_short_symlink_operations; 3314 } else { 3315 inode_nohighmem(inode); 3316 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3317 if (error) { 3318 iput(inode); 3319 return error; 3320 } 3321 inode->i_mapping->a_ops = &shmem_aops; 3322 inode->i_op = &shmem_symlink_inode_operations; 3323 memcpy(folio_address(folio), symname, len); 3324 folio_mark_uptodate(folio); 3325 folio_mark_dirty(folio); 3326 folio_unlock(folio); 3327 folio_put(folio); 3328 } 3329 dir->i_size += BOGO_DIRENT_SIZE; 3330 dir->i_ctime = dir->i_mtime = current_time(dir); 3331 inode_inc_iversion(dir); 3332 d_instantiate(dentry, inode); 3333 dget(dentry); 3334 return 0; 3335 } 3336 3337 static void shmem_put_link(void *arg) 3338 { 3339 folio_mark_accessed(arg); 3340 folio_put(arg); 3341 } 3342 3343 static const char *shmem_get_link(struct dentry *dentry, 3344 struct inode *inode, 3345 struct delayed_call *done) 3346 { 3347 struct folio *folio = NULL; 3348 int error; 3349 3350 if (!dentry) { 3351 folio = filemap_get_folio(inode->i_mapping, 0); 3352 if (IS_ERR(folio)) 3353 return ERR_PTR(-ECHILD); 3354 if (PageHWPoison(folio_page(folio, 0)) || 3355 !folio_test_uptodate(folio)) { 3356 folio_put(folio); 3357 return ERR_PTR(-ECHILD); 3358 } 3359 } else { 3360 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3361 if (error) 3362 return ERR_PTR(error); 3363 if (!folio) 3364 return ERR_PTR(-ECHILD); 3365 if (PageHWPoison(folio_page(folio, 0))) { 3366 folio_unlock(folio); 3367 folio_put(folio); 3368 return ERR_PTR(-ECHILD); 3369 } 3370 folio_unlock(folio); 3371 } 3372 set_delayed_call(done, shmem_put_link, folio); 3373 return folio_address(folio); 3374 } 3375 3376 #ifdef CONFIG_TMPFS_XATTR 3377 3378 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3379 { 3380 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3381 3382 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3383 3384 return 0; 3385 } 3386 3387 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3388 struct dentry *dentry, struct fileattr *fa) 3389 { 3390 struct inode *inode = d_inode(dentry); 3391 struct shmem_inode_info *info = SHMEM_I(inode); 3392 3393 if (fileattr_has_fsx(fa)) 3394 return -EOPNOTSUPP; 3395 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3396 return -EOPNOTSUPP; 3397 3398 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3399 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3400 3401 shmem_set_inode_flags(inode, info->fsflags); 3402 inode->i_ctime = current_time(inode); 3403 inode_inc_iversion(inode); 3404 return 0; 3405 } 3406 3407 /* 3408 * Superblocks without xattr inode operations may get some security.* xattr 3409 * support from the LSM "for free". As soon as we have any other xattrs 3410 * like ACLs, we also need to implement the security.* handlers at 3411 * filesystem level, though. 3412 */ 3413 3414 /* 3415 * Callback for security_inode_init_security() for acquiring xattrs. 3416 */ 3417 static int shmem_initxattrs(struct inode *inode, 3418 const struct xattr *xattr_array, 3419 void *fs_info) 3420 { 3421 struct shmem_inode_info *info = SHMEM_I(inode); 3422 const struct xattr *xattr; 3423 struct simple_xattr *new_xattr; 3424 size_t len; 3425 3426 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3427 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3428 if (!new_xattr) 3429 return -ENOMEM; 3430 3431 len = strlen(xattr->name) + 1; 3432 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3433 GFP_KERNEL); 3434 if (!new_xattr->name) { 3435 kvfree(new_xattr); 3436 return -ENOMEM; 3437 } 3438 3439 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3440 XATTR_SECURITY_PREFIX_LEN); 3441 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3442 xattr->name, len); 3443 3444 simple_xattr_add(&info->xattrs, new_xattr); 3445 } 3446 3447 return 0; 3448 } 3449 3450 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3451 struct dentry *unused, struct inode *inode, 3452 const char *name, void *buffer, size_t size) 3453 { 3454 struct shmem_inode_info *info = SHMEM_I(inode); 3455 3456 name = xattr_full_name(handler, name); 3457 return simple_xattr_get(&info->xattrs, name, buffer, size); 3458 } 3459 3460 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3461 struct mnt_idmap *idmap, 3462 struct dentry *unused, struct inode *inode, 3463 const char *name, const void *value, 3464 size_t size, int flags) 3465 { 3466 struct shmem_inode_info *info = SHMEM_I(inode); 3467 int err; 3468 3469 name = xattr_full_name(handler, name); 3470 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3471 if (!err) { 3472 inode->i_ctime = current_time(inode); 3473 inode_inc_iversion(inode); 3474 } 3475 return err; 3476 } 3477 3478 static const struct xattr_handler shmem_security_xattr_handler = { 3479 .prefix = XATTR_SECURITY_PREFIX, 3480 .get = shmem_xattr_handler_get, 3481 .set = shmem_xattr_handler_set, 3482 }; 3483 3484 static const struct xattr_handler shmem_trusted_xattr_handler = { 3485 .prefix = XATTR_TRUSTED_PREFIX, 3486 .get = shmem_xattr_handler_get, 3487 .set = shmem_xattr_handler_set, 3488 }; 3489 3490 static const struct xattr_handler *shmem_xattr_handlers[] = { 3491 &shmem_security_xattr_handler, 3492 &shmem_trusted_xattr_handler, 3493 NULL 3494 }; 3495 3496 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3497 { 3498 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3499 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3500 } 3501 #endif /* CONFIG_TMPFS_XATTR */ 3502 3503 static const struct inode_operations shmem_short_symlink_operations = { 3504 .getattr = shmem_getattr, 3505 .get_link = simple_get_link, 3506 #ifdef CONFIG_TMPFS_XATTR 3507 .listxattr = shmem_listxattr, 3508 #endif 3509 }; 3510 3511 static const struct inode_operations shmem_symlink_inode_operations = { 3512 .getattr = shmem_getattr, 3513 .get_link = shmem_get_link, 3514 #ifdef CONFIG_TMPFS_XATTR 3515 .listxattr = shmem_listxattr, 3516 #endif 3517 }; 3518 3519 static struct dentry *shmem_get_parent(struct dentry *child) 3520 { 3521 return ERR_PTR(-ESTALE); 3522 } 3523 3524 static int shmem_match(struct inode *ino, void *vfh) 3525 { 3526 __u32 *fh = vfh; 3527 __u64 inum = fh[2]; 3528 inum = (inum << 32) | fh[1]; 3529 return ino->i_ino == inum && fh[0] == ino->i_generation; 3530 } 3531 3532 /* Find any alias of inode, but prefer a hashed alias */ 3533 static struct dentry *shmem_find_alias(struct inode *inode) 3534 { 3535 struct dentry *alias = d_find_alias(inode); 3536 3537 return alias ?: d_find_any_alias(inode); 3538 } 3539 3540 3541 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3542 struct fid *fid, int fh_len, int fh_type) 3543 { 3544 struct inode *inode; 3545 struct dentry *dentry = NULL; 3546 u64 inum; 3547 3548 if (fh_len < 3) 3549 return NULL; 3550 3551 inum = fid->raw[2]; 3552 inum = (inum << 32) | fid->raw[1]; 3553 3554 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3555 shmem_match, fid->raw); 3556 if (inode) { 3557 dentry = shmem_find_alias(inode); 3558 iput(inode); 3559 } 3560 3561 return dentry; 3562 } 3563 3564 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3565 struct inode *parent) 3566 { 3567 if (*len < 3) { 3568 *len = 3; 3569 return FILEID_INVALID; 3570 } 3571 3572 if (inode_unhashed(inode)) { 3573 /* Unfortunately insert_inode_hash is not idempotent, 3574 * so as we hash inodes here rather than at creation 3575 * time, we need a lock to ensure we only try 3576 * to do it once 3577 */ 3578 static DEFINE_SPINLOCK(lock); 3579 spin_lock(&lock); 3580 if (inode_unhashed(inode)) 3581 __insert_inode_hash(inode, 3582 inode->i_ino + inode->i_generation); 3583 spin_unlock(&lock); 3584 } 3585 3586 fh[0] = inode->i_generation; 3587 fh[1] = inode->i_ino; 3588 fh[2] = ((__u64)inode->i_ino) >> 32; 3589 3590 *len = 3; 3591 return 1; 3592 } 3593 3594 static const struct export_operations shmem_export_ops = { 3595 .get_parent = shmem_get_parent, 3596 .encode_fh = shmem_encode_fh, 3597 .fh_to_dentry = shmem_fh_to_dentry, 3598 }; 3599 3600 enum shmem_param { 3601 Opt_gid, 3602 Opt_huge, 3603 Opt_mode, 3604 Opt_mpol, 3605 Opt_nr_blocks, 3606 Opt_nr_inodes, 3607 Opt_size, 3608 Opt_uid, 3609 Opt_inode32, 3610 Opt_inode64, 3611 Opt_noswap, 3612 }; 3613 3614 static const struct constant_table shmem_param_enums_huge[] = { 3615 {"never", SHMEM_HUGE_NEVER }, 3616 {"always", SHMEM_HUGE_ALWAYS }, 3617 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3618 {"advise", SHMEM_HUGE_ADVISE }, 3619 {} 3620 }; 3621 3622 const struct fs_parameter_spec shmem_fs_parameters[] = { 3623 fsparam_u32 ("gid", Opt_gid), 3624 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3625 fsparam_u32oct("mode", Opt_mode), 3626 fsparam_string("mpol", Opt_mpol), 3627 fsparam_string("nr_blocks", Opt_nr_blocks), 3628 fsparam_string("nr_inodes", Opt_nr_inodes), 3629 fsparam_string("size", Opt_size), 3630 fsparam_u32 ("uid", Opt_uid), 3631 fsparam_flag ("inode32", Opt_inode32), 3632 fsparam_flag ("inode64", Opt_inode64), 3633 fsparam_flag ("noswap", Opt_noswap), 3634 {} 3635 }; 3636 3637 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3638 { 3639 struct shmem_options *ctx = fc->fs_private; 3640 struct fs_parse_result result; 3641 unsigned long long size; 3642 char *rest; 3643 int opt; 3644 3645 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3646 if (opt < 0) 3647 return opt; 3648 3649 switch (opt) { 3650 case Opt_size: 3651 size = memparse(param->string, &rest); 3652 if (*rest == '%') { 3653 size <<= PAGE_SHIFT; 3654 size *= totalram_pages(); 3655 do_div(size, 100); 3656 rest++; 3657 } 3658 if (*rest) 3659 goto bad_value; 3660 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3661 ctx->seen |= SHMEM_SEEN_BLOCKS; 3662 break; 3663 case Opt_nr_blocks: 3664 ctx->blocks = memparse(param->string, &rest); 3665 if (*rest || ctx->blocks > S64_MAX) 3666 goto bad_value; 3667 ctx->seen |= SHMEM_SEEN_BLOCKS; 3668 break; 3669 case Opt_nr_inodes: 3670 ctx->inodes = memparse(param->string, &rest); 3671 if (*rest) 3672 goto bad_value; 3673 ctx->seen |= SHMEM_SEEN_INODES; 3674 break; 3675 case Opt_mode: 3676 ctx->mode = result.uint_32 & 07777; 3677 break; 3678 case Opt_uid: 3679 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3680 if (!uid_valid(ctx->uid)) 3681 goto bad_value; 3682 break; 3683 case Opt_gid: 3684 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3685 if (!gid_valid(ctx->gid)) 3686 goto bad_value; 3687 break; 3688 case Opt_huge: 3689 ctx->huge = result.uint_32; 3690 if (ctx->huge != SHMEM_HUGE_NEVER && 3691 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3692 has_transparent_hugepage())) 3693 goto unsupported_parameter; 3694 ctx->seen |= SHMEM_SEEN_HUGE; 3695 break; 3696 case Opt_mpol: 3697 if (IS_ENABLED(CONFIG_NUMA)) { 3698 mpol_put(ctx->mpol); 3699 ctx->mpol = NULL; 3700 if (mpol_parse_str(param->string, &ctx->mpol)) 3701 goto bad_value; 3702 break; 3703 } 3704 goto unsupported_parameter; 3705 case Opt_inode32: 3706 ctx->full_inums = false; 3707 ctx->seen |= SHMEM_SEEN_INUMS; 3708 break; 3709 case Opt_inode64: 3710 if (sizeof(ino_t) < 8) { 3711 return invalfc(fc, 3712 "Cannot use inode64 with <64bit inums in kernel\n"); 3713 } 3714 ctx->full_inums = true; 3715 ctx->seen |= SHMEM_SEEN_INUMS; 3716 break; 3717 case Opt_noswap: 3718 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 3719 return invalfc(fc, 3720 "Turning off swap in unprivileged tmpfs mounts unsupported"); 3721 } 3722 ctx->noswap = true; 3723 ctx->seen |= SHMEM_SEEN_NOSWAP; 3724 break; 3725 } 3726 return 0; 3727 3728 unsupported_parameter: 3729 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3730 bad_value: 3731 return invalfc(fc, "Bad value for '%s'", param->key); 3732 } 3733 3734 static int shmem_parse_options(struct fs_context *fc, void *data) 3735 { 3736 char *options = data; 3737 3738 if (options) { 3739 int err = security_sb_eat_lsm_opts(options, &fc->security); 3740 if (err) 3741 return err; 3742 } 3743 3744 while (options != NULL) { 3745 char *this_char = options; 3746 for (;;) { 3747 /* 3748 * NUL-terminate this option: unfortunately, 3749 * mount options form a comma-separated list, 3750 * but mpol's nodelist may also contain commas. 3751 */ 3752 options = strchr(options, ','); 3753 if (options == NULL) 3754 break; 3755 options++; 3756 if (!isdigit(*options)) { 3757 options[-1] = '\0'; 3758 break; 3759 } 3760 } 3761 if (*this_char) { 3762 char *value = strchr(this_char, '='); 3763 size_t len = 0; 3764 int err; 3765 3766 if (value) { 3767 *value++ = '\0'; 3768 len = strlen(value); 3769 } 3770 err = vfs_parse_fs_string(fc, this_char, value, len); 3771 if (err < 0) 3772 return err; 3773 } 3774 } 3775 return 0; 3776 } 3777 3778 /* 3779 * Reconfigure a shmem filesystem. 3780 * 3781 * Note that we disallow change from limited->unlimited blocks/inodes while any 3782 * are in use; but we must separately disallow unlimited->limited, because in 3783 * that case we have no record of how much is already in use. 3784 */ 3785 static int shmem_reconfigure(struct fs_context *fc) 3786 { 3787 struct shmem_options *ctx = fc->fs_private; 3788 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3789 unsigned long inodes; 3790 struct mempolicy *mpol = NULL; 3791 const char *err; 3792 3793 raw_spin_lock(&sbinfo->stat_lock); 3794 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3795 3796 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3797 if (!sbinfo->max_blocks) { 3798 err = "Cannot retroactively limit size"; 3799 goto out; 3800 } 3801 if (percpu_counter_compare(&sbinfo->used_blocks, 3802 ctx->blocks) > 0) { 3803 err = "Too small a size for current use"; 3804 goto out; 3805 } 3806 } 3807 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3808 if (!sbinfo->max_inodes) { 3809 err = "Cannot retroactively limit inodes"; 3810 goto out; 3811 } 3812 if (ctx->inodes < inodes) { 3813 err = "Too few inodes for current use"; 3814 goto out; 3815 } 3816 } 3817 3818 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3819 sbinfo->next_ino > UINT_MAX) { 3820 err = "Current inum too high to switch to 32-bit inums"; 3821 goto out; 3822 } 3823 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 3824 err = "Cannot disable swap on remount"; 3825 goto out; 3826 } 3827 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 3828 err = "Cannot enable swap on remount if it was disabled on first mount"; 3829 goto out; 3830 } 3831 3832 if (ctx->seen & SHMEM_SEEN_HUGE) 3833 sbinfo->huge = ctx->huge; 3834 if (ctx->seen & SHMEM_SEEN_INUMS) 3835 sbinfo->full_inums = ctx->full_inums; 3836 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3837 sbinfo->max_blocks = ctx->blocks; 3838 if (ctx->seen & SHMEM_SEEN_INODES) { 3839 sbinfo->max_inodes = ctx->inodes; 3840 sbinfo->free_inodes = ctx->inodes - inodes; 3841 } 3842 3843 /* 3844 * Preserve previous mempolicy unless mpol remount option was specified. 3845 */ 3846 if (ctx->mpol) { 3847 mpol = sbinfo->mpol; 3848 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3849 ctx->mpol = NULL; 3850 } 3851 3852 if (ctx->noswap) 3853 sbinfo->noswap = true; 3854 3855 raw_spin_unlock(&sbinfo->stat_lock); 3856 mpol_put(mpol); 3857 return 0; 3858 out: 3859 raw_spin_unlock(&sbinfo->stat_lock); 3860 return invalfc(fc, "%s", err); 3861 } 3862 3863 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3864 { 3865 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3866 struct mempolicy *mpol; 3867 3868 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3869 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 3870 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3871 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3872 if (sbinfo->mode != (0777 | S_ISVTX)) 3873 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3874 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3875 seq_printf(seq, ",uid=%u", 3876 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3877 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3878 seq_printf(seq, ",gid=%u", 3879 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3880 3881 /* 3882 * Showing inode{64,32} might be useful even if it's the system default, 3883 * since then people don't have to resort to checking both here and 3884 * /proc/config.gz to confirm 64-bit inums were successfully applied 3885 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3886 * 3887 * We hide it when inode64 isn't the default and we are using 32-bit 3888 * inodes, since that probably just means the feature isn't even under 3889 * consideration. 3890 * 3891 * As such: 3892 * 3893 * +-----------------+-----------------+ 3894 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3895 * +------------------+-----------------+-----------------+ 3896 * | full_inums=true | show | show | 3897 * | full_inums=false | show | hide | 3898 * +------------------+-----------------+-----------------+ 3899 * 3900 */ 3901 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3902 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3904 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3905 if (sbinfo->huge) 3906 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3907 #endif 3908 mpol = shmem_get_sbmpol(sbinfo); 3909 shmem_show_mpol(seq, mpol); 3910 mpol_put(mpol); 3911 if (sbinfo->noswap) 3912 seq_printf(seq, ",noswap"); 3913 return 0; 3914 } 3915 3916 #endif /* CONFIG_TMPFS */ 3917 3918 static void shmem_put_super(struct super_block *sb) 3919 { 3920 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3921 3922 free_percpu(sbinfo->ino_batch); 3923 percpu_counter_destroy(&sbinfo->used_blocks); 3924 mpol_put(sbinfo->mpol); 3925 kfree(sbinfo); 3926 sb->s_fs_info = NULL; 3927 } 3928 3929 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3930 { 3931 struct shmem_options *ctx = fc->fs_private; 3932 struct inode *inode; 3933 struct shmem_sb_info *sbinfo; 3934 3935 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3936 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3937 L1_CACHE_BYTES), GFP_KERNEL); 3938 if (!sbinfo) 3939 return -ENOMEM; 3940 3941 sb->s_fs_info = sbinfo; 3942 3943 #ifdef CONFIG_TMPFS 3944 /* 3945 * Per default we only allow half of the physical ram per 3946 * tmpfs instance, limiting inodes to one per page of lowmem; 3947 * but the internal instance is left unlimited. 3948 */ 3949 if (!(sb->s_flags & SB_KERNMOUNT)) { 3950 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3951 ctx->blocks = shmem_default_max_blocks(); 3952 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3953 ctx->inodes = shmem_default_max_inodes(); 3954 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3955 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3956 sbinfo->noswap = ctx->noswap; 3957 } else { 3958 sb->s_flags |= SB_NOUSER; 3959 } 3960 sb->s_export_op = &shmem_export_ops; 3961 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3962 #else 3963 sb->s_flags |= SB_NOUSER; 3964 #endif 3965 sbinfo->max_blocks = ctx->blocks; 3966 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3967 if (sb->s_flags & SB_KERNMOUNT) { 3968 sbinfo->ino_batch = alloc_percpu(ino_t); 3969 if (!sbinfo->ino_batch) 3970 goto failed; 3971 } 3972 sbinfo->uid = ctx->uid; 3973 sbinfo->gid = ctx->gid; 3974 sbinfo->full_inums = ctx->full_inums; 3975 sbinfo->mode = ctx->mode; 3976 sbinfo->huge = ctx->huge; 3977 sbinfo->mpol = ctx->mpol; 3978 ctx->mpol = NULL; 3979 3980 raw_spin_lock_init(&sbinfo->stat_lock); 3981 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3982 goto failed; 3983 spin_lock_init(&sbinfo->shrinklist_lock); 3984 INIT_LIST_HEAD(&sbinfo->shrinklist); 3985 3986 sb->s_maxbytes = MAX_LFS_FILESIZE; 3987 sb->s_blocksize = PAGE_SIZE; 3988 sb->s_blocksize_bits = PAGE_SHIFT; 3989 sb->s_magic = TMPFS_MAGIC; 3990 sb->s_op = &shmem_ops; 3991 sb->s_time_gran = 1; 3992 #ifdef CONFIG_TMPFS_XATTR 3993 sb->s_xattr = shmem_xattr_handlers; 3994 #endif 3995 #ifdef CONFIG_TMPFS_POSIX_ACL 3996 sb->s_flags |= SB_POSIXACL; 3997 #endif 3998 uuid_gen(&sb->s_uuid); 3999 4000 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4001 VM_NORESERVE); 4002 if (!inode) 4003 goto failed; 4004 inode->i_uid = sbinfo->uid; 4005 inode->i_gid = sbinfo->gid; 4006 sb->s_root = d_make_root(inode); 4007 if (!sb->s_root) 4008 goto failed; 4009 return 0; 4010 4011 failed: 4012 shmem_put_super(sb); 4013 return -ENOMEM; 4014 } 4015 4016 static int shmem_get_tree(struct fs_context *fc) 4017 { 4018 return get_tree_nodev(fc, shmem_fill_super); 4019 } 4020 4021 static void shmem_free_fc(struct fs_context *fc) 4022 { 4023 struct shmem_options *ctx = fc->fs_private; 4024 4025 if (ctx) { 4026 mpol_put(ctx->mpol); 4027 kfree(ctx); 4028 } 4029 } 4030 4031 static const struct fs_context_operations shmem_fs_context_ops = { 4032 .free = shmem_free_fc, 4033 .get_tree = shmem_get_tree, 4034 #ifdef CONFIG_TMPFS 4035 .parse_monolithic = shmem_parse_options, 4036 .parse_param = shmem_parse_one, 4037 .reconfigure = shmem_reconfigure, 4038 #endif 4039 }; 4040 4041 static struct kmem_cache *shmem_inode_cachep; 4042 4043 static struct inode *shmem_alloc_inode(struct super_block *sb) 4044 { 4045 struct shmem_inode_info *info; 4046 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4047 if (!info) 4048 return NULL; 4049 return &info->vfs_inode; 4050 } 4051 4052 static void shmem_free_in_core_inode(struct inode *inode) 4053 { 4054 if (S_ISLNK(inode->i_mode)) 4055 kfree(inode->i_link); 4056 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4057 } 4058 4059 static void shmem_destroy_inode(struct inode *inode) 4060 { 4061 if (S_ISREG(inode->i_mode)) 4062 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4063 } 4064 4065 static void shmem_init_inode(void *foo) 4066 { 4067 struct shmem_inode_info *info = foo; 4068 inode_init_once(&info->vfs_inode); 4069 } 4070 4071 static void shmem_init_inodecache(void) 4072 { 4073 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4074 sizeof(struct shmem_inode_info), 4075 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4076 } 4077 4078 static void shmem_destroy_inodecache(void) 4079 { 4080 kmem_cache_destroy(shmem_inode_cachep); 4081 } 4082 4083 /* Keep the page in page cache instead of truncating it */ 4084 static int shmem_error_remove_page(struct address_space *mapping, 4085 struct page *page) 4086 { 4087 return 0; 4088 } 4089 4090 const struct address_space_operations shmem_aops = { 4091 .writepage = shmem_writepage, 4092 .dirty_folio = noop_dirty_folio, 4093 #ifdef CONFIG_TMPFS 4094 .write_begin = shmem_write_begin, 4095 .write_end = shmem_write_end, 4096 #endif 4097 #ifdef CONFIG_MIGRATION 4098 .migrate_folio = migrate_folio, 4099 #endif 4100 .error_remove_page = shmem_error_remove_page, 4101 }; 4102 EXPORT_SYMBOL(shmem_aops); 4103 4104 static const struct file_operations shmem_file_operations = { 4105 .mmap = shmem_mmap, 4106 .open = generic_file_open, 4107 .get_unmapped_area = shmem_get_unmapped_area, 4108 #ifdef CONFIG_TMPFS 4109 .llseek = shmem_file_llseek, 4110 .read_iter = shmem_file_read_iter, 4111 .write_iter = generic_file_write_iter, 4112 .fsync = noop_fsync, 4113 .splice_read = shmem_file_splice_read, 4114 .splice_write = iter_file_splice_write, 4115 .fallocate = shmem_fallocate, 4116 #endif 4117 }; 4118 4119 static const struct inode_operations shmem_inode_operations = { 4120 .getattr = shmem_getattr, 4121 .setattr = shmem_setattr, 4122 #ifdef CONFIG_TMPFS_XATTR 4123 .listxattr = shmem_listxattr, 4124 .set_acl = simple_set_acl, 4125 .fileattr_get = shmem_fileattr_get, 4126 .fileattr_set = shmem_fileattr_set, 4127 #endif 4128 }; 4129 4130 static const struct inode_operations shmem_dir_inode_operations = { 4131 #ifdef CONFIG_TMPFS 4132 .getattr = shmem_getattr, 4133 .create = shmem_create, 4134 .lookup = simple_lookup, 4135 .link = shmem_link, 4136 .unlink = shmem_unlink, 4137 .symlink = shmem_symlink, 4138 .mkdir = shmem_mkdir, 4139 .rmdir = shmem_rmdir, 4140 .mknod = shmem_mknod, 4141 .rename = shmem_rename2, 4142 .tmpfile = shmem_tmpfile, 4143 #endif 4144 #ifdef CONFIG_TMPFS_XATTR 4145 .listxattr = shmem_listxattr, 4146 .fileattr_get = shmem_fileattr_get, 4147 .fileattr_set = shmem_fileattr_set, 4148 #endif 4149 #ifdef CONFIG_TMPFS_POSIX_ACL 4150 .setattr = shmem_setattr, 4151 .set_acl = simple_set_acl, 4152 #endif 4153 }; 4154 4155 static const struct inode_operations shmem_special_inode_operations = { 4156 .getattr = shmem_getattr, 4157 #ifdef CONFIG_TMPFS_XATTR 4158 .listxattr = shmem_listxattr, 4159 #endif 4160 #ifdef CONFIG_TMPFS_POSIX_ACL 4161 .setattr = shmem_setattr, 4162 .set_acl = simple_set_acl, 4163 #endif 4164 }; 4165 4166 static const struct super_operations shmem_ops = { 4167 .alloc_inode = shmem_alloc_inode, 4168 .free_inode = shmem_free_in_core_inode, 4169 .destroy_inode = shmem_destroy_inode, 4170 #ifdef CONFIG_TMPFS 4171 .statfs = shmem_statfs, 4172 .show_options = shmem_show_options, 4173 #endif 4174 .evict_inode = shmem_evict_inode, 4175 .drop_inode = generic_delete_inode, 4176 .put_super = shmem_put_super, 4177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4178 .nr_cached_objects = shmem_unused_huge_count, 4179 .free_cached_objects = shmem_unused_huge_scan, 4180 #endif 4181 }; 4182 4183 static const struct vm_operations_struct shmem_vm_ops = { 4184 .fault = shmem_fault, 4185 .map_pages = filemap_map_pages, 4186 #ifdef CONFIG_NUMA 4187 .set_policy = shmem_set_policy, 4188 .get_policy = shmem_get_policy, 4189 #endif 4190 }; 4191 4192 static const struct vm_operations_struct shmem_anon_vm_ops = { 4193 .fault = shmem_fault, 4194 .map_pages = filemap_map_pages, 4195 #ifdef CONFIG_NUMA 4196 .set_policy = shmem_set_policy, 4197 .get_policy = shmem_get_policy, 4198 #endif 4199 }; 4200 4201 int shmem_init_fs_context(struct fs_context *fc) 4202 { 4203 struct shmem_options *ctx; 4204 4205 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4206 if (!ctx) 4207 return -ENOMEM; 4208 4209 ctx->mode = 0777 | S_ISVTX; 4210 ctx->uid = current_fsuid(); 4211 ctx->gid = current_fsgid(); 4212 4213 fc->fs_private = ctx; 4214 fc->ops = &shmem_fs_context_ops; 4215 return 0; 4216 } 4217 4218 static struct file_system_type shmem_fs_type = { 4219 .owner = THIS_MODULE, 4220 .name = "tmpfs", 4221 .init_fs_context = shmem_init_fs_context, 4222 #ifdef CONFIG_TMPFS 4223 .parameters = shmem_fs_parameters, 4224 #endif 4225 .kill_sb = kill_litter_super, 4226 #ifdef CONFIG_SHMEM 4227 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4228 #else 4229 .fs_flags = FS_USERNS_MOUNT, 4230 #endif 4231 }; 4232 4233 void __init shmem_init(void) 4234 { 4235 int error; 4236 4237 shmem_init_inodecache(); 4238 4239 error = register_filesystem(&shmem_fs_type); 4240 if (error) { 4241 pr_err("Could not register tmpfs\n"); 4242 goto out2; 4243 } 4244 4245 shm_mnt = kern_mount(&shmem_fs_type); 4246 if (IS_ERR(shm_mnt)) { 4247 error = PTR_ERR(shm_mnt); 4248 pr_err("Could not kern_mount tmpfs\n"); 4249 goto out1; 4250 } 4251 4252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4253 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4254 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4255 else 4256 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4257 #endif 4258 return; 4259 4260 out1: 4261 unregister_filesystem(&shmem_fs_type); 4262 out2: 4263 shmem_destroy_inodecache(); 4264 shm_mnt = ERR_PTR(error); 4265 } 4266 4267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4268 static ssize_t shmem_enabled_show(struct kobject *kobj, 4269 struct kobj_attribute *attr, char *buf) 4270 { 4271 static const int values[] = { 4272 SHMEM_HUGE_ALWAYS, 4273 SHMEM_HUGE_WITHIN_SIZE, 4274 SHMEM_HUGE_ADVISE, 4275 SHMEM_HUGE_NEVER, 4276 SHMEM_HUGE_DENY, 4277 SHMEM_HUGE_FORCE, 4278 }; 4279 int len = 0; 4280 int i; 4281 4282 for (i = 0; i < ARRAY_SIZE(values); i++) { 4283 len += sysfs_emit_at(buf, len, 4284 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4285 i ? " " : "", 4286 shmem_format_huge(values[i])); 4287 } 4288 4289 len += sysfs_emit_at(buf, len, "\n"); 4290 4291 return len; 4292 } 4293 4294 static ssize_t shmem_enabled_store(struct kobject *kobj, 4295 struct kobj_attribute *attr, const char *buf, size_t count) 4296 { 4297 char tmp[16]; 4298 int huge; 4299 4300 if (count + 1 > sizeof(tmp)) 4301 return -EINVAL; 4302 memcpy(tmp, buf, count); 4303 tmp[count] = '\0'; 4304 if (count && tmp[count - 1] == '\n') 4305 tmp[count - 1] = '\0'; 4306 4307 huge = shmem_parse_huge(tmp); 4308 if (huge == -EINVAL) 4309 return -EINVAL; 4310 if (!has_transparent_hugepage() && 4311 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4312 return -EINVAL; 4313 4314 shmem_huge = huge; 4315 if (shmem_huge > SHMEM_HUGE_DENY) 4316 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4317 return count; 4318 } 4319 4320 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4321 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4322 4323 #else /* !CONFIG_SHMEM */ 4324 4325 /* 4326 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4327 * 4328 * This is intended for small system where the benefits of the full 4329 * shmem code (swap-backed and resource-limited) are outweighed by 4330 * their complexity. On systems without swap this code should be 4331 * effectively equivalent, but much lighter weight. 4332 */ 4333 4334 static struct file_system_type shmem_fs_type = { 4335 .name = "tmpfs", 4336 .init_fs_context = ramfs_init_fs_context, 4337 .parameters = ramfs_fs_parameters, 4338 .kill_sb = ramfs_kill_sb, 4339 .fs_flags = FS_USERNS_MOUNT, 4340 }; 4341 4342 void __init shmem_init(void) 4343 { 4344 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4345 4346 shm_mnt = kern_mount(&shmem_fs_type); 4347 BUG_ON(IS_ERR(shm_mnt)); 4348 } 4349 4350 int shmem_unuse(unsigned int type) 4351 { 4352 return 0; 4353 } 4354 4355 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4356 { 4357 return 0; 4358 } 4359 4360 void shmem_unlock_mapping(struct address_space *mapping) 4361 { 4362 } 4363 4364 #ifdef CONFIG_MMU 4365 unsigned long shmem_get_unmapped_area(struct file *file, 4366 unsigned long addr, unsigned long len, 4367 unsigned long pgoff, unsigned long flags) 4368 { 4369 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4370 } 4371 #endif 4372 4373 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4374 { 4375 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4376 } 4377 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4378 4379 #define shmem_vm_ops generic_file_vm_ops 4380 #define shmem_anon_vm_ops generic_file_vm_ops 4381 #define shmem_file_operations ramfs_file_operations 4382 #define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4383 #define shmem_acct_size(flags, size) 0 4384 #define shmem_unacct_size(flags, size) do {} while (0) 4385 4386 #endif /* CONFIG_SHMEM */ 4387 4388 /* common code */ 4389 4390 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4391 unsigned long flags, unsigned int i_flags) 4392 { 4393 struct inode *inode; 4394 struct file *res; 4395 4396 if (IS_ERR(mnt)) 4397 return ERR_CAST(mnt); 4398 4399 if (size < 0 || size > MAX_LFS_FILESIZE) 4400 return ERR_PTR(-EINVAL); 4401 4402 if (shmem_acct_size(flags, size)) 4403 return ERR_PTR(-ENOMEM); 4404 4405 if (is_idmapped_mnt(mnt)) 4406 return ERR_PTR(-EINVAL); 4407 4408 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4409 S_IFREG | S_IRWXUGO, 0, flags); 4410 if (unlikely(!inode)) { 4411 shmem_unacct_size(flags, size); 4412 return ERR_PTR(-ENOSPC); 4413 } 4414 inode->i_flags |= i_flags; 4415 inode->i_size = size; 4416 clear_nlink(inode); /* It is unlinked */ 4417 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4418 if (!IS_ERR(res)) 4419 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4420 &shmem_file_operations); 4421 if (IS_ERR(res)) 4422 iput(inode); 4423 return res; 4424 } 4425 4426 /** 4427 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4428 * kernel internal. There will be NO LSM permission checks against the 4429 * underlying inode. So users of this interface must do LSM checks at a 4430 * higher layer. The users are the big_key and shm implementations. LSM 4431 * checks are provided at the key or shm level rather than the inode. 4432 * @name: name for dentry (to be seen in /proc/<pid>/maps 4433 * @size: size to be set for the file 4434 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4435 */ 4436 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4437 { 4438 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4439 } 4440 4441 /** 4442 * shmem_file_setup - get an unlinked file living in tmpfs 4443 * @name: name for dentry (to be seen in /proc/<pid>/maps 4444 * @size: size to be set for the file 4445 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4446 */ 4447 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4448 { 4449 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4450 } 4451 EXPORT_SYMBOL_GPL(shmem_file_setup); 4452 4453 /** 4454 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4455 * @mnt: the tmpfs mount where the file will be created 4456 * @name: name for dentry (to be seen in /proc/<pid>/maps 4457 * @size: size to be set for the file 4458 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4459 */ 4460 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4461 loff_t size, unsigned long flags) 4462 { 4463 return __shmem_file_setup(mnt, name, size, flags, 0); 4464 } 4465 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4466 4467 /** 4468 * shmem_zero_setup - setup a shared anonymous mapping 4469 * @vma: the vma to be mmapped is prepared by do_mmap 4470 */ 4471 int shmem_zero_setup(struct vm_area_struct *vma) 4472 { 4473 struct file *file; 4474 loff_t size = vma->vm_end - vma->vm_start; 4475 4476 /* 4477 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4478 * between XFS directory reading and selinux: since this file is only 4479 * accessible to the user through its mapping, use S_PRIVATE flag to 4480 * bypass file security, in the same way as shmem_kernel_file_setup(). 4481 */ 4482 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4483 if (IS_ERR(file)) 4484 return PTR_ERR(file); 4485 4486 if (vma->vm_file) 4487 fput(vma->vm_file); 4488 vma->vm_file = file; 4489 vma->vm_ops = &shmem_anon_vm_ops; 4490 4491 return 0; 4492 } 4493 4494 /** 4495 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4496 * @mapping: the folio's address_space 4497 * @index: the folio index 4498 * @gfp: the page allocator flags to use if allocating 4499 * 4500 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4501 * with any new page allocations done using the specified allocation flags. 4502 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4503 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4504 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4505 * 4506 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4507 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4508 */ 4509 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4510 pgoff_t index, gfp_t gfp) 4511 { 4512 #ifdef CONFIG_SHMEM 4513 struct inode *inode = mapping->host; 4514 struct folio *folio; 4515 int error; 4516 4517 BUG_ON(!shmem_mapping(mapping)); 4518 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4519 gfp, NULL, NULL, NULL); 4520 if (error) 4521 return ERR_PTR(error); 4522 4523 folio_unlock(folio); 4524 return folio; 4525 #else 4526 /* 4527 * The tiny !SHMEM case uses ramfs without swap 4528 */ 4529 return mapping_read_folio_gfp(mapping, index, gfp); 4530 #endif 4531 } 4532 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4533 4534 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4535 pgoff_t index, gfp_t gfp) 4536 { 4537 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4538 struct page *page; 4539 4540 if (IS_ERR(folio)) 4541 return &folio->page; 4542 4543 page = folio_file_page(folio, index); 4544 if (PageHWPoison(page)) { 4545 folio_put(folio); 4546 return ERR_PTR(-EIO); 4547 } 4548 4549 return page; 4550 } 4551 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4552