1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(const struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(const struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(const struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back or split by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 * Returns the swap entry's order if it still presents, else returns -1. 520 */ 521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 522 swp_entry_t swap) 523 { 524 XA_STATE(xas, &mapping->i_pages, index); 525 int ret = -1; 526 void *entry; 527 528 rcu_read_lock(); 529 do { 530 entry = xas_load(&xas); 531 if (entry == swp_to_radix_entry(swap)) 532 ret = xas_get_order(&xas); 533 } while (xas_retry(&xas, entry)); 534 rcu_read_unlock(); 535 return ret; 536 } 537 538 /* 539 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 540 * 541 * SHMEM_HUGE_NEVER: 542 * disables huge pages for the mount; 543 * SHMEM_HUGE_ALWAYS: 544 * enables huge pages for the mount; 545 * SHMEM_HUGE_WITHIN_SIZE: 546 * only allocate huge pages if the page will be fully within i_size, 547 * also respect madvise() hints; 548 * SHMEM_HUGE_ADVISE: 549 * only allocate huge pages if requested with madvise(); 550 */ 551 552 #define SHMEM_HUGE_NEVER 0 553 #define SHMEM_HUGE_ALWAYS 1 554 #define SHMEM_HUGE_WITHIN_SIZE 2 555 #define SHMEM_HUGE_ADVISE 3 556 557 /* 558 * Special values. 559 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 560 * 561 * SHMEM_HUGE_DENY: 562 * disables huge on shm_mnt and all mounts, for emergency use; 563 * SHMEM_HUGE_FORCE: 564 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 565 * 566 */ 567 #define SHMEM_HUGE_DENY (-1) 568 #define SHMEM_HUGE_FORCE (-2) 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 /* ifdef here to avoid bloating shmem.o when not necessary */ 572 573 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 574 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 575 576 static unsigned int shmem_get_orders_within_size(struct inode *inode, 577 unsigned long within_size_orders, pgoff_t index, 578 loff_t write_end) 579 { 580 pgoff_t aligned_index; 581 unsigned long order; 582 loff_t i_size; 583 584 order = highest_order(within_size_orders); 585 while (within_size_orders) { 586 aligned_index = round_up(index + 1, 1 << order); 587 i_size = max(write_end, i_size_read(inode)); 588 i_size = round_up(i_size, PAGE_SIZE); 589 if (i_size >> PAGE_SHIFT >= aligned_index) 590 return within_size_orders; 591 592 order = next_order(&within_size_orders, order); 593 } 594 595 return 0; 596 } 597 598 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 599 loff_t write_end, bool shmem_huge_force, 600 struct vm_area_struct *vma, 601 vm_flags_t vm_flags) 602 { 603 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 604 0 : BIT(HPAGE_PMD_ORDER); 605 unsigned long within_size_orders; 606 607 if (!S_ISREG(inode->i_mode)) 608 return 0; 609 if (shmem_huge == SHMEM_HUGE_DENY) 610 return 0; 611 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 612 return maybe_pmd_order; 613 614 /* 615 * The huge order allocation for anon shmem is controlled through 616 * the mTHP interface, so we still use PMD-sized huge order to 617 * check whether global control is enabled. 618 * 619 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 620 * allocate huge pages due to lack of a write size hint. 621 * 622 * For tmpfs with 'huge=always' or 'huge=within_size' mount option, 623 * we will always try PMD-sized order first. If that failed, it will 624 * fall back to small large folios. 625 */ 626 switch (SHMEM_SB(inode->i_sb)->huge) { 627 case SHMEM_HUGE_ALWAYS: 628 if (vma) 629 return maybe_pmd_order; 630 631 return THP_ORDERS_ALL_FILE_DEFAULT; 632 case SHMEM_HUGE_WITHIN_SIZE: 633 if (vma) 634 within_size_orders = maybe_pmd_order; 635 else 636 within_size_orders = THP_ORDERS_ALL_FILE_DEFAULT; 637 638 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 639 index, write_end); 640 if (within_size_orders > 0) 641 return within_size_orders; 642 643 fallthrough; 644 case SHMEM_HUGE_ADVISE: 645 if (vm_flags & VM_HUGEPAGE) 646 return maybe_pmd_order; 647 fallthrough; 648 default: 649 return 0; 650 } 651 } 652 653 static int shmem_parse_huge(const char *str) 654 { 655 int huge; 656 657 if (!str) 658 return -EINVAL; 659 660 if (!strcmp(str, "never")) 661 huge = SHMEM_HUGE_NEVER; 662 else if (!strcmp(str, "always")) 663 huge = SHMEM_HUGE_ALWAYS; 664 else if (!strcmp(str, "within_size")) 665 huge = SHMEM_HUGE_WITHIN_SIZE; 666 else if (!strcmp(str, "advise")) 667 huge = SHMEM_HUGE_ADVISE; 668 else if (!strcmp(str, "deny")) 669 huge = SHMEM_HUGE_DENY; 670 else if (!strcmp(str, "force")) 671 huge = SHMEM_HUGE_FORCE; 672 else 673 return -EINVAL; 674 675 if (!has_transparent_hugepage() && 676 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 677 return -EINVAL; 678 679 /* Do not override huge allocation policy with non-PMD sized mTHP */ 680 if (huge == SHMEM_HUGE_FORCE && 681 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 682 return -EINVAL; 683 684 return huge; 685 } 686 687 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 688 static const char *shmem_format_huge(int huge) 689 { 690 switch (huge) { 691 case SHMEM_HUGE_NEVER: 692 return "never"; 693 case SHMEM_HUGE_ALWAYS: 694 return "always"; 695 case SHMEM_HUGE_WITHIN_SIZE: 696 return "within_size"; 697 case SHMEM_HUGE_ADVISE: 698 return "advise"; 699 case SHMEM_HUGE_DENY: 700 return "deny"; 701 case SHMEM_HUGE_FORCE: 702 return "force"; 703 default: 704 VM_BUG_ON(1); 705 return "bad_val"; 706 } 707 } 708 #endif 709 710 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 711 struct shrink_control *sc, unsigned long nr_to_free) 712 { 713 LIST_HEAD(list), *pos, *next; 714 struct inode *inode; 715 struct shmem_inode_info *info; 716 struct folio *folio; 717 unsigned long batch = sc ? sc->nr_to_scan : 128; 718 unsigned long split = 0, freed = 0; 719 720 if (list_empty(&sbinfo->shrinklist)) 721 return SHRINK_STOP; 722 723 spin_lock(&sbinfo->shrinklist_lock); 724 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 725 info = list_entry(pos, struct shmem_inode_info, shrinklist); 726 727 /* pin the inode */ 728 inode = igrab(&info->vfs_inode); 729 730 /* inode is about to be evicted */ 731 if (!inode) { 732 list_del_init(&info->shrinklist); 733 goto next; 734 } 735 736 list_move(&info->shrinklist, &list); 737 next: 738 sbinfo->shrinklist_len--; 739 if (!--batch) 740 break; 741 } 742 spin_unlock(&sbinfo->shrinklist_lock); 743 744 list_for_each_safe(pos, next, &list) { 745 pgoff_t next, end; 746 loff_t i_size; 747 int ret; 748 749 info = list_entry(pos, struct shmem_inode_info, shrinklist); 750 inode = &info->vfs_inode; 751 752 if (nr_to_free && freed >= nr_to_free) 753 goto move_back; 754 755 i_size = i_size_read(inode); 756 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 757 if (!folio || xa_is_value(folio)) 758 goto drop; 759 760 /* No large folio at the end of the file: nothing to split */ 761 if (!folio_test_large(folio)) { 762 folio_put(folio); 763 goto drop; 764 } 765 766 /* Check if there is anything to gain from splitting */ 767 next = folio_next_index(folio); 768 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 769 if (end <= folio->index || end >= next) { 770 folio_put(folio); 771 goto drop; 772 } 773 774 /* 775 * Move the inode on the list back to shrinklist if we failed 776 * to lock the page at this time. 777 * 778 * Waiting for the lock may lead to deadlock in the 779 * reclaim path. 780 */ 781 if (!folio_trylock(folio)) { 782 folio_put(folio); 783 goto move_back; 784 } 785 786 ret = split_folio(folio); 787 folio_unlock(folio); 788 folio_put(folio); 789 790 /* If split failed move the inode on the list back to shrinklist */ 791 if (ret) 792 goto move_back; 793 794 freed += next - end; 795 split++; 796 drop: 797 list_del_init(&info->shrinklist); 798 goto put; 799 move_back: 800 /* 801 * Make sure the inode is either on the global list or deleted 802 * from any local list before iput() since it could be deleted 803 * in another thread once we put the inode (then the local list 804 * is corrupted). 805 */ 806 spin_lock(&sbinfo->shrinklist_lock); 807 list_move(&info->shrinklist, &sbinfo->shrinklist); 808 sbinfo->shrinklist_len++; 809 spin_unlock(&sbinfo->shrinklist_lock); 810 put: 811 iput(inode); 812 } 813 814 return split; 815 } 816 817 static long shmem_unused_huge_scan(struct super_block *sb, 818 struct shrink_control *sc) 819 { 820 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 821 822 if (!READ_ONCE(sbinfo->shrinklist_len)) 823 return SHRINK_STOP; 824 825 return shmem_unused_huge_shrink(sbinfo, sc, 0); 826 } 827 828 static long shmem_unused_huge_count(struct super_block *sb, 829 struct shrink_control *sc) 830 { 831 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 832 return READ_ONCE(sbinfo->shrinklist_len); 833 } 834 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 835 836 #define shmem_huge SHMEM_HUGE_DENY 837 838 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 839 struct shrink_control *sc, unsigned long nr_to_free) 840 { 841 return 0; 842 } 843 844 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 845 loff_t write_end, bool shmem_huge_force, 846 struct vm_area_struct *vma, 847 vm_flags_t vm_flags) 848 { 849 return 0; 850 } 851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 852 853 static void shmem_update_stats(struct folio *folio, int nr_pages) 854 { 855 if (folio_test_pmd_mappable(folio)) 856 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 857 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 858 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 859 } 860 861 /* 862 * Somewhat like filemap_add_folio, but error if expected item has gone. 863 */ 864 static int shmem_add_to_page_cache(struct folio *folio, 865 struct address_space *mapping, 866 pgoff_t index, void *expected, gfp_t gfp) 867 { 868 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 869 unsigned long nr = folio_nr_pages(folio); 870 swp_entry_t iter, swap; 871 void *entry; 872 873 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 874 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 875 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 876 877 folio_ref_add(folio, nr); 878 folio->mapping = mapping; 879 folio->index = index; 880 881 gfp &= GFP_RECLAIM_MASK; 882 folio_throttle_swaprate(folio, gfp); 883 swap = radix_to_swp_entry(expected); 884 885 do { 886 iter = swap; 887 xas_lock_irq(&xas); 888 xas_for_each_conflict(&xas, entry) { 889 /* 890 * The range must either be empty, or filled with 891 * expected swap entries. Shmem swap entries are never 892 * partially freed without split of both entry and 893 * folio, so there shouldn't be any holes. 894 */ 895 if (!expected || entry != swp_to_radix_entry(iter)) { 896 xas_set_err(&xas, -EEXIST); 897 goto unlock; 898 } 899 iter.val += 1 << xas_get_order(&xas); 900 } 901 if (expected && iter.val - nr != swap.val) { 902 xas_set_err(&xas, -EEXIST); 903 goto unlock; 904 } 905 xas_store(&xas, folio); 906 if (xas_error(&xas)) 907 goto unlock; 908 shmem_update_stats(folio, nr); 909 mapping->nrpages += nr; 910 unlock: 911 xas_unlock_irq(&xas); 912 } while (xas_nomem(&xas, gfp)); 913 914 if (xas_error(&xas)) { 915 folio->mapping = NULL; 916 folio_ref_sub(folio, nr); 917 return xas_error(&xas); 918 } 919 920 return 0; 921 } 922 923 /* 924 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 925 */ 926 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 927 { 928 struct address_space *mapping = folio->mapping; 929 long nr = folio_nr_pages(folio); 930 int error; 931 932 xa_lock_irq(&mapping->i_pages); 933 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 934 folio->mapping = NULL; 935 mapping->nrpages -= nr; 936 shmem_update_stats(folio, -nr); 937 xa_unlock_irq(&mapping->i_pages); 938 folio_put_refs(folio, nr); 939 BUG_ON(error); 940 } 941 942 /* 943 * Remove swap entry from page cache, free the swap and its page cache. Returns 944 * the number of pages being freed. 0 means entry not found in XArray (0 pages 945 * being freed). 946 */ 947 static long shmem_free_swap(struct address_space *mapping, 948 pgoff_t index, void *radswap) 949 { 950 int order = xa_get_order(&mapping->i_pages, index); 951 void *old; 952 953 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 954 if (old != radswap) 955 return 0; 956 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 957 958 return 1 << order; 959 } 960 961 /* 962 * Determine (in bytes) how many of the shmem object's pages mapped by the 963 * given offsets are swapped out. 964 * 965 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 966 * as long as the inode doesn't go away and racy results are not a problem. 967 */ 968 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 969 pgoff_t start, pgoff_t end) 970 { 971 XA_STATE(xas, &mapping->i_pages, start); 972 struct folio *folio; 973 unsigned long swapped = 0; 974 unsigned long max = end - 1; 975 976 rcu_read_lock(); 977 xas_for_each(&xas, folio, max) { 978 if (xas_retry(&xas, folio)) 979 continue; 980 if (xa_is_value(folio)) 981 swapped += 1 << xas_get_order(&xas); 982 if (xas.xa_index == max) 983 break; 984 if (need_resched()) { 985 xas_pause(&xas); 986 cond_resched_rcu(); 987 } 988 } 989 rcu_read_unlock(); 990 991 return swapped << PAGE_SHIFT; 992 } 993 994 /* 995 * Determine (in bytes) how many of the shmem object's pages mapped by the 996 * given vma is swapped out. 997 * 998 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 999 * as long as the inode doesn't go away and racy results are not a problem. 1000 */ 1001 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1002 { 1003 struct inode *inode = file_inode(vma->vm_file); 1004 struct shmem_inode_info *info = SHMEM_I(inode); 1005 struct address_space *mapping = inode->i_mapping; 1006 unsigned long swapped; 1007 1008 /* Be careful as we don't hold info->lock */ 1009 swapped = READ_ONCE(info->swapped); 1010 1011 /* 1012 * The easier cases are when the shmem object has nothing in swap, or 1013 * the vma maps it whole. Then we can simply use the stats that we 1014 * already track. 1015 */ 1016 if (!swapped) 1017 return 0; 1018 1019 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1020 return swapped << PAGE_SHIFT; 1021 1022 /* Here comes the more involved part */ 1023 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1024 vma->vm_pgoff + vma_pages(vma)); 1025 } 1026 1027 /* 1028 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1029 */ 1030 void shmem_unlock_mapping(struct address_space *mapping) 1031 { 1032 struct folio_batch fbatch; 1033 pgoff_t index = 0; 1034 1035 folio_batch_init(&fbatch); 1036 /* 1037 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1038 */ 1039 while (!mapping_unevictable(mapping) && 1040 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1041 check_move_unevictable_folios(&fbatch); 1042 folio_batch_release(&fbatch); 1043 cond_resched(); 1044 } 1045 } 1046 1047 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1048 { 1049 struct folio *folio; 1050 1051 /* 1052 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1053 * beyond i_size, and reports fallocated folios as holes. 1054 */ 1055 folio = filemap_get_entry(inode->i_mapping, index); 1056 if (!folio) 1057 return folio; 1058 if (!xa_is_value(folio)) { 1059 folio_lock(folio); 1060 if (folio->mapping == inode->i_mapping) 1061 return folio; 1062 /* The folio has been swapped out */ 1063 folio_unlock(folio); 1064 folio_put(folio); 1065 } 1066 /* 1067 * But read a folio back from swap if any of it is within i_size 1068 * (although in some cases this is just a waste of time). 1069 */ 1070 folio = NULL; 1071 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1072 return folio; 1073 } 1074 1075 /* 1076 * Remove range of pages and swap entries from page cache, and free them. 1077 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1078 */ 1079 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1080 bool unfalloc) 1081 { 1082 struct address_space *mapping = inode->i_mapping; 1083 struct shmem_inode_info *info = SHMEM_I(inode); 1084 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1085 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1086 struct folio_batch fbatch; 1087 pgoff_t indices[PAGEVEC_SIZE]; 1088 struct folio *folio; 1089 bool same_folio; 1090 long nr_swaps_freed = 0; 1091 pgoff_t index; 1092 int i; 1093 1094 if (lend == -1) 1095 end = -1; /* unsigned, so actually very big */ 1096 1097 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1098 info->fallocend = start; 1099 1100 folio_batch_init(&fbatch); 1101 index = start; 1102 while (index < end && find_lock_entries(mapping, &index, end - 1, 1103 &fbatch, indices)) { 1104 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1105 folio = fbatch.folios[i]; 1106 1107 if (xa_is_value(folio)) { 1108 if (unfalloc) 1109 continue; 1110 nr_swaps_freed += shmem_free_swap(mapping, 1111 indices[i], folio); 1112 continue; 1113 } 1114 1115 if (!unfalloc || !folio_test_uptodate(folio)) 1116 truncate_inode_folio(mapping, folio); 1117 folio_unlock(folio); 1118 } 1119 folio_batch_remove_exceptionals(&fbatch); 1120 folio_batch_release(&fbatch); 1121 cond_resched(); 1122 } 1123 1124 /* 1125 * When undoing a failed fallocate, we want none of the partial folio 1126 * zeroing and splitting below, but shall want to truncate the whole 1127 * folio when !uptodate indicates that it was added by this fallocate, 1128 * even when [lstart, lend] covers only a part of the folio. 1129 */ 1130 if (unfalloc) 1131 goto whole_folios; 1132 1133 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1134 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1135 if (folio) { 1136 same_folio = lend < folio_pos(folio) + folio_size(folio); 1137 folio_mark_dirty(folio); 1138 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1139 start = folio_next_index(folio); 1140 if (same_folio) 1141 end = folio->index; 1142 } 1143 folio_unlock(folio); 1144 folio_put(folio); 1145 folio = NULL; 1146 } 1147 1148 if (!same_folio) 1149 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1150 if (folio) { 1151 folio_mark_dirty(folio); 1152 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1153 end = folio->index; 1154 folio_unlock(folio); 1155 folio_put(folio); 1156 } 1157 1158 whole_folios: 1159 1160 index = start; 1161 while (index < end) { 1162 cond_resched(); 1163 1164 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1165 indices)) { 1166 /* If all gone or hole-punch or unfalloc, we're done */ 1167 if (index == start || end != -1) 1168 break; 1169 /* But if truncating, restart to make sure all gone */ 1170 index = start; 1171 continue; 1172 } 1173 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1174 folio = fbatch.folios[i]; 1175 1176 if (xa_is_value(folio)) { 1177 long swaps_freed; 1178 1179 if (unfalloc) 1180 continue; 1181 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1182 if (!swaps_freed) { 1183 /* Swap was replaced by page: retry */ 1184 index = indices[i]; 1185 break; 1186 } 1187 nr_swaps_freed += swaps_freed; 1188 continue; 1189 } 1190 1191 folio_lock(folio); 1192 1193 if (!unfalloc || !folio_test_uptodate(folio)) { 1194 if (folio_mapping(folio) != mapping) { 1195 /* Page was replaced by swap: retry */ 1196 folio_unlock(folio); 1197 index = indices[i]; 1198 break; 1199 } 1200 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1201 folio); 1202 1203 if (!folio_test_large(folio)) { 1204 truncate_inode_folio(mapping, folio); 1205 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1206 /* 1207 * If we split a page, reset the loop so 1208 * that we pick up the new sub pages. 1209 * Otherwise the THP was entirely 1210 * dropped or the target range was 1211 * zeroed, so just continue the loop as 1212 * is. 1213 */ 1214 if (!folio_test_large(folio)) { 1215 folio_unlock(folio); 1216 index = start; 1217 break; 1218 } 1219 } 1220 } 1221 folio_unlock(folio); 1222 } 1223 folio_batch_remove_exceptionals(&fbatch); 1224 folio_batch_release(&fbatch); 1225 } 1226 1227 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1228 } 1229 1230 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1231 { 1232 shmem_undo_range(inode, lstart, lend, false); 1233 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1234 inode_inc_iversion(inode); 1235 } 1236 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1237 1238 static int shmem_getattr(struct mnt_idmap *idmap, 1239 const struct path *path, struct kstat *stat, 1240 u32 request_mask, unsigned int query_flags) 1241 { 1242 struct inode *inode = path->dentry->d_inode; 1243 struct shmem_inode_info *info = SHMEM_I(inode); 1244 1245 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1246 shmem_recalc_inode(inode, 0, 0); 1247 1248 if (info->fsflags & FS_APPEND_FL) 1249 stat->attributes |= STATX_ATTR_APPEND; 1250 if (info->fsflags & FS_IMMUTABLE_FL) 1251 stat->attributes |= STATX_ATTR_IMMUTABLE; 1252 if (info->fsflags & FS_NODUMP_FL) 1253 stat->attributes |= STATX_ATTR_NODUMP; 1254 stat->attributes_mask |= (STATX_ATTR_APPEND | 1255 STATX_ATTR_IMMUTABLE | 1256 STATX_ATTR_NODUMP); 1257 generic_fillattr(idmap, request_mask, inode, stat); 1258 1259 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1260 stat->blksize = HPAGE_PMD_SIZE; 1261 1262 if (request_mask & STATX_BTIME) { 1263 stat->result_mask |= STATX_BTIME; 1264 stat->btime.tv_sec = info->i_crtime.tv_sec; 1265 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1266 } 1267 1268 return 0; 1269 } 1270 1271 static int shmem_setattr(struct mnt_idmap *idmap, 1272 struct dentry *dentry, struct iattr *attr) 1273 { 1274 struct inode *inode = d_inode(dentry); 1275 struct shmem_inode_info *info = SHMEM_I(inode); 1276 int error; 1277 bool update_mtime = false; 1278 bool update_ctime = true; 1279 1280 error = setattr_prepare(idmap, dentry, attr); 1281 if (error) 1282 return error; 1283 1284 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1285 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1286 return -EPERM; 1287 } 1288 } 1289 1290 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1291 loff_t oldsize = inode->i_size; 1292 loff_t newsize = attr->ia_size; 1293 1294 /* protected by i_rwsem */ 1295 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1296 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1297 return -EPERM; 1298 1299 if (newsize != oldsize) { 1300 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1301 oldsize, newsize); 1302 if (error) 1303 return error; 1304 i_size_write(inode, newsize); 1305 update_mtime = true; 1306 } else { 1307 update_ctime = false; 1308 } 1309 if (newsize <= oldsize) { 1310 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1311 if (oldsize > holebegin) 1312 unmap_mapping_range(inode->i_mapping, 1313 holebegin, 0, 1); 1314 if (info->alloced) 1315 shmem_truncate_range(inode, 1316 newsize, (loff_t)-1); 1317 /* unmap again to remove racily COWed private pages */ 1318 if (oldsize > holebegin) 1319 unmap_mapping_range(inode->i_mapping, 1320 holebegin, 0, 1); 1321 } 1322 } 1323 1324 if (is_quota_modification(idmap, inode, attr)) { 1325 error = dquot_initialize(inode); 1326 if (error) 1327 return error; 1328 } 1329 1330 /* Transfer quota accounting */ 1331 if (i_uid_needs_update(idmap, attr, inode) || 1332 i_gid_needs_update(idmap, attr, inode)) { 1333 error = dquot_transfer(idmap, inode, attr); 1334 if (error) 1335 return error; 1336 } 1337 1338 setattr_copy(idmap, inode, attr); 1339 if (attr->ia_valid & ATTR_MODE) 1340 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1341 if (!error && update_ctime) { 1342 inode_set_ctime_current(inode); 1343 if (update_mtime) 1344 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1345 inode_inc_iversion(inode); 1346 } 1347 return error; 1348 } 1349 1350 static void shmem_evict_inode(struct inode *inode) 1351 { 1352 struct shmem_inode_info *info = SHMEM_I(inode); 1353 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1354 size_t freed = 0; 1355 1356 if (shmem_mapping(inode->i_mapping)) { 1357 shmem_unacct_size(info->flags, inode->i_size); 1358 inode->i_size = 0; 1359 mapping_set_exiting(inode->i_mapping); 1360 shmem_truncate_range(inode, 0, (loff_t)-1); 1361 if (!list_empty(&info->shrinklist)) { 1362 spin_lock(&sbinfo->shrinklist_lock); 1363 if (!list_empty(&info->shrinklist)) { 1364 list_del_init(&info->shrinklist); 1365 sbinfo->shrinklist_len--; 1366 } 1367 spin_unlock(&sbinfo->shrinklist_lock); 1368 } 1369 while (!list_empty(&info->swaplist)) { 1370 /* Wait while shmem_unuse() is scanning this inode... */ 1371 wait_var_event(&info->stop_eviction, 1372 !atomic_read(&info->stop_eviction)); 1373 spin_lock(&shmem_swaplist_lock); 1374 /* ...but beware of the race if we peeked too early */ 1375 if (!atomic_read(&info->stop_eviction)) 1376 list_del_init(&info->swaplist); 1377 spin_unlock(&shmem_swaplist_lock); 1378 } 1379 } 1380 1381 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1382 shmem_free_inode(inode->i_sb, freed); 1383 WARN_ON(inode->i_blocks); 1384 clear_inode(inode); 1385 #ifdef CONFIG_TMPFS_QUOTA 1386 dquot_free_inode(inode); 1387 dquot_drop(inode); 1388 #endif 1389 } 1390 1391 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1392 pgoff_t start, struct folio_batch *fbatch, 1393 pgoff_t *indices, unsigned int type) 1394 { 1395 XA_STATE(xas, &mapping->i_pages, start); 1396 struct folio *folio; 1397 swp_entry_t entry; 1398 1399 rcu_read_lock(); 1400 xas_for_each(&xas, folio, ULONG_MAX) { 1401 if (xas_retry(&xas, folio)) 1402 continue; 1403 1404 if (!xa_is_value(folio)) 1405 continue; 1406 1407 entry = radix_to_swp_entry(folio); 1408 /* 1409 * swapin error entries can be found in the mapping. But they're 1410 * deliberately ignored here as we've done everything we can do. 1411 */ 1412 if (swp_type(entry) != type) 1413 continue; 1414 1415 indices[folio_batch_count(fbatch)] = xas.xa_index; 1416 if (!folio_batch_add(fbatch, folio)) 1417 break; 1418 1419 if (need_resched()) { 1420 xas_pause(&xas); 1421 cond_resched_rcu(); 1422 } 1423 } 1424 rcu_read_unlock(); 1425 1426 return folio_batch_count(fbatch); 1427 } 1428 1429 /* 1430 * Move the swapped pages for an inode to page cache. Returns the count 1431 * of pages swapped in, or the error in case of failure. 1432 */ 1433 static int shmem_unuse_swap_entries(struct inode *inode, 1434 struct folio_batch *fbatch, pgoff_t *indices) 1435 { 1436 int i = 0; 1437 int ret = 0; 1438 int error = 0; 1439 struct address_space *mapping = inode->i_mapping; 1440 1441 for (i = 0; i < folio_batch_count(fbatch); i++) { 1442 struct folio *folio = fbatch->folios[i]; 1443 1444 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1445 mapping_gfp_mask(mapping), NULL, NULL); 1446 if (error == 0) { 1447 folio_unlock(folio); 1448 folio_put(folio); 1449 ret++; 1450 } 1451 if (error == -ENOMEM) 1452 break; 1453 error = 0; 1454 } 1455 return error ? error : ret; 1456 } 1457 1458 /* 1459 * If swap found in inode, free it and move page from swapcache to filecache. 1460 */ 1461 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1462 { 1463 struct address_space *mapping = inode->i_mapping; 1464 pgoff_t start = 0; 1465 struct folio_batch fbatch; 1466 pgoff_t indices[PAGEVEC_SIZE]; 1467 int ret = 0; 1468 1469 do { 1470 folio_batch_init(&fbatch); 1471 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1472 indices, type)) { 1473 ret = 0; 1474 break; 1475 } 1476 1477 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1478 if (ret < 0) 1479 break; 1480 1481 start = indices[folio_batch_count(&fbatch) - 1]; 1482 } while (true); 1483 1484 return ret; 1485 } 1486 1487 /* 1488 * Read all the shared memory data that resides in the swap 1489 * device 'type' back into memory, so the swap device can be 1490 * unused. 1491 */ 1492 int shmem_unuse(unsigned int type) 1493 { 1494 struct shmem_inode_info *info, *next; 1495 int error = 0; 1496 1497 if (list_empty(&shmem_swaplist)) 1498 return 0; 1499 1500 spin_lock(&shmem_swaplist_lock); 1501 start_over: 1502 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1503 if (!info->swapped) { 1504 list_del_init(&info->swaplist); 1505 continue; 1506 } 1507 /* 1508 * Drop the swaplist mutex while searching the inode for swap; 1509 * but before doing so, make sure shmem_evict_inode() will not 1510 * remove placeholder inode from swaplist, nor let it be freed 1511 * (igrab() would protect from unlink, but not from unmount). 1512 */ 1513 atomic_inc(&info->stop_eviction); 1514 spin_unlock(&shmem_swaplist_lock); 1515 1516 error = shmem_unuse_inode(&info->vfs_inode, type); 1517 cond_resched(); 1518 1519 spin_lock(&shmem_swaplist_lock); 1520 if (atomic_dec_and_test(&info->stop_eviction)) 1521 wake_up_var(&info->stop_eviction); 1522 if (error) 1523 break; 1524 if (list_empty(&info->swaplist)) 1525 goto start_over; 1526 next = list_next_entry(info, swaplist); 1527 if (!info->swapped) 1528 list_del_init(&info->swaplist); 1529 } 1530 spin_unlock(&shmem_swaplist_lock); 1531 1532 return error; 1533 } 1534 1535 /** 1536 * shmem_writeout - Write the folio to swap 1537 * @folio: The folio to write 1538 * @plug: swap plug 1539 * @folio_list: list to put back folios on split 1540 * 1541 * Move the folio from the page cache to the swap cache. 1542 */ 1543 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1544 struct list_head *folio_list) 1545 { 1546 struct address_space *mapping = folio->mapping; 1547 struct inode *inode = mapping->host; 1548 struct shmem_inode_info *info = SHMEM_I(inode); 1549 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1550 pgoff_t index; 1551 int nr_pages; 1552 bool split = false; 1553 1554 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1555 goto redirty; 1556 1557 if (!total_swap_pages) 1558 goto redirty; 1559 1560 /* 1561 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1562 * split when swapping. 1563 * 1564 * And shrinkage of pages beyond i_size does not split swap, so 1565 * swapout of a large folio crossing i_size needs to split too 1566 * (unless fallocate has been used to preallocate beyond EOF). 1567 */ 1568 if (folio_test_large(folio)) { 1569 index = shmem_fallocend(inode, 1570 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1571 if ((index > folio->index && index < folio_next_index(folio)) || 1572 !IS_ENABLED(CONFIG_THP_SWAP)) 1573 split = true; 1574 } 1575 1576 if (split) { 1577 try_split: 1578 /* Ensure the subpages are still dirty */ 1579 folio_test_set_dirty(folio); 1580 if (split_folio_to_list(folio, folio_list)) 1581 goto redirty; 1582 folio_clear_dirty(folio); 1583 } 1584 1585 index = folio->index; 1586 nr_pages = folio_nr_pages(folio); 1587 1588 /* 1589 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1590 * value into swapfile.c, the only way we can correctly account for a 1591 * fallocated folio arriving here is now to initialize it and write it. 1592 * 1593 * That's okay for a folio already fallocated earlier, but if we have 1594 * not yet completed the fallocation, then (a) we want to keep track 1595 * of this folio in case we have to undo it, and (b) it may not be a 1596 * good idea to continue anyway, once we're pushing into swap. So 1597 * reactivate the folio, and let shmem_fallocate() quit when too many. 1598 */ 1599 if (!folio_test_uptodate(folio)) { 1600 if (inode->i_private) { 1601 struct shmem_falloc *shmem_falloc; 1602 spin_lock(&inode->i_lock); 1603 shmem_falloc = inode->i_private; 1604 if (shmem_falloc && 1605 !shmem_falloc->waitq && 1606 index >= shmem_falloc->start && 1607 index < shmem_falloc->next) 1608 shmem_falloc->nr_unswapped += nr_pages; 1609 else 1610 shmem_falloc = NULL; 1611 spin_unlock(&inode->i_lock); 1612 if (shmem_falloc) 1613 goto redirty; 1614 } 1615 folio_zero_range(folio, 0, folio_size(folio)); 1616 flush_dcache_folio(folio); 1617 folio_mark_uptodate(folio); 1618 } 1619 1620 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1621 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1622 int error; 1623 1624 /* 1625 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1626 * if it's not already there. Do it now before the folio is 1627 * removed from page cache, when its pagelock no longer 1628 * protects the inode from eviction. And do it now, after 1629 * we've incremented swapped, because shmem_unuse() will 1630 * prune a !swapped inode from the swaplist. 1631 */ 1632 if (first_swapped) { 1633 spin_lock(&shmem_swaplist_lock); 1634 if (list_empty(&info->swaplist)) 1635 list_add(&info->swaplist, &shmem_swaplist); 1636 spin_unlock(&shmem_swaplist_lock); 1637 } 1638 1639 swap_shmem_alloc(folio->swap, nr_pages); 1640 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1641 1642 BUG_ON(folio_mapped(folio)); 1643 error = swap_writeout(folio, plug); 1644 if (error != AOP_WRITEPAGE_ACTIVATE) { 1645 /* folio has been unlocked */ 1646 return error; 1647 } 1648 1649 /* 1650 * The intention here is to avoid holding on to the swap when 1651 * zswap was unable to compress and unable to writeback; but 1652 * it will be appropriate if other reactivate cases are added. 1653 */ 1654 error = shmem_add_to_page_cache(folio, mapping, index, 1655 swp_to_radix_entry(folio->swap), 1656 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1657 /* Swap entry might be erased by racing shmem_free_swap() */ 1658 if (!error) { 1659 shmem_recalc_inode(inode, 0, -nr_pages); 1660 swap_free_nr(folio->swap, nr_pages); 1661 } 1662 1663 /* 1664 * The swap_cache_del_folio() below could be left for 1665 * shrink_folio_list()'s folio_free_swap() to dispose of; 1666 * but I'm a little nervous about letting this folio out of 1667 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1668 * e.g. folio_mapping(folio) might give an unexpected answer. 1669 */ 1670 swap_cache_del_folio(folio); 1671 goto redirty; 1672 } 1673 if (nr_pages > 1) 1674 goto try_split; 1675 redirty: 1676 folio_mark_dirty(folio); 1677 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1678 } 1679 EXPORT_SYMBOL_GPL(shmem_writeout); 1680 1681 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1682 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1683 { 1684 char buffer[64]; 1685 1686 if (!mpol || mpol->mode == MPOL_DEFAULT) 1687 return; /* show nothing */ 1688 1689 mpol_to_str(buffer, sizeof(buffer), mpol); 1690 1691 seq_printf(seq, ",mpol=%s", buffer); 1692 } 1693 1694 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1695 { 1696 struct mempolicy *mpol = NULL; 1697 if (sbinfo->mpol) { 1698 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1699 mpol = sbinfo->mpol; 1700 mpol_get(mpol); 1701 raw_spin_unlock(&sbinfo->stat_lock); 1702 } 1703 return mpol; 1704 } 1705 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1706 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1707 { 1708 } 1709 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1710 { 1711 return NULL; 1712 } 1713 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1714 1715 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1716 pgoff_t index, unsigned int order, pgoff_t *ilx); 1717 1718 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1719 struct shmem_inode_info *info, pgoff_t index) 1720 { 1721 struct mempolicy *mpol; 1722 pgoff_t ilx; 1723 struct folio *folio; 1724 1725 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1726 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1727 mpol_cond_put(mpol); 1728 1729 return folio; 1730 } 1731 1732 /* 1733 * Make sure huge_gfp is always more limited than limit_gfp. 1734 * Some of the flags set permissions, while others set limitations. 1735 */ 1736 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1737 { 1738 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1739 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1740 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1741 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1742 1743 /* Allow allocations only from the originally specified zones. */ 1744 result |= zoneflags; 1745 1746 /* 1747 * Minimize the result gfp by taking the union with the deny flags, 1748 * and the intersection of the allow flags. 1749 */ 1750 result |= (limit_gfp & denyflags); 1751 result |= (huge_gfp & limit_gfp) & allowflags; 1752 1753 return result; 1754 } 1755 1756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1757 bool shmem_hpage_pmd_enabled(void) 1758 { 1759 if (shmem_huge == SHMEM_HUGE_DENY) 1760 return false; 1761 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1762 return true; 1763 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1764 return true; 1765 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1766 return true; 1767 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1768 shmem_huge != SHMEM_HUGE_NEVER) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1775 struct vm_area_struct *vma, pgoff_t index, 1776 loff_t write_end, bool shmem_huge_force) 1777 { 1778 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1779 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1780 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1781 unsigned int global_orders; 1782 1783 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags, shmem_huge_force))) 1784 return 0; 1785 1786 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1787 shmem_huge_force, vma, vm_flags); 1788 /* Tmpfs huge pages allocation */ 1789 if (!vma || !vma_is_anon_shmem(vma)) 1790 return global_orders; 1791 1792 /* 1793 * Following the 'deny' semantics of the top level, force the huge 1794 * option off from all mounts. 1795 */ 1796 if (shmem_huge == SHMEM_HUGE_DENY) 1797 return 0; 1798 1799 /* 1800 * Only allow inherit orders if the top-level value is 'force', which 1801 * means non-PMD sized THP can not override 'huge' mount option now. 1802 */ 1803 if (shmem_huge == SHMEM_HUGE_FORCE) 1804 return READ_ONCE(huge_shmem_orders_inherit); 1805 1806 /* Allow mTHP that will be fully within i_size. */ 1807 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1808 1809 if (vm_flags & VM_HUGEPAGE) 1810 mask |= READ_ONCE(huge_shmem_orders_madvise); 1811 1812 if (global_orders > 0) 1813 mask |= READ_ONCE(huge_shmem_orders_inherit); 1814 1815 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1816 } 1817 1818 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1819 struct address_space *mapping, pgoff_t index, 1820 unsigned long orders) 1821 { 1822 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1823 pgoff_t aligned_index; 1824 unsigned long pages; 1825 int order; 1826 1827 if (vma) { 1828 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1829 if (!orders) 1830 return 0; 1831 } 1832 1833 /* Find the highest order that can add into the page cache */ 1834 order = highest_order(orders); 1835 while (orders) { 1836 pages = 1UL << order; 1837 aligned_index = round_down(index, pages); 1838 /* 1839 * Check for conflict before waiting on a huge allocation. 1840 * Conflict might be that a huge page has just been allocated 1841 * and added to page cache by a racing thread, or that there 1842 * is already at least one small page in the huge extent. 1843 * Be careful to retry when appropriate, but not forever! 1844 * Elsewhere -EEXIST would be the right code, but not here. 1845 */ 1846 if (!xa_find(&mapping->i_pages, &aligned_index, 1847 aligned_index + pages - 1, XA_PRESENT)) 1848 break; 1849 order = next_order(&orders, order); 1850 } 1851 1852 return orders; 1853 } 1854 #else 1855 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1856 struct address_space *mapping, pgoff_t index, 1857 unsigned long orders) 1858 { 1859 return 0; 1860 } 1861 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1862 1863 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1864 struct shmem_inode_info *info, pgoff_t index) 1865 { 1866 struct mempolicy *mpol; 1867 pgoff_t ilx; 1868 struct folio *folio; 1869 1870 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1871 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1872 mpol_cond_put(mpol); 1873 1874 return folio; 1875 } 1876 1877 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1878 gfp_t gfp, struct inode *inode, pgoff_t index, 1879 struct mm_struct *fault_mm, unsigned long orders) 1880 { 1881 struct address_space *mapping = inode->i_mapping; 1882 struct shmem_inode_info *info = SHMEM_I(inode); 1883 unsigned long suitable_orders = 0; 1884 struct folio *folio = NULL; 1885 pgoff_t aligned_index; 1886 long pages; 1887 int error, order; 1888 1889 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1890 orders = 0; 1891 1892 if (orders > 0) { 1893 suitable_orders = shmem_suitable_orders(inode, vmf, 1894 mapping, index, orders); 1895 1896 order = highest_order(suitable_orders); 1897 while (suitable_orders) { 1898 pages = 1UL << order; 1899 aligned_index = round_down(index, pages); 1900 folio = shmem_alloc_folio(gfp, order, info, aligned_index); 1901 if (folio) { 1902 index = aligned_index; 1903 goto allocated; 1904 } 1905 1906 if (pages == HPAGE_PMD_NR) 1907 count_vm_event(THP_FILE_FALLBACK); 1908 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1909 order = next_order(&suitable_orders, order); 1910 } 1911 } else { 1912 pages = 1; 1913 folio = shmem_alloc_folio(gfp, 0, info, index); 1914 } 1915 if (!folio) 1916 return ERR_PTR(-ENOMEM); 1917 1918 allocated: 1919 __folio_set_locked(folio); 1920 __folio_set_swapbacked(folio); 1921 1922 gfp &= GFP_RECLAIM_MASK; 1923 error = mem_cgroup_charge(folio, fault_mm, gfp); 1924 if (error) { 1925 if (xa_find(&mapping->i_pages, &index, 1926 index + pages - 1, XA_PRESENT)) { 1927 error = -EEXIST; 1928 } else if (pages > 1) { 1929 if (pages == HPAGE_PMD_NR) { 1930 count_vm_event(THP_FILE_FALLBACK); 1931 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1932 } 1933 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1934 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1935 } 1936 goto unlock; 1937 } 1938 1939 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1940 if (error) 1941 goto unlock; 1942 1943 error = shmem_inode_acct_blocks(inode, pages); 1944 if (error) { 1945 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1946 long freed; 1947 /* 1948 * Try to reclaim some space by splitting a few 1949 * large folios beyond i_size on the filesystem. 1950 */ 1951 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1952 /* 1953 * And do a shmem_recalc_inode() to account for freed pages: 1954 * except our folio is there in cache, so not quite balanced. 1955 */ 1956 spin_lock(&info->lock); 1957 freed = pages + info->alloced - info->swapped - 1958 READ_ONCE(mapping->nrpages); 1959 if (freed > 0) 1960 info->alloced -= freed; 1961 spin_unlock(&info->lock); 1962 if (freed > 0) 1963 shmem_inode_unacct_blocks(inode, freed); 1964 error = shmem_inode_acct_blocks(inode, pages); 1965 if (error) { 1966 filemap_remove_folio(folio); 1967 goto unlock; 1968 } 1969 } 1970 1971 shmem_recalc_inode(inode, pages, 0); 1972 folio_add_lru(folio); 1973 return folio; 1974 1975 unlock: 1976 folio_unlock(folio); 1977 folio_put(folio); 1978 return ERR_PTR(error); 1979 } 1980 1981 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 1982 struct vm_area_struct *vma, pgoff_t index, 1983 swp_entry_t entry, int order, gfp_t gfp) 1984 { 1985 struct shmem_inode_info *info = SHMEM_I(inode); 1986 int nr_pages = 1 << order; 1987 struct folio *new; 1988 gfp_t alloc_gfp; 1989 void *shadow; 1990 1991 /* 1992 * We have arrived here because our zones are constrained, so don't 1993 * limit chance of success with further cpuset and node constraints. 1994 */ 1995 gfp &= ~GFP_CONSTRAINT_MASK; 1996 alloc_gfp = gfp; 1997 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1998 if (WARN_ON_ONCE(order)) 1999 return ERR_PTR(-EINVAL); 2000 } else if (order) { 2001 /* 2002 * If uffd is active for the vma, we need per-page fault 2003 * fidelity to maintain the uffd semantics, then fallback 2004 * to swapin order-0 folio, as well as for zswap case. 2005 * Any existing sub folio in the swap cache also blocks 2006 * mTHP swapin. 2007 */ 2008 if ((vma && unlikely(userfaultfd_armed(vma))) || 2009 !zswap_never_enabled() || 2010 non_swapcache_batch(entry, nr_pages) != nr_pages) 2011 goto fallback; 2012 2013 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2014 } 2015 retry: 2016 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2017 if (!new) { 2018 new = ERR_PTR(-ENOMEM); 2019 goto fallback; 2020 } 2021 2022 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2023 alloc_gfp, entry)) { 2024 folio_put(new); 2025 new = ERR_PTR(-ENOMEM); 2026 goto fallback; 2027 } 2028 2029 /* 2030 * Prevent parallel swapin from proceeding with the swap cache flag. 2031 * 2032 * Of course there is another possible concurrent scenario as well, 2033 * that is to say, the swap cache flag of a large folio has already 2034 * been set by swapcache_prepare(), while another thread may have 2035 * already split the large swap entry stored in the shmem mapping. 2036 * In this case, shmem_add_to_page_cache() will help identify the 2037 * concurrent swapin and return -EEXIST. 2038 */ 2039 if (swapcache_prepare(entry, nr_pages)) { 2040 folio_put(new); 2041 new = ERR_PTR(-EEXIST); 2042 /* Try smaller folio to avoid cache conflict */ 2043 goto fallback; 2044 } 2045 2046 __folio_set_locked(new); 2047 __folio_set_swapbacked(new); 2048 new->swap = entry; 2049 2050 memcg1_swapin(entry, nr_pages); 2051 shadow = swap_cache_get_shadow(entry); 2052 if (shadow) 2053 workingset_refault(new, shadow); 2054 folio_add_lru(new); 2055 swap_read_folio(new, NULL); 2056 return new; 2057 fallback: 2058 /* Order 0 swapin failed, nothing to fallback to, abort */ 2059 if (!order) 2060 return new; 2061 entry.val += index - round_down(index, nr_pages); 2062 alloc_gfp = gfp; 2063 nr_pages = 1; 2064 order = 0; 2065 goto retry; 2066 } 2067 2068 /* 2069 * When a page is moved from swapcache to shmem filecache (either by the 2070 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2071 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2072 * ignorance of the mapping it belongs to. If that mapping has special 2073 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2074 * we may need to copy to a suitable page before moving to filecache. 2075 * 2076 * In a future release, this may well be extended to respect cpuset and 2077 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2078 * but for now it is a simple matter of zone. 2079 */ 2080 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2081 { 2082 return folio_zonenum(folio) > gfp_zone(gfp); 2083 } 2084 2085 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2086 struct shmem_inode_info *info, pgoff_t index, 2087 struct vm_area_struct *vma) 2088 { 2089 struct swap_cluster_info *ci; 2090 struct folio *new, *old = *foliop; 2091 swp_entry_t entry = old->swap; 2092 int nr_pages = folio_nr_pages(old); 2093 int error = 0; 2094 2095 /* 2096 * We have arrived here because our zones are constrained, so don't 2097 * limit chance of success by further cpuset and node constraints. 2098 */ 2099 gfp &= ~GFP_CONSTRAINT_MASK; 2100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2101 if (nr_pages > 1) { 2102 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2103 2104 gfp = limit_gfp_mask(huge_gfp, gfp); 2105 } 2106 #endif 2107 2108 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2109 if (!new) 2110 return -ENOMEM; 2111 2112 folio_ref_add(new, nr_pages); 2113 folio_copy(new, old); 2114 flush_dcache_folio(new); 2115 2116 __folio_set_locked(new); 2117 __folio_set_swapbacked(new); 2118 folio_mark_uptodate(new); 2119 new->swap = entry; 2120 folio_set_swapcache(new); 2121 2122 ci = swap_cluster_get_and_lock_irq(old); 2123 __swap_cache_replace_folio(ci, old, new); 2124 mem_cgroup_replace_folio(old, new); 2125 shmem_update_stats(new, nr_pages); 2126 shmem_update_stats(old, -nr_pages); 2127 swap_cluster_unlock_irq(ci); 2128 2129 folio_add_lru(new); 2130 *foliop = new; 2131 2132 folio_clear_swapcache(old); 2133 old->private = NULL; 2134 2135 folio_unlock(old); 2136 /* 2137 * The old folio are removed from swap cache, drop the 'nr_pages' 2138 * reference, as well as one temporary reference getting from swap 2139 * cache. 2140 */ 2141 folio_put_refs(old, nr_pages + 1); 2142 return error; 2143 } 2144 2145 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2146 struct folio *folio, swp_entry_t swap, 2147 bool skip_swapcache) 2148 { 2149 struct address_space *mapping = inode->i_mapping; 2150 swp_entry_t swapin_error; 2151 void *old; 2152 int nr_pages; 2153 2154 swapin_error = make_poisoned_swp_entry(); 2155 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2156 swp_to_radix_entry(swap), 2157 swp_to_radix_entry(swapin_error), 0); 2158 if (old != swp_to_radix_entry(swap)) 2159 return; 2160 2161 nr_pages = folio_nr_pages(folio); 2162 folio_wait_writeback(folio); 2163 if (!skip_swapcache) 2164 swap_cache_del_folio(folio); 2165 /* 2166 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2167 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2168 * in shmem_evict_inode(). 2169 */ 2170 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2171 swap_free_nr(swap, nr_pages); 2172 } 2173 2174 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2175 swp_entry_t swap, gfp_t gfp) 2176 { 2177 struct address_space *mapping = inode->i_mapping; 2178 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2179 int split_order = 0; 2180 int i; 2181 2182 /* Convert user data gfp flags to xarray node gfp flags */ 2183 gfp &= GFP_RECLAIM_MASK; 2184 2185 for (;;) { 2186 void *old = NULL; 2187 int cur_order; 2188 pgoff_t swap_index; 2189 2190 xas_lock_irq(&xas); 2191 old = xas_load(&xas); 2192 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2193 xas_set_err(&xas, -EEXIST); 2194 goto unlock; 2195 } 2196 2197 cur_order = xas_get_order(&xas); 2198 if (!cur_order) 2199 goto unlock; 2200 2201 /* Try to split large swap entry in pagecache */ 2202 swap_index = round_down(index, 1 << cur_order); 2203 split_order = xas_try_split_min_order(cur_order); 2204 2205 while (cur_order > 0) { 2206 pgoff_t aligned_index = 2207 round_down(index, 1 << cur_order); 2208 pgoff_t swap_offset = aligned_index - swap_index; 2209 2210 xas_set_order(&xas, index, split_order); 2211 xas_try_split(&xas, old, cur_order); 2212 if (xas_error(&xas)) 2213 goto unlock; 2214 2215 /* 2216 * Re-set the swap entry after splitting, and the swap 2217 * offset of the original large entry must be continuous. 2218 */ 2219 for (i = 0; i < 1 << cur_order; 2220 i += (1 << split_order)) { 2221 swp_entry_t tmp; 2222 2223 tmp = swp_entry(swp_type(swap), 2224 swp_offset(swap) + swap_offset + 2225 i); 2226 __xa_store(&mapping->i_pages, aligned_index + i, 2227 swp_to_radix_entry(tmp), 0); 2228 } 2229 cur_order = split_order; 2230 split_order = xas_try_split_min_order(split_order); 2231 } 2232 2233 unlock: 2234 xas_unlock_irq(&xas); 2235 2236 if (!xas_nomem(&xas, gfp)) 2237 break; 2238 } 2239 2240 if (xas_error(&xas)) 2241 return xas_error(&xas); 2242 2243 return 0; 2244 } 2245 2246 /* 2247 * Swap in the folio pointed to by *foliop. 2248 * Caller has to make sure that *foliop contains a valid swapped folio. 2249 * Returns 0 and the folio in foliop if success. On failure, returns the 2250 * error code and NULL in *foliop. 2251 */ 2252 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2253 struct folio **foliop, enum sgp_type sgp, 2254 gfp_t gfp, struct vm_area_struct *vma, 2255 vm_fault_t *fault_type) 2256 { 2257 struct address_space *mapping = inode->i_mapping; 2258 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2259 struct shmem_inode_info *info = SHMEM_I(inode); 2260 swp_entry_t swap, index_entry; 2261 struct swap_info_struct *si; 2262 struct folio *folio = NULL; 2263 bool skip_swapcache = false; 2264 int error, nr_pages, order; 2265 pgoff_t offset; 2266 2267 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2268 index_entry = radix_to_swp_entry(*foliop); 2269 swap = index_entry; 2270 *foliop = NULL; 2271 2272 if (is_poisoned_swp_entry(index_entry)) 2273 return -EIO; 2274 2275 si = get_swap_device(index_entry); 2276 order = shmem_confirm_swap(mapping, index, index_entry); 2277 if (unlikely(!si)) { 2278 if (order < 0) 2279 return -EEXIST; 2280 else 2281 return -EINVAL; 2282 } 2283 if (unlikely(order < 0)) { 2284 put_swap_device(si); 2285 return -EEXIST; 2286 } 2287 2288 /* index may point to the middle of a large entry, get the sub entry */ 2289 if (order) { 2290 offset = index - round_down(index, 1 << order); 2291 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2292 } 2293 2294 /* Look it up and read it in.. */ 2295 folio = swap_cache_get_folio(swap); 2296 if (!folio) { 2297 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2298 /* Direct swapin skipping swap cache & readahead */ 2299 folio = shmem_swap_alloc_folio(inode, vma, index, 2300 index_entry, order, gfp); 2301 if (IS_ERR(folio)) { 2302 error = PTR_ERR(folio); 2303 folio = NULL; 2304 goto failed; 2305 } 2306 skip_swapcache = true; 2307 } else { 2308 /* Cached swapin only supports order 0 folio */ 2309 folio = shmem_swapin_cluster(swap, gfp, info, index); 2310 if (!folio) { 2311 error = -ENOMEM; 2312 goto failed; 2313 } 2314 } 2315 if (fault_type) { 2316 *fault_type |= VM_FAULT_MAJOR; 2317 count_vm_event(PGMAJFAULT); 2318 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2319 } 2320 } else { 2321 swap_update_readahead(folio, NULL, 0); 2322 } 2323 2324 if (order > folio_order(folio)) { 2325 /* 2326 * Swapin may get smaller folios due to various reasons: 2327 * It may fallback to order 0 due to memory pressure or race, 2328 * swap readahead may swap in order 0 folios into swapcache 2329 * asynchronously, while the shmem mapping can still stores 2330 * large swap entries. In such cases, we should split the 2331 * large swap entry to prevent possible data corruption. 2332 */ 2333 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2334 if (error) 2335 goto failed_nolock; 2336 } 2337 2338 /* 2339 * If the folio is large, round down swap and index by folio size. 2340 * No matter what race occurs, the swap layer ensures we either get 2341 * a valid folio that has its swap entry aligned by size, or a 2342 * temporarily invalid one which we'll abort very soon and retry. 2343 * 2344 * shmem_add_to_page_cache ensures the whole range contains expected 2345 * entries and prevents any corruption, so any race split is fine 2346 * too, it will succeed as long as the entries are still there. 2347 */ 2348 nr_pages = folio_nr_pages(folio); 2349 if (nr_pages > 1) { 2350 swap.val = round_down(swap.val, nr_pages); 2351 index = round_down(index, nr_pages); 2352 } 2353 2354 /* 2355 * We have to do this with the folio locked to prevent races. 2356 * The shmem_confirm_swap below only checks if the first swap 2357 * entry matches the folio, that's enough to ensure the folio 2358 * is not used outside of shmem, as shmem swap entries 2359 * and swap cache folios are never partially freed. 2360 */ 2361 folio_lock(folio); 2362 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2363 shmem_confirm_swap(mapping, index, swap) < 0 || 2364 folio->swap.val != swap.val) { 2365 error = -EEXIST; 2366 goto unlock; 2367 } 2368 if (!folio_test_uptodate(folio)) { 2369 error = -EIO; 2370 goto failed; 2371 } 2372 folio_wait_writeback(folio); 2373 2374 /* 2375 * Some architectures may have to restore extra metadata to the 2376 * folio after reading from swap. 2377 */ 2378 arch_swap_restore(folio_swap(swap, folio), folio); 2379 2380 if (shmem_should_replace_folio(folio, gfp)) { 2381 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2382 if (error) 2383 goto failed; 2384 } 2385 2386 error = shmem_add_to_page_cache(folio, mapping, index, 2387 swp_to_radix_entry(swap), gfp); 2388 if (error) 2389 goto failed; 2390 2391 shmem_recalc_inode(inode, 0, -nr_pages); 2392 2393 if (sgp == SGP_WRITE) 2394 folio_mark_accessed(folio); 2395 2396 if (skip_swapcache) { 2397 folio->swap.val = 0; 2398 swapcache_clear(si, swap, nr_pages); 2399 } else { 2400 swap_cache_del_folio(folio); 2401 } 2402 folio_mark_dirty(folio); 2403 swap_free_nr(swap, nr_pages); 2404 put_swap_device(si); 2405 2406 *foliop = folio; 2407 return 0; 2408 failed: 2409 if (shmem_confirm_swap(mapping, index, swap) < 0) 2410 error = -EEXIST; 2411 if (error == -EIO) 2412 shmem_set_folio_swapin_error(inode, index, folio, swap, 2413 skip_swapcache); 2414 unlock: 2415 if (folio) 2416 folio_unlock(folio); 2417 failed_nolock: 2418 if (skip_swapcache) 2419 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2420 if (folio) 2421 folio_put(folio); 2422 put_swap_device(si); 2423 2424 return error; 2425 } 2426 2427 /* 2428 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2429 * 2430 * If we allocate a new one we do not mark it dirty. That's up to the 2431 * vm. If we swap it in we mark it dirty since we also free the swap 2432 * entry since a page cannot live in both the swap and page cache. 2433 * 2434 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2435 */ 2436 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2437 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2438 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2439 { 2440 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2441 struct mm_struct *fault_mm; 2442 struct folio *folio; 2443 int error; 2444 bool alloced; 2445 unsigned long orders = 0; 2446 2447 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2448 return -EINVAL; 2449 2450 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2451 return -EFBIG; 2452 repeat: 2453 if (sgp <= SGP_CACHE && 2454 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2455 return -EINVAL; 2456 2457 alloced = false; 2458 fault_mm = vma ? vma->vm_mm : NULL; 2459 2460 folio = filemap_get_entry(inode->i_mapping, index); 2461 if (folio && vma && userfaultfd_minor(vma)) { 2462 if (!xa_is_value(folio)) 2463 folio_put(folio); 2464 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2465 return 0; 2466 } 2467 2468 if (xa_is_value(folio)) { 2469 error = shmem_swapin_folio(inode, index, &folio, 2470 sgp, gfp, vma, fault_type); 2471 if (error == -EEXIST) 2472 goto repeat; 2473 2474 *foliop = folio; 2475 return error; 2476 } 2477 2478 if (folio) { 2479 folio_lock(folio); 2480 2481 /* Has the folio been truncated or swapped out? */ 2482 if (unlikely(folio->mapping != inode->i_mapping)) { 2483 folio_unlock(folio); 2484 folio_put(folio); 2485 goto repeat; 2486 } 2487 if (sgp == SGP_WRITE) 2488 folio_mark_accessed(folio); 2489 if (folio_test_uptodate(folio)) 2490 goto out; 2491 /* fallocated folio */ 2492 if (sgp != SGP_READ) 2493 goto clear; 2494 folio_unlock(folio); 2495 folio_put(folio); 2496 } 2497 2498 /* 2499 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2500 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2501 */ 2502 *foliop = NULL; 2503 if (sgp == SGP_READ) 2504 return 0; 2505 if (sgp == SGP_NOALLOC) 2506 return -ENOENT; 2507 2508 /* 2509 * Fast cache lookup and swap lookup did not find it: allocate. 2510 */ 2511 2512 if (vma && userfaultfd_missing(vma)) { 2513 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2514 return 0; 2515 } 2516 2517 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2518 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2519 if (orders > 0) { 2520 gfp_t huge_gfp; 2521 2522 huge_gfp = vma_thp_gfp_mask(vma); 2523 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2524 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2525 inode, index, fault_mm, orders); 2526 if (!IS_ERR(folio)) { 2527 if (folio_test_pmd_mappable(folio)) 2528 count_vm_event(THP_FILE_ALLOC); 2529 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2530 goto alloced; 2531 } 2532 if (PTR_ERR(folio) == -EEXIST) 2533 goto repeat; 2534 } 2535 2536 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2537 if (IS_ERR(folio)) { 2538 error = PTR_ERR(folio); 2539 if (error == -EEXIST) 2540 goto repeat; 2541 folio = NULL; 2542 goto unlock; 2543 } 2544 2545 alloced: 2546 alloced = true; 2547 if (folio_test_large(folio) && 2548 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2549 folio_next_index(folio)) { 2550 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2551 struct shmem_inode_info *info = SHMEM_I(inode); 2552 /* 2553 * Part of the large folio is beyond i_size: subject 2554 * to shrink under memory pressure. 2555 */ 2556 spin_lock(&sbinfo->shrinklist_lock); 2557 /* 2558 * _careful to defend against unlocked access to 2559 * ->shrink_list in shmem_unused_huge_shrink() 2560 */ 2561 if (list_empty_careful(&info->shrinklist)) { 2562 list_add_tail(&info->shrinklist, 2563 &sbinfo->shrinklist); 2564 sbinfo->shrinklist_len++; 2565 } 2566 spin_unlock(&sbinfo->shrinklist_lock); 2567 } 2568 2569 if (sgp == SGP_WRITE) 2570 folio_set_referenced(folio); 2571 /* 2572 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2573 */ 2574 if (sgp == SGP_FALLOC) 2575 sgp = SGP_WRITE; 2576 clear: 2577 /* 2578 * Let SGP_WRITE caller clear ends if write does not fill folio; 2579 * but SGP_FALLOC on a folio fallocated earlier must initialize 2580 * it now, lest undo on failure cancel our earlier guarantee. 2581 */ 2582 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2583 long i, n = folio_nr_pages(folio); 2584 2585 for (i = 0; i < n; i++) 2586 clear_highpage(folio_page(folio, i)); 2587 flush_dcache_folio(folio); 2588 folio_mark_uptodate(folio); 2589 } 2590 2591 /* Perhaps the file has been truncated since we checked */ 2592 if (sgp <= SGP_CACHE && 2593 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2594 error = -EINVAL; 2595 goto unlock; 2596 } 2597 out: 2598 *foliop = folio; 2599 return 0; 2600 2601 /* 2602 * Error recovery. 2603 */ 2604 unlock: 2605 if (alloced) 2606 filemap_remove_folio(folio); 2607 shmem_recalc_inode(inode, 0, 0); 2608 if (folio) { 2609 folio_unlock(folio); 2610 folio_put(folio); 2611 } 2612 return error; 2613 } 2614 2615 /** 2616 * shmem_get_folio - find, and lock a shmem folio. 2617 * @inode: inode to search 2618 * @index: the page index. 2619 * @write_end: end of a write, could extend inode size 2620 * @foliop: pointer to the folio if found 2621 * @sgp: SGP_* flags to control behavior 2622 * 2623 * Looks up the page cache entry at @inode & @index. If a folio is 2624 * present, it is returned locked with an increased refcount. 2625 * 2626 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2627 * before unlocking the folio to ensure that the folio is not reclaimed. 2628 * There is no need to reserve space before calling folio_mark_dirty(). 2629 * 2630 * When no folio is found, the behavior depends on @sgp: 2631 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2632 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2633 * - for all other flags a new folio is allocated, inserted into the 2634 * page cache and returned locked in @foliop. 2635 * 2636 * Context: May sleep. 2637 * Return: 0 if successful, else a negative error code. 2638 */ 2639 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2640 struct folio **foliop, enum sgp_type sgp) 2641 { 2642 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2643 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2644 } 2645 EXPORT_SYMBOL_GPL(shmem_get_folio); 2646 2647 /* 2648 * This is like autoremove_wake_function, but it removes the wait queue 2649 * entry unconditionally - even if something else had already woken the 2650 * target. 2651 */ 2652 static int synchronous_wake_function(wait_queue_entry_t *wait, 2653 unsigned int mode, int sync, void *key) 2654 { 2655 int ret = default_wake_function(wait, mode, sync, key); 2656 list_del_init(&wait->entry); 2657 return ret; 2658 } 2659 2660 /* 2661 * Trinity finds that probing a hole which tmpfs is punching can 2662 * prevent the hole-punch from ever completing: which in turn 2663 * locks writers out with its hold on i_rwsem. So refrain from 2664 * faulting pages into the hole while it's being punched. Although 2665 * shmem_undo_range() does remove the additions, it may be unable to 2666 * keep up, as each new page needs its own unmap_mapping_range() call, 2667 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2668 * 2669 * It does not matter if we sometimes reach this check just before the 2670 * hole-punch begins, so that one fault then races with the punch: 2671 * we just need to make racing faults a rare case. 2672 * 2673 * The implementation below would be much simpler if we just used a 2674 * standard mutex or completion: but we cannot take i_rwsem in fault, 2675 * and bloating every shmem inode for this unlikely case would be sad. 2676 */ 2677 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2678 { 2679 struct shmem_falloc *shmem_falloc; 2680 struct file *fpin = NULL; 2681 vm_fault_t ret = 0; 2682 2683 spin_lock(&inode->i_lock); 2684 shmem_falloc = inode->i_private; 2685 if (shmem_falloc && 2686 shmem_falloc->waitq && 2687 vmf->pgoff >= shmem_falloc->start && 2688 vmf->pgoff < shmem_falloc->next) { 2689 wait_queue_head_t *shmem_falloc_waitq; 2690 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2691 2692 ret = VM_FAULT_NOPAGE; 2693 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2694 shmem_falloc_waitq = shmem_falloc->waitq; 2695 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2696 TASK_UNINTERRUPTIBLE); 2697 spin_unlock(&inode->i_lock); 2698 schedule(); 2699 2700 /* 2701 * shmem_falloc_waitq points into the shmem_fallocate() 2702 * stack of the hole-punching task: shmem_falloc_waitq 2703 * is usually invalid by the time we reach here, but 2704 * finish_wait() does not dereference it in that case; 2705 * though i_lock needed lest racing with wake_up_all(). 2706 */ 2707 spin_lock(&inode->i_lock); 2708 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2709 } 2710 spin_unlock(&inode->i_lock); 2711 if (fpin) { 2712 fput(fpin); 2713 ret = VM_FAULT_RETRY; 2714 } 2715 return ret; 2716 } 2717 2718 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2719 { 2720 struct inode *inode = file_inode(vmf->vma->vm_file); 2721 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2722 struct folio *folio = NULL; 2723 vm_fault_t ret = 0; 2724 int err; 2725 2726 /* 2727 * Trinity finds that probing a hole which tmpfs is punching can 2728 * prevent the hole-punch from ever completing: noted in i_private. 2729 */ 2730 if (unlikely(inode->i_private)) { 2731 ret = shmem_falloc_wait(vmf, inode); 2732 if (ret) 2733 return ret; 2734 } 2735 2736 WARN_ON_ONCE(vmf->page != NULL); 2737 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2738 gfp, vmf, &ret); 2739 if (err) 2740 return vmf_error(err); 2741 if (folio) { 2742 vmf->page = folio_file_page(folio, vmf->pgoff); 2743 ret |= VM_FAULT_LOCKED; 2744 } 2745 return ret; 2746 } 2747 2748 unsigned long shmem_get_unmapped_area(struct file *file, 2749 unsigned long uaddr, unsigned long len, 2750 unsigned long pgoff, unsigned long flags) 2751 { 2752 unsigned long addr; 2753 unsigned long offset; 2754 unsigned long inflated_len; 2755 unsigned long inflated_addr; 2756 unsigned long inflated_offset; 2757 unsigned long hpage_size; 2758 2759 if (len > TASK_SIZE) 2760 return -ENOMEM; 2761 2762 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2763 flags); 2764 2765 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2766 return addr; 2767 if (IS_ERR_VALUE(addr)) 2768 return addr; 2769 if (addr & ~PAGE_MASK) 2770 return addr; 2771 if (addr > TASK_SIZE - len) 2772 return addr; 2773 2774 if (shmem_huge == SHMEM_HUGE_DENY) 2775 return addr; 2776 if (flags & MAP_FIXED) 2777 return addr; 2778 /* 2779 * Our priority is to support MAP_SHARED mapped hugely; 2780 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2781 * But if caller specified an address hint and we allocated area there 2782 * successfully, respect that as before. 2783 */ 2784 if (uaddr == addr) 2785 return addr; 2786 2787 hpage_size = HPAGE_PMD_SIZE; 2788 if (shmem_huge != SHMEM_HUGE_FORCE) { 2789 struct super_block *sb; 2790 unsigned long __maybe_unused hpage_orders; 2791 int order = 0; 2792 2793 if (file) { 2794 VM_BUG_ON(file->f_op != &shmem_file_operations); 2795 sb = file_inode(file)->i_sb; 2796 } else { 2797 /* 2798 * Called directly from mm/mmap.c, or drivers/char/mem.c 2799 * for "/dev/zero", to create a shared anonymous object. 2800 */ 2801 if (IS_ERR(shm_mnt)) 2802 return addr; 2803 sb = shm_mnt->mnt_sb; 2804 2805 /* 2806 * Find the highest mTHP order used for anonymous shmem to 2807 * provide a suitable alignment address. 2808 */ 2809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2810 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2811 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2812 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2813 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2814 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2815 2816 if (hpage_orders > 0) { 2817 order = highest_order(hpage_orders); 2818 hpage_size = PAGE_SIZE << order; 2819 } 2820 #endif 2821 } 2822 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2823 return addr; 2824 } 2825 2826 if (len < hpage_size) 2827 return addr; 2828 2829 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2830 if (offset && offset + len < 2 * hpage_size) 2831 return addr; 2832 if ((addr & (hpage_size - 1)) == offset) 2833 return addr; 2834 2835 inflated_len = len + hpage_size - PAGE_SIZE; 2836 if (inflated_len > TASK_SIZE) 2837 return addr; 2838 if (inflated_len < len) 2839 return addr; 2840 2841 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2842 inflated_len, 0, flags); 2843 if (IS_ERR_VALUE(inflated_addr)) 2844 return addr; 2845 if (inflated_addr & ~PAGE_MASK) 2846 return addr; 2847 2848 inflated_offset = inflated_addr & (hpage_size - 1); 2849 inflated_addr += offset - inflated_offset; 2850 if (inflated_offset > offset) 2851 inflated_addr += hpage_size; 2852 2853 if (inflated_addr > TASK_SIZE - len) 2854 return addr; 2855 return inflated_addr; 2856 } 2857 2858 #ifdef CONFIG_NUMA 2859 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2860 { 2861 struct inode *inode = file_inode(vma->vm_file); 2862 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2863 } 2864 2865 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2866 unsigned long addr, pgoff_t *ilx) 2867 { 2868 struct inode *inode = file_inode(vma->vm_file); 2869 pgoff_t index; 2870 2871 /* 2872 * Bias interleave by inode number to distribute better across nodes; 2873 * but this interface is independent of which page order is used, so 2874 * supplies only that bias, letting caller apply the offset (adjusted 2875 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2876 */ 2877 *ilx = inode->i_ino; 2878 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2879 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2880 } 2881 2882 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2883 pgoff_t index, unsigned int order, pgoff_t *ilx) 2884 { 2885 struct mempolicy *mpol; 2886 2887 /* Bias interleave by inode number to distribute better across nodes */ 2888 *ilx = info->vfs_inode.i_ino + (index >> order); 2889 2890 mpol = mpol_shared_policy_lookup(&info->policy, index); 2891 return mpol ? mpol : get_task_policy(current); 2892 } 2893 #else 2894 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2895 pgoff_t index, unsigned int order, pgoff_t *ilx) 2896 { 2897 *ilx = 0; 2898 return NULL; 2899 } 2900 #endif /* CONFIG_NUMA */ 2901 2902 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2903 { 2904 struct inode *inode = file_inode(file); 2905 struct shmem_inode_info *info = SHMEM_I(inode); 2906 int retval = -ENOMEM; 2907 2908 /* 2909 * What serializes the accesses to info->flags? 2910 * ipc_lock_object() when called from shmctl_do_lock(), 2911 * no serialization needed when called from shm_destroy(). 2912 */ 2913 if (lock && !(info->flags & VM_LOCKED)) { 2914 if (!user_shm_lock(inode->i_size, ucounts)) 2915 goto out_nomem; 2916 info->flags |= VM_LOCKED; 2917 mapping_set_unevictable(file->f_mapping); 2918 } 2919 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2920 user_shm_unlock(inode->i_size, ucounts); 2921 info->flags &= ~VM_LOCKED; 2922 mapping_clear_unevictable(file->f_mapping); 2923 } 2924 retval = 0; 2925 2926 out_nomem: 2927 return retval; 2928 } 2929 2930 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2931 { 2932 struct inode *inode = file_inode(file); 2933 2934 file_accessed(file); 2935 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2936 if (inode->i_nlink) 2937 vma->vm_ops = &shmem_vm_ops; 2938 else 2939 vma->vm_ops = &shmem_anon_vm_ops; 2940 return 0; 2941 } 2942 2943 static int shmem_file_open(struct inode *inode, struct file *file) 2944 { 2945 file->f_mode |= FMODE_CAN_ODIRECT; 2946 return generic_file_open(inode, file); 2947 } 2948 2949 #ifdef CONFIG_TMPFS_XATTR 2950 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2951 2952 #if IS_ENABLED(CONFIG_UNICODE) 2953 /* 2954 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2955 * 2956 * The casefold file attribute needs some special checks. I can just be added to 2957 * an empty dir, and can't be removed from a non-empty dir. 2958 */ 2959 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2960 struct dentry *dentry, unsigned int *i_flags) 2961 { 2962 unsigned int old = inode->i_flags; 2963 struct super_block *sb = inode->i_sb; 2964 2965 if (fsflags & FS_CASEFOLD_FL) { 2966 if (!(old & S_CASEFOLD)) { 2967 if (!sb->s_encoding) 2968 return -EOPNOTSUPP; 2969 2970 if (!S_ISDIR(inode->i_mode)) 2971 return -ENOTDIR; 2972 2973 if (dentry && !simple_empty(dentry)) 2974 return -ENOTEMPTY; 2975 } 2976 2977 *i_flags = *i_flags | S_CASEFOLD; 2978 } else if (old & S_CASEFOLD) { 2979 if (dentry && !simple_empty(dentry)) 2980 return -ENOTEMPTY; 2981 } 2982 2983 return 0; 2984 } 2985 #else 2986 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2987 struct dentry *dentry, unsigned int *i_flags) 2988 { 2989 if (fsflags & FS_CASEFOLD_FL) 2990 return -EOPNOTSUPP; 2991 2992 return 0; 2993 } 2994 #endif 2995 2996 /* 2997 * chattr's fsflags are unrelated to extended attributes, 2998 * but tmpfs has chosen to enable them under the same config option. 2999 */ 3000 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3001 { 3002 unsigned int i_flags = 0; 3003 int ret; 3004 3005 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3006 if (ret) 3007 return ret; 3008 3009 if (fsflags & FS_NOATIME_FL) 3010 i_flags |= S_NOATIME; 3011 if (fsflags & FS_APPEND_FL) 3012 i_flags |= S_APPEND; 3013 if (fsflags & FS_IMMUTABLE_FL) 3014 i_flags |= S_IMMUTABLE; 3015 /* 3016 * But FS_NODUMP_FL does not require any action in i_flags. 3017 */ 3018 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3019 3020 return 0; 3021 } 3022 #else 3023 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3024 { 3025 } 3026 #define shmem_initxattrs NULL 3027 #endif 3028 3029 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3030 { 3031 return &SHMEM_I(inode)->dir_offsets; 3032 } 3033 3034 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3035 struct super_block *sb, 3036 struct inode *dir, umode_t mode, 3037 dev_t dev, unsigned long flags) 3038 { 3039 struct inode *inode; 3040 struct shmem_inode_info *info; 3041 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3042 ino_t ino; 3043 int err; 3044 3045 err = shmem_reserve_inode(sb, &ino); 3046 if (err) 3047 return ERR_PTR(err); 3048 3049 inode = new_inode(sb); 3050 if (!inode) { 3051 shmem_free_inode(sb, 0); 3052 return ERR_PTR(-ENOSPC); 3053 } 3054 3055 inode->i_ino = ino; 3056 inode_init_owner(idmap, inode, dir, mode); 3057 inode->i_blocks = 0; 3058 simple_inode_init_ts(inode); 3059 inode->i_generation = get_random_u32(); 3060 info = SHMEM_I(inode); 3061 memset(info, 0, (char *)inode - (char *)info); 3062 spin_lock_init(&info->lock); 3063 atomic_set(&info->stop_eviction, 0); 3064 info->seals = F_SEAL_SEAL; 3065 info->flags = flags & VM_NORESERVE; 3066 info->i_crtime = inode_get_mtime(inode); 3067 info->fsflags = (dir == NULL) ? 0 : 3068 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3069 if (info->fsflags) 3070 shmem_set_inode_flags(inode, info->fsflags, NULL); 3071 INIT_LIST_HEAD(&info->shrinklist); 3072 INIT_LIST_HEAD(&info->swaplist); 3073 simple_xattrs_init(&info->xattrs); 3074 cache_no_acl(inode); 3075 if (sbinfo->noswap) 3076 mapping_set_unevictable(inode->i_mapping); 3077 3078 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3079 if (sbinfo->huge) 3080 mapping_set_large_folios(inode->i_mapping); 3081 3082 switch (mode & S_IFMT) { 3083 default: 3084 inode->i_op = &shmem_special_inode_operations; 3085 init_special_inode(inode, mode, dev); 3086 break; 3087 case S_IFREG: 3088 inode->i_mapping->a_ops = &shmem_aops; 3089 inode->i_op = &shmem_inode_operations; 3090 inode->i_fop = &shmem_file_operations; 3091 mpol_shared_policy_init(&info->policy, 3092 shmem_get_sbmpol(sbinfo)); 3093 break; 3094 case S_IFDIR: 3095 inc_nlink(inode); 3096 /* Some things misbehave if size == 0 on a directory */ 3097 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3098 inode->i_op = &shmem_dir_inode_operations; 3099 inode->i_fop = &simple_offset_dir_operations; 3100 simple_offset_init(shmem_get_offset_ctx(inode)); 3101 break; 3102 case S_IFLNK: 3103 /* 3104 * Must not load anything in the rbtree, 3105 * mpol_free_shared_policy will not be called. 3106 */ 3107 mpol_shared_policy_init(&info->policy, NULL); 3108 break; 3109 } 3110 3111 lockdep_annotate_inode_mutex_key(inode); 3112 return inode; 3113 } 3114 3115 #ifdef CONFIG_TMPFS_QUOTA 3116 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3117 struct super_block *sb, struct inode *dir, 3118 umode_t mode, dev_t dev, unsigned long flags) 3119 { 3120 int err; 3121 struct inode *inode; 3122 3123 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3124 if (IS_ERR(inode)) 3125 return inode; 3126 3127 err = dquot_initialize(inode); 3128 if (err) 3129 goto errout; 3130 3131 err = dquot_alloc_inode(inode); 3132 if (err) { 3133 dquot_drop(inode); 3134 goto errout; 3135 } 3136 return inode; 3137 3138 errout: 3139 inode->i_flags |= S_NOQUOTA; 3140 iput(inode); 3141 return ERR_PTR(err); 3142 } 3143 #else 3144 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3145 struct super_block *sb, struct inode *dir, 3146 umode_t mode, dev_t dev, unsigned long flags) 3147 { 3148 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3149 } 3150 #endif /* CONFIG_TMPFS_QUOTA */ 3151 3152 #ifdef CONFIG_USERFAULTFD 3153 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3154 struct vm_area_struct *dst_vma, 3155 unsigned long dst_addr, 3156 unsigned long src_addr, 3157 uffd_flags_t flags, 3158 struct folio **foliop) 3159 { 3160 struct inode *inode = file_inode(dst_vma->vm_file); 3161 struct shmem_inode_info *info = SHMEM_I(inode); 3162 struct address_space *mapping = inode->i_mapping; 3163 gfp_t gfp = mapping_gfp_mask(mapping); 3164 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3165 void *page_kaddr; 3166 struct folio *folio; 3167 int ret; 3168 pgoff_t max_off; 3169 3170 if (shmem_inode_acct_blocks(inode, 1)) { 3171 /* 3172 * We may have got a page, returned -ENOENT triggering a retry, 3173 * and now we find ourselves with -ENOMEM. Release the page, to 3174 * avoid a BUG_ON in our caller. 3175 */ 3176 if (unlikely(*foliop)) { 3177 folio_put(*foliop); 3178 *foliop = NULL; 3179 } 3180 return -ENOMEM; 3181 } 3182 3183 if (!*foliop) { 3184 ret = -ENOMEM; 3185 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3186 if (!folio) 3187 goto out_unacct_blocks; 3188 3189 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3190 page_kaddr = kmap_local_folio(folio, 0); 3191 /* 3192 * The read mmap_lock is held here. Despite the 3193 * mmap_lock being read recursive a deadlock is still 3194 * possible if a writer has taken a lock. For example: 3195 * 3196 * process A thread 1 takes read lock on own mmap_lock 3197 * process A thread 2 calls mmap, blocks taking write lock 3198 * process B thread 1 takes page fault, read lock on own mmap lock 3199 * process B thread 2 calls mmap, blocks taking write lock 3200 * process A thread 1 blocks taking read lock on process B 3201 * process B thread 1 blocks taking read lock on process A 3202 * 3203 * Disable page faults to prevent potential deadlock 3204 * and retry the copy outside the mmap_lock. 3205 */ 3206 pagefault_disable(); 3207 ret = copy_from_user(page_kaddr, 3208 (const void __user *)src_addr, 3209 PAGE_SIZE); 3210 pagefault_enable(); 3211 kunmap_local(page_kaddr); 3212 3213 /* fallback to copy_from_user outside mmap_lock */ 3214 if (unlikely(ret)) { 3215 *foliop = folio; 3216 ret = -ENOENT; 3217 /* don't free the page */ 3218 goto out_unacct_blocks; 3219 } 3220 3221 flush_dcache_folio(folio); 3222 } else { /* ZEROPAGE */ 3223 clear_user_highpage(&folio->page, dst_addr); 3224 } 3225 } else { 3226 folio = *foliop; 3227 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3228 *foliop = NULL; 3229 } 3230 3231 VM_BUG_ON(folio_test_locked(folio)); 3232 VM_BUG_ON(folio_test_swapbacked(folio)); 3233 __folio_set_locked(folio); 3234 __folio_set_swapbacked(folio); 3235 __folio_mark_uptodate(folio); 3236 3237 ret = -EFAULT; 3238 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3239 if (unlikely(pgoff >= max_off)) 3240 goto out_release; 3241 3242 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3243 if (ret) 3244 goto out_release; 3245 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3246 if (ret) 3247 goto out_release; 3248 3249 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3250 &folio->page, true, flags); 3251 if (ret) 3252 goto out_delete_from_cache; 3253 3254 shmem_recalc_inode(inode, 1, 0); 3255 folio_unlock(folio); 3256 return 0; 3257 out_delete_from_cache: 3258 filemap_remove_folio(folio); 3259 out_release: 3260 folio_unlock(folio); 3261 folio_put(folio); 3262 out_unacct_blocks: 3263 shmem_inode_unacct_blocks(inode, 1); 3264 return ret; 3265 } 3266 #endif /* CONFIG_USERFAULTFD */ 3267 3268 #ifdef CONFIG_TMPFS 3269 static const struct inode_operations shmem_symlink_inode_operations; 3270 static const struct inode_operations shmem_short_symlink_operations; 3271 3272 static int 3273 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3274 loff_t pos, unsigned len, 3275 struct folio **foliop, void **fsdata) 3276 { 3277 struct inode *inode = mapping->host; 3278 struct shmem_inode_info *info = SHMEM_I(inode); 3279 pgoff_t index = pos >> PAGE_SHIFT; 3280 struct folio *folio; 3281 int ret = 0; 3282 3283 /* i_rwsem is held by caller */ 3284 if (unlikely(info->seals & (F_SEAL_GROW | 3285 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3286 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3287 return -EPERM; 3288 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3289 return -EPERM; 3290 } 3291 3292 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3293 if (ret) 3294 return ret; 3295 3296 if (folio_contain_hwpoisoned_page(folio)) { 3297 folio_unlock(folio); 3298 folio_put(folio); 3299 return -EIO; 3300 } 3301 3302 *foliop = folio; 3303 return 0; 3304 } 3305 3306 static int 3307 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3308 loff_t pos, unsigned len, unsigned copied, 3309 struct folio *folio, void *fsdata) 3310 { 3311 struct inode *inode = mapping->host; 3312 3313 if (pos + copied > inode->i_size) 3314 i_size_write(inode, pos + copied); 3315 3316 if (!folio_test_uptodate(folio)) { 3317 if (copied < folio_size(folio)) { 3318 size_t from = offset_in_folio(folio, pos); 3319 folio_zero_segments(folio, 0, from, 3320 from + copied, folio_size(folio)); 3321 } 3322 folio_mark_uptodate(folio); 3323 } 3324 folio_mark_dirty(folio); 3325 folio_unlock(folio); 3326 folio_put(folio); 3327 3328 return copied; 3329 } 3330 3331 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3332 { 3333 struct file *file = iocb->ki_filp; 3334 struct inode *inode = file_inode(file); 3335 struct address_space *mapping = inode->i_mapping; 3336 pgoff_t index; 3337 unsigned long offset; 3338 int error = 0; 3339 ssize_t retval = 0; 3340 3341 for (;;) { 3342 struct folio *folio = NULL; 3343 struct page *page = NULL; 3344 unsigned long nr, ret; 3345 loff_t end_offset, i_size = i_size_read(inode); 3346 bool fallback_page_copy = false; 3347 size_t fsize; 3348 3349 if (unlikely(iocb->ki_pos >= i_size)) 3350 break; 3351 3352 index = iocb->ki_pos >> PAGE_SHIFT; 3353 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3354 if (error) { 3355 if (error == -EINVAL) 3356 error = 0; 3357 break; 3358 } 3359 if (folio) { 3360 folio_unlock(folio); 3361 3362 page = folio_file_page(folio, index); 3363 if (PageHWPoison(page)) { 3364 folio_put(folio); 3365 error = -EIO; 3366 break; 3367 } 3368 3369 if (folio_test_large(folio) && 3370 folio_test_has_hwpoisoned(folio)) 3371 fallback_page_copy = true; 3372 } 3373 3374 /* 3375 * We must evaluate after, since reads (unlike writes) 3376 * are called without i_rwsem protection against truncate 3377 */ 3378 i_size = i_size_read(inode); 3379 if (unlikely(iocb->ki_pos >= i_size)) { 3380 if (folio) 3381 folio_put(folio); 3382 break; 3383 } 3384 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3385 if (folio && likely(!fallback_page_copy)) 3386 fsize = folio_size(folio); 3387 else 3388 fsize = PAGE_SIZE; 3389 offset = iocb->ki_pos & (fsize - 1); 3390 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3391 3392 if (folio) { 3393 /* 3394 * If users can be writing to this page using arbitrary 3395 * virtual addresses, take care about potential aliasing 3396 * before reading the page on the kernel side. 3397 */ 3398 if (mapping_writably_mapped(mapping)) { 3399 if (likely(!fallback_page_copy)) 3400 flush_dcache_folio(folio); 3401 else 3402 flush_dcache_page(page); 3403 } 3404 3405 /* 3406 * Mark the folio accessed if we read the beginning. 3407 */ 3408 if (!offset) 3409 folio_mark_accessed(folio); 3410 /* 3411 * Ok, we have the page, and it's up-to-date, so 3412 * now we can copy it to user space... 3413 */ 3414 if (likely(!fallback_page_copy)) 3415 ret = copy_folio_to_iter(folio, offset, nr, to); 3416 else 3417 ret = copy_page_to_iter(page, offset, nr, to); 3418 folio_put(folio); 3419 } else if (user_backed_iter(to)) { 3420 /* 3421 * Copy to user tends to be so well optimized, but 3422 * clear_user() not so much, that it is noticeably 3423 * faster to copy the zero page instead of clearing. 3424 */ 3425 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3426 } else { 3427 /* 3428 * But submitting the same page twice in a row to 3429 * splice() - or others? - can result in confusion: 3430 * so don't attempt that optimization on pipes etc. 3431 */ 3432 ret = iov_iter_zero(nr, to); 3433 } 3434 3435 retval += ret; 3436 iocb->ki_pos += ret; 3437 3438 if (!iov_iter_count(to)) 3439 break; 3440 if (ret < nr) { 3441 error = -EFAULT; 3442 break; 3443 } 3444 cond_resched(); 3445 } 3446 3447 file_accessed(file); 3448 return retval ? retval : error; 3449 } 3450 3451 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3452 { 3453 struct file *file = iocb->ki_filp; 3454 struct inode *inode = file->f_mapping->host; 3455 ssize_t ret; 3456 3457 inode_lock(inode); 3458 ret = generic_write_checks(iocb, from); 3459 if (ret <= 0) 3460 goto unlock; 3461 ret = file_remove_privs(file); 3462 if (ret) 3463 goto unlock; 3464 ret = file_update_time(file); 3465 if (ret) 3466 goto unlock; 3467 ret = generic_perform_write(iocb, from); 3468 unlock: 3469 inode_unlock(inode); 3470 return ret; 3471 } 3472 3473 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3474 struct pipe_buffer *buf) 3475 { 3476 return true; 3477 } 3478 3479 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3480 struct pipe_buffer *buf) 3481 { 3482 } 3483 3484 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3485 struct pipe_buffer *buf) 3486 { 3487 return false; 3488 } 3489 3490 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3491 .release = zero_pipe_buf_release, 3492 .try_steal = zero_pipe_buf_try_steal, 3493 .get = zero_pipe_buf_get, 3494 }; 3495 3496 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3497 loff_t fpos, size_t size) 3498 { 3499 size_t offset = fpos & ~PAGE_MASK; 3500 3501 size = min_t(size_t, size, PAGE_SIZE - offset); 3502 3503 if (!pipe_is_full(pipe)) { 3504 struct pipe_buffer *buf = pipe_head_buf(pipe); 3505 3506 *buf = (struct pipe_buffer) { 3507 .ops = &zero_pipe_buf_ops, 3508 .page = ZERO_PAGE(0), 3509 .offset = offset, 3510 .len = size, 3511 }; 3512 pipe->head++; 3513 } 3514 3515 return size; 3516 } 3517 3518 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3519 struct pipe_inode_info *pipe, 3520 size_t len, unsigned int flags) 3521 { 3522 struct inode *inode = file_inode(in); 3523 struct address_space *mapping = inode->i_mapping; 3524 struct folio *folio = NULL; 3525 size_t total_spliced = 0, used, npages, n, part; 3526 loff_t isize; 3527 int error = 0; 3528 3529 /* Work out how much data we can actually add into the pipe */ 3530 used = pipe_buf_usage(pipe); 3531 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3532 len = min_t(size_t, len, npages * PAGE_SIZE); 3533 3534 do { 3535 bool fallback_page_splice = false; 3536 struct page *page = NULL; 3537 pgoff_t index; 3538 size_t size; 3539 3540 if (*ppos >= i_size_read(inode)) 3541 break; 3542 3543 index = *ppos >> PAGE_SHIFT; 3544 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3545 if (error) { 3546 if (error == -EINVAL) 3547 error = 0; 3548 break; 3549 } 3550 if (folio) { 3551 folio_unlock(folio); 3552 3553 page = folio_file_page(folio, index); 3554 if (PageHWPoison(page)) { 3555 error = -EIO; 3556 break; 3557 } 3558 3559 if (folio_test_large(folio) && 3560 folio_test_has_hwpoisoned(folio)) 3561 fallback_page_splice = true; 3562 } 3563 3564 /* 3565 * i_size must be checked after we know the pages are Uptodate. 3566 * 3567 * Checking i_size after the check allows us to calculate 3568 * the correct value for "nr", which means the zero-filled 3569 * part of the page is not copied back to userspace (unless 3570 * another truncate extends the file - this is desired though). 3571 */ 3572 isize = i_size_read(inode); 3573 if (unlikely(*ppos >= isize)) 3574 break; 3575 /* 3576 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3577 * pages. 3578 */ 3579 size = len; 3580 if (unlikely(fallback_page_splice)) { 3581 size_t offset = *ppos & ~PAGE_MASK; 3582 3583 size = umin(size, PAGE_SIZE - offset); 3584 } 3585 part = min_t(loff_t, isize - *ppos, size); 3586 3587 if (folio) { 3588 /* 3589 * If users can be writing to this page using arbitrary 3590 * virtual addresses, take care about potential aliasing 3591 * before reading the page on the kernel side. 3592 */ 3593 if (mapping_writably_mapped(mapping)) { 3594 if (likely(!fallback_page_splice)) 3595 flush_dcache_folio(folio); 3596 else 3597 flush_dcache_page(page); 3598 } 3599 folio_mark_accessed(folio); 3600 /* 3601 * Ok, we have the page, and it's up-to-date, so we can 3602 * now splice it into the pipe. 3603 */ 3604 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3605 folio_put(folio); 3606 folio = NULL; 3607 } else { 3608 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3609 } 3610 3611 if (!n) 3612 break; 3613 len -= n; 3614 total_spliced += n; 3615 *ppos += n; 3616 in->f_ra.prev_pos = *ppos; 3617 if (pipe_is_full(pipe)) 3618 break; 3619 3620 cond_resched(); 3621 } while (len); 3622 3623 if (folio) 3624 folio_put(folio); 3625 3626 file_accessed(in); 3627 return total_spliced ? total_spliced : error; 3628 } 3629 3630 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3631 { 3632 struct address_space *mapping = file->f_mapping; 3633 struct inode *inode = mapping->host; 3634 3635 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3636 return generic_file_llseek_size(file, offset, whence, 3637 MAX_LFS_FILESIZE, i_size_read(inode)); 3638 if (offset < 0) 3639 return -ENXIO; 3640 3641 inode_lock(inode); 3642 /* We're holding i_rwsem so we can access i_size directly */ 3643 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3644 if (offset >= 0) 3645 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3646 inode_unlock(inode); 3647 return offset; 3648 } 3649 3650 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3651 loff_t len) 3652 { 3653 struct inode *inode = file_inode(file); 3654 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3655 struct shmem_inode_info *info = SHMEM_I(inode); 3656 struct shmem_falloc shmem_falloc; 3657 pgoff_t start, index, end, undo_fallocend; 3658 int error; 3659 3660 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3661 return -EOPNOTSUPP; 3662 3663 inode_lock(inode); 3664 3665 if (mode & FALLOC_FL_PUNCH_HOLE) { 3666 struct address_space *mapping = file->f_mapping; 3667 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3668 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3669 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3670 3671 /* protected by i_rwsem */ 3672 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3673 error = -EPERM; 3674 goto out; 3675 } 3676 3677 shmem_falloc.waitq = &shmem_falloc_waitq; 3678 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3679 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3680 spin_lock(&inode->i_lock); 3681 inode->i_private = &shmem_falloc; 3682 spin_unlock(&inode->i_lock); 3683 3684 if ((u64)unmap_end > (u64)unmap_start) 3685 unmap_mapping_range(mapping, unmap_start, 3686 1 + unmap_end - unmap_start, 0); 3687 shmem_truncate_range(inode, offset, offset + len - 1); 3688 /* No need to unmap again: hole-punching leaves COWed pages */ 3689 3690 spin_lock(&inode->i_lock); 3691 inode->i_private = NULL; 3692 wake_up_all(&shmem_falloc_waitq); 3693 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3694 spin_unlock(&inode->i_lock); 3695 error = 0; 3696 goto out; 3697 } 3698 3699 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3700 error = inode_newsize_ok(inode, offset + len); 3701 if (error) 3702 goto out; 3703 3704 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3705 error = -EPERM; 3706 goto out; 3707 } 3708 3709 start = offset >> PAGE_SHIFT; 3710 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3711 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3712 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3713 error = -ENOSPC; 3714 goto out; 3715 } 3716 3717 shmem_falloc.waitq = NULL; 3718 shmem_falloc.start = start; 3719 shmem_falloc.next = start; 3720 shmem_falloc.nr_falloced = 0; 3721 shmem_falloc.nr_unswapped = 0; 3722 spin_lock(&inode->i_lock); 3723 inode->i_private = &shmem_falloc; 3724 spin_unlock(&inode->i_lock); 3725 3726 /* 3727 * info->fallocend is only relevant when huge pages might be 3728 * involved: to prevent split_huge_page() freeing fallocated 3729 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3730 */ 3731 undo_fallocend = info->fallocend; 3732 if (info->fallocend < end) 3733 info->fallocend = end; 3734 3735 for (index = start; index < end; ) { 3736 struct folio *folio; 3737 3738 /* 3739 * Check for fatal signal so that we abort early in OOM 3740 * situations. We don't want to abort in case of non-fatal 3741 * signals as large fallocate can take noticeable time and 3742 * e.g. periodic timers may result in fallocate constantly 3743 * restarting. 3744 */ 3745 if (fatal_signal_pending(current)) 3746 error = -EINTR; 3747 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3748 error = -ENOMEM; 3749 else 3750 error = shmem_get_folio(inode, index, offset + len, 3751 &folio, SGP_FALLOC); 3752 if (error) { 3753 info->fallocend = undo_fallocend; 3754 /* Remove the !uptodate folios we added */ 3755 if (index > start) { 3756 shmem_undo_range(inode, 3757 (loff_t)start << PAGE_SHIFT, 3758 ((loff_t)index << PAGE_SHIFT) - 1, true); 3759 } 3760 goto undone; 3761 } 3762 3763 /* 3764 * Here is a more important optimization than it appears: 3765 * a second SGP_FALLOC on the same large folio will clear it, 3766 * making it uptodate and un-undoable if we fail later. 3767 */ 3768 index = folio_next_index(folio); 3769 /* Beware 32-bit wraparound */ 3770 if (!index) 3771 index--; 3772 3773 /* 3774 * Inform shmem_writeout() how far we have reached. 3775 * No need for lock or barrier: we have the page lock. 3776 */ 3777 if (!folio_test_uptodate(folio)) 3778 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3779 shmem_falloc.next = index; 3780 3781 /* 3782 * If !uptodate, leave it that way so that freeable folios 3783 * can be recognized if we need to rollback on error later. 3784 * But mark it dirty so that memory pressure will swap rather 3785 * than free the folios we are allocating (and SGP_CACHE folios 3786 * might still be clean: we now need to mark those dirty too). 3787 */ 3788 folio_mark_dirty(folio); 3789 folio_unlock(folio); 3790 folio_put(folio); 3791 cond_resched(); 3792 } 3793 3794 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3795 i_size_write(inode, offset + len); 3796 undone: 3797 spin_lock(&inode->i_lock); 3798 inode->i_private = NULL; 3799 spin_unlock(&inode->i_lock); 3800 out: 3801 if (!error) 3802 file_modified(file); 3803 inode_unlock(inode); 3804 return error; 3805 } 3806 3807 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3808 { 3809 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3810 3811 buf->f_type = TMPFS_MAGIC; 3812 buf->f_bsize = PAGE_SIZE; 3813 buf->f_namelen = NAME_MAX; 3814 if (sbinfo->max_blocks) { 3815 buf->f_blocks = sbinfo->max_blocks; 3816 buf->f_bavail = 3817 buf->f_bfree = sbinfo->max_blocks - 3818 percpu_counter_sum(&sbinfo->used_blocks); 3819 } 3820 if (sbinfo->max_inodes) { 3821 buf->f_files = sbinfo->max_inodes; 3822 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3823 } 3824 /* else leave those fields 0 like simple_statfs */ 3825 3826 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3827 3828 return 0; 3829 } 3830 3831 /* 3832 * File creation. Allocate an inode, and we're done.. 3833 */ 3834 static int 3835 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3836 struct dentry *dentry, umode_t mode, dev_t dev) 3837 { 3838 struct inode *inode; 3839 int error; 3840 3841 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3842 return -EINVAL; 3843 3844 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3845 if (IS_ERR(inode)) 3846 return PTR_ERR(inode); 3847 3848 error = simple_acl_create(dir, inode); 3849 if (error) 3850 goto out_iput; 3851 error = security_inode_init_security(inode, dir, &dentry->d_name, 3852 shmem_initxattrs, NULL); 3853 if (error && error != -EOPNOTSUPP) 3854 goto out_iput; 3855 3856 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3857 if (error) 3858 goto out_iput; 3859 3860 dir->i_size += BOGO_DIRENT_SIZE; 3861 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3862 inode_inc_iversion(dir); 3863 3864 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3865 d_add(dentry, inode); 3866 else 3867 d_instantiate(dentry, inode); 3868 3869 dget(dentry); /* Extra count - pin the dentry in core */ 3870 return error; 3871 3872 out_iput: 3873 iput(inode); 3874 return error; 3875 } 3876 3877 static int 3878 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3879 struct file *file, umode_t mode) 3880 { 3881 struct inode *inode; 3882 int error; 3883 3884 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3885 if (IS_ERR(inode)) { 3886 error = PTR_ERR(inode); 3887 goto err_out; 3888 } 3889 error = security_inode_init_security(inode, dir, NULL, 3890 shmem_initxattrs, NULL); 3891 if (error && error != -EOPNOTSUPP) 3892 goto out_iput; 3893 error = simple_acl_create(dir, inode); 3894 if (error) 3895 goto out_iput; 3896 d_tmpfile(file, inode); 3897 3898 err_out: 3899 return finish_open_simple(file, error); 3900 out_iput: 3901 iput(inode); 3902 return error; 3903 } 3904 3905 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3906 struct dentry *dentry, umode_t mode) 3907 { 3908 int error; 3909 3910 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3911 if (error) 3912 return ERR_PTR(error); 3913 inc_nlink(dir); 3914 return NULL; 3915 } 3916 3917 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3918 struct dentry *dentry, umode_t mode, bool excl) 3919 { 3920 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3921 } 3922 3923 /* 3924 * Link a file.. 3925 */ 3926 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3927 struct dentry *dentry) 3928 { 3929 struct inode *inode = d_inode(old_dentry); 3930 int ret = 0; 3931 3932 /* 3933 * No ordinary (disk based) filesystem counts links as inodes; 3934 * but each new link needs a new dentry, pinning lowmem, and 3935 * tmpfs dentries cannot be pruned until they are unlinked. 3936 * But if an O_TMPFILE file is linked into the tmpfs, the 3937 * first link must skip that, to get the accounting right. 3938 */ 3939 if (inode->i_nlink) { 3940 ret = shmem_reserve_inode(inode->i_sb, NULL); 3941 if (ret) 3942 goto out; 3943 } 3944 3945 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3946 if (ret) { 3947 if (inode->i_nlink) 3948 shmem_free_inode(inode->i_sb, 0); 3949 goto out; 3950 } 3951 3952 dir->i_size += BOGO_DIRENT_SIZE; 3953 inode_set_mtime_to_ts(dir, 3954 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3955 inode_inc_iversion(dir); 3956 inc_nlink(inode); 3957 ihold(inode); /* New dentry reference */ 3958 dget(dentry); /* Extra pinning count for the created dentry */ 3959 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3960 d_add(dentry, inode); 3961 else 3962 d_instantiate(dentry, inode); 3963 out: 3964 return ret; 3965 } 3966 3967 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3968 { 3969 struct inode *inode = d_inode(dentry); 3970 3971 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3972 shmem_free_inode(inode->i_sb, 0); 3973 3974 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3975 3976 dir->i_size -= BOGO_DIRENT_SIZE; 3977 inode_set_mtime_to_ts(dir, 3978 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3979 inode_inc_iversion(dir); 3980 drop_nlink(inode); 3981 dput(dentry); /* Undo the count from "create" - does all the work */ 3982 3983 /* 3984 * For now, VFS can't deal with case-insensitive negative dentries, so 3985 * we invalidate them 3986 */ 3987 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3988 d_invalidate(dentry); 3989 3990 return 0; 3991 } 3992 3993 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3994 { 3995 if (!simple_empty(dentry)) 3996 return -ENOTEMPTY; 3997 3998 drop_nlink(d_inode(dentry)); 3999 drop_nlink(dir); 4000 return shmem_unlink(dir, dentry); 4001 } 4002 4003 static int shmem_whiteout(struct mnt_idmap *idmap, 4004 struct inode *old_dir, struct dentry *old_dentry) 4005 { 4006 struct dentry *whiteout; 4007 int error; 4008 4009 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4010 if (!whiteout) 4011 return -ENOMEM; 4012 4013 error = shmem_mknod(idmap, old_dir, whiteout, 4014 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4015 dput(whiteout); 4016 if (error) 4017 return error; 4018 4019 /* 4020 * Cheat and hash the whiteout while the old dentry is still in 4021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4022 * 4023 * d_lookup() will consistently find one of them at this point, 4024 * not sure which one, but that isn't even important. 4025 */ 4026 d_rehash(whiteout); 4027 return 0; 4028 } 4029 4030 /* 4031 * The VFS layer already does all the dentry stuff for rename, 4032 * we just have to decrement the usage count for the target if 4033 * it exists so that the VFS layer correctly free's it when it 4034 * gets overwritten. 4035 */ 4036 static int shmem_rename2(struct mnt_idmap *idmap, 4037 struct inode *old_dir, struct dentry *old_dentry, 4038 struct inode *new_dir, struct dentry *new_dentry, 4039 unsigned int flags) 4040 { 4041 struct inode *inode = d_inode(old_dentry); 4042 int they_are_dirs = S_ISDIR(inode->i_mode); 4043 int error; 4044 4045 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4046 return -EINVAL; 4047 4048 if (flags & RENAME_EXCHANGE) 4049 return simple_offset_rename_exchange(old_dir, old_dentry, 4050 new_dir, new_dentry); 4051 4052 if (!simple_empty(new_dentry)) 4053 return -ENOTEMPTY; 4054 4055 if (flags & RENAME_WHITEOUT) { 4056 error = shmem_whiteout(idmap, old_dir, old_dentry); 4057 if (error) 4058 return error; 4059 } 4060 4061 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4062 if (error) 4063 return error; 4064 4065 if (d_really_is_positive(new_dentry)) { 4066 (void) shmem_unlink(new_dir, new_dentry); 4067 if (they_are_dirs) { 4068 drop_nlink(d_inode(new_dentry)); 4069 drop_nlink(old_dir); 4070 } 4071 } else if (they_are_dirs) { 4072 drop_nlink(old_dir); 4073 inc_nlink(new_dir); 4074 } 4075 4076 old_dir->i_size -= BOGO_DIRENT_SIZE; 4077 new_dir->i_size += BOGO_DIRENT_SIZE; 4078 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4079 inode_inc_iversion(old_dir); 4080 inode_inc_iversion(new_dir); 4081 return 0; 4082 } 4083 4084 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4085 struct dentry *dentry, const char *symname) 4086 { 4087 int error; 4088 int len; 4089 struct inode *inode; 4090 struct folio *folio; 4091 char *link; 4092 4093 len = strlen(symname) + 1; 4094 if (len > PAGE_SIZE) 4095 return -ENAMETOOLONG; 4096 4097 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4098 VM_NORESERVE); 4099 if (IS_ERR(inode)) 4100 return PTR_ERR(inode); 4101 4102 error = security_inode_init_security(inode, dir, &dentry->d_name, 4103 shmem_initxattrs, NULL); 4104 if (error && error != -EOPNOTSUPP) 4105 goto out_iput; 4106 4107 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4108 if (error) 4109 goto out_iput; 4110 4111 inode->i_size = len-1; 4112 if (len <= SHORT_SYMLINK_LEN) { 4113 link = kmemdup(symname, len, GFP_KERNEL); 4114 if (!link) { 4115 error = -ENOMEM; 4116 goto out_remove_offset; 4117 } 4118 inode->i_op = &shmem_short_symlink_operations; 4119 inode_set_cached_link(inode, link, len - 1); 4120 } else { 4121 inode_nohighmem(inode); 4122 inode->i_mapping->a_ops = &shmem_aops; 4123 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4124 if (error) 4125 goto out_remove_offset; 4126 inode->i_op = &shmem_symlink_inode_operations; 4127 memcpy(folio_address(folio), symname, len); 4128 folio_mark_uptodate(folio); 4129 folio_mark_dirty(folio); 4130 folio_unlock(folio); 4131 folio_put(folio); 4132 } 4133 dir->i_size += BOGO_DIRENT_SIZE; 4134 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4135 inode_inc_iversion(dir); 4136 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4137 d_add(dentry, inode); 4138 else 4139 d_instantiate(dentry, inode); 4140 dget(dentry); 4141 return 0; 4142 4143 out_remove_offset: 4144 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4145 out_iput: 4146 iput(inode); 4147 return error; 4148 } 4149 4150 static void shmem_put_link(void *arg) 4151 { 4152 folio_mark_accessed(arg); 4153 folio_put(arg); 4154 } 4155 4156 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4157 struct delayed_call *done) 4158 { 4159 struct folio *folio = NULL; 4160 int error; 4161 4162 if (!dentry) { 4163 folio = filemap_get_folio(inode->i_mapping, 0); 4164 if (IS_ERR(folio)) 4165 return ERR_PTR(-ECHILD); 4166 if (PageHWPoison(folio_page(folio, 0)) || 4167 !folio_test_uptodate(folio)) { 4168 folio_put(folio); 4169 return ERR_PTR(-ECHILD); 4170 } 4171 } else { 4172 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4173 if (error) 4174 return ERR_PTR(error); 4175 if (!folio) 4176 return ERR_PTR(-ECHILD); 4177 if (PageHWPoison(folio_page(folio, 0))) { 4178 folio_unlock(folio); 4179 folio_put(folio); 4180 return ERR_PTR(-ECHILD); 4181 } 4182 folio_unlock(folio); 4183 } 4184 set_delayed_call(done, shmem_put_link, folio); 4185 return folio_address(folio); 4186 } 4187 4188 #ifdef CONFIG_TMPFS_XATTR 4189 4190 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4191 { 4192 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4193 4194 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4195 4196 return 0; 4197 } 4198 4199 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4200 struct dentry *dentry, struct file_kattr *fa) 4201 { 4202 struct inode *inode = d_inode(dentry); 4203 struct shmem_inode_info *info = SHMEM_I(inode); 4204 int ret, flags; 4205 4206 if (fileattr_has_fsx(fa)) 4207 return -EOPNOTSUPP; 4208 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4209 return -EOPNOTSUPP; 4210 4211 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4212 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4213 4214 ret = shmem_set_inode_flags(inode, flags, dentry); 4215 4216 if (ret) 4217 return ret; 4218 4219 info->fsflags = flags; 4220 4221 inode_set_ctime_current(inode); 4222 inode_inc_iversion(inode); 4223 return 0; 4224 } 4225 4226 /* 4227 * Superblocks without xattr inode operations may get some security.* xattr 4228 * support from the LSM "for free". As soon as we have any other xattrs 4229 * like ACLs, we also need to implement the security.* handlers at 4230 * filesystem level, though. 4231 */ 4232 4233 /* 4234 * Callback for security_inode_init_security() for acquiring xattrs. 4235 */ 4236 static int shmem_initxattrs(struct inode *inode, 4237 const struct xattr *xattr_array, void *fs_info) 4238 { 4239 struct shmem_inode_info *info = SHMEM_I(inode); 4240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4241 const struct xattr *xattr; 4242 struct simple_xattr *new_xattr; 4243 size_t ispace = 0; 4244 size_t len; 4245 4246 if (sbinfo->max_inodes) { 4247 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4248 ispace += simple_xattr_space(xattr->name, 4249 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4250 } 4251 if (ispace) { 4252 raw_spin_lock(&sbinfo->stat_lock); 4253 if (sbinfo->free_ispace < ispace) 4254 ispace = 0; 4255 else 4256 sbinfo->free_ispace -= ispace; 4257 raw_spin_unlock(&sbinfo->stat_lock); 4258 if (!ispace) 4259 return -ENOSPC; 4260 } 4261 } 4262 4263 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4264 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4265 if (!new_xattr) 4266 break; 4267 4268 len = strlen(xattr->name) + 1; 4269 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4270 GFP_KERNEL_ACCOUNT); 4271 if (!new_xattr->name) { 4272 kvfree(new_xattr); 4273 break; 4274 } 4275 4276 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4277 XATTR_SECURITY_PREFIX_LEN); 4278 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4279 xattr->name, len); 4280 4281 simple_xattr_add(&info->xattrs, new_xattr); 4282 } 4283 4284 if (xattr->name != NULL) { 4285 if (ispace) { 4286 raw_spin_lock(&sbinfo->stat_lock); 4287 sbinfo->free_ispace += ispace; 4288 raw_spin_unlock(&sbinfo->stat_lock); 4289 } 4290 simple_xattrs_free(&info->xattrs, NULL); 4291 return -ENOMEM; 4292 } 4293 4294 return 0; 4295 } 4296 4297 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4298 struct dentry *unused, struct inode *inode, 4299 const char *name, void *buffer, size_t size) 4300 { 4301 struct shmem_inode_info *info = SHMEM_I(inode); 4302 4303 name = xattr_full_name(handler, name); 4304 return simple_xattr_get(&info->xattrs, name, buffer, size); 4305 } 4306 4307 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4308 struct mnt_idmap *idmap, 4309 struct dentry *unused, struct inode *inode, 4310 const char *name, const void *value, 4311 size_t size, int flags) 4312 { 4313 struct shmem_inode_info *info = SHMEM_I(inode); 4314 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4315 struct simple_xattr *old_xattr; 4316 size_t ispace = 0; 4317 4318 name = xattr_full_name(handler, name); 4319 if (value && sbinfo->max_inodes) { 4320 ispace = simple_xattr_space(name, size); 4321 raw_spin_lock(&sbinfo->stat_lock); 4322 if (sbinfo->free_ispace < ispace) 4323 ispace = 0; 4324 else 4325 sbinfo->free_ispace -= ispace; 4326 raw_spin_unlock(&sbinfo->stat_lock); 4327 if (!ispace) 4328 return -ENOSPC; 4329 } 4330 4331 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4332 if (!IS_ERR(old_xattr)) { 4333 ispace = 0; 4334 if (old_xattr && sbinfo->max_inodes) 4335 ispace = simple_xattr_space(old_xattr->name, 4336 old_xattr->size); 4337 simple_xattr_free(old_xattr); 4338 old_xattr = NULL; 4339 inode_set_ctime_current(inode); 4340 inode_inc_iversion(inode); 4341 } 4342 if (ispace) { 4343 raw_spin_lock(&sbinfo->stat_lock); 4344 sbinfo->free_ispace += ispace; 4345 raw_spin_unlock(&sbinfo->stat_lock); 4346 } 4347 return PTR_ERR(old_xattr); 4348 } 4349 4350 static const struct xattr_handler shmem_security_xattr_handler = { 4351 .prefix = XATTR_SECURITY_PREFIX, 4352 .get = shmem_xattr_handler_get, 4353 .set = shmem_xattr_handler_set, 4354 }; 4355 4356 static const struct xattr_handler shmem_trusted_xattr_handler = { 4357 .prefix = XATTR_TRUSTED_PREFIX, 4358 .get = shmem_xattr_handler_get, 4359 .set = shmem_xattr_handler_set, 4360 }; 4361 4362 static const struct xattr_handler shmem_user_xattr_handler = { 4363 .prefix = XATTR_USER_PREFIX, 4364 .get = shmem_xattr_handler_get, 4365 .set = shmem_xattr_handler_set, 4366 }; 4367 4368 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4369 &shmem_security_xattr_handler, 4370 &shmem_trusted_xattr_handler, 4371 &shmem_user_xattr_handler, 4372 NULL 4373 }; 4374 4375 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4376 { 4377 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4378 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4379 } 4380 #endif /* CONFIG_TMPFS_XATTR */ 4381 4382 static const struct inode_operations shmem_short_symlink_operations = { 4383 .getattr = shmem_getattr, 4384 .setattr = shmem_setattr, 4385 .get_link = simple_get_link, 4386 #ifdef CONFIG_TMPFS_XATTR 4387 .listxattr = shmem_listxattr, 4388 #endif 4389 }; 4390 4391 static const struct inode_operations shmem_symlink_inode_operations = { 4392 .getattr = shmem_getattr, 4393 .setattr = shmem_setattr, 4394 .get_link = shmem_get_link, 4395 #ifdef CONFIG_TMPFS_XATTR 4396 .listxattr = shmem_listxattr, 4397 #endif 4398 }; 4399 4400 static struct dentry *shmem_get_parent(struct dentry *child) 4401 { 4402 return ERR_PTR(-ESTALE); 4403 } 4404 4405 static int shmem_match(struct inode *ino, void *vfh) 4406 { 4407 __u32 *fh = vfh; 4408 __u64 inum = fh[2]; 4409 inum = (inum << 32) | fh[1]; 4410 return ino->i_ino == inum && fh[0] == ino->i_generation; 4411 } 4412 4413 /* Find any alias of inode, but prefer a hashed alias */ 4414 static struct dentry *shmem_find_alias(struct inode *inode) 4415 { 4416 struct dentry *alias = d_find_alias(inode); 4417 4418 return alias ?: d_find_any_alias(inode); 4419 } 4420 4421 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4422 struct fid *fid, int fh_len, int fh_type) 4423 { 4424 struct inode *inode; 4425 struct dentry *dentry = NULL; 4426 u64 inum; 4427 4428 if (fh_len < 3) 4429 return NULL; 4430 4431 inum = fid->raw[2]; 4432 inum = (inum << 32) | fid->raw[1]; 4433 4434 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4435 shmem_match, fid->raw); 4436 if (inode) { 4437 dentry = shmem_find_alias(inode); 4438 iput(inode); 4439 } 4440 4441 return dentry; 4442 } 4443 4444 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4445 struct inode *parent) 4446 { 4447 if (*len < 3) { 4448 *len = 3; 4449 return FILEID_INVALID; 4450 } 4451 4452 if (inode_unhashed(inode)) { 4453 /* Unfortunately insert_inode_hash is not idempotent, 4454 * so as we hash inodes here rather than at creation 4455 * time, we need a lock to ensure we only try 4456 * to do it once 4457 */ 4458 static DEFINE_SPINLOCK(lock); 4459 spin_lock(&lock); 4460 if (inode_unhashed(inode)) 4461 __insert_inode_hash(inode, 4462 inode->i_ino + inode->i_generation); 4463 spin_unlock(&lock); 4464 } 4465 4466 fh[0] = inode->i_generation; 4467 fh[1] = inode->i_ino; 4468 fh[2] = ((__u64)inode->i_ino) >> 32; 4469 4470 *len = 3; 4471 return 1; 4472 } 4473 4474 static const struct export_operations shmem_export_ops = { 4475 .get_parent = shmem_get_parent, 4476 .encode_fh = shmem_encode_fh, 4477 .fh_to_dentry = shmem_fh_to_dentry, 4478 }; 4479 4480 enum shmem_param { 4481 Opt_gid, 4482 Opt_huge, 4483 Opt_mode, 4484 Opt_mpol, 4485 Opt_nr_blocks, 4486 Opt_nr_inodes, 4487 Opt_size, 4488 Opt_uid, 4489 Opt_inode32, 4490 Opt_inode64, 4491 Opt_noswap, 4492 Opt_quota, 4493 Opt_usrquota, 4494 Opt_grpquota, 4495 Opt_usrquota_block_hardlimit, 4496 Opt_usrquota_inode_hardlimit, 4497 Opt_grpquota_block_hardlimit, 4498 Opt_grpquota_inode_hardlimit, 4499 Opt_casefold_version, 4500 Opt_casefold, 4501 Opt_strict_encoding, 4502 }; 4503 4504 static const struct constant_table shmem_param_enums_huge[] = { 4505 {"never", SHMEM_HUGE_NEVER }, 4506 {"always", SHMEM_HUGE_ALWAYS }, 4507 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4508 {"advise", SHMEM_HUGE_ADVISE }, 4509 {} 4510 }; 4511 4512 const struct fs_parameter_spec shmem_fs_parameters[] = { 4513 fsparam_gid ("gid", Opt_gid), 4514 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4515 fsparam_u32oct("mode", Opt_mode), 4516 fsparam_string("mpol", Opt_mpol), 4517 fsparam_string("nr_blocks", Opt_nr_blocks), 4518 fsparam_string("nr_inodes", Opt_nr_inodes), 4519 fsparam_string("size", Opt_size), 4520 fsparam_uid ("uid", Opt_uid), 4521 fsparam_flag ("inode32", Opt_inode32), 4522 fsparam_flag ("inode64", Opt_inode64), 4523 fsparam_flag ("noswap", Opt_noswap), 4524 #ifdef CONFIG_TMPFS_QUOTA 4525 fsparam_flag ("quota", Opt_quota), 4526 fsparam_flag ("usrquota", Opt_usrquota), 4527 fsparam_flag ("grpquota", Opt_grpquota), 4528 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4529 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4530 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4531 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4532 #endif 4533 fsparam_string("casefold", Opt_casefold_version), 4534 fsparam_flag ("casefold", Opt_casefold), 4535 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4536 {} 4537 }; 4538 4539 #if IS_ENABLED(CONFIG_UNICODE) 4540 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4541 bool latest_version) 4542 { 4543 struct shmem_options *ctx = fc->fs_private; 4544 int version = UTF8_LATEST; 4545 struct unicode_map *encoding; 4546 char *version_str = param->string + 5; 4547 4548 if (!latest_version) { 4549 if (strncmp(param->string, "utf8-", 5)) 4550 return invalfc(fc, "Only UTF-8 encodings are supported " 4551 "in the format: utf8-<version number>"); 4552 4553 version = utf8_parse_version(version_str); 4554 if (version < 0) 4555 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4556 } 4557 4558 encoding = utf8_load(version); 4559 4560 if (IS_ERR(encoding)) { 4561 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4562 unicode_major(version), unicode_minor(version), 4563 unicode_rev(version)); 4564 } 4565 4566 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4567 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4568 4569 ctx->encoding = encoding; 4570 4571 return 0; 4572 } 4573 #else 4574 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4575 bool latest_version) 4576 { 4577 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4578 } 4579 #endif 4580 4581 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4582 { 4583 struct shmem_options *ctx = fc->fs_private; 4584 struct fs_parse_result result; 4585 unsigned long long size; 4586 char *rest; 4587 int opt; 4588 kuid_t kuid; 4589 kgid_t kgid; 4590 4591 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4592 if (opt < 0) 4593 return opt; 4594 4595 switch (opt) { 4596 case Opt_size: 4597 size = memparse(param->string, &rest); 4598 if (*rest == '%') { 4599 size <<= PAGE_SHIFT; 4600 size *= totalram_pages(); 4601 do_div(size, 100); 4602 rest++; 4603 } 4604 if (*rest) 4605 goto bad_value; 4606 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4607 ctx->seen |= SHMEM_SEEN_BLOCKS; 4608 break; 4609 case Opt_nr_blocks: 4610 ctx->blocks = memparse(param->string, &rest); 4611 if (*rest || ctx->blocks > LONG_MAX) 4612 goto bad_value; 4613 ctx->seen |= SHMEM_SEEN_BLOCKS; 4614 break; 4615 case Opt_nr_inodes: 4616 ctx->inodes = memparse(param->string, &rest); 4617 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4618 goto bad_value; 4619 ctx->seen |= SHMEM_SEEN_INODES; 4620 break; 4621 case Opt_mode: 4622 ctx->mode = result.uint_32 & 07777; 4623 break; 4624 case Opt_uid: 4625 kuid = result.uid; 4626 4627 /* 4628 * The requested uid must be representable in the 4629 * filesystem's idmapping. 4630 */ 4631 if (!kuid_has_mapping(fc->user_ns, kuid)) 4632 goto bad_value; 4633 4634 ctx->uid = kuid; 4635 break; 4636 case Opt_gid: 4637 kgid = result.gid; 4638 4639 /* 4640 * The requested gid must be representable in the 4641 * filesystem's idmapping. 4642 */ 4643 if (!kgid_has_mapping(fc->user_ns, kgid)) 4644 goto bad_value; 4645 4646 ctx->gid = kgid; 4647 break; 4648 case Opt_huge: 4649 ctx->huge = result.uint_32; 4650 if (ctx->huge != SHMEM_HUGE_NEVER && 4651 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4652 has_transparent_hugepage())) 4653 goto unsupported_parameter; 4654 ctx->seen |= SHMEM_SEEN_HUGE; 4655 break; 4656 case Opt_mpol: 4657 if (IS_ENABLED(CONFIG_NUMA)) { 4658 mpol_put(ctx->mpol); 4659 ctx->mpol = NULL; 4660 if (mpol_parse_str(param->string, &ctx->mpol)) 4661 goto bad_value; 4662 break; 4663 } 4664 goto unsupported_parameter; 4665 case Opt_inode32: 4666 ctx->full_inums = false; 4667 ctx->seen |= SHMEM_SEEN_INUMS; 4668 break; 4669 case Opt_inode64: 4670 if (sizeof(ino_t) < 8) { 4671 return invalfc(fc, 4672 "Cannot use inode64 with <64bit inums in kernel\n"); 4673 } 4674 ctx->full_inums = true; 4675 ctx->seen |= SHMEM_SEEN_INUMS; 4676 break; 4677 case Opt_noswap: 4678 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4679 return invalfc(fc, 4680 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4681 } 4682 ctx->noswap = true; 4683 ctx->seen |= SHMEM_SEEN_NOSWAP; 4684 break; 4685 case Opt_quota: 4686 if (fc->user_ns != &init_user_ns) 4687 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4688 ctx->seen |= SHMEM_SEEN_QUOTA; 4689 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4690 break; 4691 case Opt_usrquota: 4692 if (fc->user_ns != &init_user_ns) 4693 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4694 ctx->seen |= SHMEM_SEEN_QUOTA; 4695 ctx->quota_types |= QTYPE_MASK_USR; 4696 break; 4697 case Opt_grpquota: 4698 if (fc->user_ns != &init_user_ns) 4699 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4700 ctx->seen |= SHMEM_SEEN_QUOTA; 4701 ctx->quota_types |= QTYPE_MASK_GRP; 4702 break; 4703 case Opt_usrquota_block_hardlimit: 4704 size = memparse(param->string, &rest); 4705 if (*rest || !size) 4706 goto bad_value; 4707 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4708 return invalfc(fc, 4709 "User quota block hardlimit too large."); 4710 ctx->qlimits.usrquota_bhardlimit = size; 4711 break; 4712 case Opt_grpquota_block_hardlimit: 4713 size = memparse(param->string, &rest); 4714 if (*rest || !size) 4715 goto bad_value; 4716 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4717 return invalfc(fc, 4718 "Group quota block hardlimit too large."); 4719 ctx->qlimits.grpquota_bhardlimit = size; 4720 break; 4721 case Opt_usrquota_inode_hardlimit: 4722 size = memparse(param->string, &rest); 4723 if (*rest || !size) 4724 goto bad_value; 4725 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4726 return invalfc(fc, 4727 "User quota inode hardlimit too large."); 4728 ctx->qlimits.usrquota_ihardlimit = size; 4729 break; 4730 case Opt_grpquota_inode_hardlimit: 4731 size = memparse(param->string, &rest); 4732 if (*rest || !size) 4733 goto bad_value; 4734 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4735 return invalfc(fc, 4736 "Group quota inode hardlimit too large."); 4737 ctx->qlimits.grpquota_ihardlimit = size; 4738 break; 4739 case Opt_casefold_version: 4740 return shmem_parse_opt_casefold(fc, param, false); 4741 case Opt_casefold: 4742 return shmem_parse_opt_casefold(fc, param, true); 4743 case Opt_strict_encoding: 4744 #if IS_ENABLED(CONFIG_UNICODE) 4745 ctx->strict_encoding = true; 4746 break; 4747 #else 4748 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4749 #endif 4750 } 4751 return 0; 4752 4753 unsupported_parameter: 4754 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4755 bad_value: 4756 return invalfc(fc, "Bad value for '%s'", param->key); 4757 } 4758 4759 static char *shmem_next_opt(char **s) 4760 { 4761 char *sbegin = *s; 4762 char *p; 4763 4764 if (sbegin == NULL) 4765 return NULL; 4766 4767 /* 4768 * NUL-terminate this option: unfortunately, 4769 * mount options form a comma-separated list, 4770 * but mpol's nodelist may also contain commas. 4771 */ 4772 for (;;) { 4773 p = strchr(*s, ','); 4774 if (p == NULL) 4775 break; 4776 *s = p + 1; 4777 if (!isdigit(*(p+1))) { 4778 *p = '\0'; 4779 return sbegin; 4780 } 4781 } 4782 4783 *s = NULL; 4784 return sbegin; 4785 } 4786 4787 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4788 { 4789 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4790 } 4791 4792 /* 4793 * Reconfigure a shmem filesystem. 4794 */ 4795 static int shmem_reconfigure(struct fs_context *fc) 4796 { 4797 struct shmem_options *ctx = fc->fs_private; 4798 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4799 unsigned long used_isp; 4800 struct mempolicy *mpol = NULL; 4801 const char *err; 4802 4803 raw_spin_lock(&sbinfo->stat_lock); 4804 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4805 4806 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4807 if (!sbinfo->max_blocks) { 4808 err = "Cannot retroactively limit size"; 4809 goto out; 4810 } 4811 if (percpu_counter_compare(&sbinfo->used_blocks, 4812 ctx->blocks) > 0) { 4813 err = "Too small a size for current use"; 4814 goto out; 4815 } 4816 } 4817 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4818 if (!sbinfo->max_inodes) { 4819 err = "Cannot retroactively limit inodes"; 4820 goto out; 4821 } 4822 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4823 err = "Too few inodes for current use"; 4824 goto out; 4825 } 4826 } 4827 4828 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4829 sbinfo->next_ino > UINT_MAX) { 4830 err = "Current inum too high to switch to 32-bit inums"; 4831 goto out; 4832 } 4833 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4834 err = "Cannot disable swap on remount"; 4835 goto out; 4836 } 4837 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4838 err = "Cannot enable swap on remount if it was disabled on first mount"; 4839 goto out; 4840 } 4841 4842 if (ctx->seen & SHMEM_SEEN_QUOTA && 4843 !sb_any_quota_loaded(fc->root->d_sb)) { 4844 err = "Cannot enable quota on remount"; 4845 goto out; 4846 } 4847 4848 #ifdef CONFIG_TMPFS_QUOTA 4849 #define CHANGED_LIMIT(name) \ 4850 (ctx->qlimits.name## hardlimit && \ 4851 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4852 4853 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4854 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4855 err = "Cannot change global quota limit on remount"; 4856 goto out; 4857 } 4858 #endif /* CONFIG_TMPFS_QUOTA */ 4859 4860 if (ctx->seen & SHMEM_SEEN_HUGE) 4861 sbinfo->huge = ctx->huge; 4862 if (ctx->seen & SHMEM_SEEN_INUMS) 4863 sbinfo->full_inums = ctx->full_inums; 4864 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4865 sbinfo->max_blocks = ctx->blocks; 4866 if (ctx->seen & SHMEM_SEEN_INODES) { 4867 sbinfo->max_inodes = ctx->inodes; 4868 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4869 } 4870 4871 /* 4872 * Preserve previous mempolicy unless mpol remount option was specified. 4873 */ 4874 if (ctx->mpol) { 4875 mpol = sbinfo->mpol; 4876 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4877 ctx->mpol = NULL; 4878 } 4879 4880 if (ctx->noswap) 4881 sbinfo->noswap = true; 4882 4883 raw_spin_unlock(&sbinfo->stat_lock); 4884 mpol_put(mpol); 4885 return 0; 4886 out: 4887 raw_spin_unlock(&sbinfo->stat_lock); 4888 return invalfc(fc, "%s", err); 4889 } 4890 4891 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4892 { 4893 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4894 struct mempolicy *mpol; 4895 4896 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4897 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4898 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4899 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4900 if (sbinfo->mode != (0777 | S_ISVTX)) 4901 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4902 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4903 seq_printf(seq, ",uid=%u", 4904 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4905 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4906 seq_printf(seq, ",gid=%u", 4907 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4908 4909 /* 4910 * Showing inode{64,32} might be useful even if it's the system default, 4911 * since then people don't have to resort to checking both here and 4912 * /proc/config.gz to confirm 64-bit inums were successfully applied 4913 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4914 * 4915 * We hide it when inode64 isn't the default and we are using 32-bit 4916 * inodes, since that probably just means the feature isn't even under 4917 * consideration. 4918 * 4919 * As such: 4920 * 4921 * +-----------------+-----------------+ 4922 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4923 * +------------------+-----------------+-----------------+ 4924 * | full_inums=true | show | show | 4925 * | full_inums=false | show | hide | 4926 * +------------------+-----------------+-----------------+ 4927 * 4928 */ 4929 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4930 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4932 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4933 if (sbinfo->huge) 4934 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4935 #endif 4936 mpol = shmem_get_sbmpol(sbinfo); 4937 shmem_show_mpol(seq, mpol); 4938 mpol_put(mpol); 4939 if (sbinfo->noswap) 4940 seq_printf(seq, ",noswap"); 4941 #ifdef CONFIG_TMPFS_QUOTA 4942 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4943 seq_printf(seq, ",usrquota"); 4944 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4945 seq_printf(seq, ",grpquota"); 4946 if (sbinfo->qlimits.usrquota_bhardlimit) 4947 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4948 sbinfo->qlimits.usrquota_bhardlimit); 4949 if (sbinfo->qlimits.grpquota_bhardlimit) 4950 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4951 sbinfo->qlimits.grpquota_bhardlimit); 4952 if (sbinfo->qlimits.usrquota_ihardlimit) 4953 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4954 sbinfo->qlimits.usrquota_ihardlimit); 4955 if (sbinfo->qlimits.grpquota_ihardlimit) 4956 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4957 sbinfo->qlimits.grpquota_ihardlimit); 4958 #endif 4959 return 0; 4960 } 4961 4962 #endif /* CONFIG_TMPFS */ 4963 4964 static void shmem_put_super(struct super_block *sb) 4965 { 4966 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4967 4968 #if IS_ENABLED(CONFIG_UNICODE) 4969 if (sb->s_encoding) 4970 utf8_unload(sb->s_encoding); 4971 #endif 4972 4973 #ifdef CONFIG_TMPFS_QUOTA 4974 shmem_disable_quotas(sb); 4975 #endif 4976 free_percpu(sbinfo->ino_batch); 4977 percpu_counter_destroy(&sbinfo->used_blocks); 4978 mpol_put(sbinfo->mpol); 4979 kfree(sbinfo); 4980 sb->s_fs_info = NULL; 4981 } 4982 4983 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4984 static const struct dentry_operations shmem_ci_dentry_ops = { 4985 .d_hash = generic_ci_d_hash, 4986 .d_compare = generic_ci_d_compare, 4987 }; 4988 #endif 4989 4990 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4991 { 4992 struct shmem_options *ctx = fc->fs_private; 4993 struct inode *inode; 4994 struct shmem_sb_info *sbinfo; 4995 int error = -ENOMEM; 4996 4997 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4998 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4999 L1_CACHE_BYTES), GFP_KERNEL); 5000 if (!sbinfo) 5001 return error; 5002 5003 sb->s_fs_info = sbinfo; 5004 5005 #ifdef CONFIG_TMPFS 5006 /* 5007 * Per default we only allow half of the physical ram per 5008 * tmpfs instance, limiting inodes to one per page of lowmem; 5009 * but the internal instance is left unlimited. 5010 */ 5011 if (!(sb->s_flags & SB_KERNMOUNT)) { 5012 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5013 ctx->blocks = shmem_default_max_blocks(); 5014 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5015 ctx->inodes = shmem_default_max_inodes(); 5016 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5017 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5018 sbinfo->noswap = ctx->noswap; 5019 } else { 5020 sb->s_flags |= SB_NOUSER; 5021 } 5022 sb->s_export_op = &shmem_export_ops; 5023 sb->s_flags |= SB_NOSEC; 5024 5025 #if IS_ENABLED(CONFIG_UNICODE) 5026 if (!ctx->encoding && ctx->strict_encoding) { 5027 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5028 error = -EINVAL; 5029 goto failed; 5030 } 5031 5032 if (ctx->encoding) { 5033 sb->s_encoding = ctx->encoding; 5034 set_default_d_op(sb, &shmem_ci_dentry_ops); 5035 if (ctx->strict_encoding) 5036 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5037 } 5038 #endif 5039 5040 #else 5041 sb->s_flags |= SB_NOUSER; 5042 #endif /* CONFIG_TMPFS */ 5043 sb->s_d_flags |= DCACHE_DONTCACHE; 5044 sbinfo->max_blocks = ctx->blocks; 5045 sbinfo->max_inodes = ctx->inodes; 5046 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5047 if (sb->s_flags & SB_KERNMOUNT) { 5048 sbinfo->ino_batch = alloc_percpu(ino_t); 5049 if (!sbinfo->ino_batch) 5050 goto failed; 5051 } 5052 sbinfo->uid = ctx->uid; 5053 sbinfo->gid = ctx->gid; 5054 sbinfo->full_inums = ctx->full_inums; 5055 sbinfo->mode = ctx->mode; 5056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5057 if (ctx->seen & SHMEM_SEEN_HUGE) 5058 sbinfo->huge = ctx->huge; 5059 else 5060 sbinfo->huge = tmpfs_huge; 5061 #endif 5062 sbinfo->mpol = ctx->mpol; 5063 ctx->mpol = NULL; 5064 5065 raw_spin_lock_init(&sbinfo->stat_lock); 5066 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5067 goto failed; 5068 spin_lock_init(&sbinfo->shrinklist_lock); 5069 INIT_LIST_HEAD(&sbinfo->shrinklist); 5070 5071 sb->s_maxbytes = MAX_LFS_FILESIZE; 5072 sb->s_blocksize = PAGE_SIZE; 5073 sb->s_blocksize_bits = PAGE_SHIFT; 5074 sb->s_magic = TMPFS_MAGIC; 5075 sb->s_op = &shmem_ops; 5076 sb->s_time_gran = 1; 5077 #ifdef CONFIG_TMPFS_XATTR 5078 sb->s_xattr = shmem_xattr_handlers; 5079 #endif 5080 #ifdef CONFIG_TMPFS_POSIX_ACL 5081 sb->s_flags |= SB_POSIXACL; 5082 #endif 5083 uuid_t uuid; 5084 uuid_gen(&uuid); 5085 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5086 5087 #ifdef CONFIG_TMPFS_QUOTA 5088 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5089 sb->dq_op = &shmem_quota_operations; 5090 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5091 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5092 5093 /* Copy the default limits from ctx into sbinfo */ 5094 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5095 sizeof(struct shmem_quota_limits)); 5096 5097 if (shmem_enable_quotas(sb, ctx->quota_types)) 5098 goto failed; 5099 } 5100 #endif /* CONFIG_TMPFS_QUOTA */ 5101 5102 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5103 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5104 if (IS_ERR(inode)) { 5105 error = PTR_ERR(inode); 5106 goto failed; 5107 } 5108 inode->i_uid = sbinfo->uid; 5109 inode->i_gid = sbinfo->gid; 5110 sb->s_root = d_make_root(inode); 5111 if (!sb->s_root) 5112 goto failed; 5113 return 0; 5114 5115 failed: 5116 shmem_put_super(sb); 5117 return error; 5118 } 5119 5120 static int shmem_get_tree(struct fs_context *fc) 5121 { 5122 return get_tree_nodev(fc, shmem_fill_super); 5123 } 5124 5125 static void shmem_free_fc(struct fs_context *fc) 5126 { 5127 struct shmem_options *ctx = fc->fs_private; 5128 5129 if (ctx) { 5130 mpol_put(ctx->mpol); 5131 kfree(ctx); 5132 } 5133 } 5134 5135 static const struct fs_context_operations shmem_fs_context_ops = { 5136 .free = shmem_free_fc, 5137 .get_tree = shmem_get_tree, 5138 #ifdef CONFIG_TMPFS 5139 .parse_monolithic = shmem_parse_monolithic, 5140 .parse_param = shmem_parse_one, 5141 .reconfigure = shmem_reconfigure, 5142 #endif 5143 }; 5144 5145 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5146 5147 static struct inode *shmem_alloc_inode(struct super_block *sb) 5148 { 5149 struct shmem_inode_info *info; 5150 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5151 if (!info) 5152 return NULL; 5153 return &info->vfs_inode; 5154 } 5155 5156 static void shmem_free_in_core_inode(struct inode *inode) 5157 { 5158 if (S_ISLNK(inode->i_mode)) 5159 kfree(inode->i_link); 5160 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5161 } 5162 5163 static void shmem_destroy_inode(struct inode *inode) 5164 { 5165 if (S_ISREG(inode->i_mode)) 5166 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5167 if (S_ISDIR(inode->i_mode)) 5168 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5169 } 5170 5171 static void shmem_init_inode(void *foo) 5172 { 5173 struct shmem_inode_info *info = foo; 5174 inode_init_once(&info->vfs_inode); 5175 } 5176 5177 static void __init shmem_init_inodecache(void) 5178 { 5179 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5180 sizeof(struct shmem_inode_info), 5181 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5182 } 5183 5184 static void __init shmem_destroy_inodecache(void) 5185 { 5186 kmem_cache_destroy(shmem_inode_cachep); 5187 } 5188 5189 /* Keep the page in page cache instead of truncating it */ 5190 static int shmem_error_remove_folio(struct address_space *mapping, 5191 struct folio *folio) 5192 { 5193 return 0; 5194 } 5195 5196 static const struct address_space_operations shmem_aops = { 5197 .dirty_folio = noop_dirty_folio, 5198 #ifdef CONFIG_TMPFS 5199 .write_begin = shmem_write_begin, 5200 .write_end = shmem_write_end, 5201 #endif 5202 #ifdef CONFIG_MIGRATION 5203 .migrate_folio = migrate_folio, 5204 #endif 5205 .error_remove_folio = shmem_error_remove_folio, 5206 }; 5207 5208 static const struct file_operations shmem_file_operations = { 5209 .mmap = shmem_mmap, 5210 .open = shmem_file_open, 5211 .get_unmapped_area = shmem_get_unmapped_area, 5212 #ifdef CONFIG_TMPFS 5213 .llseek = shmem_file_llseek, 5214 .read_iter = shmem_file_read_iter, 5215 .write_iter = shmem_file_write_iter, 5216 .fsync = noop_fsync, 5217 .splice_read = shmem_file_splice_read, 5218 .splice_write = iter_file_splice_write, 5219 .fallocate = shmem_fallocate, 5220 #endif 5221 }; 5222 5223 static const struct inode_operations shmem_inode_operations = { 5224 .getattr = shmem_getattr, 5225 .setattr = shmem_setattr, 5226 #ifdef CONFIG_TMPFS_XATTR 5227 .listxattr = shmem_listxattr, 5228 .set_acl = simple_set_acl, 5229 .fileattr_get = shmem_fileattr_get, 5230 .fileattr_set = shmem_fileattr_set, 5231 #endif 5232 }; 5233 5234 static const struct inode_operations shmem_dir_inode_operations = { 5235 #ifdef CONFIG_TMPFS 5236 .getattr = shmem_getattr, 5237 .create = shmem_create, 5238 .lookup = simple_lookup, 5239 .link = shmem_link, 5240 .unlink = shmem_unlink, 5241 .symlink = shmem_symlink, 5242 .mkdir = shmem_mkdir, 5243 .rmdir = shmem_rmdir, 5244 .mknod = shmem_mknod, 5245 .rename = shmem_rename2, 5246 .tmpfile = shmem_tmpfile, 5247 .get_offset_ctx = shmem_get_offset_ctx, 5248 #endif 5249 #ifdef CONFIG_TMPFS_XATTR 5250 .listxattr = shmem_listxattr, 5251 .fileattr_get = shmem_fileattr_get, 5252 .fileattr_set = shmem_fileattr_set, 5253 #endif 5254 #ifdef CONFIG_TMPFS_POSIX_ACL 5255 .setattr = shmem_setattr, 5256 .set_acl = simple_set_acl, 5257 #endif 5258 }; 5259 5260 static const struct inode_operations shmem_special_inode_operations = { 5261 .getattr = shmem_getattr, 5262 #ifdef CONFIG_TMPFS_XATTR 5263 .listxattr = shmem_listxattr, 5264 #endif 5265 #ifdef CONFIG_TMPFS_POSIX_ACL 5266 .setattr = shmem_setattr, 5267 .set_acl = simple_set_acl, 5268 #endif 5269 }; 5270 5271 static const struct super_operations shmem_ops = { 5272 .alloc_inode = shmem_alloc_inode, 5273 .free_inode = shmem_free_in_core_inode, 5274 .destroy_inode = shmem_destroy_inode, 5275 #ifdef CONFIG_TMPFS 5276 .statfs = shmem_statfs, 5277 .show_options = shmem_show_options, 5278 #endif 5279 #ifdef CONFIG_TMPFS_QUOTA 5280 .get_dquots = shmem_get_dquots, 5281 #endif 5282 .evict_inode = shmem_evict_inode, 5283 .drop_inode = inode_just_drop, 5284 .put_super = shmem_put_super, 5285 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5286 .nr_cached_objects = shmem_unused_huge_count, 5287 .free_cached_objects = shmem_unused_huge_scan, 5288 #endif 5289 }; 5290 5291 static const struct vm_operations_struct shmem_vm_ops = { 5292 .fault = shmem_fault, 5293 .map_pages = filemap_map_pages, 5294 #ifdef CONFIG_NUMA 5295 .set_policy = shmem_set_policy, 5296 .get_policy = shmem_get_policy, 5297 #endif 5298 }; 5299 5300 static const struct vm_operations_struct shmem_anon_vm_ops = { 5301 .fault = shmem_fault, 5302 .map_pages = filemap_map_pages, 5303 #ifdef CONFIG_NUMA 5304 .set_policy = shmem_set_policy, 5305 .get_policy = shmem_get_policy, 5306 #endif 5307 }; 5308 5309 int shmem_init_fs_context(struct fs_context *fc) 5310 { 5311 struct shmem_options *ctx; 5312 5313 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5314 if (!ctx) 5315 return -ENOMEM; 5316 5317 ctx->mode = 0777 | S_ISVTX; 5318 ctx->uid = current_fsuid(); 5319 ctx->gid = current_fsgid(); 5320 5321 #if IS_ENABLED(CONFIG_UNICODE) 5322 ctx->encoding = NULL; 5323 #endif 5324 5325 fc->fs_private = ctx; 5326 fc->ops = &shmem_fs_context_ops; 5327 #ifdef CONFIG_TMPFS 5328 fc->sb_flags |= SB_I_VERSION; 5329 #endif 5330 return 0; 5331 } 5332 5333 static struct file_system_type shmem_fs_type = { 5334 .owner = THIS_MODULE, 5335 .name = "tmpfs", 5336 .init_fs_context = shmem_init_fs_context, 5337 #ifdef CONFIG_TMPFS 5338 .parameters = shmem_fs_parameters, 5339 #endif 5340 .kill_sb = kill_litter_super, 5341 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5342 }; 5343 5344 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5345 5346 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5347 { \ 5348 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5349 .show = _show, \ 5350 .store = _store, \ 5351 } 5352 5353 #define TMPFS_ATTR_W(_name, _store) \ 5354 static struct kobj_attribute tmpfs_attr_##_name = \ 5355 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5356 5357 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5358 static struct kobj_attribute tmpfs_attr_##_name = \ 5359 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5360 5361 #define TMPFS_ATTR_RO(_name, _show) \ 5362 static struct kobj_attribute tmpfs_attr_##_name = \ 5363 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5364 5365 #if IS_ENABLED(CONFIG_UNICODE) 5366 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5367 char *buf) 5368 { 5369 return sysfs_emit(buf, "supported\n"); 5370 } 5371 TMPFS_ATTR_RO(casefold, casefold_show); 5372 #endif 5373 5374 static struct attribute *tmpfs_attributes[] = { 5375 #if IS_ENABLED(CONFIG_UNICODE) 5376 &tmpfs_attr_casefold.attr, 5377 #endif 5378 NULL 5379 }; 5380 5381 static const struct attribute_group tmpfs_attribute_group = { 5382 .attrs = tmpfs_attributes, 5383 .name = "features" 5384 }; 5385 5386 static struct kobject *tmpfs_kobj; 5387 5388 static int __init tmpfs_sysfs_init(void) 5389 { 5390 int ret; 5391 5392 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5393 if (!tmpfs_kobj) 5394 return -ENOMEM; 5395 5396 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5397 if (ret) 5398 kobject_put(tmpfs_kobj); 5399 5400 return ret; 5401 } 5402 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5403 5404 void __init shmem_init(void) 5405 { 5406 int error; 5407 5408 shmem_init_inodecache(); 5409 5410 #ifdef CONFIG_TMPFS_QUOTA 5411 register_quota_format(&shmem_quota_format); 5412 #endif 5413 5414 error = register_filesystem(&shmem_fs_type); 5415 if (error) { 5416 pr_err("Could not register tmpfs\n"); 5417 goto out2; 5418 } 5419 5420 shm_mnt = kern_mount(&shmem_fs_type); 5421 if (IS_ERR(shm_mnt)) { 5422 error = PTR_ERR(shm_mnt); 5423 pr_err("Could not kern_mount tmpfs\n"); 5424 goto out1; 5425 } 5426 5427 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5428 error = tmpfs_sysfs_init(); 5429 if (error) { 5430 pr_err("Could not init tmpfs sysfs\n"); 5431 goto out1; 5432 } 5433 #endif 5434 5435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5436 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5437 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5438 else 5439 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5440 5441 /* 5442 * Default to setting PMD-sized THP to inherit the global setting and 5443 * disable all other multi-size THPs. 5444 */ 5445 if (!shmem_orders_configured) 5446 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5447 #endif 5448 return; 5449 5450 out1: 5451 unregister_filesystem(&shmem_fs_type); 5452 out2: 5453 #ifdef CONFIG_TMPFS_QUOTA 5454 unregister_quota_format(&shmem_quota_format); 5455 #endif 5456 shmem_destroy_inodecache(); 5457 shm_mnt = ERR_PTR(error); 5458 } 5459 5460 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5461 static ssize_t shmem_enabled_show(struct kobject *kobj, 5462 struct kobj_attribute *attr, char *buf) 5463 { 5464 static const int values[] = { 5465 SHMEM_HUGE_ALWAYS, 5466 SHMEM_HUGE_WITHIN_SIZE, 5467 SHMEM_HUGE_ADVISE, 5468 SHMEM_HUGE_NEVER, 5469 SHMEM_HUGE_DENY, 5470 SHMEM_HUGE_FORCE, 5471 }; 5472 int len = 0; 5473 int i; 5474 5475 for (i = 0; i < ARRAY_SIZE(values); i++) { 5476 len += sysfs_emit_at(buf, len, 5477 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5478 i ? " " : "", shmem_format_huge(values[i])); 5479 } 5480 len += sysfs_emit_at(buf, len, "\n"); 5481 5482 return len; 5483 } 5484 5485 static ssize_t shmem_enabled_store(struct kobject *kobj, 5486 struct kobj_attribute *attr, const char *buf, size_t count) 5487 { 5488 char tmp[16]; 5489 int huge, err; 5490 5491 if (count + 1 > sizeof(tmp)) 5492 return -EINVAL; 5493 memcpy(tmp, buf, count); 5494 tmp[count] = '\0'; 5495 if (count && tmp[count - 1] == '\n') 5496 tmp[count - 1] = '\0'; 5497 5498 huge = shmem_parse_huge(tmp); 5499 if (huge == -EINVAL) 5500 return huge; 5501 5502 shmem_huge = huge; 5503 if (shmem_huge > SHMEM_HUGE_DENY) 5504 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5505 5506 err = start_stop_khugepaged(); 5507 return err ? err : count; 5508 } 5509 5510 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5511 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5512 5513 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5514 struct kobj_attribute *attr, char *buf) 5515 { 5516 int order = to_thpsize(kobj)->order; 5517 const char *output; 5518 5519 if (test_bit(order, &huge_shmem_orders_always)) 5520 output = "[always] inherit within_size advise never"; 5521 else if (test_bit(order, &huge_shmem_orders_inherit)) 5522 output = "always [inherit] within_size advise never"; 5523 else if (test_bit(order, &huge_shmem_orders_within_size)) 5524 output = "always inherit [within_size] advise never"; 5525 else if (test_bit(order, &huge_shmem_orders_madvise)) 5526 output = "always inherit within_size [advise] never"; 5527 else 5528 output = "always inherit within_size advise [never]"; 5529 5530 return sysfs_emit(buf, "%s\n", output); 5531 } 5532 5533 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5534 struct kobj_attribute *attr, 5535 const char *buf, size_t count) 5536 { 5537 int order = to_thpsize(kobj)->order; 5538 ssize_t ret = count; 5539 5540 if (sysfs_streq(buf, "always")) { 5541 spin_lock(&huge_shmem_orders_lock); 5542 clear_bit(order, &huge_shmem_orders_inherit); 5543 clear_bit(order, &huge_shmem_orders_madvise); 5544 clear_bit(order, &huge_shmem_orders_within_size); 5545 set_bit(order, &huge_shmem_orders_always); 5546 spin_unlock(&huge_shmem_orders_lock); 5547 } else if (sysfs_streq(buf, "inherit")) { 5548 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5549 if (shmem_huge == SHMEM_HUGE_FORCE && 5550 order != HPAGE_PMD_ORDER) 5551 return -EINVAL; 5552 5553 spin_lock(&huge_shmem_orders_lock); 5554 clear_bit(order, &huge_shmem_orders_always); 5555 clear_bit(order, &huge_shmem_orders_madvise); 5556 clear_bit(order, &huge_shmem_orders_within_size); 5557 set_bit(order, &huge_shmem_orders_inherit); 5558 spin_unlock(&huge_shmem_orders_lock); 5559 } else if (sysfs_streq(buf, "within_size")) { 5560 spin_lock(&huge_shmem_orders_lock); 5561 clear_bit(order, &huge_shmem_orders_always); 5562 clear_bit(order, &huge_shmem_orders_inherit); 5563 clear_bit(order, &huge_shmem_orders_madvise); 5564 set_bit(order, &huge_shmem_orders_within_size); 5565 spin_unlock(&huge_shmem_orders_lock); 5566 } else if (sysfs_streq(buf, "advise")) { 5567 spin_lock(&huge_shmem_orders_lock); 5568 clear_bit(order, &huge_shmem_orders_always); 5569 clear_bit(order, &huge_shmem_orders_inherit); 5570 clear_bit(order, &huge_shmem_orders_within_size); 5571 set_bit(order, &huge_shmem_orders_madvise); 5572 spin_unlock(&huge_shmem_orders_lock); 5573 } else if (sysfs_streq(buf, "never")) { 5574 spin_lock(&huge_shmem_orders_lock); 5575 clear_bit(order, &huge_shmem_orders_always); 5576 clear_bit(order, &huge_shmem_orders_inherit); 5577 clear_bit(order, &huge_shmem_orders_within_size); 5578 clear_bit(order, &huge_shmem_orders_madvise); 5579 spin_unlock(&huge_shmem_orders_lock); 5580 } else { 5581 ret = -EINVAL; 5582 } 5583 5584 if (ret > 0) { 5585 int err = start_stop_khugepaged(); 5586 5587 if (err) 5588 ret = err; 5589 } 5590 return ret; 5591 } 5592 5593 struct kobj_attribute thpsize_shmem_enabled_attr = 5594 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5595 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5596 5597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5598 5599 static int __init setup_transparent_hugepage_shmem(char *str) 5600 { 5601 int huge; 5602 5603 huge = shmem_parse_huge(str); 5604 if (huge == -EINVAL) { 5605 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5606 return huge; 5607 } 5608 5609 shmem_huge = huge; 5610 return 1; 5611 } 5612 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5613 5614 static int __init setup_transparent_hugepage_tmpfs(char *str) 5615 { 5616 int huge; 5617 5618 huge = shmem_parse_huge(str); 5619 if (huge < 0) { 5620 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5621 return huge; 5622 } 5623 5624 tmpfs_huge = huge; 5625 return 1; 5626 } 5627 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5628 5629 static char str_dup[PAGE_SIZE] __initdata; 5630 static int __init setup_thp_shmem(char *str) 5631 { 5632 char *token, *range, *policy, *subtoken; 5633 unsigned long always, inherit, madvise, within_size; 5634 char *start_size, *end_size; 5635 int start, end, nr; 5636 char *p; 5637 5638 if (!str || strlen(str) + 1 > PAGE_SIZE) 5639 goto err; 5640 strscpy(str_dup, str); 5641 5642 always = huge_shmem_orders_always; 5643 inherit = huge_shmem_orders_inherit; 5644 madvise = huge_shmem_orders_madvise; 5645 within_size = huge_shmem_orders_within_size; 5646 p = str_dup; 5647 while ((token = strsep(&p, ";")) != NULL) { 5648 range = strsep(&token, ":"); 5649 policy = token; 5650 5651 if (!policy) 5652 goto err; 5653 5654 while ((subtoken = strsep(&range, ",")) != NULL) { 5655 if (strchr(subtoken, '-')) { 5656 start_size = strsep(&subtoken, "-"); 5657 end_size = subtoken; 5658 5659 start = get_order_from_str(start_size, 5660 THP_ORDERS_ALL_FILE_DEFAULT); 5661 end = get_order_from_str(end_size, 5662 THP_ORDERS_ALL_FILE_DEFAULT); 5663 } else { 5664 start_size = end_size = subtoken; 5665 start = end = get_order_from_str(subtoken, 5666 THP_ORDERS_ALL_FILE_DEFAULT); 5667 } 5668 5669 if (start < 0) { 5670 pr_err("invalid size %s in thp_shmem boot parameter\n", 5671 start_size); 5672 goto err; 5673 } 5674 5675 if (end < 0) { 5676 pr_err("invalid size %s in thp_shmem boot parameter\n", 5677 end_size); 5678 goto err; 5679 } 5680 5681 if (start > end) 5682 goto err; 5683 5684 nr = end - start + 1; 5685 if (!strcmp(policy, "always")) { 5686 bitmap_set(&always, start, nr); 5687 bitmap_clear(&inherit, start, nr); 5688 bitmap_clear(&madvise, start, nr); 5689 bitmap_clear(&within_size, start, nr); 5690 } else if (!strcmp(policy, "advise")) { 5691 bitmap_set(&madvise, start, nr); 5692 bitmap_clear(&inherit, start, nr); 5693 bitmap_clear(&always, start, nr); 5694 bitmap_clear(&within_size, start, nr); 5695 } else if (!strcmp(policy, "inherit")) { 5696 bitmap_set(&inherit, start, nr); 5697 bitmap_clear(&madvise, start, nr); 5698 bitmap_clear(&always, start, nr); 5699 bitmap_clear(&within_size, start, nr); 5700 } else if (!strcmp(policy, "within_size")) { 5701 bitmap_set(&within_size, start, nr); 5702 bitmap_clear(&inherit, start, nr); 5703 bitmap_clear(&madvise, start, nr); 5704 bitmap_clear(&always, start, nr); 5705 } else if (!strcmp(policy, "never")) { 5706 bitmap_clear(&inherit, start, nr); 5707 bitmap_clear(&madvise, start, nr); 5708 bitmap_clear(&always, start, nr); 5709 bitmap_clear(&within_size, start, nr); 5710 } else { 5711 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5712 goto err; 5713 } 5714 } 5715 } 5716 5717 huge_shmem_orders_always = always; 5718 huge_shmem_orders_madvise = madvise; 5719 huge_shmem_orders_inherit = inherit; 5720 huge_shmem_orders_within_size = within_size; 5721 shmem_orders_configured = true; 5722 return 1; 5723 5724 err: 5725 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5726 return 0; 5727 } 5728 __setup("thp_shmem=", setup_thp_shmem); 5729 5730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5731 5732 #else /* !CONFIG_SHMEM */ 5733 5734 /* 5735 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5736 * 5737 * This is intended for small system where the benefits of the full 5738 * shmem code (swap-backed and resource-limited) are outweighed by 5739 * their complexity. On systems without swap this code should be 5740 * effectively equivalent, but much lighter weight. 5741 */ 5742 5743 static struct file_system_type shmem_fs_type = { 5744 .name = "tmpfs", 5745 .init_fs_context = ramfs_init_fs_context, 5746 .parameters = ramfs_fs_parameters, 5747 .kill_sb = ramfs_kill_sb, 5748 .fs_flags = FS_USERNS_MOUNT, 5749 }; 5750 5751 void __init shmem_init(void) 5752 { 5753 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5754 5755 shm_mnt = kern_mount(&shmem_fs_type); 5756 BUG_ON(IS_ERR(shm_mnt)); 5757 } 5758 5759 int shmem_unuse(unsigned int type) 5760 { 5761 return 0; 5762 } 5763 5764 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5765 { 5766 return 0; 5767 } 5768 5769 void shmem_unlock_mapping(struct address_space *mapping) 5770 { 5771 } 5772 5773 #ifdef CONFIG_MMU 5774 unsigned long shmem_get_unmapped_area(struct file *file, 5775 unsigned long addr, unsigned long len, 5776 unsigned long pgoff, unsigned long flags) 5777 { 5778 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5779 } 5780 #endif 5781 5782 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5783 { 5784 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5785 } 5786 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5787 5788 #define shmem_vm_ops generic_file_vm_ops 5789 #define shmem_anon_vm_ops generic_file_vm_ops 5790 #define shmem_file_operations ramfs_file_operations 5791 #define shmem_acct_size(flags, size) 0 5792 #define shmem_unacct_size(flags, size) do {} while (0) 5793 5794 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5795 struct super_block *sb, struct inode *dir, 5796 umode_t mode, dev_t dev, unsigned long flags) 5797 { 5798 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5799 return inode ? inode : ERR_PTR(-ENOSPC); 5800 } 5801 5802 #endif /* CONFIG_SHMEM */ 5803 5804 /* common code */ 5805 5806 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5807 loff_t size, unsigned long flags, unsigned int i_flags) 5808 { 5809 struct inode *inode; 5810 struct file *res; 5811 5812 if (IS_ERR(mnt)) 5813 return ERR_CAST(mnt); 5814 5815 if (size < 0 || size > MAX_LFS_FILESIZE) 5816 return ERR_PTR(-EINVAL); 5817 5818 if (is_idmapped_mnt(mnt)) 5819 return ERR_PTR(-EINVAL); 5820 5821 if (shmem_acct_size(flags, size)) 5822 return ERR_PTR(-ENOMEM); 5823 5824 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5825 S_IFREG | S_IRWXUGO, 0, flags); 5826 if (IS_ERR(inode)) { 5827 shmem_unacct_size(flags, size); 5828 return ERR_CAST(inode); 5829 } 5830 inode->i_flags |= i_flags; 5831 inode->i_size = size; 5832 clear_nlink(inode); /* It is unlinked */ 5833 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5834 if (!IS_ERR(res)) 5835 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5836 &shmem_file_operations); 5837 if (IS_ERR(res)) 5838 iput(inode); 5839 return res; 5840 } 5841 5842 /** 5843 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5844 * kernel internal. There will be NO LSM permission checks against the 5845 * underlying inode. So users of this interface must do LSM checks at a 5846 * higher layer. The users are the big_key and shm implementations. LSM 5847 * checks are provided at the key or shm level rather than the inode. 5848 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5849 * @size: size to be set for the file 5850 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5851 */ 5852 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5853 { 5854 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5855 } 5856 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5857 5858 /** 5859 * shmem_file_setup - get an unlinked file living in tmpfs 5860 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5861 * @size: size to be set for the file 5862 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5863 */ 5864 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5865 { 5866 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5867 } 5868 EXPORT_SYMBOL_GPL(shmem_file_setup); 5869 5870 /** 5871 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5872 * @mnt: the tmpfs mount where the file will be created 5873 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5874 * @size: size to be set for the file 5875 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5876 */ 5877 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5878 loff_t size, unsigned long flags) 5879 { 5880 return __shmem_file_setup(mnt, name, size, flags, 0); 5881 } 5882 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5883 5884 /** 5885 * shmem_zero_setup - setup a shared anonymous mapping 5886 * @vma: the vma to be mmapped is prepared by do_mmap 5887 */ 5888 int shmem_zero_setup(struct vm_area_struct *vma) 5889 { 5890 struct file *file; 5891 loff_t size = vma->vm_end - vma->vm_start; 5892 5893 /* 5894 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5895 * between XFS directory reading and selinux: since this file is only 5896 * accessible to the user through its mapping, use S_PRIVATE flag to 5897 * bypass file security, in the same way as shmem_kernel_file_setup(). 5898 */ 5899 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5900 if (IS_ERR(file)) 5901 return PTR_ERR(file); 5902 5903 if (vma->vm_file) 5904 fput(vma->vm_file); 5905 vma->vm_file = file; 5906 vma->vm_ops = &shmem_anon_vm_ops; 5907 5908 return 0; 5909 } 5910 5911 /** 5912 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5913 * @mapping: the folio's address_space 5914 * @index: the folio index 5915 * @gfp: the page allocator flags to use if allocating 5916 * 5917 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5918 * with any new page allocations done using the specified allocation flags. 5919 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5920 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5921 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5922 * 5923 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5924 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5925 */ 5926 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5927 pgoff_t index, gfp_t gfp) 5928 { 5929 #ifdef CONFIG_SHMEM 5930 struct inode *inode = mapping->host; 5931 struct folio *folio; 5932 int error; 5933 5934 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5935 &folio, SGP_CACHE, gfp, NULL, NULL); 5936 if (error) 5937 return ERR_PTR(error); 5938 5939 folio_unlock(folio); 5940 return folio; 5941 #else 5942 /* 5943 * The tiny !SHMEM case uses ramfs without swap 5944 */ 5945 return mapping_read_folio_gfp(mapping, index, gfp); 5946 #endif 5947 } 5948 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5949 5950 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5951 pgoff_t index, gfp_t gfp) 5952 { 5953 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5954 struct page *page; 5955 5956 if (IS_ERR(folio)) 5957 return &folio->page; 5958 5959 page = folio_file_page(folio, index); 5960 if (PageHWPoison(page)) { 5961 folio_put(folio); 5962 return ERR_PTR(-EIO); 5963 } 5964 5965 return page; 5966 } 5967 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5968