1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Pretend that one inode + its dentry occupy this much memory */ 96 #define BOGO_INODE_SIZE 1024 97 98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 99 #define SHORT_SYMLINK_LEN 128 100 101 /* 102 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 103 * inode->i_private (with i_rwsem making sure that it has only one user at 104 * a time): we would prefer not to enlarge the shmem inode just for that. 105 */ 106 struct shmem_falloc { 107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 108 pgoff_t start; /* start of range currently being fallocated */ 109 pgoff_t next; /* the next page offset to be fallocated */ 110 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 111 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 112 }; 113 114 struct shmem_options { 115 unsigned long long blocks; 116 unsigned long long inodes; 117 struct mempolicy *mpol; 118 kuid_t uid; 119 kgid_t gid; 120 umode_t mode; 121 bool full_inums; 122 int huge; 123 int seen; 124 bool noswap; 125 unsigned short quota_types; 126 struct shmem_quota_limits qlimits; 127 #if IS_ENABLED(CONFIG_UNICODE) 128 struct unicode_map *encoding; 129 bool strict_encoding; 130 #endif 131 #define SHMEM_SEEN_BLOCKS 1 132 #define SHMEM_SEEN_INODES 2 133 #define SHMEM_SEEN_HUGE 4 134 #define SHMEM_SEEN_INUMS 8 135 #define SHMEM_SEEN_NOSWAP 16 136 #define SHMEM_SEEN_QUOTA 32 137 }; 138 139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 140 static unsigned long huge_shmem_orders_always __read_mostly; 141 static unsigned long huge_shmem_orders_madvise __read_mostly; 142 static unsigned long huge_shmem_orders_inherit __read_mostly; 143 static unsigned long huge_shmem_orders_within_size __read_mostly; 144 static bool shmem_orders_configured __initdata; 145 #endif 146 147 #ifdef CONFIG_TMPFS 148 static unsigned long shmem_default_max_blocks(void) 149 { 150 return totalram_pages() / 2; 151 } 152 153 static unsigned long shmem_default_max_inodes(void) 154 { 155 unsigned long nr_pages = totalram_pages(); 156 157 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 158 ULONG_MAX / BOGO_INODE_SIZE); 159 } 160 #endif 161 162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 163 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 164 struct vm_area_struct *vma, vm_fault_t *fault_type); 165 166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 167 { 168 return sb->s_fs_info; 169 } 170 171 /* 172 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 173 * for shared memory and for shared anonymous (/dev/zero) mappings 174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 175 * consistent with the pre-accounting of private mappings ... 176 */ 177 static inline int shmem_acct_size(unsigned long flags, loff_t size) 178 { 179 return (flags & VM_NORESERVE) ? 180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 181 } 182 183 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 184 { 185 if (!(flags & VM_NORESERVE)) 186 vm_unacct_memory(VM_ACCT(size)); 187 } 188 189 static inline int shmem_reacct_size(unsigned long flags, 190 loff_t oldsize, loff_t newsize) 191 { 192 if (!(flags & VM_NORESERVE)) { 193 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 194 return security_vm_enough_memory_mm(current->mm, 195 VM_ACCT(newsize) - VM_ACCT(oldsize)); 196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 198 } 199 return 0; 200 } 201 202 /* 203 * ... whereas tmpfs objects are accounted incrementally as 204 * pages are allocated, in order to allow large sparse files. 205 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 207 */ 208 static inline int shmem_acct_blocks(unsigned long flags, long pages) 209 { 210 if (!(flags & VM_NORESERVE)) 211 return 0; 212 213 return security_vm_enough_memory_mm(current->mm, 214 pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 218 { 219 if (flags & VM_NORESERVE) 220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 221 } 222 223 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 int err = -ENOSPC; 228 229 if (shmem_acct_blocks(info->flags, pages)) 230 return err; 231 232 might_sleep(); /* when quotas */ 233 if (sbinfo->max_blocks) { 234 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 235 sbinfo->max_blocks, pages)) 236 goto unacct; 237 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) { 240 percpu_counter_sub(&sbinfo->used_blocks, pages); 241 goto unacct; 242 } 243 } else { 244 err = dquot_alloc_block_nodirty(inode, pages); 245 if (err) 246 goto unacct; 247 } 248 249 return 0; 250 251 unacct: 252 shmem_unacct_blocks(info->flags, pages); 253 return err; 254 } 255 256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 257 { 258 struct shmem_inode_info *info = SHMEM_I(inode); 259 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 260 261 might_sleep(); /* when quotas */ 262 dquot_free_block_nodirty(inode, pages); 263 264 if (sbinfo->max_blocks) 265 percpu_counter_sub(&sbinfo->used_blocks, pages); 266 shmem_unacct_blocks(info->flags, pages); 267 } 268 269 static const struct super_operations shmem_ops; 270 static const struct address_space_operations shmem_aops; 271 static const struct file_operations shmem_file_operations; 272 static const struct inode_operations shmem_inode_operations; 273 static const struct inode_operations shmem_dir_inode_operations; 274 static const struct inode_operations shmem_special_inode_operations; 275 static const struct vm_operations_struct shmem_vm_ops; 276 static const struct vm_operations_struct shmem_anon_vm_ops; 277 static struct file_system_type shmem_fs_type; 278 279 bool shmem_mapping(struct address_space *mapping) 280 { 281 return mapping->a_ops == &shmem_aops; 282 } 283 EXPORT_SYMBOL_GPL(shmem_mapping); 284 285 bool vma_is_anon_shmem(struct vm_area_struct *vma) 286 { 287 return vma->vm_ops == &shmem_anon_vm_ops; 288 } 289 290 bool vma_is_shmem(struct vm_area_struct *vma) 291 { 292 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 293 } 294 295 static LIST_HEAD(shmem_swaplist); 296 static DEFINE_MUTEX(shmem_swaplist_mutex); 297 298 #ifdef CONFIG_TMPFS_QUOTA 299 300 static int shmem_enable_quotas(struct super_block *sb, 301 unsigned short quota_types) 302 { 303 int type, err = 0; 304 305 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 307 if (!(quota_types & (1 << type))) 308 continue; 309 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 310 DQUOT_USAGE_ENABLED | 311 DQUOT_LIMITS_ENABLED); 312 if (err) 313 goto out_err; 314 } 315 return 0; 316 317 out_err: 318 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 319 type, err); 320 for (type--; type >= 0; type--) 321 dquot_quota_off(sb, type); 322 return err; 323 } 324 325 static void shmem_disable_quotas(struct super_block *sb) 326 { 327 int type; 328 329 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 330 dquot_quota_off(sb, type); 331 } 332 333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 334 { 335 return SHMEM_I(inode)->i_dquot; 336 } 337 #endif /* CONFIG_TMPFS_QUOTA */ 338 339 /* 340 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 341 * produces a novel ino for the newly allocated inode. 342 * 343 * It may also be called when making a hard link to permit the space needed by 344 * each dentry. However, in that case, no new inode number is needed since that 345 * internally draws from another pool of inode numbers (currently global 346 * get_next_ino()). This case is indicated by passing NULL as inop. 347 */ 348 #define SHMEM_INO_BATCH 1024 349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 350 { 351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 352 ino_t ino; 353 354 if (!(sb->s_flags & SB_KERNMOUNT)) { 355 raw_spin_lock(&sbinfo->stat_lock); 356 if (sbinfo->max_inodes) { 357 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 358 raw_spin_unlock(&sbinfo->stat_lock); 359 return -ENOSPC; 360 } 361 sbinfo->free_ispace -= BOGO_INODE_SIZE; 362 } 363 if (inop) { 364 ino = sbinfo->next_ino++; 365 if (unlikely(is_zero_ino(ino))) 366 ino = sbinfo->next_ino++; 367 if (unlikely(!sbinfo->full_inums && 368 ino > UINT_MAX)) { 369 /* 370 * Emulate get_next_ino uint wraparound for 371 * compatibility 372 */ 373 if (IS_ENABLED(CONFIG_64BIT)) 374 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 375 __func__, MINOR(sb->s_dev)); 376 sbinfo->next_ino = 1; 377 ino = sbinfo->next_ino++; 378 } 379 *inop = ino; 380 } 381 raw_spin_unlock(&sbinfo->stat_lock); 382 } else if (inop) { 383 /* 384 * __shmem_file_setup, one of our callers, is lock-free: it 385 * doesn't hold stat_lock in shmem_reserve_inode since 386 * max_inodes is always 0, and is called from potentially 387 * unknown contexts. As such, use a per-cpu batched allocator 388 * which doesn't require the per-sb stat_lock unless we are at 389 * the batch boundary. 390 * 391 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 392 * shmem mounts are not exposed to userspace, so we don't need 393 * to worry about things like glibc compatibility. 394 */ 395 ino_t *next_ino; 396 397 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 398 ino = *next_ino; 399 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 ino = sbinfo->next_ino; 402 sbinfo->next_ino += SHMEM_INO_BATCH; 403 raw_spin_unlock(&sbinfo->stat_lock); 404 if (unlikely(is_zero_ino(ino))) 405 ino++; 406 } 407 *inop = ino; 408 *next_ino = ++ino; 409 put_cpu(); 410 } 411 412 return 0; 413 } 414 415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 416 { 417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 418 if (sbinfo->max_inodes) { 419 raw_spin_lock(&sbinfo->stat_lock); 420 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 421 raw_spin_unlock(&sbinfo->stat_lock); 422 } 423 } 424 425 /** 426 * shmem_recalc_inode - recalculate the block usage of an inode 427 * @inode: inode to recalc 428 * @alloced: the change in number of pages allocated to inode 429 * @swapped: the change in number of pages swapped from inode 430 * 431 * We have to calculate the free blocks since the mm can drop 432 * undirtied hole pages behind our back. 433 * 434 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 435 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 436 */ 437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 long freed; 441 442 spin_lock(&info->lock); 443 info->alloced += alloced; 444 info->swapped += swapped; 445 freed = info->alloced - info->swapped - 446 READ_ONCE(inode->i_mapping->nrpages); 447 /* 448 * Special case: whereas normally shmem_recalc_inode() is called 449 * after i_mapping->nrpages has already been adjusted (up or down), 450 * shmem_writepage() has to raise swapped before nrpages is lowered - 451 * to stop a racing shmem_recalc_inode() from thinking that a page has 452 * been freed. Compensate here, to avoid the need for a followup call. 453 */ 454 if (swapped > 0) 455 freed += swapped; 456 if (freed > 0) 457 info->alloced -= freed; 458 spin_unlock(&info->lock); 459 460 /* The quota case may block */ 461 if (freed > 0) 462 shmem_inode_unacct_blocks(inode, freed); 463 } 464 465 bool shmem_charge(struct inode *inode, long pages) 466 { 467 struct address_space *mapping = inode->i_mapping; 468 469 if (shmem_inode_acct_blocks(inode, pages)) 470 return false; 471 472 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 473 xa_lock_irq(&mapping->i_pages); 474 mapping->nrpages += pages; 475 xa_unlock_irq(&mapping->i_pages); 476 477 shmem_recalc_inode(inode, pages, 0); 478 return true; 479 } 480 481 void shmem_uncharge(struct inode *inode, long pages) 482 { 483 /* pages argument is currently unused: keep it to help debugging */ 484 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 485 486 shmem_recalc_inode(inode, 0, 0); 487 } 488 489 /* 490 * Replace item expected in xarray by a new item, while holding xa_lock. 491 */ 492 static int shmem_replace_entry(struct address_space *mapping, 493 pgoff_t index, void *expected, void *replacement) 494 { 495 XA_STATE(xas, &mapping->i_pages, index); 496 void *item; 497 498 VM_BUG_ON(!expected); 499 VM_BUG_ON(!replacement); 500 item = xas_load(&xas); 501 if (item != expected) 502 return -ENOENT; 503 xas_store(&xas, replacement); 504 return 0; 505 } 506 507 /* 508 * Sometimes, before we decide whether to proceed or to fail, we must check 509 * that an entry was not already brought back from swap by a racing thread. 510 * 511 * Checking folio is not enough: by the time a swapcache folio is locked, it 512 * might be reused, and again be swapcache, using the same swap as before. 513 */ 514 static bool shmem_confirm_swap(struct address_space *mapping, 515 pgoff_t index, swp_entry_t swap) 516 { 517 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 518 } 519 520 /* 521 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 522 * 523 * SHMEM_HUGE_NEVER: 524 * disables huge pages for the mount; 525 * SHMEM_HUGE_ALWAYS: 526 * enables huge pages for the mount; 527 * SHMEM_HUGE_WITHIN_SIZE: 528 * only allocate huge pages if the page will be fully within i_size, 529 * also respect fadvise()/madvise() hints; 530 * SHMEM_HUGE_ADVISE: 531 * only allocate huge pages if requested with fadvise()/madvise(); 532 */ 533 534 #define SHMEM_HUGE_NEVER 0 535 #define SHMEM_HUGE_ALWAYS 1 536 #define SHMEM_HUGE_WITHIN_SIZE 2 537 #define SHMEM_HUGE_ADVISE 3 538 539 /* 540 * Special values. 541 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 542 * 543 * SHMEM_HUGE_DENY: 544 * disables huge on shm_mnt and all mounts, for emergency use; 545 * SHMEM_HUGE_FORCE: 546 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 547 * 548 */ 549 #define SHMEM_HUGE_DENY (-1) 550 #define SHMEM_HUGE_FORCE (-2) 551 552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 553 /* ifdef here to avoid bloating shmem.o when not necessary */ 554 555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 556 557 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 558 loff_t write_end, bool shmem_huge_force, 559 unsigned long vm_flags) 560 { 561 loff_t i_size; 562 563 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 564 return false; 565 if (!S_ISREG(inode->i_mode)) 566 return false; 567 if (shmem_huge == SHMEM_HUGE_DENY) 568 return false; 569 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 570 return true; 571 572 switch (SHMEM_SB(inode->i_sb)->huge) { 573 case SHMEM_HUGE_ALWAYS: 574 return true; 575 case SHMEM_HUGE_WITHIN_SIZE: 576 index = round_up(index + 1, HPAGE_PMD_NR); 577 i_size = max(write_end, i_size_read(inode)); 578 i_size = round_up(i_size, PAGE_SIZE); 579 if (i_size >> PAGE_SHIFT >= index) 580 return true; 581 fallthrough; 582 case SHMEM_HUGE_ADVISE: 583 if (vm_flags & VM_HUGEPAGE) 584 return true; 585 fallthrough; 586 default: 587 return false; 588 } 589 } 590 591 static int shmem_parse_huge(const char *str) 592 { 593 int huge; 594 595 if (!str) 596 return -EINVAL; 597 598 if (!strcmp(str, "never")) 599 huge = SHMEM_HUGE_NEVER; 600 else if (!strcmp(str, "always")) 601 huge = SHMEM_HUGE_ALWAYS; 602 else if (!strcmp(str, "within_size")) 603 huge = SHMEM_HUGE_WITHIN_SIZE; 604 else if (!strcmp(str, "advise")) 605 huge = SHMEM_HUGE_ADVISE; 606 else if (!strcmp(str, "deny")) 607 huge = SHMEM_HUGE_DENY; 608 else if (!strcmp(str, "force")) 609 huge = SHMEM_HUGE_FORCE; 610 else 611 return -EINVAL; 612 613 if (!has_transparent_hugepage() && 614 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 615 return -EINVAL; 616 617 /* Do not override huge allocation policy with non-PMD sized mTHP */ 618 if (huge == SHMEM_HUGE_FORCE && 619 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 620 return -EINVAL; 621 622 return huge; 623 } 624 625 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 626 static const char *shmem_format_huge(int huge) 627 { 628 switch (huge) { 629 case SHMEM_HUGE_NEVER: 630 return "never"; 631 case SHMEM_HUGE_ALWAYS: 632 return "always"; 633 case SHMEM_HUGE_WITHIN_SIZE: 634 return "within_size"; 635 case SHMEM_HUGE_ADVISE: 636 return "advise"; 637 case SHMEM_HUGE_DENY: 638 return "deny"; 639 case SHMEM_HUGE_FORCE: 640 return "force"; 641 default: 642 VM_BUG_ON(1); 643 return "bad_val"; 644 } 645 } 646 #endif 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_free) 650 { 651 LIST_HEAD(list), *pos, *next; 652 struct inode *inode; 653 struct shmem_inode_info *info; 654 struct folio *folio; 655 unsigned long batch = sc ? sc->nr_to_scan : 128; 656 unsigned long split = 0, freed = 0; 657 658 if (list_empty(&sbinfo->shrinklist)) 659 return SHRINK_STOP; 660 661 spin_lock(&sbinfo->shrinklist_lock); 662 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 663 info = list_entry(pos, struct shmem_inode_info, shrinklist); 664 665 /* pin the inode */ 666 inode = igrab(&info->vfs_inode); 667 668 /* inode is about to be evicted */ 669 if (!inode) { 670 list_del_init(&info->shrinklist); 671 goto next; 672 } 673 674 list_move(&info->shrinklist, &list); 675 next: 676 sbinfo->shrinklist_len--; 677 if (!--batch) 678 break; 679 } 680 spin_unlock(&sbinfo->shrinklist_lock); 681 682 list_for_each_safe(pos, next, &list) { 683 pgoff_t next, end; 684 loff_t i_size; 685 int ret; 686 687 info = list_entry(pos, struct shmem_inode_info, shrinklist); 688 inode = &info->vfs_inode; 689 690 if (nr_to_free && freed >= nr_to_free) 691 goto move_back; 692 693 i_size = i_size_read(inode); 694 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 695 if (!folio || xa_is_value(folio)) 696 goto drop; 697 698 /* No large folio at the end of the file: nothing to split */ 699 if (!folio_test_large(folio)) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* Check if there is anything to gain from splitting */ 705 next = folio_next_index(folio); 706 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 707 if (end <= folio->index || end >= next) { 708 folio_put(folio); 709 goto drop; 710 } 711 712 /* 713 * Move the inode on the list back to shrinklist if we failed 714 * to lock the page at this time. 715 * 716 * Waiting for the lock may lead to deadlock in the 717 * reclaim path. 718 */ 719 if (!folio_trylock(folio)) { 720 folio_put(folio); 721 goto move_back; 722 } 723 724 ret = split_folio(folio); 725 folio_unlock(folio); 726 folio_put(folio); 727 728 /* If split failed move the inode on the list back to shrinklist */ 729 if (ret) 730 goto move_back; 731 732 freed += next - end; 733 split++; 734 drop: 735 list_del_init(&info->shrinklist); 736 goto put; 737 move_back: 738 /* 739 * Make sure the inode is either on the global list or deleted 740 * from any local list before iput() since it could be deleted 741 * in another thread once we put the inode (then the local list 742 * is corrupted). 743 */ 744 spin_lock(&sbinfo->shrinklist_lock); 745 list_move(&info->shrinklist, &sbinfo->shrinklist); 746 sbinfo->shrinklist_len++; 747 spin_unlock(&sbinfo->shrinklist_lock); 748 put: 749 iput(inode); 750 } 751 752 return split; 753 } 754 755 static long shmem_unused_huge_scan(struct super_block *sb, 756 struct shrink_control *sc) 757 { 758 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 759 760 if (!READ_ONCE(sbinfo->shrinklist_len)) 761 return SHRINK_STOP; 762 763 return shmem_unused_huge_shrink(sbinfo, sc, 0); 764 } 765 766 static long shmem_unused_huge_count(struct super_block *sb, 767 struct shrink_control *sc) 768 { 769 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 770 return READ_ONCE(sbinfo->shrinklist_len); 771 } 772 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 773 774 #define shmem_huge SHMEM_HUGE_DENY 775 776 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 777 struct shrink_control *sc, unsigned long nr_to_free) 778 { 779 return 0; 780 } 781 782 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 783 loff_t write_end, bool shmem_huge_force, 784 unsigned long vm_flags) 785 { 786 return false; 787 } 788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 789 790 static void shmem_update_stats(struct folio *folio, int nr_pages) 791 { 792 if (folio_test_pmd_mappable(folio)) 793 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 794 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 795 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 796 } 797 798 /* 799 * Somewhat like filemap_add_folio, but error if expected item has gone. 800 */ 801 static int shmem_add_to_page_cache(struct folio *folio, 802 struct address_space *mapping, 803 pgoff_t index, void *expected, gfp_t gfp) 804 { 805 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 806 long nr = folio_nr_pages(folio); 807 808 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 809 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 810 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 811 812 folio_ref_add(folio, nr); 813 folio->mapping = mapping; 814 folio->index = index; 815 816 gfp &= GFP_RECLAIM_MASK; 817 folio_throttle_swaprate(folio, gfp); 818 819 do { 820 xas_lock_irq(&xas); 821 if (expected != xas_find_conflict(&xas)) { 822 xas_set_err(&xas, -EEXIST); 823 goto unlock; 824 } 825 if (expected && xas_find_conflict(&xas)) { 826 xas_set_err(&xas, -EEXIST); 827 goto unlock; 828 } 829 xas_store(&xas, folio); 830 if (xas_error(&xas)) 831 goto unlock; 832 shmem_update_stats(folio, nr); 833 mapping->nrpages += nr; 834 unlock: 835 xas_unlock_irq(&xas); 836 } while (xas_nomem(&xas, gfp)); 837 838 if (xas_error(&xas)) { 839 folio->mapping = NULL; 840 folio_ref_sub(folio, nr); 841 return xas_error(&xas); 842 } 843 844 return 0; 845 } 846 847 /* 848 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 849 */ 850 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 851 { 852 struct address_space *mapping = folio->mapping; 853 long nr = folio_nr_pages(folio); 854 int error; 855 856 xa_lock_irq(&mapping->i_pages); 857 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 858 folio->mapping = NULL; 859 mapping->nrpages -= nr; 860 shmem_update_stats(folio, -nr); 861 xa_unlock_irq(&mapping->i_pages); 862 folio_put_refs(folio, nr); 863 BUG_ON(error); 864 } 865 866 /* 867 * Remove swap entry from page cache, free the swap and its page cache. Returns 868 * the number of pages being freed. 0 means entry not found in XArray (0 pages 869 * being freed). 870 */ 871 static long shmem_free_swap(struct address_space *mapping, 872 pgoff_t index, void *radswap) 873 { 874 int order = xa_get_order(&mapping->i_pages, index); 875 void *old; 876 877 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 878 if (old != radswap) 879 return 0; 880 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 881 882 return 1 << order; 883 } 884 885 /* 886 * Determine (in bytes) how many of the shmem object's pages mapped by the 887 * given offsets are swapped out. 888 * 889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 890 * as long as the inode doesn't go away and racy results are not a problem. 891 */ 892 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 893 pgoff_t start, pgoff_t end) 894 { 895 XA_STATE(xas, &mapping->i_pages, start); 896 struct page *page; 897 unsigned long swapped = 0; 898 unsigned long max = end - 1; 899 900 rcu_read_lock(); 901 xas_for_each(&xas, page, max) { 902 if (xas_retry(&xas, page)) 903 continue; 904 if (xa_is_value(page)) 905 swapped += 1 << xas_get_order(&xas); 906 if (xas.xa_index == max) 907 break; 908 if (need_resched()) { 909 xas_pause(&xas); 910 cond_resched_rcu(); 911 } 912 } 913 rcu_read_unlock(); 914 915 return swapped << PAGE_SHIFT; 916 } 917 918 /* 919 * Determine (in bytes) how many of the shmem object's pages mapped by the 920 * given vma is swapped out. 921 * 922 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 923 * as long as the inode doesn't go away and racy results are not a problem. 924 */ 925 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 926 { 927 struct inode *inode = file_inode(vma->vm_file); 928 struct shmem_inode_info *info = SHMEM_I(inode); 929 struct address_space *mapping = inode->i_mapping; 930 unsigned long swapped; 931 932 /* Be careful as we don't hold info->lock */ 933 swapped = READ_ONCE(info->swapped); 934 935 /* 936 * The easier cases are when the shmem object has nothing in swap, or 937 * the vma maps it whole. Then we can simply use the stats that we 938 * already track. 939 */ 940 if (!swapped) 941 return 0; 942 943 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 944 return swapped << PAGE_SHIFT; 945 946 /* Here comes the more involved part */ 947 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 948 vma->vm_pgoff + vma_pages(vma)); 949 } 950 951 /* 952 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 953 */ 954 void shmem_unlock_mapping(struct address_space *mapping) 955 { 956 struct folio_batch fbatch; 957 pgoff_t index = 0; 958 959 folio_batch_init(&fbatch); 960 /* 961 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 962 */ 963 while (!mapping_unevictable(mapping) && 964 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 965 check_move_unevictable_folios(&fbatch); 966 folio_batch_release(&fbatch); 967 cond_resched(); 968 } 969 } 970 971 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 972 { 973 struct folio *folio; 974 975 /* 976 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 977 * beyond i_size, and reports fallocated folios as holes. 978 */ 979 folio = filemap_get_entry(inode->i_mapping, index); 980 if (!folio) 981 return folio; 982 if (!xa_is_value(folio)) { 983 folio_lock(folio); 984 if (folio->mapping == inode->i_mapping) 985 return folio; 986 /* The folio has been swapped out */ 987 folio_unlock(folio); 988 folio_put(folio); 989 } 990 /* 991 * But read a folio back from swap if any of it is within i_size 992 * (although in some cases this is just a waste of time). 993 */ 994 folio = NULL; 995 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 996 return folio; 997 } 998 999 /* 1000 * Remove range of pages and swap entries from page cache, and free them. 1001 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1002 */ 1003 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1004 bool unfalloc) 1005 { 1006 struct address_space *mapping = inode->i_mapping; 1007 struct shmem_inode_info *info = SHMEM_I(inode); 1008 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1009 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1010 struct folio_batch fbatch; 1011 pgoff_t indices[PAGEVEC_SIZE]; 1012 struct folio *folio; 1013 bool same_folio; 1014 long nr_swaps_freed = 0; 1015 pgoff_t index; 1016 int i; 1017 1018 if (lend == -1) 1019 end = -1; /* unsigned, so actually very big */ 1020 1021 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1022 info->fallocend = start; 1023 1024 folio_batch_init(&fbatch); 1025 index = start; 1026 while (index < end && find_lock_entries(mapping, &index, end - 1, 1027 &fbatch, indices)) { 1028 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1029 folio = fbatch.folios[i]; 1030 1031 if (xa_is_value(folio)) { 1032 if (unfalloc) 1033 continue; 1034 nr_swaps_freed += shmem_free_swap(mapping, 1035 indices[i], folio); 1036 continue; 1037 } 1038 1039 if (!unfalloc || !folio_test_uptodate(folio)) 1040 truncate_inode_folio(mapping, folio); 1041 folio_unlock(folio); 1042 } 1043 folio_batch_remove_exceptionals(&fbatch); 1044 folio_batch_release(&fbatch); 1045 cond_resched(); 1046 } 1047 1048 /* 1049 * When undoing a failed fallocate, we want none of the partial folio 1050 * zeroing and splitting below, but shall want to truncate the whole 1051 * folio when !uptodate indicates that it was added by this fallocate, 1052 * even when [lstart, lend] covers only a part of the folio. 1053 */ 1054 if (unfalloc) 1055 goto whole_folios; 1056 1057 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1058 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1059 if (folio) { 1060 same_folio = lend < folio_pos(folio) + folio_size(folio); 1061 folio_mark_dirty(folio); 1062 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1063 start = folio_next_index(folio); 1064 if (same_folio) 1065 end = folio->index; 1066 } 1067 folio_unlock(folio); 1068 folio_put(folio); 1069 folio = NULL; 1070 } 1071 1072 if (!same_folio) 1073 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1074 if (folio) { 1075 folio_mark_dirty(folio); 1076 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1077 end = folio->index; 1078 folio_unlock(folio); 1079 folio_put(folio); 1080 } 1081 1082 whole_folios: 1083 1084 index = start; 1085 while (index < end) { 1086 cond_resched(); 1087 1088 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1089 indices)) { 1090 /* If all gone or hole-punch or unfalloc, we're done */ 1091 if (index == start || end != -1) 1092 break; 1093 /* But if truncating, restart to make sure all gone */ 1094 index = start; 1095 continue; 1096 } 1097 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1098 folio = fbatch.folios[i]; 1099 1100 if (xa_is_value(folio)) { 1101 long swaps_freed; 1102 1103 if (unfalloc) 1104 continue; 1105 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1106 if (!swaps_freed) { 1107 /* Swap was replaced by page: retry */ 1108 index = indices[i]; 1109 break; 1110 } 1111 nr_swaps_freed += swaps_freed; 1112 continue; 1113 } 1114 1115 folio_lock(folio); 1116 1117 if (!unfalloc || !folio_test_uptodate(folio)) { 1118 if (folio_mapping(folio) != mapping) { 1119 /* Page was replaced by swap: retry */ 1120 folio_unlock(folio); 1121 index = indices[i]; 1122 break; 1123 } 1124 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1125 folio); 1126 1127 if (!folio_test_large(folio)) { 1128 truncate_inode_folio(mapping, folio); 1129 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1130 /* 1131 * If we split a page, reset the loop so 1132 * that we pick up the new sub pages. 1133 * Otherwise the THP was entirely 1134 * dropped or the target range was 1135 * zeroed, so just continue the loop as 1136 * is. 1137 */ 1138 if (!folio_test_large(folio)) { 1139 folio_unlock(folio); 1140 index = start; 1141 break; 1142 } 1143 } 1144 } 1145 folio_unlock(folio); 1146 } 1147 folio_batch_remove_exceptionals(&fbatch); 1148 folio_batch_release(&fbatch); 1149 } 1150 1151 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1152 } 1153 1154 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1155 { 1156 shmem_undo_range(inode, lstart, lend, false); 1157 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1158 inode_inc_iversion(inode); 1159 } 1160 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1161 1162 static int shmem_getattr(struct mnt_idmap *idmap, 1163 const struct path *path, struct kstat *stat, 1164 u32 request_mask, unsigned int query_flags) 1165 { 1166 struct inode *inode = path->dentry->d_inode; 1167 struct shmem_inode_info *info = SHMEM_I(inode); 1168 1169 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1170 shmem_recalc_inode(inode, 0, 0); 1171 1172 if (info->fsflags & FS_APPEND_FL) 1173 stat->attributes |= STATX_ATTR_APPEND; 1174 if (info->fsflags & FS_IMMUTABLE_FL) 1175 stat->attributes |= STATX_ATTR_IMMUTABLE; 1176 if (info->fsflags & FS_NODUMP_FL) 1177 stat->attributes |= STATX_ATTR_NODUMP; 1178 stat->attributes_mask |= (STATX_ATTR_APPEND | 1179 STATX_ATTR_IMMUTABLE | 1180 STATX_ATTR_NODUMP); 1181 generic_fillattr(idmap, request_mask, inode, stat); 1182 1183 if (shmem_huge_global_enabled(inode, 0, 0, false, 0)) 1184 stat->blksize = HPAGE_PMD_SIZE; 1185 1186 if (request_mask & STATX_BTIME) { 1187 stat->result_mask |= STATX_BTIME; 1188 stat->btime.tv_sec = info->i_crtime.tv_sec; 1189 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1190 } 1191 1192 return 0; 1193 } 1194 1195 static int shmem_setattr(struct mnt_idmap *idmap, 1196 struct dentry *dentry, struct iattr *attr) 1197 { 1198 struct inode *inode = d_inode(dentry); 1199 struct shmem_inode_info *info = SHMEM_I(inode); 1200 int error; 1201 bool update_mtime = false; 1202 bool update_ctime = true; 1203 1204 error = setattr_prepare(idmap, dentry, attr); 1205 if (error) 1206 return error; 1207 1208 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1209 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1210 return -EPERM; 1211 } 1212 } 1213 1214 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1215 loff_t oldsize = inode->i_size; 1216 loff_t newsize = attr->ia_size; 1217 1218 /* protected by i_rwsem */ 1219 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1220 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1221 return -EPERM; 1222 1223 if (newsize != oldsize) { 1224 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1225 oldsize, newsize); 1226 if (error) 1227 return error; 1228 i_size_write(inode, newsize); 1229 update_mtime = true; 1230 } else { 1231 update_ctime = false; 1232 } 1233 if (newsize <= oldsize) { 1234 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1235 if (oldsize > holebegin) 1236 unmap_mapping_range(inode->i_mapping, 1237 holebegin, 0, 1); 1238 if (info->alloced) 1239 shmem_truncate_range(inode, 1240 newsize, (loff_t)-1); 1241 /* unmap again to remove racily COWed private pages */ 1242 if (oldsize > holebegin) 1243 unmap_mapping_range(inode->i_mapping, 1244 holebegin, 0, 1); 1245 } 1246 } 1247 1248 if (is_quota_modification(idmap, inode, attr)) { 1249 error = dquot_initialize(inode); 1250 if (error) 1251 return error; 1252 } 1253 1254 /* Transfer quota accounting */ 1255 if (i_uid_needs_update(idmap, attr, inode) || 1256 i_gid_needs_update(idmap, attr, inode)) { 1257 error = dquot_transfer(idmap, inode, attr); 1258 if (error) 1259 return error; 1260 } 1261 1262 setattr_copy(idmap, inode, attr); 1263 if (attr->ia_valid & ATTR_MODE) 1264 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1265 if (!error && update_ctime) { 1266 inode_set_ctime_current(inode); 1267 if (update_mtime) 1268 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1269 inode_inc_iversion(inode); 1270 } 1271 return error; 1272 } 1273 1274 static void shmem_evict_inode(struct inode *inode) 1275 { 1276 struct shmem_inode_info *info = SHMEM_I(inode); 1277 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1278 size_t freed = 0; 1279 1280 if (shmem_mapping(inode->i_mapping)) { 1281 shmem_unacct_size(info->flags, inode->i_size); 1282 inode->i_size = 0; 1283 mapping_set_exiting(inode->i_mapping); 1284 shmem_truncate_range(inode, 0, (loff_t)-1); 1285 if (!list_empty(&info->shrinklist)) { 1286 spin_lock(&sbinfo->shrinklist_lock); 1287 if (!list_empty(&info->shrinklist)) { 1288 list_del_init(&info->shrinklist); 1289 sbinfo->shrinklist_len--; 1290 } 1291 spin_unlock(&sbinfo->shrinklist_lock); 1292 } 1293 while (!list_empty(&info->swaplist)) { 1294 /* Wait while shmem_unuse() is scanning this inode... */ 1295 wait_var_event(&info->stop_eviction, 1296 !atomic_read(&info->stop_eviction)); 1297 mutex_lock(&shmem_swaplist_mutex); 1298 /* ...but beware of the race if we peeked too early */ 1299 if (!atomic_read(&info->stop_eviction)) 1300 list_del_init(&info->swaplist); 1301 mutex_unlock(&shmem_swaplist_mutex); 1302 } 1303 } 1304 1305 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1306 shmem_free_inode(inode->i_sb, freed); 1307 WARN_ON(inode->i_blocks); 1308 clear_inode(inode); 1309 #ifdef CONFIG_TMPFS_QUOTA 1310 dquot_free_inode(inode); 1311 dquot_drop(inode); 1312 #endif 1313 } 1314 1315 static int shmem_find_swap_entries(struct address_space *mapping, 1316 pgoff_t start, struct folio_batch *fbatch, 1317 pgoff_t *indices, unsigned int type) 1318 { 1319 XA_STATE(xas, &mapping->i_pages, start); 1320 struct folio *folio; 1321 swp_entry_t entry; 1322 1323 rcu_read_lock(); 1324 xas_for_each(&xas, folio, ULONG_MAX) { 1325 if (xas_retry(&xas, folio)) 1326 continue; 1327 1328 if (!xa_is_value(folio)) 1329 continue; 1330 1331 entry = radix_to_swp_entry(folio); 1332 /* 1333 * swapin error entries can be found in the mapping. But they're 1334 * deliberately ignored here as we've done everything we can do. 1335 */ 1336 if (swp_type(entry) != type) 1337 continue; 1338 1339 indices[folio_batch_count(fbatch)] = xas.xa_index; 1340 if (!folio_batch_add(fbatch, folio)) 1341 break; 1342 1343 if (need_resched()) { 1344 xas_pause(&xas); 1345 cond_resched_rcu(); 1346 } 1347 } 1348 rcu_read_unlock(); 1349 1350 return xas.xa_index; 1351 } 1352 1353 /* 1354 * Move the swapped pages for an inode to page cache. Returns the count 1355 * of pages swapped in, or the error in case of failure. 1356 */ 1357 static int shmem_unuse_swap_entries(struct inode *inode, 1358 struct folio_batch *fbatch, pgoff_t *indices) 1359 { 1360 int i = 0; 1361 int ret = 0; 1362 int error = 0; 1363 struct address_space *mapping = inode->i_mapping; 1364 1365 for (i = 0; i < folio_batch_count(fbatch); i++) { 1366 struct folio *folio = fbatch->folios[i]; 1367 1368 if (!xa_is_value(folio)) 1369 continue; 1370 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1371 mapping_gfp_mask(mapping), NULL, NULL); 1372 if (error == 0) { 1373 folio_unlock(folio); 1374 folio_put(folio); 1375 ret++; 1376 } 1377 if (error == -ENOMEM) 1378 break; 1379 error = 0; 1380 } 1381 return error ? error : ret; 1382 } 1383 1384 /* 1385 * If swap found in inode, free it and move page from swapcache to filecache. 1386 */ 1387 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1388 { 1389 struct address_space *mapping = inode->i_mapping; 1390 pgoff_t start = 0; 1391 struct folio_batch fbatch; 1392 pgoff_t indices[PAGEVEC_SIZE]; 1393 int ret = 0; 1394 1395 do { 1396 folio_batch_init(&fbatch); 1397 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1398 if (folio_batch_count(&fbatch) == 0) { 1399 ret = 0; 1400 break; 1401 } 1402 1403 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1404 if (ret < 0) 1405 break; 1406 1407 start = indices[folio_batch_count(&fbatch) - 1]; 1408 } while (true); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * Read all the shared memory data that resides in the swap 1415 * device 'type' back into memory, so the swap device can be 1416 * unused. 1417 */ 1418 int shmem_unuse(unsigned int type) 1419 { 1420 struct shmem_inode_info *info, *next; 1421 int error = 0; 1422 1423 if (list_empty(&shmem_swaplist)) 1424 return 0; 1425 1426 mutex_lock(&shmem_swaplist_mutex); 1427 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1428 if (!info->swapped) { 1429 list_del_init(&info->swaplist); 1430 continue; 1431 } 1432 /* 1433 * Drop the swaplist mutex while searching the inode for swap; 1434 * but before doing so, make sure shmem_evict_inode() will not 1435 * remove placeholder inode from swaplist, nor let it be freed 1436 * (igrab() would protect from unlink, but not from unmount). 1437 */ 1438 atomic_inc(&info->stop_eviction); 1439 mutex_unlock(&shmem_swaplist_mutex); 1440 1441 error = shmem_unuse_inode(&info->vfs_inode, type); 1442 cond_resched(); 1443 1444 mutex_lock(&shmem_swaplist_mutex); 1445 next = list_next_entry(info, swaplist); 1446 if (!info->swapped) 1447 list_del_init(&info->swaplist); 1448 if (atomic_dec_and_test(&info->stop_eviction)) 1449 wake_up_var(&info->stop_eviction); 1450 if (error) 1451 break; 1452 } 1453 mutex_unlock(&shmem_swaplist_mutex); 1454 1455 return error; 1456 } 1457 1458 /* 1459 * Move the page from the page cache to the swap cache. 1460 */ 1461 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1462 { 1463 struct folio *folio = page_folio(page); 1464 struct address_space *mapping = folio->mapping; 1465 struct inode *inode = mapping->host; 1466 struct shmem_inode_info *info = SHMEM_I(inode); 1467 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1468 swp_entry_t swap; 1469 pgoff_t index; 1470 int nr_pages; 1471 bool split = false; 1472 1473 /* 1474 * Our capabilities prevent regular writeback or sync from ever calling 1475 * shmem_writepage; but a stacking filesystem might use ->writepage of 1476 * its underlying filesystem, in which case tmpfs should write out to 1477 * swap only in response to memory pressure, and not for the writeback 1478 * threads or sync. 1479 */ 1480 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1481 goto redirty; 1482 1483 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1484 goto redirty; 1485 1486 if (!total_swap_pages) 1487 goto redirty; 1488 1489 /* 1490 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1491 * split when swapping. 1492 * 1493 * And shrinkage of pages beyond i_size does not split swap, so 1494 * swapout of a large folio crossing i_size needs to split too 1495 * (unless fallocate has been used to preallocate beyond EOF). 1496 */ 1497 if (folio_test_large(folio)) { 1498 index = shmem_fallocend(inode, 1499 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1500 if ((index > folio->index && index < folio_next_index(folio)) || 1501 !IS_ENABLED(CONFIG_THP_SWAP)) 1502 split = true; 1503 } 1504 1505 if (split) { 1506 try_split: 1507 /* Ensure the subpages are still dirty */ 1508 folio_test_set_dirty(folio); 1509 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1510 goto redirty; 1511 folio = page_folio(page); 1512 folio_clear_dirty(folio); 1513 } 1514 1515 index = folio->index; 1516 nr_pages = folio_nr_pages(folio); 1517 1518 /* 1519 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1520 * value into swapfile.c, the only way we can correctly account for a 1521 * fallocated folio arriving here is now to initialize it and write it. 1522 * 1523 * That's okay for a folio already fallocated earlier, but if we have 1524 * not yet completed the fallocation, then (a) we want to keep track 1525 * of this folio in case we have to undo it, and (b) it may not be a 1526 * good idea to continue anyway, once we're pushing into swap. So 1527 * reactivate the folio, and let shmem_fallocate() quit when too many. 1528 */ 1529 if (!folio_test_uptodate(folio)) { 1530 if (inode->i_private) { 1531 struct shmem_falloc *shmem_falloc; 1532 spin_lock(&inode->i_lock); 1533 shmem_falloc = inode->i_private; 1534 if (shmem_falloc && 1535 !shmem_falloc->waitq && 1536 index >= shmem_falloc->start && 1537 index < shmem_falloc->next) 1538 shmem_falloc->nr_unswapped++; 1539 else 1540 shmem_falloc = NULL; 1541 spin_unlock(&inode->i_lock); 1542 if (shmem_falloc) 1543 goto redirty; 1544 } 1545 folio_zero_range(folio, 0, folio_size(folio)); 1546 flush_dcache_folio(folio); 1547 folio_mark_uptodate(folio); 1548 } 1549 1550 swap = folio_alloc_swap(folio); 1551 if (!swap.val) { 1552 if (nr_pages > 1) 1553 goto try_split; 1554 1555 goto redirty; 1556 } 1557 1558 /* 1559 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1560 * if it's not already there. Do it now before the folio is 1561 * moved to swap cache, when its pagelock no longer protects 1562 * the inode from eviction. But don't unlock the mutex until 1563 * we've incremented swapped, because shmem_unuse_inode() will 1564 * prune a !swapped inode from the swaplist under this mutex. 1565 */ 1566 mutex_lock(&shmem_swaplist_mutex); 1567 if (list_empty(&info->swaplist)) 1568 list_add(&info->swaplist, &shmem_swaplist); 1569 1570 if (add_to_swap_cache(folio, swap, 1571 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1572 NULL) == 0) { 1573 shmem_recalc_inode(inode, 0, nr_pages); 1574 swap_shmem_alloc(swap, nr_pages); 1575 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1576 1577 mutex_unlock(&shmem_swaplist_mutex); 1578 BUG_ON(folio_mapped(folio)); 1579 return swap_writepage(&folio->page, wbc); 1580 } 1581 1582 mutex_unlock(&shmem_swaplist_mutex); 1583 put_swap_folio(folio, swap); 1584 redirty: 1585 folio_mark_dirty(folio); 1586 if (wbc->for_reclaim) 1587 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1588 folio_unlock(folio); 1589 return 0; 1590 } 1591 1592 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1593 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1594 { 1595 char buffer[64]; 1596 1597 if (!mpol || mpol->mode == MPOL_DEFAULT) 1598 return; /* show nothing */ 1599 1600 mpol_to_str(buffer, sizeof(buffer), mpol); 1601 1602 seq_printf(seq, ",mpol=%s", buffer); 1603 } 1604 1605 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1606 { 1607 struct mempolicy *mpol = NULL; 1608 if (sbinfo->mpol) { 1609 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1610 mpol = sbinfo->mpol; 1611 mpol_get(mpol); 1612 raw_spin_unlock(&sbinfo->stat_lock); 1613 } 1614 return mpol; 1615 } 1616 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1617 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1618 { 1619 } 1620 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1621 { 1622 return NULL; 1623 } 1624 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1625 1626 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1627 pgoff_t index, unsigned int order, pgoff_t *ilx); 1628 1629 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1630 struct shmem_inode_info *info, pgoff_t index) 1631 { 1632 struct mempolicy *mpol; 1633 pgoff_t ilx; 1634 struct folio *folio; 1635 1636 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1637 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1638 mpol_cond_put(mpol); 1639 1640 return folio; 1641 } 1642 1643 /* 1644 * Make sure huge_gfp is always more limited than limit_gfp. 1645 * Some of the flags set permissions, while others set limitations. 1646 */ 1647 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1648 { 1649 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1650 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1651 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1652 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1653 1654 /* Allow allocations only from the originally specified zones. */ 1655 result |= zoneflags; 1656 1657 /* 1658 * Minimize the result gfp by taking the union with the deny flags, 1659 * and the intersection of the allow flags. 1660 */ 1661 result |= (limit_gfp & denyflags); 1662 result |= (huge_gfp & limit_gfp) & allowflags; 1663 1664 return result; 1665 } 1666 1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1668 bool shmem_hpage_pmd_enabled(void) 1669 { 1670 if (shmem_huge == SHMEM_HUGE_DENY) 1671 return false; 1672 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1673 return true; 1674 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1675 return true; 1676 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1677 return true; 1678 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1679 shmem_huge != SHMEM_HUGE_NEVER) 1680 return true; 1681 1682 return false; 1683 } 1684 1685 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1686 struct vm_area_struct *vma, pgoff_t index, 1687 loff_t write_end, bool shmem_huge_force) 1688 { 1689 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1690 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1691 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1692 bool global_huge; 1693 loff_t i_size; 1694 int order; 1695 1696 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1697 return 0; 1698 1699 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1700 shmem_huge_force, vm_flags); 1701 if (!vma || !vma_is_anon_shmem(vma)) { 1702 /* 1703 * For tmpfs, we now only support PMD sized THP if huge page 1704 * is enabled, otherwise fallback to order 0. 1705 */ 1706 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1707 } 1708 1709 /* 1710 * Following the 'deny' semantics of the top level, force the huge 1711 * option off from all mounts. 1712 */ 1713 if (shmem_huge == SHMEM_HUGE_DENY) 1714 return 0; 1715 1716 /* 1717 * Only allow inherit orders if the top-level value is 'force', which 1718 * means non-PMD sized THP can not override 'huge' mount option now. 1719 */ 1720 if (shmem_huge == SHMEM_HUGE_FORCE) 1721 return READ_ONCE(huge_shmem_orders_inherit); 1722 1723 /* Allow mTHP that will be fully within i_size. */ 1724 order = highest_order(within_size_orders); 1725 while (within_size_orders) { 1726 index = round_up(index + 1, order); 1727 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1728 if (i_size >> PAGE_SHIFT >= index) { 1729 mask |= within_size_orders; 1730 break; 1731 } 1732 1733 order = next_order(&within_size_orders, order); 1734 } 1735 1736 if (vm_flags & VM_HUGEPAGE) 1737 mask |= READ_ONCE(huge_shmem_orders_madvise); 1738 1739 if (global_huge) 1740 mask |= READ_ONCE(huge_shmem_orders_inherit); 1741 1742 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1743 } 1744 1745 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1746 struct address_space *mapping, pgoff_t index, 1747 unsigned long orders) 1748 { 1749 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1750 pgoff_t aligned_index; 1751 unsigned long pages; 1752 int order; 1753 1754 if (vma) { 1755 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1756 if (!orders) 1757 return 0; 1758 } 1759 1760 /* Find the highest order that can add into the page cache */ 1761 order = highest_order(orders); 1762 while (orders) { 1763 pages = 1UL << order; 1764 aligned_index = round_down(index, pages); 1765 /* 1766 * Check for conflict before waiting on a huge allocation. 1767 * Conflict might be that a huge page has just been allocated 1768 * and added to page cache by a racing thread, or that there 1769 * is already at least one small page in the huge extent. 1770 * Be careful to retry when appropriate, but not forever! 1771 * Elsewhere -EEXIST would be the right code, but not here. 1772 */ 1773 if (!xa_find(&mapping->i_pages, &aligned_index, 1774 aligned_index + pages - 1, XA_PRESENT)) 1775 break; 1776 order = next_order(&orders, order); 1777 } 1778 1779 return orders; 1780 } 1781 #else 1782 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1783 struct address_space *mapping, pgoff_t index, 1784 unsigned long orders) 1785 { 1786 return 0; 1787 } 1788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1789 1790 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1791 struct shmem_inode_info *info, pgoff_t index) 1792 { 1793 struct mempolicy *mpol; 1794 pgoff_t ilx; 1795 struct folio *folio; 1796 1797 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1798 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1799 mpol_cond_put(mpol); 1800 1801 return folio; 1802 } 1803 1804 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1805 gfp_t gfp, struct inode *inode, pgoff_t index, 1806 struct mm_struct *fault_mm, unsigned long orders) 1807 { 1808 struct address_space *mapping = inode->i_mapping; 1809 struct shmem_inode_info *info = SHMEM_I(inode); 1810 unsigned long suitable_orders = 0; 1811 struct folio *folio = NULL; 1812 long pages; 1813 int error, order; 1814 1815 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1816 orders = 0; 1817 1818 if (orders > 0) { 1819 suitable_orders = shmem_suitable_orders(inode, vmf, 1820 mapping, index, orders); 1821 1822 order = highest_order(suitable_orders); 1823 while (suitable_orders) { 1824 pages = 1UL << order; 1825 index = round_down(index, pages); 1826 folio = shmem_alloc_folio(gfp, order, info, index); 1827 if (folio) 1828 goto allocated; 1829 1830 if (pages == HPAGE_PMD_NR) 1831 count_vm_event(THP_FILE_FALLBACK); 1832 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1833 order = next_order(&suitable_orders, order); 1834 } 1835 } else { 1836 pages = 1; 1837 folio = shmem_alloc_folio(gfp, 0, info, index); 1838 } 1839 if (!folio) 1840 return ERR_PTR(-ENOMEM); 1841 1842 allocated: 1843 __folio_set_locked(folio); 1844 __folio_set_swapbacked(folio); 1845 1846 gfp &= GFP_RECLAIM_MASK; 1847 error = mem_cgroup_charge(folio, fault_mm, gfp); 1848 if (error) { 1849 if (xa_find(&mapping->i_pages, &index, 1850 index + pages - 1, XA_PRESENT)) { 1851 error = -EEXIST; 1852 } else if (pages > 1) { 1853 if (pages == HPAGE_PMD_NR) { 1854 count_vm_event(THP_FILE_FALLBACK); 1855 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1856 } 1857 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1858 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1859 } 1860 goto unlock; 1861 } 1862 1863 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1864 if (error) 1865 goto unlock; 1866 1867 error = shmem_inode_acct_blocks(inode, pages); 1868 if (error) { 1869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1870 long freed; 1871 /* 1872 * Try to reclaim some space by splitting a few 1873 * large folios beyond i_size on the filesystem. 1874 */ 1875 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1876 /* 1877 * And do a shmem_recalc_inode() to account for freed pages: 1878 * except our folio is there in cache, so not quite balanced. 1879 */ 1880 spin_lock(&info->lock); 1881 freed = pages + info->alloced - info->swapped - 1882 READ_ONCE(mapping->nrpages); 1883 if (freed > 0) 1884 info->alloced -= freed; 1885 spin_unlock(&info->lock); 1886 if (freed > 0) 1887 shmem_inode_unacct_blocks(inode, freed); 1888 error = shmem_inode_acct_blocks(inode, pages); 1889 if (error) { 1890 filemap_remove_folio(folio); 1891 goto unlock; 1892 } 1893 } 1894 1895 shmem_recalc_inode(inode, pages, 0); 1896 folio_add_lru(folio); 1897 return folio; 1898 1899 unlock: 1900 folio_unlock(folio); 1901 folio_put(folio); 1902 return ERR_PTR(error); 1903 } 1904 1905 /* 1906 * When a page is moved from swapcache to shmem filecache (either by the 1907 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1908 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1909 * ignorance of the mapping it belongs to. If that mapping has special 1910 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1911 * we may need to copy to a suitable page before moving to filecache. 1912 * 1913 * In a future release, this may well be extended to respect cpuset and 1914 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1915 * but for now it is a simple matter of zone. 1916 */ 1917 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1918 { 1919 return folio_zonenum(folio) > gfp_zone(gfp); 1920 } 1921 1922 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1923 struct shmem_inode_info *info, pgoff_t index, 1924 struct vm_area_struct *vma) 1925 { 1926 struct folio *new, *old = *foliop; 1927 swp_entry_t entry = old->swap; 1928 struct address_space *swap_mapping = swap_address_space(entry); 1929 pgoff_t swap_index = swap_cache_index(entry); 1930 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1931 int nr_pages = folio_nr_pages(old); 1932 int error = 0, i; 1933 1934 /* 1935 * We have arrived here because our zones are constrained, so don't 1936 * limit chance of success by further cpuset and node constraints. 1937 */ 1938 gfp &= ~GFP_CONSTRAINT_MASK; 1939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1940 if (nr_pages > 1) { 1941 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1942 1943 gfp = limit_gfp_mask(huge_gfp, gfp); 1944 } 1945 #endif 1946 1947 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1948 if (!new) 1949 return -ENOMEM; 1950 1951 folio_ref_add(new, nr_pages); 1952 folio_copy(new, old); 1953 flush_dcache_folio(new); 1954 1955 __folio_set_locked(new); 1956 __folio_set_swapbacked(new); 1957 folio_mark_uptodate(new); 1958 new->swap = entry; 1959 folio_set_swapcache(new); 1960 1961 /* Swap cache still stores N entries instead of a high-order entry */ 1962 xa_lock_irq(&swap_mapping->i_pages); 1963 for (i = 0; i < nr_pages; i++) { 1964 void *item = xas_load(&xas); 1965 1966 if (item != old) { 1967 error = -ENOENT; 1968 break; 1969 } 1970 1971 xas_store(&xas, new); 1972 xas_next(&xas); 1973 } 1974 if (!error) { 1975 mem_cgroup_replace_folio(old, new); 1976 shmem_update_stats(new, nr_pages); 1977 shmem_update_stats(old, -nr_pages); 1978 } 1979 xa_unlock_irq(&swap_mapping->i_pages); 1980 1981 if (unlikely(error)) { 1982 /* 1983 * Is this possible? I think not, now that our callers 1984 * check both the swapcache flag and folio->private 1985 * after getting the folio lock; but be defensive. 1986 * Reverse old to newpage for clear and free. 1987 */ 1988 old = new; 1989 } else { 1990 folio_add_lru(new); 1991 *foliop = new; 1992 } 1993 1994 folio_clear_swapcache(old); 1995 old->private = NULL; 1996 1997 folio_unlock(old); 1998 /* 1999 * The old folio are removed from swap cache, drop the 'nr_pages' 2000 * reference, as well as one temporary reference getting from swap 2001 * cache. 2002 */ 2003 folio_put_refs(old, nr_pages + 1); 2004 return error; 2005 } 2006 2007 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2008 struct folio *folio, swp_entry_t swap) 2009 { 2010 struct address_space *mapping = inode->i_mapping; 2011 swp_entry_t swapin_error; 2012 void *old; 2013 int nr_pages; 2014 2015 swapin_error = make_poisoned_swp_entry(); 2016 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2017 swp_to_radix_entry(swap), 2018 swp_to_radix_entry(swapin_error), 0); 2019 if (old != swp_to_radix_entry(swap)) 2020 return; 2021 2022 nr_pages = folio_nr_pages(folio); 2023 folio_wait_writeback(folio); 2024 delete_from_swap_cache(folio); 2025 /* 2026 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2027 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2028 * in shmem_evict_inode(). 2029 */ 2030 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2031 swap_free_nr(swap, nr_pages); 2032 } 2033 2034 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2035 swp_entry_t swap, gfp_t gfp) 2036 { 2037 struct address_space *mapping = inode->i_mapping; 2038 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2039 void *alloced_shadow = NULL; 2040 int alloced_order = 0, i; 2041 2042 /* Convert user data gfp flags to xarray node gfp flags */ 2043 gfp &= GFP_RECLAIM_MASK; 2044 2045 for (;;) { 2046 int order = -1, split_order = 0; 2047 void *old = NULL; 2048 2049 xas_lock_irq(&xas); 2050 old = xas_load(&xas); 2051 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2052 xas_set_err(&xas, -EEXIST); 2053 goto unlock; 2054 } 2055 2056 order = xas_get_order(&xas); 2057 2058 /* Swap entry may have changed before we re-acquire the lock */ 2059 if (alloced_order && 2060 (old != alloced_shadow || order != alloced_order)) { 2061 xas_destroy(&xas); 2062 alloced_order = 0; 2063 } 2064 2065 /* Try to split large swap entry in pagecache */ 2066 if (order > 0) { 2067 if (!alloced_order) { 2068 split_order = order; 2069 goto unlock; 2070 } 2071 xas_split(&xas, old, order); 2072 2073 /* 2074 * Re-set the swap entry after splitting, and the swap 2075 * offset of the original large entry must be continuous. 2076 */ 2077 for (i = 0; i < 1 << order; i++) { 2078 pgoff_t aligned_index = round_down(index, 1 << order); 2079 swp_entry_t tmp; 2080 2081 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2082 __xa_store(&mapping->i_pages, aligned_index + i, 2083 swp_to_radix_entry(tmp), 0); 2084 } 2085 } 2086 2087 unlock: 2088 xas_unlock_irq(&xas); 2089 2090 /* split needed, alloc here and retry. */ 2091 if (split_order) { 2092 xas_split_alloc(&xas, old, split_order, gfp); 2093 if (xas_error(&xas)) 2094 goto error; 2095 alloced_shadow = old; 2096 alloced_order = split_order; 2097 xas_reset(&xas); 2098 continue; 2099 } 2100 2101 if (!xas_nomem(&xas, gfp)) 2102 break; 2103 } 2104 2105 error: 2106 if (xas_error(&xas)) 2107 return xas_error(&xas); 2108 2109 return alloced_order; 2110 } 2111 2112 /* 2113 * Swap in the folio pointed to by *foliop. 2114 * Caller has to make sure that *foliop contains a valid swapped folio. 2115 * Returns 0 and the folio in foliop if success. On failure, returns the 2116 * error code and NULL in *foliop. 2117 */ 2118 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2119 struct folio **foliop, enum sgp_type sgp, 2120 gfp_t gfp, struct vm_area_struct *vma, 2121 vm_fault_t *fault_type) 2122 { 2123 struct address_space *mapping = inode->i_mapping; 2124 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2125 struct shmem_inode_info *info = SHMEM_I(inode); 2126 struct swap_info_struct *si; 2127 struct folio *folio = NULL; 2128 swp_entry_t swap; 2129 int error, nr_pages; 2130 2131 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2132 swap = radix_to_swp_entry(*foliop); 2133 *foliop = NULL; 2134 2135 if (is_poisoned_swp_entry(swap)) 2136 return -EIO; 2137 2138 si = get_swap_device(swap); 2139 if (!si) { 2140 if (!shmem_confirm_swap(mapping, index, swap)) 2141 return -EEXIST; 2142 else 2143 return -EINVAL; 2144 } 2145 2146 /* Look it up and read it in.. */ 2147 folio = swap_cache_get_folio(swap, NULL, 0); 2148 if (!folio) { 2149 int split_order; 2150 2151 /* Or update major stats only when swapin succeeds?? */ 2152 if (fault_type) { 2153 *fault_type |= VM_FAULT_MAJOR; 2154 count_vm_event(PGMAJFAULT); 2155 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2156 } 2157 2158 /* 2159 * Now swap device can only swap in order 0 folio, then we 2160 * should split the large swap entry stored in the pagecache 2161 * if necessary. 2162 */ 2163 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2164 if (split_order < 0) { 2165 error = split_order; 2166 goto failed; 2167 } 2168 2169 /* 2170 * If the large swap entry has already been split, it is 2171 * necessary to recalculate the new swap entry based on 2172 * the old order alignment. 2173 */ 2174 if (split_order > 0) { 2175 pgoff_t offset = index - round_down(index, 1 << split_order); 2176 2177 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2178 } 2179 2180 /* Here we actually start the io */ 2181 folio = shmem_swapin_cluster(swap, gfp, info, index); 2182 if (!folio) { 2183 error = -ENOMEM; 2184 goto failed; 2185 } 2186 } 2187 2188 /* We have to do this with folio locked to prevent races */ 2189 folio_lock(folio); 2190 if (!folio_test_swapcache(folio) || 2191 folio->swap.val != swap.val || 2192 !shmem_confirm_swap(mapping, index, swap)) { 2193 error = -EEXIST; 2194 goto unlock; 2195 } 2196 if (!folio_test_uptodate(folio)) { 2197 error = -EIO; 2198 goto failed; 2199 } 2200 folio_wait_writeback(folio); 2201 nr_pages = folio_nr_pages(folio); 2202 2203 /* 2204 * Some architectures may have to restore extra metadata to the 2205 * folio after reading from swap. 2206 */ 2207 arch_swap_restore(folio_swap(swap, folio), folio); 2208 2209 if (shmem_should_replace_folio(folio, gfp)) { 2210 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2211 if (error) 2212 goto failed; 2213 } 2214 2215 error = shmem_add_to_page_cache(folio, mapping, 2216 round_down(index, nr_pages), 2217 swp_to_radix_entry(swap), gfp); 2218 if (error) 2219 goto failed; 2220 2221 shmem_recalc_inode(inode, 0, -nr_pages); 2222 2223 if (sgp == SGP_WRITE) 2224 folio_mark_accessed(folio); 2225 2226 delete_from_swap_cache(folio); 2227 folio_mark_dirty(folio); 2228 swap_free_nr(swap, nr_pages); 2229 put_swap_device(si); 2230 2231 *foliop = folio; 2232 return 0; 2233 failed: 2234 if (!shmem_confirm_swap(mapping, index, swap)) 2235 error = -EEXIST; 2236 if (error == -EIO) 2237 shmem_set_folio_swapin_error(inode, index, folio, swap); 2238 unlock: 2239 if (folio) { 2240 folio_unlock(folio); 2241 folio_put(folio); 2242 } 2243 put_swap_device(si); 2244 2245 return error; 2246 } 2247 2248 /* 2249 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2250 * 2251 * If we allocate a new one we do not mark it dirty. That's up to the 2252 * vm. If we swap it in we mark it dirty since we also free the swap 2253 * entry since a page cannot live in both the swap and page cache. 2254 * 2255 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2256 */ 2257 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2258 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2259 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2260 { 2261 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2262 struct mm_struct *fault_mm; 2263 struct folio *folio; 2264 int error; 2265 bool alloced; 2266 unsigned long orders = 0; 2267 2268 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2269 return -EINVAL; 2270 2271 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2272 return -EFBIG; 2273 repeat: 2274 if (sgp <= SGP_CACHE && 2275 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2276 return -EINVAL; 2277 2278 alloced = false; 2279 fault_mm = vma ? vma->vm_mm : NULL; 2280 2281 folio = filemap_get_entry(inode->i_mapping, index); 2282 if (folio && vma && userfaultfd_minor(vma)) { 2283 if (!xa_is_value(folio)) 2284 folio_put(folio); 2285 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2286 return 0; 2287 } 2288 2289 if (xa_is_value(folio)) { 2290 error = shmem_swapin_folio(inode, index, &folio, 2291 sgp, gfp, vma, fault_type); 2292 if (error == -EEXIST) 2293 goto repeat; 2294 2295 *foliop = folio; 2296 return error; 2297 } 2298 2299 if (folio) { 2300 folio_lock(folio); 2301 2302 /* Has the folio been truncated or swapped out? */ 2303 if (unlikely(folio->mapping != inode->i_mapping)) { 2304 folio_unlock(folio); 2305 folio_put(folio); 2306 goto repeat; 2307 } 2308 if (sgp == SGP_WRITE) 2309 folio_mark_accessed(folio); 2310 if (folio_test_uptodate(folio)) 2311 goto out; 2312 /* fallocated folio */ 2313 if (sgp != SGP_READ) 2314 goto clear; 2315 folio_unlock(folio); 2316 folio_put(folio); 2317 } 2318 2319 /* 2320 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2321 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2322 */ 2323 *foliop = NULL; 2324 if (sgp == SGP_READ) 2325 return 0; 2326 if (sgp == SGP_NOALLOC) 2327 return -ENOENT; 2328 2329 /* 2330 * Fast cache lookup and swap lookup did not find it: allocate. 2331 */ 2332 2333 if (vma && userfaultfd_missing(vma)) { 2334 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2335 return 0; 2336 } 2337 2338 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2339 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2340 if (orders > 0) { 2341 gfp_t huge_gfp; 2342 2343 huge_gfp = vma_thp_gfp_mask(vma); 2344 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2345 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2346 inode, index, fault_mm, orders); 2347 if (!IS_ERR(folio)) { 2348 if (folio_test_pmd_mappable(folio)) 2349 count_vm_event(THP_FILE_ALLOC); 2350 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2351 goto alloced; 2352 } 2353 if (PTR_ERR(folio) == -EEXIST) 2354 goto repeat; 2355 } 2356 2357 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2358 if (IS_ERR(folio)) { 2359 error = PTR_ERR(folio); 2360 if (error == -EEXIST) 2361 goto repeat; 2362 folio = NULL; 2363 goto unlock; 2364 } 2365 2366 alloced: 2367 alloced = true; 2368 if (folio_test_large(folio) && 2369 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2370 folio_next_index(folio)) { 2371 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2372 struct shmem_inode_info *info = SHMEM_I(inode); 2373 /* 2374 * Part of the large folio is beyond i_size: subject 2375 * to shrink under memory pressure. 2376 */ 2377 spin_lock(&sbinfo->shrinklist_lock); 2378 /* 2379 * _careful to defend against unlocked access to 2380 * ->shrink_list in shmem_unused_huge_shrink() 2381 */ 2382 if (list_empty_careful(&info->shrinklist)) { 2383 list_add_tail(&info->shrinklist, 2384 &sbinfo->shrinklist); 2385 sbinfo->shrinklist_len++; 2386 } 2387 spin_unlock(&sbinfo->shrinklist_lock); 2388 } 2389 2390 if (sgp == SGP_WRITE) 2391 folio_set_referenced(folio); 2392 /* 2393 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2394 */ 2395 if (sgp == SGP_FALLOC) 2396 sgp = SGP_WRITE; 2397 clear: 2398 /* 2399 * Let SGP_WRITE caller clear ends if write does not fill folio; 2400 * but SGP_FALLOC on a folio fallocated earlier must initialize 2401 * it now, lest undo on failure cancel our earlier guarantee. 2402 */ 2403 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2404 long i, n = folio_nr_pages(folio); 2405 2406 for (i = 0; i < n; i++) 2407 clear_highpage(folio_page(folio, i)); 2408 flush_dcache_folio(folio); 2409 folio_mark_uptodate(folio); 2410 } 2411 2412 /* Perhaps the file has been truncated since we checked */ 2413 if (sgp <= SGP_CACHE && 2414 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2415 error = -EINVAL; 2416 goto unlock; 2417 } 2418 out: 2419 *foliop = folio; 2420 return 0; 2421 2422 /* 2423 * Error recovery. 2424 */ 2425 unlock: 2426 if (alloced) 2427 filemap_remove_folio(folio); 2428 shmem_recalc_inode(inode, 0, 0); 2429 if (folio) { 2430 folio_unlock(folio); 2431 folio_put(folio); 2432 } 2433 return error; 2434 } 2435 2436 /** 2437 * shmem_get_folio - find, and lock a shmem folio. 2438 * @inode: inode to search 2439 * @index: the page index. 2440 * @write_end: end of a write, could extend inode size 2441 * @foliop: pointer to the folio if found 2442 * @sgp: SGP_* flags to control behavior 2443 * 2444 * Looks up the page cache entry at @inode & @index. If a folio is 2445 * present, it is returned locked with an increased refcount. 2446 * 2447 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2448 * before unlocking the folio to ensure that the folio is not reclaimed. 2449 * There is no need to reserve space before calling folio_mark_dirty(). 2450 * 2451 * When no folio is found, the behavior depends on @sgp: 2452 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2453 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2454 * - for all other flags a new folio is allocated, inserted into the 2455 * page cache and returned locked in @foliop. 2456 * 2457 * Context: May sleep. 2458 * Return: 0 if successful, else a negative error code. 2459 */ 2460 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2461 struct folio **foliop, enum sgp_type sgp) 2462 { 2463 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2464 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2465 } 2466 EXPORT_SYMBOL_GPL(shmem_get_folio); 2467 2468 /* 2469 * This is like autoremove_wake_function, but it removes the wait queue 2470 * entry unconditionally - even if something else had already woken the 2471 * target. 2472 */ 2473 static int synchronous_wake_function(wait_queue_entry_t *wait, 2474 unsigned int mode, int sync, void *key) 2475 { 2476 int ret = default_wake_function(wait, mode, sync, key); 2477 list_del_init(&wait->entry); 2478 return ret; 2479 } 2480 2481 /* 2482 * Trinity finds that probing a hole which tmpfs is punching can 2483 * prevent the hole-punch from ever completing: which in turn 2484 * locks writers out with its hold on i_rwsem. So refrain from 2485 * faulting pages into the hole while it's being punched. Although 2486 * shmem_undo_range() does remove the additions, it may be unable to 2487 * keep up, as each new page needs its own unmap_mapping_range() call, 2488 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2489 * 2490 * It does not matter if we sometimes reach this check just before the 2491 * hole-punch begins, so that one fault then races with the punch: 2492 * we just need to make racing faults a rare case. 2493 * 2494 * The implementation below would be much simpler if we just used a 2495 * standard mutex or completion: but we cannot take i_rwsem in fault, 2496 * and bloating every shmem inode for this unlikely case would be sad. 2497 */ 2498 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2499 { 2500 struct shmem_falloc *shmem_falloc; 2501 struct file *fpin = NULL; 2502 vm_fault_t ret = 0; 2503 2504 spin_lock(&inode->i_lock); 2505 shmem_falloc = inode->i_private; 2506 if (shmem_falloc && 2507 shmem_falloc->waitq && 2508 vmf->pgoff >= shmem_falloc->start && 2509 vmf->pgoff < shmem_falloc->next) { 2510 wait_queue_head_t *shmem_falloc_waitq; 2511 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2512 2513 ret = VM_FAULT_NOPAGE; 2514 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2515 shmem_falloc_waitq = shmem_falloc->waitq; 2516 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2517 TASK_UNINTERRUPTIBLE); 2518 spin_unlock(&inode->i_lock); 2519 schedule(); 2520 2521 /* 2522 * shmem_falloc_waitq points into the shmem_fallocate() 2523 * stack of the hole-punching task: shmem_falloc_waitq 2524 * is usually invalid by the time we reach here, but 2525 * finish_wait() does not dereference it in that case; 2526 * though i_lock needed lest racing with wake_up_all(). 2527 */ 2528 spin_lock(&inode->i_lock); 2529 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2530 } 2531 spin_unlock(&inode->i_lock); 2532 if (fpin) { 2533 fput(fpin); 2534 ret = VM_FAULT_RETRY; 2535 } 2536 return ret; 2537 } 2538 2539 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2540 { 2541 struct inode *inode = file_inode(vmf->vma->vm_file); 2542 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2543 struct folio *folio = NULL; 2544 vm_fault_t ret = 0; 2545 int err; 2546 2547 /* 2548 * Trinity finds that probing a hole which tmpfs is punching can 2549 * prevent the hole-punch from ever completing: noted in i_private. 2550 */ 2551 if (unlikely(inode->i_private)) { 2552 ret = shmem_falloc_wait(vmf, inode); 2553 if (ret) 2554 return ret; 2555 } 2556 2557 WARN_ON_ONCE(vmf->page != NULL); 2558 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2559 gfp, vmf, &ret); 2560 if (err) 2561 return vmf_error(err); 2562 if (folio) { 2563 vmf->page = folio_file_page(folio, vmf->pgoff); 2564 ret |= VM_FAULT_LOCKED; 2565 } 2566 return ret; 2567 } 2568 2569 unsigned long shmem_get_unmapped_area(struct file *file, 2570 unsigned long uaddr, unsigned long len, 2571 unsigned long pgoff, unsigned long flags) 2572 { 2573 unsigned long addr; 2574 unsigned long offset; 2575 unsigned long inflated_len; 2576 unsigned long inflated_addr; 2577 unsigned long inflated_offset; 2578 unsigned long hpage_size; 2579 2580 if (len > TASK_SIZE) 2581 return -ENOMEM; 2582 2583 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2584 flags); 2585 2586 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2587 return addr; 2588 if (IS_ERR_VALUE(addr)) 2589 return addr; 2590 if (addr & ~PAGE_MASK) 2591 return addr; 2592 if (addr > TASK_SIZE - len) 2593 return addr; 2594 2595 if (shmem_huge == SHMEM_HUGE_DENY) 2596 return addr; 2597 if (flags & MAP_FIXED) 2598 return addr; 2599 /* 2600 * Our priority is to support MAP_SHARED mapped hugely; 2601 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2602 * But if caller specified an address hint and we allocated area there 2603 * successfully, respect that as before. 2604 */ 2605 if (uaddr == addr) 2606 return addr; 2607 2608 hpage_size = HPAGE_PMD_SIZE; 2609 if (shmem_huge != SHMEM_HUGE_FORCE) { 2610 struct super_block *sb; 2611 unsigned long __maybe_unused hpage_orders; 2612 int order = 0; 2613 2614 if (file) { 2615 VM_BUG_ON(file->f_op != &shmem_file_operations); 2616 sb = file_inode(file)->i_sb; 2617 } else { 2618 /* 2619 * Called directly from mm/mmap.c, or drivers/char/mem.c 2620 * for "/dev/zero", to create a shared anonymous object. 2621 */ 2622 if (IS_ERR(shm_mnt)) 2623 return addr; 2624 sb = shm_mnt->mnt_sb; 2625 2626 /* 2627 * Find the highest mTHP order used for anonymous shmem to 2628 * provide a suitable alignment address. 2629 */ 2630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2631 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2632 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2633 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2634 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2635 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2636 2637 if (hpage_orders > 0) { 2638 order = highest_order(hpage_orders); 2639 hpage_size = PAGE_SIZE << order; 2640 } 2641 #endif 2642 } 2643 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2644 return addr; 2645 } 2646 2647 if (len < hpage_size) 2648 return addr; 2649 2650 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2651 if (offset && offset + len < 2 * hpage_size) 2652 return addr; 2653 if ((addr & (hpage_size - 1)) == offset) 2654 return addr; 2655 2656 inflated_len = len + hpage_size - PAGE_SIZE; 2657 if (inflated_len > TASK_SIZE) 2658 return addr; 2659 if (inflated_len < len) 2660 return addr; 2661 2662 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2663 inflated_len, 0, flags); 2664 if (IS_ERR_VALUE(inflated_addr)) 2665 return addr; 2666 if (inflated_addr & ~PAGE_MASK) 2667 return addr; 2668 2669 inflated_offset = inflated_addr & (hpage_size - 1); 2670 inflated_addr += offset - inflated_offset; 2671 if (inflated_offset > offset) 2672 inflated_addr += hpage_size; 2673 2674 if (inflated_addr > TASK_SIZE - len) 2675 return addr; 2676 return inflated_addr; 2677 } 2678 2679 #ifdef CONFIG_NUMA 2680 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2681 { 2682 struct inode *inode = file_inode(vma->vm_file); 2683 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2684 } 2685 2686 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2687 unsigned long addr, pgoff_t *ilx) 2688 { 2689 struct inode *inode = file_inode(vma->vm_file); 2690 pgoff_t index; 2691 2692 /* 2693 * Bias interleave by inode number to distribute better across nodes; 2694 * but this interface is independent of which page order is used, so 2695 * supplies only that bias, letting caller apply the offset (adjusted 2696 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2697 */ 2698 *ilx = inode->i_ino; 2699 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2700 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2701 } 2702 2703 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2704 pgoff_t index, unsigned int order, pgoff_t *ilx) 2705 { 2706 struct mempolicy *mpol; 2707 2708 /* Bias interleave by inode number to distribute better across nodes */ 2709 *ilx = info->vfs_inode.i_ino + (index >> order); 2710 2711 mpol = mpol_shared_policy_lookup(&info->policy, index); 2712 return mpol ? mpol : get_task_policy(current); 2713 } 2714 #else 2715 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2716 pgoff_t index, unsigned int order, pgoff_t *ilx) 2717 { 2718 *ilx = 0; 2719 return NULL; 2720 } 2721 #endif /* CONFIG_NUMA */ 2722 2723 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2724 { 2725 struct inode *inode = file_inode(file); 2726 struct shmem_inode_info *info = SHMEM_I(inode); 2727 int retval = -ENOMEM; 2728 2729 /* 2730 * What serializes the accesses to info->flags? 2731 * ipc_lock_object() when called from shmctl_do_lock(), 2732 * no serialization needed when called from shm_destroy(). 2733 */ 2734 if (lock && !(info->flags & VM_LOCKED)) { 2735 if (!user_shm_lock(inode->i_size, ucounts)) 2736 goto out_nomem; 2737 info->flags |= VM_LOCKED; 2738 mapping_set_unevictable(file->f_mapping); 2739 } 2740 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2741 user_shm_unlock(inode->i_size, ucounts); 2742 info->flags &= ~VM_LOCKED; 2743 mapping_clear_unevictable(file->f_mapping); 2744 } 2745 retval = 0; 2746 2747 out_nomem: 2748 return retval; 2749 } 2750 2751 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2752 { 2753 struct inode *inode = file_inode(file); 2754 struct shmem_inode_info *info = SHMEM_I(inode); 2755 int ret; 2756 2757 ret = seal_check_write(info->seals, vma); 2758 if (ret) 2759 return ret; 2760 2761 file_accessed(file); 2762 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2763 if (inode->i_nlink) 2764 vma->vm_ops = &shmem_vm_ops; 2765 else 2766 vma->vm_ops = &shmem_anon_vm_ops; 2767 return 0; 2768 } 2769 2770 static int shmem_file_open(struct inode *inode, struct file *file) 2771 { 2772 file->f_mode |= FMODE_CAN_ODIRECT; 2773 return generic_file_open(inode, file); 2774 } 2775 2776 #ifdef CONFIG_TMPFS_XATTR 2777 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2778 2779 #if IS_ENABLED(CONFIG_UNICODE) 2780 /* 2781 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2782 * 2783 * The casefold file attribute needs some special checks. I can just be added to 2784 * an empty dir, and can't be removed from a non-empty dir. 2785 */ 2786 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2787 struct dentry *dentry, unsigned int *i_flags) 2788 { 2789 unsigned int old = inode->i_flags; 2790 struct super_block *sb = inode->i_sb; 2791 2792 if (fsflags & FS_CASEFOLD_FL) { 2793 if (!(old & S_CASEFOLD)) { 2794 if (!sb->s_encoding) 2795 return -EOPNOTSUPP; 2796 2797 if (!S_ISDIR(inode->i_mode)) 2798 return -ENOTDIR; 2799 2800 if (dentry && !simple_empty(dentry)) 2801 return -ENOTEMPTY; 2802 } 2803 2804 *i_flags = *i_flags | S_CASEFOLD; 2805 } else if (old & S_CASEFOLD) { 2806 if (dentry && !simple_empty(dentry)) 2807 return -ENOTEMPTY; 2808 } 2809 2810 return 0; 2811 } 2812 #else 2813 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2814 struct dentry *dentry, unsigned int *i_flags) 2815 { 2816 if (fsflags & FS_CASEFOLD_FL) 2817 return -EOPNOTSUPP; 2818 2819 return 0; 2820 } 2821 #endif 2822 2823 /* 2824 * chattr's fsflags are unrelated to extended attributes, 2825 * but tmpfs has chosen to enable them under the same config option. 2826 */ 2827 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2828 { 2829 unsigned int i_flags = 0; 2830 int ret; 2831 2832 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 2833 if (ret) 2834 return ret; 2835 2836 if (fsflags & FS_NOATIME_FL) 2837 i_flags |= S_NOATIME; 2838 if (fsflags & FS_APPEND_FL) 2839 i_flags |= S_APPEND; 2840 if (fsflags & FS_IMMUTABLE_FL) 2841 i_flags |= S_IMMUTABLE; 2842 /* 2843 * But FS_NODUMP_FL does not require any action in i_flags. 2844 */ 2845 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 2846 2847 return 0; 2848 } 2849 #else 2850 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2851 { 2852 } 2853 #define shmem_initxattrs NULL 2854 #endif 2855 2856 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2857 { 2858 return &SHMEM_I(inode)->dir_offsets; 2859 } 2860 2861 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2862 struct super_block *sb, 2863 struct inode *dir, umode_t mode, 2864 dev_t dev, unsigned long flags) 2865 { 2866 struct inode *inode; 2867 struct shmem_inode_info *info; 2868 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2869 ino_t ino; 2870 int err; 2871 2872 err = shmem_reserve_inode(sb, &ino); 2873 if (err) 2874 return ERR_PTR(err); 2875 2876 inode = new_inode(sb); 2877 if (!inode) { 2878 shmem_free_inode(sb, 0); 2879 return ERR_PTR(-ENOSPC); 2880 } 2881 2882 inode->i_ino = ino; 2883 inode_init_owner(idmap, inode, dir, mode); 2884 inode->i_blocks = 0; 2885 simple_inode_init_ts(inode); 2886 inode->i_generation = get_random_u32(); 2887 info = SHMEM_I(inode); 2888 memset(info, 0, (char *)inode - (char *)info); 2889 spin_lock_init(&info->lock); 2890 atomic_set(&info->stop_eviction, 0); 2891 info->seals = F_SEAL_SEAL; 2892 info->flags = flags & VM_NORESERVE; 2893 info->i_crtime = inode_get_mtime(inode); 2894 info->fsflags = (dir == NULL) ? 0 : 2895 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2896 if (info->fsflags) 2897 shmem_set_inode_flags(inode, info->fsflags, NULL); 2898 INIT_LIST_HEAD(&info->shrinklist); 2899 INIT_LIST_HEAD(&info->swaplist); 2900 simple_xattrs_init(&info->xattrs); 2901 cache_no_acl(inode); 2902 if (sbinfo->noswap) 2903 mapping_set_unevictable(inode->i_mapping); 2904 2905 /* Don't consider 'deny' for emergencies and 'force' for testing */ 2906 if (sbinfo->huge) 2907 mapping_set_large_folios(inode->i_mapping); 2908 2909 switch (mode & S_IFMT) { 2910 default: 2911 inode->i_op = &shmem_special_inode_operations; 2912 init_special_inode(inode, mode, dev); 2913 break; 2914 case S_IFREG: 2915 inode->i_mapping->a_ops = &shmem_aops; 2916 inode->i_op = &shmem_inode_operations; 2917 inode->i_fop = &shmem_file_operations; 2918 mpol_shared_policy_init(&info->policy, 2919 shmem_get_sbmpol(sbinfo)); 2920 break; 2921 case S_IFDIR: 2922 inc_nlink(inode); 2923 /* Some things misbehave if size == 0 on a directory */ 2924 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2925 inode->i_op = &shmem_dir_inode_operations; 2926 inode->i_fop = &simple_offset_dir_operations; 2927 simple_offset_init(shmem_get_offset_ctx(inode)); 2928 break; 2929 case S_IFLNK: 2930 /* 2931 * Must not load anything in the rbtree, 2932 * mpol_free_shared_policy will not be called. 2933 */ 2934 mpol_shared_policy_init(&info->policy, NULL); 2935 break; 2936 } 2937 2938 lockdep_annotate_inode_mutex_key(inode); 2939 return inode; 2940 } 2941 2942 #ifdef CONFIG_TMPFS_QUOTA 2943 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2944 struct super_block *sb, struct inode *dir, 2945 umode_t mode, dev_t dev, unsigned long flags) 2946 { 2947 int err; 2948 struct inode *inode; 2949 2950 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2951 if (IS_ERR(inode)) 2952 return inode; 2953 2954 err = dquot_initialize(inode); 2955 if (err) 2956 goto errout; 2957 2958 err = dquot_alloc_inode(inode); 2959 if (err) { 2960 dquot_drop(inode); 2961 goto errout; 2962 } 2963 return inode; 2964 2965 errout: 2966 inode->i_flags |= S_NOQUOTA; 2967 iput(inode); 2968 return ERR_PTR(err); 2969 } 2970 #else 2971 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2972 struct super_block *sb, struct inode *dir, 2973 umode_t mode, dev_t dev, unsigned long flags) 2974 { 2975 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2976 } 2977 #endif /* CONFIG_TMPFS_QUOTA */ 2978 2979 #ifdef CONFIG_USERFAULTFD 2980 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2981 struct vm_area_struct *dst_vma, 2982 unsigned long dst_addr, 2983 unsigned long src_addr, 2984 uffd_flags_t flags, 2985 struct folio **foliop) 2986 { 2987 struct inode *inode = file_inode(dst_vma->vm_file); 2988 struct shmem_inode_info *info = SHMEM_I(inode); 2989 struct address_space *mapping = inode->i_mapping; 2990 gfp_t gfp = mapping_gfp_mask(mapping); 2991 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2992 void *page_kaddr; 2993 struct folio *folio; 2994 int ret; 2995 pgoff_t max_off; 2996 2997 if (shmem_inode_acct_blocks(inode, 1)) { 2998 /* 2999 * We may have got a page, returned -ENOENT triggering a retry, 3000 * and now we find ourselves with -ENOMEM. Release the page, to 3001 * avoid a BUG_ON in our caller. 3002 */ 3003 if (unlikely(*foliop)) { 3004 folio_put(*foliop); 3005 *foliop = NULL; 3006 } 3007 return -ENOMEM; 3008 } 3009 3010 if (!*foliop) { 3011 ret = -ENOMEM; 3012 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3013 if (!folio) 3014 goto out_unacct_blocks; 3015 3016 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3017 page_kaddr = kmap_local_folio(folio, 0); 3018 /* 3019 * The read mmap_lock is held here. Despite the 3020 * mmap_lock being read recursive a deadlock is still 3021 * possible if a writer has taken a lock. For example: 3022 * 3023 * process A thread 1 takes read lock on own mmap_lock 3024 * process A thread 2 calls mmap, blocks taking write lock 3025 * process B thread 1 takes page fault, read lock on own mmap lock 3026 * process B thread 2 calls mmap, blocks taking write lock 3027 * process A thread 1 blocks taking read lock on process B 3028 * process B thread 1 blocks taking read lock on process A 3029 * 3030 * Disable page faults to prevent potential deadlock 3031 * and retry the copy outside the mmap_lock. 3032 */ 3033 pagefault_disable(); 3034 ret = copy_from_user(page_kaddr, 3035 (const void __user *)src_addr, 3036 PAGE_SIZE); 3037 pagefault_enable(); 3038 kunmap_local(page_kaddr); 3039 3040 /* fallback to copy_from_user outside mmap_lock */ 3041 if (unlikely(ret)) { 3042 *foliop = folio; 3043 ret = -ENOENT; 3044 /* don't free the page */ 3045 goto out_unacct_blocks; 3046 } 3047 3048 flush_dcache_folio(folio); 3049 } else { /* ZEROPAGE */ 3050 clear_user_highpage(&folio->page, dst_addr); 3051 } 3052 } else { 3053 folio = *foliop; 3054 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3055 *foliop = NULL; 3056 } 3057 3058 VM_BUG_ON(folio_test_locked(folio)); 3059 VM_BUG_ON(folio_test_swapbacked(folio)); 3060 __folio_set_locked(folio); 3061 __folio_set_swapbacked(folio); 3062 __folio_mark_uptodate(folio); 3063 3064 ret = -EFAULT; 3065 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3066 if (unlikely(pgoff >= max_off)) 3067 goto out_release; 3068 3069 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3070 if (ret) 3071 goto out_release; 3072 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3073 if (ret) 3074 goto out_release; 3075 3076 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3077 &folio->page, true, flags); 3078 if (ret) 3079 goto out_delete_from_cache; 3080 3081 shmem_recalc_inode(inode, 1, 0); 3082 folio_unlock(folio); 3083 return 0; 3084 out_delete_from_cache: 3085 filemap_remove_folio(folio); 3086 out_release: 3087 folio_unlock(folio); 3088 folio_put(folio); 3089 out_unacct_blocks: 3090 shmem_inode_unacct_blocks(inode, 1); 3091 return ret; 3092 } 3093 #endif /* CONFIG_USERFAULTFD */ 3094 3095 #ifdef CONFIG_TMPFS 3096 static const struct inode_operations shmem_symlink_inode_operations; 3097 static const struct inode_operations shmem_short_symlink_operations; 3098 3099 static int 3100 shmem_write_begin(struct file *file, struct address_space *mapping, 3101 loff_t pos, unsigned len, 3102 struct folio **foliop, void **fsdata) 3103 { 3104 struct inode *inode = mapping->host; 3105 struct shmem_inode_info *info = SHMEM_I(inode); 3106 pgoff_t index = pos >> PAGE_SHIFT; 3107 struct folio *folio; 3108 int ret = 0; 3109 3110 /* i_rwsem is held by caller */ 3111 if (unlikely(info->seals & (F_SEAL_GROW | 3112 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3113 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3114 return -EPERM; 3115 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3116 return -EPERM; 3117 } 3118 3119 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3120 if (ret) 3121 return ret; 3122 3123 if (folio_test_hwpoison(folio) || 3124 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { 3125 folio_unlock(folio); 3126 folio_put(folio); 3127 return -EIO; 3128 } 3129 3130 *foliop = folio; 3131 return 0; 3132 } 3133 3134 static int 3135 shmem_write_end(struct file *file, struct address_space *mapping, 3136 loff_t pos, unsigned len, unsigned copied, 3137 struct folio *folio, void *fsdata) 3138 { 3139 struct inode *inode = mapping->host; 3140 3141 if (pos + copied > inode->i_size) 3142 i_size_write(inode, pos + copied); 3143 3144 if (!folio_test_uptodate(folio)) { 3145 if (copied < folio_size(folio)) { 3146 size_t from = offset_in_folio(folio, pos); 3147 folio_zero_segments(folio, 0, from, 3148 from + copied, folio_size(folio)); 3149 } 3150 folio_mark_uptodate(folio); 3151 } 3152 folio_mark_dirty(folio); 3153 folio_unlock(folio); 3154 folio_put(folio); 3155 3156 return copied; 3157 } 3158 3159 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3160 { 3161 struct file *file = iocb->ki_filp; 3162 struct inode *inode = file_inode(file); 3163 struct address_space *mapping = inode->i_mapping; 3164 pgoff_t index; 3165 unsigned long offset; 3166 int error = 0; 3167 ssize_t retval = 0; 3168 3169 for (;;) { 3170 struct folio *folio = NULL; 3171 struct page *page = NULL; 3172 unsigned long nr, ret; 3173 loff_t end_offset, i_size = i_size_read(inode); 3174 bool fallback_page_copy = false; 3175 size_t fsize; 3176 3177 if (unlikely(iocb->ki_pos >= i_size)) 3178 break; 3179 3180 index = iocb->ki_pos >> PAGE_SHIFT; 3181 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3182 if (error) { 3183 if (error == -EINVAL) 3184 error = 0; 3185 break; 3186 } 3187 if (folio) { 3188 folio_unlock(folio); 3189 3190 page = folio_file_page(folio, index); 3191 if (PageHWPoison(page)) { 3192 folio_put(folio); 3193 error = -EIO; 3194 break; 3195 } 3196 3197 if (folio_test_large(folio) && 3198 folio_test_has_hwpoisoned(folio)) 3199 fallback_page_copy = true; 3200 } 3201 3202 /* 3203 * We must evaluate after, since reads (unlike writes) 3204 * are called without i_rwsem protection against truncate 3205 */ 3206 i_size = i_size_read(inode); 3207 if (unlikely(iocb->ki_pos >= i_size)) { 3208 if (folio) 3209 folio_put(folio); 3210 break; 3211 } 3212 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3213 if (folio && likely(!fallback_page_copy)) 3214 fsize = folio_size(folio); 3215 else 3216 fsize = PAGE_SIZE; 3217 offset = iocb->ki_pos & (fsize - 1); 3218 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3219 3220 if (folio) { 3221 /* 3222 * If users can be writing to this page using arbitrary 3223 * virtual addresses, take care about potential aliasing 3224 * before reading the page on the kernel side. 3225 */ 3226 if (mapping_writably_mapped(mapping)) { 3227 if (likely(!fallback_page_copy)) 3228 flush_dcache_folio(folio); 3229 else 3230 flush_dcache_page(page); 3231 } 3232 3233 /* 3234 * Mark the folio accessed if we read the beginning. 3235 */ 3236 if (!offset) 3237 folio_mark_accessed(folio); 3238 /* 3239 * Ok, we have the page, and it's up-to-date, so 3240 * now we can copy it to user space... 3241 */ 3242 if (likely(!fallback_page_copy)) 3243 ret = copy_folio_to_iter(folio, offset, nr, to); 3244 else 3245 ret = copy_page_to_iter(page, offset, nr, to); 3246 folio_put(folio); 3247 } else if (user_backed_iter(to)) { 3248 /* 3249 * Copy to user tends to be so well optimized, but 3250 * clear_user() not so much, that it is noticeably 3251 * faster to copy the zero page instead of clearing. 3252 */ 3253 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3254 } else { 3255 /* 3256 * But submitting the same page twice in a row to 3257 * splice() - or others? - can result in confusion: 3258 * so don't attempt that optimization on pipes etc. 3259 */ 3260 ret = iov_iter_zero(nr, to); 3261 } 3262 3263 retval += ret; 3264 iocb->ki_pos += ret; 3265 3266 if (!iov_iter_count(to)) 3267 break; 3268 if (ret < nr) { 3269 error = -EFAULT; 3270 break; 3271 } 3272 cond_resched(); 3273 } 3274 3275 file_accessed(file); 3276 return retval ? retval : error; 3277 } 3278 3279 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3280 { 3281 struct file *file = iocb->ki_filp; 3282 struct inode *inode = file->f_mapping->host; 3283 ssize_t ret; 3284 3285 inode_lock(inode); 3286 ret = generic_write_checks(iocb, from); 3287 if (ret <= 0) 3288 goto unlock; 3289 ret = file_remove_privs(file); 3290 if (ret) 3291 goto unlock; 3292 ret = file_update_time(file); 3293 if (ret) 3294 goto unlock; 3295 ret = generic_perform_write(iocb, from); 3296 unlock: 3297 inode_unlock(inode); 3298 return ret; 3299 } 3300 3301 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3302 struct pipe_buffer *buf) 3303 { 3304 return true; 3305 } 3306 3307 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3308 struct pipe_buffer *buf) 3309 { 3310 } 3311 3312 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3313 struct pipe_buffer *buf) 3314 { 3315 return false; 3316 } 3317 3318 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3319 .release = zero_pipe_buf_release, 3320 .try_steal = zero_pipe_buf_try_steal, 3321 .get = zero_pipe_buf_get, 3322 }; 3323 3324 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3325 loff_t fpos, size_t size) 3326 { 3327 size_t offset = fpos & ~PAGE_MASK; 3328 3329 size = min_t(size_t, size, PAGE_SIZE - offset); 3330 3331 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3332 struct pipe_buffer *buf = pipe_head_buf(pipe); 3333 3334 *buf = (struct pipe_buffer) { 3335 .ops = &zero_pipe_buf_ops, 3336 .page = ZERO_PAGE(0), 3337 .offset = offset, 3338 .len = size, 3339 }; 3340 pipe->head++; 3341 } 3342 3343 return size; 3344 } 3345 3346 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3347 struct pipe_inode_info *pipe, 3348 size_t len, unsigned int flags) 3349 { 3350 struct inode *inode = file_inode(in); 3351 struct address_space *mapping = inode->i_mapping; 3352 struct folio *folio = NULL; 3353 size_t total_spliced = 0, used, npages, n, part; 3354 loff_t isize; 3355 int error = 0; 3356 3357 /* Work out how much data we can actually add into the pipe */ 3358 used = pipe_occupancy(pipe->head, pipe->tail); 3359 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3360 len = min_t(size_t, len, npages * PAGE_SIZE); 3361 3362 do { 3363 bool fallback_page_splice = false; 3364 struct page *page = NULL; 3365 pgoff_t index; 3366 size_t size; 3367 3368 if (*ppos >= i_size_read(inode)) 3369 break; 3370 3371 index = *ppos >> PAGE_SHIFT; 3372 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3373 if (error) { 3374 if (error == -EINVAL) 3375 error = 0; 3376 break; 3377 } 3378 if (folio) { 3379 folio_unlock(folio); 3380 3381 page = folio_file_page(folio, index); 3382 if (PageHWPoison(page)) { 3383 error = -EIO; 3384 break; 3385 } 3386 3387 if (folio_test_large(folio) && 3388 folio_test_has_hwpoisoned(folio)) 3389 fallback_page_splice = true; 3390 } 3391 3392 /* 3393 * i_size must be checked after we know the pages are Uptodate. 3394 * 3395 * Checking i_size after the check allows us to calculate 3396 * the correct value for "nr", which means the zero-filled 3397 * part of the page is not copied back to userspace (unless 3398 * another truncate extends the file - this is desired though). 3399 */ 3400 isize = i_size_read(inode); 3401 if (unlikely(*ppos >= isize)) 3402 break; 3403 /* 3404 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3405 * pages. 3406 */ 3407 size = len; 3408 if (unlikely(fallback_page_splice)) { 3409 size_t offset = *ppos & ~PAGE_MASK; 3410 3411 size = umin(size, PAGE_SIZE - offset); 3412 } 3413 part = min_t(loff_t, isize - *ppos, size); 3414 3415 if (folio) { 3416 /* 3417 * If users can be writing to this page using arbitrary 3418 * virtual addresses, take care about potential aliasing 3419 * before reading the page on the kernel side. 3420 */ 3421 if (mapping_writably_mapped(mapping)) { 3422 if (likely(!fallback_page_splice)) 3423 flush_dcache_folio(folio); 3424 else 3425 flush_dcache_page(page); 3426 } 3427 folio_mark_accessed(folio); 3428 /* 3429 * Ok, we have the page, and it's up-to-date, so we can 3430 * now splice it into the pipe. 3431 */ 3432 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3433 folio_put(folio); 3434 folio = NULL; 3435 } else { 3436 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3437 } 3438 3439 if (!n) 3440 break; 3441 len -= n; 3442 total_spliced += n; 3443 *ppos += n; 3444 in->f_ra.prev_pos = *ppos; 3445 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3446 break; 3447 3448 cond_resched(); 3449 } while (len); 3450 3451 if (folio) 3452 folio_put(folio); 3453 3454 file_accessed(in); 3455 return total_spliced ? total_spliced : error; 3456 } 3457 3458 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3459 { 3460 struct address_space *mapping = file->f_mapping; 3461 struct inode *inode = mapping->host; 3462 3463 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3464 return generic_file_llseek_size(file, offset, whence, 3465 MAX_LFS_FILESIZE, i_size_read(inode)); 3466 if (offset < 0) 3467 return -ENXIO; 3468 3469 inode_lock(inode); 3470 /* We're holding i_rwsem so we can access i_size directly */ 3471 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3472 if (offset >= 0) 3473 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3474 inode_unlock(inode); 3475 return offset; 3476 } 3477 3478 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3479 loff_t len) 3480 { 3481 struct inode *inode = file_inode(file); 3482 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3483 struct shmem_inode_info *info = SHMEM_I(inode); 3484 struct shmem_falloc shmem_falloc; 3485 pgoff_t start, index, end, undo_fallocend; 3486 int error; 3487 3488 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3489 return -EOPNOTSUPP; 3490 3491 inode_lock(inode); 3492 3493 if (mode & FALLOC_FL_PUNCH_HOLE) { 3494 struct address_space *mapping = file->f_mapping; 3495 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3496 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3497 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3498 3499 /* protected by i_rwsem */ 3500 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3501 error = -EPERM; 3502 goto out; 3503 } 3504 3505 shmem_falloc.waitq = &shmem_falloc_waitq; 3506 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3507 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3508 spin_lock(&inode->i_lock); 3509 inode->i_private = &shmem_falloc; 3510 spin_unlock(&inode->i_lock); 3511 3512 if ((u64)unmap_end > (u64)unmap_start) 3513 unmap_mapping_range(mapping, unmap_start, 3514 1 + unmap_end - unmap_start, 0); 3515 shmem_truncate_range(inode, offset, offset + len - 1); 3516 /* No need to unmap again: hole-punching leaves COWed pages */ 3517 3518 spin_lock(&inode->i_lock); 3519 inode->i_private = NULL; 3520 wake_up_all(&shmem_falloc_waitq); 3521 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3522 spin_unlock(&inode->i_lock); 3523 error = 0; 3524 goto out; 3525 } 3526 3527 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3528 error = inode_newsize_ok(inode, offset + len); 3529 if (error) 3530 goto out; 3531 3532 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3533 error = -EPERM; 3534 goto out; 3535 } 3536 3537 start = offset >> PAGE_SHIFT; 3538 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3539 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3540 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3541 error = -ENOSPC; 3542 goto out; 3543 } 3544 3545 shmem_falloc.waitq = NULL; 3546 shmem_falloc.start = start; 3547 shmem_falloc.next = start; 3548 shmem_falloc.nr_falloced = 0; 3549 shmem_falloc.nr_unswapped = 0; 3550 spin_lock(&inode->i_lock); 3551 inode->i_private = &shmem_falloc; 3552 spin_unlock(&inode->i_lock); 3553 3554 /* 3555 * info->fallocend is only relevant when huge pages might be 3556 * involved: to prevent split_huge_page() freeing fallocated 3557 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3558 */ 3559 undo_fallocend = info->fallocend; 3560 if (info->fallocend < end) 3561 info->fallocend = end; 3562 3563 for (index = start; index < end; ) { 3564 struct folio *folio; 3565 3566 /* 3567 * Check for fatal signal so that we abort early in OOM 3568 * situations. We don't want to abort in case of non-fatal 3569 * signals as large fallocate can take noticeable time and 3570 * e.g. periodic timers may result in fallocate constantly 3571 * restarting. 3572 */ 3573 if (fatal_signal_pending(current)) 3574 error = -EINTR; 3575 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3576 error = -ENOMEM; 3577 else 3578 error = shmem_get_folio(inode, index, offset + len, 3579 &folio, SGP_FALLOC); 3580 if (error) { 3581 info->fallocend = undo_fallocend; 3582 /* Remove the !uptodate folios we added */ 3583 if (index > start) { 3584 shmem_undo_range(inode, 3585 (loff_t)start << PAGE_SHIFT, 3586 ((loff_t)index << PAGE_SHIFT) - 1, true); 3587 } 3588 goto undone; 3589 } 3590 3591 /* 3592 * Here is a more important optimization than it appears: 3593 * a second SGP_FALLOC on the same large folio will clear it, 3594 * making it uptodate and un-undoable if we fail later. 3595 */ 3596 index = folio_next_index(folio); 3597 /* Beware 32-bit wraparound */ 3598 if (!index) 3599 index--; 3600 3601 /* 3602 * Inform shmem_writepage() how far we have reached. 3603 * No need for lock or barrier: we have the page lock. 3604 */ 3605 if (!folio_test_uptodate(folio)) 3606 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3607 shmem_falloc.next = index; 3608 3609 /* 3610 * If !uptodate, leave it that way so that freeable folios 3611 * can be recognized if we need to rollback on error later. 3612 * But mark it dirty so that memory pressure will swap rather 3613 * than free the folios we are allocating (and SGP_CACHE folios 3614 * might still be clean: we now need to mark those dirty too). 3615 */ 3616 folio_mark_dirty(folio); 3617 folio_unlock(folio); 3618 folio_put(folio); 3619 cond_resched(); 3620 } 3621 3622 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3623 i_size_write(inode, offset + len); 3624 undone: 3625 spin_lock(&inode->i_lock); 3626 inode->i_private = NULL; 3627 spin_unlock(&inode->i_lock); 3628 out: 3629 if (!error) 3630 file_modified(file); 3631 inode_unlock(inode); 3632 return error; 3633 } 3634 3635 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3636 { 3637 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3638 3639 buf->f_type = TMPFS_MAGIC; 3640 buf->f_bsize = PAGE_SIZE; 3641 buf->f_namelen = NAME_MAX; 3642 if (sbinfo->max_blocks) { 3643 buf->f_blocks = sbinfo->max_blocks; 3644 buf->f_bavail = 3645 buf->f_bfree = sbinfo->max_blocks - 3646 percpu_counter_sum(&sbinfo->used_blocks); 3647 } 3648 if (sbinfo->max_inodes) { 3649 buf->f_files = sbinfo->max_inodes; 3650 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3651 } 3652 /* else leave those fields 0 like simple_statfs */ 3653 3654 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3655 3656 return 0; 3657 } 3658 3659 /* 3660 * File creation. Allocate an inode, and we're done.. 3661 */ 3662 static int 3663 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3664 struct dentry *dentry, umode_t mode, dev_t dev) 3665 { 3666 struct inode *inode; 3667 int error; 3668 3669 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3670 return -EINVAL; 3671 3672 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3673 if (IS_ERR(inode)) 3674 return PTR_ERR(inode); 3675 3676 error = simple_acl_create(dir, inode); 3677 if (error) 3678 goto out_iput; 3679 error = security_inode_init_security(inode, dir, &dentry->d_name, 3680 shmem_initxattrs, NULL); 3681 if (error && error != -EOPNOTSUPP) 3682 goto out_iput; 3683 3684 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3685 if (error) 3686 goto out_iput; 3687 3688 dir->i_size += BOGO_DIRENT_SIZE; 3689 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3690 inode_inc_iversion(dir); 3691 3692 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3693 d_add(dentry, inode); 3694 else 3695 d_instantiate(dentry, inode); 3696 3697 dget(dentry); /* Extra count - pin the dentry in core */ 3698 return error; 3699 3700 out_iput: 3701 iput(inode); 3702 return error; 3703 } 3704 3705 static int 3706 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3707 struct file *file, umode_t mode) 3708 { 3709 struct inode *inode; 3710 int error; 3711 3712 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3713 if (IS_ERR(inode)) { 3714 error = PTR_ERR(inode); 3715 goto err_out; 3716 } 3717 error = security_inode_init_security(inode, dir, NULL, 3718 shmem_initxattrs, NULL); 3719 if (error && error != -EOPNOTSUPP) 3720 goto out_iput; 3721 error = simple_acl_create(dir, inode); 3722 if (error) 3723 goto out_iput; 3724 d_tmpfile(file, inode); 3725 3726 err_out: 3727 return finish_open_simple(file, error); 3728 out_iput: 3729 iput(inode); 3730 return error; 3731 } 3732 3733 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3734 struct dentry *dentry, umode_t mode) 3735 { 3736 int error; 3737 3738 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3739 if (error) 3740 return error; 3741 inc_nlink(dir); 3742 return 0; 3743 } 3744 3745 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3746 struct dentry *dentry, umode_t mode, bool excl) 3747 { 3748 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3749 } 3750 3751 /* 3752 * Link a file.. 3753 */ 3754 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3755 struct dentry *dentry) 3756 { 3757 struct inode *inode = d_inode(old_dentry); 3758 int ret = 0; 3759 3760 /* 3761 * No ordinary (disk based) filesystem counts links as inodes; 3762 * but each new link needs a new dentry, pinning lowmem, and 3763 * tmpfs dentries cannot be pruned until they are unlinked. 3764 * But if an O_TMPFILE file is linked into the tmpfs, the 3765 * first link must skip that, to get the accounting right. 3766 */ 3767 if (inode->i_nlink) { 3768 ret = shmem_reserve_inode(inode->i_sb, NULL); 3769 if (ret) 3770 goto out; 3771 } 3772 3773 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3774 if (ret) { 3775 if (inode->i_nlink) 3776 shmem_free_inode(inode->i_sb, 0); 3777 goto out; 3778 } 3779 3780 dir->i_size += BOGO_DIRENT_SIZE; 3781 inode_set_mtime_to_ts(dir, 3782 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3783 inode_inc_iversion(dir); 3784 inc_nlink(inode); 3785 ihold(inode); /* New dentry reference */ 3786 dget(dentry); /* Extra pinning count for the created dentry */ 3787 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3788 d_add(dentry, inode); 3789 else 3790 d_instantiate(dentry, inode); 3791 out: 3792 return ret; 3793 } 3794 3795 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3796 { 3797 struct inode *inode = d_inode(dentry); 3798 3799 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3800 shmem_free_inode(inode->i_sb, 0); 3801 3802 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3803 3804 dir->i_size -= BOGO_DIRENT_SIZE; 3805 inode_set_mtime_to_ts(dir, 3806 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3807 inode_inc_iversion(dir); 3808 drop_nlink(inode); 3809 dput(dentry); /* Undo the count from "create" - does all the work */ 3810 3811 /* 3812 * For now, VFS can't deal with case-insensitive negative dentries, so 3813 * we invalidate them 3814 */ 3815 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3816 d_invalidate(dentry); 3817 3818 return 0; 3819 } 3820 3821 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3822 { 3823 if (!simple_offset_empty(dentry)) 3824 return -ENOTEMPTY; 3825 3826 drop_nlink(d_inode(dentry)); 3827 drop_nlink(dir); 3828 return shmem_unlink(dir, dentry); 3829 } 3830 3831 static int shmem_whiteout(struct mnt_idmap *idmap, 3832 struct inode *old_dir, struct dentry *old_dentry) 3833 { 3834 struct dentry *whiteout; 3835 int error; 3836 3837 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3838 if (!whiteout) 3839 return -ENOMEM; 3840 3841 error = shmem_mknod(idmap, old_dir, whiteout, 3842 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3843 dput(whiteout); 3844 if (error) 3845 return error; 3846 3847 /* 3848 * Cheat and hash the whiteout while the old dentry is still in 3849 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3850 * 3851 * d_lookup() will consistently find one of them at this point, 3852 * not sure which one, but that isn't even important. 3853 */ 3854 d_rehash(whiteout); 3855 return 0; 3856 } 3857 3858 /* 3859 * The VFS layer already does all the dentry stuff for rename, 3860 * we just have to decrement the usage count for the target if 3861 * it exists so that the VFS layer correctly free's it when it 3862 * gets overwritten. 3863 */ 3864 static int shmem_rename2(struct mnt_idmap *idmap, 3865 struct inode *old_dir, struct dentry *old_dentry, 3866 struct inode *new_dir, struct dentry *new_dentry, 3867 unsigned int flags) 3868 { 3869 struct inode *inode = d_inode(old_dentry); 3870 int they_are_dirs = S_ISDIR(inode->i_mode); 3871 int error; 3872 3873 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3874 return -EINVAL; 3875 3876 if (flags & RENAME_EXCHANGE) 3877 return simple_offset_rename_exchange(old_dir, old_dentry, 3878 new_dir, new_dentry); 3879 3880 if (!simple_offset_empty(new_dentry)) 3881 return -ENOTEMPTY; 3882 3883 if (flags & RENAME_WHITEOUT) { 3884 error = shmem_whiteout(idmap, old_dir, old_dentry); 3885 if (error) 3886 return error; 3887 } 3888 3889 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3890 if (error) 3891 return error; 3892 3893 if (d_really_is_positive(new_dentry)) { 3894 (void) shmem_unlink(new_dir, new_dentry); 3895 if (they_are_dirs) { 3896 drop_nlink(d_inode(new_dentry)); 3897 drop_nlink(old_dir); 3898 } 3899 } else if (they_are_dirs) { 3900 drop_nlink(old_dir); 3901 inc_nlink(new_dir); 3902 } 3903 3904 old_dir->i_size -= BOGO_DIRENT_SIZE; 3905 new_dir->i_size += BOGO_DIRENT_SIZE; 3906 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3907 inode_inc_iversion(old_dir); 3908 inode_inc_iversion(new_dir); 3909 return 0; 3910 } 3911 3912 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3913 struct dentry *dentry, const char *symname) 3914 { 3915 int error; 3916 int len; 3917 struct inode *inode; 3918 struct folio *folio; 3919 3920 len = strlen(symname) + 1; 3921 if (len > PAGE_SIZE) 3922 return -ENAMETOOLONG; 3923 3924 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3925 VM_NORESERVE); 3926 if (IS_ERR(inode)) 3927 return PTR_ERR(inode); 3928 3929 error = security_inode_init_security(inode, dir, &dentry->d_name, 3930 shmem_initxattrs, NULL); 3931 if (error && error != -EOPNOTSUPP) 3932 goto out_iput; 3933 3934 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3935 if (error) 3936 goto out_iput; 3937 3938 inode->i_size = len-1; 3939 if (len <= SHORT_SYMLINK_LEN) { 3940 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3941 if (!inode->i_link) { 3942 error = -ENOMEM; 3943 goto out_remove_offset; 3944 } 3945 inode->i_op = &shmem_short_symlink_operations; 3946 } else { 3947 inode_nohighmem(inode); 3948 inode->i_mapping->a_ops = &shmem_aops; 3949 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3950 if (error) 3951 goto out_remove_offset; 3952 inode->i_op = &shmem_symlink_inode_operations; 3953 memcpy(folio_address(folio), symname, len); 3954 folio_mark_uptodate(folio); 3955 folio_mark_dirty(folio); 3956 folio_unlock(folio); 3957 folio_put(folio); 3958 } 3959 dir->i_size += BOGO_DIRENT_SIZE; 3960 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3961 inode_inc_iversion(dir); 3962 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3963 d_add(dentry, inode); 3964 else 3965 d_instantiate(dentry, inode); 3966 dget(dentry); 3967 return 0; 3968 3969 out_remove_offset: 3970 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3971 out_iput: 3972 iput(inode); 3973 return error; 3974 } 3975 3976 static void shmem_put_link(void *arg) 3977 { 3978 folio_mark_accessed(arg); 3979 folio_put(arg); 3980 } 3981 3982 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3983 struct delayed_call *done) 3984 { 3985 struct folio *folio = NULL; 3986 int error; 3987 3988 if (!dentry) { 3989 folio = filemap_get_folio(inode->i_mapping, 0); 3990 if (IS_ERR(folio)) 3991 return ERR_PTR(-ECHILD); 3992 if (PageHWPoison(folio_page(folio, 0)) || 3993 !folio_test_uptodate(folio)) { 3994 folio_put(folio); 3995 return ERR_PTR(-ECHILD); 3996 } 3997 } else { 3998 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 3999 if (error) 4000 return ERR_PTR(error); 4001 if (!folio) 4002 return ERR_PTR(-ECHILD); 4003 if (PageHWPoison(folio_page(folio, 0))) { 4004 folio_unlock(folio); 4005 folio_put(folio); 4006 return ERR_PTR(-ECHILD); 4007 } 4008 folio_unlock(folio); 4009 } 4010 set_delayed_call(done, shmem_put_link, folio); 4011 return folio_address(folio); 4012 } 4013 4014 #ifdef CONFIG_TMPFS_XATTR 4015 4016 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 4017 { 4018 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4019 4020 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4021 4022 return 0; 4023 } 4024 4025 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4026 struct dentry *dentry, struct fileattr *fa) 4027 { 4028 struct inode *inode = d_inode(dentry); 4029 struct shmem_inode_info *info = SHMEM_I(inode); 4030 int ret, flags; 4031 4032 if (fileattr_has_fsx(fa)) 4033 return -EOPNOTSUPP; 4034 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4035 return -EOPNOTSUPP; 4036 4037 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4038 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4039 4040 ret = shmem_set_inode_flags(inode, flags, dentry); 4041 4042 if (ret) 4043 return ret; 4044 4045 info->fsflags = flags; 4046 4047 inode_set_ctime_current(inode); 4048 inode_inc_iversion(inode); 4049 return 0; 4050 } 4051 4052 /* 4053 * Superblocks without xattr inode operations may get some security.* xattr 4054 * support from the LSM "for free". As soon as we have any other xattrs 4055 * like ACLs, we also need to implement the security.* handlers at 4056 * filesystem level, though. 4057 */ 4058 4059 /* 4060 * Callback for security_inode_init_security() for acquiring xattrs. 4061 */ 4062 static int shmem_initxattrs(struct inode *inode, 4063 const struct xattr *xattr_array, void *fs_info) 4064 { 4065 struct shmem_inode_info *info = SHMEM_I(inode); 4066 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4067 const struct xattr *xattr; 4068 struct simple_xattr *new_xattr; 4069 size_t ispace = 0; 4070 size_t len; 4071 4072 if (sbinfo->max_inodes) { 4073 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4074 ispace += simple_xattr_space(xattr->name, 4075 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4076 } 4077 if (ispace) { 4078 raw_spin_lock(&sbinfo->stat_lock); 4079 if (sbinfo->free_ispace < ispace) 4080 ispace = 0; 4081 else 4082 sbinfo->free_ispace -= ispace; 4083 raw_spin_unlock(&sbinfo->stat_lock); 4084 if (!ispace) 4085 return -ENOSPC; 4086 } 4087 } 4088 4089 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4090 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4091 if (!new_xattr) 4092 break; 4093 4094 len = strlen(xattr->name) + 1; 4095 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4096 GFP_KERNEL_ACCOUNT); 4097 if (!new_xattr->name) { 4098 kvfree(new_xattr); 4099 break; 4100 } 4101 4102 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4103 XATTR_SECURITY_PREFIX_LEN); 4104 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4105 xattr->name, len); 4106 4107 simple_xattr_add(&info->xattrs, new_xattr); 4108 } 4109 4110 if (xattr->name != NULL) { 4111 if (ispace) { 4112 raw_spin_lock(&sbinfo->stat_lock); 4113 sbinfo->free_ispace += ispace; 4114 raw_spin_unlock(&sbinfo->stat_lock); 4115 } 4116 simple_xattrs_free(&info->xattrs, NULL); 4117 return -ENOMEM; 4118 } 4119 4120 return 0; 4121 } 4122 4123 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4124 struct dentry *unused, struct inode *inode, 4125 const char *name, void *buffer, size_t size) 4126 { 4127 struct shmem_inode_info *info = SHMEM_I(inode); 4128 4129 name = xattr_full_name(handler, name); 4130 return simple_xattr_get(&info->xattrs, name, buffer, size); 4131 } 4132 4133 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4134 struct mnt_idmap *idmap, 4135 struct dentry *unused, struct inode *inode, 4136 const char *name, const void *value, 4137 size_t size, int flags) 4138 { 4139 struct shmem_inode_info *info = SHMEM_I(inode); 4140 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4141 struct simple_xattr *old_xattr; 4142 size_t ispace = 0; 4143 4144 name = xattr_full_name(handler, name); 4145 if (value && sbinfo->max_inodes) { 4146 ispace = simple_xattr_space(name, size); 4147 raw_spin_lock(&sbinfo->stat_lock); 4148 if (sbinfo->free_ispace < ispace) 4149 ispace = 0; 4150 else 4151 sbinfo->free_ispace -= ispace; 4152 raw_spin_unlock(&sbinfo->stat_lock); 4153 if (!ispace) 4154 return -ENOSPC; 4155 } 4156 4157 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4158 if (!IS_ERR(old_xattr)) { 4159 ispace = 0; 4160 if (old_xattr && sbinfo->max_inodes) 4161 ispace = simple_xattr_space(old_xattr->name, 4162 old_xattr->size); 4163 simple_xattr_free(old_xattr); 4164 old_xattr = NULL; 4165 inode_set_ctime_current(inode); 4166 inode_inc_iversion(inode); 4167 } 4168 if (ispace) { 4169 raw_spin_lock(&sbinfo->stat_lock); 4170 sbinfo->free_ispace += ispace; 4171 raw_spin_unlock(&sbinfo->stat_lock); 4172 } 4173 return PTR_ERR(old_xattr); 4174 } 4175 4176 static const struct xattr_handler shmem_security_xattr_handler = { 4177 .prefix = XATTR_SECURITY_PREFIX, 4178 .get = shmem_xattr_handler_get, 4179 .set = shmem_xattr_handler_set, 4180 }; 4181 4182 static const struct xattr_handler shmem_trusted_xattr_handler = { 4183 .prefix = XATTR_TRUSTED_PREFIX, 4184 .get = shmem_xattr_handler_get, 4185 .set = shmem_xattr_handler_set, 4186 }; 4187 4188 static const struct xattr_handler shmem_user_xattr_handler = { 4189 .prefix = XATTR_USER_PREFIX, 4190 .get = shmem_xattr_handler_get, 4191 .set = shmem_xattr_handler_set, 4192 }; 4193 4194 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4195 &shmem_security_xattr_handler, 4196 &shmem_trusted_xattr_handler, 4197 &shmem_user_xattr_handler, 4198 NULL 4199 }; 4200 4201 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4202 { 4203 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4204 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4205 } 4206 #endif /* CONFIG_TMPFS_XATTR */ 4207 4208 static const struct inode_operations shmem_short_symlink_operations = { 4209 .getattr = shmem_getattr, 4210 .setattr = shmem_setattr, 4211 .get_link = simple_get_link, 4212 #ifdef CONFIG_TMPFS_XATTR 4213 .listxattr = shmem_listxattr, 4214 #endif 4215 }; 4216 4217 static const struct inode_operations shmem_symlink_inode_operations = { 4218 .getattr = shmem_getattr, 4219 .setattr = shmem_setattr, 4220 .get_link = shmem_get_link, 4221 #ifdef CONFIG_TMPFS_XATTR 4222 .listxattr = shmem_listxattr, 4223 #endif 4224 }; 4225 4226 static struct dentry *shmem_get_parent(struct dentry *child) 4227 { 4228 return ERR_PTR(-ESTALE); 4229 } 4230 4231 static int shmem_match(struct inode *ino, void *vfh) 4232 { 4233 __u32 *fh = vfh; 4234 __u64 inum = fh[2]; 4235 inum = (inum << 32) | fh[1]; 4236 return ino->i_ino == inum && fh[0] == ino->i_generation; 4237 } 4238 4239 /* Find any alias of inode, but prefer a hashed alias */ 4240 static struct dentry *shmem_find_alias(struct inode *inode) 4241 { 4242 struct dentry *alias = d_find_alias(inode); 4243 4244 return alias ?: d_find_any_alias(inode); 4245 } 4246 4247 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4248 struct fid *fid, int fh_len, int fh_type) 4249 { 4250 struct inode *inode; 4251 struct dentry *dentry = NULL; 4252 u64 inum; 4253 4254 if (fh_len < 3) 4255 return NULL; 4256 4257 inum = fid->raw[2]; 4258 inum = (inum << 32) | fid->raw[1]; 4259 4260 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4261 shmem_match, fid->raw); 4262 if (inode) { 4263 dentry = shmem_find_alias(inode); 4264 iput(inode); 4265 } 4266 4267 return dentry; 4268 } 4269 4270 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4271 struct inode *parent) 4272 { 4273 if (*len < 3) { 4274 *len = 3; 4275 return FILEID_INVALID; 4276 } 4277 4278 if (inode_unhashed(inode)) { 4279 /* Unfortunately insert_inode_hash is not idempotent, 4280 * so as we hash inodes here rather than at creation 4281 * time, we need a lock to ensure we only try 4282 * to do it once 4283 */ 4284 static DEFINE_SPINLOCK(lock); 4285 spin_lock(&lock); 4286 if (inode_unhashed(inode)) 4287 __insert_inode_hash(inode, 4288 inode->i_ino + inode->i_generation); 4289 spin_unlock(&lock); 4290 } 4291 4292 fh[0] = inode->i_generation; 4293 fh[1] = inode->i_ino; 4294 fh[2] = ((__u64)inode->i_ino) >> 32; 4295 4296 *len = 3; 4297 return 1; 4298 } 4299 4300 static const struct export_operations shmem_export_ops = { 4301 .get_parent = shmem_get_parent, 4302 .encode_fh = shmem_encode_fh, 4303 .fh_to_dentry = shmem_fh_to_dentry, 4304 }; 4305 4306 enum shmem_param { 4307 Opt_gid, 4308 Opt_huge, 4309 Opt_mode, 4310 Opt_mpol, 4311 Opt_nr_blocks, 4312 Opt_nr_inodes, 4313 Opt_size, 4314 Opt_uid, 4315 Opt_inode32, 4316 Opt_inode64, 4317 Opt_noswap, 4318 Opt_quota, 4319 Opt_usrquota, 4320 Opt_grpquota, 4321 Opt_usrquota_block_hardlimit, 4322 Opt_usrquota_inode_hardlimit, 4323 Opt_grpquota_block_hardlimit, 4324 Opt_grpquota_inode_hardlimit, 4325 Opt_casefold_version, 4326 Opt_casefold, 4327 Opt_strict_encoding, 4328 }; 4329 4330 static const struct constant_table shmem_param_enums_huge[] = { 4331 {"never", SHMEM_HUGE_NEVER }, 4332 {"always", SHMEM_HUGE_ALWAYS }, 4333 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4334 {"advise", SHMEM_HUGE_ADVISE }, 4335 {} 4336 }; 4337 4338 const struct fs_parameter_spec shmem_fs_parameters[] = { 4339 fsparam_gid ("gid", Opt_gid), 4340 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4341 fsparam_u32oct("mode", Opt_mode), 4342 fsparam_string("mpol", Opt_mpol), 4343 fsparam_string("nr_blocks", Opt_nr_blocks), 4344 fsparam_string("nr_inodes", Opt_nr_inodes), 4345 fsparam_string("size", Opt_size), 4346 fsparam_uid ("uid", Opt_uid), 4347 fsparam_flag ("inode32", Opt_inode32), 4348 fsparam_flag ("inode64", Opt_inode64), 4349 fsparam_flag ("noswap", Opt_noswap), 4350 #ifdef CONFIG_TMPFS_QUOTA 4351 fsparam_flag ("quota", Opt_quota), 4352 fsparam_flag ("usrquota", Opt_usrquota), 4353 fsparam_flag ("grpquota", Opt_grpquota), 4354 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4355 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4356 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4357 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4358 #endif 4359 fsparam_string("casefold", Opt_casefold_version), 4360 fsparam_flag ("casefold", Opt_casefold), 4361 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4362 {} 4363 }; 4364 4365 #if IS_ENABLED(CONFIG_UNICODE) 4366 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4367 bool latest_version) 4368 { 4369 struct shmem_options *ctx = fc->fs_private; 4370 unsigned int version = UTF8_LATEST; 4371 struct unicode_map *encoding; 4372 char *version_str = param->string + 5; 4373 4374 if (!latest_version) { 4375 if (strncmp(param->string, "utf8-", 5)) 4376 return invalfc(fc, "Only UTF-8 encodings are supported " 4377 "in the format: utf8-<version number>"); 4378 4379 version = utf8_parse_version(version_str); 4380 if (version < 0) 4381 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4382 } 4383 4384 encoding = utf8_load(version); 4385 4386 if (IS_ERR(encoding)) { 4387 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4388 unicode_major(version), unicode_minor(version), 4389 unicode_rev(version)); 4390 } 4391 4392 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4393 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4394 4395 ctx->encoding = encoding; 4396 4397 return 0; 4398 } 4399 #else 4400 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4401 bool latest_version) 4402 { 4403 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4404 } 4405 #endif 4406 4407 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4408 { 4409 struct shmem_options *ctx = fc->fs_private; 4410 struct fs_parse_result result; 4411 unsigned long long size; 4412 char *rest; 4413 int opt; 4414 kuid_t kuid; 4415 kgid_t kgid; 4416 4417 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4418 if (opt < 0) 4419 return opt; 4420 4421 switch (opt) { 4422 case Opt_size: 4423 size = memparse(param->string, &rest); 4424 if (*rest == '%') { 4425 size <<= PAGE_SHIFT; 4426 size *= totalram_pages(); 4427 do_div(size, 100); 4428 rest++; 4429 } 4430 if (*rest) 4431 goto bad_value; 4432 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4433 ctx->seen |= SHMEM_SEEN_BLOCKS; 4434 break; 4435 case Opt_nr_blocks: 4436 ctx->blocks = memparse(param->string, &rest); 4437 if (*rest || ctx->blocks > LONG_MAX) 4438 goto bad_value; 4439 ctx->seen |= SHMEM_SEEN_BLOCKS; 4440 break; 4441 case Opt_nr_inodes: 4442 ctx->inodes = memparse(param->string, &rest); 4443 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4444 goto bad_value; 4445 ctx->seen |= SHMEM_SEEN_INODES; 4446 break; 4447 case Opt_mode: 4448 ctx->mode = result.uint_32 & 07777; 4449 break; 4450 case Opt_uid: 4451 kuid = result.uid; 4452 4453 /* 4454 * The requested uid must be representable in the 4455 * filesystem's idmapping. 4456 */ 4457 if (!kuid_has_mapping(fc->user_ns, kuid)) 4458 goto bad_value; 4459 4460 ctx->uid = kuid; 4461 break; 4462 case Opt_gid: 4463 kgid = result.gid; 4464 4465 /* 4466 * The requested gid must be representable in the 4467 * filesystem's idmapping. 4468 */ 4469 if (!kgid_has_mapping(fc->user_ns, kgid)) 4470 goto bad_value; 4471 4472 ctx->gid = kgid; 4473 break; 4474 case Opt_huge: 4475 ctx->huge = result.uint_32; 4476 if (ctx->huge != SHMEM_HUGE_NEVER && 4477 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4478 has_transparent_hugepage())) 4479 goto unsupported_parameter; 4480 ctx->seen |= SHMEM_SEEN_HUGE; 4481 break; 4482 case Opt_mpol: 4483 if (IS_ENABLED(CONFIG_NUMA)) { 4484 mpol_put(ctx->mpol); 4485 ctx->mpol = NULL; 4486 if (mpol_parse_str(param->string, &ctx->mpol)) 4487 goto bad_value; 4488 break; 4489 } 4490 goto unsupported_parameter; 4491 case Opt_inode32: 4492 ctx->full_inums = false; 4493 ctx->seen |= SHMEM_SEEN_INUMS; 4494 break; 4495 case Opt_inode64: 4496 if (sizeof(ino_t) < 8) { 4497 return invalfc(fc, 4498 "Cannot use inode64 with <64bit inums in kernel\n"); 4499 } 4500 ctx->full_inums = true; 4501 ctx->seen |= SHMEM_SEEN_INUMS; 4502 break; 4503 case Opt_noswap: 4504 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4505 return invalfc(fc, 4506 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4507 } 4508 ctx->noswap = true; 4509 ctx->seen |= SHMEM_SEEN_NOSWAP; 4510 break; 4511 case Opt_quota: 4512 if (fc->user_ns != &init_user_ns) 4513 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4514 ctx->seen |= SHMEM_SEEN_QUOTA; 4515 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4516 break; 4517 case Opt_usrquota: 4518 if (fc->user_ns != &init_user_ns) 4519 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4520 ctx->seen |= SHMEM_SEEN_QUOTA; 4521 ctx->quota_types |= QTYPE_MASK_USR; 4522 break; 4523 case Opt_grpquota: 4524 if (fc->user_ns != &init_user_ns) 4525 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4526 ctx->seen |= SHMEM_SEEN_QUOTA; 4527 ctx->quota_types |= QTYPE_MASK_GRP; 4528 break; 4529 case Opt_usrquota_block_hardlimit: 4530 size = memparse(param->string, &rest); 4531 if (*rest || !size) 4532 goto bad_value; 4533 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4534 return invalfc(fc, 4535 "User quota block hardlimit too large."); 4536 ctx->qlimits.usrquota_bhardlimit = size; 4537 break; 4538 case Opt_grpquota_block_hardlimit: 4539 size = memparse(param->string, &rest); 4540 if (*rest || !size) 4541 goto bad_value; 4542 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4543 return invalfc(fc, 4544 "Group quota block hardlimit too large."); 4545 ctx->qlimits.grpquota_bhardlimit = size; 4546 break; 4547 case Opt_usrquota_inode_hardlimit: 4548 size = memparse(param->string, &rest); 4549 if (*rest || !size) 4550 goto bad_value; 4551 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4552 return invalfc(fc, 4553 "User quota inode hardlimit too large."); 4554 ctx->qlimits.usrquota_ihardlimit = size; 4555 break; 4556 case Opt_grpquota_inode_hardlimit: 4557 size = memparse(param->string, &rest); 4558 if (*rest || !size) 4559 goto bad_value; 4560 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4561 return invalfc(fc, 4562 "Group quota inode hardlimit too large."); 4563 ctx->qlimits.grpquota_ihardlimit = size; 4564 break; 4565 case Opt_casefold_version: 4566 return shmem_parse_opt_casefold(fc, param, false); 4567 case Opt_casefold: 4568 return shmem_parse_opt_casefold(fc, param, true); 4569 case Opt_strict_encoding: 4570 #if IS_ENABLED(CONFIG_UNICODE) 4571 ctx->strict_encoding = true; 4572 break; 4573 #else 4574 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4575 #endif 4576 } 4577 return 0; 4578 4579 unsupported_parameter: 4580 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4581 bad_value: 4582 return invalfc(fc, "Bad value for '%s'", param->key); 4583 } 4584 4585 static int shmem_parse_options(struct fs_context *fc, void *data) 4586 { 4587 char *options = data; 4588 4589 if (options) { 4590 int err = security_sb_eat_lsm_opts(options, &fc->security); 4591 if (err) 4592 return err; 4593 } 4594 4595 while (options != NULL) { 4596 char *this_char = options; 4597 for (;;) { 4598 /* 4599 * NUL-terminate this option: unfortunately, 4600 * mount options form a comma-separated list, 4601 * but mpol's nodelist may also contain commas. 4602 */ 4603 options = strchr(options, ','); 4604 if (options == NULL) 4605 break; 4606 options++; 4607 if (!isdigit(*options)) { 4608 options[-1] = '\0'; 4609 break; 4610 } 4611 } 4612 if (*this_char) { 4613 char *value = strchr(this_char, '='); 4614 size_t len = 0; 4615 int err; 4616 4617 if (value) { 4618 *value++ = '\0'; 4619 len = strlen(value); 4620 } 4621 err = vfs_parse_fs_string(fc, this_char, value, len); 4622 if (err < 0) 4623 return err; 4624 } 4625 } 4626 return 0; 4627 } 4628 4629 /* 4630 * Reconfigure a shmem filesystem. 4631 */ 4632 static int shmem_reconfigure(struct fs_context *fc) 4633 { 4634 struct shmem_options *ctx = fc->fs_private; 4635 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4636 unsigned long used_isp; 4637 struct mempolicy *mpol = NULL; 4638 const char *err; 4639 4640 raw_spin_lock(&sbinfo->stat_lock); 4641 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4642 4643 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4644 if (!sbinfo->max_blocks) { 4645 err = "Cannot retroactively limit size"; 4646 goto out; 4647 } 4648 if (percpu_counter_compare(&sbinfo->used_blocks, 4649 ctx->blocks) > 0) { 4650 err = "Too small a size for current use"; 4651 goto out; 4652 } 4653 } 4654 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4655 if (!sbinfo->max_inodes) { 4656 err = "Cannot retroactively limit inodes"; 4657 goto out; 4658 } 4659 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4660 err = "Too few inodes for current use"; 4661 goto out; 4662 } 4663 } 4664 4665 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4666 sbinfo->next_ino > UINT_MAX) { 4667 err = "Current inum too high to switch to 32-bit inums"; 4668 goto out; 4669 } 4670 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4671 err = "Cannot disable swap on remount"; 4672 goto out; 4673 } 4674 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4675 err = "Cannot enable swap on remount if it was disabled on first mount"; 4676 goto out; 4677 } 4678 4679 if (ctx->seen & SHMEM_SEEN_QUOTA && 4680 !sb_any_quota_loaded(fc->root->d_sb)) { 4681 err = "Cannot enable quota on remount"; 4682 goto out; 4683 } 4684 4685 #ifdef CONFIG_TMPFS_QUOTA 4686 #define CHANGED_LIMIT(name) \ 4687 (ctx->qlimits.name## hardlimit && \ 4688 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4689 4690 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4691 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4692 err = "Cannot change global quota limit on remount"; 4693 goto out; 4694 } 4695 #endif /* CONFIG_TMPFS_QUOTA */ 4696 4697 if (ctx->seen & SHMEM_SEEN_HUGE) 4698 sbinfo->huge = ctx->huge; 4699 if (ctx->seen & SHMEM_SEEN_INUMS) 4700 sbinfo->full_inums = ctx->full_inums; 4701 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4702 sbinfo->max_blocks = ctx->blocks; 4703 if (ctx->seen & SHMEM_SEEN_INODES) { 4704 sbinfo->max_inodes = ctx->inodes; 4705 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4706 } 4707 4708 /* 4709 * Preserve previous mempolicy unless mpol remount option was specified. 4710 */ 4711 if (ctx->mpol) { 4712 mpol = sbinfo->mpol; 4713 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4714 ctx->mpol = NULL; 4715 } 4716 4717 if (ctx->noswap) 4718 sbinfo->noswap = true; 4719 4720 raw_spin_unlock(&sbinfo->stat_lock); 4721 mpol_put(mpol); 4722 return 0; 4723 out: 4724 raw_spin_unlock(&sbinfo->stat_lock); 4725 return invalfc(fc, "%s", err); 4726 } 4727 4728 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4729 { 4730 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4731 struct mempolicy *mpol; 4732 4733 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4734 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4735 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4736 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4737 if (sbinfo->mode != (0777 | S_ISVTX)) 4738 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4739 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4740 seq_printf(seq, ",uid=%u", 4741 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4742 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4743 seq_printf(seq, ",gid=%u", 4744 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4745 4746 /* 4747 * Showing inode{64,32} might be useful even if it's the system default, 4748 * since then people don't have to resort to checking both here and 4749 * /proc/config.gz to confirm 64-bit inums were successfully applied 4750 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4751 * 4752 * We hide it when inode64 isn't the default and we are using 32-bit 4753 * inodes, since that probably just means the feature isn't even under 4754 * consideration. 4755 * 4756 * As such: 4757 * 4758 * +-----------------+-----------------+ 4759 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4760 * +------------------+-----------------+-----------------+ 4761 * | full_inums=true | show | show | 4762 * | full_inums=false | show | hide | 4763 * +------------------+-----------------+-----------------+ 4764 * 4765 */ 4766 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4767 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4769 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4770 if (sbinfo->huge) 4771 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4772 #endif 4773 mpol = shmem_get_sbmpol(sbinfo); 4774 shmem_show_mpol(seq, mpol); 4775 mpol_put(mpol); 4776 if (sbinfo->noswap) 4777 seq_printf(seq, ",noswap"); 4778 #ifdef CONFIG_TMPFS_QUOTA 4779 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4780 seq_printf(seq, ",usrquota"); 4781 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4782 seq_printf(seq, ",grpquota"); 4783 if (sbinfo->qlimits.usrquota_bhardlimit) 4784 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4785 sbinfo->qlimits.usrquota_bhardlimit); 4786 if (sbinfo->qlimits.grpquota_bhardlimit) 4787 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4788 sbinfo->qlimits.grpquota_bhardlimit); 4789 if (sbinfo->qlimits.usrquota_ihardlimit) 4790 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4791 sbinfo->qlimits.usrquota_ihardlimit); 4792 if (sbinfo->qlimits.grpquota_ihardlimit) 4793 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4794 sbinfo->qlimits.grpquota_ihardlimit); 4795 #endif 4796 return 0; 4797 } 4798 4799 #endif /* CONFIG_TMPFS */ 4800 4801 static void shmem_put_super(struct super_block *sb) 4802 { 4803 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4804 4805 #if IS_ENABLED(CONFIG_UNICODE) 4806 if (sb->s_encoding) 4807 utf8_unload(sb->s_encoding); 4808 #endif 4809 4810 #ifdef CONFIG_TMPFS_QUOTA 4811 shmem_disable_quotas(sb); 4812 #endif 4813 free_percpu(sbinfo->ino_batch); 4814 percpu_counter_destroy(&sbinfo->used_blocks); 4815 mpol_put(sbinfo->mpol); 4816 kfree(sbinfo); 4817 sb->s_fs_info = NULL; 4818 } 4819 4820 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4821 static const struct dentry_operations shmem_ci_dentry_ops = { 4822 .d_hash = generic_ci_d_hash, 4823 .d_compare = generic_ci_d_compare, 4824 .d_delete = always_delete_dentry, 4825 }; 4826 #endif 4827 4828 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4829 { 4830 struct shmem_options *ctx = fc->fs_private; 4831 struct inode *inode; 4832 struct shmem_sb_info *sbinfo; 4833 int error = -ENOMEM; 4834 4835 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4836 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4837 L1_CACHE_BYTES), GFP_KERNEL); 4838 if (!sbinfo) 4839 return error; 4840 4841 sb->s_fs_info = sbinfo; 4842 4843 #ifdef CONFIG_TMPFS 4844 /* 4845 * Per default we only allow half of the physical ram per 4846 * tmpfs instance, limiting inodes to one per page of lowmem; 4847 * but the internal instance is left unlimited. 4848 */ 4849 if (!(sb->s_flags & SB_KERNMOUNT)) { 4850 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4851 ctx->blocks = shmem_default_max_blocks(); 4852 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4853 ctx->inodes = shmem_default_max_inodes(); 4854 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4855 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4856 sbinfo->noswap = ctx->noswap; 4857 } else { 4858 sb->s_flags |= SB_NOUSER; 4859 } 4860 sb->s_export_op = &shmem_export_ops; 4861 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4862 4863 #if IS_ENABLED(CONFIG_UNICODE) 4864 if (!ctx->encoding && ctx->strict_encoding) { 4865 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 4866 error = -EINVAL; 4867 goto failed; 4868 } 4869 4870 if (ctx->encoding) { 4871 sb->s_encoding = ctx->encoding; 4872 sb->s_d_op = &shmem_ci_dentry_ops; 4873 if (ctx->strict_encoding) 4874 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 4875 } 4876 #endif 4877 4878 #else 4879 sb->s_flags |= SB_NOUSER; 4880 #endif /* CONFIG_TMPFS */ 4881 sbinfo->max_blocks = ctx->blocks; 4882 sbinfo->max_inodes = ctx->inodes; 4883 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4884 if (sb->s_flags & SB_KERNMOUNT) { 4885 sbinfo->ino_batch = alloc_percpu(ino_t); 4886 if (!sbinfo->ino_batch) 4887 goto failed; 4888 } 4889 sbinfo->uid = ctx->uid; 4890 sbinfo->gid = ctx->gid; 4891 sbinfo->full_inums = ctx->full_inums; 4892 sbinfo->mode = ctx->mode; 4893 sbinfo->huge = ctx->huge; 4894 sbinfo->mpol = ctx->mpol; 4895 ctx->mpol = NULL; 4896 4897 raw_spin_lock_init(&sbinfo->stat_lock); 4898 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4899 goto failed; 4900 spin_lock_init(&sbinfo->shrinklist_lock); 4901 INIT_LIST_HEAD(&sbinfo->shrinklist); 4902 4903 sb->s_maxbytes = MAX_LFS_FILESIZE; 4904 sb->s_blocksize = PAGE_SIZE; 4905 sb->s_blocksize_bits = PAGE_SHIFT; 4906 sb->s_magic = TMPFS_MAGIC; 4907 sb->s_op = &shmem_ops; 4908 sb->s_time_gran = 1; 4909 #ifdef CONFIG_TMPFS_XATTR 4910 sb->s_xattr = shmem_xattr_handlers; 4911 #endif 4912 #ifdef CONFIG_TMPFS_POSIX_ACL 4913 sb->s_flags |= SB_POSIXACL; 4914 #endif 4915 uuid_t uuid; 4916 uuid_gen(&uuid); 4917 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4918 4919 #ifdef CONFIG_TMPFS_QUOTA 4920 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4921 sb->dq_op = &shmem_quota_operations; 4922 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4923 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4924 4925 /* Copy the default limits from ctx into sbinfo */ 4926 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4927 sizeof(struct shmem_quota_limits)); 4928 4929 if (shmem_enable_quotas(sb, ctx->quota_types)) 4930 goto failed; 4931 } 4932 #endif /* CONFIG_TMPFS_QUOTA */ 4933 4934 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4935 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4936 if (IS_ERR(inode)) { 4937 error = PTR_ERR(inode); 4938 goto failed; 4939 } 4940 inode->i_uid = sbinfo->uid; 4941 inode->i_gid = sbinfo->gid; 4942 sb->s_root = d_make_root(inode); 4943 if (!sb->s_root) 4944 goto failed; 4945 return 0; 4946 4947 failed: 4948 shmem_put_super(sb); 4949 return error; 4950 } 4951 4952 static int shmem_get_tree(struct fs_context *fc) 4953 { 4954 return get_tree_nodev(fc, shmem_fill_super); 4955 } 4956 4957 static void shmem_free_fc(struct fs_context *fc) 4958 { 4959 struct shmem_options *ctx = fc->fs_private; 4960 4961 if (ctx) { 4962 mpol_put(ctx->mpol); 4963 kfree(ctx); 4964 } 4965 } 4966 4967 static const struct fs_context_operations shmem_fs_context_ops = { 4968 .free = shmem_free_fc, 4969 .get_tree = shmem_get_tree, 4970 #ifdef CONFIG_TMPFS 4971 .parse_monolithic = shmem_parse_options, 4972 .parse_param = shmem_parse_one, 4973 .reconfigure = shmem_reconfigure, 4974 #endif 4975 }; 4976 4977 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4978 4979 static struct inode *shmem_alloc_inode(struct super_block *sb) 4980 { 4981 struct shmem_inode_info *info; 4982 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4983 if (!info) 4984 return NULL; 4985 return &info->vfs_inode; 4986 } 4987 4988 static void shmem_free_in_core_inode(struct inode *inode) 4989 { 4990 if (S_ISLNK(inode->i_mode)) 4991 kfree(inode->i_link); 4992 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4993 } 4994 4995 static void shmem_destroy_inode(struct inode *inode) 4996 { 4997 if (S_ISREG(inode->i_mode)) 4998 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4999 if (S_ISDIR(inode->i_mode)) 5000 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5001 } 5002 5003 static void shmem_init_inode(void *foo) 5004 { 5005 struct shmem_inode_info *info = foo; 5006 inode_init_once(&info->vfs_inode); 5007 } 5008 5009 static void __init shmem_init_inodecache(void) 5010 { 5011 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5012 sizeof(struct shmem_inode_info), 5013 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5014 } 5015 5016 static void __init shmem_destroy_inodecache(void) 5017 { 5018 kmem_cache_destroy(shmem_inode_cachep); 5019 } 5020 5021 /* Keep the page in page cache instead of truncating it */ 5022 static int shmem_error_remove_folio(struct address_space *mapping, 5023 struct folio *folio) 5024 { 5025 return 0; 5026 } 5027 5028 static const struct address_space_operations shmem_aops = { 5029 .writepage = shmem_writepage, 5030 .dirty_folio = noop_dirty_folio, 5031 #ifdef CONFIG_TMPFS 5032 .write_begin = shmem_write_begin, 5033 .write_end = shmem_write_end, 5034 #endif 5035 #ifdef CONFIG_MIGRATION 5036 .migrate_folio = migrate_folio, 5037 #endif 5038 .error_remove_folio = shmem_error_remove_folio, 5039 }; 5040 5041 static const struct file_operations shmem_file_operations = { 5042 .mmap = shmem_mmap, 5043 .open = shmem_file_open, 5044 .get_unmapped_area = shmem_get_unmapped_area, 5045 #ifdef CONFIG_TMPFS 5046 .llseek = shmem_file_llseek, 5047 .read_iter = shmem_file_read_iter, 5048 .write_iter = shmem_file_write_iter, 5049 .fsync = noop_fsync, 5050 .splice_read = shmem_file_splice_read, 5051 .splice_write = iter_file_splice_write, 5052 .fallocate = shmem_fallocate, 5053 #endif 5054 }; 5055 5056 static const struct inode_operations shmem_inode_operations = { 5057 .getattr = shmem_getattr, 5058 .setattr = shmem_setattr, 5059 #ifdef CONFIG_TMPFS_XATTR 5060 .listxattr = shmem_listxattr, 5061 .set_acl = simple_set_acl, 5062 .fileattr_get = shmem_fileattr_get, 5063 .fileattr_set = shmem_fileattr_set, 5064 #endif 5065 }; 5066 5067 static const struct inode_operations shmem_dir_inode_operations = { 5068 #ifdef CONFIG_TMPFS 5069 .getattr = shmem_getattr, 5070 .create = shmem_create, 5071 .lookup = simple_lookup, 5072 .link = shmem_link, 5073 .unlink = shmem_unlink, 5074 .symlink = shmem_symlink, 5075 .mkdir = shmem_mkdir, 5076 .rmdir = shmem_rmdir, 5077 .mknod = shmem_mknod, 5078 .rename = shmem_rename2, 5079 .tmpfile = shmem_tmpfile, 5080 .get_offset_ctx = shmem_get_offset_ctx, 5081 #endif 5082 #ifdef CONFIG_TMPFS_XATTR 5083 .listxattr = shmem_listxattr, 5084 .fileattr_get = shmem_fileattr_get, 5085 .fileattr_set = shmem_fileattr_set, 5086 #endif 5087 #ifdef CONFIG_TMPFS_POSIX_ACL 5088 .setattr = shmem_setattr, 5089 .set_acl = simple_set_acl, 5090 #endif 5091 }; 5092 5093 static const struct inode_operations shmem_special_inode_operations = { 5094 .getattr = shmem_getattr, 5095 #ifdef CONFIG_TMPFS_XATTR 5096 .listxattr = shmem_listxattr, 5097 #endif 5098 #ifdef CONFIG_TMPFS_POSIX_ACL 5099 .setattr = shmem_setattr, 5100 .set_acl = simple_set_acl, 5101 #endif 5102 }; 5103 5104 static const struct super_operations shmem_ops = { 5105 .alloc_inode = shmem_alloc_inode, 5106 .free_inode = shmem_free_in_core_inode, 5107 .destroy_inode = shmem_destroy_inode, 5108 #ifdef CONFIG_TMPFS 5109 .statfs = shmem_statfs, 5110 .show_options = shmem_show_options, 5111 #endif 5112 #ifdef CONFIG_TMPFS_QUOTA 5113 .get_dquots = shmem_get_dquots, 5114 #endif 5115 .evict_inode = shmem_evict_inode, 5116 .drop_inode = generic_delete_inode, 5117 .put_super = shmem_put_super, 5118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5119 .nr_cached_objects = shmem_unused_huge_count, 5120 .free_cached_objects = shmem_unused_huge_scan, 5121 #endif 5122 }; 5123 5124 static const struct vm_operations_struct shmem_vm_ops = { 5125 .fault = shmem_fault, 5126 .map_pages = filemap_map_pages, 5127 #ifdef CONFIG_NUMA 5128 .set_policy = shmem_set_policy, 5129 .get_policy = shmem_get_policy, 5130 #endif 5131 }; 5132 5133 static const struct vm_operations_struct shmem_anon_vm_ops = { 5134 .fault = shmem_fault, 5135 .map_pages = filemap_map_pages, 5136 #ifdef CONFIG_NUMA 5137 .set_policy = shmem_set_policy, 5138 .get_policy = shmem_get_policy, 5139 #endif 5140 }; 5141 5142 int shmem_init_fs_context(struct fs_context *fc) 5143 { 5144 struct shmem_options *ctx; 5145 5146 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5147 if (!ctx) 5148 return -ENOMEM; 5149 5150 ctx->mode = 0777 | S_ISVTX; 5151 ctx->uid = current_fsuid(); 5152 ctx->gid = current_fsgid(); 5153 5154 #if IS_ENABLED(CONFIG_UNICODE) 5155 ctx->encoding = NULL; 5156 #endif 5157 5158 fc->fs_private = ctx; 5159 fc->ops = &shmem_fs_context_ops; 5160 return 0; 5161 } 5162 5163 static struct file_system_type shmem_fs_type = { 5164 .owner = THIS_MODULE, 5165 .name = "tmpfs", 5166 .init_fs_context = shmem_init_fs_context, 5167 #ifdef CONFIG_TMPFS 5168 .parameters = shmem_fs_parameters, 5169 #endif 5170 .kill_sb = kill_litter_super, 5171 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5172 }; 5173 5174 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5175 5176 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5177 { \ 5178 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5179 .show = _show, \ 5180 .store = _store, \ 5181 } 5182 5183 #define TMPFS_ATTR_W(_name, _store) \ 5184 static struct kobj_attribute tmpfs_attr_##_name = \ 5185 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5186 5187 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5188 static struct kobj_attribute tmpfs_attr_##_name = \ 5189 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5190 5191 #define TMPFS_ATTR_RO(_name, _show) \ 5192 static struct kobj_attribute tmpfs_attr_##_name = \ 5193 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5194 5195 #if IS_ENABLED(CONFIG_UNICODE) 5196 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5197 char *buf) 5198 { 5199 return sysfs_emit(buf, "supported\n"); 5200 } 5201 TMPFS_ATTR_RO(casefold, casefold_show); 5202 #endif 5203 5204 static struct attribute *tmpfs_attributes[] = { 5205 #if IS_ENABLED(CONFIG_UNICODE) 5206 &tmpfs_attr_casefold.attr, 5207 #endif 5208 NULL 5209 }; 5210 5211 static const struct attribute_group tmpfs_attribute_group = { 5212 .attrs = tmpfs_attributes, 5213 .name = "features" 5214 }; 5215 5216 static struct kobject *tmpfs_kobj; 5217 5218 static int __init tmpfs_sysfs_init(void) 5219 { 5220 int ret; 5221 5222 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5223 if (!tmpfs_kobj) 5224 return -ENOMEM; 5225 5226 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5227 if (ret) 5228 kobject_put(tmpfs_kobj); 5229 5230 return ret; 5231 } 5232 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5233 5234 void __init shmem_init(void) 5235 { 5236 int error; 5237 5238 shmem_init_inodecache(); 5239 5240 #ifdef CONFIG_TMPFS_QUOTA 5241 register_quota_format(&shmem_quota_format); 5242 #endif 5243 5244 error = register_filesystem(&shmem_fs_type); 5245 if (error) { 5246 pr_err("Could not register tmpfs\n"); 5247 goto out2; 5248 } 5249 5250 shm_mnt = kern_mount(&shmem_fs_type); 5251 if (IS_ERR(shm_mnt)) { 5252 error = PTR_ERR(shm_mnt); 5253 pr_err("Could not kern_mount tmpfs\n"); 5254 goto out1; 5255 } 5256 5257 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5258 error = tmpfs_sysfs_init(); 5259 if (error) { 5260 pr_err("Could not init tmpfs sysfs\n"); 5261 goto out1; 5262 } 5263 #endif 5264 5265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5266 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5267 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5268 else 5269 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5270 5271 /* 5272 * Default to setting PMD-sized THP to inherit the global setting and 5273 * disable all other multi-size THPs. 5274 */ 5275 if (!shmem_orders_configured) 5276 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5277 #endif 5278 return; 5279 5280 out1: 5281 unregister_filesystem(&shmem_fs_type); 5282 out2: 5283 #ifdef CONFIG_TMPFS_QUOTA 5284 unregister_quota_format(&shmem_quota_format); 5285 #endif 5286 shmem_destroy_inodecache(); 5287 shm_mnt = ERR_PTR(error); 5288 } 5289 5290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5291 static ssize_t shmem_enabled_show(struct kobject *kobj, 5292 struct kobj_attribute *attr, char *buf) 5293 { 5294 static const int values[] = { 5295 SHMEM_HUGE_ALWAYS, 5296 SHMEM_HUGE_WITHIN_SIZE, 5297 SHMEM_HUGE_ADVISE, 5298 SHMEM_HUGE_NEVER, 5299 SHMEM_HUGE_DENY, 5300 SHMEM_HUGE_FORCE, 5301 }; 5302 int len = 0; 5303 int i; 5304 5305 for (i = 0; i < ARRAY_SIZE(values); i++) { 5306 len += sysfs_emit_at(buf, len, 5307 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5308 i ? " " : "", shmem_format_huge(values[i])); 5309 } 5310 len += sysfs_emit_at(buf, len, "\n"); 5311 5312 return len; 5313 } 5314 5315 static ssize_t shmem_enabled_store(struct kobject *kobj, 5316 struct kobj_attribute *attr, const char *buf, size_t count) 5317 { 5318 char tmp[16]; 5319 int huge, err; 5320 5321 if (count + 1 > sizeof(tmp)) 5322 return -EINVAL; 5323 memcpy(tmp, buf, count); 5324 tmp[count] = '\0'; 5325 if (count && tmp[count - 1] == '\n') 5326 tmp[count - 1] = '\0'; 5327 5328 huge = shmem_parse_huge(tmp); 5329 if (huge == -EINVAL) 5330 return huge; 5331 5332 shmem_huge = huge; 5333 if (shmem_huge > SHMEM_HUGE_DENY) 5334 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5335 5336 err = start_stop_khugepaged(); 5337 return err ? err : count; 5338 } 5339 5340 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5341 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5342 5343 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5344 struct kobj_attribute *attr, char *buf) 5345 { 5346 int order = to_thpsize(kobj)->order; 5347 const char *output; 5348 5349 if (test_bit(order, &huge_shmem_orders_always)) 5350 output = "[always] inherit within_size advise never"; 5351 else if (test_bit(order, &huge_shmem_orders_inherit)) 5352 output = "always [inherit] within_size advise never"; 5353 else if (test_bit(order, &huge_shmem_orders_within_size)) 5354 output = "always inherit [within_size] advise never"; 5355 else if (test_bit(order, &huge_shmem_orders_madvise)) 5356 output = "always inherit within_size [advise] never"; 5357 else 5358 output = "always inherit within_size advise [never]"; 5359 5360 return sysfs_emit(buf, "%s\n", output); 5361 } 5362 5363 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5364 struct kobj_attribute *attr, 5365 const char *buf, size_t count) 5366 { 5367 int order = to_thpsize(kobj)->order; 5368 ssize_t ret = count; 5369 5370 if (sysfs_streq(buf, "always")) { 5371 spin_lock(&huge_shmem_orders_lock); 5372 clear_bit(order, &huge_shmem_orders_inherit); 5373 clear_bit(order, &huge_shmem_orders_madvise); 5374 clear_bit(order, &huge_shmem_orders_within_size); 5375 set_bit(order, &huge_shmem_orders_always); 5376 spin_unlock(&huge_shmem_orders_lock); 5377 } else if (sysfs_streq(buf, "inherit")) { 5378 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5379 if (shmem_huge == SHMEM_HUGE_FORCE && 5380 order != HPAGE_PMD_ORDER) 5381 return -EINVAL; 5382 5383 spin_lock(&huge_shmem_orders_lock); 5384 clear_bit(order, &huge_shmem_orders_always); 5385 clear_bit(order, &huge_shmem_orders_madvise); 5386 clear_bit(order, &huge_shmem_orders_within_size); 5387 set_bit(order, &huge_shmem_orders_inherit); 5388 spin_unlock(&huge_shmem_orders_lock); 5389 } else if (sysfs_streq(buf, "within_size")) { 5390 spin_lock(&huge_shmem_orders_lock); 5391 clear_bit(order, &huge_shmem_orders_always); 5392 clear_bit(order, &huge_shmem_orders_inherit); 5393 clear_bit(order, &huge_shmem_orders_madvise); 5394 set_bit(order, &huge_shmem_orders_within_size); 5395 spin_unlock(&huge_shmem_orders_lock); 5396 } else if (sysfs_streq(buf, "advise")) { 5397 spin_lock(&huge_shmem_orders_lock); 5398 clear_bit(order, &huge_shmem_orders_always); 5399 clear_bit(order, &huge_shmem_orders_inherit); 5400 clear_bit(order, &huge_shmem_orders_within_size); 5401 set_bit(order, &huge_shmem_orders_madvise); 5402 spin_unlock(&huge_shmem_orders_lock); 5403 } else if (sysfs_streq(buf, "never")) { 5404 spin_lock(&huge_shmem_orders_lock); 5405 clear_bit(order, &huge_shmem_orders_always); 5406 clear_bit(order, &huge_shmem_orders_inherit); 5407 clear_bit(order, &huge_shmem_orders_within_size); 5408 clear_bit(order, &huge_shmem_orders_madvise); 5409 spin_unlock(&huge_shmem_orders_lock); 5410 } else { 5411 ret = -EINVAL; 5412 } 5413 5414 if (ret > 0) { 5415 int err = start_stop_khugepaged(); 5416 5417 if (err) 5418 ret = err; 5419 } 5420 return ret; 5421 } 5422 5423 struct kobj_attribute thpsize_shmem_enabled_attr = 5424 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5425 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5426 5427 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5428 5429 static int __init setup_transparent_hugepage_shmem(char *str) 5430 { 5431 int huge; 5432 5433 huge = shmem_parse_huge(str); 5434 if (huge == -EINVAL) { 5435 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5436 return huge; 5437 } 5438 5439 shmem_huge = huge; 5440 return 1; 5441 } 5442 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5443 5444 static char str_dup[PAGE_SIZE] __initdata; 5445 static int __init setup_thp_shmem(char *str) 5446 { 5447 char *token, *range, *policy, *subtoken; 5448 unsigned long always, inherit, madvise, within_size; 5449 char *start_size, *end_size; 5450 int start, end, nr; 5451 char *p; 5452 5453 if (!str || strlen(str) + 1 > PAGE_SIZE) 5454 goto err; 5455 strscpy(str_dup, str); 5456 5457 always = huge_shmem_orders_always; 5458 inherit = huge_shmem_orders_inherit; 5459 madvise = huge_shmem_orders_madvise; 5460 within_size = huge_shmem_orders_within_size; 5461 p = str_dup; 5462 while ((token = strsep(&p, ";")) != NULL) { 5463 range = strsep(&token, ":"); 5464 policy = token; 5465 5466 if (!policy) 5467 goto err; 5468 5469 while ((subtoken = strsep(&range, ",")) != NULL) { 5470 if (strchr(subtoken, '-')) { 5471 start_size = strsep(&subtoken, "-"); 5472 end_size = subtoken; 5473 5474 start = get_order_from_str(start_size, 5475 THP_ORDERS_ALL_FILE_DEFAULT); 5476 end = get_order_from_str(end_size, 5477 THP_ORDERS_ALL_FILE_DEFAULT); 5478 } else { 5479 start_size = end_size = subtoken; 5480 start = end = get_order_from_str(subtoken, 5481 THP_ORDERS_ALL_FILE_DEFAULT); 5482 } 5483 5484 if (start == -EINVAL) { 5485 pr_err("invalid size %s in thp_shmem boot parameter\n", 5486 start_size); 5487 goto err; 5488 } 5489 5490 if (end == -EINVAL) { 5491 pr_err("invalid size %s in thp_shmem boot parameter\n", 5492 end_size); 5493 goto err; 5494 } 5495 5496 if (start < 0 || end < 0 || start > end) 5497 goto err; 5498 5499 nr = end - start + 1; 5500 if (!strcmp(policy, "always")) { 5501 bitmap_set(&always, start, nr); 5502 bitmap_clear(&inherit, start, nr); 5503 bitmap_clear(&madvise, start, nr); 5504 bitmap_clear(&within_size, start, nr); 5505 } else if (!strcmp(policy, "advise")) { 5506 bitmap_set(&madvise, start, nr); 5507 bitmap_clear(&inherit, start, nr); 5508 bitmap_clear(&always, start, nr); 5509 bitmap_clear(&within_size, start, nr); 5510 } else if (!strcmp(policy, "inherit")) { 5511 bitmap_set(&inherit, start, nr); 5512 bitmap_clear(&madvise, start, nr); 5513 bitmap_clear(&always, start, nr); 5514 bitmap_clear(&within_size, start, nr); 5515 } else if (!strcmp(policy, "within_size")) { 5516 bitmap_set(&within_size, start, nr); 5517 bitmap_clear(&inherit, start, nr); 5518 bitmap_clear(&madvise, start, nr); 5519 bitmap_clear(&always, start, nr); 5520 } else if (!strcmp(policy, "never")) { 5521 bitmap_clear(&inherit, start, nr); 5522 bitmap_clear(&madvise, start, nr); 5523 bitmap_clear(&always, start, nr); 5524 bitmap_clear(&within_size, start, nr); 5525 } else { 5526 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5527 goto err; 5528 } 5529 } 5530 } 5531 5532 huge_shmem_orders_always = always; 5533 huge_shmem_orders_madvise = madvise; 5534 huge_shmem_orders_inherit = inherit; 5535 huge_shmem_orders_within_size = within_size; 5536 shmem_orders_configured = true; 5537 return 1; 5538 5539 err: 5540 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5541 return 0; 5542 } 5543 __setup("thp_shmem=", setup_thp_shmem); 5544 5545 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5546 5547 #else /* !CONFIG_SHMEM */ 5548 5549 /* 5550 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5551 * 5552 * This is intended for small system where the benefits of the full 5553 * shmem code (swap-backed and resource-limited) are outweighed by 5554 * their complexity. On systems without swap this code should be 5555 * effectively equivalent, but much lighter weight. 5556 */ 5557 5558 static struct file_system_type shmem_fs_type = { 5559 .name = "tmpfs", 5560 .init_fs_context = ramfs_init_fs_context, 5561 .parameters = ramfs_fs_parameters, 5562 .kill_sb = ramfs_kill_sb, 5563 .fs_flags = FS_USERNS_MOUNT, 5564 }; 5565 5566 void __init shmem_init(void) 5567 { 5568 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5569 5570 shm_mnt = kern_mount(&shmem_fs_type); 5571 BUG_ON(IS_ERR(shm_mnt)); 5572 } 5573 5574 int shmem_unuse(unsigned int type) 5575 { 5576 return 0; 5577 } 5578 5579 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5580 { 5581 return 0; 5582 } 5583 5584 void shmem_unlock_mapping(struct address_space *mapping) 5585 { 5586 } 5587 5588 #ifdef CONFIG_MMU 5589 unsigned long shmem_get_unmapped_area(struct file *file, 5590 unsigned long addr, unsigned long len, 5591 unsigned long pgoff, unsigned long flags) 5592 { 5593 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5594 } 5595 #endif 5596 5597 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5598 { 5599 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5600 } 5601 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5602 5603 #define shmem_vm_ops generic_file_vm_ops 5604 #define shmem_anon_vm_ops generic_file_vm_ops 5605 #define shmem_file_operations ramfs_file_operations 5606 #define shmem_acct_size(flags, size) 0 5607 #define shmem_unacct_size(flags, size) do {} while (0) 5608 5609 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5610 struct super_block *sb, struct inode *dir, 5611 umode_t mode, dev_t dev, unsigned long flags) 5612 { 5613 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5614 return inode ? inode : ERR_PTR(-ENOSPC); 5615 } 5616 5617 #endif /* CONFIG_SHMEM */ 5618 5619 /* common code */ 5620 5621 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5622 loff_t size, unsigned long flags, unsigned int i_flags) 5623 { 5624 struct inode *inode; 5625 struct file *res; 5626 5627 if (IS_ERR(mnt)) 5628 return ERR_CAST(mnt); 5629 5630 if (size < 0 || size > MAX_LFS_FILESIZE) 5631 return ERR_PTR(-EINVAL); 5632 5633 if (shmem_acct_size(flags, size)) 5634 return ERR_PTR(-ENOMEM); 5635 5636 if (is_idmapped_mnt(mnt)) 5637 return ERR_PTR(-EINVAL); 5638 5639 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5640 S_IFREG | S_IRWXUGO, 0, flags); 5641 if (IS_ERR(inode)) { 5642 shmem_unacct_size(flags, size); 5643 return ERR_CAST(inode); 5644 } 5645 inode->i_flags |= i_flags; 5646 inode->i_size = size; 5647 clear_nlink(inode); /* It is unlinked */ 5648 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5649 if (!IS_ERR(res)) 5650 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5651 &shmem_file_operations); 5652 if (IS_ERR(res)) 5653 iput(inode); 5654 return res; 5655 } 5656 5657 /** 5658 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5659 * kernel internal. There will be NO LSM permission checks against the 5660 * underlying inode. So users of this interface must do LSM checks at a 5661 * higher layer. The users are the big_key and shm implementations. LSM 5662 * checks are provided at the key or shm level rather than the inode. 5663 * @name: name for dentry (to be seen in /proc/<pid>/maps 5664 * @size: size to be set for the file 5665 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5666 */ 5667 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5668 { 5669 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5670 } 5671 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5672 5673 /** 5674 * shmem_file_setup - get an unlinked file living in tmpfs 5675 * @name: name for dentry (to be seen in /proc/<pid>/maps 5676 * @size: size to be set for the file 5677 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5678 */ 5679 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5680 { 5681 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5682 } 5683 EXPORT_SYMBOL_GPL(shmem_file_setup); 5684 5685 /** 5686 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5687 * @mnt: the tmpfs mount where the file will be created 5688 * @name: name for dentry (to be seen in /proc/<pid>/maps 5689 * @size: size to be set for the file 5690 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5691 */ 5692 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5693 loff_t size, unsigned long flags) 5694 { 5695 return __shmem_file_setup(mnt, name, size, flags, 0); 5696 } 5697 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5698 5699 /** 5700 * shmem_zero_setup - setup a shared anonymous mapping 5701 * @vma: the vma to be mmapped is prepared by do_mmap 5702 */ 5703 int shmem_zero_setup(struct vm_area_struct *vma) 5704 { 5705 struct file *file; 5706 loff_t size = vma->vm_end - vma->vm_start; 5707 5708 /* 5709 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5710 * between XFS directory reading and selinux: since this file is only 5711 * accessible to the user through its mapping, use S_PRIVATE flag to 5712 * bypass file security, in the same way as shmem_kernel_file_setup(). 5713 */ 5714 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5715 if (IS_ERR(file)) 5716 return PTR_ERR(file); 5717 5718 if (vma->vm_file) 5719 fput(vma->vm_file); 5720 vma->vm_file = file; 5721 vma->vm_ops = &shmem_anon_vm_ops; 5722 5723 return 0; 5724 } 5725 5726 /** 5727 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5728 * @mapping: the folio's address_space 5729 * @index: the folio index 5730 * @gfp: the page allocator flags to use if allocating 5731 * 5732 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5733 * with any new page allocations done using the specified allocation flags. 5734 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5735 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5736 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5737 * 5738 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5739 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5740 */ 5741 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5742 pgoff_t index, gfp_t gfp) 5743 { 5744 #ifdef CONFIG_SHMEM 5745 struct inode *inode = mapping->host; 5746 struct folio *folio; 5747 int error; 5748 5749 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5750 gfp, NULL, NULL); 5751 if (error) 5752 return ERR_PTR(error); 5753 5754 folio_unlock(folio); 5755 return folio; 5756 #else 5757 /* 5758 * The tiny !SHMEM case uses ramfs without swap 5759 */ 5760 return mapping_read_folio_gfp(mapping, index, gfp); 5761 #endif 5762 } 5763 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5764 5765 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5766 pgoff_t index, gfp_t gfp) 5767 { 5768 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5769 struct page *page; 5770 5771 if (IS_ERR(folio)) 5772 return &folio->page; 5773 5774 page = folio_file_page(folio, index); 5775 if (PageHWPoison(page)) { 5776 folio_put(folio); 5777 return ERR_PTR(-EIO); 5778 } 5779 5780 return page; 5781 } 5782 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5783