1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TMPFS 135 static unsigned long shmem_default_max_blocks(void) 136 { 137 return totalram_pages() / 2; 138 } 139 140 static unsigned long shmem_default_max_inodes(void) 141 { 142 unsigned long nr_pages = totalram_pages(); 143 144 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 145 ULONG_MAX / BOGO_INODE_SIZE); 146 } 147 #endif 148 149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 150 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 151 struct mm_struct *fault_mm, vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_blocks(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_blocks(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 222 sbinfo->max_blocks, pages)) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) { 227 percpu_counter_sub(&sbinfo->used_blocks, pages); 228 goto unacct; 229 } 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 static const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool shmem_mapping(struct address_space *mapping) 267 { 268 return mapping->a_ops == &shmem_aops; 269 } 270 EXPORT_SYMBOL_GPL(shmem_mapping); 271 272 bool vma_is_anon_shmem(struct vm_area_struct *vma) 273 { 274 return vma->vm_ops == &shmem_anon_vm_ops; 275 } 276 277 bool vma_is_shmem(struct vm_area_struct *vma) 278 { 279 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 280 } 281 282 static LIST_HEAD(shmem_swaplist); 283 static DEFINE_MUTEX(shmem_swaplist_mutex); 284 285 #ifdef CONFIG_TMPFS_QUOTA 286 287 static int shmem_enable_quotas(struct super_block *sb, 288 unsigned short quota_types) 289 { 290 int type, err = 0; 291 292 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 293 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 294 if (!(quota_types & (1 << type))) 295 continue; 296 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 297 DQUOT_USAGE_ENABLED | 298 DQUOT_LIMITS_ENABLED); 299 if (err) 300 goto out_err; 301 } 302 return 0; 303 304 out_err: 305 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 306 type, err); 307 for (type--; type >= 0; type--) 308 dquot_quota_off(sb, type); 309 return err; 310 } 311 312 static void shmem_disable_quotas(struct super_block *sb) 313 { 314 int type; 315 316 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 317 dquot_quota_off(sb, type); 318 } 319 320 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 321 { 322 return SHMEM_I(inode)->i_dquot; 323 } 324 #endif /* CONFIG_TMPFS_QUOTA */ 325 326 /* 327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 328 * produces a novel ino for the newly allocated inode. 329 * 330 * It may also be called when making a hard link to permit the space needed by 331 * each dentry. However, in that case, no new inode number is needed since that 332 * internally draws from another pool of inode numbers (currently global 333 * get_next_ino()). This case is indicated by passing NULL as inop. 334 */ 335 #define SHMEM_INO_BATCH 1024 336 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 ino_t ino; 340 341 if (!(sb->s_flags & SB_KERNMOUNT)) { 342 raw_spin_lock(&sbinfo->stat_lock); 343 if (sbinfo->max_inodes) { 344 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 345 raw_spin_unlock(&sbinfo->stat_lock); 346 return -ENOSPC; 347 } 348 sbinfo->free_ispace -= BOGO_INODE_SIZE; 349 } 350 if (inop) { 351 ino = sbinfo->next_ino++; 352 if (unlikely(is_zero_ino(ino))) 353 ino = sbinfo->next_ino++; 354 if (unlikely(!sbinfo->full_inums && 355 ino > UINT_MAX)) { 356 /* 357 * Emulate get_next_ino uint wraparound for 358 * compatibility 359 */ 360 if (IS_ENABLED(CONFIG_64BIT)) 361 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 362 __func__, MINOR(sb->s_dev)); 363 sbinfo->next_ino = 1; 364 ino = sbinfo->next_ino++; 365 } 366 *inop = ino; 367 } 368 raw_spin_unlock(&sbinfo->stat_lock); 369 } else if (inop) { 370 /* 371 * __shmem_file_setup, one of our callers, is lock-free: it 372 * doesn't hold stat_lock in shmem_reserve_inode since 373 * max_inodes is always 0, and is called from potentially 374 * unknown contexts. As such, use a per-cpu batched allocator 375 * which doesn't require the per-sb stat_lock unless we are at 376 * the batch boundary. 377 * 378 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 379 * shmem mounts are not exposed to userspace, so we don't need 380 * to worry about things like glibc compatibility. 381 */ 382 ino_t *next_ino; 383 384 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 385 ino = *next_ino; 386 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 387 raw_spin_lock(&sbinfo->stat_lock); 388 ino = sbinfo->next_ino; 389 sbinfo->next_ino += SHMEM_INO_BATCH; 390 raw_spin_unlock(&sbinfo->stat_lock); 391 if (unlikely(is_zero_ino(ino))) 392 ino++; 393 } 394 *inop = ino; 395 *next_ino = ++ino; 396 put_cpu(); 397 } 398 399 return 0; 400 } 401 402 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 403 { 404 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 405 if (sbinfo->max_inodes) { 406 raw_spin_lock(&sbinfo->stat_lock); 407 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 408 raw_spin_unlock(&sbinfo->stat_lock); 409 } 410 } 411 412 /** 413 * shmem_recalc_inode - recalculate the block usage of an inode 414 * @inode: inode to recalc 415 * @alloced: the change in number of pages allocated to inode 416 * @swapped: the change in number of pages swapped from inode 417 * 418 * We have to calculate the free blocks since the mm can drop 419 * undirtied hole pages behind our back. 420 * 421 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 423 */ 424 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 425 { 426 struct shmem_inode_info *info = SHMEM_I(inode); 427 long freed; 428 429 spin_lock(&info->lock); 430 info->alloced += alloced; 431 info->swapped += swapped; 432 freed = info->alloced - info->swapped - 433 READ_ONCE(inode->i_mapping->nrpages); 434 /* 435 * Special case: whereas normally shmem_recalc_inode() is called 436 * after i_mapping->nrpages has already been adjusted (up or down), 437 * shmem_writepage() has to raise swapped before nrpages is lowered - 438 * to stop a racing shmem_recalc_inode() from thinking that a page has 439 * been freed. Compensate here, to avoid the need for a followup call. 440 */ 441 if (swapped > 0) 442 freed += swapped; 443 if (freed > 0) 444 info->alloced -= freed; 445 spin_unlock(&info->lock); 446 447 /* The quota case may block */ 448 if (freed > 0) 449 shmem_inode_unacct_blocks(inode, freed); 450 } 451 452 bool shmem_charge(struct inode *inode, long pages) 453 { 454 struct address_space *mapping = inode->i_mapping; 455 456 if (shmem_inode_acct_blocks(inode, pages)) 457 return false; 458 459 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 460 xa_lock_irq(&mapping->i_pages); 461 mapping->nrpages += pages; 462 xa_unlock_irq(&mapping->i_pages); 463 464 shmem_recalc_inode(inode, pages, 0); 465 return true; 466 } 467 468 void shmem_uncharge(struct inode *inode, long pages) 469 { 470 /* pages argument is currently unused: keep it to help debugging */ 471 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 472 473 shmem_recalc_inode(inode, 0, 0); 474 } 475 476 /* 477 * Replace item expected in xarray by a new item, while holding xa_lock. 478 */ 479 static int shmem_replace_entry(struct address_space *mapping, 480 pgoff_t index, void *expected, void *replacement) 481 { 482 XA_STATE(xas, &mapping->i_pages, index); 483 void *item; 484 485 VM_BUG_ON(!expected); 486 VM_BUG_ON(!replacement); 487 item = xas_load(&xas); 488 if (item != expected) 489 return -ENOENT; 490 xas_store(&xas, replacement); 491 return 0; 492 } 493 494 /* 495 * Sometimes, before we decide whether to proceed or to fail, we must check 496 * that an entry was not already brought back from swap by a racing thread. 497 * 498 * Checking page is not enough: by the time a SwapCache page is locked, it 499 * might be reused, and again be SwapCache, using the same swap as before. 500 */ 501 static bool shmem_confirm_swap(struct address_space *mapping, 502 pgoff_t index, swp_entry_t swap) 503 { 504 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 505 } 506 507 /* 508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 509 * 510 * SHMEM_HUGE_NEVER: 511 * disables huge pages for the mount; 512 * SHMEM_HUGE_ALWAYS: 513 * enables huge pages for the mount; 514 * SHMEM_HUGE_WITHIN_SIZE: 515 * only allocate huge pages if the page will be fully within i_size, 516 * also respect fadvise()/madvise() hints; 517 * SHMEM_HUGE_ADVISE: 518 * only allocate huge pages if requested with fadvise()/madvise(); 519 */ 520 521 #define SHMEM_HUGE_NEVER 0 522 #define SHMEM_HUGE_ALWAYS 1 523 #define SHMEM_HUGE_WITHIN_SIZE 2 524 #define SHMEM_HUGE_ADVISE 3 525 526 /* 527 * Special values. 528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 529 * 530 * SHMEM_HUGE_DENY: 531 * disables huge on shm_mnt and all mounts, for emergency use; 532 * SHMEM_HUGE_FORCE: 533 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 534 * 535 */ 536 #define SHMEM_HUGE_DENY (-1) 537 #define SHMEM_HUGE_FORCE (-2) 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 /* ifdef here to avoid bloating shmem.o when not necessary */ 541 542 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 543 544 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 545 struct mm_struct *mm, unsigned long vm_flags) 546 { 547 loff_t i_size; 548 549 if (!S_ISREG(inode->i_mode)) 550 return false; 551 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 552 return false; 553 if (shmem_huge == SHMEM_HUGE_DENY) 554 return false; 555 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 556 return true; 557 558 switch (SHMEM_SB(inode->i_sb)->huge) { 559 case SHMEM_HUGE_ALWAYS: 560 return true; 561 case SHMEM_HUGE_WITHIN_SIZE: 562 index = round_up(index + 1, HPAGE_PMD_NR); 563 i_size = round_up(i_size_read(inode), PAGE_SIZE); 564 if (i_size >> PAGE_SHIFT >= index) 565 return true; 566 fallthrough; 567 case SHMEM_HUGE_ADVISE: 568 if (mm && (vm_flags & VM_HUGEPAGE)) 569 return true; 570 fallthrough; 571 default: 572 return false; 573 } 574 } 575 576 #if defined(CONFIG_SYSFS) 577 static int shmem_parse_huge(const char *str) 578 { 579 if (!strcmp(str, "never")) 580 return SHMEM_HUGE_NEVER; 581 if (!strcmp(str, "always")) 582 return SHMEM_HUGE_ALWAYS; 583 if (!strcmp(str, "within_size")) 584 return SHMEM_HUGE_WITHIN_SIZE; 585 if (!strcmp(str, "advise")) 586 return SHMEM_HUGE_ADVISE; 587 if (!strcmp(str, "deny")) 588 return SHMEM_HUGE_DENY; 589 if (!strcmp(str, "force")) 590 return SHMEM_HUGE_FORCE; 591 return -EINVAL; 592 } 593 #endif 594 595 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 596 static const char *shmem_format_huge(int huge) 597 { 598 switch (huge) { 599 case SHMEM_HUGE_NEVER: 600 return "never"; 601 case SHMEM_HUGE_ALWAYS: 602 return "always"; 603 case SHMEM_HUGE_WITHIN_SIZE: 604 return "within_size"; 605 case SHMEM_HUGE_ADVISE: 606 return "advise"; 607 case SHMEM_HUGE_DENY: 608 return "deny"; 609 case SHMEM_HUGE_FORCE: 610 return "force"; 611 default: 612 VM_BUG_ON(1); 613 return "bad_val"; 614 } 615 } 616 #endif 617 618 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 619 struct shrink_control *sc, unsigned long nr_to_split) 620 { 621 LIST_HEAD(list), *pos, *next; 622 LIST_HEAD(to_remove); 623 struct inode *inode; 624 struct shmem_inode_info *info; 625 struct folio *folio; 626 unsigned long batch = sc ? sc->nr_to_scan : 128; 627 int split = 0; 628 629 if (list_empty(&sbinfo->shrinklist)) 630 return SHRINK_STOP; 631 632 spin_lock(&sbinfo->shrinklist_lock); 633 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 634 info = list_entry(pos, struct shmem_inode_info, shrinklist); 635 636 /* pin the inode */ 637 inode = igrab(&info->vfs_inode); 638 639 /* inode is about to be evicted */ 640 if (!inode) { 641 list_del_init(&info->shrinklist); 642 goto next; 643 } 644 645 /* Check if there's anything to gain */ 646 if (round_up(inode->i_size, PAGE_SIZE) == 647 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 648 list_move(&info->shrinklist, &to_remove); 649 goto next; 650 } 651 652 list_move(&info->shrinklist, &list); 653 next: 654 sbinfo->shrinklist_len--; 655 if (!--batch) 656 break; 657 } 658 spin_unlock(&sbinfo->shrinklist_lock); 659 660 list_for_each_safe(pos, next, &to_remove) { 661 info = list_entry(pos, struct shmem_inode_info, shrinklist); 662 inode = &info->vfs_inode; 663 list_del_init(&info->shrinklist); 664 iput(inode); 665 } 666 667 list_for_each_safe(pos, next, &list) { 668 int ret; 669 pgoff_t index; 670 671 info = list_entry(pos, struct shmem_inode_info, shrinklist); 672 inode = &info->vfs_inode; 673 674 if (nr_to_split && split >= nr_to_split) 675 goto move_back; 676 677 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 678 folio = filemap_get_folio(inode->i_mapping, index); 679 if (IS_ERR(folio)) 680 goto drop; 681 682 /* No huge page at the end of the file: nothing to split */ 683 if (!folio_test_large(folio)) { 684 folio_put(folio); 685 goto drop; 686 } 687 688 /* 689 * Move the inode on the list back to shrinklist if we failed 690 * to lock the page at this time. 691 * 692 * Waiting for the lock may lead to deadlock in the 693 * reclaim path. 694 */ 695 if (!folio_trylock(folio)) { 696 folio_put(folio); 697 goto move_back; 698 } 699 700 ret = split_folio(folio); 701 folio_unlock(folio); 702 folio_put(folio); 703 704 /* If split failed move the inode on the list back to shrinklist */ 705 if (ret) 706 goto move_back; 707 708 split++; 709 drop: 710 list_del_init(&info->shrinklist); 711 goto put; 712 move_back: 713 /* 714 * Make sure the inode is either on the global list or deleted 715 * from any local list before iput() since it could be deleted 716 * in another thread once we put the inode (then the local list 717 * is corrupted). 718 */ 719 spin_lock(&sbinfo->shrinklist_lock); 720 list_move(&info->shrinklist, &sbinfo->shrinklist); 721 sbinfo->shrinklist_len++; 722 spin_unlock(&sbinfo->shrinklist_lock); 723 put: 724 iput(inode); 725 } 726 727 return split; 728 } 729 730 static long shmem_unused_huge_scan(struct super_block *sb, 731 struct shrink_control *sc) 732 { 733 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 734 735 if (!READ_ONCE(sbinfo->shrinklist_len)) 736 return SHRINK_STOP; 737 738 return shmem_unused_huge_shrink(sbinfo, sc, 0); 739 } 740 741 static long shmem_unused_huge_count(struct super_block *sb, 742 struct shrink_control *sc) 743 { 744 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 745 return READ_ONCE(sbinfo->shrinklist_len); 746 } 747 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 748 749 #define shmem_huge SHMEM_HUGE_DENY 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Somewhat like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp) 764 { 765 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 766 long nr = folio_nr_pages(folio); 767 768 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 769 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 770 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 771 VM_BUG_ON(expected && folio_test_large(folio)); 772 773 folio_ref_add(folio, nr); 774 folio->mapping = mapping; 775 folio->index = index; 776 777 gfp &= GFP_RECLAIM_MASK; 778 folio_throttle_swaprate(folio, gfp); 779 780 do { 781 xas_lock_irq(&xas); 782 if (expected != xas_find_conflict(&xas)) { 783 xas_set_err(&xas, -EEXIST); 784 goto unlock; 785 } 786 if (expected && xas_find_conflict(&xas)) { 787 xas_set_err(&xas, -EEXIST); 788 goto unlock; 789 } 790 xas_store(&xas, folio); 791 if (xas_error(&xas)) 792 goto unlock; 793 if (folio_test_pmd_mappable(folio)) 794 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 795 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 796 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 797 mapping->nrpages += nr; 798 unlock: 799 xas_unlock_irq(&xas); 800 } while (xas_nomem(&xas, gfp)); 801 802 if (xas_error(&xas)) { 803 folio->mapping = NULL; 804 folio_ref_sub(folio, nr); 805 return xas_error(&xas); 806 } 807 808 return 0; 809 } 810 811 /* 812 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 813 */ 814 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 815 { 816 struct address_space *mapping = folio->mapping; 817 long nr = folio_nr_pages(folio); 818 int error; 819 820 xa_lock_irq(&mapping->i_pages); 821 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 822 folio->mapping = NULL; 823 mapping->nrpages -= nr; 824 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 825 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 826 xa_unlock_irq(&mapping->i_pages); 827 folio_put(folio); 828 BUG_ON(error); 829 } 830 831 /* 832 * Remove swap entry from page cache, free the swap and its page cache. 833 */ 834 static int shmem_free_swap(struct address_space *mapping, 835 pgoff_t index, void *radswap) 836 { 837 void *old; 838 839 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 840 if (old != radswap) 841 return -ENOENT; 842 free_swap_and_cache(radix_to_swp_entry(radswap)); 843 return 0; 844 } 845 846 /* 847 * Determine (in bytes) how many of the shmem object's pages mapped by the 848 * given offsets are swapped out. 849 * 850 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 851 * as long as the inode doesn't go away and racy results are not a problem. 852 */ 853 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 854 pgoff_t start, pgoff_t end) 855 { 856 XA_STATE(xas, &mapping->i_pages, start); 857 struct page *page; 858 unsigned long swapped = 0; 859 unsigned long max = end - 1; 860 861 rcu_read_lock(); 862 xas_for_each(&xas, page, max) { 863 if (xas_retry(&xas, page)) 864 continue; 865 if (xa_is_value(page)) 866 swapped++; 867 if (xas.xa_index == max) 868 break; 869 if (need_resched()) { 870 xas_pause(&xas); 871 cond_resched_rcu(); 872 } 873 } 874 rcu_read_unlock(); 875 876 return swapped << PAGE_SHIFT; 877 } 878 879 /* 880 * Determine (in bytes) how many of the shmem object's pages mapped by the 881 * given vma is swapped out. 882 * 883 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 884 * as long as the inode doesn't go away and racy results are not a problem. 885 */ 886 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 887 { 888 struct inode *inode = file_inode(vma->vm_file); 889 struct shmem_inode_info *info = SHMEM_I(inode); 890 struct address_space *mapping = inode->i_mapping; 891 unsigned long swapped; 892 893 /* Be careful as we don't hold info->lock */ 894 swapped = READ_ONCE(info->swapped); 895 896 /* 897 * The easier cases are when the shmem object has nothing in swap, or 898 * the vma maps it whole. Then we can simply use the stats that we 899 * already track. 900 */ 901 if (!swapped) 902 return 0; 903 904 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 905 return swapped << PAGE_SHIFT; 906 907 /* Here comes the more involved part */ 908 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 909 vma->vm_pgoff + vma_pages(vma)); 910 } 911 912 /* 913 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 914 */ 915 void shmem_unlock_mapping(struct address_space *mapping) 916 { 917 struct folio_batch fbatch; 918 pgoff_t index = 0; 919 920 folio_batch_init(&fbatch); 921 /* 922 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 923 */ 924 while (!mapping_unevictable(mapping) && 925 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 926 check_move_unevictable_folios(&fbatch); 927 folio_batch_release(&fbatch); 928 cond_resched(); 929 } 930 } 931 932 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 933 { 934 struct folio *folio; 935 936 /* 937 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 938 * beyond i_size, and reports fallocated folios as holes. 939 */ 940 folio = filemap_get_entry(inode->i_mapping, index); 941 if (!folio) 942 return folio; 943 if (!xa_is_value(folio)) { 944 folio_lock(folio); 945 if (folio->mapping == inode->i_mapping) 946 return folio; 947 /* The folio has been swapped out */ 948 folio_unlock(folio); 949 folio_put(folio); 950 } 951 /* 952 * But read a folio back from swap if any of it is within i_size 953 * (although in some cases this is just a waste of time). 954 */ 955 folio = NULL; 956 shmem_get_folio(inode, index, &folio, SGP_READ); 957 return folio; 958 } 959 960 /* 961 * Remove range of pages and swap entries from page cache, and free them. 962 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 963 */ 964 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 965 bool unfalloc) 966 { 967 struct address_space *mapping = inode->i_mapping; 968 struct shmem_inode_info *info = SHMEM_I(inode); 969 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 970 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 971 struct folio_batch fbatch; 972 pgoff_t indices[PAGEVEC_SIZE]; 973 struct folio *folio; 974 bool same_folio; 975 long nr_swaps_freed = 0; 976 pgoff_t index; 977 int i; 978 979 if (lend == -1) 980 end = -1; /* unsigned, so actually very big */ 981 982 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 983 info->fallocend = start; 984 985 folio_batch_init(&fbatch); 986 index = start; 987 while (index < end && find_lock_entries(mapping, &index, end - 1, 988 &fbatch, indices)) { 989 for (i = 0; i < folio_batch_count(&fbatch); i++) { 990 folio = fbatch.folios[i]; 991 992 if (xa_is_value(folio)) { 993 if (unfalloc) 994 continue; 995 nr_swaps_freed += !shmem_free_swap(mapping, 996 indices[i], folio); 997 continue; 998 } 999 1000 if (!unfalloc || !folio_test_uptodate(folio)) 1001 truncate_inode_folio(mapping, folio); 1002 folio_unlock(folio); 1003 } 1004 folio_batch_remove_exceptionals(&fbatch); 1005 folio_batch_release(&fbatch); 1006 cond_resched(); 1007 } 1008 1009 /* 1010 * When undoing a failed fallocate, we want none of the partial folio 1011 * zeroing and splitting below, but shall want to truncate the whole 1012 * folio when !uptodate indicates that it was added by this fallocate, 1013 * even when [lstart, lend] covers only a part of the folio. 1014 */ 1015 if (unfalloc) 1016 goto whole_folios; 1017 1018 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1019 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1020 if (folio) { 1021 same_folio = lend < folio_pos(folio) + folio_size(folio); 1022 folio_mark_dirty(folio); 1023 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1024 start = folio_next_index(folio); 1025 if (same_folio) 1026 end = folio->index; 1027 } 1028 folio_unlock(folio); 1029 folio_put(folio); 1030 folio = NULL; 1031 } 1032 1033 if (!same_folio) 1034 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1035 if (folio) { 1036 folio_mark_dirty(folio); 1037 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1038 end = folio->index; 1039 folio_unlock(folio); 1040 folio_put(folio); 1041 } 1042 1043 whole_folios: 1044 1045 index = start; 1046 while (index < end) { 1047 cond_resched(); 1048 1049 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1050 indices)) { 1051 /* If all gone or hole-punch or unfalloc, we're done */ 1052 if (index == start || end != -1) 1053 break; 1054 /* But if truncating, restart to make sure all gone */ 1055 index = start; 1056 continue; 1057 } 1058 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1059 folio = fbatch.folios[i]; 1060 1061 if (xa_is_value(folio)) { 1062 if (unfalloc) 1063 continue; 1064 if (shmem_free_swap(mapping, indices[i], folio)) { 1065 /* Swap was replaced by page: retry */ 1066 index = indices[i]; 1067 break; 1068 } 1069 nr_swaps_freed++; 1070 continue; 1071 } 1072 1073 folio_lock(folio); 1074 1075 if (!unfalloc || !folio_test_uptodate(folio)) { 1076 if (folio_mapping(folio) != mapping) { 1077 /* Page was replaced by swap: retry */ 1078 folio_unlock(folio); 1079 index = indices[i]; 1080 break; 1081 } 1082 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1083 folio); 1084 1085 if (!folio_test_large(folio)) { 1086 truncate_inode_folio(mapping, folio); 1087 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1088 /* 1089 * If we split a page, reset the loop so 1090 * that we pick up the new sub pages. 1091 * Otherwise the THP was entirely 1092 * dropped or the target range was 1093 * zeroed, so just continue the loop as 1094 * is. 1095 */ 1096 if (!folio_test_large(folio)) { 1097 folio_unlock(folio); 1098 index = start; 1099 break; 1100 } 1101 } 1102 } 1103 folio_unlock(folio); 1104 } 1105 folio_batch_remove_exceptionals(&fbatch); 1106 folio_batch_release(&fbatch); 1107 } 1108 1109 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1110 } 1111 1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1113 { 1114 shmem_undo_range(inode, lstart, lend, false); 1115 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1116 inode_inc_iversion(inode); 1117 } 1118 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1119 1120 static int shmem_getattr(struct mnt_idmap *idmap, 1121 const struct path *path, struct kstat *stat, 1122 u32 request_mask, unsigned int query_flags) 1123 { 1124 struct inode *inode = path->dentry->d_inode; 1125 struct shmem_inode_info *info = SHMEM_I(inode); 1126 1127 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1128 shmem_recalc_inode(inode, 0, 0); 1129 1130 if (info->fsflags & FS_APPEND_FL) 1131 stat->attributes |= STATX_ATTR_APPEND; 1132 if (info->fsflags & FS_IMMUTABLE_FL) 1133 stat->attributes |= STATX_ATTR_IMMUTABLE; 1134 if (info->fsflags & FS_NODUMP_FL) 1135 stat->attributes |= STATX_ATTR_NODUMP; 1136 stat->attributes_mask |= (STATX_ATTR_APPEND | 1137 STATX_ATTR_IMMUTABLE | 1138 STATX_ATTR_NODUMP); 1139 generic_fillattr(idmap, request_mask, inode, stat); 1140 1141 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1142 stat->blksize = HPAGE_PMD_SIZE; 1143 1144 if (request_mask & STATX_BTIME) { 1145 stat->result_mask |= STATX_BTIME; 1146 stat->btime.tv_sec = info->i_crtime.tv_sec; 1147 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int shmem_setattr(struct mnt_idmap *idmap, 1154 struct dentry *dentry, struct iattr *attr) 1155 { 1156 struct inode *inode = d_inode(dentry); 1157 struct shmem_inode_info *info = SHMEM_I(inode); 1158 int error; 1159 bool update_mtime = false; 1160 bool update_ctime = true; 1161 1162 error = setattr_prepare(idmap, dentry, attr); 1163 if (error) 1164 return error; 1165 1166 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1167 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1168 return -EPERM; 1169 } 1170 } 1171 1172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1173 loff_t oldsize = inode->i_size; 1174 loff_t newsize = attr->ia_size; 1175 1176 /* protected by i_rwsem */ 1177 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1178 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1179 return -EPERM; 1180 1181 if (newsize != oldsize) { 1182 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1183 oldsize, newsize); 1184 if (error) 1185 return error; 1186 i_size_write(inode, newsize); 1187 update_mtime = true; 1188 } else { 1189 update_ctime = false; 1190 } 1191 if (newsize <= oldsize) { 1192 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1193 if (oldsize > holebegin) 1194 unmap_mapping_range(inode->i_mapping, 1195 holebegin, 0, 1); 1196 if (info->alloced) 1197 shmem_truncate_range(inode, 1198 newsize, (loff_t)-1); 1199 /* unmap again to remove racily COWed private pages */ 1200 if (oldsize > holebegin) 1201 unmap_mapping_range(inode->i_mapping, 1202 holebegin, 0, 1); 1203 } 1204 } 1205 1206 if (is_quota_modification(idmap, inode, attr)) { 1207 error = dquot_initialize(inode); 1208 if (error) 1209 return error; 1210 } 1211 1212 /* Transfer quota accounting */ 1213 if (i_uid_needs_update(idmap, attr, inode) || 1214 i_gid_needs_update(idmap, attr, inode)) { 1215 error = dquot_transfer(idmap, inode, attr); 1216 if (error) 1217 return error; 1218 } 1219 1220 setattr_copy(idmap, inode, attr); 1221 if (attr->ia_valid & ATTR_MODE) 1222 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1223 if (!error && update_ctime) { 1224 inode_set_ctime_current(inode); 1225 if (update_mtime) 1226 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1227 inode_inc_iversion(inode); 1228 } 1229 return error; 1230 } 1231 1232 static void shmem_evict_inode(struct inode *inode) 1233 { 1234 struct shmem_inode_info *info = SHMEM_I(inode); 1235 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1236 size_t freed = 0; 1237 1238 if (shmem_mapping(inode->i_mapping)) { 1239 shmem_unacct_size(info->flags, inode->i_size); 1240 inode->i_size = 0; 1241 mapping_set_exiting(inode->i_mapping); 1242 shmem_truncate_range(inode, 0, (loff_t)-1); 1243 if (!list_empty(&info->shrinklist)) { 1244 spin_lock(&sbinfo->shrinklist_lock); 1245 if (!list_empty(&info->shrinklist)) { 1246 list_del_init(&info->shrinklist); 1247 sbinfo->shrinklist_len--; 1248 } 1249 spin_unlock(&sbinfo->shrinklist_lock); 1250 } 1251 while (!list_empty(&info->swaplist)) { 1252 /* Wait while shmem_unuse() is scanning this inode... */ 1253 wait_var_event(&info->stop_eviction, 1254 !atomic_read(&info->stop_eviction)); 1255 mutex_lock(&shmem_swaplist_mutex); 1256 /* ...but beware of the race if we peeked too early */ 1257 if (!atomic_read(&info->stop_eviction)) 1258 list_del_init(&info->swaplist); 1259 mutex_unlock(&shmem_swaplist_mutex); 1260 } 1261 } 1262 1263 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1264 shmem_free_inode(inode->i_sb, freed); 1265 WARN_ON(inode->i_blocks); 1266 clear_inode(inode); 1267 #ifdef CONFIG_TMPFS_QUOTA 1268 dquot_free_inode(inode); 1269 dquot_drop(inode); 1270 #endif 1271 } 1272 1273 static int shmem_find_swap_entries(struct address_space *mapping, 1274 pgoff_t start, struct folio_batch *fbatch, 1275 pgoff_t *indices, unsigned int type) 1276 { 1277 XA_STATE(xas, &mapping->i_pages, start); 1278 struct folio *folio; 1279 swp_entry_t entry; 1280 1281 rcu_read_lock(); 1282 xas_for_each(&xas, folio, ULONG_MAX) { 1283 if (xas_retry(&xas, folio)) 1284 continue; 1285 1286 if (!xa_is_value(folio)) 1287 continue; 1288 1289 entry = radix_to_swp_entry(folio); 1290 /* 1291 * swapin error entries can be found in the mapping. But they're 1292 * deliberately ignored here as we've done everything we can do. 1293 */ 1294 if (swp_type(entry) != type) 1295 continue; 1296 1297 indices[folio_batch_count(fbatch)] = xas.xa_index; 1298 if (!folio_batch_add(fbatch, folio)) 1299 break; 1300 1301 if (need_resched()) { 1302 xas_pause(&xas); 1303 cond_resched_rcu(); 1304 } 1305 } 1306 rcu_read_unlock(); 1307 1308 return xas.xa_index; 1309 } 1310 1311 /* 1312 * Move the swapped pages for an inode to page cache. Returns the count 1313 * of pages swapped in, or the error in case of failure. 1314 */ 1315 static int shmem_unuse_swap_entries(struct inode *inode, 1316 struct folio_batch *fbatch, pgoff_t *indices) 1317 { 1318 int i = 0; 1319 int ret = 0; 1320 int error = 0; 1321 struct address_space *mapping = inode->i_mapping; 1322 1323 for (i = 0; i < folio_batch_count(fbatch); i++) { 1324 struct folio *folio = fbatch->folios[i]; 1325 1326 if (!xa_is_value(folio)) 1327 continue; 1328 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1329 mapping_gfp_mask(mapping), NULL, NULL); 1330 if (error == 0) { 1331 folio_unlock(folio); 1332 folio_put(folio); 1333 ret++; 1334 } 1335 if (error == -ENOMEM) 1336 break; 1337 error = 0; 1338 } 1339 return error ? error : ret; 1340 } 1341 1342 /* 1343 * If swap found in inode, free it and move page from swapcache to filecache. 1344 */ 1345 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1346 { 1347 struct address_space *mapping = inode->i_mapping; 1348 pgoff_t start = 0; 1349 struct folio_batch fbatch; 1350 pgoff_t indices[PAGEVEC_SIZE]; 1351 int ret = 0; 1352 1353 do { 1354 folio_batch_init(&fbatch); 1355 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1356 if (folio_batch_count(&fbatch) == 0) { 1357 ret = 0; 1358 break; 1359 } 1360 1361 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1362 if (ret < 0) 1363 break; 1364 1365 start = indices[folio_batch_count(&fbatch) - 1]; 1366 } while (true); 1367 1368 return ret; 1369 } 1370 1371 /* 1372 * Read all the shared memory data that resides in the swap 1373 * device 'type' back into memory, so the swap device can be 1374 * unused. 1375 */ 1376 int shmem_unuse(unsigned int type) 1377 { 1378 struct shmem_inode_info *info, *next; 1379 int error = 0; 1380 1381 if (list_empty(&shmem_swaplist)) 1382 return 0; 1383 1384 mutex_lock(&shmem_swaplist_mutex); 1385 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1386 if (!info->swapped) { 1387 list_del_init(&info->swaplist); 1388 continue; 1389 } 1390 /* 1391 * Drop the swaplist mutex while searching the inode for swap; 1392 * but before doing so, make sure shmem_evict_inode() will not 1393 * remove placeholder inode from swaplist, nor let it be freed 1394 * (igrab() would protect from unlink, but not from unmount). 1395 */ 1396 atomic_inc(&info->stop_eviction); 1397 mutex_unlock(&shmem_swaplist_mutex); 1398 1399 error = shmem_unuse_inode(&info->vfs_inode, type); 1400 cond_resched(); 1401 1402 mutex_lock(&shmem_swaplist_mutex); 1403 next = list_next_entry(info, swaplist); 1404 if (!info->swapped) 1405 list_del_init(&info->swaplist); 1406 if (atomic_dec_and_test(&info->stop_eviction)) 1407 wake_up_var(&info->stop_eviction); 1408 if (error) 1409 break; 1410 } 1411 mutex_unlock(&shmem_swaplist_mutex); 1412 1413 return error; 1414 } 1415 1416 /* 1417 * Move the page from the page cache to the swap cache. 1418 */ 1419 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1420 { 1421 struct folio *folio = page_folio(page); 1422 struct address_space *mapping = folio->mapping; 1423 struct inode *inode = mapping->host; 1424 struct shmem_inode_info *info = SHMEM_I(inode); 1425 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1426 swp_entry_t swap; 1427 pgoff_t index; 1428 1429 /* 1430 * Our capabilities prevent regular writeback or sync from ever calling 1431 * shmem_writepage; but a stacking filesystem might use ->writepage of 1432 * its underlying filesystem, in which case tmpfs should write out to 1433 * swap only in response to memory pressure, and not for the writeback 1434 * threads or sync. 1435 */ 1436 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1437 goto redirty; 1438 1439 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1440 goto redirty; 1441 1442 if (!total_swap_pages) 1443 goto redirty; 1444 1445 /* 1446 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1447 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1448 * and its shmem_writeback() needs them to be split when swapping. 1449 */ 1450 if (folio_test_large(folio)) { 1451 /* Ensure the subpages are still dirty */ 1452 folio_test_set_dirty(folio); 1453 if (split_huge_page(page) < 0) 1454 goto redirty; 1455 folio = page_folio(page); 1456 folio_clear_dirty(folio); 1457 } 1458 1459 index = folio->index; 1460 1461 /* 1462 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1463 * value into swapfile.c, the only way we can correctly account for a 1464 * fallocated folio arriving here is now to initialize it and write it. 1465 * 1466 * That's okay for a folio already fallocated earlier, but if we have 1467 * not yet completed the fallocation, then (a) we want to keep track 1468 * of this folio in case we have to undo it, and (b) it may not be a 1469 * good idea to continue anyway, once we're pushing into swap. So 1470 * reactivate the folio, and let shmem_fallocate() quit when too many. 1471 */ 1472 if (!folio_test_uptodate(folio)) { 1473 if (inode->i_private) { 1474 struct shmem_falloc *shmem_falloc; 1475 spin_lock(&inode->i_lock); 1476 shmem_falloc = inode->i_private; 1477 if (shmem_falloc && 1478 !shmem_falloc->waitq && 1479 index >= shmem_falloc->start && 1480 index < shmem_falloc->next) 1481 shmem_falloc->nr_unswapped++; 1482 else 1483 shmem_falloc = NULL; 1484 spin_unlock(&inode->i_lock); 1485 if (shmem_falloc) 1486 goto redirty; 1487 } 1488 folio_zero_range(folio, 0, folio_size(folio)); 1489 flush_dcache_folio(folio); 1490 folio_mark_uptodate(folio); 1491 } 1492 1493 swap = folio_alloc_swap(folio); 1494 if (!swap.val) 1495 goto redirty; 1496 1497 /* 1498 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1499 * if it's not already there. Do it now before the folio is 1500 * moved to swap cache, when its pagelock no longer protects 1501 * the inode from eviction. But don't unlock the mutex until 1502 * we've incremented swapped, because shmem_unuse_inode() will 1503 * prune a !swapped inode from the swaplist under this mutex. 1504 */ 1505 mutex_lock(&shmem_swaplist_mutex); 1506 if (list_empty(&info->swaplist)) 1507 list_add(&info->swaplist, &shmem_swaplist); 1508 1509 if (add_to_swap_cache(folio, swap, 1510 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1511 NULL) == 0) { 1512 shmem_recalc_inode(inode, 0, 1); 1513 swap_shmem_alloc(swap); 1514 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1515 1516 mutex_unlock(&shmem_swaplist_mutex); 1517 BUG_ON(folio_mapped(folio)); 1518 return swap_writepage(&folio->page, wbc); 1519 } 1520 1521 mutex_unlock(&shmem_swaplist_mutex); 1522 put_swap_folio(folio, swap); 1523 redirty: 1524 folio_mark_dirty(folio); 1525 if (wbc->for_reclaim) 1526 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1527 folio_unlock(folio); 1528 return 0; 1529 } 1530 1531 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1532 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1533 { 1534 char buffer[64]; 1535 1536 if (!mpol || mpol->mode == MPOL_DEFAULT) 1537 return; /* show nothing */ 1538 1539 mpol_to_str(buffer, sizeof(buffer), mpol); 1540 1541 seq_printf(seq, ",mpol=%s", buffer); 1542 } 1543 1544 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1545 { 1546 struct mempolicy *mpol = NULL; 1547 if (sbinfo->mpol) { 1548 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1549 mpol = sbinfo->mpol; 1550 mpol_get(mpol); 1551 raw_spin_unlock(&sbinfo->stat_lock); 1552 } 1553 return mpol; 1554 } 1555 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1556 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1557 { 1558 } 1559 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1560 { 1561 return NULL; 1562 } 1563 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1564 1565 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1566 pgoff_t index, unsigned int order, pgoff_t *ilx); 1567 1568 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1569 struct shmem_inode_info *info, pgoff_t index) 1570 { 1571 struct mempolicy *mpol; 1572 pgoff_t ilx; 1573 struct folio *folio; 1574 1575 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1576 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1577 mpol_cond_put(mpol); 1578 1579 return folio; 1580 } 1581 1582 /* 1583 * Make sure huge_gfp is always more limited than limit_gfp. 1584 * Some of the flags set permissions, while others set limitations. 1585 */ 1586 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1587 { 1588 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1589 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1590 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1591 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1592 1593 /* Allow allocations only from the originally specified zones. */ 1594 result |= zoneflags; 1595 1596 /* 1597 * Minimize the result gfp by taking the union with the deny flags, 1598 * and the intersection of the allow flags. 1599 */ 1600 result |= (limit_gfp & denyflags); 1601 result |= (huge_gfp & limit_gfp) & allowflags; 1602 1603 return result; 1604 } 1605 1606 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1607 struct shmem_inode_info *info, pgoff_t index) 1608 { 1609 struct mempolicy *mpol; 1610 pgoff_t ilx; 1611 struct page *page; 1612 1613 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx); 1614 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id()); 1615 mpol_cond_put(mpol); 1616 1617 return page_rmappable_folio(page); 1618 } 1619 1620 static struct folio *shmem_alloc_folio(gfp_t gfp, 1621 struct shmem_inode_info *info, pgoff_t index) 1622 { 1623 struct mempolicy *mpol; 1624 pgoff_t ilx; 1625 struct page *page; 1626 1627 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1628 page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id()); 1629 mpol_cond_put(mpol); 1630 1631 return (struct folio *)page; 1632 } 1633 1634 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp, 1635 struct inode *inode, pgoff_t index, 1636 struct mm_struct *fault_mm, bool huge) 1637 { 1638 struct address_space *mapping = inode->i_mapping; 1639 struct shmem_inode_info *info = SHMEM_I(inode); 1640 struct folio *folio; 1641 long pages; 1642 int error; 1643 1644 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1645 huge = false; 1646 1647 if (huge) { 1648 pages = HPAGE_PMD_NR; 1649 index = round_down(index, HPAGE_PMD_NR); 1650 1651 /* 1652 * Check for conflict before waiting on a huge allocation. 1653 * Conflict might be that a huge page has just been allocated 1654 * and added to page cache by a racing thread, or that there 1655 * is already at least one small page in the huge extent. 1656 * Be careful to retry when appropriate, but not forever! 1657 * Elsewhere -EEXIST would be the right code, but not here. 1658 */ 1659 if (xa_find(&mapping->i_pages, &index, 1660 index + HPAGE_PMD_NR - 1, XA_PRESENT)) 1661 return ERR_PTR(-E2BIG); 1662 1663 folio = shmem_alloc_hugefolio(gfp, info, index); 1664 if (!folio) 1665 count_vm_event(THP_FILE_FALLBACK); 1666 } else { 1667 pages = 1; 1668 folio = shmem_alloc_folio(gfp, info, index); 1669 } 1670 if (!folio) 1671 return ERR_PTR(-ENOMEM); 1672 1673 __folio_set_locked(folio); 1674 __folio_set_swapbacked(folio); 1675 1676 gfp &= GFP_RECLAIM_MASK; 1677 error = mem_cgroup_charge(folio, fault_mm, gfp); 1678 if (error) { 1679 if (xa_find(&mapping->i_pages, &index, 1680 index + pages - 1, XA_PRESENT)) { 1681 error = -EEXIST; 1682 } else if (huge) { 1683 count_vm_event(THP_FILE_FALLBACK); 1684 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1685 } 1686 goto unlock; 1687 } 1688 1689 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1690 if (error) 1691 goto unlock; 1692 1693 error = shmem_inode_acct_blocks(inode, pages); 1694 if (error) { 1695 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1696 long freed; 1697 /* 1698 * Try to reclaim some space by splitting a few 1699 * large folios beyond i_size on the filesystem. 1700 */ 1701 shmem_unused_huge_shrink(sbinfo, NULL, 2); 1702 /* 1703 * And do a shmem_recalc_inode() to account for freed pages: 1704 * except our folio is there in cache, so not quite balanced. 1705 */ 1706 spin_lock(&info->lock); 1707 freed = pages + info->alloced - info->swapped - 1708 READ_ONCE(mapping->nrpages); 1709 if (freed > 0) 1710 info->alloced -= freed; 1711 spin_unlock(&info->lock); 1712 if (freed > 0) 1713 shmem_inode_unacct_blocks(inode, freed); 1714 error = shmem_inode_acct_blocks(inode, pages); 1715 if (error) { 1716 filemap_remove_folio(folio); 1717 goto unlock; 1718 } 1719 } 1720 1721 shmem_recalc_inode(inode, pages, 0); 1722 folio_add_lru(folio); 1723 return folio; 1724 1725 unlock: 1726 folio_unlock(folio); 1727 folio_put(folio); 1728 return ERR_PTR(error); 1729 } 1730 1731 /* 1732 * When a page is moved from swapcache to shmem filecache (either by the 1733 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1734 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1735 * ignorance of the mapping it belongs to. If that mapping has special 1736 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1737 * we may need to copy to a suitable page before moving to filecache. 1738 * 1739 * In a future release, this may well be extended to respect cpuset and 1740 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1741 * but for now it is a simple matter of zone. 1742 */ 1743 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1744 { 1745 return folio_zonenum(folio) > gfp_zone(gfp); 1746 } 1747 1748 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1749 struct shmem_inode_info *info, pgoff_t index) 1750 { 1751 struct folio *old, *new; 1752 struct address_space *swap_mapping; 1753 swp_entry_t entry; 1754 pgoff_t swap_index; 1755 int error; 1756 1757 old = *foliop; 1758 entry = old->swap; 1759 swap_index = swp_offset(entry); 1760 swap_mapping = swap_address_space(entry); 1761 1762 /* 1763 * We have arrived here because our zones are constrained, so don't 1764 * limit chance of success by further cpuset and node constraints. 1765 */ 1766 gfp &= ~GFP_CONSTRAINT_MASK; 1767 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1768 new = shmem_alloc_folio(gfp, info, index); 1769 if (!new) 1770 return -ENOMEM; 1771 1772 folio_get(new); 1773 folio_copy(new, old); 1774 flush_dcache_folio(new); 1775 1776 __folio_set_locked(new); 1777 __folio_set_swapbacked(new); 1778 folio_mark_uptodate(new); 1779 new->swap = entry; 1780 folio_set_swapcache(new); 1781 1782 /* 1783 * Our caller will very soon move newpage out of swapcache, but it's 1784 * a nice clean interface for us to replace oldpage by newpage there. 1785 */ 1786 xa_lock_irq(&swap_mapping->i_pages); 1787 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1788 if (!error) { 1789 mem_cgroup_replace_folio(old, new); 1790 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1791 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1792 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1793 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1794 } 1795 xa_unlock_irq(&swap_mapping->i_pages); 1796 1797 if (unlikely(error)) { 1798 /* 1799 * Is this possible? I think not, now that our callers check 1800 * both PageSwapCache and page_private after getting page lock; 1801 * but be defensive. Reverse old to newpage for clear and free. 1802 */ 1803 old = new; 1804 } else { 1805 folio_add_lru(new); 1806 *foliop = new; 1807 } 1808 1809 folio_clear_swapcache(old); 1810 old->private = NULL; 1811 1812 folio_unlock(old); 1813 folio_put_refs(old, 2); 1814 return error; 1815 } 1816 1817 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1818 struct folio *folio, swp_entry_t swap) 1819 { 1820 struct address_space *mapping = inode->i_mapping; 1821 swp_entry_t swapin_error; 1822 void *old; 1823 1824 swapin_error = make_poisoned_swp_entry(); 1825 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1826 swp_to_radix_entry(swap), 1827 swp_to_radix_entry(swapin_error), 0); 1828 if (old != swp_to_radix_entry(swap)) 1829 return; 1830 1831 folio_wait_writeback(folio); 1832 delete_from_swap_cache(folio); 1833 /* 1834 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1835 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1836 * in shmem_evict_inode(). 1837 */ 1838 shmem_recalc_inode(inode, -1, -1); 1839 swap_free(swap); 1840 } 1841 1842 /* 1843 * Swap in the folio pointed to by *foliop. 1844 * Caller has to make sure that *foliop contains a valid swapped folio. 1845 * Returns 0 and the folio in foliop if success. On failure, returns the 1846 * error code and NULL in *foliop. 1847 */ 1848 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1849 struct folio **foliop, enum sgp_type sgp, 1850 gfp_t gfp, struct mm_struct *fault_mm, 1851 vm_fault_t *fault_type) 1852 { 1853 struct address_space *mapping = inode->i_mapping; 1854 struct shmem_inode_info *info = SHMEM_I(inode); 1855 struct swap_info_struct *si; 1856 struct folio *folio = NULL; 1857 swp_entry_t swap; 1858 int error; 1859 1860 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1861 swap = radix_to_swp_entry(*foliop); 1862 *foliop = NULL; 1863 1864 if (is_poisoned_swp_entry(swap)) 1865 return -EIO; 1866 1867 si = get_swap_device(swap); 1868 if (!si) { 1869 if (!shmem_confirm_swap(mapping, index, swap)) 1870 return -EEXIST; 1871 else 1872 return -EINVAL; 1873 } 1874 1875 /* Look it up and read it in.. */ 1876 folio = swap_cache_get_folio(swap, NULL, 0); 1877 if (!folio) { 1878 /* Or update major stats only when swapin succeeds?? */ 1879 if (fault_type) { 1880 *fault_type |= VM_FAULT_MAJOR; 1881 count_vm_event(PGMAJFAULT); 1882 count_memcg_event_mm(fault_mm, PGMAJFAULT); 1883 } 1884 /* Here we actually start the io */ 1885 folio = shmem_swapin_cluster(swap, gfp, info, index); 1886 if (!folio) { 1887 error = -ENOMEM; 1888 goto failed; 1889 } 1890 } 1891 1892 /* We have to do this with folio locked to prevent races */ 1893 folio_lock(folio); 1894 if (!folio_test_swapcache(folio) || 1895 folio->swap.val != swap.val || 1896 !shmem_confirm_swap(mapping, index, swap)) { 1897 error = -EEXIST; 1898 goto unlock; 1899 } 1900 if (!folio_test_uptodate(folio)) { 1901 error = -EIO; 1902 goto failed; 1903 } 1904 folio_wait_writeback(folio); 1905 1906 /* 1907 * Some architectures may have to restore extra metadata to the 1908 * folio after reading from swap. 1909 */ 1910 arch_swap_restore(folio_swap(swap, folio), folio); 1911 1912 if (shmem_should_replace_folio(folio, gfp)) { 1913 error = shmem_replace_folio(&folio, gfp, info, index); 1914 if (error) 1915 goto failed; 1916 } 1917 1918 error = shmem_add_to_page_cache(folio, mapping, index, 1919 swp_to_radix_entry(swap), gfp); 1920 if (error) 1921 goto failed; 1922 1923 shmem_recalc_inode(inode, 0, -1); 1924 1925 if (sgp == SGP_WRITE) 1926 folio_mark_accessed(folio); 1927 1928 delete_from_swap_cache(folio); 1929 folio_mark_dirty(folio); 1930 swap_free(swap); 1931 put_swap_device(si); 1932 1933 *foliop = folio; 1934 return 0; 1935 failed: 1936 if (!shmem_confirm_swap(mapping, index, swap)) 1937 error = -EEXIST; 1938 if (error == -EIO) 1939 shmem_set_folio_swapin_error(inode, index, folio, swap); 1940 unlock: 1941 if (folio) { 1942 folio_unlock(folio); 1943 folio_put(folio); 1944 } 1945 put_swap_device(si); 1946 1947 return error; 1948 } 1949 1950 /* 1951 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1952 * 1953 * If we allocate a new one we do not mark it dirty. That's up to the 1954 * vm. If we swap it in we mark it dirty since we also free the swap 1955 * entry since a page cannot live in both the swap and page cache. 1956 * 1957 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 1958 */ 1959 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1960 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1961 struct vm_fault *vmf, vm_fault_t *fault_type) 1962 { 1963 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1964 struct mm_struct *fault_mm; 1965 struct folio *folio; 1966 int error; 1967 bool alloced; 1968 1969 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 1970 return -EINVAL; 1971 1972 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1973 return -EFBIG; 1974 repeat: 1975 if (sgp <= SGP_CACHE && 1976 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 1977 return -EINVAL; 1978 1979 alloced = false; 1980 fault_mm = vma ? vma->vm_mm : NULL; 1981 1982 folio = filemap_get_entry(inode->i_mapping, index); 1983 if (folio && vma && userfaultfd_minor(vma)) { 1984 if (!xa_is_value(folio)) 1985 folio_put(folio); 1986 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1987 return 0; 1988 } 1989 1990 if (xa_is_value(folio)) { 1991 error = shmem_swapin_folio(inode, index, &folio, 1992 sgp, gfp, fault_mm, fault_type); 1993 if (error == -EEXIST) 1994 goto repeat; 1995 1996 *foliop = folio; 1997 return error; 1998 } 1999 2000 if (folio) { 2001 folio_lock(folio); 2002 2003 /* Has the folio been truncated or swapped out? */ 2004 if (unlikely(folio->mapping != inode->i_mapping)) { 2005 folio_unlock(folio); 2006 folio_put(folio); 2007 goto repeat; 2008 } 2009 if (sgp == SGP_WRITE) 2010 folio_mark_accessed(folio); 2011 if (folio_test_uptodate(folio)) 2012 goto out; 2013 /* fallocated folio */ 2014 if (sgp != SGP_READ) 2015 goto clear; 2016 folio_unlock(folio); 2017 folio_put(folio); 2018 } 2019 2020 /* 2021 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2022 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2023 */ 2024 *foliop = NULL; 2025 if (sgp == SGP_READ) 2026 return 0; 2027 if (sgp == SGP_NOALLOC) 2028 return -ENOENT; 2029 2030 /* 2031 * Fast cache lookup and swap lookup did not find it: allocate. 2032 */ 2033 2034 if (vma && userfaultfd_missing(vma)) { 2035 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2036 return 0; 2037 } 2038 2039 if (shmem_is_huge(inode, index, false, fault_mm, 2040 vma ? vma->vm_flags : 0)) { 2041 gfp_t huge_gfp; 2042 2043 huge_gfp = vma_thp_gfp_mask(vma); 2044 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2045 folio = shmem_alloc_and_add_folio(huge_gfp, 2046 inode, index, fault_mm, true); 2047 if (!IS_ERR(folio)) { 2048 count_vm_event(THP_FILE_ALLOC); 2049 goto alloced; 2050 } 2051 if (PTR_ERR(folio) == -EEXIST) 2052 goto repeat; 2053 } 2054 2055 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false); 2056 if (IS_ERR(folio)) { 2057 error = PTR_ERR(folio); 2058 if (error == -EEXIST) 2059 goto repeat; 2060 folio = NULL; 2061 goto unlock; 2062 } 2063 2064 alloced: 2065 alloced = true; 2066 if (folio_test_pmd_mappable(folio) && 2067 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2068 folio_next_index(folio) - 1) { 2069 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2070 struct shmem_inode_info *info = SHMEM_I(inode); 2071 /* 2072 * Part of the large folio is beyond i_size: subject 2073 * to shrink under memory pressure. 2074 */ 2075 spin_lock(&sbinfo->shrinklist_lock); 2076 /* 2077 * _careful to defend against unlocked access to 2078 * ->shrink_list in shmem_unused_huge_shrink() 2079 */ 2080 if (list_empty_careful(&info->shrinklist)) { 2081 list_add_tail(&info->shrinklist, 2082 &sbinfo->shrinklist); 2083 sbinfo->shrinklist_len++; 2084 } 2085 spin_unlock(&sbinfo->shrinklist_lock); 2086 } 2087 2088 if (sgp == SGP_WRITE) 2089 folio_set_referenced(folio); 2090 /* 2091 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2092 */ 2093 if (sgp == SGP_FALLOC) 2094 sgp = SGP_WRITE; 2095 clear: 2096 /* 2097 * Let SGP_WRITE caller clear ends if write does not fill folio; 2098 * but SGP_FALLOC on a folio fallocated earlier must initialize 2099 * it now, lest undo on failure cancel our earlier guarantee. 2100 */ 2101 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2102 long i, n = folio_nr_pages(folio); 2103 2104 for (i = 0; i < n; i++) 2105 clear_highpage(folio_page(folio, i)); 2106 flush_dcache_folio(folio); 2107 folio_mark_uptodate(folio); 2108 } 2109 2110 /* Perhaps the file has been truncated since we checked */ 2111 if (sgp <= SGP_CACHE && 2112 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2113 error = -EINVAL; 2114 goto unlock; 2115 } 2116 out: 2117 *foliop = folio; 2118 return 0; 2119 2120 /* 2121 * Error recovery. 2122 */ 2123 unlock: 2124 if (alloced) 2125 filemap_remove_folio(folio); 2126 shmem_recalc_inode(inode, 0, 0); 2127 if (folio) { 2128 folio_unlock(folio); 2129 folio_put(folio); 2130 } 2131 return error; 2132 } 2133 2134 /** 2135 * shmem_get_folio - find, and lock a shmem folio. 2136 * @inode: inode to search 2137 * @index: the page index. 2138 * @foliop: pointer to the folio if found 2139 * @sgp: SGP_* flags to control behavior 2140 * 2141 * Looks up the page cache entry at @inode & @index. If a folio is 2142 * present, it is returned locked with an increased refcount. 2143 * 2144 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2145 * before unlocking the folio to ensure that the folio is not reclaimed. 2146 * There is no need to reserve space before calling folio_mark_dirty(). 2147 * 2148 * When no folio is found, the behavior depends on @sgp: 2149 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2150 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2151 * - for all other flags a new folio is allocated, inserted into the 2152 * page cache and returned locked in @foliop. 2153 * 2154 * Context: May sleep. 2155 * Return: 0 if successful, else a negative error code. 2156 */ 2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2158 enum sgp_type sgp) 2159 { 2160 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2161 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2162 } 2163 EXPORT_SYMBOL_GPL(shmem_get_folio); 2164 2165 /* 2166 * This is like autoremove_wake_function, but it removes the wait queue 2167 * entry unconditionally - even if something else had already woken the 2168 * target. 2169 */ 2170 static int synchronous_wake_function(wait_queue_entry_t *wait, 2171 unsigned int mode, int sync, void *key) 2172 { 2173 int ret = default_wake_function(wait, mode, sync, key); 2174 list_del_init(&wait->entry); 2175 return ret; 2176 } 2177 2178 /* 2179 * Trinity finds that probing a hole which tmpfs is punching can 2180 * prevent the hole-punch from ever completing: which in turn 2181 * locks writers out with its hold on i_rwsem. So refrain from 2182 * faulting pages into the hole while it's being punched. Although 2183 * shmem_undo_range() does remove the additions, it may be unable to 2184 * keep up, as each new page needs its own unmap_mapping_range() call, 2185 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2186 * 2187 * It does not matter if we sometimes reach this check just before the 2188 * hole-punch begins, so that one fault then races with the punch: 2189 * we just need to make racing faults a rare case. 2190 * 2191 * The implementation below would be much simpler if we just used a 2192 * standard mutex or completion: but we cannot take i_rwsem in fault, 2193 * and bloating every shmem inode for this unlikely case would be sad. 2194 */ 2195 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2196 { 2197 struct shmem_falloc *shmem_falloc; 2198 struct file *fpin = NULL; 2199 vm_fault_t ret = 0; 2200 2201 spin_lock(&inode->i_lock); 2202 shmem_falloc = inode->i_private; 2203 if (shmem_falloc && 2204 shmem_falloc->waitq && 2205 vmf->pgoff >= shmem_falloc->start && 2206 vmf->pgoff < shmem_falloc->next) { 2207 wait_queue_head_t *shmem_falloc_waitq; 2208 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2209 2210 ret = VM_FAULT_NOPAGE; 2211 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2212 shmem_falloc_waitq = shmem_falloc->waitq; 2213 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2214 TASK_UNINTERRUPTIBLE); 2215 spin_unlock(&inode->i_lock); 2216 schedule(); 2217 2218 /* 2219 * shmem_falloc_waitq points into the shmem_fallocate() 2220 * stack of the hole-punching task: shmem_falloc_waitq 2221 * is usually invalid by the time we reach here, but 2222 * finish_wait() does not dereference it in that case; 2223 * though i_lock needed lest racing with wake_up_all(). 2224 */ 2225 spin_lock(&inode->i_lock); 2226 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2227 } 2228 spin_unlock(&inode->i_lock); 2229 if (fpin) { 2230 fput(fpin); 2231 ret = VM_FAULT_RETRY; 2232 } 2233 return ret; 2234 } 2235 2236 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2237 { 2238 struct inode *inode = file_inode(vmf->vma->vm_file); 2239 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2240 struct folio *folio = NULL; 2241 vm_fault_t ret = 0; 2242 int err; 2243 2244 /* 2245 * Trinity finds that probing a hole which tmpfs is punching can 2246 * prevent the hole-punch from ever completing: noted in i_private. 2247 */ 2248 if (unlikely(inode->i_private)) { 2249 ret = shmem_falloc_wait(vmf, inode); 2250 if (ret) 2251 return ret; 2252 } 2253 2254 WARN_ON_ONCE(vmf->page != NULL); 2255 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2256 gfp, vmf, &ret); 2257 if (err) 2258 return vmf_error(err); 2259 if (folio) { 2260 vmf->page = folio_file_page(folio, vmf->pgoff); 2261 ret |= VM_FAULT_LOCKED; 2262 } 2263 return ret; 2264 } 2265 2266 unsigned long shmem_get_unmapped_area(struct file *file, 2267 unsigned long uaddr, unsigned long len, 2268 unsigned long pgoff, unsigned long flags) 2269 { 2270 unsigned long addr; 2271 unsigned long offset; 2272 unsigned long inflated_len; 2273 unsigned long inflated_addr; 2274 unsigned long inflated_offset; 2275 2276 if (len > TASK_SIZE) 2277 return -ENOMEM; 2278 2279 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2280 flags); 2281 2282 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2283 return addr; 2284 if (IS_ERR_VALUE(addr)) 2285 return addr; 2286 if (addr & ~PAGE_MASK) 2287 return addr; 2288 if (addr > TASK_SIZE - len) 2289 return addr; 2290 2291 if (shmem_huge == SHMEM_HUGE_DENY) 2292 return addr; 2293 if (len < HPAGE_PMD_SIZE) 2294 return addr; 2295 if (flags & MAP_FIXED) 2296 return addr; 2297 /* 2298 * Our priority is to support MAP_SHARED mapped hugely; 2299 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2300 * But if caller specified an address hint and we allocated area there 2301 * successfully, respect that as before. 2302 */ 2303 if (uaddr == addr) 2304 return addr; 2305 2306 if (shmem_huge != SHMEM_HUGE_FORCE) { 2307 struct super_block *sb; 2308 2309 if (file) { 2310 VM_BUG_ON(file->f_op != &shmem_file_operations); 2311 sb = file_inode(file)->i_sb; 2312 } else { 2313 /* 2314 * Called directly from mm/mmap.c, or drivers/char/mem.c 2315 * for "/dev/zero", to create a shared anonymous object. 2316 */ 2317 if (IS_ERR(shm_mnt)) 2318 return addr; 2319 sb = shm_mnt->mnt_sb; 2320 } 2321 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2322 return addr; 2323 } 2324 2325 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2326 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2327 return addr; 2328 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2329 return addr; 2330 2331 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2332 if (inflated_len > TASK_SIZE) 2333 return addr; 2334 if (inflated_len < len) 2335 return addr; 2336 2337 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2338 inflated_len, 0, flags); 2339 if (IS_ERR_VALUE(inflated_addr)) 2340 return addr; 2341 if (inflated_addr & ~PAGE_MASK) 2342 return addr; 2343 2344 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2345 inflated_addr += offset - inflated_offset; 2346 if (inflated_offset > offset) 2347 inflated_addr += HPAGE_PMD_SIZE; 2348 2349 if (inflated_addr > TASK_SIZE - len) 2350 return addr; 2351 return inflated_addr; 2352 } 2353 2354 #ifdef CONFIG_NUMA 2355 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2356 { 2357 struct inode *inode = file_inode(vma->vm_file); 2358 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2359 } 2360 2361 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2362 unsigned long addr, pgoff_t *ilx) 2363 { 2364 struct inode *inode = file_inode(vma->vm_file); 2365 pgoff_t index; 2366 2367 /* 2368 * Bias interleave by inode number to distribute better across nodes; 2369 * but this interface is independent of which page order is used, so 2370 * supplies only that bias, letting caller apply the offset (adjusted 2371 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2372 */ 2373 *ilx = inode->i_ino; 2374 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2375 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2376 } 2377 2378 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2379 pgoff_t index, unsigned int order, pgoff_t *ilx) 2380 { 2381 struct mempolicy *mpol; 2382 2383 /* Bias interleave by inode number to distribute better across nodes */ 2384 *ilx = info->vfs_inode.i_ino + (index >> order); 2385 2386 mpol = mpol_shared_policy_lookup(&info->policy, index); 2387 return mpol ? mpol : get_task_policy(current); 2388 } 2389 #else 2390 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2391 pgoff_t index, unsigned int order, pgoff_t *ilx) 2392 { 2393 *ilx = 0; 2394 return NULL; 2395 } 2396 #endif /* CONFIG_NUMA */ 2397 2398 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2399 { 2400 struct inode *inode = file_inode(file); 2401 struct shmem_inode_info *info = SHMEM_I(inode); 2402 int retval = -ENOMEM; 2403 2404 /* 2405 * What serializes the accesses to info->flags? 2406 * ipc_lock_object() when called from shmctl_do_lock(), 2407 * no serialization needed when called from shm_destroy(). 2408 */ 2409 if (lock && !(info->flags & VM_LOCKED)) { 2410 if (!user_shm_lock(inode->i_size, ucounts)) 2411 goto out_nomem; 2412 info->flags |= VM_LOCKED; 2413 mapping_set_unevictable(file->f_mapping); 2414 } 2415 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2416 user_shm_unlock(inode->i_size, ucounts); 2417 info->flags &= ~VM_LOCKED; 2418 mapping_clear_unevictable(file->f_mapping); 2419 } 2420 retval = 0; 2421 2422 out_nomem: 2423 return retval; 2424 } 2425 2426 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2427 { 2428 struct inode *inode = file_inode(file); 2429 struct shmem_inode_info *info = SHMEM_I(inode); 2430 int ret; 2431 2432 ret = seal_check_write(info->seals, vma); 2433 if (ret) 2434 return ret; 2435 2436 /* arm64 - allow memory tagging on RAM-based files */ 2437 vm_flags_set(vma, VM_MTE_ALLOWED); 2438 2439 file_accessed(file); 2440 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2441 if (inode->i_nlink) 2442 vma->vm_ops = &shmem_vm_ops; 2443 else 2444 vma->vm_ops = &shmem_anon_vm_ops; 2445 return 0; 2446 } 2447 2448 static int shmem_file_open(struct inode *inode, struct file *file) 2449 { 2450 file->f_mode |= FMODE_CAN_ODIRECT; 2451 return generic_file_open(inode, file); 2452 } 2453 2454 #ifdef CONFIG_TMPFS_XATTR 2455 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2456 2457 /* 2458 * chattr's fsflags are unrelated to extended attributes, 2459 * but tmpfs has chosen to enable them under the same config option. 2460 */ 2461 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2462 { 2463 unsigned int i_flags = 0; 2464 2465 if (fsflags & FS_NOATIME_FL) 2466 i_flags |= S_NOATIME; 2467 if (fsflags & FS_APPEND_FL) 2468 i_flags |= S_APPEND; 2469 if (fsflags & FS_IMMUTABLE_FL) 2470 i_flags |= S_IMMUTABLE; 2471 /* 2472 * But FS_NODUMP_FL does not require any action in i_flags. 2473 */ 2474 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2475 } 2476 #else 2477 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2478 { 2479 } 2480 #define shmem_initxattrs NULL 2481 #endif 2482 2483 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2484 { 2485 return &SHMEM_I(inode)->dir_offsets; 2486 } 2487 2488 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2489 struct super_block *sb, 2490 struct inode *dir, umode_t mode, 2491 dev_t dev, unsigned long flags) 2492 { 2493 struct inode *inode; 2494 struct shmem_inode_info *info; 2495 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2496 ino_t ino; 2497 int err; 2498 2499 err = shmem_reserve_inode(sb, &ino); 2500 if (err) 2501 return ERR_PTR(err); 2502 2503 inode = new_inode(sb); 2504 if (!inode) { 2505 shmem_free_inode(sb, 0); 2506 return ERR_PTR(-ENOSPC); 2507 } 2508 2509 inode->i_ino = ino; 2510 inode_init_owner(idmap, inode, dir, mode); 2511 inode->i_blocks = 0; 2512 simple_inode_init_ts(inode); 2513 inode->i_generation = get_random_u32(); 2514 info = SHMEM_I(inode); 2515 memset(info, 0, (char *)inode - (char *)info); 2516 spin_lock_init(&info->lock); 2517 atomic_set(&info->stop_eviction, 0); 2518 info->seals = F_SEAL_SEAL; 2519 info->flags = flags & VM_NORESERVE; 2520 info->i_crtime = inode_get_mtime(inode); 2521 info->fsflags = (dir == NULL) ? 0 : 2522 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2523 if (info->fsflags) 2524 shmem_set_inode_flags(inode, info->fsflags); 2525 INIT_LIST_HEAD(&info->shrinklist); 2526 INIT_LIST_HEAD(&info->swaplist); 2527 simple_xattrs_init(&info->xattrs); 2528 cache_no_acl(inode); 2529 if (sbinfo->noswap) 2530 mapping_set_unevictable(inode->i_mapping); 2531 mapping_set_large_folios(inode->i_mapping); 2532 2533 switch (mode & S_IFMT) { 2534 default: 2535 inode->i_op = &shmem_special_inode_operations; 2536 init_special_inode(inode, mode, dev); 2537 break; 2538 case S_IFREG: 2539 inode->i_mapping->a_ops = &shmem_aops; 2540 inode->i_op = &shmem_inode_operations; 2541 inode->i_fop = &shmem_file_operations; 2542 mpol_shared_policy_init(&info->policy, 2543 shmem_get_sbmpol(sbinfo)); 2544 break; 2545 case S_IFDIR: 2546 inc_nlink(inode); 2547 /* Some things misbehave if size == 0 on a directory */ 2548 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2549 inode->i_op = &shmem_dir_inode_operations; 2550 inode->i_fop = &simple_offset_dir_operations; 2551 simple_offset_init(shmem_get_offset_ctx(inode)); 2552 break; 2553 case S_IFLNK: 2554 /* 2555 * Must not load anything in the rbtree, 2556 * mpol_free_shared_policy will not be called. 2557 */ 2558 mpol_shared_policy_init(&info->policy, NULL); 2559 break; 2560 } 2561 2562 lockdep_annotate_inode_mutex_key(inode); 2563 return inode; 2564 } 2565 2566 #ifdef CONFIG_TMPFS_QUOTA 2567 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2568 struct super_block *sb, struct inode *dir, 2569 umode_t mode, dev_t dev, unsigned long flags) 2570 { 2571 int err; 2572 struct inode *inode; 2573 2574 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2575 if (IS_ERR(inode)) 2576 return inode; 2577 2578 err = dquot_initialize(inode); 2579 if (err) 2580 goto errout; 2581 2582 err = dquot_alloc_inode(inode); 2583 if (err) { 2584 dquot_drop(inode); 2585 goto errout; 2586 } 2587 return inode; 2588 2589 errout: 2590 inode->i_flags |= S_NOQUOTA; 2591 iput(inode); 2592 return ERR_PTR(err); 2593 } 2594 #else 2595 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2596 struct super_block *sb, struct inode *dir, 2597 umode_t mode, dev_t dev, unsigned long flags) 2598 { 2599 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2600 } 2601 #endif /* CONFIG_TMPFS_QUOTA */ 2602 2603 #ifdef CONFIG_USERFAULTFD 2604 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2605 struct vm_area_struct *dst_vma, 2606 unsigned long dst_addr, 2607 unsigned long src_addr, 2608 uffd_flags_t flags, 2609 struct folio **foliop) 2610 { 2611 struct inode *inode = file_inode(dst_vma->vm_file); 2612 struct shmem_inode_info *info = SHMEM_I(inode); 2613 struct address_space *mapping = inode->i_mapping; 2614 gfp_t gfp = mapping_gfp_mask(mapping); 2615 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2616 void *page_kaddr; 2617 struct folio *folio; 2618 int ret; 2619 pgoff_t max_off; 2620 2621 if (shmem_inode_acct_blocks(inode, 1)) { 2622 /* 2623 * We may have got a page, returned -ENOENT triggering a retry, 2624 * and now we find ourselves with -ENOMEM. Release the page, to 2625 * avoid a BUG_ON in our caller. 2626 */ 2627 if (unlikely(*foliop)) { 2628 folio_put(*foliop); 2629 *foliop = NULL; 2630 } 2631 return -ENOMEM; 2632 } 2633 2634 if (!*foliop) { 2635 ret = -ENOMEM; 2636 folio = shmem_alloc_folio(gfp, info, pgoff); 2637 if (!folio) 2638 goto out_unacct_blocks; 2639 2640 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2641 page_kaddr = kmap_local_folio(folio, 0); 2642 /* 2643 * The read mmap_lock is held here. Despite the 2644 * mmap_lock being read recursive a deadlock is still 2645 * possible if a writer has taken a lock. For example: 2646 * 2647 * process A thread 1 takes read lock on own mmap_lock 2648 * process A thread 2 calls mmap, blocks taking write lock 2649 * process B thread 1 takes page fault, read lock on own mmap lock 2650 * process B thread 2 calls mmap, blocks taking write lock 2651 * process A thread 1 blocks taking read lock on process B 2652 * process B thread 1 blocks taking read lock on process A 2653 * 2654 * Disable page faults to prevent potential deadlock 2655 * and retry the copy outside the mmap_lock. 2656 */ 2657 pagefault_disable(); 2658 ret = copy_from_user(page_kaddr, 2659 (const void __user *)src_addr, 2660 PAGE_SIZE); 2661 pagefault_enable(); 2662 kunmap_local(page_kaddr); 2663 2664 /* fallback to copy_from_user outside mmap_lock */ 2665 if (unlikely(ret)) { 2666 *foliop = folio; 2667 ret = -ENOENT; 2668 /* don't free the page */ 2669 goto out_unacct_blocks; 2670 } 2671 2672 flush_dcache_folio(folio); 2673 } else { /* ZEROPAGE */ 2674 clear_user_highpage(&folio->page, dst_addr); 2675 } 2676 } else { 2677 folio = *foliop; 2678 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2679 *foliop = NULL; 2680 } 2681 2682 VM_BUG_ON(folio_test_locked(folio)); 2683 VM_BUG_ON(folio_test_swapbacked(folio)); 2684 __folio_set_locked(folio); 2685 __folio_set_swapbacked(folio); 2686 __folio_mark_uptodate(folio); 2687 2688 ret = -EFAULT; 2689 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2690 if (unlikely(pgoff >= max_off)) 2691 goto out_release; 2692 2693 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2694 if (ret) 2695 goto out_release; 2696 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2697 if (ret) 2698 goto out_release; 2699 2700 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2701 &folio->page, true, flags); 2702 if (ret) 2703 goto out_delete_from_cache; 2704 2705 shmem_recalc_inode(inode, 1, 0); 2706 folio_unlock(folio); 2707 return 0; 2708 out_delete_from_cache: 2709 filemap_remove_folio(folio); 2710 out_release: 2711 folio_unlock(folio); 2712 folio_put(folio); 2713 out_unacct_blocks: 2714 shmem_inode_unacct_blocks(inode, 1); 2715 return ret; 2716 } 2717 #endif /* CONFIG_USERFAULTFD */ 2718 2719 #ifdef CONFIG_TMPFS 2720 static const struct inode_operations shmem_symlink_inode_operations; 2721 static const struct inode_operations shmem_short_symlink_operations; 2722 2723 static int 2724 shmem_write_begin(struct file *file, struct address_space *mapping, 2725 loff_t pos, unsigned len, 2726 struct page **pagep, void **fsdata) 2727 { 2728 struct inode *inode = mapping->host; 2729 struct shmem_inode_info *info = SHMEM_I(inode); 2730 pgoff_t index = pos >> PAGE_SHIFT; 2731 struct folio *folio; 2732 int ret = 0; 2733 2734 /* i_rwsem is held by caller */ 2735 if (unlikely(info->seals & (F_SEAL_GROW | 2736 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2737 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2738 return -EPERM; 2739 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2740 return -EPERM; 2741 } 2742 2743 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2744 if (ret) 2745 return ret; 2746 2747 *pagep = folio_file_page(folio, index); 2748 if (PageHWPoison(*pagep)) { 2749 folio_unlock(folio); 2750 folio_put(folio); 2751 *pagep = NULL; 2752 return -EIO; 2753 } 2754 2755 return 0; 2756 } 2757 2758 static int 2759 shmem_write_end(struct file *file, struct address_space *mapping, 2760 loff_t pos, unsigned len, unsigned copied, 2761 struct page *page, void *fsdata) 2762 { 2763 struct folio *folio = page_folio(page); 2764 struct inode *inode = mapping->host; 2765 2766 if (pos + copied > inode->i_size) 2767 i_size_write(inode, pos + copied); 2768 2769 if (!folio_test_uptodate(folio)) { 2770 if (copied < folio_size(folio)) { 2771 size_t from = offset_in_folio(folio, pos); 2772 folio_zero_segments(folio, 0, from, 2773 from + copied, folio_size(folio)); 2774 } 2775 folio_mark_uptodate(folio); 2776 } 2777 folio_mark_dirty(folio); 2778 folio_unlock(folio); 2779 folio_put(folio); 2780 2781 return copied; 2782 } 2783 2784 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2785 { 2786 struct file *file = iocb->ki_filp; 2787 struct inode *inode = file_inode(file); 2788 struct address_space *mapping = inode->i_mapping; 2789 pgoff_t index; 2790 unsigned long offset; 2791 int error = 0; 2792 ssize_t retval = 0; 2793 loff_t *ppos = &iocb->ki_pos; 2794 2795 index = *ppos >> PAGE_SHIFT; 2796 offset = *ppos & ~PAGE_MASK; 2797 2798 for (;;) { 2799 struct folio *folio = NULL; 2800 struct page *page = NULL; 2801 pgoff_t end_index; 2802 unsigned long nr, ret; 2803 loff_t i_size = i_size_read(inode); 2804 2805 end_index = i_size >> PAGE_SHIFT; 2806 if (index > end_index) 2807 break; 2808 if (index == end_index) { 2809 nr = i_size & ~PAGE_MASK; 2810 if (nr <= offset) 2811 break; 2812 } 2813 2814 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2815 if (error) { 2816 if (error == -EINVAL) 2817 error = 0; 2818 break; 2819 } 2820 if (folio) { 2821 folio_unlock(folio); 2822 2823 page = folio_file_page(folio, index); 2824 if (PageHWPoison(page)) { 2825 folio_put(folio); 2826 error = -EIO; 2827 break; 2828 } 2829 } 2830 2831 /* 2832 * We must evaluate after, since reads (unlike writes) 2833 * are called without i_rwsem protection against truncate 2834 */ 2835 nr = PAGE_SIZE; 2836 i_size = i_size_read(inode); 2837 end_index = i_size >> PAGE_SHIFT; 2838 if (index == end_index) { 2839 nr = i_size & ~PAGE_MASK; 2840 if (nr <= offset) { 2841 if (folio) 2842 folio_put(folio); 2843 break; 2844 } 2845 } 2846 nr -= offset; 2847 2848 if (folio) { 2849 /* 2850 * If users can be writing to this page using arbitrary 2851 * virtual addresses, take care about potential aliasing 2852 * before reading the page on the kernel side. 2853 */ 2854 if (mapping_writably_mapped(mapping)) 2855 flush_dcache_page(page); 2856 /* 2857 * Mark the page accessed if we read the beginning. 2858 */ 2859 if (!offset) 2860 folio_mark_accessed(folio); 2861 /* 2862 * Ok, we have the page, and it's up-to-date, so 2863 * now we can copy it to user space... 2864 */ 2865 ret = copy_page_to_iter(page, offset, nr, to); 2866 folio_put(folio); 2867 2868 } else if (user_backed_iter(to)) { 2869 /* 2870 * Copy to user tends to be so well optimized, but 2871 * clear_user() not so much, that it is noticeably 2872 * faster to copy the zero page instead of clearing. 2873 */ 2874 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2875 } else { 2876 /* 2877 * But submitting the same page twice in a row to 2878 * splice() - or others? - can result in confusion: 2879 * so don't attempt that optimization on pipes etc. 2880 */ 2881 ret = iov_iter_zero(nr, to); 2882 } 2883 2884 retval += ret; 2885 offset += ret; 2886 index += offset >> PAGE_SHIFT; 2887 offset &= ~PAGE_MASK; 2888 2889 if (!iov_iter_count(to)) 2890 break; 2891 if (ret < nr) { 2892 error = -EFAULT; 2893 break; 2894 } 2895 cond_resched(); 2896 } 2897 2898 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2899 file_accessed(file); 2900 return retval ? retval : error; 2901 } 2902 2903 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2904 { 2905 struct file *file = iocb->ki_filp; 2906 struct inode *inode = file->f_mapping->host; 2907 ssize_t ret; 2908 2909 inode_lock(inode); 2910 ret = generic_write_checks(iocb, from); 2911 if (ret <= 0) 2912 goto unlock; 2913 ret = file_remove_privs(file); 2914 if (ret) 2915 goto unlock; 2916 ret = file_update_time(file); 2917 if (ret) 2918 goto unlock; 2919 ret = generic_perform_write(iocb, from); 2920 unlock: 2921 inode_unlock(inode); 2922 return ret; 2923 } 2924 2925 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2926 struct pipe_buffer *buf) 2927 { 2928 return true; 2929 } 2930 2931 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2932 struct pipe_buffer *buf) 2933 { 2934 } 2935 2936 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2937 struct pipe_buffer *buf) 2938 { 2939 return false; 2940 } 2941 2942 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2943 .release = zero_pipe_buf_release, 2944 .try_steal = zero_pipe_buf_try_steal, 2945 .get = zero_pipe_buf_get, 2946 }; 2947 2948 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2949 loff_t fpos, size_t size) 2950 { 2951 size_t offset = fpos & ~PAGE_MASK; 2952 2953 size = min_t(size_t, size, PAGE_SIZE - offset); 2954 2955 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2956 struct pipe_buffer *buf = pipe_head_buf(pipe); 2957 2958 *buf = (struct pipe_buffer) { 2959 .ops = &zero_pipe_buf_ops, 2960 .page = ZERO_PAGE(0), 2961 .offset = offset, 2962 .len = size, 2963 }; 2964 pipe->head++; 2965 } 2966 2967 return size; 2968 } 2969 2970 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2971 struct pipe_inode_info *pipe, 2972 size_t len, unsigned int flags) 2973 { 2974 struct inode *inode = file_inode(in); 2975 struct address_space *mapping = inode->i_mapping; 2976 struct folio *folio = NULL; 2977 size_t total_spliced = 0, used, npages, n, part; 2978 loff_t isize; 2979 int error = 0; 2980 2981 /* Work out how much data we can actually add into the pipe */ 2982 used = pipe_occupancy(pipe->head, pipe->tail); 2983 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2984 len = min_t(size_t, len, npages * PAGE_SIZE); 2985 2986 do { 2987 if (*ppos >= i_size_read(inode)) 2988 break; 2989 2990 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2991 SGP_READ); 2992 if (error) { 2993 if (error == -EINVAL) 2994 error = 0; 2995 break; 2996 } 2997 if (folio) { 2998 folio_unlock(folio); 2999 3000 if (folio_test_hwpoison(folio) || 3001 (folio_test_large(folio) && 3002 folio_test_has_hwpoisoned(folio))) { 3003 error = -EIO; 3004 break; 3005 } 3006 } 3007 3008 /* 3009 * i_size must be checked after we know the pages are Uptodate. 3010 * 3011 * Checking i_size after the check allows us to calculate 3012 * the correct value for "nr", which means the zero-filled 3013 * part of the page is not copied back to userspace (unless 3014 * another truncate extends the file - this is desired though). 3015 */ 3016 isize = i_size_read(inode); 3017 if (unlikely(*ppos >= isize)) 3018 break; 3019 part = min_t(loff_t, isize - *ppos, len); 3020 3021 if (folio) { 3022 /* 3023 * If users can be writing to this page using arbitrary 3024 * virtual addresses, take care about potential aliasing 3025 * before reading the page on the kernel side. 3026 */ 3027 if (mapping_writably_mapped(mapping)) 3028 flush_dcache_folio(folio); 3029 folio_mark_accessed(folio); 3030 /* 3031 * Ok, we have the page, and it's up-to-date, so we can 3032 * now splice it into the pipe. 3033 */ 3034 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3035 folio_put(folio); 3036 folio = NULL; 3037 } else { 3038 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3039 } 3040 3041 if (!n) 3042 break; 3043 len -= n; 3044 total_spliced += n; 3045 *ppos += n; 3046 in->f_ra.prev_pos = *ppos; 3047 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3048 break; 3049 3050 cond_resched(); 3051 } while (len); 3052 3053 if (folio) 3054 folio_put(folio); 3055 3056 file_accessed(in); 3057 return total_spliced ? total_spliced : error; 3058 } 3059 3060 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3061 { 3062 struct address_space *mapping = file->f_mapping; 3063 struct inode *inode = mapping->host; 3064 3065 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3066 return generic_file_llseek_size(file, offset, whence, 3067 MAX_LFS_FILESIZE, i_size_read(inode)); 3068 if (offset < 0) 3069 return -ENXIO; 3070 3071 inode_lock(inode); 3072 /* We're holding i_rwsem so we can access i_size directly */ 3073 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3074 if (offset >= 0) 3075 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3076 inode_unlock(inode); 3077 return offset; 3078 } 3079 3080 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3081 loff_t len) 3082 { 3083 struct inode *inode = file_inode(file); 3084 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3085 struct shmem_inode_info *info = SHMEM_I(inode); 3086 struct shmem_falloc shmem_falloc; 3087 pgoff_t start, index, end, undo_fallocend; 3088 int error; 3089 3090 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3091 return -EOPNOTSUPP; 3092 3093 inode_lock(inode); 3094 3095 if (mode & FALLOC_FL_PUNCH_HOLE) { 3096 struct address_space *mapping = file->f_mapping; 3097 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3098 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3099 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3100 3101 /* protected by i_rwsem */ 3102 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3103 error = -EPERM; 3104 goto out; 3105 } 3106 3107 shmem_falloc.waitq = &shmem_falloc_waitq; 3108 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3109 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3110 spin_lock(&inode->i_lock); 3111 inode->i_private = &shmem_falloc; 3112 spin_unlock(&inode->i_lock); 3113 3114 if ((u64)unmap_end > (u64)unmap_start) 3115 unmap_mapping_range(mapping, unmap_start, 3116 1 + unmap_end - unmap_start, 0); 3117 shmem_truncate_range(inode, offset, offset + len - 1); 3118 /* No need to unmap again: hole-punching leaves COWed pages */ 3119 3120 spin_lock(&inode->i_lock); 3121 inode->i_private = NULL; 3122 wake_up_all(&shmem_falloc_waitq); 3123 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3124 spin_unlock(&inode->i_lock); 3125 error = 0; 3126 goto out; 3127 } 3128 3129 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3130 error = inode_newsize_ok(inode, offset + len); 3131 if (error) 3132 goto out; 3133 3134 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3135 error = -EPERM; 3136 goto out; 3137 } 3138 3139 start = offset >> PAGE_SHIFT; 3140 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3141 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3142 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3143 error = -ENOSPC; 3144 goto out; 3145 } 3146 3147 shmem_falloc.waitq = NULL; 3148 shmem_falloc.start = start; 3149 shmem_falloc.next = start; 3150 shmem_falloc.nr_falloced = 0; 3151 shmem_falloc.nr_unswapped = 0; 3152 spin_lock(&inode->i_lock); 3153 inode->i_private = &shmem_falloc; 3154 spin_unlock(&inode->i_lock); 3155 3156 /* 3157 * info->fallocend is only relevant when huge pages might be 3158 * involved: to prevent split_huge_page() freeing fallocated 3159 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3160 */ 3161 undo_fallocend = info->fallocend; 3162 if (info->fallocend < end) 3163 info->fallocend = end; 3164 3165 for (index = start; index < end; ) { 3166 struct folio *folio; 3167 3168 /* 3169 * Good, the fallocate(2) manpage permits EINTR: we may have 3170 * been interrupted because we are using up too much memory. 3171 */ 3172 if (signal_pending(current)) 3173 error = -EINTR; 3174 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3175 error = -ENOMEM; 3176 else 3177 error = shmem_get_folio(inode, index, &folio, 3178 SGP_FALLOC); 3179 if (error) { 3180 info->fallocend = undo_fallocend; 3181 /* Remove the !uptodate folios we added */ 3182 if (index > start) { 3183 shmem_undo_range(inode, 3184 (loff_t)start << PAGE_SHIFT, 3185 ((loff_t)index << PAGE_SHIFT) - 1, true); 3186 } 3187 goto undone; 3188 } 3189 3190 /* 3191 * Here is a more important optimization than it appears: 3192 * a second SGP_FALLOC on the same large folio will clear it, 3193 * making it uptodate and un-undoable if we fail later. 3194 */ 3195 index = folio_next_index(folio); 3196 /* Beware 32-bit wraparound */ 3197 if (!index) 3198 index--; 3199 3200 /* 3201 * Inform shmem_writepage() how far we have reached. 3202 * No need for lock or barrier: we have the page lock. 3203 */ 3204 if (!folio_test_uptodate(folio)) 3205 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3206 shmem_falloc.next = index; 3207 3208 /* 3209 * If !uptodate, leave it that way so that freeable folios 3210 * can be recognized if we need to rollback on error later. 3211 * But mark it dirty so that memory pressure will swap rather 3212 * than free the folios we are allocating (and SGP_CACHE folios 3213 * might still be clean: we now need to mark those dirty too). 3214 */ 3215 folio_mark_dirty(folio); 3216 folio_unlock(folio); 3217 folio_put(folio); 3218 cond_resched(); 3219 } 3220 3221 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3222 i_size_write(inode, offset + len); 3223 undone: 3224 spin_lock(&inode->i_lock); 3225 inode->i_private = NULL; 3226 spin_unlock(&inode->i_lock); 3227 out: 3228 if (!error) 3229 file_modified(file); 3230 inode_unlock(inode); 3231 return error; 3232 } 3233 3234 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3235 { 3236 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3237 3238 buf->f_type = TMPFS_MAGIC; 3239 buf->f_bsize = PAGE_SIZE; 3240 buf->f_namelen = NAME_MAX; 3241 if (sbinfo->max_blocks) { 3242 buf->f_blocks = sbinfo->max_blocks; 3243 buf->f_bavail = 3244 buf->f_bfree = sbinfo->max_blocks - 3245 percpu_counter_sum(&sbinfo->used_blocks); 3246 } 3247 if (sbinfo->max_inodes) { 3248 buf->f_files = sbinfo->max_inodes; 3249 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3250 } 3251 /* else leave those fields 0 like simple_statfs */ 3252 3253 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3254 3255 return 0; 3256 } 3257 3258 /* 3259 * File creation. Allocate an inode, and we're done.. 3260 */ 3261 static int 3262 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3263 struct dentry *dentry, umode_t mode, dev_t dev) 3264 { 3265 struct inode *inode; 3266 int error; 3267 3268 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3269 if (IS_ERR(inode)) 3270 return PTR_ERR(inode); 3271 3272 error = simple_acl_create(dir, inode); 3273 if (error) 3274 goto out_iput; 3275 error = security_inode_init_security(inode, dir, &dentry->d_name, 3276 shmem_initxattrs, NULL); 3277 if (error && error != -EOPNOTSUPP) 3278 goto out_iput; 3279 3280 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3281 if (error) 3282 goto out_iput; 3283 3284 dir->i_size += BOGO_DIRENT_SIZE; 3285 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3286 inode_inc_iversion(dir); 3287 d_instantiate(dentry, inode); 3288 dget(dentry); /* Extra count - pin the dentry in core */ 3289 return error; 3290 3291 out_iput: 3292 iput(inode); 3293 return error; 3294 } 3295 3296 static int 3297 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3298 struct file *file, umode_t mode) 3299 { 3300 struct inode *inode; 3301 int error; 3302 3303 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3304 if (IS_ERR(inode)) { 3305 error = PTR_ERR(inode); 3306 goto err_out; 3307 } 3308 error = security_inode_init_security(inode, dir, NULL, 3309 shmem_initxattrs, NULL); 3310 if (error && error != -EOPNOTSUPP) 3311 goto out_iput; 3312 error = simple_acl_create(dir, inode); 3313 if (error) 3314 goto out_iput; 3315 d_tmpfile(file, inode); 3316 3317 err_out: 3318 return finish_open_simple(file, error); 3319 out_iput: 3320 iput(inode); 3321 return error; 3322 } 3323 3324 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3325 struct dentry *dentry, umode_t mode) 3326 { 3327 int error; 3328 3329 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3330 if (error) 3331 return error; 3332 inc_nlink(dir); 3333 return 0; 3334 } 3335 3336 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3337 struct dentry *dentry, umode_t mode, bool excl) 3338 { 3339 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3340 } 3341 3342 /* 3343 * Link a file.. 3344 */ 3345 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3346 struct dentry *dentry) 3347 { 3348 struct inode *inode = d_inode(old_dentry); 3349 int ret = 0; 3350 3351 /* 3352 * No ordinary (disk based) filesystem counts links as inodes; 3353 * but each new link needs a new dentry, pinning lowmem, and 3354 * tmpfs dentries cannot be pruned until they are unlinked. 3355 * But if an O_TMPFILE file is linked into the tmpfs, the 3356 * first link must skip that, to get the accounting right. 3357 */ 3358 if (inode->i_nlink) { 3359 ret = shmem_reserve_inode(inode->i_sb, NULL); 3360 if (ret) 3361 goto out; 3362 } 3363 3364 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3365 if (ret) { 3366 if (inode->i_nlink) 3367 shmem_free_inode(inode->i_sb, 0); 3368 goto out; 3369 } 3370 3371 dir->i_size += BOGO_DIRENT_SIZE; 3372 inode_set_mtime_to_ts(dir, 3373 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3374 inode_inc_iversion(dir); 3375 inc_nlink(inode); 3376 ihold(inode); /* New dentry reference */ 3377 dget(dentry); /* Extra pinning count for the created dentry */ 3378 d_instantiate(dentry, inode); 3379 out: 3380 return ret; 3381 } 3382 3383 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3384 { 3385 struct inode *inode = d_inode(dentry); 3386 3387 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3388 shmem_free_inode(inode->i_sb, 0); 3389 3390 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3391 3392 dir->i_size -= BOGO_DIRENT_SIZE; 3393 inode_set_mtime_to_ts(dir, 3394 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3395 inode_inc_iversion(dir); 3396 drop_nlink(inode); 3397 dput(dentry); /* Undo the count from "create" - does all the work */ 3398 return 0; 3399 } 3400 3401 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3402 { 3403 if (!simple_offset_empty(dentry)) 3404 return -ENOTEMPTY; 3405 3406 drop_nlink(d_inode(dentry)); 3407 drop_nlink(dir); 3408 return shmem_unlink(dir, dentry); 3409 } 3410 3411 static int shmem_whiteout(struct mnt_idmap *idmap, 3412 struct inode *old_dir, struct dentry *old_dentry) 3413 { 3414 struct dentry *whiteout; 3415 int error; 3416 3417 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3418 if (!whiteout) 3419 return -ENOMEM; 3420 3421 error = shmem_mknod(idmap, old_dir, whiteout, 3422 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3423 dput(whiteout); 3424 if (error) 3425 return error; 3426 3427 /* 3428 * Cheat and hash the whiteout while the old dentry is still in 3429 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3430 * 3431 * d_lookup() will consistently find one of them at this point, 3432 * not sure which one, but that isn't even important. 3433 */ 3434 d_rehash(whiteout); 3435 return 0; 3436 } 3437 3438 /* 3439 * The VFS layer already does all the dentry stuff for rename, 3440 * we just have to decrement the usage count for the target if 3441 * it exists so that the VFS layer correctly free's it when it 3442 * gets overwritten. 3443 */ 3444 static int shmem_rename2(struct mnt_idmap *idmap, 3445 struct inode *old_dir, struct dentry *old_dentry, 3446 struct inode *new_dir, struct dentry *new_dentry, 3447 unsigned int flags) 3448 { 3449 struct inode *inode = d_inode(old_dentry); 3450 int they_are_dirs = S_ISDIR(inode->i_mode); 3451 int error; 3452 3453 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3454 return -EINVAL; 3455 3456 if (flags & RENAME_EXCHANGE) 3457 return simple_offset_rename_exchange(old_dir, old_dentry, 3458 new_dir, new_dentry); 3459 3460 if (!simple_offset_empty(new_dentry)) 3461 return -ENOTEMPTY; 3462 3463 if (flags & RENAME_WHITEOUT) { 3464 error = shmem_whiteout(idmap, old_dir, old_dentry); 3465 if (error) 3466 return error; 3467 } 3468 3469 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3470 if (error) 3471 return error; 3472 3473 if (d_really_is_positive(new_dentry)) { 3474 (void) shmem_unlink(new_dir, new_dentry); 3475 if (they_are_dirs) { 3476 drop_nlink(d_inode(new_dentry)); 3477 drop_nlink(old_dir); 3478 } 3479 } else if (they_are_dirs) { 3480 drop_nlink(old_dir); 3481 inc_nlink(new_dir); 3482 } 3483 3484 old_dir->i_size -= BOGO_DIRENT_SIZE; 3485 new_dir->i_size += BOGO_DIRENT_SIZE; 3486 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3487 inode_inc_iversion(old_dir); 3488 inode_inc_iversion(new_dir); 3489 return 0; 3490 } 3491 3492 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3493 struct dentry *dentry, const char *symname) 3494 { 3495 int error; 3496 int len; 3497 struct inode *inode; 3498 struct folio *folio; 3499 3500 len = strlen(symname) + 1; 3501 if (len > PAGE_SIZE) 3502 return -ENAMETOOLONG; 3503 3504 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3505 VM_NORESERVE); 3506 if (IS_ERR(inode)) 3507 return PTR_ERR(inode); 3508 3509 error = security_inode_init_security(inode, dir, &dentry->d_name, 3510 shmem_initxattrs, NULL); 3511 if (error && error != -EOPNOTSUPP) 3512 goto out_iput; 3513 3514 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3515 if (error) 3516 goto out_iput; 3517 3518 inode->i_size = len-1; 3519 if (len <= SHORT_SYMLINK_LEN) { 3520 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3521 if (!inode->i_link) { 3522 error = -ENOMEM; 3523 goto out_remove_offset; 3524 } 3525 inode->i_op = &shmem_short_symlink_operations; 3526 } else { 3527 inode_nohighmem(inode); 3528 inode->i_mapping->a_ops = &shmem_aops; 3529 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3530 if (error) 3531 goto out_remove_offset; 3532 inode->i_op = &shmem_symlink_inode_operations; 3533 memcpy(folio_address(folio), symname, len); 3534 folio_mark_uptodate(folio); 3535 folio_mark_dirty(folio); 3536 folio_unlock(folio); 3537 folio_put(folio); 3538 } 3539 dir->i_size += BOGO_DIRENT_SIZE; 3540 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3541 inode_inc_iversion(dir); 3542 d_instantiate(dentry, inode); 3543 dget(dentry); 3544 return 0; 3545 3546 out_remove_offset: 3547 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3548 out_iput: 3549 iput(inode); 3550 return error; 3551 } 3552 3553 static void shmem_put_link(void *arg) 3554 { 3555 folio_mark_accessed(arg); 3556 folio_put(arg); 3557 } 3558 3559 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3560 struct delayed_call *done) 3561 { 3562 struct folio *folio = NULL; 3563 int error; 3564 3565 if (!dentry) { 3566 folio = filemap_get_folio(inode->i_mapping, 0); 3567 if (IS_ERR(folio)) 3568 return ERR_PTR(-ECHILD); 3569 if (PageHWPoison(folio_page(folio, 0)) || 3570 !folio_test_uptodate(folio)) { 3571 folio_put(folio); 3572 return ERR_PTR(-ECHILD); 3573 } 3574 } else { 3575 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3576 if (error) 3577 return ERR_PTR(error); 3578 if (!folio) 3579 return ERR_PTR(-ECHILD); 3580 if (PageHWPoison(folio_page(folio, 0))) { 3581 folio_unlock(folio); 3582 folio_put(folio); 3583 return ERR_PTR(-ECHILD); 3584 } 3585 folio_unlock(folio); 3586 } 3587 set_delayed_call(done, shmem_put_link, folio); 3588 return folio_address(folio); 3589 } 3590 3591 #ifdef CONFIG_TMPFS_XATTR 3592 3593 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3594 { 3595 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3596 3597 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3598 3599 return 0; 3600 } 3601 3602 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3603 struct dentry *dentry, struct fileattr *fa) 3604 { 3605 struct inode *inode = d_inode(dentry); 3606 struct shmem_inode_info *info = SHMEM_I(inode); 3607 3608 if (fileattr_has_fsx(fa)) 3609 return -EOPNOTSUPP; 3610 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3611 return -EOPNOTSUPP; 3612 3613 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3614 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3615 3616 shmem_set_inode_flags(inode, info->fsflags); 3617 inode_set_ctime_current(inode); 3618 inode_inc_iversion(inode); 3619 return 0; 3620 } 3621 3622 /* 3623 * Superblocks without xattr inode operations may get some security.* xattr 3624 * support from the LSM "for free". As soon as we have any other xattrs 3625 * like ACLs, we also need to implement the security.* handlers at 3626 * filesystem level, though. 3627 */ 3628 3629 /* 3630 * Callback for security_inode_init_security() for acquiring xattrs. 3631 */ 3632 static int shmem_initxattrs(struct inode *inode, 3633 const struct xattr *xattr_array, void *fs_info) 3634 { 3635 struct shmem_inode_info *info = SHMEM_I(inode); 3636 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3637 const struct xattr *xattr; 3638 struct simple_xattr *new_xattr; 3639 size_t ispace = 0; 3640 size_t len; 3641 3642 if (sbinfo->max_inodes) { 3643 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3644 ispace += simple_xattr_space(xattr->name, 3645 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3646 } 3647 if (ispace) { 3648 raw_spin_lock(&sbinfo->stat_lock); 3649 if (sbinfo->free_ispace < ispace) 3650 ispace = 0; 3651 else 3652 sbinfo->free_ispace -= ispace; 3653 raw_spin_unlock(&sbinfo->stat_lock); 3654 if (!ispace) 3655 return -ENOSPC; 3656 } 3657 } 3658 3659 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3660 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3661 if (!new_xattr) 3662 break; 3663 3664 len = strlen(xattr->name) + 1; 3665 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3666 GFP_KERNEL_ACCOUNT); 3667 if (!new_xattr->name) { 3668 kvfree(new_xattr); 3669 break; 3670 } 3671 3672 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3673 XATTR_SECURITY_PREFIX_LEN); 3674 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3675 xattr->name, len); 3676 3677 simple_xattr_add(&info->xattrs, new_xattr); 3678 } 3679 3680 if (xattr->name != NULL) { 3681 if (ispace) { 3682 raw_spin_lock(&sbinfo->stat_lock); 3683 sbinfo->free_ispace += ispace; 3684 raw_spin_unlock(&sbinfo->stat_lock); 3685 } 3686 simple_xattrs_free(&info->xattrs, NULL); 3687 return -ENOMEM; 3688 } 3689 3690 return 0; 3691 } 3692 3693 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3694 struct dentry *unused, struct inode *inode, 3695 const char *name, void *buffer, size_t size) 3696 { 3697 struct shmem_inode_info *info = SHMEM_I(inode); 3698 3699 name = xattr_full_name(handler, name); 3700 return simple_xattr_get(&info->xattrs, name, buffer, size); 3701 } 3702 3703 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3704 struct mnt_idmap *idmap, 3705 struct dentry *unused, struct inode *inode, 3706 const char *name, const void *value, 3707 size_t size, int flags) 3708 { 3709 struct shmem_inode_info *info = SHMEM_I(inode); 3710 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3711 struct simple_xattr *old_xattr; 3712 size_t ispace = 0; 3713 3714 name = xattr_full_name(handler, name); 3715 if (value && sbinfo->max_inodes) { 3716 ispace = simple_xattr_space(name, size); 3717 raw_spin_lock(&sbinfo->stat_lock); 3718 if (sbinfo->free_ispace < ispace) 3719 ispace = 0; 3720 else 3721 sbinfo->free_ispace -= ispace; 3722 raw_spin_unlock(&sbinfo->stat_lock); 3723 if (!ispace) 3724 return -ENOSPC; 3725 } 3726 3727 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3728 if (!IS_ERR(old_xattr)) { 3729 ispace = 0; 3730 if (old_xattr && sbinfo->max_inodes) 3731 ispace = simple_xattr_space(old_xattr->name, 3732 old_xattr->size); 3733 simple_xattr_free(old_xattr); 3734 old_xattr = NULL; 3735 inode_set_ctime_current(inode); 3736 inode_inc_iversion(inode); 3737 } 3738 if (ispace) { 3739 raw_spin_lock(&sbinfo->stat_lock); 3740 sbinfo->free_ispace += ispace; 3741 raw_spin_unlock(&sbinfo->stat_lock); 3742 } 3743 return PTR_ERR(old_xattr); 3744 } 3745 3746 static const struct xattr_handler shmem_security_xattr_handler = { 3747 .prefix = XATTR_SECURITY_PREFIX, 3748 .get = shmem_xattr_handler_get, 3749 .set = shmem_xattr_handler_set, 3750 }; 3751 3752 static const struct xattr_handler shmem_trusted_xattr_handler = { 3753 .prefix = XATTR_TRUSTED_PREFIX, 3754 .get = shmem_xattr_handler_get, 3755 .set = shmem_xattr_handler_set, 3756 }; 3757 3758 static const struct xattr_handler shmem_user_xattr_handler = { 3759 .prefix = XATTR_USER_PREFIX, 3760 .get = shmem_xattr_handler_get, 3761 .set = shmem_xattr_handler_set, 3762 }; 3763 3764 static const struct xattr_handler * const shmem_xattr_handlers[] = { 3765 &shmem_security_xattr_handler, 3766 &shmem_trusted_xattr_handler, 3767 &shmem_user_xattr_handler, 3768 NULL 3769 }; 3770 3771 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3772 { 3773 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3774 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3775 } 3776 #endif /* CONFIG_TMPFS_XATTR */ 3777 3778 static const struct inode_operations shmem_short_symlink_operations = { 3779 .getattr = shmem_getattr, 3780 .setattr = shmem_setattr, 3781 .get_link = simple_get_link, 3782 #ifdef CONFIG_TMPFS_XATTR 3783 .listxattr = shmem_listxattr, 3784 #endif 3785 }; 3786 3787 static const struct inode_operations shmem_symlink_inode_operations = { 3788 .getattr = shmem_getattr, 3789 .setattr = shmem_setattr, 3790 .get_link = shmem_get_link, 3791 #ifdef CONFIG_TMPFS_XATTR 3792 .listxattr = shmem_listxattr, 3793 #endif 3794 }; 3795 3796 static struct dentry *shmem_get_parent(struct dentry *child) 3797 { 3798 return ERR_PTR(-ESTALE); 3799 } 3800 3801 static int shmem_match(struct inode *ino, void *vfh) 3802 { 3803 __u32 *fh = vfh; 3804 __u64 inum = fh[2]; 3805 inum = (inum << 32) | fh[1]; 3806 return ino->i_ino == inum && fh[0] == ino->i_generation; 3807 } 3808 3809 /* Find any alias of inode, but prefer a hashed alias */ 3810 static struct dentry *shmem_find_alias(struct inode *inode) 3811 { 3812 struct dentry *alias = d_find_alias(inode); 3813 3814 return alias ?: d_find_any_alias(inode); 3815 } 3816 3817 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3818 struct fid *fid, int fh_len, int fh_type) 3819 { 3820 struct inode *inode; 3821 struct dentry *dentry = NULL; 3822 u64 inum; 3823 3824 if (fh_len < 3) 3825 return NULL; 3826 3827 inum = fid->raw[2]; 3828 inum = (inum << 32) | fid->raw[1]; 3829 3830 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3831 shmem_match, fid->raw); 3832 if (inode) { 3833 dentry = shmem_find_alias(inode); 3834 iput(inode); 3835 } 3836 3837 return dentry; 3838 } 3839 3840 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3841 struct inode *parent) 3842 { 3843 if (*len < 3) { 3844 *len = 3; 3845 return FILEID_INVALID; 3846 } 3847 3848 if (inode_unhashed(inode)) { 3849 /* Unfortunately insert_inode_hash is not idempotent, 3850 * so as we hash inodes here rather than at creation 3851 * time, we need a lock to ensure we only try 3852 * to do it once 3853 */ 3854 static DEFINE_SPINLOCK(lock); 3855 spin_lock(&lock); 3856 if (inode_unhashed(inode)) 3857 __insert_inode_hash(inode, 3858 inode->i_ino + inode->i_generation); 3859 spin_unlock(&lock); 3860 } 3861 3862 fh[0] = inode->i_generation; 3863 fh[1] = inode->i_ino; 3864 fh[2] = ((__u64)inode->i_ino) >> 32; 3865 3866 *len = 3; 3867 return 1; 3868 } 3869 3870 static const struct export_operations shmem_export_ops = { 3871 .get_parent = shmem_get_parent, 3872 .encode_fh = shmem_encode_fh, 3873 .fh_to_dentry = shmem_fh_to_dentry, 3874 }; 3875 3876 enum shmem_param { 3877 Opt_gid, 3878 Opt_huge, 3879 Opt_mode, 3880 Opt_mpol, 3881 Opt_nr_blocks, 3882 Opt_nr_inodes, 3883 Opt_size, 3884 Opt_uid, 3885 Opt_inode32, 3886 Opt_inode64, 3887 Opt_noswap, 3888 Opt_quota, 3889 Opt_usrquota, 3890 Opt_grpquota, 3891 Opt_usrquota_block_hardlimit, 3892 Opt_usrquota_inode_hardlimit, 3893 Opt_grpquota_block_hardlimit, 3894 Opt_grpquota_inode_hardlimit, 3895 }; 3896 3897 static const struct constant_table shmem_param_enums_huge[] = { 3898 {"never", SHMEM_HUGE_NEVER }, 3899 {"always", SHMEM_HUGE_ALWAYS }, 3900 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3901 {"advise", SHMEM_HUGE_ADVISE }, 3902 {} 3903 }; 3904 3905 const struct fs_parameter_spec shmem_fs_parameters[] = { 3906 fsparam_u32 ("gid", Opt_gid), 3907 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3908 fsparam_u32oct("mode", Opt_mode), 3909 fsparam_string("mpol", Opt_mpol), 3910 fsparam_string("nr_blocks", Opt_nr_blocks), 3911 fsparam_string("nr_inodes", Opt_nr_inodes), 3912 fsparam_string("size", Opt_size), 3913 fsparam_u32 ("uid", Opt_uid), 3914 fsparam_flag ("inode32", Opt_inode32), 3915 fsparam_flag ("inode64", Opt_inode64), 3916 fsparam_flag ("noswap", Opt_noswap), 3917 #ifdef CONFIG_TMPFS_QUOTA 3918 fsparam_flag ("quota", Opt_quota), 3919 fsparam_flag ("usrquota", Opt_usrquota), 3920 fsparam_flag ("grpquota", Opt_grpquota), 3921 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3922 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3923 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3924 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3925 #endif 3926 {} 3927 }; 3928 3929 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3930 { 3931 struct shmem_options *ctx = fc->fs_private; 3932 struct fs_parse_result result; 3933 unsigned long long size; 3934 char *rest; 3935 int opt; 3936 kuid_t kuid; 3937 kgid_t kgid; 3938 3939 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3940 if (opt < 0) 3941 return opt; 3942 3943 switch (opt) { 3944 case Opt_size: 3945 size = memparse(param->string, &rest); 3946 if (*rest == '%') { 3947 size <<= PAGE_SHIFT; 3948 size *= totalram_pages(); 3949 do_div(size, 100); 3950 rest++; 3951 } 3952 if (*rest) 3953 goto bad_value; 3954 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3955 ctx->seen |= SHMEM_SEEN_BLOCKS; 3956 break; 3957 case Opt_nr_blocks: 3958 ctx->blocks = memparse(param->string, &rest); 3959 if (*rest || ctx->blocks > LONG_MAX) 3960 goto bad_value; 3961 ctx->seen |= SHMEM_SEEN_BLOCKS; 3962 break; 3963 case Opt_nr_inodes: 3964 ctx->inodes = memparse(param->string, &rest); 3965 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3966 goto bad_value; 3967 ctx->seen |= SHMEM_SEEN_INODES; 3968 break; 3969 case Opt_mode: 3970 ctx->mode = result.uint_32 & 07777; 3971 break; 3972 case Opt_uid: 3973 kuid = make_kuid(current_user_ns(), result.uint_32); 3974 if (!uid_valid(kuid)) 3975 goto bad_value; 3976 3977 /* 3978 * The requested uid must be representable in the 3979 * filesystem's idmapping. 3980 */ 3981 if (!kuid_has_mapping(fc->user_ns, kuid)) 3982 goto bad_value; 3983 3984 ctx->uid = kuid; 3985 break; 3986 case Opt_gid: 3987 kgid = make_kgid(current_user_ns(), result.uint_32); 3988 if (!gid_valid(kgid)) 3989 goto bad_value; 3990 3991 /* 3992 * The requested gid must be representable in the 3993 * filesystem's idmapping. 3994 */ 3995 if (!kgid_has_mapping(fc->user_ns, kgid)) 3996 goto bad_value; 3997 3998 ctx->gid = kgid; 3999 break; 4000 case Opt_huge: 4001 ctx->huge = result.uint_32; 4002 if (ctx->huge != SHMEM_HUGE_NEVER && 4003 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4004 has_transparent_hugepage())) 4005 goto unsupported_parameter; 4006 ctx->seen |= SHMEM_SEEN_HUGE; 4007 break; 4008 case Opt_mpol: 4009 if (IS_ENABLED(CONFIG_NUMA)) { 4010 mpol_put(ctx->mpol); 4011 ctx->mpol = NULL; 4012 if (mpol_parse_str(param->string, &ctx->mpol)) 4013 goto bad_value; 4014 break; 4015 } 4016 goto unsupported_parameter; 4017 case Opt_inode32: 4018 ctx->full_inums = false; 4019 ctx->seen |= SHMEM_SEEN_INUMS; 4020 break; 4021 case Opt_inode64: 4022 if (sizeof(ino_t) < 8) { 4023 return invalfc(fc, 4024 "Cannot use inode64 with <64bit inums in kernel\n"); 4025 } 4026 ctx->full_inums = true; 4027 ctx->seen |= SHMEM_SEEN_INUMS; 4028 break; 4029 case Opt_noswap: 4030 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4031 return invalfc(fc, 4032 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4033 } 4034 ctx->noswap = true; 4035 ctx->seen |= SHMEM_SEEN_NOSWAP; 4036 break; 4037 case Opt_quota: 4038 if (fc->user_ns != &init_user_ns) 4039 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4040 ctx->seen |= SHMEM_SEEN_QUOTA; 4041 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4042 break; 4043 case Opt_usrquota: 4044 if (fc->user_ns != &init_user_ns) 4045 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4046 ctx->seen |= SHMEM_SEEN_QUOTA; 4047 ctx->quota_types |= QTYPE_MASK_USR; 4048 break; 4049 case Opt_grpquota: 4050 if (fc->user_ns != &init_user_ns) 4051 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4052 ctx->seen |= SHMEM_SEEN_QUOTA; 4053 ctx->quota_types |= QTYPE_MASK_GRP; 4054 break; 4055 case Opt_usrquota_block_hardlimit: 4056 size = memparse(param->string, &rest); 4057 if (*rest || !size) 4058 goto bad_value; 4059 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4060 return invalfc(fc, 4061 "User quota block hardlimit too large."); 4062 ctx->qlimits.usrquota_bhardlimit = size; 4063 break; 4064 case Opt_grpquota_block_hardlimit: 4065 size = memparse(param->string, &rest); 4066 if (*rest || !size) 4067 goto bad_value; 4068 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4069 return invalfc(fc, 4070 "Group quota block hardlimit too large."); 4071 ctx->qlimits.grpquota_bhardlimit = size; 4072 break; 4073 case Opt_usrquota_inode_hardlimit: 4074 size = memparse(param->string, &rest); 4075 if (*rest || !size) 4076 goto bad_value; 4077 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4078 return invalfc(fc, 4079 "User quota inode hardlimit too large."); 4080 ctx->qlimits.usrquota_ihardlimit = size; 4081 break; 4082 case Opt_grpquota_inode_hardlimit: 4083 size = memparse(param->string, &rest); 4084 if (*rest || !size) 4085 goto bad_value; 4086 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4087 return invalfc(fc, 4088 "Group quota inode hardlimit too large."); 4089 ctx->qlimits.grpquota_ihardlimit = size; 4090 break; 4091 } 4092 return 0; 4093 4094 unsupported_parameter: 4095 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4096 bad_value: 4097 return invalfc(fc, "Bad value for '%s'", param->key); 4098 } 4099 4100 static int shmem_parse_options(struct fs_context *fc, void *data) 4101 { 4102 char *options = data; 4103 4104 if (options) { 4105 int err = security_sb_eat_lsm_opts(options, &fc->security); 4106 if (err) 4107 return err; 4108 } 4109 4110 while (options != NULL) { 4111 char *this_char = options; 4112 for (;;) { 4113 /* 4114 * NUL-terminate this option: unfortunately, 4115 * mount options form a comma-separated list, 4116 * but mpol's nodelist may also contain commas. 4117 */ 4118 options = strchr(options, ','); 4119 if (options == NULL) 4120 break; 4121 options++; 4122 if (!isdigit(*options)) { 4123 options[-1] = '\0'; 4124 break; 4125 } 4126 } 4127 if (*this_char) { 4128 char *value = strchr(this_char, '='); 4129 size_t len = 0; 4130 int err; 4131 4132 if (value) { 4133 *value++ = '\0'; 4134 len = strlen(value); 4135 } 4136 err = vfs_parse_fs_string(fc, this_char, value, len); 4137 if (err < 0) 4138 return err; 4139 } 4140 } 4141 return 0; 4142 } 4143 4144 /* 4145 * Reconfigure a shmem filesystem. 4146 */ 4147 static int shmem_reconfigure(struct fs_context *fc) 4148 { 4149 struct shmem_options *ctx = fc->fs_private; 4150 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4151 unsigned long used_isp; 4152 struct mempolicy *mpol = NULL; 4153 const char *err; 4154 4155 raw_spin_lock(&sbinfo->stat_lock); 4156 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4157 4158 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4159 if (!sbinfo->max_blocks) { 4160 err = "Cannot retroactively limit size"; 4161 goto out; 4162 } 4163 if (percpu_counter_compare(&sbinfo->used_blocks, 4164 ctx->blocks) > 0) { 4165 err = "Too small a size for current use"; 4166 goto out; 4167 } 4168 } 4169 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4170 if (!sbinfo->max_inodes) { 4171 err = "Cannot retroactively limit inodes"; 4172 goto out; 4173 } 4174 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4175 err = "Too few inodes for current use"; 4176 goto out; 4177 } 4178 } 4179 4180 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4181 sbinfo->next_ino > UINT_MAX) { 4182 err = "Current inum too high to switch to 32-bit inums"; 4183 goto out; 4184 } 4185 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4186 err = "Cannot disable swap on remount"; 4187 goto out; 4188 } 4189 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4190 err = "Cannot enable swap on remount if it was disabled on first mount"; 4191 goto out; 4192 } 4193 4194 if (ctx->seen & SHMEM_SEEN_QUOTA && 4195 !sb_any_quota_loaded(fc->root->d_sb)) { 4196 err = "Cannot enable quota on remount"; 4197 goto out; 4198 } 4199 4200 #ifdef CONFIG_TMPFS_QUOTA 4201 #define CHANGED_LIMIT(name) \ 4202 (ctx->qlimits.name## hardlimit && \ 4203 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4204 4205 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4206 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4207 err = "Cannot change global quota limit on remount"; 4208 goto out; 4209 } 4210 #endif /* CONFIG_TMPFS_QUOTA */ 4211 4212 if (ctx->seen & SHMEM_SEEN_HUGE) 4213 sbinfo->huge = ctx->huge; 4214 if (ctx->seen & SHMEM_SEEN_INUMS) 4215 sbinfo->full_inums = ctx->full_inums; 4216 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4217 sbinfo->max_blocks = ctx->blocks; 4218 if (ctx->seen & SHMEM_SEEN_INODES) { 4219 sbinfo->max_inodes = ctx->inodes; 4220 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4221 } 4222 4223 /* 4224 * Preserve previous mempolicy unless mpol remount option was specified. 4225 */ 4226 if (ctx->mpol) { 4227 mpol = sbinfo->mpol; 4228 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4229 ctx->mpol = NULL; 4230 } 4231 4232 if (ctx->noswap) 4233 sbinfo->noswap = true; 4234 4235 raw_spin_unlock(&sbinfo->stat_lock); 4236 mpol_put(mpol); 4237 return 0; 4238 out: 4239 raw_spin_unlock(&sbinfo->stat_lock); 4240 return invalfc(fc, "%s", err); 4241 } 4242 4243 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4244 { 4245 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4246 struct mempolicy *mpol; 4247 4248 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4249 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4250 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4251 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4252 if (sbinfo->mode != (0777 | S_ISVTX)) 4253 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4254 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4255 seq_printf(seq, ",uid=%u", 4256 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4257 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4258 seq_printf(seq, ",gid=%u", 4259 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4260 4261 /* 4262 * Showing inode{64,32} might be useful even if it's the system default, 4263 * since then people don't have to resort to checking both here and 4264 * /proc/config.gz to confirm 64-bit inums were successfully applied 4265 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4266 * 4267 * We hide it when inode64 isn't the default and we are using 32-bit 4268 * inodes, since that probably just means the feature isn't even under 4269 * consideration. 4270 * 4271 * As such: 4272 * 4273 * +-----------------+-----------------+ 4274 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4275 * +------------------+-----------------+-----------------+ 4276 * | full_inums=true | show | show | 4277 * | full_inums=false | show | hide | 4278 * +------------------+-----------------+-----------------+ 4279 * 4280 */ 4281 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4282 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4284 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4285 if (sbinfo->huge) 4286 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4287 #endif 4288 mpol = shmem_get_sbmpol(sbinfo); 4289 shmem_show_mpol(seq, mpol); 4290 mpol_put(mpol); 4291 if (sbinfo->noswap) 4292 seq_printf(seq, ",noswap"); 4293 #ifdef CONFIG_TMPFS_QUOTA 4294 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4295 seq_printf(seq, ",usrquota"); 4296 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4297 seq_printf(seq, ",grpquota"); 4298 if (sbinfo->qlimits.usrquota_bhardlimit) 4299 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4300 sbinfo->qlimits.usrquota_bhardlimit); 4301 if (sbinfo->qlimits.grpquota_bhardlimit) 4302 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4303 sbinfo->qlimits.grpquota_bhardlimit); 4304 if (sbinfo->qlimits.usrquota_ihardlimit) 4305 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4306 sbinfo->qlimits.usrquota_ihardlimit); 4307 if (sbinfo->qlimits.grpquota_ihardlimit) 4308 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4309 sbinfo->qlimits.grpquota_ihardlimit); 4310 #endif 4311 return 0; 4312 } 4313 4314 #endif /* CONFIG_TMPFS */ 4315 4316 static void shmem_put_super(struct super_block *sb) 4317 { 4318 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4319 4320 #ifdef CONFIG_TMPFS_QUOTA 4321 shmem_disable_quotas(sb); 4322 #endif 4323 free_percpu(sbinfo->ino_batch); 4324 percpu_counter_destroy(&sbinfo->used_blocks); 4325 mpol_put(sbinfo->mpol); 4326 kfree(sbinfo); 4327 sb->s_fs_info = NULL; 4328 } 4329 4330 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4331 { 4332 struct shmem_options *ctx = fc->fs_private; 4333 struct inode *inode; 4334 struct shmem_sb_info *sbinfo; 4335 int error = -ENOMEM; 4336 4337 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4338 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4339 L1_CACHE_BYTES), GFP_KERNEL); 4340 if (!sbinfo) 4341 return error; 4342 4343 sb->s_fs_info = sbinfo; 4344 4345 #ifdef CONFIG_TMPFS 4346 /* 4347 * Per default we only allow half of the physical ram per 4348 * tmpfs instance, limiting inodes to one per page of lowmem; 4349 * but the internal instance is left unlimited. 4350 */ 4351 if (!(sb->s_flags & SB_KERNMOUNT)) { 4352 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4353 ctx->blocks = shmem_default_max_blocks(); 4354 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4355 ctx->inodes = shmem_default_max_inodes(); 4356 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4357 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4358 sbinfo->noswap = ctx->noswap; 4359 } else { 4360 sb->s_flags |= SB_NOUSER; 4361 } 4362 sb->s_export_op = &shmem_export_ops; 4363 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4364 #else 4365 sb->s_flags |= SB_NOUSER; 4366 #endif 4367 sbinfo->max_blocks = ctx->blocks; 4368 sbinfo->max_inodes = ctx->inodes; 4369 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4370 if (sb->s_flags & SB_KERNMOUNT) { 4371 sbinfo->ino_batch = alloc_percpu(ino_t); 4372 if (!sbinfo->ino_batch) 4373 goto failed; 4374 } 4375 sbinfo->uid = ctx->uid; 4376 sbinfo->gid = ctx->gid; 4377 sbinfo->full_inums = ctx->full_inums; 4378 sbinfo->mode = ctx->mode; 4379 sbinfo->huge = ctx->huge; 4380 sbinfo->mpol = ctx->mpol; 4381 ctx->mpol = NULL; 4382 4383 raw_spin_lock_init(&sbinfo->stat_lock); 4384 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4385 goto failed; 4386 spin_lock_init(&sbinfo->shrinklist_lock); 4387 INIT_LIST_HEAD(&sbinfo->shrinklist); 4388 4389 sb->s_maxbytes = MAX_LFS_FILESIZE; 4390 sb->s_blocksize = PAGE_SIZE; 4391 sb->s_blocksize_bits = PAGE_SHIFT; 4392 sb->s_magic = TMPFS_MAGIC; 4393 sb->s_op = &shmem_ops; 4394 sb->s_time_gran = 1; 4395 #ifdef CONFIG_TMPFS_XATTR 4396 sb->s_xattr = shmem_xattr_handlers; 4397 #endif 4398 #ifdef CONFIG_TMPFS_POSIX_ACL 4399 sb->s_flags |= SB_POSIXACL; 4400 #endif 4401 uuid_t uuid; 4402 uuid_gen(&uuid); 4403 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4404 4405 #ifdef CONFIG_TMPFS_QUOTA 4406 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4407 sb->dq_op = &shmem_quota_operations; 4408 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4409 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4410 4411 /* Copy the default limits from ctx into sbinfo */ 4412 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4413 sizeof(struct shmem_quota_limits)); 4414 4415 if (shmem_enable_quotas(sb, ctx->quota_types)) 4416 goto failed; 4417 } 4418 #endif /* CONFIG_TMPFS_QUOTA */ 4419 4420 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4421 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4422 if (IS_ERR(inode)) { 4423 error = PTR_ERR(inode); 4424 goto failed; 4425 } 4426 inode->i_uid = sbinfo->uid; 4427 inode->i_gid = sbinfo->gid; 4428 sb->s_root = d_make_root(inode); 4429 if (!sb->s_root) 4430 goto failed; 4431 return 0; 4432 4433 failed: 4434 shmem_put_super(sb); 4435 return error; 4436 } 4437 4438 static int shmem_get_tree(struct fs_context *fc) 4439 { 4440 return get_tree_nodev(fc, shmem_fill_super); 4441 } 4442 4443 static void shmem_free_fc(struct fs_context *fc) 4444 { 4445 struct shmem_options *ctx = fc->fs_private; 4446 4447 if (ctx) { 4448 mpol_put(ctx->mpol); 4449 kfree(ctx); 4450 } 4451 } 4452 4453 static const struct fs_context_operations shmem_fs_context_ops = { 4454 .free = shmem_free_fc, 4455 .get_tree = shmem_get_tree, 4456 #ifdef CONFIG_TMPFS 4457 .parse_monolithic = shmem_parse_options, 4458 .parse_param = shmem_parse_one, 4459 .reconfigure = shmem_reconfigure, 4460 #endif 4461 }; 4462 4463 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4464 4465 static struct inode *shmem_alloc_inode(struct super_block *sb) 4466 { 4467 struct shmem_inode_info *info; 4468 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4469 if (!info) 4470 return NULL; 4471 return &info->vfs_inode; 4472 } 4473 4474 static void shmem_free_in_core_inode(struct inode *inode) 4475 { 4476 if (S_ISLNK(inode->i_mode)) 4477 kfree(inode->i_link); 4478 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4479 } 4480 4481 static void shmem_destroy_inode(struct inode *inode) 4482 { 4483 if (S_ISREG(inode->i_mode)) 4484 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4485 if (S_ISDIR(inode->i_mode)) 4486 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4487 } 4488 4489 static void shmem_init_inode(void *foo) 4490 { 4491 struct shmem_inode_info *info = foo; 4492 inode_init_once(&info->vfs_inode); 4493 } 4494 4495 static void __init shmem_init_inodecache(void) 4496 { 4497 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4498 sizeof(struct shmem_inode_info), 4499 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4500 } 4501 4502 static void __init shmem_destroy_inodecache(void) 4503 { 4504 kmem_cache_destroy(shmem_inode_cachep); 4505 } 4506 4507 /* Keep the page in page cache instead of truncating it */ 4508 static int shmem_error_remove_folio(struct address_space *mapping, 4509 struct folio *folio) 4510 { 4511 return 0; 4512 } 4513 4514 static const struct address_space_operations shmem_aops = { 4515 .writepage = shmem_writepage, 4516 .dirty_folio = noop_dirty_folio, 4517 #ifdef CONFIG_TMPFS 4518 .write_begin = shmem_write_begin, 4519 .write_end = shmem_write_end, 4520 #endif 4521 #ifdef CONFIG_MIGRATION 4522 .migrate_folio = migrate_folio, 4523 #endif 4524 .error_remove_folio = shmem_error_remove_folio, 4525 }; 4526 4527 static const struct file_operations shmem_file_operations = { 4528 .mmap = shmem_mmap, 4529 .open = shmem_file_open, 4530 .get_unmapped_area = shmem_get_unmapped_area, 4531 #ifdef CONFIG_TMPFS 4532 .llseek = shmem_file_llseek, 4533 .read_iter = shmem_file_read_iter, 4534 .write_iter = shmem_file_write_iter, 4535 .fsync = noop_fsync, 4536 .splice_read = shmem_file_splice_read, 4537 .splice_write = iter_file_splice_write, 4538 .fallocate = shmem_fallocate, 4539 #endif 4540 }; 4541 4542 static const struct inode_operations shmem_inode_operations = { 4543 .getattr = shmem_getattr, 4544 .setattr = shmem_setattr, 4545 #ifdef CONFIG_TMPFS_XATTR 4546 .listxattr = shmem_listxattr, 4547 .set_acl = simple_set_acl, 4548 .fileattr_get = shmem_fileattr_get, 4549 .fileattr_set = shmem_fileattr_set, 4550 #endif 4551 }; 4552 4553 static const struct inode_operations shmem_dir_inode_operations = { 4554 #ifdef CONFIG_TMPFS 4555 .getattr = shmem_getattr, 4556 .create = shmem_create, 4557 .lookup = simple_lookup, 4558 .link = shmem_link, 4559 .unlink = shmem_unlink, 4560 .symlink = shmem_symlink, 4561 .mkdir = shmem_mkdir, 4562 .rmdir = shmem_rmdir, 4563 .mknod = shmem_mknod, 4564 .rename = shmem_rename2, 4565 .tmpfile = shmem_tmpfile, 4566 .get_offset_ctx = shmem_get_offset_ctx, 4567 #endif 4568 #ifdef CONFIG_TMPFS_XATTR 4569 .listxattr = shmem_listxattr, 4570 .fileattr_get = shmem_fileattr_get, 4571 .fileattr_set = shmem_fileattr_set, 4572 #endif 4573 #ifdef CONFIG_TMPFS_POSIX_ACL 4574 .setattr = shmem_setattr, 4575 .set_acl = simple_set_acl, 4576 #endif 4577 }; 4578 4579 static const struct inode_operations shmem_special_inode_operations = { 4580 .getattr = shmem_getattr, 4581 #ifdef CONFIG_TMPFS_XATTR 4582 .listxattr = shmem_listxattr, 4583 #endif 4584 #ifdef CONFIG_TMPFS_POSIX_ACL 4585 .setattr = shmem_setattr, 4586 .set_acl = simple_set_acl, 4587 #endif 4588 }; 4589 4590 static const struct super_operations shmem_ops = { 4591 .alloc_inode = shmem_alloc_inode, 4592 .free_inode = shmem_free_in_core_inode, 4593 .destroy_inode = shmem_destroy_inode, 4594 #ifdef CONFIG_TMPFS 4595 .statfs = shmem_statfs, 4596 .show_options = shmem_show_options, 4597 #endif 4598 #ifdef CONFIG_TMPFS_QUOTA 4599 .get_dquots = shmem_get_dquots, 4600 #endif 4601 .evict_inode = shmem_evict_inode, 4602 .drop_inode = generic_delete_inode, 4603 .put_super = shmem_put_super, 4604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4605 .nr_cached_objects = shmem_unused_huge_count, 4606 .free_cached_objects = shmem_unused_huge_scan, 4607 #endif 4608 }; 4609 4610 static const struct vm_operations_struct shmem_vm_ops = { 4611 .fault = shmem_fault, 4612 .map_pages = filemap_map_pages, 4613 #ifdef CONFIG_NUMA 4614 .set_policy = shmem_set_policy, 4615 .get_policy = shmem_get_policy, 4616 #endif 4617 }; 4618 4619 static const struct vm_operations_struct shmem_anon_vm_ops = { 4620 .fault = shmem_fault, 4621 .map_pages = filemap_map_pages, 4622 #ifdef CONFIG_NUMA 4623 .set_policy = shmem_set_policy, 4624 .get_policy = shmem_get_policy, 4625 #endif 4626 }; 4627 4628 int shmem_init_fs_context(struct fs_context *fc) 4629 { 4630 struct shmem_options *ctx; 4631 4632 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4633 if (!ctx) 4634 return -ENOMEM; 4635 4636 ctx->mode = 0777 | S_ISVTX; 4637 ctx->uid = current_fsuid(); 4638 ctx->gid = current_fsgid(); 4639 4640 fc->fs_private = ctx; 4641 fc->ops = &shmem_fs_context_ops; 4642 return 0; 4643 } 4644 4645 static struct file_system_type shmem_fs_type = { 4646 .owner = THIS_MODULE, 4647 .name = "tmpfs", 4648 .init_fs_context = shmem_init_fs_context, 4649 #ifdef CONFIG_TMPFS 4650 .parameters = shmem_fs_parameters, 4651 #endif 4652 .kill_sb = kill_litter_super, 4653 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4654 }; 4655 4656 void __init shmem_init(void) 4657 { 4658 int error; 4659 4660 shmem_init_inodecache(); 4661 4662 #ifdef CONFIG_TMPFS_QUOTA 4663 error = register_quota_format(&shmem_quota_format); 4664 if (error < 0) { 4665 pr_err("Could not register quota format\n"); 4666 goto out3; 4667 } 4668 #endif 4669 4670 error = register_filesystem(&shmem_fs_type); 4671 if (error) { 4672 pr_err("Could not register tmpfs\n"); 4673 goto out2; 4674 } 4675 4676 shm_mnt = kern_mount(&shmem_fs_type); 4677 if (IS_ERR(shm_mnt)) { 4678 error = PTR_ERR(shm_mnt); 4679 pr_err("Could not kern_mount tmpfs\n"); 4680 goto out1; 4681 } 4682 4683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4684 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4685 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4686 else 4687 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4688 #endif 4689 return; 4690 4691 out1: 4692 unregister_filesystem(&shmem_fs_type); 4693 out2: 4694 #ifdef CONFIG_TMPFS_QUOTA 4695 unregister_quota_format(&shmem_quota_format); 4696 out3: 4697 #endif 4698 shmem_destroy_inodecache(); 4699 shm_mnt = ERR_PTR(error); 4700 } 4701 4702 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4703 static ssize_t shmem_enabled_show(struct kobject *kobj, 4704 struct kobj_attribute *attr, char *buf) 4705 { 4706 static const int values[] = { 4707 SHMEM_HUGE_ALWAYS, 4708 SHMEM_HUGE_WITHIN_SIZE, 4709 SHMEM_HUGE_ADVISE, 4710 SHMEM_HUGE_NEVER, 4711 SHMEM_HUGE_DENY, 4712 SHMEM_HUGE_FORCE, 4713 }; 4714 int len = 0; 4715 int i; 4716 4717 for (i = 0; i < ARRAY_SIZE(values); i++) { 4718 len += sysfs_emit_at(buf, len, 4719 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4720 i ? " " : "", shmem_format_huge(values[i])); 4721 } 4722 len += sysfs_emit_at(buf, len, "\n"); 4723 4724 return len; 4725 } 4726 4727 static ssize_t shmem_enabled_store(struct kobject *kobj, 4728 struct kobj_attribute *attr, const char *buf, size_t count) 4729 { 4730 char tmp[16]; 4731 int huge; 4732 4733 if (count + 1 > sizeof(tmp)) 4734 return -EINVAL; 4735 memcpy(tmp, buf, count); 4736 tmp[count] = '\0'; 4737 if (count && tmp[count - 1] == '\n') 4738 tmp[count - 1] = '\0'; 4739 4740 huge = shmem_parse_huge(tmp); 4741 if (huge == -EINVAL) 4742 return -EINVAL; 4743 if (!has_transparent_hugepage() && 4744 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4745 return -EINVAL; 4746 4747 shmem_huge = huge; 4748 if (shmem_huge > SHMEM_HUGE_DENY) 4749 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4750 return count; 4751 } 4752 4753 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4754 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4755 4756 #else /* !CONFIG_SHMEM */ 4757 4758 /* 4759 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4760 * 4761 * This is intended for small system where the benefits of the full 4762 * shmem code (swap-backed and resource-limited) are outweighed by 4763 * their complexity. On systems without swap this code should be 4764 * effectively equivalent, but much lighter weight. 4765 */ 4766 4767 static struct file_system_type shmem_fs_type = { 4768 .name = "tmpfs", 4769 .init_fs_context = ramfs_init_fs_context, 4770 .parameters = ramfs_fs_parameters, 4771 .kill_sb = ramfs_kill_sb, 4772 .fs_flags = FS_USERNS_MOUNT, 4773 }; 4774 4775 void __init shmem_init(void) 4776 { 4777 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4778 4779 shm_mnt = kern_mount(&shmem_fs_type); 4780 BUG_ON(IS_ERR(shm_mnt)); 4781 } 4782 4783 int shmem_unuse(unsigned int type) 4784 { 4785 return 0; 4786 } 4787 4788 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4789 { 4790 return 0; 4791 } 4792 4793 void shmem_unlock_mapping(struct address_space *mapping) 4794 { 4795 } 4796 4797 #ifdef CONFIG_MMU 4798 unsigned long shmem_get_unmapped_area(struct file *file, 4799 unsigned long addr, unsigned long len, 4800 unsigned long pgoff, unsigned long flags) 4801 { 4802 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 4803 } 4804 #endif 4805 4806 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4807 { 4808 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4809 } 4810 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4811 4812 #define shmem_vm_ops generic_file_vm_ops 4813 #define shmem_anon_vm_ops generic_file_vm_ops 4814 #define shmem_file_operations ramfs_file_operations 4815 #define shmem_acct_size(flags, size) 0 4816 #define shmem_unacct_size(flags, size) do {} while (0) 4817 4818 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 4819 struct super_block *sb, struct inode *dir, 4820 umode_t mode, dev_t dev, unsigned long flags) 4821 { 4822 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4823 return inode ? inode : ERR_PTR(-ENOSPC); 4824 } 4825 4826 #endif /* CONFIG_SHMEM */ 4827 4828 /* common code */ 4829 4830 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 4831 loff_t size, unsigned long flags, unsigned int i_flags) 4832 { 4833 struct inode *inode; 4834 struct file *res; 4835 4836 if (IS_ERR(mnt)) 4837 return ERR_CAST(mnt); 4838 4839 if (size < 0 || size > MAX_LFS_FILESIZE) 4840 return ERR_PTR(-EINVAL); 4841 4842 if (shmem_acct_size(flags, size)) 4843 return ERR_PTR(-ENOMEM); 4844 4845 if (is_idmapped_mnt(mnt)) 4846 return ERR_PTR(-EINVAL); 4847 4848 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4849 S_IFREG | S_IRWXUGO, 0, flags); 4850 if (IS_ERR(inode)) { 4851 shmem_unacct_size(flags, size); 4852 return ERR_CAST(inode); 4853 } 4854 inode->i_flags |= i_flags; 4855 inode->i_size = size; 4856 clear_nlink(inode); /* It is unlinked */ 4857 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4858 if (!IS_ERR(res)) 4859 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4860 &shmem_file_operations); 4861 if (IS_ERR(res)) 4862 iput(inode); 4863 return res; 4864 } 4865 4866 /** 4867 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4868 * kernel internal. There will be NO LSM permission checks against the 4869 * underlying inode. So users of this interface must do LSM checks at a 4870 * higher layer. The users are the big_key and shm implementations. LSM 4871 * checks are provided at the key or shm level rather than the inode. 4872 * @name: name for dentry (to be seen in /proc/<pid>/maps 4873 * @size: size to be set for the file 4874 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4875 */ 4876 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4877 { 4878 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4879 } 4880 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 4881 4882 /** 4883 * shmem_file_setup - get an unlinked file living in tmpfs 4884 * @name: name for dentry (to be seen in /proc/<pid>/maps 4885 * @size: size to be set for the file 4886 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4887 */ 4888 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4889 { 4890 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4891 } 4892 EXPORT_SYMBOL_GPL(shmem_file_setup); 4893 4894 /** 4895 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4896 * @mnt: the tmpfs mount where the file will be created 4897 * @name: name for dentry (to be seen in /proc/<pid>/maps 4898 * @size: size to be set for the file 4899 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4900 */ 4901 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4902 loff_t size, unsigned long flags) 4903 { 4904 return __shmem_file_setup(mnt, name, size, flags, 0); 4905 } 4906 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4907 4908 /** 4909 * shmem_zero_setup - setup a shared anonymous mapping 4910 * @vma: the vma to be mmapped is prepared by do_mmap 4911 */ 4912 int shmem_zero_setup(struct vm_area_struct *vma) 4913 { 4914 struct file *file; 4915 loff_t size = vma->vm_end - vma->vm_start; 4916 4917 /* 4918 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4919 * between XFS directory reading and selinux: since this file is only 4920 * accessible to the user through its mapping, use S_PRIVATE flag to 4921 * bypass file security, in the same way as shmem_kernel_file_setup(). 4922 */ 4923 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4924 if (IS_ERR(file)) 4925 return PTR_ERR(file); 4926 4927 if (vma->vm_file) 4928 fput(vma->vm_file); 4929 vma->vm_file = file; 4930 vma->vm_ops = &shmem_anon_vm_ops; 4931 4932 return 0; 4933 } 4934 4935 /** 4936 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4937 * @mapping: the folio's address_space 4938 * @index: the folio index 4939 * @gfp: the page allocator flags to use if allocating 4940 * 4941 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4942 * with any new page allocations done using the specified allocation flags. 4943 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4944 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4945 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4946 * 4947 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4948 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4949 */ 4950 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4951 pgoff_t index, gfp_t gfp) 4952 { 4953 #ifdef CONFIG_SHMEM 4954 struct inode *inode = mapping->host; 4955 struct folio *folio; 4956 int error; 4957 4958 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4959 gfp, NULL, NULL); 4960 if (error) 4961 return ERR_PTR(error); 4962 4963 folio_unlock(folio); 4964 return folio; 4965 #else 4966 /* 4967 * The tiny !SHMEM case uses ramfs without swap 4968 */ 4969 return mapping_read_folio_gfp(mapping, index, gfp); 4970 #endif 4971 } 4972 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4973 4974 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4975 pgoff_t index, gfp_t gfp) 4976 { 4977 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4978 struct page *page; 4979 4980 if (IS_ERR(folio)) 4981 return &folio->page; 4982 4983 page = folio_file_page(folio, index); 4984 if (PageHWPoison(page)) { 4985 folio_put(folio); 4986 return ERR_PTR(-EIO); 4987 } 4988 4989 return page; 4990 } 4991 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4992